

1 **Multiomics Analysis Reveals Extensive Remodeling of the**
2 **Extracellular Matrix and Cellular Metabolism Due to Plakophilin-2**
3 **Knockdown in Guinea Pigs**

4 Rui Song³, Haiyan Wu⁴, Lihui Yu², Jingning Yu¹, WenHui Yang⁵, WenJun Wu¹, Fei
5 Sun¹, Haizhen Wang¹

6 1. College of Veterinary Medicine, Yunnan Agricultural University, #452 Fengyuan
7 Road, Kunming 650021, China.

8 2. College of Tea Science, Yunnan Agricultural University, #452 Fengyuan Road,
9 Kunming 650021, China.

10 3. Department of Ultrasoned, the Second Affiliated Hospital of Kunming Medical
11 University, #376 Dianmian Avenue, Wuhua District, Kunming 650032, China.

12 4. Department of Cardiology, the Affiliated Hospital of Kunming University of
13 Science and Technology, the First People's Hospital of Yunnan Province, #157 Jinbi
14 Road, Kunming 650032, China.

15 5. Department of Cardiology, Fuwai Yunnan Cardiovascular Hospital, #528 Shahe
16 North Road, Kunming 650102, China.

17

18 Rui Song, Haiyan Wu and Lihui Yu contributed equally to this work.

19 Corresponding author: Haizhen Wang haizhenwang@ynau.edu.cn

20 Fei Sun sunfei615@126.com

21

22 **Abstract**

23 Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a leading
24 cause of sudden cardiac death (SCD) in young individuals, yet the
25 mechanisms underlying its pathogenesis, particularly the role of
26 plakophilin-2 (PKP2), remain incompletely understood. This study aimed
27 to elucidate the profile of molecular and metabolic consequences of PKP2

28 knockdown in a guinea pig model of ARVC. We employed adeno-
29 associated virus serotype 9 (AAV9) to deliver PKP2 shRNA, establishing
30 a model that recapitulates key features of human ARVC, including right
31 ventricular (RV) enlargement, sudden death, and cardiac lipid
32 accumulation. Proteomic analysis revealed significant dysregulation of
33 extracellular matrix (ECM) proteins, PI3K-Akt signaling, and energy
34 metabolism in PKP2-deficient RVs. Metabolomic profiling further
35 highlighted alterations in lipid metabolism and inter-metabolites of TCA
36 cycle, with a notable shift towards fatty acid oxidation. These findings
37 suggest that PKP2 deficiency triggers a cascade of molecular events
38 leading to ECM remodeling, metabolic reconfiguration, and potential
39 mitochondrial dysfunction, which may contribute to the development of
40 ARVC. Our study provides novel insights into the early molecular
41 mechanisms of ARVC and identifies potential therapeutic targets for this
42 underexplored disease.

43

44 Key words: Arrhythmogenic right ventricular cardiomyopathy, sudden
45 cardiac death, extracellular matrix, guinea pigs

46

47

48 **Introduction**

49 ARVC is a significant cause of SCD, accounting for up to 20% of SCD
50 cases in young population^{1,2}. Additionally, ARVC Patients without SCD
51 often develop dual ventricle failure^{3,4}. The prevalence of ARVC ranges
52 from 1 in 5000 to 1 in 3000 depend on the population studied. 60% of
53 ARVC have identifiable genetic causes, with mutations in desmosomal
54 proteins being the most common, particularly in PKP2^{5,6}.

55 Diagnosis of ARVC still challenged and typically relies on a
56 combination of structural and functional examinations, familial
57 characteristics, echocardiography, and electrocardiography (ECG)
58 findings^{7,8}. However, the early stages of ARVC are often asymptomatic,
59 and SCD can be the initial manifestation⁹. Therefore, it is likely that the
60 frequency of ARVC is underestimated. Consequently, gaining a
61 comprehensive understanding of mechanical details of early ARVC is
62 crucial for prevention of ARVC caused SCD and heart failure.

63 Typical ARVC related pathological changes include fibrofatty
64 replacement and RV dilation. Many ARVC patients remain asymptomatic
65 during the first decade of life, with symptoms typically emerging in the
66 second or third decade². This latency suggests that early metabolic
67 remodeling may play a pivotal role in the progression of ARVC.
68 Nevertheless, the specific molecular pathways and metabolic alterations

69 that arise from desmosomal gene mutations, particularly following PKP2
70 knockdown, and their contributions to ARVC pathogenesis, are not fully
71 understood.

72 To address this question, a novel ARVC larger animal model is required.
73 While mouse models have been instrumental in ARVC research, they
74 present certain limitations. Firstly, mice are relatively small, which poses
75 challenges for echocardiography without specialized and expensive
76 equipment. Secondly, mice may not fully develop the classic symptoms of
77 cardiomyopathy observed in humans, as evidenced by some studies¹⁰.
78 Therefore, it is imperative to develop a large animal model that not only
79 accommodates standard echocardiography and ECG equipment but also
80 mirrors the genetic defects associated with human ARVC.

81 The guinea pig has been recognized as a suitable model for
82 cardiovascular diseases^{11,12}. Its size allows for the evaluation of cardiac
83 function and structure using standard echocardiography and ECG
84 machines¹³. Therefore, we developed an ARVC guinea pig model by
85 employing an adeno-associated virus serotype 9 (AAV9) vector to deliver
86 small hairpin RNAs (shRNA) targeting plakophilin-2 gene (*pkp2*).
87 Subsequently, we conducted proteomic and metabolomic analysis to assess
88 protein expression and plasma metabolites profiles.

89

90 **Results**

91 **Establishment of ARVC guinea pig model**

92 To establish a robust animal model for investigating ARVC, Guinea
93 pigs were selected as the experimental model and injected with AAV9
94 carrying PKP2 shRNA (PKP2i groups) via the forelimb veins, while the
95 control group received AAV9 carrying non-targeting shRNA (CON
96 groups). Echocardiography was performed monthly to evaluate the cardiac
97 structure and function of the guinea pigs (Figure 1A). Each group consisted
98 of 8 male and 8 female guinea pigs. After a 4-month period following
99 AAV9 injection, the guinea pigs were euthanized, and samples were
100 collected from the RV. The knockdown efficiency of PKP2 was determined
101 through western blot experiments, which revealed a significant decrease in
102 PKP2 protein levels in the knockdown samples (Figure 1B). Notably, there
103 were no significant differences in body weight or the ratio of heart weight
104 to body weight between the control and PKP2i groups (Figure 1C, D).
105 Strikingly, similar to observations in human patients, sudden death cases
106 were observed in guinea pigs with reduced PKP2 expression, with 2 males
107 and 1 female guinea pig experiencing sudden death accompanied by right
108 ventricular enlargement (Figure 1E). This finding coincides with clinical
109 observations in humans and underscores the relevance of our animal model
110 in studying ARVC.

111 **Structural and functional alteration of right ventricles when PKP2
112 knocks down.**

113 To assess the impact of PKP2 knockdown on the structure and function
114 of the RV in guinea pigs, we performed monthly echocardiography
115 following AAV9 injection. Imaging analysis revealed a significant
116 enlargement of the right ventricle in male guinea pigs of the PKP2i group

117 starting from the second month post-injection, compared to the CON group.
118 Notably, structural alterations in the RV of female guinea pigs were
119 observed from the third month post-injection, compared to the CON group
120 (Figure 2A).

121 One month after AAV9 injection, no significant differences were
122 observed in RV structural parameters. However, at two months post-
123 injection, the male PKP2i group exhibited a significant increase in RVD-
124 mid, RVEDA, and RVESA indices compared to the male CON group. In
125 contrast, no significant differences were observed in the female PKP2i
126 group. By the third month post-injection, RVOT-PLAX showed a
127 significant increase in the male PKP2i group compared to the CON group.
128 Additionally, the female PKP2i group exhibited significant increases in
129 RVOT-PLAX, RVD-basal, RVD-mid, RVEDA, and RVESA compared to
130 female controls (Figure 2B-F). However, no significant differences were
131 observed in left ventricular functional parameters between the PKP2i and
132 CON groups (Figure S1). ECG examination also showed normal results at
133 four months post-injection (Figure 2G).

134 **Enlarged RV and abnormal mitochondrial structure.**

135 After a 4-month period following AAV9 injection, we observed a
136 significant enlargement of RV in both male and female guinea pigs in the
137 PKP2i group. Subsequently, the guinea pigs were sacrificed, and the
138 anatomical examination of the heart confirmed the enlargement of the RV

139 space, consistent with the echocardiography findings (Figure 3A).
140 Histological analysis of heart tissue sections from the PKP2i group
141 revealed thinner RV walls. Sirius red staining demonstrated that the level
142 of fibrosis was comparable to the CON group in the PKP2i group (Figure
143 3B). Though the triglyceride concentration was mild but significantly
144 increased in the RV samples from PKP2i group (Figure 3C).

145 To investigate the impact of PKP2 knockdown on the two layers of RV
146 muscle, we isolated and sampled the outer and inner layers of the guinea
147 pig RV muscle. These samples were then subjected to transmission electron
148 microscopy (TEM) analysis. The results indicated morphological changes
149 in the mitochondria of both layers of the RV muscle in guinea pigs with
150 reduced PKP2 expression. Compared to the CON group, the PKP2i group
151 exhibited a higher prevalence of swollen mitochondria (Figure 3D).
152 Among the male guinea pigs in the PKP2i group, two individuals displayed
153 severe mitochondrial swelling in the inner layer of the RV muscle.
154 Furthermore, other PKP2i guinea pigs with mild mitochondrial swelling
155 exhibited an increased content of lipid droplets (Figure 3E). These findings
156 were consistent with the biochemical examination of the RV muscle wall,
157 which revealed a 20% increase in triglyceride content in the PKP2i group
158 (Figure 3C). Thus, we successfully established the guinea pig model of
159 arrhythmogenic right ventricular cardiomyopathy (ARVC). The focus now
160 turns to understanding the underlying mechanisms within the RV muscle

161 wall of the PKP2i group.

162 **Differential Proteomics and Functional Pathway Analysis in PKP2**

163 **Knockdown RV Muscle Wall**

164 To unravel the intricate molecular changes occurring in the RV muscle

165 wall caused by *pkp2* knock down, we conducted a comprehensive DIA

166 (Data independent acquisition) quantitative proteomics study. Utilizing

167 principal component analysis (PCA), we observed distinct distribution

168 patterns of samples from the CON and PKP2i groups, indicating proteomic

169 alterations in the PKP2i samples compared to the CON group (Figure 4A).

170 Subsequently, we conducted an in-depth analysis of the proteomics data,

171 detecting a total of 7800 proteins. Using Gene Ontology (GO) analysis, we

172 determined the membrane proteins accounted for 43.38%, then the second

173 abundant part was Cytoplasm proteins, accounted for 29.1% (Figure 4B).

174 Next, 268 differential expressed proteins were identified. Among the

175 significantly differential proteins, 170 of them were upregulated and 98 of

176 them were downregulated (Figure 4C). The heat map showed the profile of

177 differential proteins (Figure 4D). According GO analysis, 47.54% of

178 differential proteins were identified as membrane proteins, 22.95% and

179 19.67% were cytoplasm and extracellular region proteins respectively

180 (Figure 4E).

181 In order to elucidate the potential impact of the 268 differential proteins,

182 we conducted Kyoto Encyclopedia of Genes and Genomes (KEGG) and

183 Gene Ontology (GO) analyses encompassing all these proteins. Our KEGG
184 analysis revealed a significant alteration of pathways associated with
185 extracellular matrix (ECM), including cell adhesion molecules, ECM-
186 receptor interaction and neutrophil extracellular trap formation (Figure 4F).
187 Some important cardiac metabolic pathways altered following the knock
188 down of *pkp2* as well, including PI3K-Akt pathway, lipid and
189 atherosclerosis, fatty acid metabolism pathways. Dilated, hypertrophic
190 cardiomyopathy associated pathways, adrenergic signaling in
191 cardiomyocytes and cardiac muscle contraction associated pathways
192 altered as well (Figure 4F).

193 Coincident with KEGG analysis, GO analysis revealed alteration of
194 multiple plasma membrane complex pathways, including extracellular
195 region, extracellular space, fibrinogen complex and plasma membrane
196 protein complex (Figure 4G).

197

198 **Extracellular Matrix (ECM) Remodeling Post-PKP2 Knockdown:**
199 **Implications for ARVC**

200 The ECM is a critical determinant of cardiac structure and function. In
201 this study, we have elucidated the molecular mechanisms underlying ECM
202 remodeling following the knockdown of PKP2. Our analysis, informed by
203 GO and KEGG, have identified the ECM as a central hub in the molecular
204 pathogenesis of ARVC.

205 We observed a significant upregulation of Foxo3, a key transcription
206 factor in ECM degradation, in the ARVC cohort (Figure 5A). This was
207 contrasted by the downregulation of liver-derived ECM components,
208 including fibronectin (FN1) and fibrinogen alpha and beta chains (H0V0Z9
209 and FGB), in the PKP2i group (Figure 5B-D). Additionally, bone marrow-
210 derived ECM components such as extracellular matrix protein 1 (ECM1)
211 and dermatopontin (DPT) showed reduced expression following PKP2
212 knockdown (Figure 5E, F).

213 ECM components with protease inhibitor activity, including alpha-
214 macroglobulin (A2M) and serpin family members (H0VI24, SERPINA10,
215 H0VWD33), were notably decreased in the PKP2i group (Figure 5G-J).
216 This downregulation may contribute to the observed upregulation of
217 Paraoxonase-1 (PON1), an esterase linked to high-density lipoprotein
218 (Figure 5K). The fibroblast cell-derived secreted phosphoprotein-1 (SPP1),
219 a protein associated with heart disease, was also found to be downregulated
220 (Figure 5L).

221 The collagen-binding protein Von Willebrand factor (VWF) showed a
222 significant downregulation (Figure 5M), following the downregulation of
223 multiple ECM components. The integrin family, known for their collagen-
224 binding properties, displayed varied responses, with ITGB2 and ITGAM
225 being significantly downregulated, while ITGA11 showed a mild yet
226 significant upregulation (Figure 5N-P). Additionally, the guanine

227 nucleotide-binding subunit GNG7 was found to be up-regulated (Figure
228 5Q).

229 ECM components play a crucial role in immune regulation within the
230 heart. Notably, the cathelicidin-like antimicrobial peptide (CAP11), Ig
231 gamma-2 chain C region (p01862), and lactoferrin (LTF) were
232 significantly downregulated in ARVC cohort (Figure 5S-U).

233 In the context of *pkp2* knock down, contain associated protein
234 CNTNAP1 and CNTN1 were significantly upregulated after knockdown
235 of *pkp2*. Neuronal growth factor 1 (NEGR1), significantly upregulated as
236 well (Figure 5 V-X).

237 **Cardiomyopathy and Cardiac Muscle Contraction Proteins and**
238 **metabolic remodeling in Guinea Pigs with PKP2 Knockdown**

239 Proteomic analysis revealed differential regulation of several ECM
240 proteins linked to cardiomyopathy and heart failure, including DPT,
241 ITGA11, SPP1, P01862 are all recognized for their roles in the
242 pathophysiology of heart failure. This led us to explore the status of other
243 proteins integral to cardiac muscle contraction.

244 Chymase (CMA1), a serine protease predominantly located in cardiac
245 mast cells and implicated in ECM remodeling of failing heart, was
246 markedly upregulated in the right ventricular (RV) walls of PKP2
247 knockdown guinea pigs (Figure 6A). Concurrently, we noted an increase
248 in Myosin Heavy Chain 6 (MYH6) and a decrease in Troponin 3 (TPM3)

249 and Troponin 4 (TPM4) (Figure 6B-D), indicating a potential disruption in
250 the structural integrity of cardiac muscle fibers.

251 These findings were complemented by a perturbation in proteins
252 central to energy metabolism. Specifically, Cytochrome C oxidase subunit
253 6A1 (COX6A1) and cytochrome B-245 heavy chain (CYBB) were
254 significantly downregulated (Figure 6E, F), which could impair
255 mitochondrial respiration and ATP generation. In contrast, Neutrophil
256 Cytosolic Factor 4 (NCF4), a component of NADPH oxidase, and NADH
257 Dehydrogenase 1 Subunit 1 (NDUFC1) exhibited opposing regulatory
258 patterns, with NCF4 downregulated and NDUFC1 upregulated (Figure 6G,
259 H), suggesting a metabolic reconfiguration.

260 The observed alterations in energy metabolism were mirrored by
261 changes in lipid metabolism. Carnitine Palmitoyltransferase 1C (CPT1C),
262 which facilitates fatty acid transport into mitochondria, was upregulated
263 (Figure 5I), while Apolipoprotein B (apoB) and Fatty Acids Desaturase 1
264 (FADS1) were downregulated (Figure 6J, K). Additionally, Very-Long-
265 Chain (3R)-3-Hydroxyacyl-CoA Dehydratase 1 (HACD1) and
266 Hydroxyacyl-Thioester Dehydratase Type 2 (HTD2) exhibited altered
267 expression in the PKP2i group (Figure 6L, M), suggesting a shift in cardiac
268 energy substrate utilization.

269 Building on the observed metabolic shifts, we also identified
270 alterations in cardiac ion channels that could be consequential to the

271 changes in energy metabolism. Notably, the Voltage-Dependent L-Type
272 Calcium Channel Subunit Beta 2 (CACNB2) and Sodium Voltage-Gated
273 Channel Beta Subunit 4 (SCN4B) were found to be significantly
274 upregulated (Figure 6N, O).

275

276 **Metabolic Signatures and Pathway Alterations in PKP2 Knockdown**
277 **Guinea Pigs Revealed by Plasma Metabolomics**

278 To identify early diagnostic biomarkers for ARVC, we conducted a
279 plasma metabolomics analysis using samples from CON and PKP2i guinea
280 pigs.

281 Plasma samples from five animals in each group were analyzed using
282 non-targeted metabolomics. Principal Component Analysis (PCA)
283 distinguished a significant metabolic divergence between CON and PKP2i
284 groups (Figure 7A). A total of 1,266 distinct metabolites were identified,
285 with fatty acyls being the most prevalent (17.09%), followed by carboxylic
286 acids and derivatives (11.97%), glycerophospholipids (11.11%), and
287 benzene derivatives (8.55%) (Figure 7B). Differential metabolites were
288 predominantly lipids and lipid-like molecules, constituting 33.05% of the
289 total (Figure 7C). The dynamics of individual metabolite changes were
290 visualized through volcano plots (Figure 7D) and circular heat maps
291 (Figure 7E).

292 To elucidate the pathways influenced by these differential metabolites,

293 we employed the Betweenness Centrality method to generate a pathway
294 impact map. This analysis highlighted the Tricarboxylic Acid (TCA) cycle
295 as the most significantly affected pathway in PKP2-deficient states (Figure
296 7F). Utilizing the Small Molecule Pathway Database (SMPDB) from the
297 Human Metabolome Database (HMDB), we further analyzed the primary
298 metabolic pathways. Phosphatidylcholine biosynthesis emerged as the
299 most impacted pathway (Figure 7G). A Differential Abundance Score (DA-
300 Score) was applied to rank and categorize the top 30 pathways, revealing
301 upregulation of the TCA cycle, pyruvate metabolism, and glucagon
302 signaling pathways, while fatty acid biosynthesis, sphingolipid metabolism
303 and signaling pathways, calcium signaling pathways, and dilated
304 cardiomyopathy pathways were downregulated (Figure 7H).

305

306 **Lipid Metabolome Reconfiguration and TCA Cycle Dysregulation in**
307 **PKP2 Knockdown Guinea Pigs**

308 Pathway analysis directed our attention to the significant changes in
309 lipid and lipid-like molecules in the PKP2 knockdown (PKP2i) group.
310 Specifically, oleic acid, palmitoleic acid, and isostearic acid were markedly
311 downregulated (Figure 8A-C). Sphingomyelin species, including
312 SM(18:0/16:1), and sphingosine 1-phosphate also showed a notable
313 decrease (Figure 8D, E). In the context of phosphatidylcholines (PC),
314 several species were dysregulated; PC(16:0/18:1), PC(17:0/18:1), and

315 PC(18:0/20:3) were upregulated, while PC(18:1/14:0) and PC(18:0/20:3)
316 were downregulated (Figure 8F-J). Conversely, multiple PC metabolites
317 were significantly downregulated in the PKP2i group, such as
318 phosphocholine, lysoPC(LPC)(18:2), LPC(16:0), LPC(18:1), and
319 LPC(17:0) (Figure 8K-O). Despite the significant impact on PC, the levels
320 of phosphatidylethanolamine (PE) remained relatively unchanged, with
321 only PE(21:0/22:6) showing an upregulation (Figure 8P), indicating a shift
322 in the PC/PE ratio.

323 Metabolites of the Tricarboxylic Acid (TCA) cycle, including fumaric
324 acid, citric acid, and phosphoenolpyruvate, were found to be upregulated
325 in the PKP2i group (Figure 8Q-S). Additionally, cyclic adenosine
326 monophosphate (cAMP), a key molecule associated with dilated
327 cardiomyopathy, was significantly downregulated in the PKP2-deficient
328 state (Figure 8T).

329

330 **Discussion**

331 ARVC is a significant contributor to SCD in youth¹⁴. However, the early
332 pathological changes and progression of ARVC are not well understood¹,
333 partly due to the absence of animal models that fully replicate the human
334 condition. To address this, we established an ARVC model in guinea pigs
335 using AAV9-mediated delivery of PKP2 shRNA. This model exhibited
336 several human-like symptoms, including increased cardiac lipid content,

337 sudden death, and right ventricular (RV) enlargement, within four months³.
338 The increased sensitivity observed in male guinea pigs compared to
339 females parallels the male predisposition to ARVC, providing a valuable
340 model for studying early ARVC pathogenesis¹⁵.

341 Our proteomic analysis of the RV myocardium has shed light on the
342 molecular underpinnings of ARVC onset and the role of PKP2 in cardiac
343 homeostasis. We identified a significant disruption in ECM homeostasis
344 following PKP2 knockdown, potentially due to the upregulation of Foxo3,
345 a key transcription factor known to promote ECM degradation. The
346 activation of Foxo3 has been reported to enhance the degradation of ECM
347 components, such as fibronectin (FN1), in endothelial cells and cardiac
348 fibroblasts¹⁶, vascular smooth muscle¹⁷ and cardiac fibroblast¹⁸. In our
349 study, the upregulated Foxo3 was associated with a significant
350 downregulation of FN1 and fibrinogens, indicating a potential mechanism
351 for ECM remodeling in ARVC.

352 Similar with FN1, another ECM component, ECM1 also negatively
353 related with Foxo3 in a disease named Lichen Sclerosus¹⁹, same with our
354 observation in this ARVC model. Additionally, we observed
355 downregulation in ECM binding proteins, including VWF and integrin
356 family proteins, with the exception of ITGA11, which showed a mild but
357 significant increase in the PKP2 knockdown group. These changes suggest
358 a broader impact on the ECM structure and its associated proteins, which

359 could have implications for cardiac function.

360 EMC remodeling or disorder also affected some functional proteins.

361 The protease inhibitors A2M and several serpin family proteins were found
362 to be significantly decreased, indicating a disorder in the ECM region's
363 protein composition. Immunity-related ECM proteins such as CAP11,
364 P01862, and LTF were also significantly downregulated. CAP11, an
365 antimicrobial peptide, and P01862, an immune globin gamma-2 chain C
366 region, are known to play roles in immune defense. LTF, an iron transport
367 protein with antibacterial activity, has been associated with lipid levels in
368 blood²⁰, suggesting a potential regulatory role in both cardiac and systemic
369 lipid metabolism.

370 The PI3K-Akt pathway, which is known to regulate cardiac
371 metabolism²¹, may also be implicated in the metabolic alterations observed
372 in our study. Several differentially expressed ECM proteins, including
373 ITGA11, FN1, SPP1, VWF, P01862, and GNG7, are involved in the
374 regulation of the PI3K-Akt pathway. The downregulation of these proteins
375 in the PKP2 knockdown group could explain the upregulation of Foxo3, as
376 it is a primary target of Akt-mediated inactivation^{22,23}. Dysregulation of the
377 PI3K-Akt signaling pathway could contribute to the metabolic changes
378 observed in PKP2-deficient RVs.

379 The upregulation of cardiac CPT1C when PKP2 deficient suggests
380 enhanced fatty acid oxidation and a shift in energy substrate utilization in

381 the heart. Changes in other lipid metabolic proteins, such as FADS1,
382 HACD1, and HTD2, further support this shift in energy metabolism.

383 Energy substrate shifts are known to be a significant cause of heart
384 failure^{24–26}. Therefore, we hypothesize that alterations in metabolic
385 proteins contribute to ARVC-related heart failure. Proteins involved in
386 cardiac muscle contraction were also found to be disordered in the PKP2
387 knockdown state, with increased MYH6 and decreased tropomyosin 3 and
388 4, indicating a disrupted architecture of cardiac muscle fibers.

389 Additionally, the link between ECM and mitochondria is already well
390 established in skeletal muscle and *C. elegans*^{27,28}. This raises the possibility
391 that PKP2 deficiency may also disrupt mitochondrial-ECM crosstalk in the
392 heart, contributing to the mitochondrial morphological anomalies we
393 observed.

394 Notably, key mitochondrial respiratory chain proteins, COX6A1 and
395 CYBB, which facilitate electron transfer in complexes IV and III
396 respectively^{29,30}, were found to be downregulated. This downregulation
397 likely indicates a compromised ATP-generating capacity.

398 Conversely, the upregulation of NDUFC1, a subunit of complex I, was
399 observed in the PKP2 knockdown group. Given that complex I is involved
400 in NAD⁺ production, an essential factor for fatty acid oxidation, this
401 upregulation may be a compensatory response to the increased fatty acid
402 oxidation signaled by the upregulation of CPT1C.

403 Plasma metabolomic analysis revealed a decrease in fatty acids
404 alongside an accumulation of fumaric acid, citric acid, and
405 phosphoenolpyruvate, suggesting an upregulation of fatty acid oxidation
406 coupled with a suppression of oxidative phosphorylation. These findings
407 point to a metabolic shift that could have significant implications for
408 cardiac energy metabolism and function in the context of PKP2 deficiency.

409 Furthermore, our plasma metabolomic analysis revealed significant
410 alterations in the levels of several PC species, with a notable
411 downregulation of LysoPCs and phosphocholine. In contrast, among the
412 PE species, only PE(21:0/22:6) demonstrated a change in the context of
413 PKP2 deficiency. This observation leads us to hypothesize that the PC/PE
414 ratio may be altered in this model. The perturbation of the PC/PE ratio has
415 been implicated as a biomarker in various metabolic disorders, including
416 chronic organ failure³¹. Consequently, future research should investigate
417 the potential association between alterations in the plasma PC/PE ratio and
418 the development of chronic failure related to ARVC.

419 Further, certain individual proteins identified in our study suggest
420 potential etiological links to ARVC. DPT, which is known to be
421 upregulated in myocardial infarction (MI) zones, and SPP1, a protein
422 secreted by cardiac fibroblasts and implicated in heart failure across
423 various cardiomyopathies, exhibited contrasting expression patterns in the
424 context of PKP2 deficiency. Specifically, DPT was upregulated, while

425 SPP1 was downregulated in the PKP2-deficient state. These findings
426 warrant further investigation into the role of these proteins in the
427 pathogenesis of ARVC and their potential as therapeutic targets.

428 In summary, the guinea pig model of ARVC, characterized by the
429 absence of overt heart failure and normal ECG findings, captures an early
430 disease stage, offering a unique window into the initial pathogenic
431 processes of ARVC. This model has revealed that PKP2 deficiency leads
432 to RV ECM dysregulation, metabolic remodeling, and respiratory chain
433 alterations, which may precede the clinical manifestations of heart failure
434 associated with ARVC. Unraveling the intricate mechanisms that link
435 PKP2 suppression to ECM imbalance and energy metabolism disruptions
436 will be a critical area of future research. Despite the normal ECG results,
437 the occurrence of sudden death in the model underscores the potential for
438 malignant arrhythmias to remain undetected, highlighting the need for a
439 more nuanced understanding of the interplay between ECM remodeling,
440 metabolic disturbances, and electrophysiological consequences of PKP2
441 knockdown.

442 This study provides a comprehensive overview of the molecular and
443 metabolic changes in the RV, as well as the pathways affected by PKP2
444 deficiency, thereby shedding light on the early molecular underpinnings of
445 ARVC. However, further functional studies are essential to confirm the
446 roles of the identified proteins and pathways in the disease process.

447 While the guinea pig model offers certain advantages over murine models,
448 it is important to recognize that it may not fully mimic the complex
449 pathology of human ARVC. The physiological differences between guinea
450 pig and human hearts must be considered when interpreting the findings
451 and translating them to clinical scenarios. Despite these limitations, this
452 work contributes significantly to the understanding of early ARVC
453 pathogenesis and sets the stage for future investigations into potential
454 therapeutic targets.

455 **Methods and Material**

456 **Animal Models**

457 Sixteen male and sixteen female guinea pigs (250g) were purchased
458 from Shuangxin Experimental Animals Co. Ltd, China. All animals were
459 maintained in the Large Animal Facility at the Yunnan Agricultural
460 University in a 12-hour light/dark cycle at RT 23-26 °C. After one week of
461 acclimatization, animals were randomly assigned to receive intravenous
462 injection of 1×10^9 AAV9 viral particles carrying either PKP2 shRNA
463 (n=16) or non-targeting control shRNA (n=16). After 2 weeks of injection,
464 animals were subject to electrocardiogram (ECG) and Echocardiographic.
465 4 months later, guinea pigs were sacrificed, and the left and right ventricle
466 were sampled.

467 **AAV Vector Construction**

468 AAV9 vectors expressing guinea pig PKP2 shRNA or non-targeting
469 control shRNA were constructed and packaged into viral particles by OBiO

470 Technology Corp., Ltd (Shanghai, China). The PKP2 shRNA target
471 sequence GGATGTACTTGCCTTGAT was selected after testing efficacy
472 of three candidates. The non-targeting control sequence was
473 CCTAAGGTTAACGCGCCCTCG.

474 **Tissue Sectioning**

475 After sacrificing, hearts were isolated, separated into left and right
476 ventricles, and fixed in formalin at 4 °C for 48 hours. Then samples were
477 Dehydrate the tissues in EtOH baths. Next, the tissues were cleared in
478 xylene. Then tissues were embedded into paraffin, sectioned at 6 µm.

479 **HE and staining**

480 Paraffin-embedded tissue sections were deparaffinized and rehydrated
481 to distilled water. Slides were stained with Mayer's hematoxylin solution
482 for 1 minute to label nuclei, rinsed in tap water, and immersed in PBS for
483 blueing. After washing in distilled water, slides were counterstained with
484 alcoholic eosin Y solution for 1 minute. Finally, sections were dehydrated
485 through increasing concentrations of ethanol and cleared in xylene prior to
486 mounting.

487 **Sirius Red Staining**

488 Following deparaffinization and hematoxylin nuclear staining,
489 sections were incubated with 0.1% Picosirius Red solution (Sigma-
490 Aldrich) for 1 hour at room temperature. Slides were then rinsed twice with
491 0.5% acetic acid, dehydrated in increasing ethanol concentrations, cleared
492 in xylene, and cover slipped.

493 **Transmission Electron Microscopy**

494 Right ventricular tissues were fixed in TEM buffer (Servicebio) for 2
495 hours followed by post fixation in 1% osmium tetroxide. Samples were
496 then dehydrated through a graded ethanol series and embedded in EMbed
497 812 resins (Electron Microscopy Sciences). Ultrathin sections of 60 nm
498 thickness were cut using a Leica UC7 ultramicrotome and collected on 150
499 mesh copper grids. Prior to visualization, grids were stained sequentially
500 with uranyl acetate and lead citrate solutions to enhance contrast. Sections
501 were imaged using a Hitachi HT7800 transmission electron microscope.

502

503 **Electrocardiogram (ECG)**

504 Guinea pigs were anesthetized by intraperitoneal injection with 0.5
505 mg/kg of Pentobarbital sodium. Surface six-lead ECG was recorded using
506 standard limb lead placements. Tracings were acquired for ≥ 5 minutes
507 after stabilization.

508 **Echocardiographic Evaluation**

509 Transthoracic echocardiography was performed monthly under
510 anesthesia to evaluate cardiac structure and function. Images were acquired
511 in long-axis, short-axis, and apical four-chamber views using a Vivid E95
512 system (GE Healthcare) equipped with an 8-18 MHz transducer. M-mode,
513 2D, and pulsed-wave Doppler modalities were utilized. Quantitative
514 structural parameters included left and right atrial diameters, right
515 ventricular outflow tract dimensions, right ventricular basal and median

516 diameters, and left ventricular wall thicknesses. Functional parameters
517 consisted of right ventricular fractional area change, tricuspid annular
518 plane systolic excursion, myocardial performance index, left ventricular
519 ejection fraction, and fractional shortening. Echocardiographic
520 measurements were obtained according to standardized protocols³².

521 **Sampling and proteomics**

522 Right ventricular tissues were flash frozen in liquid nitrogen
523 immediately after isolation. DIA (Data independent acquisition)
524 quantitative proteomics was performed. Proteins samples were
525 enzymatically digested into peptides and chromatographically separated
526 using a *Vanquish Neo UHPLC system* (Thermo Scientific). Then the
527 separated peptides were performed DIA mass spectrometry analysis using
528 an Orbitrap *Astral* mass spectrometer (Thermo Scientific). Results were
529 analyzed by MSFagger 3.4 software using the UniProt Cavia porcellus
530 database: uniprot-Cavia porcellus (Guinea pig)-25662-20221222.fasta
531 ([https://www.uniprot.org/uniprotkb?query=\(taxonomy_id:10141\)](https://www.uniprot.org/uniprotkb?query=(taxonomy_id:10141))).

532

533 **Metabolomics assay**

534 Samples were weighed before the extraction of metabolites and dried
535 lyophilized were ground in a Grinding Mill. Metabolites were extracted
536 using 1 mL precooled mixtures of methanol, acetonitrile and water (v/v/v,
537 2:2:1).

538 Metabolomics profiling was analyzed using a UPLC-ESI-Q-Orbitrap-
539 MS system (UHPLC, Shimadzu Nexera X2 LC-30AD, Shimadzu,
540 Japan) coupled with Q-Exactive Plus (Thermo Scientific, San Jose, USA).

541 The raw MS data were processed using MS-DIAL for peak alignment,
542 retention time correction and peak area extraction. The metabolites were

543 identified by accuracy mass (mass tolerance < 10 ppm) and MS/MS data
544 (mass tolerance < 0.02Da) which were matched with HMDB, massbank
545 and other public databases and our self-built metabolite standard library. In
546 the extracted-ion features, only the variables having more than 50% of the
547 nonzero measurement values in at least one group were kept.

548

549 **Triglyceride (TAG) assay**

550 Triglyceride (TAG) levels in right ventricular (RV) tissue were measured
551 using a commercial assay kit (Applygen Technologies Inc.). Briefly, 50 mg
552 of RV tissue was weighed, minced, and lysed in 1 ml of lysis buffer by
553 vortexing. The homogenate was centrifuged at 2000 rpm for 5 min and the
554 supernatant collected. Supernatant samples were mixed with the kit-
555 provided R1 and R2 buffers and TAG concentration measured by
556 absorbance at 570 nm using a microplate reader, according to the
557 manufacturer's protocol.

558 **Western Blot**

559 Anti-guinea pig PKP2 antibody was produced by Abclone Ltd. Right
560 ventricular lysates were prepared using RIPA buffer (Santa Cruz
561 Biotechnology). 30 μ g protein was separated by western blot. Blots were
562 probed for PKP2 (1:1000) and GAPDH (Abclone, 1:2000). Signals were
563 quantified by densitometry using an Imaging System (Bio Technology,
564 China).

565 **Statistical Analysis**

566 Echocardiographic Evaluation was conducted 8 animals of each group.
567 Proteomics experiments were conducted in triplicate. Data are expressed
568 as the mean \pm SEM. Statistical differences were analyzed using GraphPad
569 Prism software (GraphPad Software Inc., San Diego, CA). Statistical

570 significance was then determined by unpaired two-tailed Student's t-test
571 with a threshold of significance set at $p < 0.05$

572

573 **Acknowledgements**

574 We thank OBiO Technology (Shanghai) Corp., Ltd for AAV9 and shRNA
575 package construction. We thank Shanghai Bioprofile Technology
576 Company Ltd for proteomics study and bioinformation analysis. This work
577 was supported by Yunnan Fundamental Research Projects (Grant NO.
578 20221AS070081), National Natural Science Foundation of China (Grant
579 NO. 32060206) and veterinary Public Health Innovation Team of Yunnan
580 Province (Grant NO. 202105AE160014).

581

582 **Author contributions**

583 Haizhen Wang and Fei Sun performed study concept and design; Rui Song
584 and Haiyan Wu performed Echocardiographic evaluation of right
585 ventricular structure and sampling for proteomics analysis. Jingning Yu
586 and Wenhui Yang performed the ECG analysis, western blot analysis and
587 sampling. Wenjun Wu raised all the guinea pigs in this study. Haizhen
588 Wang and Fei Sun revised the manuscript. All authors read and approved
589 the final paper.

590

591 **Funding**

592 This work was supported by Yunnan Fundamental Research Projects
593 (Grant NO. 20221AS070081), National Natural Science Foundation of
594 China (Grant NO. 32060206) and veterinary Public Health Innovation
595 Team of Yunnan Province (Grant NO. 202105AE160014).

596

597 **Competing Interests**

598 The authors declare no competing interests.

599

600 **Ethics approval and consent to participate**

601 All aspects of this study were approved by the Experimental Ethics
602 Committee of Kunming Medical University.

603 **Reference**

- 604 1. Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC/D): A Systematic
605 Literature Review - Jorge Romero, Eliany Mejia-Lopez, Carlos Manrique, Richard
606 Lucariello, 2013. Available at
607 <https://journals.sagepub.com/doi/10.4137/CMC.S10940>. Accessed August 31, 2023.
- 608 2. Sattar Y, Abdullah HM, Neisani Samani E, Myla M, Ullah W. Arrhythmogenic Right
609 Ventricular Cardiomyopathy/Dysplasia: An Updated Review of Diagnosis and
610 Management. *Cureus*. 2019;11:e5381.
- 611 3. Corrado D, Wichter T, Link MS, Hauer RNW, Marchlinski FE, Anastasakis A, Bauce
612 B, Basso C, Brunckhorst C, Tsatsopoulou A, Tandri H, Paul M, Schmied C, Pelliccia
613 A, Duru F, Protonotarios N, Estes NM, McKenna WJ, Thiene G, Marcus FI, Calkins
614 H. Treatment of Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia.
615 *Circulation*. 2015;132:441–453.
- 616 4. Akdis D, Chen L, Saguner AM, Zhang N, Gawinecka J, Saleh L, von Eckardstein A,
617 Ren J, Matter CM, Hu Z, Chen X, Tanner FC, Manka R, Chen K, Brunckhorst C,
618 Song J, Duru F. Novel plasma biomarkers predicting biventricular involvement in
619 arrhythmogenic right ventricular cardiomyopathy. *Am Heart J*. 2022;244:66–76.
- 620 5. Zhang M, Tavora F, Oliveira JB, Li L, Franco M, Fowler D, Zhao Z, Burke A. PKP2

621 mutations in sudden death from arrhythmogenic right ventricular cardiomyopathy
622 (ARVC) and sudden unexpected death with negative autopsy (SUDNA). *Circ J.*
623 2012;76:189–94.

624 6. Sen-Chowdhry S, Syrris P, McKenna WJ. Genetics of right ventricular
625 cardiomyopathy. *J Cardiovasc Electrophysiol.* 2005;16:927–35.

626 7. Campian ME, Verberne HJ, Hardziyenka M, de Groot EAA, van Moerkerken AF,
627 van Eck-Smit BLF, Tan HL. Assessment of inflammation in patients with
628 arrhythmogenic right ventricular cardiomyopathy/dysplasia. *Eur J Nucl Med Mol*
629 *Imaging.* 2010;37:2079–2085.

630 8. Houston BA, Brittain EL, Tedford RJ. Right Ventricular Failure. *N Engl J Med.*
631 2023;388:1111–1125.

632 9. Basso C, Corrado D, Marcus FI, Nava A, Thiene G. Arrhythmogenic right ventricular
633 cardiomyopathy. *Lancet.* 2009;373:1289–300.

634 10. Cerrone M, Noorman M, Lin X, Chkourko H, Liang F-X, Van Der Nagel R, Hund
635 T, Birchmeier W, Mohler P, Van Veen TA, Van Rijen HV, Delmar M. Sodium current
636 deficit and arrhythmogenesis in a murine model of plakophilin-2 haploinsufficiency.
637 *Cardiovasc Res.* 2012;95:460–468.

638 11. Pecha S, Yorgan K, Röhl M, Geertz B, Hansen A, Weinberger F, Sehner S, Ehmke
639 H, Reichenspurner H, Eschenhagen T, Schwoerer AP. Human iPS cell-derived
640 engineered heart tissue does not affect ventricular arrhythmias in a guinea pig cryo-
641 injury model. *Sci Rep.* 2019;9:9831.

642 12. Guinea pig models for translation of the developmental origins of health and
643 disease hypothesis into the clinic. doi:10.1113/JP274948.

644 13. Hauser DS, Stade M, Schmidt A, Hanauer G. Cardiovascular parameters in
645 anaesthetized guinea pigs: A safety pharmacology screening model. *J Pharmacol*
646 *Toxicol Methods.* 2005;52:106–114.

647 14. Tester DJ, Ackerman JP, Giudicessi JR, Ackerman NC, Cerrone M, Delmar M,
648 Ackerman MJ. Plakophilin-2 Truncation Variants in Patients Clinically Diagnosed
649 With Catecholaminergic Polymorphic Ventricular Tachycardia and Decedents With
650 Exercise-Associated Autopsy Negative Sudden Unexplained Death in the Young.
651 *JACC Clin Electrophysiol.* 2019;5:120–127.

652 15. Chen L-T, Jiang C-Y. Bioinformatics analysis of sex differences in arrhythmogenic
653 right ventricular cardiomyopathy. *Mol Med Rep.* 2019;19:2238–2244.

654 16. Lee H-Y, You H-J, Won J-Y, Youn S-W, Cho H-J, Park K-W, Park W-Y, Seo J-S,
655 Park Y-B, Walsh K, Oh B-H, Kim H-S. Forkhead Factor, FOXO3a, Induces
656 Apoptosis of Endothelial Cells Through Activation of Matrix Metalloproteinases.

657 16. *Arterioscler Thromb Vasc Biol.* 2008;28:302–308.

658 17. Yu H, Fellows A, Foote K, Yang Z, Figg N, Littlewood T, Bennett M. FOXO3a
659 (Forkhead Transcription Factor O Subfamily Member 3a) Links Vascular Smooth
660 Muscle Cell Apoptosis, Matrix Breakdown, Atherosclerosis, and Vascular
661 Remodeling Through a Novel Pathway Involving MMP13 (Matrix
662 Metalloproteinase 13). *Arterioscler Thromb Vasc Biol.* 2018;38:555–565.

663 18. Shi Y, Zhao L, Zhang Y, Qin Q, Cong H, Guo Z. Homocysteine promotes cardiac
664 fibrosis by regulating the Akt/FoxO3 pathway. *Ann Transl Med.* 2021;9:1732–1732.

665 19. Tran DA, Tan X, Macri CJ, Goldstein AT, Fu SW. Lichen Sclerosus: An
666 autoimmunopathogenic and genomic enigma with emerging genetic and immune
667 targets. *Int J Biol Sci.* 2019;15:1429–1439.

668 20. Cardiometabolic risk factors and lactoferrin: polymorphisms and plasma levels in
669 French-Canadian children | Pediatric Research. Available at
670 <https://www.nature.com/articles/pr201772>. Accessed March 5, 2024.

671 21. Ghafouri-Fard S, Khanbabapour Sasi A, Hussen BM, Shoorei H, Siddiq A, Taheri
672 M, Ayatollahi SA. Interplay between PI3K/AKT pathway and heart disorders. *Mol
673 Biol Rep.* 2022;49:9767–9781.

674 22. Santo EE, Stroeken P, Sluis PV, Koster J, Versteeg R, Westerhout EM. FOXO3a is
675 a major target of inactivation by PI3K/AKT signaling in aggressive neuroblastoma.
676 *Cancer Res.* 2013;73:2189–2198.

677 23. Bao W, Pan F, Chen L, Su G, Gao X, Li Y, Sun Q, Sun J, He K, Song H. The
678 PI3K/AKT Pathway and FOXO3a Transcription Factor Mediate High Glucose-
679 Induced Apoptosis in Neonatal Rat Ventricular Myocytes. *Iran Red Crescent Med J.*
680 2014;16:e14914.

681 24. Tahir UA, Katz DH, Zhao T, Ngo D, Cruz DE, Robbins JM, Chen Z-Z, Peterson B,
682 Benson MD, Shi X, Dailey L, Andersson C, Vasan RS, Gao Y, Shen C, Correa A,
683 Hall ME, Wang TJ, Clish CB, Wilson JG, Gerszten RE. Metabolomic Profiles and
684 Heart Failure Risk in Black Adults: Insights From the Jackson Heart Study. *Circ
685 Heart Fail.* 2021;14. doi:10.1161/circheartfailure.120.007275.

686 25. Schulze PC, Drosatos K, Goldberg IJ. Lipid Use and Misuse by the Heart. *Circ Res.*
687 2016;118:1736–51.

688 26. Abel ED, Litwin SE, Sweeney G. Cardiac remodeling in obesity. *Physiol Rev.*
689 2008;88:389–419.

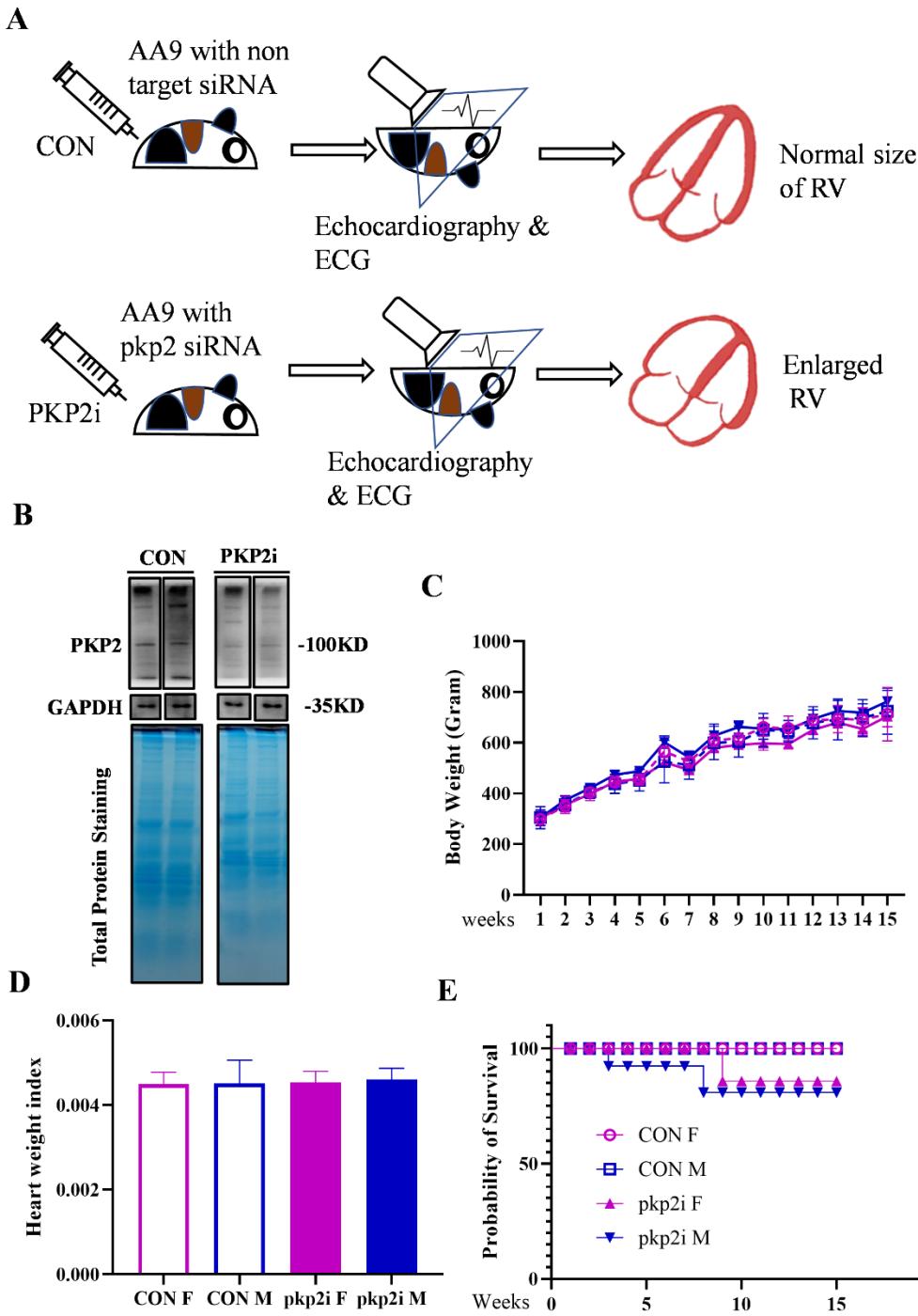
690 27. Bubb K, Holzer T, Nolte JL, Krüger M, Wilson R, Schlötzer-Schrehardt U,
691 Brinckmann J, Altmüller J, Aszodi A, Fleischhauer L, Clausen-Schaumann H, Probst
692 K, Brachvogel B. Mitochondrial respiratory chain function promotes extracellular

693 matrix integrity in cartilage. *J Biol Chem.* 2021;297:101224.

694 28. Sudevan S, Takiura M, Kubota Y, Higashitani N, Cooke M, Ellwood RA, Etheridge
695 T, Szewczyk NJ, Higashitani A. Mitochondrial dysfunction causes Ca²⁺ overload
696 and ECM degradation-mediated muscle damage in *C. elegans*. *FASEB J.* 2019;33:9540–9550.

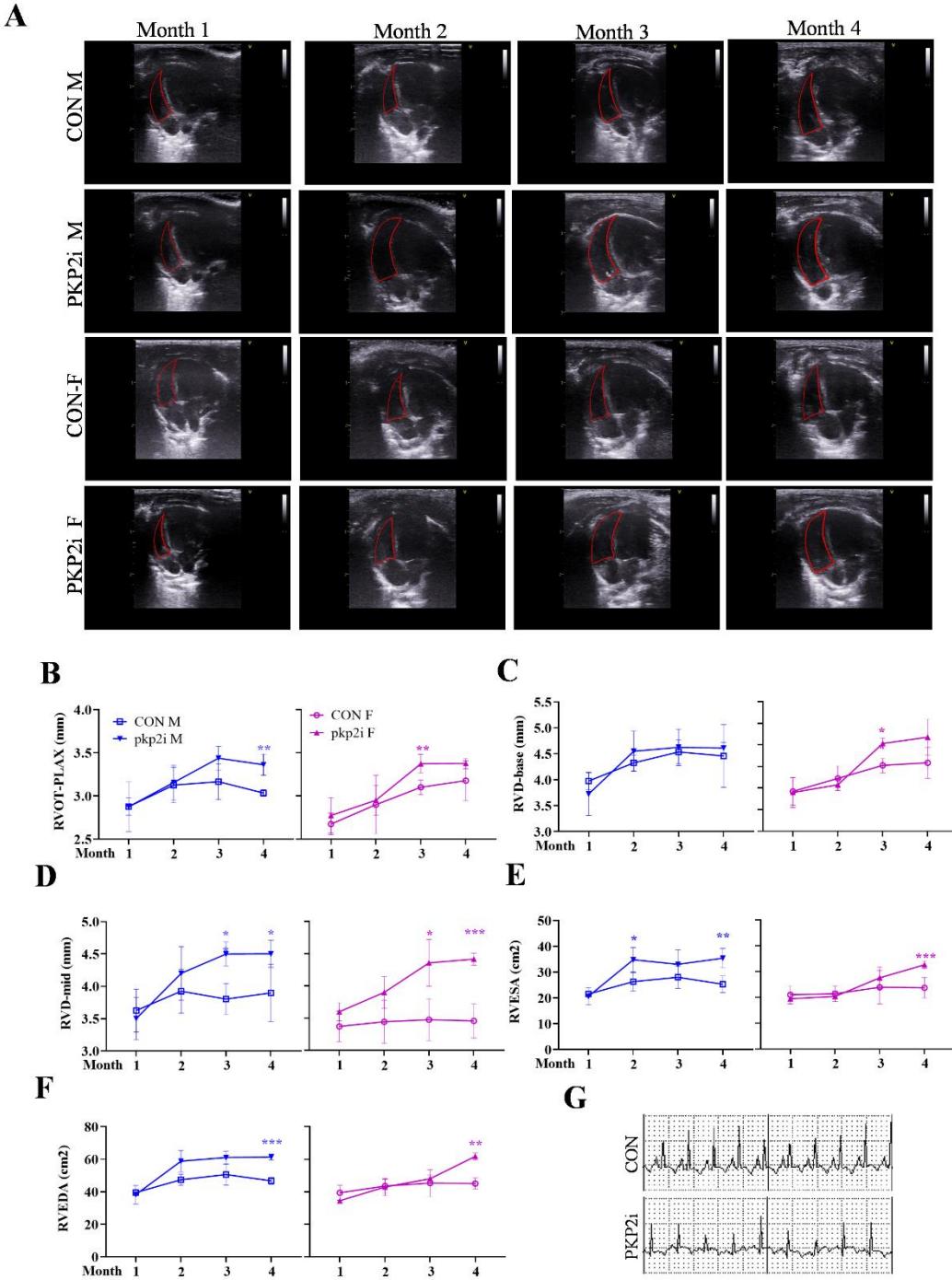
698 29. Castresana J, Lübben M, Saraste M, Higgins DG. Evolution of cytochrome oxidase,
699 an enzyme older than atmospheric oxygen. *EMBO J.* 1994;13:2516–2525.

700 30. Esposti MD, De Vries S, Crimi M, Ghelli A, Patarnello T, Meyer A. Mitochondrial
701 cytochrome b: evolution and structure of the protein. *Biochim Biophys Acta BBA -*
702 *Bioenerg.* 1993;1143:243–271.


703 31. van der Veen JN, Kennelly JP, Wan S, Vance JE, Vance DE, Jacobs RL. The critical
704 role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and
705 disease. *Biochim Biophys Acta BBA - Biomembr.* 2017;1859:1558–1572.

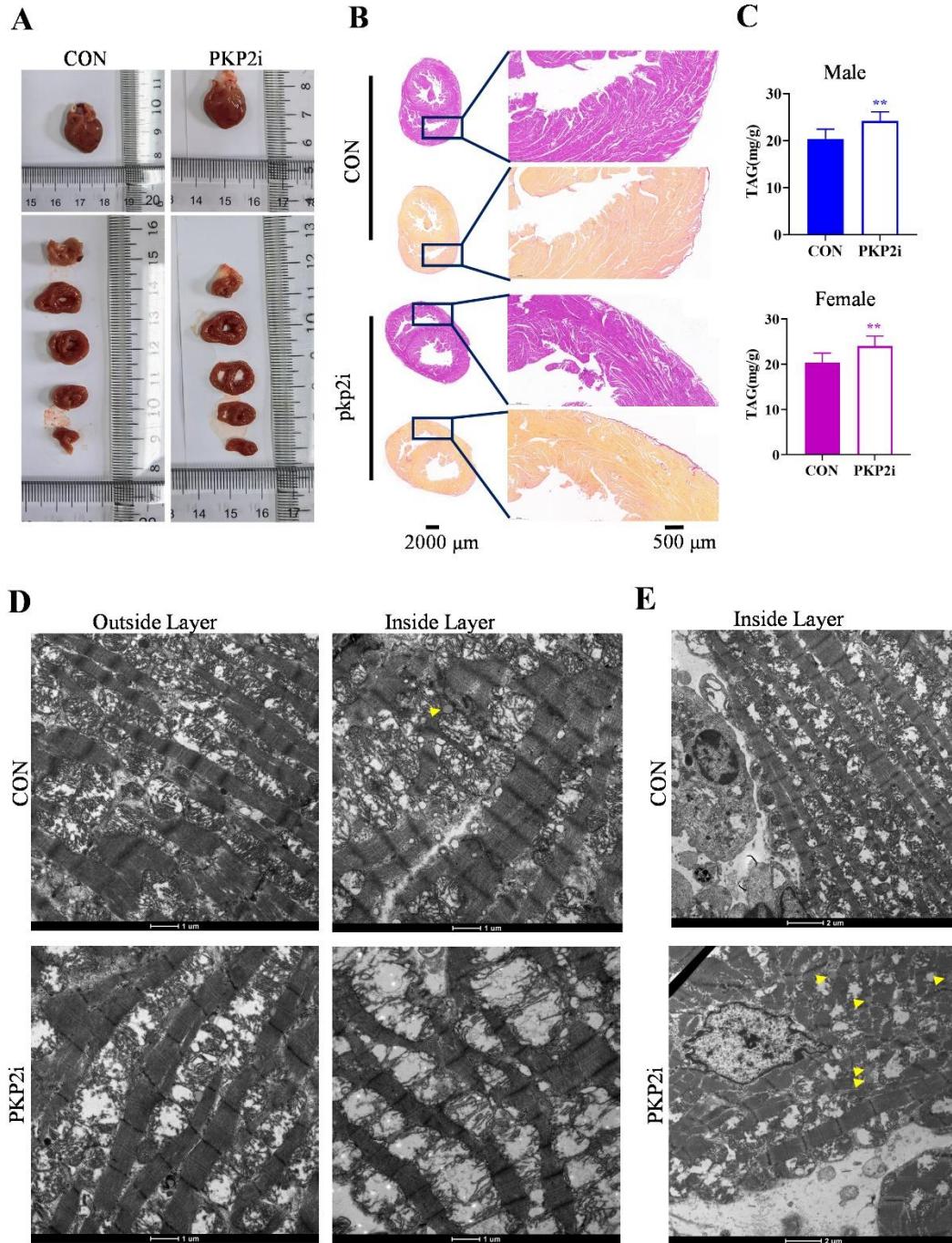
706 32. Granton J, Teijeiro-Paradis R. Management of the Critically Ill Patient with
707 Pulmonary Arterial Hypertension and Right Heart Failure. *Clin Chest Med.*
708 2022;43:425–439.

709


710 **Figures**

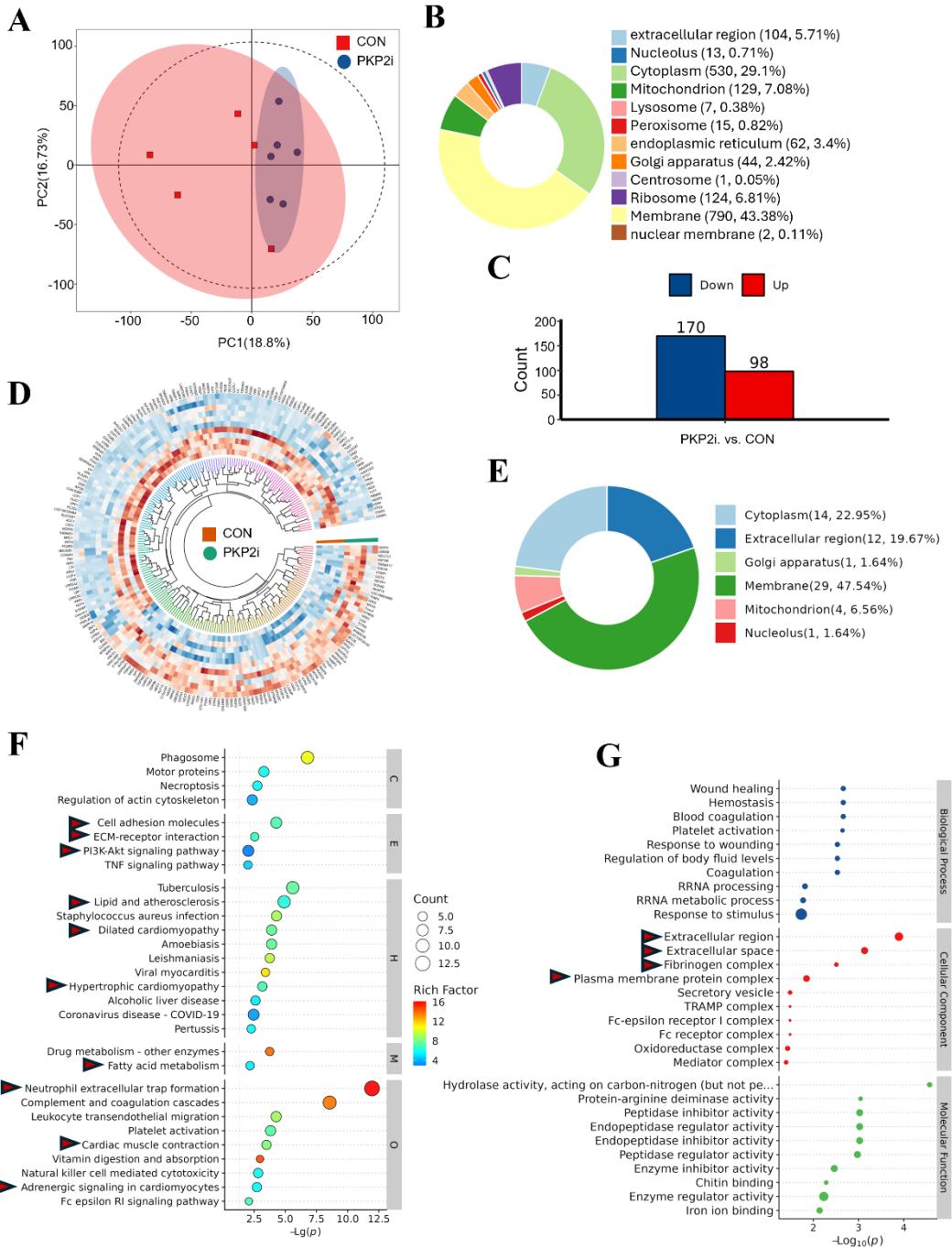
711 **Figure 1. Construction of an ARVC guinea pig model.** (A) Schematic of the experimental proce-

712 dure used to establish an ARVC guinea pig model utilizing AAV9 vectors. (B) Western blot analysis
713 of PKP2 and Coomassie staining for total protein in right ventricular samples. CON represents
714 guinea pigs injected with AAV9 expressing non-targeting shRNA (n=16, 8 males and 8 females),
715 while PKP2i represents guinea pigs injected with AAV9 expressing PKP2 shRNA (n=16, 8 males
716 and 8 females). (C) Body weight curves over time for CON and PKP2i groups. (D) Ratio of heart
717 weight to body weight for CON and PKP2i groups.


718

719

720 **Figure 2. Echocardiographic evaluation of right ventricular structure.** (A) Representative
721 echocardiographic images of male (M) and female (F) guinea pigs from 1 to 4 months post-AAV9
722 injection. Quantitative analysis of (B) RVOT proximal long axis (RVOT-PLAX), (C) RV basal
723 diameter (RVD-base), (D) RV median diameter (RVD-mid), (E) RV end-systolic area (RVESA), and
724 (F) RV end-diastolic area (RVEDA) over time. (G) ECG curve of CON and PKP2i guinea pigs. Data
725 are mean \pm SD, n=8/group. Statistical comparisons were made by unpaired Student's t-test; P<0.05,
726 *P<0.01, **P<0.001.


727

729 **Figure 3. Structural alterations in the right ventricle of PKP2-deficient guinea**
730 **pigs.** (A) Gross morphology of right ventricle (RV) from representative CON and
731 PKP2i guinea pigs. (B) Hematoxylin & eosin (H&E) and Sirius red staining of RV
732 sections. Scale bars = 2000 μ m (left), 500 μ m (right). (C) Triglyceride content (TAG)
733 in RV samples from male and female guinea pigs. (D-E) Transmission electron
734 microscopy (TEM) images of the outer and inner layers of the RV wall from CON and

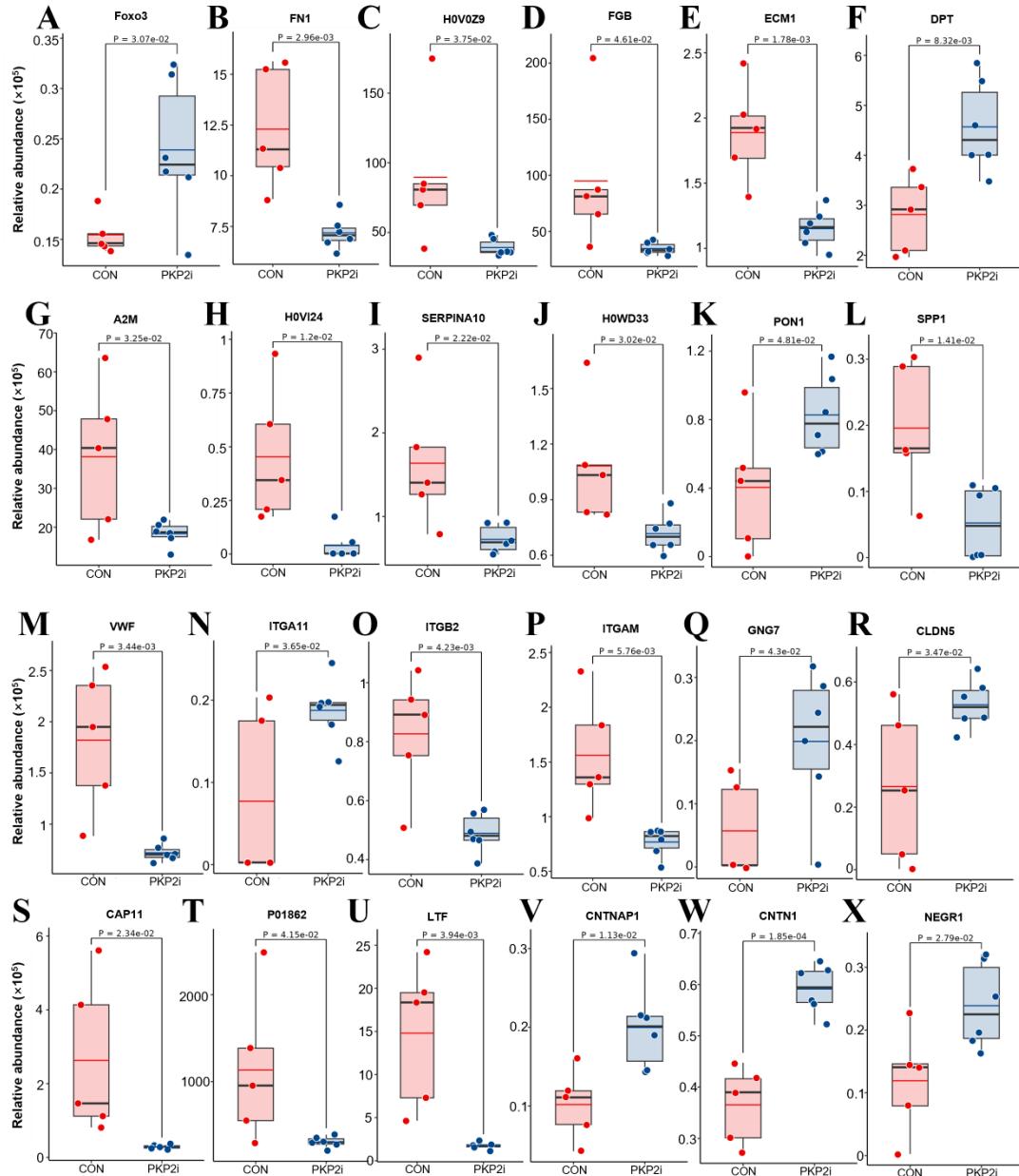
735 PKP2i groups. Scale bars = 1 μ m (left), 2 μ m (right). Arrowheads indicate lipid droplets.

736

737

738

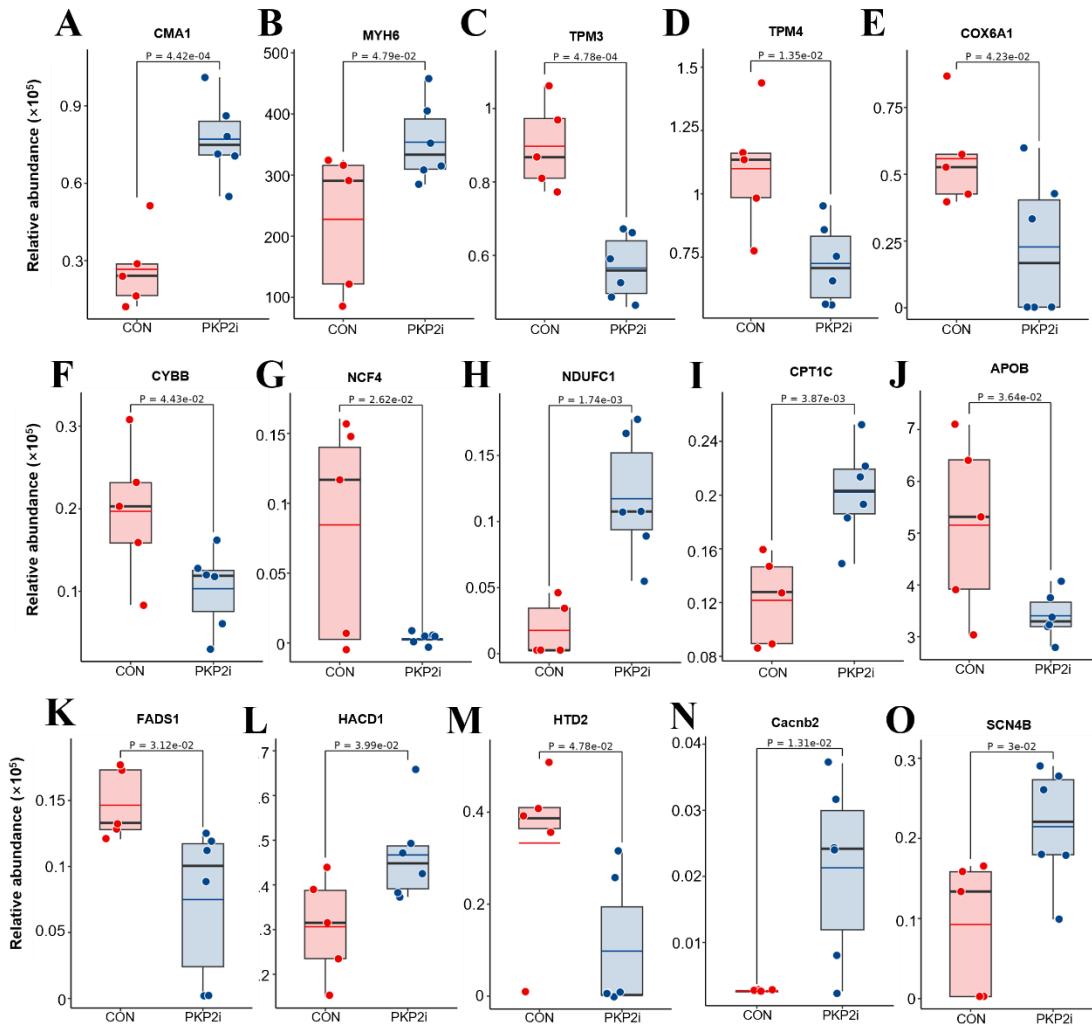
739 **Figure 4. Differential protein expression profiling of PKP2i and CON right**


740 **samples. (A) Principal component analysis (PCA) of CON and PKP2i proteomic datasets. (B)**

741 **Graphical representation of the subcellular distribution of detected proteins, categorized by their**

742 **cellular location. (C) Bar chart depicting the counts of upregulated (red) and downregulated (blue)**

743 proteins identified as significantly differentially expressed between PKP2i and CON samples. (D)
744 Circular heatmap displaying the expression patterns of differentially expressed proteins, with color
745 intensity corresponding to the level of expression. (E) Subcellular distribution of significant
746 differential proteins, highlighting the changes in protein localization in PKP2i compared to CON
747 samples. (F) Kyoto Encyclopedia of Genes and Genomes (KEGG) and (G) Gene Ontology (GO)
748 pathway analysis, with red arrows indicating pathways of particular interest that are affected by
749 PKP2 knockdown. Proteomics data were analyzed using Perseus, Excel, and R software.
750 Hierarchical clustering used Euclidean distance and the complete agglomeration method with the
751 heatmap R package. Enriched pathways were considered significant at $p < 0.05$.


752

753

754 **Figure 5. Altered ECM Protein Expression in PKP2-Deficient Right Ventricles.** The
755 differential expression analysis of ECM proteins in right ventricle samples from CON and ARVC
756 animals, which are representative of PKP2 deficiency. Data are expressed as mean relative
757 abundance \pm standard deviation (SD), with n=5 for the CON group and n=6 for the PKP2i group.
758 The Y-axis denotes the relative abundance of proteins, scaled by a factor of 10⁵. Statistical
759 significance, as determined by P values, is indicated for each protein graph.

760

761

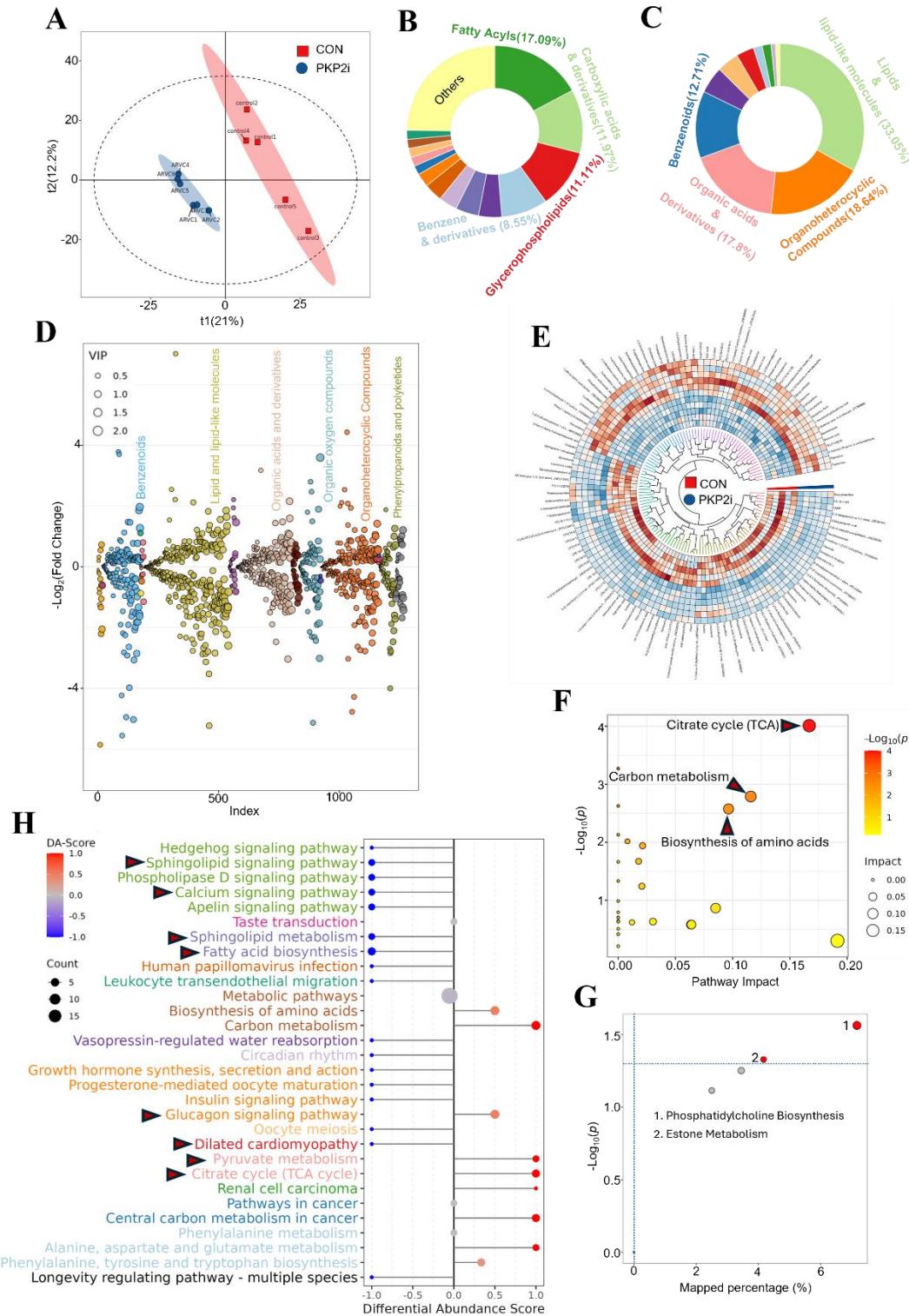
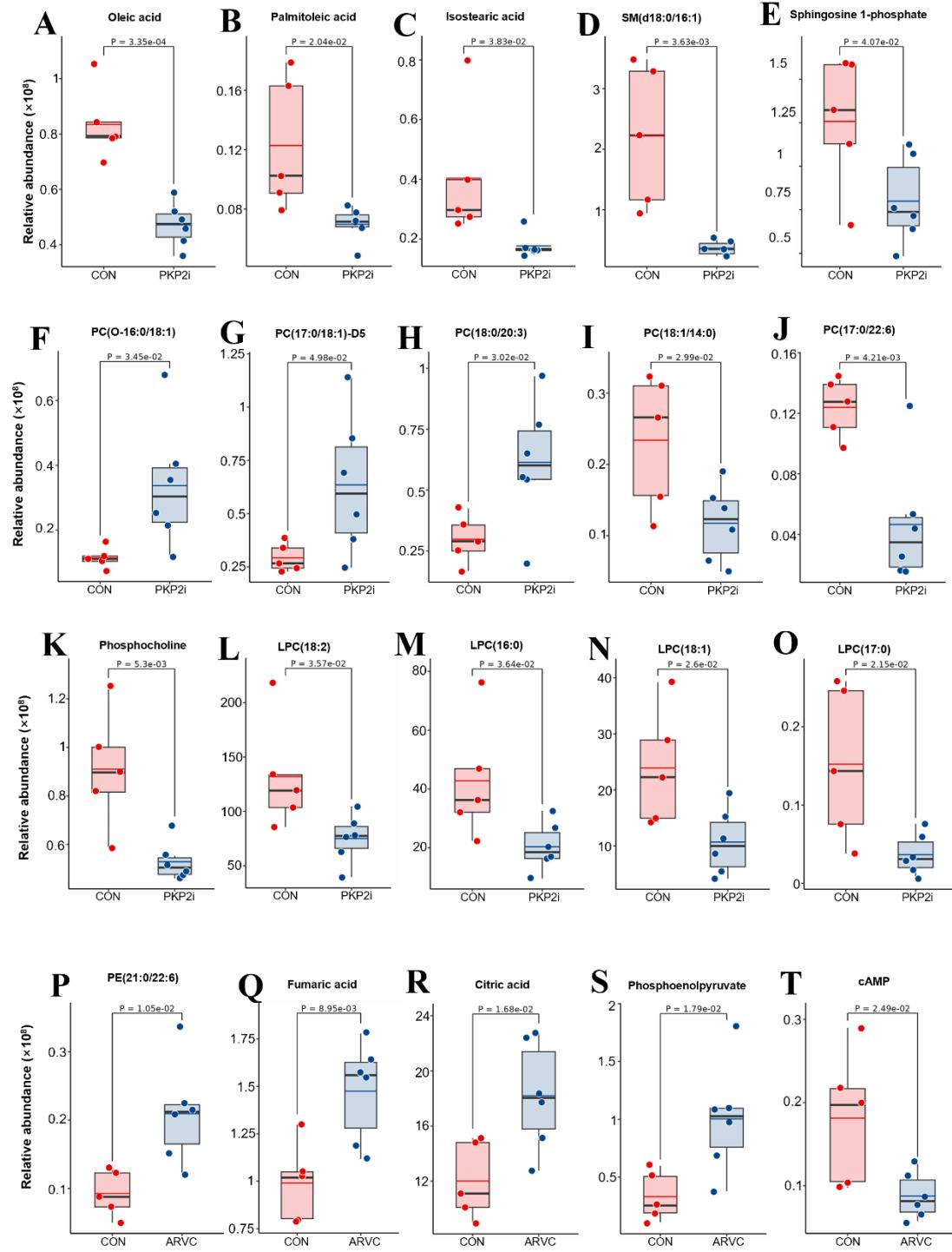

762

Figure 6. Altered cardiac muscle contraction and metabolic Protein Expression in PKP2-

763

Deficient Right Ventriles. The differential expression analysis of cardiac muscle contraction and metabolic proteins in right ventricle samples from CON and ARVC animals, which are representative of PKP2 deficiency. Data are expressed as mean relative abundance \pm standard deviation (SD), with n=5 for the CON group and n=6 for the PKP2i group. The Y-axis denotes the relative abundance of proteins, scaled by a factor of 10^5 . Statistical significance, as determined by P values, is indicated for each protein graph, highlighting the dysregulation of ECM components in the PKP2-deficient state.


770

771

772 **Figure 7. Metabolic Profile Alterations Induced by PKP2 Knockdown.** (A) PCA plot
 773 comparing the metabolomic profiles of control (CON) and PKP2 knockdown (PKP2i) plasma
 774 samples, illustrating the metabolic divergence between the two groups. (B) Categorization of
 775 detected metabolites based on their chemical properties. (C) Classification of significantly

776 differential metabolites, with a focus on the changes in chemical properties observed in PKP2i
777 samples relative to CON samples. (D) Volcano plot depicting the differential metabolites, with the
778 Y-axis representing the negative logarithm of the fold change (-log2 FC), allowing for the
779 visualization of both the magnitude and significance of metabolic changes. (E) Circular heatmap
780 illustrating the expression patterns of differential metabolites, with color intensity reflecting the
781 level of expression and aiding in the identification of metabolic trends. (F) Pathway impact analysis
782 using Betweenness centrality, which measures the influence of each pathway on the overall
783 metabolic network. (G) The Small Molecule Pathway Database (SMPDB) primary pathway analysis,
784 with bubbles sized proportionally to the significance ($P<0.05$) of the pathways affected by PKP2
785 deficiency. (H) KEGG pathway analysis, highlighting pathways of particular interest that are
786 significantly impacted by PKP2 knockdown, as indicated by red arrows. Metabolomics data analysis
787 was performed using Perseus, Excel, and R software, with enriched pathways considered significant
788 at a p-value threshold of 0.05.

789

790 **Figure 8. Changes in metabolites with PKP2 knockdown.** The differential expression analysis of
791 metabolites in plasma samples from CON and ARVC animals, which are representative of PKP2
792 deficiency. Data are expressed as mean relative abundance \pm standard deviation (SD), with n=5 for
793 the CON group and n=6 for the PKP2i group. The Y-axis denotes the relative abundance of proteins,
794 scaled by a factor of 10⁵. Statistical significance, as determined by P values, is indicated for each
795 protein graph.

796