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Background

Multi-omics analysis is increasingly popular in biomedical research. While promising, these analyses confront challenges in data
integration, management, and interpretation due to their complexity, diversity, and volume. Moreover, achieving transparency,
reproducibility, and repeatability in multi-omics analyses is essential for facilitating scientific collaboration and validation of
complex datasets.

Results

We introduce playOmics, an open-source R package tailored for omics data analysis. It facilitates data management and biomarker
discovery through various visualizations, statistics and explanations for boosted interpretability. playOmics identifies significant
prognostic markers and iteratively constructs logistic regression models, identifying combinations with high predictive
performance. Our tool enables users to make direct, model-driven predictions by inputting new data into the selected pre-trained
model. playOmics performed well in handling extensive datasets and missing data, showing a mean validation MCC of 0.773.
Conclusions

playOmics demonstrates the balance between model complexity and interpretability, crucial in biomedical research for
understanding model decisions. playOmics’ approach promotes a flexible model selection process, encouraging exploration and
hypothesis generation in biomarker discovery. The dockerized setup and intuitive graphical interface of playOmics support its
adoption in a wide range of research and clinical settings, adhering to principles of open science, enhancing reproducibility and
transparency.
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[1]. However, despite its potential, the true value of comprehensive
omics analysis often encounters significant challenges, particularly
in data integration, management and interpretation [2, 3]. These
challenges arise due to the complexity, diversity and voluminous

Multi-omics studies, encompassing diverse layers of biological in- nature of the data, posing substantial obstacles in effectively utiliz-

formation such as genomics, transcriptomics, proteomics, and
metabolomics, are pivotal in dissecting complex molecular signa-
tures associated with specific phenological traits or disease states

ing integrated omics analysis.

One of the primary challenges in multi-omics data analysis is
the scenario where the number of features (p) greatly exceeds the
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number of observations (n). This imbalance requires robust tech-
niques such as dimensionality reduction or feature selection to en-
sure that results are meaningful and interpretable [4]. This issue is
further extended in rare disease studies, where patient samples are
deficient, emphasizing the need for methods capable of extracting
maximum information without overfitting [5].

Effective data management, encompassing preprocessing and
cleaning, is essential for harmonizing data from various sources.
This process ensures data quality and compatibility, which is crucial
for downstream analysis. Various approaches to data integration
have been proposed, with each having its own advantages and dis-
advantages [6, 7). The most common approach, early integration
(also known as data concatenation), involves combining different
datasets or omics layers before any analysis, allowing for simul-
taneous analysis of all data types. Despite its ease of application,
early integration risks overlooking the complex relationships be-
tween different omics layers inherent in biological systems, as it
assumes a straightforward additive effect of combining datasets.
Hierarchical integration, on the other hand, enriches the analysis
by incorporating regulatory relationships between omics layers,
informed by prior knowledge and external sources like databases
and literature. However, by focusing on known relationships, novel
interactions might be overlooked as they are not yet represented in
databases or literature.

The complexity and scale of comprehensive omics data demand re-
search methodologies and findings to be transparent, reproducible,
and repeatable. Ensuring such consistency not only builds trust
in the findings, but also facilitates scientific collaboration, allow-
ing other researchers to validate and build upon existing work
[8, 9]. Achieving reliability is fundamental to validating the re-
sults and conclusions drawn from complex datasets [10]. While
the quintessential principles of open science — transparency, ac-
cessibility, and reproducibility—are often addressed through clear
methodological guidance offered by various analytical packages, the
tools known from machine learning engineering, which includes
streamlined operation on modeling pipelines, model versioning
and monitoring, is not always integrated in the traditional tools.
Additionally, the capability to adjust models across various datasets
marks the robustness and adaptability of analytical tools, signifi-
cantly increasing the practical application of research outcomes.

Another important aspect is the management and validation of
results. This requires robust statistical methods and practices to
confirm the reliability of the findings. Permutation experiments,
for instance, are a well known technique used to determine the
significance of the results [11]. The adoption of metrics specifically
aligned with the nature of the data, including those for address-
ing issues like imbalanced datasets, further confirms the findings’
validity [12].

Interpretability, a critical factor in fields with significant decision-
making consequences like healthcare and finance, has become
crucial in the field of multi-omics data analysis. As multi-omics
experiments grow in complexity, there is an increasing demand
for models that are not only accurate, but also transparent in their
decision-making processes. Techniques such as feature importance
analysis, partial dependence plots and SHAP (SHapley Additive ex-
Planations) values are instrumental in elucidating how individual
features influence predictions on a local scale, providing insights
into specific data points or predictions. In contrast, global explana-
tors, including interpretable models like decision trees and linear
models, allow for an understanding of the model’s behavior as a

whole [13, 14]. Integrating interpretability into model development
in multi-omics not only boosts trust and transparency, but also
ensures that models can be effectively and responsibly applied in
critical areas like clinical decision-making, thereby bridging the
gap between complex data analysis and its real-world healthcare
applications.

The multi-omics data analysis field has evolved through the devel-
opment of tools designed to tackle specific aspects of data integra-
tion and analysis. This progress has been driven by efforts to cre-
ate machine learning methods that automatically integrate omics
data. To name some, broadly applied R packages like mixOmics,
MOFA, and iCluster have played a significant role in this devel-
opment. mixOmics, a universal package for both supervised and
unsupervised analysis due to its implementation of methods like
LDA, PCA, and CCA, and the DIABLO framework, is widely used
for cancer subtype characterization and disease association stud-
ies [15, 16]. MOFA employs factor analysis for dimensionality re-
duction, aiming to identify common factors across various omics
layers that account for the greatest data variance; its effectiveness
has been proven in survival analysis and drug response prediction
[17]. The iCluster utilizes joint latent variable models to reduce
dimensionality and integrate data across omics layers, and have
been effectively applied in identifying cancer subtypes and patient
stratification [18]. More recently, the Python library QLattice has
been introduced, employing a symbolic regression approach to gen-
erate simple, predictive models from omics data, where complexity
is moderated by a Bayesian criterion [19]. It’s particularly suited
for clinical decision-making and patient care. However, despite its
direct interpretability, access to QLattice is governed by specific
licensing terms, and its source code is not openly available, which
may limit its adoption in research environments that prioritize open
science principles and collaborative development. To the best of
our knowledge, no tool combines the ease of analysis tracking with
the provision of user-friendly graphical interface and interpretable
models serving.

Addressing existing gaps, we developed playOmics, an R pack-
age specifically designed for multi-omics analysis. Our strategy
with playOmics was to simplify the process of integrating complex
omics data, facilitating the identification of prognostic markers and
development of effective predictive models (see 1 for a comparison
with existing tools). We prioritized ease of the data processing and
model engineering, introducing an interactive GUI for model ex-
ploration, serving and validation. playOmics emphasizes model
interpretability through various statistics, visualizations and the
use of local explainers like SHAP values for in-depth analysis.

The playOmics package was developed using R Statistical Software
[20] and builds on a number of existing packages, in particular, tidy-
verse [21], tidymodels [22], mlr3 [23], shiny [24] and DALEX[25].
Its source code and documentation are accessible on GitHub, and
can be found at [26]. To facilitate the usage and reproducibility,
we have prepared two distinct docker images: one encompassing a
complete test environment with RStudio, and another containing
test data. A docker-compose file, along with a script for testing
purposes, has been curated and hosted on GitHub [27]. This ar-
rangement provides an isolated, self-contained setup for running
the playOmics environment.

A graphical abstract of the data pipeline proposed in the play-
Omics package is presented in Figure 1. In the following sections,
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Table 1. Comparative Overview of Multi-Omics Analysis Tools.

Feature playOmics QLattice mixOmics
Language R Python R
Data Available via pre-  Not included Needs to be
Preprocessing processing steps cleaned  exter-
nally
Data Integration  Early Early Both
(Early/Late)
Feature Selection  Univariate fil- Notincluded Sparse PLS and
(Method) tering - Vast of CCA (for dimen-
method available sion reduction
through “mlr3” and variable
package selection)
Methodology Logistic regres- Symbolic regres- Sparse PLS and
sion sion CCA
Primary Output Models, Predic- Models (equa- Component
tions, Interpre- tions) plots, variable
tations,  Shiny importance
Application
Interface
Interpretability High, with statis-  High, withgraph-  High, with graph-
tics, graphical ical outputs ical outputs
output and ex-
plainers
Output Small, n-variable  Network of rela- Plots and statisti-
models tionships cal measures
Computational Moderate tohigh  Moderate - de- Moderate - uses
Complexity - depends on se- pending on the sparse PLS and
lected number of  sizeand complex- CCA, which are
featuresandmax- ity of the data relatively effi-
imalsizeofmodel and the number cient with high-
of iterations; re- dimensional
duced via genetic  data
algorithm
Open Science ML Advanced: Log- Moderate, Ability  Limited
Compliance ging, Trans- to save and pre-
parency in Model dict on selected
Creation model

MOFA

R

Needs to be
cleaned exter-
nally

Late

Factor loadings
from Factor
Analysis

Factor Analysis

Factors  repre-
senting patterns

Depends on com-
plexity of factors

Factor loadings

Moderate -
largely  deter-
mined by the
number of fac-
tors used in the
model, with
more factors
leading to higher
complexity

Limited

iClusterPlus

R

Needs to be
cleaned exter-
nally

Early

LASSO or ridge
regression (de-
pending on
configuration)

Latent variable
models

Clusters of sam-
ples

Moderate,
through
tering

clus-

Integrative clus-
ters

High - requires
estimation  of
a number of
parameters that
can increase with
the dimensions
of the data, lead-
ing to higher
computational
complexity.

Limited

DIABLO

R

Needs to be
cleaned exter-
nally

Both

Sparse PLS and
CCA (for dimen-
sion reduction
and variable
selection)

Canonical Corre-
lation and PLS

Canonical pairs

High, with graph-
ical outputs

Plots and statisti-
cal measures

Moderate, simi-
lar to mixOmics;

however, it
also includes
additional com-
putation for
integrating
multiple datasets
Limited

the main steps of the analysis will be discussed in details.

In the initial phase of our omics data analysis, we focus on integrat-
ing various data types. These should be formatted as data frames
suitable for downstream analysis and follow tidy data principles,
with observations in rows and variables in columns. Here, the vari-
ables correspond to measurements from different omics types in
continuous or binary scales. This format promotes consistency
across all data types, crucial for further unification and analysis.
Our approach involves storing the different data in a list format,
which simplifies the manipulation of individual datasets and sup-
ports a unified view of the aggregated data.

The definition of the analysis target guides the way how we treat
the data in the preprocessing step. We use phenotype data to set
the prediction objective (e.g. patient survival status) and to point
out common observation identifiers, essential for merging data
across different datasets. This stage also includes the possibility of
selection of the “positive” class - the outcome we aim to predict.
After a target is set, we proceed to convert all remaining factor and
character variables into a binary format using one-hot encoding.
Additionally, each variable is tagged with an identifier that links

it back to its original dataframe, ensuring traceability throughout
the analysis process.

In the exploration stage, we assess the alignment of different
datasets. We begin by conducting a visual examination of the extent
of overlap across different data types using upset plots to assess the
shared data points among our datasets. This process helps us iden-
tify any datasets with insufficient overlap, allowing us to consider
the removal of any modality that lacks adequate coverage. Next,
we conduct a detailed quality check of all the data. This includes
examining basic statistics for both numerical and non-numerical
data to uncover necessary adjustments, such as converting text
data to numeric formats and spotting columns with many missing
values or showing little to no variation. Identifying these issues
allows us to adjust data for consistency across the datasets or to
eliminate variables that, due to excessive missing values or lack of
diversity, may not contribute valuable insights to further analysis.

The playOmics package allows for the application of omic-
specific standards in data preprocessing, which is crucial for man-
aging the diversity and complexity of omics datasets. This can refer
to a variety of methods, which is beyond the scope of the package.
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Figure 1. Schematic overview of playOmics, presenting the main steps of the analysis (left side, green font) together with their corresponding data products and associated
functions (right side, blue and black font, accordingly). The initial steps involve data preparation, exploration and quality check, ensuring that datasets adhere to a common
structure to simplify manipulation and preprocessing. In the next step, feature selection in a cross-validated manner is performed separately for each dataframe, which
allows for a balanced contribution to the modeling process. The subsequent step is central to playOmics, involving the training, evaluation and logging of models. The final
step offers a module for result presentation and interpretation. Within playOmics, a graphical user interface helps in model management, while a range of statistics and
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However, addressing the common challenge of data filtering, we
have implemented two general functionalities: one for filtering out
values below threshold and another for removing variables with
a high percentage of missing values, following the thresholds for
acceptable levels of missing or low-quality data set by user.

The segregation of data into training and test subsets is an-
other step toward the modelling process. This split is conducted
on each dataframe separately. Stratified sampling on a phenotype
dataframe is performed and, subsequently, the dataframes corre-
sponding to different omics are split based on the same subsets of
train and test IDs.

Feature selection holds a pivotal role in the omics data analysis due
to the high-dimensionality typically associated with such datasets.
Our approach is to conduct feature selection on the training data
separately for each dataset, ensuring balanced contribution to the
modeling process and preventing any single dataset from dominat-
ing.

We adopt a method that involves nested filtering, where features
are ranked and selected based on their relevance to the analysis in
the univariate manner. This is achieved by running cross-validated
feature ranking, which reduces the risk of overfitting in the selec-
tion process and then averaging the ranks to determine the most
relevant features. Ranking is performed using the mlr3filters pack-
age, which offers a range of evaluation metrics [28].

Based on the mean results of cross-valitation runs, we then
select the set of best features for modeling. The feature selection
methods include: top n’ for selecting a defined number of features
from each dataset (a default), ’percentage’ for choosing a certain
proportion of variables from the dataframe, and ’threshold’ for
picking features that exceed a specific mean score.

In our approach, we follow an early concatenation strategy. After
feature selection step, we combine all preprocessed datasets into
a single, unified dataframe which is further utilized in models’
development.

In our modeling approach, we construct a range of logistic regres-
sion models tailored for supervised binary classification, each using
different combinations of predictors. Our goal is to explore all pos-
sible combinations to identify the most effective set of features that
distinguish between the two groups. To achieve this, we systemati-
cally create a set of feature combinations that need to be evaluated.
The number of possible unordered combinations of a specific size
(m) that can be selected without replacement from a larger set of
available features (N) is determined as follow:

N N!
(m) = v =t

Where: N is the total number of available features and m is the
number of predictors (independent variables) selected for a specific
combination.

Logistic regression strikes a balance between complexity and ex-
plainability, making it particularly suitable for applications where
interpretability is crucial. This method models the probability of
an event, such as the clinical outcome. If the probability is higher
than the defined threshold, then the model classifies the outcome
as “positive” class. For our logistic regression models, we carefully
limit the number of features, especially in small sample sizes, to
prevent overfitting. A logistic regression binary classification algo-
rithm to generate a m-variable predictor is defined as following:

log (%) = Bo * P1X1 t ... + BmXm
p
Where: p — expected probability, x; . m — independent variables,
Bo,...,m — regression coefficients.

One of the critical aspects of forming these models is the careful
handling of missing data. Rather than removing missing data early
on, we delay this step until the construction of individual models.
This approach is beneficial in omics data analysis, given the com-
plexity of aligning various omics layers that range from hundreds
to tens of thousands of variables. Our approach ensures that we
maximize the use of available data and avoid discarding potentially
significant signals, especially in the contexts of rare disease studies,
where each data point can be critical.

In playOmics, we prioritize interpretability to enhance the under-
standing of complex multi-omics data. Therefore we developed a
graphical interface to facilitate the management and interpretation
of experiment results. It includes various analytical panels for a
deeper examination of the experiment, including the analysis sum-
mary, detailed views of variables’ statistics and visual explanations
of single model predictions 2. Primarily, the Main Panel displays
a scored list of predictive models from the analysis, offering key
identification information and their metrics for the training and
validation sets. It also facilitates quick navigation to other sections
through model-specific buttons (Fig. 2A). The Analytes Overview
Panel provides the general statistics for individual molecules, along
with their average metrics across all models to which they con-
tributed, such as MCC, F1, ROC AUC, NPV/PPV and more, offering
insights into the quality of molecular contributors within the exper-
iments (Fig. 2B). The Experiment Overview Panel enables the visu-
alization of selected experimental metrics through histogram plots,
offering an overview of the outcomes (Fig. 2C). The Single Model
Overview Panel displays the training data and its visual representa-
tions on 2- and 3-dimensional plots, supplemented with statistical
information, i.e. median and IQR values within each group, which
helps to identify patterns and understand the predictors’ roles in
distinguishing the target status (Fig. 2D).

Additionally, the Prediction Panel enables direct predictions
with the selected model. After the initial phase of model training
and logging is completed, users can input new data into the chosen
model to receive immediate, model-driven predictions (Fig. 2E).

An important component of our interpretability approach is the
use of SHAP values in the Prediction Panel (Fig. 2F). SHAP values
are a powerful tool for local model explanations, revealing how in-
dividual features in a model affects specific predictions. They help
to quantify the impact of each feature on the model’s output, point-
ing out why the model makes certain decisions for each specific
case. This is particularly valuable in clinical scenarios, where un-
derstanding the factors driving a model’s predictions can be crucial
for decision-making process and elevate trust.

playOmics incorporates permutation experiments as a validation
method to ensure the robustness of our models, accessible through
Single Model Overview Panel. These experiments assess the rela-
tionship between the target variable and the predictors. By repeat-
edly retraining the model on these permuted datasets (i.e. permu-
tation of classes) and evaluating their performance, we construct
a null distribution that reflects what one might expect under the
assumption of random labeling. The observed performance of the
selected model is then rigorously compared against this null distri-
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47474 FN1 [proteome] + SHROOM1 [methylation] + CDH1 [mutation] + CDH1 [RNAseq] + PSMD14 [RNAseq] Show data Make prediction = 0.861 0.751
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Figure 2. User interface components in playOmics. A. Result panel presents a list of predictive models. Selected performance metrics are displayed alongside each model for
evaluation. Two primary actions can be initiated from here: ‘Show data’ button leads to a detailed view of the model’s input data, and ‘Predict’ button opens the prediction
panel for the selected model. B. The Analytes Overview Panel displays statistics for each molecule and their average metrics across contributing models C. The histogram
of training MCC values among all scored models with the corresponding statistics. D. A three-dimensional scatter plot representing a best-performing 3-variable model
consisting of CDH1, PSMD14 (RNA-Seq data), and FN1 (proteomic data), with a training MCC of 0.815 and validation MCC of 0.734. Each data point represents an observation,
while color distinguishes between different outcomes (blue dots - lobular subtype, red dots - ductal). E, F. In the prediction panel, users can input new data for the model of
interest either by manually entering values or by selecting an existing dataframe from the environment. Upon submitting the input data for prediction, the interface returns a
table that includes the probabilities of each class along with the final predicted class. To facilitate explainability, SHAP (SHapley Additive exPlanations) values are provided as
visualization, representing the contribution of each feature to the prediction outcome. The blue color corresponds to lobular class, while red corresponds to ductal class.


https://doi.org/10.1101/2024.03.12.584088
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.12.584088; this version posted March 13, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

bution. A known limitation of permutation experiments is the prac-
tical challenge of exploring all possible combinations, especially
as the total number of observations increases. This is represented
mathematically as (p, ), where n is the total number of observa-
tions and n; represents the number of observations in one group,
with the total being the sum of n; and n,. Therefore, permutation
tests are particularly useful for studies with a smaller sample size.
Marozzi et al. [29], based on comprehensive literature reviews and
simulation studies, suggests a practical approach for permutation
tests, recommending 5000 for actual applications where the signif-
icance level is 5% or 10000 for the significance level 1% to achieve
reliable p-value estimates, whereas Legendre&Legendre [30] sug-
gest 500-1000 permutations during an exploratory data analysis
and 10000 for final results.

playOmics enhances the reproducibility of experiments through
extensive logging capabilities that encompass both overarching
experiments and specific models. Every aspect of the machine
learning process, from parameters to results, is recorded in user-
defined directories. This structured approach also applies to the
management of artifacts. Input datasets, models and explainers
are stored in binary formats facilitating their reuse on new data
sets or in-depth analysis for greater insight. Furthermore, analysis
parameters, model configurations, logs, and performance metrics
are stored as JSON files to support efficient troubleshooting and
enable precise replication of experiments. Its Docker-based setup
allows smooth in various environments and promotes collaboration
among researchers.

In our analysis process, the computational efficiency and resource
requirements are critical considerations, especially when dealing
with a growing number of variables. The performance is primarily
driven by two factors: the maximum number of variables in a single
model (m) and the number of variables selected for the modelling
experiment (N).

As the number of variables per model increases, so does the
computational load (Fig. 3A). This is due to the exponential increase
in the number of combinations that need to be evaluated when more
variables are involved. Models with multiple predictors require an
extensive exploration of all possible combinations, starting from
simpler ones and progressing to more complex arrangements.

Furthermore, the total number of variables chosen for the ex-
periment plays a significant role in computational intensity. Each
additional variable escalates the complexity of combination gener-
ation, demanding more computational power. Therefore, careful
selection of variables and appropriate setting of variable limits are
essential. By strategically managing these aspects, we can effec-
tively balance computational demands, ensuring the efficiency of
the process without compromising the depth and accuracy of our
analysis.

To enhance the efficiency of our analysis, playOmics is able
to remove less effective models. This means we actively delete
models that don’t meet standards of performance defined by the
user, therefore the same combination of predictors will not form
models of higher order. Such a practice allows us to focus on models
that demonstrate the highest predictive power. It works as follow:
initially, models built with pairs of features (two-element models)
are assessed. If these models show weak predictive performance,
based on pre-established metrics and threshold, they are excluded
from further analysis. The rationale behind this strategy is that
if two variables do not significantly contribute to predicting the
target, their inclusion in a three-element model is also likely to be
ineffective. This continues until the defined maximum number of

features allowed in the model.

This approach has been experimentally validated, proving effec-
tive in dealing with the complexities of large datasets and ensuring
that our analysis is driven by the most robust and informative mod-
els (Fig. 3B).

To demonstrate the capabilities of the playOmics package and con-
duct comparison with other tools, we utilized the Breast Cancer
(BRCA) dataset from The Cancer Genome Atlas (TCGA) project. Our
analysis focused on predicting histological subtypes: infiltrating
ductal and lobular carcinoma. However, although coming from the
same source, it is important to note that the data vary between two
sections of the results chapter.

In the use case section, we employed what we refer to as the
"extensive' dataset, downloaded via the LinkedOmics portal [31].
The annotation data were available for 1097 subjects. We incorpo-
rated the following datasets in our study: clinical data (20 features),
proteome (176 features), methylation (20107 features), miRNA (824
features), mutation (7967 features), RNA-Seq (20156 features), and
CNV (24777 features).

To benchmark our work against existing analytical methods,
we conducted a comparative analysis assessing the performance
of the playOmics algorithm alongside several established alterna-
tives. This analysis includes comparisons with the QLattice pack-
age, the autoML framework, Lasso regression, and decision tree
algorithms. Lasso regression, decision trees, and autoML were se-
lected as state-of-the-art algorithms, with Decision Trees serving
as a baseline for interpretable models. The QLattice tool was se-
lected due to its similarities in model design project - it utilizes
relatively small models, which makes it comparable to playOmics
goal. However, comparisons with other algorithms listed in Table 1,
such as mixOmics, MOFA, and iClusterPlus, were not feasible due
to significant methodological differences, such as a lack of ability
to perform supervised classification.

To enable the comparative analysis, we adopted a second dataset,
which we will refer to as a ’limited’ dataset, distinct from the one
used in the use case section. This dataset, originally employed in
the QLattice publication and accessible through Github [32], was
selected for its absence of missing values. It consists of four specific
datasets (CNV - 860 features, proteome - 223 features, RNA-Seq
- 604 features, mutation - 249 features) and covers 705 patients.
This dataset’s lack of missing values is key for our benchmarking,
especially for comparison with QLattice and Lasso regression al-
gorithms, which cannot process missing data. Choosing it avoids
the problem of missing data being excluded when datasets are com-
bined, which would otherwise lower the number of observations
and affect the fairness of our comparison. A sample weight ap-
proach was adopted on this data due to higher class imbalance in
comparison to the extensive dataset (about 4.5:1 in the proportion
of ductal to lobular in the limited dataset, compared to about 3:1in
the extensive dataset).

To illustrate the typical workflow within playOmics, we conducted
a detailed step-by-step analysis using an extensive dataset as an
input. The complete script for this analysis is available on Github,
and the results are presented in Figure 2.

The clinical dataset initially included nearly a thousand patients,
however, there was significant variance in data coverage across
different datasets and variables. At most, information was available
for 379 patients across all datasets. Specifically, the minority class
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Figure 3. Impact of model removal on the number of final models and MCC metrics. A. The plot displays the count of final models resulting from varying the maximum
number of predictors allowed in a single model and the numbers of available predictors in the final set (N), demonstrating the effect of model pruning when the threshold
for training MCC is set below 0.3. Given that MCC values range from -1 to 1, where 0 indicates no better than random chance, setting the threshold at 0.3 ensures that only
models with a certain level of meaningful predictive ability are retained. Solid lines represent the total number of models before elimination, while dashed lines indicate the
remaining models after trimming. B. The distribution of MCC values for experiments with 20 features (N = 20), categorized by the post-removal models’ status. Colors denote
the full set of models (“all”), models that were retained after pruning (“remained”), and those that were excluded (“deleted”). The boxplots illustrate the median MCC
(center line), interquartile range (box edges), and the range within 1.5 times the interquartile range from the upper and lower quartiles whiskers).
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(lobular cancer) ranged from 50 to 145 samples in the training set
and from 13 to 37 in the validation set. This discrepancy in data
availability added an additional layer of complexity to our analysis,
challenging for many algorithms that do not accommodate missing
data.

In the filtration phase, a univariate variable selection was con-
ducted using the Area-under-the-Curve (AUC) metric to evaluate
the distinction between lobular and ductal samples. We selected top
5 features from each dataset, except for clinical data, which resulted
in a total of 30 features for modelling experiment. Subsequently,
these analytes were integrated into logistic regression models with
amaximum of 5 variables. In total, 157,387 models were scored, and
16,607 were eliminated in the early reduction phase. The compu-
tational time for the experiment reached 4.5 hours, with parallel
processing across 10 cores and approximately 10 GB of RAM.

For the overall experiment, the average training MCC stood at
0.602 (with a standard deviation of 0.107), whereas for the valida-
tion set it was slightly lower at 0.589, (with a standard deviation
of 0.152) (Fig. 2C).The highest-performing model included five
variables: CDH1 and PSMD14 from the RNA-Seq dataset, FN1 from
proteome dataset, SHROOM1 from methylation data, and CDH1
from mutation data, achieving an MCC of 0.861 on the training set
and 0.751 on the validation set.

Another approach to interpreting the data is to analyze
molecules and their respective statistics across all evaluated mod-
els, available through the Analytes Overview Panel (Fig. 2B). For
instance, CDH1, highlighted previously as a component of the best
model, stands out as a key molecule, with its RNA-Seq expression
levels averaging a training MCC of 0.724, highlighting its impor-
tance in distinguishing between lobular and ductal cancer subtypes.
Its mutation data further supports its significance, registering an
MCC of 0.664. The presence of CDH1 mutation, as well as its lower
expression, corresponds to lobular subtype, what was primarily
found in the original publication describing BRCA dataset [33] and
confirmed in our study (Fig. 2D).

To further emphasize interpretability of playOmics, in Figure
2D we demonstrate the outcomes of a best-performing 3-variable
model that incorporates FN1 from the proteome dataset and two
RNA-Seq markers, CDH1 and PSMD14. While this model exhibits
slightly reduced performance metrics—0.815 in training and 0.734
in validation MCC—compared to a 5-variable model, it outperforms
this more complex model in terms of simplicity and clarity. The 3D
visualization captured in Figure 2D helps to identify the differences
between cancer subtypes, illustrating how the combined influence
of these three variables builds a robust predictive model.

Furthermore, we conducted direct predictions using this model
to demonstrate its practical application, with the results depicted
in Figures 2E and 2F. When presented with new data, the model
estimated a 17.8% probability for classifying the sample as lobular
and an 82.2% probability for ductal classification, resulting in the
assignment to ductal class. The SHAP values calculated for this pre-
diction reveal the individual contributions of each variable: CDH1
and FN1 shift towards a ductal classification, whereas PSMD14 leans
the prediction towards lobular. This nuanced understanding of vari-
able impact underscores the model’s interpretability, aiding users
in making informed decisions.

The results presented in 2 provide a comparison of the performance
of the playOmics algorithm against other established algorithms for
BRCA subtypes (ductal/lobular) prediction on a limited dataset. The
comparison utilized the Matthews Correlation Coefficient (MCC)
metric to evaluate model performance on the validation dataset,
with additional insights provided by training data metrics (indi-
cated within brackets).

playOmics demonstrates a reasonable validation performance,

especially when features were selected using MIM (0.683) and a
bit lower for the other two methods (AUC 0.663 and MRMR 0.634).
QLattice, on the other hand, consistently shows high MCC values
across all selection methods, peaking with MRMR (0.715). The
autoML model with the top 5 features from all data shows the high-
est validation MCC (0.764 with AUC, 0.771 with MRMR) among all
models, indicating that it can make highly accurate predictions.
Lasso’s performance is generally strong but does not reach the peak
performance of autoML. Decision trees, selected as a baseline for
interpretable models, show lower performance compared to other
models, suggesting that this approach might be less effective for
this particular prediction task.

When comparing models built from a larger set of features,
specifically 40 features, against those constructed from a smaller
subset, the impact on predictive performance rises for the number
of features decreasing. For example, autoML models utilizing the
top 10 features from each dataset (40 features in total) show vary-
ing performance with validation MCC scores ranging from 0.666
to 0.652 when selected by AUC and MIM, respectively, while the
model with the top 5 features from all data achieves the highest
validation MCC scores of 0.76/ and 0.771 when features are selected
by AUC and MRMR, respectively.

In this work, we introduce playOmics, a modeling pipeline devel-
oped to improve interpretability in omics data analysis. The first
version of this pipeline have been applied in previous work, allow-
ing to identify biomarker combinations that distinguish children
with epilepsy status in a small population affected by TSC mutation
(34].

Our aim with playOmics was to simplify the management of
diverse omics data, preprocessing, models development, evaluation
and biomarker discovery. A key aspect of playOmics is to make
the results of predictive modeling as clear and understandable as
possible, achieved through comprehensive visualizations and the
application of SHAP values. PlayOmics is developed as an open-
source and scalable tool, suitable for application in research as well
as clinical environments. Its functionalities include the discovery of
new genetic markers and conducting molecular diagnosis through
the use of pre-trained models.

It adheres to the principles of open science, emphasizing repro-
ducibility, repeatability and transparency, supported by its logging
capabilities and an intuive graphical interface. Its dockerized setup
simplifies the usage, aiming to make data analysis accessible.

By implementing a targeted pruning strategy that excludes
poorly performing models early on, we significantly lowered the
computational resources needed for our analysis.

Among other cutting-edge tools for multi-omics analysis, QLat-
tice stands out as the most similar, both functionally and method-
ologically. Both tools offer valuable insights into biomedical data
analysis, each with distinct strengths. QLattice impresses with its
speed and capacity to manage extensive feature sets, attributed to
its genetic algorithm. However, the commercial nature of QLat-
tice might limit its accessibility due to its closed-code approach.
In contrast, playOmics sets itself apart with its capacity to handle
missing data and provide a user-friendly end-to-end data stream-
ing pipeline, which notably enhances research reproducibility and
repeatability.

Although playOmics did not outperform QLattice in benchmark-
ing exercise, it demonstrated superior results in the "use case"
experiment, where the utilization of an extensive dataset yielded
better outcomes (validation MCC of 0.773) than those presented in
benchmark comparisons. It’s worth noting that running QLattice
on the same dataset led to the exclusion of all entries with missing
data, which greatly reduced the dataset size. This significant re-
duction in data contributed to a notable decline in QLattice’s overall
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Table 2. Performance comparison of playOmics versus other algorithms for BRCA subtypes (ductal/lobular) prediction on a limited dataset. Mean
values of validation MCC metrics for 10 best models are presented for playOmics and QLattice. For other algorithms, the performance of the best
model is shown. The values within brackets represent metrics obtained during training. AutoML, Lasso and decision trees were evaluated under two
different scenarios: first, using top 10 features per dataset and second, using top 5 features across all datasets, to mimic the small models produced by
playOmic and QLattice. Three different feature selection methods were applied, each selecting 10 features with highest class separation capacity.

“n.a.” - did not return a result.

Feature playOmics 5 QLattice5el  autoML top autoML top Lassotop10 Lasso top 5 Decision Decision
selection el 10 feat from 5 features from each features trees top 10  trees top 5
method each df (40 fromalldata (40 ft) from each features

ft) (40 ft)
Top 10 by 0.663(0.783) 0.692 0.666 0.764(0.763)  0.698 0.708 (0.735)  0.512(0.689)  0.572(0.663)
AUC (0.795) (0.806) (0.765)
Top 10 by 0.683 (0.777)  0.692 0.652 0.634 0.646 0.670 0.644,(0.701)  0.512 (0.654)
MIM (0.793) (0.829) (0.794) (0.779) (0.724)
Top 10 by 0.634(0.781)  0.715 (0.781) 0.622 0.771(0.819)  0.698 0.726 (0.764)  0.564(0.725) 0.593
MRMR (0.826) (0.792) (0.644)

effectiveness (data not shown). This showcases playOmics’ unique
ability to leverage all available information for deeper insights and
ability to gracefully handle missing data, extracting as much signals
as possible.

The discussion around playOmics and its comparison with other
algorithms highlights the critical balance between model complex-
ity and interpretability. While autoML, utilizing algorithms like
stacked ensemble and deep learning models, showcased remarkable
predictive accuracy with the highest validation MCC of 0.764, their
complexity often masks the underlying decision-making processes.
This complexity contrasts with simpler models like decision trees,
which, while easier to interpret, offered lower performance metrics,
evidenced by a validation MCC of 0.572. This contrast was further il-
luminated when comparing the performance of models built with a
larger set of features versus those constructed from a smaller, more
focused set. Models utilizing a more concise set of top 5 features
across all data achieved higher validation MCC scores than models
aggregating the top 10 features from each dataset (resulting in 40
features). This finding emphasizes that a limited set of features
can enhance both the performance and interpretability of models,
aligning with the strategies adopted in playOmics and QLattice. It’s
important to note that the results for these two packages represent
average values across the ten best-performing models, potentially
leading to lower apparent performance compared to single-model
assessments of autoML, Lasso and decision trees.

The benchmark results across different feature selection meth-
0ds—AUC, MIM, and MRMR—show varied impacts on model per-
formance. Across all algorithms, validation MCC scores ranged
broadly from 0.512 to 0.771, with autoML models achieving top per-
formance at 0.771 using MRMR. This variation highlights the impor-
tant role of careful feature selection in optimizing model outcomes,
suggesting that the choice of method can significantly influence
overall model performance.

The playOmics methodology is designed to identify a range of
highly effective models, with the primary objective of uncover-
ing biomarkers and hypothesizing about potential relationships
within the data. Rather than prescribing the "best" model for the
user to select, playOmics encourages exploration and discovery.
To date, we offer no definitive guidance on selecting the optimal
model. While choosing the highest-performing model may seem
straightforward, we allow to consider data availability in clinical
environment. This is important, because due to various reasons,
such as different detection capabilities or specific study limitations
that preclude certain tests, not all omics data and variables might
be available. Therefore, playOmics promotes a more nuanced and
flexible approach to model selection, highlighting the importance
of adaptability in research activities.

playOmics provides a suite of metrics to comprehensively assess
the predictive power of experiments.

The Matthews Correlation Coefficient (MCC) was selected as a
primary metric for result evaluation in this paper. MCC has been
described as a robust metric, especially in the context of imbalanced
datasets [35]. MCC measures the quality of classification. A higher
MCC value denotes superior performance, with the scale ranging
from -1 (total disagreement) through o (no better than random
chance) to +1 (perfect prediction). The MCC is calculated as follows:

TP « TN — FP « EN
(TP + FP) « (TP + EN) « (TN + EP) » (IN + EN)

MCC =

Additional metrics available include: accuracy, ROC AUC, Neg-
ative Predictive Value (NPV), Positive Predictive Value (PPV), pre-
cision, recall, sensitivity, specificity, and the F measure. These
metrics, alongside counts of observations from each class predicted
correctly or incorrectly for both validation and training data, equip
users with detailed insights into model performance.

To assess the performance of the playOmics framework relative
to other analytical methods, a comparative study was conducted
involving the QLattice package, autoML tool, Lasso regression, and
decision tree models. The findings from this comparative analysis
are presented in Table 2.

Our evaluation focused on distinguishing between BRCA sub-
types (ductal versus lobular). Feature selection for the initial dataset
for each target was executed, employing three distinct metrics in
the univariate manner: Area Under the Curve (AUC), Mutual Infor-
mation Maximization (MIM), and Minimum Redundancy Maxi-
mum Relevance (MRMR).

For the purpose of comparison, we adopted the Matthews Cor-
relation Coefficient (MCC) metric. For both playOmics and QLattice,
we assessed the performance of the top 10 models selected via train-
ing MCC metrics, subsequently calculating and presenting their
mean value for the validation dataset, presented in table. For the
remaining algorithms (autoML, Lasso, and Decision Tree), the anal-
ysis was conducted on the single best-performing model, identified
by the highest MCC score on the training data.

Our methodology further specifies two distinct approaches for
autoML, Lasso, and Decision Tree algorithms. Initially, each algo-
rithm was fed with the top 10 best features identified from each
dataset. Subsequently, to align with the comparative framework
established for QLattice and playOmics, we refined our approach
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by selecting only the top 5 features across all datasets to input into
these algorithms.

All results presented in the article, except those for QLattice al-
gorithm, were generated within a dockerized RStudio container
hosted on a computing server equipped with 40 cores and 128 GB
of RAM. The QLattice results were obtained from executing code
provided by the Abzu team, which is accessible on GitHub, within a
Python environment.

Project name: playOmics

Project home page: https://github.com/JagGlo/playOmics
Operating system(s): Platform independent
Programming language: R

Other requirements: -

License: GNU GPL 3

The data sets supporting the results of this article are available
within a Docker image that can be downloaded from [36].

AUC - Area Under the Curve; autoML - Automated Machine Learn-
ing; BRCA - Breast Cancer dataset from The Cancer Genome Atlas;
CCA - Canonical Correlation Analysis; CNV - Copy Number Vari-
ation; F1 - F1 Score; LDA - Linear Discriminant Analysis; MCC -
Matthews Correlation Coefficient; MIM - Mutual Information Max-
imization; miRNA - MicroRNA; MRMR - Minimum Redundancy
Maximum Relevance; NPV - Negative Predictive Value; PCA - Princi-
pal Component Analysis; PPV - Positive Predictive Value; RNA-Seq
- RNA Sequencing; ROC - Receiver Operating Characteristic; SHAP -
SHapley Additive exPlanations; TCGA - The Cancer Genome Atlas.
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