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Abstract
BackgroundMulti-omics analysis is increasingly popular in biomedical research. While promising, these analyses confront challenges in dataintegration, management, and interpretation due to their complexity, diversity, and volume. Moreover, achieving transparency,reproducibility, and repeatability in multi-omics analyses is essential for facilitating scientific collaboration and validation ofcomplex datasets.ResultsWe introduce playOmics, an open-source R package tailored for omics data analysis. It facilitates data management and biomarkerdiscovery through various visualizations, statistics and explanations for boosted interpretability. playOmics identifies significantprognostic markers and iteratively constructs logistic regression models, identifying combinations with high predictiveperformance. Our tool enables users to make direct, model-driven predictions by inputting new data into the selected pre-trainedmodel. playOmics performed well in handling extensive datasets and missing data, showing a mean validation MCC of 0.773.ConclusionsplayOmics demonstrates the balance between model complexity and interpretability, crucial in biomedical research forunderstanding model decisions. playOmics’ approach promotes a flexible model selection process, encouraging exploration andhypothesis generation in biomarker discovery. The dockerized setup and intuitive graphical interface of playOmics support itsadoption in a wide range of research and clinical settings, adhering to principles of open science, enhancing reproducibility andtransparency.
Key words: multi-omics; machine learning; explainable AI

Introduction
Background
Multi-omics studies, encompassing diverse layers of biological in-formation such as genomics, transcriptomics, proteomics, andmetabolomics, are pivotal in dissecting complex molecular signa-tures associated with specific phenological traits or disease states

[1]. However, despite its potential, the true value of comprehensiveomics analysis often encounters significant challenges, particularlyin data integration, management and interpretation [2, 3]. Thesechallenges arise due to the complexity, diversity and voluminousnature of the data, posing substantial obstacles in effectively utiliz-ing integrated omics analysis.
One of the primary challenges in multi-omics data analysis isthe scenario where the number of features (p) greatly exceeds the
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number of observations (n). This imbalance requires robust tech-niques such as dimensionality reduction or feature selection to en-sure that results are meaningful and interpretable [4]. This issue isfurther extended in rare disease studies, where patient samples aredeficient, emphasizing the need for methods capable of extractingmaximum information without overfitting [5].Effective data management, encompassing preprocessing andcleaning, is essential for harmonizing data from various sources.This process ensures data quality and compatibility, which is crucialfor downstream analysis. Various approaches to data integrationhave been proposed, with each having its own advantages and dis-advantages [6, 7]. The most common approach, early integration(also known as data concatenation), involves combining differentdatasets or omics layers before any analysis, allowing for simul-taneous analysis of all data types. Despite its ease of application,early integration risks overlooking the complex relationships be-tween different omics layers inherent in biological systems, as itassumes a straightforward additive effect of combining datasets.Hierarchical integration, on the other hand, enriches the analysisby incorporating regulatory relationships between omics layers,informed by prior knowledge and external sources like databasesand literature. However, by focusing on known relationships, novelinteractions might be overlooked as they are not yet represented indatabases or literature.
Transparency, reproducibility and repeatability in multi-omics analyses
The complexity and scale of comprehensive omics data demand re-search methodologies and findings to be transparent, reproducible,and repeatable. Ensuring such consistency not only builds trustin the findings, but also facilitates scientific collaboration, allow-ing other researchers to validate and build upon existing work[8, 9]. Achieving reliability is fundamental to validating the re-sults and conclusions drawn from complex datasets [10]. Whilethe quintessential principles of open science — transparency, ac-cessibility, and reproducibility—are often addressed through clearmethodological guidance offered by various analytical packages, thetools known from machine learning engineering, which includesstreamlined operation on modeling pipelines, model versioningand monitoring, is not always integrated in the traditional tools.Additionally, the capability to adjust models across various datasetsmarks the robustness and adaptability of analytical tools, signifi-cantly increasing the practical application of research outcomes.Another important aspect is the management and validation ofresults. This requires robust statistical methods and practices toconfirm the reliability of the findings. Permutation experiments,for instance, are a well known technique used to determine thesignificance of the results [11]. The adoption of metrics specificallyaligned with the nature of the data, including those for address-ing issues like imbalanced datasets, further confirms the findings’validity [12].
Interpretability
Interpretability, a critical factor in fields with significant decision-making consequences like healthcare and finance, has becomecrucial in the field of multi-omics data analysis. As multi-omicsexperiments grow in complexity, there is an increasing demandfor models that are not only accurate, but also transparent in theirdecision-making processes. Techniques such as feature importanceanalysis, partial dependence plots and SHAP (SHapley Additive ex-Planations) values are instrumental in elucidating how individualfeatures influence predictions on a local scale, providing insightsinto specific data points or predictions. In contrast, global explana-tors, including interpretable models like decision trees and linearmodels, allow for an understanding of the model’s behavior as a

whole [13, 14]. Integrating interpretability into model developmentin multi-omics not only boosts trust and transparency, but alsoensures that models can be effectively and responsibly applied incritical areas like clinical decision-making, thereby bridging thegap between complex data analysis and its real-world healthcareapplications.

Current approaches
The multi-omics data analysis field has evolved through the devel-opment of tools designed to tackle specific aspects of data integra-tion and analysis. This progress has been driven by efforts to cre-ate machine learning methods that automatically integrate omicsdata. To name some, broadly applied R packages like mixOmics,MOFA, and iCluster have played a significant role in this devel-opment. mixOmics, a universal package for both supervised andunsupervised analysis due to its implementation of methods likeLDA, PCA, and CCA, and the DIABLO framework, is widely usedfor cancer subtype characterization and disease association stud-ies [15, 16]. MOFA employs factor analysis for dimensionality re-duction, aiming to identify common factors across various omicslayers that account for the greatest data variance; its effectivenesshas been proven in survival analysis and drug response prediction[17]. The iCluster utilizes joint latent variable models to reducedimensionality and integrate data across omics layers, and havebeen effectively applied in identifying cancer subtypes and patientstratification [18]. More recently, the Python library QLattice hasbeen introduced, employing a symbolic regression approach to gen-erate simple, predictive models from omics data, where complexityis moderated by a Bayesian criterion [19]. It’s particularly suitedfor clinical decision-making and patient care. However, despite itsdirect interpretability, access to QLattice is governed by specificlicensing terms, and its source code is not openly available, whichmay limit its adoption in research environments that prioritize openscience principles and collaborative development. To the best ofour knowledge, no tool combines the ease of analysis tracking withthe provision of user-friendly graphical interface and interpretablemodels serving.

Addressing existing gaps, we developed playOmics, an R pack-age specifically designed for multi-omics analysis. Our strategywith playOmics was to simplify the process of integrating complexomics data, facilitating the identification of prognostic markers anddevelopment of effective predictive models (see 1 for a comparisonwith existing tools). We prioritized ease of the data processing andmodel engineering, introducing an interactive GUI for model ex-ploration, serving and validation. playOmics emphasizes modelinterpretability through various statistics, visualizations and theuse of local explainers like SHAP values for in-depth analysis.

Implementation
Overview
The playOmics package was developed using R Statistical Software[20] and builds on a number of existing packages, in particular, tidy-verse [21], tidymodels [22], mlr3 [23], shiny [24] and DALEX[25].Its source code and documentation are accessible on GitHub, andcan be found at [26]. To facilitate the usage and reproducibility,we have prepared two distinct docker images: one encompassing acomplete test environment with RStudio, and another containingtest data. A docker-compose file, along with a script for testingpurposes, has been curated and hosted on GitHub [27]. This ar-rangement provides an isolated, self-contained setup for runningthe playOmics environment.

A graphical abstract of the data pipeline proposed in the play-Omics package is presented in Figure 1. In the following sections,
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Table 1. Comparative Overview of Multi-Omics Analysis Tools.
Feature playOmics QLattice mixOmics MOFA iClusterPlus DIABLO
Language R Python R R R R
DataPreprocessing Available via pre-processing steps Not included Needs to becleaned exter-nally

Needs to becleaned exter-nally
Needs to becleaned exter-nally

Needs to becleaned exter-nally
Data Integration(Early/Late) Early Early Both Late Early Both
Feature Selection(Method) Univariate fil-tering - Vast ofmethod availablethrough “mlr3”package

Not included Sparse PLS andCCA (for dimen-sion reductionand variableselection)

Factor loadingsfrom FactorAnalysis
LASSO or ridgeregression (de-pending onconfiguration)

Sparse PLS andCCA (for dimen-sion reductionand variableselection)
Methodology Logistic regres-sion Symbolic regres-sion Sparse PLS andCCA Factor Analysis Latent variablemodels Canonical Corre-lation and PLS
Primary Output Models, Predic-tions, Interpre-tations, ShinyApplicationInterface

Models (equa-tions) Componentplots, variableimportance
Factors repre-senting patterns Clusters of sam-ples Canonical pairs

Interpretability High, with statis-tics, graphicaloutput and ex-plainers

High, with graph-ical outputs High, with graph-ical outputs Depends on com-plexity of factors Moderate,through clus-tering
High, with graph-ical outputs

Output Small, n-variablemodels Network of rela-tionships Plots and statisti-cal measures Factor loadings Integrative clus-ters Plots and statisti-cal measures
ComputationalComplexity Moderate to high- depends on se-lected number offeatures and max-imal size of model

Moderate - de-pending on thesize and complex-ity of the dataand the numberof iterations; re-duced via geneticalgorithm

Moderate - usessparse PLS andCCA, which arerelatively effi-cient with high-dimensionaldata

Moderate -largely deter-mined by thenumber of fac-tors used in themodel, withmore factorsleading to highercomplexity

High - requiresestimation ofa number ofparameters thatcan increase withthe dimensionsof the data, lead-ing to highercomputationalcomplexity.

Moderate, simi-lar to mixOmics;however, italso includesadditional com-putation forintegratingmultiple datasets

Open Science MLCompliance Advanced: Log-ging, Trans-parency in ModelCreation

Moderate, Abilityto save and pre-dict on selectedmodel

Limited Limited Limited Limited

the main steps of the analysis will be discussed in details.
Data preparation
In the initial phase of our omics data analysis, we focus on integrat-ing various data types. These should be formatted as data framessuitable for downstream analysis and follow tidy data principles,with observations in rows and variables in columns. Here, the vari-ables correspond to measurements from different omics types incontinuous or binary scales. This format promotes consistencyacross all data types, crucial for further unification and analysis.Our approach involves storing the different data in a list format,which simplifies the manipulation of individual datasets and sup-ports a unified view of the aggregated data.The definition of the analysis target guides the way how we treatthe data in the preprocessing step. We use phenotype data to setthe prediction objective (e.g. patient survival status) and to pointout common observation identifiers, essential for merging dataacross different datasets. This stage also includes the possibility ofselection of the “positive” class - the outcome we aim to predict.After a target is set, we proceed to convert all remaining factor andcharacter variables into a binary format using one-hot encoding.Additionally, each variable is tagged with an identifier that links

it back to its original dataframe, ensuring traceability throughoutthe analysis process.
Data exploration and quality check
In the exploration stage, we assess the alignment of differentdatasets. We begin by conducting a visual examination of the extentof overlap across different data types using upset plots to assess theshared data points among our datasets. This process helps us iden-tify any datasets with insufficient overlap, allowing us to considerthe removal of any modality that lacks adequate coverage. Next,we conduct a detailed quality check of all the data. This includesexamining basic statistics for both numerical and non-numericaldata to uncover necessary adjustments, such as converting textdata to numeric formats and spotting columns with many missingvalues or showing little to no variation. Identifying these issuesallows us to adjust data for consistency across the datasets or toeliminate variables that, due to excessive missing values or lack ofdiversity, may not contribute valuable insights to further analysis.The playOmics package allows for the application of omic-specific standards in data preprocessing, which is crucial for man-aging the diversity and complexity of omics datasets. This can referto a variety of methods, which is beyond the scope of the package.
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Figure 1. Schematic overview of playOmics, presenting the main steps of the analysis (left side, green font) together with their corresponding data products and associated
functions (right side, blue and black font, accordingly). The initial steps involve data preparation, exploration and quality check, ensuring that datasets adhere to a common
structure to simplify manipulation and preprocessing. In the next step, feature selection in a cross-validated manner is performed separately for each dataframe, which
allows for a balanced contribution to the modeling process. The subsequent step is central to playOmics, involving the training, evaluation and logging of models. The final
step offers a module for result presentation and interpretation. Within playOmics, a graphical user interface helps in model management, while a range of statistics and
visualizations assist user in the results interpretation. The workflow is available as a standalone package or as a dockerized environment.
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However, addressing the common challenge of data filtering, wehave implemented two general functionalities: one for filtering outvalues below threshold and another for removing variables witha high percentage of missing values, following the thresholds foracceptable levels of missing or low-quality data set by user.
The segregation of data into training and test subsets is an-other step toward the modelling process. This split is conductedon each dataframe separately. Stratified sampling on a phenotypedataframe is performed and, subsequently, the dataframes corre-sponding to different omics are split based on the same subsets oftrain and test IDs.

Feature selection
Feature selection holds a pivotal role in the omics data analysis dueto the high-dimensionality typically associated with such datasets.Our approach is to conduct feature selection on the training dataseparately for each dataset, ensuring balanced contribution to themodeling process and preventing any single dataset from dominat-ing.

We adopt a method that involves nested filtering, where featuresare ranked and selected based on their relevance to the analysis inthe univariate manner. This is achieved by running cross-validatedfeature ranking, which reduces the risk of overfitting in the selec-tion process and then averaging the ranks to determine the mostrelevant features. Ranking is performed using the mlr3filters pack-age, which offers a range of evaluation metrics [28].
Based on the mean results of cross-valitation runs, we thenselect the set of best features for modeling. The feature selectionmethods include: ’top n’ for selecting a defined number of featuresfrom each dataset (a default), ’percentage’ for choosing a certainproportion of variables from the dataframe, and ’threshold’ forpicking features that exceed a specific mean score.
In our approach, we follow an early concatenation strategy. Afterfeature selection step, we combine all preprocessed datasets intoa single, unified dataframe which is further utilized in models’development.

Modelling
In our modeling approach, we construct a range of logistic regres-sion models tailored for supervised binary classification, each usingdifferent combinations of predictors. Our goal is to explore all pos-sible combinations to identify the most effective set of features thatdistinguish between the two groups. To achieve this, we systemati-cally create a set of feature combinations that need to be evaluated.The number of possible unordered combinations of a specific size(m) that can be selected without replacement from a larger set ofavailable features (N) is determined as follow:

(Nm) = N!
m! ∗ (N –m)!

Where: N is the total number of available features and m is thenumber of predictors (independent variables) selected for a specificcombination.
Logistic regression strikes a balance between complexity and ex-plainability, making it particularly suitable for applications whereinterpretability is crucial. This method models the probability ofan event, such as the clinical outcome. If the probability is higherthan the defined threshold, then the model classifies the outcomeas “positive” class. For our logistic regression models, we carefullylimit the number of features, especially in small sample sizes, toprevent overfitting. A logistic regression binary classification algo-rithm to generate a m-variable predictor is defined as following:

log( p1 – p
) = β0 + β1x1 + ... + βmxm

Where: p – expected probability, x1,..,m – independent variables,
β0,. . . ,m – regression coefficients.

One of the critical aspects of forming these models is the carefulhandling of missing data. Rather than removing missing data earlyon, we delay this step until the construction of individual models.This approach is beneficial in omics data analysis, given the com-plexity of aligning various omics layers that range from hundredsto tens of thousands of variables. Our approach ensures that wemaximize the use of available data and avoid discarding potentiallysignificant signals, especially in the contexts of rare disease studies,where each data point can be critical.

Results presentation and interpretability
In playOmics, we prioritize interpretability to enhance the under-standing of complex multi-omics data. Therefore we developed agraphical interface to facilitate the management and interpretationof experiment results. It includes various analytical panels for adeeper examination of the experiment, including the analysis sum-mary, detailed views of variables’ statistics and visual explanationsof single model predictions 2. Primarily, the Main Panel displaysa scored list of predictive models from the analysis, offering keyidentification information and their metrics for the training andvalidation sets. It also facilitates quick navigation to other sectionsthrough model-specific buttons (Fig. 2A). The Analytes OverviewPanel provides the general statistics for individual molecules, alongwith their average metrics across all models to which they con-tributed, such as MCC, F1, ROC AUC, NPV/PPV and more, offeringinsights into the quality of molecular contributors within the exper-iments (Fig. 2B). The Experiment Overview Panel enables the visu-alization of selected experimental metrics through histogram plots,offering an overview of the outcomes (Fig. 2C). The Single ModelOverview Panel displays the training data and its visual representa-tions on 2- and 3-dimensional plots, supplemented with statisticalinformation, i.e. median and IQR values within each group, whichhelps to identify patterns and understand the predictors’ roles indistinguishing the target status (Fig. 2D).

Additionally, the Prediction Panel enables direct predictionswith the selected model. After the initial phase of model trainingand logging is completed, users can input new data into the chosenmodel to receive immediate, model-driven predictions (Fig. 2E).
An important component of our interpretability approach is theuse of SHAP values in the Prediction Panel (Fig. 2F). SHAP valuesare a powerful tool for local model explanations, revealing how in-dividual features in a model affects specific predictions. They helpto quantify the impact of each feature on the model’s output, point-ing out why the model makes certain decisions for each specificcase. This is particularly valuable in clinical scenarios, where un-derstanding the factors driving a model’s predictions can be crucialfor decision-making process and elevate trust.

Validation
playOmics incorporates permutation experiments as a validationmethod to ensure the robustness of our models, accessible throughSingle Model Overview Panel. These experiments assess the rela-tionship between the target variable and the predictors. By repeat-edly retraining the model on these permuted datasets (i.e. permu-tation of classes) and evaluating their performance, we constructa null distribution that reflects what one might expect under theassumption of random labeling. The observed performance of theselected model is then rigorously compared against this null distri-
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Figure 2. User interface components in playOmics. A. Result panel presents a list of predictive models. Selected performance metrics are displayed alongside each model for
evaluation. Two primary actions can be initiated from here: ‘Show data’ button leads to a detailed view of the model’s input data, and ‘Predict’ button opens the prediction
panel for the selected model. B. The Analytes Overview Panel displays statistics for each molecule and their average metrics across contributing models C. The histogram
of training MCC values among all scored models with the corresponding statistics. D. A three-dimensional scatter plot representing a best-performing 3-variable model
consisting of CDH1, PSMD14 (RNA-Seq data), and FN1 (proteomic data), with a training MCC of 0.815 and validation MCC of 0.734. Each data point represents an observation,
while color distinguishes between different outcomes (blue dots - lobular subtype, red dots - ductal). E, F. In the prediction panel, users can input new data for the model of
interest either by manually entering values or by selecting an existing dataframe from the environment. Upon submitting the input data for prediction, the interface returns a
table that includes the probabilities of each class along with the final predicted class. To facilitate explainability, SHAP (SHapley Additive exPlanations) values are provided as
visualization, representing the contribution of each feature to the prediction outcome. The blue color corresponds to lobular class, while red corresponds to ductal class.
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bution. A known limitation of permutation experiments is the prac-tical challenge of exploring all possible combinations, especiallyas the total number of observations increases. This is representedmathematically as ( nn1
), where n is the total number of observa-tions and n1 represents the number of observations in one group,with the total being the sum of n1 and n2. Therefore, permutationtests are particularly useful for studies with a smaller sample size.Marozzi et al. [29], based on comprehensive literature reviews andsimulation studies, suggests a practical approach for permutationtests, recommending 5000 for actual applications where the signif-icance level is 5% or 10000 for the significance level 1% to achievereliable p-value estimates, whereas Legendre&Legendre [30] sug-gest 500-1000 permutations during an exploratory data analysisand 10000 for final results.

Reproducibility
playOmics enhances the reproducibility of experiments throughextensive logging capabilities that encompass both overarchingexperiments and specific models. Every aspect of the machinelearning process, from parameters to results, is recorded in user-defined directories. This structured approach also applies to themanagement of artifacts. Input datasets, models and explainersare stored in binary formats facilitating their reuse on new datasets or in-depth analysis for greater insight. Furthermore, analysisparameters, model configurations, logs, and performance metricsare stored as JSON files to support efficient troubleshooting andenable precise replication of experiments. Its Docker-based setupallows smooth in various environments and promotes collaborationamong researchers.
Performance evaluation
In our analysis process, the computational efficiency and resourcerequirements are critical considerations, especially when dealingwith a growing number of variables. The performance is primarilydriven by two factors: the maximum number of variables in a singlemodel (m) and the number of variables selected for the modellingexperiment (N).As the number of variables per model increases, so does thecomputational load (Fig. 3A). This is due to the exponential increasein the number of combinations that need to be evaluated when morevariables are involved. Models with multiple predictors require anextensive exploration of all possible combinations, starting fromsimpler ones and progressing to more complex arrangements.Furthermore, the total number of variables chosen for the ex-periment plays a significant role in computational intensity. Eachadditional variable escalates the complexity of combination gener-ation, demanding more computational power. Therefore, carefulselection of variables and appropriate setting of variable limits areessential. By strategically managing these aspects, we can effec-tively balance computational demands, ensuring the efficiency ofthe process without compromising the depth and accuracy of ouranalysis.To enhance the efficiency of our analysis, playOmics is ableto remove less effective models. This means we actively deletemodels that don’t meet standards of performance defined by theuser, therefore the same combination of predictors will not formmodels of higher order. Such a practice allows us to focus on modelsthat demonstrate the highest predictive power. It works as follow:initially, models built with pairs of features (two-element models)are assessed. If these models show weak predictive performance,based on pre-established metrics and threshold, they are excludedfrom further analysis. The rationale behind this strategy is thatif two variables do not significantly contribute to predicting thetarget, their inclusion in a three-element model is also likely to beineffective. This continues until the defined maximum number of

features allowed in the model.
This approach has been experimentally validated, proving effec-tive in dealing with the complexities of large datasets and ensuringthat our analysis is driven by the most robust and informative mod-els (Fig. 3B).

playOmics evaluation
To demonstrate the capabilities of the playOmics package and con-duct comparison with other tools, we utilized the Breast Cancer(BRCA) dataset from The Cancer Genome Atlas (TCGA) project. Ouranalysis focused on predicting histological subtypes: infiltratingductal and lobular carcinoma. However, although coming from thesame source, it is important to note that the data vary between twosections of the results chapter.

In the use case section, we employed what we refer to as the"extensive" dataset, downloaded via the LinkedOmics portal [31].The annotation data were available for 1097 subjects. We incorpo-rated the following datasets in our study: clinical data (20 features),proteome (176 features), methylation (20107 features), miRNA (824features), mutation (7967 features), RNA-Seq (20156 features), andCNV (24777 features).
To benchmark our work against existing analytical methods,we conducted a comparative analysis assessing the performanceof the playOmics algorithm alongside several established alterna-tives. This analysis includes comparisons with the QLattice pack-age, the autoML framework, Lasso regression, and decision treealgorithms. Lasso regression, decision trees, and autoML were se-lected as state-of-the-art algorithms, with Decision Trees servingas a baseline for interpretable models. The QLattice tool was se-lected due to its similarities in model design project - it utilizesrelatively small models, which makes it comparable to playOmicsgoal. However, comparisons with other algorithms listed in Table 1,such as mixOmics, MOFA, and iClusterPlus, were not feasible dueto significant methodological differences, such as a lack of abilityto perform supervised classification.
To enable the comparative analysis, we adopted a second dataset,which we will refer to as a ’limited’ dataset, distinct from the oneused in the use case section. This dataset, originally employed inthe QLattice publication and accessible through Github [32], wasselected for its absence of missing values. It consists of four specificdatasets (CNV - 860 features, proteome - 223 features, RNA-Seq- 604 features, mutation - 249 features) and covers 705 patients.This dataset’s lack of missing values is key for our benchmarking,especially for comparison with QLattice and Lasso regression al-gorithms, which cannot process missing data. Choosing it avoidsthe problem of missing data being excluded when datasets are com-bined, which would otherwise lower the number of observationsand affect the fairness of our comparison. A sample weight ap-proach was adopted on this data due to higher class imbalance incomparison to the extensive dataset (about 4.5:1 in the proportionof ductal to lobular in the limited dataset, compared to about 3:1 inthe extensive dataset).

Results
Use case
To illustrate the typical workflow within playOmics, we conducteda detailed step-by-step analysis using an extensive dataset as aninput. The complete script for this analysis is available on Github,and the results are presented in Figure 2.

The clinical dataset initially included nearly a thousand patients,however, there was significant variance in data coverage acrossdifferent datasets and variables. At most, information was availablefor 379 patients across all datasets. Specifically, the minority class
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Figure 3. Impact of model removal on the number of final models and MCC metrics. A. The plot displays the count of final models resulting from varying the maximum
number of predictors allowed in a single model and the numbers of available predictors in the final set (N), demonstrating the effect of model pruning when the threshold
for training MCC is set below 0.3. Given that MCC values range from -1 to 1, where 0 indicates no better than random chance, setting the threshold at 0.3 ensures that only
models with a certain level of meaningful predictive ability are retained. Solid lines represent the total number of models before elimination, while dashed lines indicate the
remaining models after trimming. B. The distribution of MCC values for experiments with 20 features (N = 20), categorized by the post-removal models’ status. Colors denote
the full set of models (“all”), models that were retained after pruning (“remained”), and those that were excluded (“deleted”). The boxplots illustrate the median MCC
(center line), interquartile range (box edges), and the range within 1.5 times the interquartile range from the upper and lower quartiles whiskers).
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(lobular cancer) ranged from 50 to 145 samples in the training setand from 13 to 37 in the validation set. This discrepancy in dataavailability added an additional layer of complexity to our analysis,challenging for many algorithms that do not accommodate missingdata.
In the filtration phase, a univariate variable selection was con-ducted using the Area-under-the-Curve (AUC) metric to evaluatethe distinction between lobular and ductal samples. We selected top5 features from each dataset, except for clinical data, which resultedin a total of 30 features for modelling experiment. Subsequently,these analytes were integrated into logistic regression models witha maximum of 5 variables. In total, 157,387 models were scored, and16,607 were eliminated in the early reduction phase. The compu-tational time for the experiment reached 4.5 hours, with parallelprocessing across 10 cores and approximately 10 GB of RAM.
For the overall experiment, the average training MCC stood at0.602 (with a standard deviation of 0.107), whereas for the valida-tion set it was slightly lower at 0.589, (with a standard deviationof 0.152) (Fig. 2C).The highest-performing model included fivevariables: CDH1 and PSMD14 from the RNA-Seq dataset, FN1 fromproteome dataset, SHROOM1 from methylation data, and CDH1from mutation data, achieving an MCC of 0.861 on the training setand 0.751 on the validation set.
Another approach to interpreting the data is to analyzemolecules and their respective statistics across all evaluated mod-els, available through the Analytes Overview Panel (Fig. 2B). Forinstance, CDH1, highlighted previously as a component of the bestmodel, stands out as a key molecule, with its RNA-Seq expressionlevels averaging a training MCC of 0.724, highlighting its impor-tance in distinguishing between lobular and ductal cancer subtypes.Its mutation data further supports its significance, registering anMCC of 0.664. The presence of CDH1 mutation, as well as its lowerexpression, corresponds to lobular subtype, what was primarilyfound in the original publication describing BRCA dataset [33] andconfirmed in our study (Fig. 2D).
To further emphasize interpretability of playOmics, in Figure2D we demonstrate the outcomes of a best-performing 3-variablemodel that incorporates FN1 from the proteome dataset and twoRNA-Seq markers, CDH1 and PSMD14. While this model exhibitsslightly reduced performance metrics—0.815 in training and 0.734in validation MCC—compared to a 5-variable model, it outperformsthis more complex model in terms of simplicity and clarity. The 3Dvisualization captured in Figure 2D helps to identify the differencesbetween cancer subtypes, illustrating how the combined influenceof these three variables builds a robust predictive model.
Furthermore, we conducted direct predictions using this modelto demonstrate its practical application, with the results depictedin Figures 2E and 2F. When presented with new data, the modelestimated a 17.8% probability for classifying the sample as lobularand an 82.2% probability for ductal classification, resulting in theassignment to ductal class. The SHAP values calculated for this pre-diction reveal the individual contributions of each variable: CDH1and FN1 shift towards a ductal classification, whereas PSMD14 leansthe prediction towards lobular. This nuanced understanding of vari-able impact underscores the model’s interpretability, aiding usersin making informed decisions.

Comparison with other tools
The results presented in 2 provide a comparison of the performanceof the playOmics algorithm against other established algorithms forBRCA subtypes (ductal/lobular) prediction on a limited dataset. Thecomparison utilized the Matthews Correlation Coefficient (MCC)metric to evaluate model performance on the validation dataset,with additional insights provided by training data metrics (indi-cated within brackets).

playOmics demonstrates a reasonable validation performance,

especially when features were selected using MIM (0.683) and abit lower for the other two methods (AUC 0.663 and MRMR 0.634).QLattice, on the other hand, consistently shows high MCC valuesacross all selection methods, peaking with MRMR (0.715). TheautoML model with the top 5 features from all data shows the high-est validation MCC (0.764 with AUC, 0.771 with MRMR) among allmodels, indicating that it can make highly accurate predictions.Lasso’s performance is generally strong but does not reach the peakperformance of autoML. Decision trees, selected as a baseline forinterpretable models, show lower performance compared to othermodels, suggesting that this approach might be less effective forthis particular prediction task.When comparing models built from a larger set of features,specifically 40 features, against those constructed from a smallersubset, the impact on predictive performance rises for the numberof features decreasing. For example, autoML models utilizing thetop 10 features from each dataset (40 features in total) show vary-ing performance with validation MCC scores ranging from 0.666to 0.652 when selected by AUC and MIM, respectively, while themodel with the top 5 features from all data achieves the highestvalidation MCC scores of 0.764 and 0.771 when features are selectedby AUC and MRMR, respectively.

Discussion
In this work, we introduce playOmics, a modeling pipeline devel-oped to improve interpretability in omics data analysis. The firstversion of this pipeline have been applied in previous work, allow-ing to identify biomarker combinations that distinguish childrenwith epilepsy status in a small population affected by TSC mutation[34].Our aim with playOmics was to simplify the management ofdiverse omics data, preprocessing, models development, evaluationand biomarker discovery. A key aspect of playOmics is to makethe results of predictive modeling as clear and understandable aspossible, achieved through comprehensive visualizations and theapplication of SHAP values. PlayOmics is developed as an open-source and scalable tool, suitable for application in research as wellas clinical environments. Its functionalities include the discovery ofnew genetic markers and conducting molecular diagnosis throughthe use of pre-trained models.It adheres to the principles of open science, emphasizing repro-ducibility, repeatability and transparency, supported by its loggingcapabilities and an intuive graphical interface. Its dockerized setupsimplifies the usage, aiming to make data analysis accessible.By implementing a targeted pruning strategy that excludespoorly performing models early on, we significantly lowered thecomputational resources needed for our analysis.Among other cutting-edge tools for multi-omics analysis, QLat-tice stands out as the most similar, both functionally and method-ologically. Both tools offer valuable insights into biomedical dataanalysis, each with distinct strengths. QLattice impresses with itsspeed and capacity to manage extensive feature sets, attributed toits genetic algorithm. However, the commercial nature of QLat-tice might limit its accessibility due to its closed-code approach.In contrast, playOmics sets itself apart with its capacity to handlemissing data and provide a user-friendly end-to-end data stream-ing pipeline, which notably enhances research reproducibility andrepeatability.Although playOmics did not outperform QLattice in benchmark-ing exercise, it demonstrated superior results in the "use case"experiment, where the utilization of an extensive dataset yieldedbetter outcomes (validation MCC of 0.773) than those presented inbenchmark comparisons. It’s worth noting that running QLatticeon the same dataset led to the exclusion of all entries with missingdata, which greatly reduced the dataset size. This significant re-duction in data contributed to a notable decline in QLattice’s overall
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Table 2. Performance comparison of playOmics versus other algorithms for BRCA subtypes (ductal/lobular) prediction on a limited dataset. Meanvalues of validation MCC metrics for 10 best models are presented for playOmics and QLattice. For other algorithms, the performance of the bestmodel is shown. The values within brackets represent metrics obtained during training. AutoML, Lasso and decision trees were evaluated under twodifferent scenarios: first, using top 10 features per dataset and second, using top 5 features across all datasets, to mimic the small models produced byplayOmic and QLattice. Three different feature selection methods were applied, each selecting 10 features with highest class separation capacity.“n.a.” - did not return a result.
Featureselectionmethod

playOmics 5el QLattice 5 el autoML top10 feat fromeach df (40ft)

autoML top5 featuresfrom all data
Lasso top 10from each(40 ft)

Lasso top 5features Decisiontrees top 10from each(40 ft)

Decisiontrees top 5features

Top 10 byAUC 0.663 (0.783) 0.692(0.795) 0.666(0.806) 0.764 (0.763) 0.698(0.765) 0.708 (0.735) 0.512 (0.689) 0.572 (0.663)
Top 10 byMIM 0.683 (0.777) 0.692(0.793) 0.652(0.829) 0.634(0.794) 0.646(0.779) 0.670(0.724) 0.644 (0.701) 0.512 (0.654)
Top 10 byMRMR 0.634 (0.781) 0.715 (0.781) 0.622(0.826) 0.771 (0.819) 0.698(0.792) 0.726 (0.764) 0.564 (0.725) 0.593(0.644)

effectiveness (data not shown). This showcases playOmics’ uniqueability to leverage all available information for deeper insights andability to gracefully handle missing data, extracting as much signalsas possible.
The discussion around playOmics and its comparison with otheralgorithms highlights the critical balance between model complex-ity and interpretability. While autoML, utilizing algorithms likestacked ensemble and deep learning models, showcased remarkablepredictive accuracy with the highest validation MCC of 0.764, theircomplexity often masks the underlying decision-making processes.This complexity contrasts with simpler models like decision trees,which, while easier to interpret, offered lower performance metrics,evidenced by a validation MCC of 0.572. This contrast was further il-luminated when comparing the performance of models built with alarger set of features versus those constructed from a smaller, morefocused set. Models utilizing a more concise set of top 5 featuresacross all data achieved higher validation MCC scores than modelsaggregating the top 10 features from each dataset (resulting in 40features). This finding emphasizes that a limited set of featurescan enhance both the performance and interpretability of models,aligning with the strategies adopted in playOmics and QLattice. It’simportant to note that the results for these two packages representaverage values across the ten best-performing models, potentiallyleading to lower apparent performance compared to single-modelassessments of autoML, Lasso and decision trees.
The benchmark results across different feature selection meth-ods—AUC, MIM, and MRMR—show varied impacts on model per-formance. Across all algorithms, validation MCC scores rangedbroadly from 0.512 to 0.771, with autoML models achieving top per-formance at 0.771 using MRMR. This variation highlights the impor-tant role of careful feature selection in optimizing model outcomes,suggesting that the choice of method can significantly influenceoverall model performance.
The playOmics methodology is designed to identify a range ofhighly effective models, with the primary objective of uncover-ing biomarkers and hypothesizing about potential relationshipswithin the data. Rather than prescribing the "best" model for theuser to select, playOmics encourages exploration and discovery.To date, we offer no definitive guidance on selecting the optimalmodel. While choosing the highest-performing model may seemstraightforward, we allow to consider data availability in clinicalenvironment. This is important, because due to various reasons,such as different detection capabilities or specific study limitationsthat preclude certain tests, not all omics data and variables mightbe available. Therefore, playOmics promotes a more nuanced andflexible approach to model selection, highlighting the importanceof adaptability in research activities.

Methods
Metrics available in playOmics setup
playOmics provides a suite of metrics to comprehensively assessthe predictive power of experiments.The Matthews Correlation Coefficient (MCC) was selected as aprimary metric for result evaluation in this paper. MCC has beendescribed as a robust metric, especially in the context of imbalanceddatasets [35]. MCC measures the quality of classification. A higherMCC value denotes superior performance, with the scale rangingfrom -1 (total disagreement) through 0 (no better than randomchance) to +1 (perfect prediction). The MCC is calculated as follows:

MCC = TP ∗ TN – FP ∗ FN(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)
Additional metrics available include: accuracy, ROC AUC, Neg-ative Predictive Value (NPV), Positive Predictive Value (PPV), pre-cision, recall, sensitivity, specificity, and the F measure. Thesemetrics, alongside counts of observations from each class predictedcorrectly or incorrectly for both validation and training data, equipusers with detailed insights into model performance.

Rankingmethodology
To assess the performance of the playOmics framework relativeto other analytical methods, a comparative study was conductedinvolving the QLattice package, autoML tool, Lasso regression, anddecision tree models. The findings from this comparative analysisare presented in Table 2.Our evaluation focused on distinguishing between BRCA sub-types (ductal versus lobular). Feature selection for the initial datasetfor each target was executed, employing three distinct metrics inthe univariate manner: Area Under the Curve (AUC), Mutual Infor-mation Maximization (MIM), and Minimum Redundancy Maxi-mum Relevance (MRMR).For the purpose of comparison, we adopted the Matthews Cor-relation Coefficient (MCC) metric. For both playOmics and QLattice,we assessed the performance of the top 10 models selected via train-ing MCC metrics, subsequently calculating and presenting theirmean value for the validation dataset, presented in table. For theremaining algorithms (autoML, Lasso, and Decision Tree), the anal-ysis was conducted on the single best-performing model, identifiedby the highest MCC score on the training data.Our methodology further specifies two distinct approaches forautoML, Lasso, and Decision Tree algorithms. Initially, each algo-rithm was fed with the top 10 best features identified from eachdataset. Subsequently, to align with the comparative frameworkestablished for QLattice and playOmics, we refined our approach
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by selecting only the top 5 features across all datasets to input intothese algorithms.

Computation environment
All results presented in the article, except those for QLattice al-gorithm, were generated within a dockerized RStudio containerhosted on a computing server equipped with 40 cores and 128 GBof RAM. The QLattice results were obtained from executing codeprovided by the Abzu team, which is accessible on GitHub, within aPython environment.

Availability of supporting source code and re-quirements
Project name: playOmicsProject home page: https://github.com/JagGlo/playOmicsOperating system(s): Platform independentProgramming language: ROther requirements: -License: GNU GPL 3

Data Availability
The data sets supporting the results of this article are availablewithin a Docker image that can be downloaded from [36].
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