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Abstract 13 

 14 

Viruses which infect animals regularly spill over into the human population, but individual events 15 

may lead to anything from a single case to a novel pandemic.  Rapidly gaining an understanding 16 

of a spillover event is critical to calibrating a public health response.  We here propose a novel 17 

method, using likelihood free rejection sampling to evaluate the properties of an outbreak of 18 

swine-origin influenza A(H1N2)v in the United Kingdom, detected in November 2023.  From the 19 

limited data available we generate historical estimates of the probability that the outbreak had 20 

died out in the days following the detection of the first case.  Our method suggests that the 21 

outbreak could have been said to be over with 95% certainty between 19 and 29 days after the 22 

first case was detected, depending upon the probability of a case being detected.  We further 23 

estimate the number of undetected cases conditional upon the outbreak still being live, the 24 

epidemiological parameter R0, and the date on which the spillover event itself occurred.  Our 25 

method requires minimal data to be effective.  While our calculations were performed after the 26 
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event, the real-time application of our method has potential value for public health responses to 27 

cases of emerging viral infection. 28 

 29 

Introduction 30 

 31 

Viral transmission from animals to humans poses a serious threat in terms of its potential to 32 

generate novel pandemics[1].  Influenza viruses have a track record of causing serious impacts 33 

upon human health, with the 1918, 1957, and 1968 pandemics each being associated with more 34 

than one million deaths[2,3]. 35 

 36 

While such pandemics are rare events, they occur in a context of much more frequent animal-37 

to-human spillover events: In 2022, epidemiological monitoring detected close to 60 cases of 38 

avian and swine influenza infection in humans worldwide[4].  While most of these events do not 39 

lead to large numbers of people being infected, at the very earliest stages of detection the 40 

distinction between an outbreak that will remain localised, and an outbreak that will go on to 41 

seed a pandemic, may be small.  Efforts are required to understand spillover events in their 42 

earliest stages. 43 

Sta/s/cal approaches for understanding outbreaks work on very different quan//es of data.  44 

The SARS-CoV-2 pandemic saw the implementation of a broad range of computational and 45 

statistical approaches to track the nature and impact of the virus.  Studies early in the pandemic 46 

characterised the epidemiological properties of the virus[5,6], and produced estimates of the 47 

epidemiological reproductive number R0 in different contexts[7].  Methods for ‘nowcasting’ 48 

combined multiple datasets to estimate local levels of viral prevalence[8,9].  A UK-wide project 49 

generated and shared hundreds of thousands of SARS-CoV-2 viral sequences[10].  Genome 50 

sequence data were used to study virus evolution and transmission on multiple scales[11–13].   51 
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 52 

Soon after a spillover occurs, data limitations may present themselves.  Where multiple 53 

instances of infection from an emerging pathogen are observed, epidemiological models can 54 

highlight possible viral adaptation [14].   Inferences can be made of the epidemiological 55 

transmission parameter R0[15], and of differences in R0 across settings[16].  Sequence data can 56 

be used to assess the evolutionary origins and epidemiological characteristics of emergent 57 

viruses[17,18].   58 

 59 

At the very earliest stages of an outbreak, data limitations may be severe; the detection of a 60 

spillover event may begin with a single case of infection.  To explore what might be achieved in 61 

this minimal case, we here investigate a case of human influenza A(H1N2)v virus infection, 62 

observed the UK in November 2023.  The detected case had no known contact with pigs, so 63 

was here assumed not to be the first case in the outbreak[19].  After the one detection, no 64 

further observations of infection were made.  Considering the period immediately following the 65 

detection, we use a novel method to estimate the probability of the outbreak having ceased, and 66 

the potential number of undetected cases of infection.  We discuss the potential for minimal 67 

datasets to inform the public health response in the days following the detection of a viral 68 

spillover event. 69 

 70 

Results 71 

 72 

As a precursor to our method, we estimated the probability of a single case of influenza 73 

A(H1N2)v being detected as being between 4% and 10%.  Publicly available data shows that in 74 

week 48 of 2023 the UK rate of GP consultations for influenza-like illness (ILI) was 4.6 per 75 

100,000 individuals, equal to a national total of approximately 3,100 consultations per week.  76 

Following these consultations, 557 samples were tested as part of a sentinel swabbing scheme, 77 
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suggesting that approximately 18% of GP consultations for ILI led to swabbing and further 78 

testing[20].  Following the detection of a case, swabbing was increased in the Yorkshire and 79 

Humber region, where the case was found[20].  While data specific to the UK population are 80 

sparse, published estimates suggest that between 25 and 50% of individuals with ILI might seek 81 

healthcare[21,22].  Our estimate range was derived from these values. 82 

 83 

We evaluated the properties of the A(H1N2)v influenza outbreak using likelihood free rejection 84 

sampling, first carrying out a form of historical nowcasting.  Given a day following the detection 85 

of the outbreak, and supposing the knowledge that no further cases had been detected up until 86 

that day, we generated large numbers of simulated influenza outbreaks, identifying the 87 

statistical properties of simulations that matched the observed data up until the considered day.  88 

In this manner we estimated that, fourteen days after the first detection of A(H1N2)v influenza, 89 

the probability that the outbreak had died out was between 66% and 88% (Figure 1A).  The 90 

range in this value reflects uncertainty in the probability of a case being detected, with higher 91 

detection probabilities leading to greater probabilities of the outbreak having ended.  At a 92 

detection rate of 4%, we inferred that the outbreak could be said to have ended with 95% 93 

confidence by day 29 after the first detection; the same conclusion could be drawn by day 19 94 

given a detection rate of 10%.   95 

 96 

We further estimated the number of active cases of infection, conditional upon the outbreak 97 

having not died out.  In the considered case, the median number of active cases fourteen days 98 

after the detection of the first case was estimated as between 55 and 91 (Figure 1B).  Estimated 99 

numbers of active cases decreased slowly with time, considering days successively further from 100 

that of the detection (Supplementary Figure 1).  Our model therefore suggested a dichotomy of 101 

potential circumstances: The outbreak was likely to have died out, but could have involved 102 

numbers of active cases if it was still live.  We note that, soon after the detection of the first 103 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2024.03.11.584378doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.11.584378
http://creativecommons.org/licenses/by/4.0/


case, there exists the potential for the outbreak to involve very large numbers of cases.  This 104 

result is explained by the 18-day delay between symptom onset and detection for the first 105 

detected case[23].  Given a high R0, this delay would have been sufficient for the virus to have 106 

spread substantially within the population.  More rapid identification of outbreaks limits the 107 

potential for spread prior to detection. 108 

 109 

We made a retrospective estimate of the time of the first, undetected, case of infection; 110 

estimates were made a nominal date 90 days after the first detection.  Our model predicted that 111 

this first infection occurred 22 days prior to the first detection, on 1st November, only a few days 112 

before the first detected case became symptomatic (Figure 1B).  The inferred likelihood function 113 

is steeply skewed, with the mean of this distribution between 25 and 28 days prior to the first 114 

detection, varying with the detection rate.  However, the interval between the time of the first 115 

infection and the time at which the first detected individual became symptomatic was likely 116 

short, with the detected individual potentially being a direct contact of the index case. 117 

 118 

We also made a retrospective estimate of R0 for this outbreak, obtaining a value of 0.9 (Figure 119 

1D).  This lies below the threshold necessary to sustain an outbreak, and is lower than 120 

estimates for seasonal influenza viruses, for which R0 is in the region of 1.3[24].  The very 121 

sparse data used in making our estimate led to a large degree of uncertainty in this estimate; 122 

further data would sharpen the inferred distribution. 123 

 124 

Exploring our data further, we examined the extent to which our retrospective estimates of R0 125 

and the time of first infection could have been made closer to the observation of the first case.  126 

In the first few days after the detection of the case there was little power to rule out large values 127 

of R0 (Supplementary Figure 2A), but large values were progressively excluded with time.  By 128 

contrast the inferred time of the first case of infection was relatively stable, with estimates 129 
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calculated a few days after the observation being very close to our final estimate 130 

(Supplementary Figure 2B). 131 

 132 

Our results are dependent upon the prior distribution chosen for R0.  By default we used a 133 

uniform prior between zero and 4, but the highest values in this range are beyond those 134 

previously observed even for the 1918 pandemic virus[25].  Recalculating results with a uniform 135 

prior between zero and 2 did not strongly affect our results (Supplementary Figure 3).  136 

 137 

Discussion 138 

 139 

Examining data describing a spillover event of a swine influenza virus into the human population 140 

we used a method of rejection sampling to explore what can be learnt, both at the time of the 141 

immediate response, and in retrospect, from the limited public data describing this event.  Our 142 

method provided time-dependent estimates of the probability that the outbreak had died out, 143 

and for the number of undetected cases in the case that the outbreak was still live.  It further 144 

provided estimates for the date of the spillover event itself, and for the parameter R0.  Our model 145 

achieves what it does because both the observation of a case of infection, and the subsequent 146 

non-observation of cases, are informative for the model:  The failure to observe a second case 147 

of infection is an important piece of data. 148 

 149 

Our work pushes at the boundary of the amount of data required to learn about a spillover 150 

event, showing that even minimal data are sufficient to draw early and provisional conclusions 151 

about the outbreak.  Our approach may be of value in a public health context: Estimating the 152 

certainty with which we can say whether an outbreak is likely to have died out could inform 153 

decisions about the investigation of cases and the resources applied to this task.  154 

Simultaneously, the provisional nature of our conclusions should not be underemphasised.  155 
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Methods such as contact tracing would provide substantially more information about the 156 

potential for the virus to have spread, while genome sequencing of any further cases would 157 

facilitate phylogenetic and other genomic approaches to epidemiology.   158 

 159 

Our approach is limited by its simplicity.  For example, we assumed a homogeneous population, 160 

in which each infected person is equally infectious to the others, and neglected the potential for 161 

evolution to change the infectivity of the virus.  We modelled data collection in a simple manner, 162 

assuming for example a fixed time between symptom onset and test result.  We note that the 163 

epidemiological dynamics of infection, expressed as distributions of the time to symptom onset 164 

and to infecting others, are of critical importance to our method, but were of necessity based 165 

upon distributions inferred for other influenza strains: The A/H1N2 virus detected potentially 166 

would not mirror seasonal influenza in this way.  Many of the assumptions made by our method 167 

could be elaborated upon, for example by allowing for heterogeneity in transmission[26].  The 168 

limited data available in this case did not encourage the use of more complex models. 169 

 170 

The variation in our results under different detection scenarios highlights the potential value of 171 

improved systems for detecting cases of infection following a spillover event.  In this case, 172 

detection efforts were stepped up in the region of the detection of the first case. More thorough 173 

and faster testing provides a greater certainty that a spillover has not led to a persistent 174 

outbreak and reduces the potential for an outbreak to grow undetected. 175 

 176 

While we have applied our model to a specific event, describing the spillover of influenza 177 

A(H1N2)v into the human population in the UK, our approach has the potential for broader use.  178 

Given reasonable estimates for epidemiological parameters, viruses other than influenza could 179 

also be modelled.  Events involving more than one detection of a positive case could also be 180 

assessed, though as the number of cases of infection increases our approach becomes less 181 
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computationally efficient.  Once large amounts of data become available, alternative methods 182 

for epidemiological inference are likely to perform better than our own.  Our approach is of 183 

potential value in the first stages of an outbreak when data are most limited. 184 

 185 

Methods 186 

 187 

We used likelihood free rejection sampling to evaluate the likely state of the outbreak underlying 188 

the available data.  This method generated a large number of simulated outbreaks, retaining 189 

only those which were compatible with the data collected from the A(H1N2)v outbreak, counting 190 

the number of cases detected on each day, and assuming that a given number of days, denoted 191 

by to, had passed since the day on which the first detected case was observed.  For the 192 

historical now-casting calculations simulations which exactly matched the data up to time to 193 

were accepted.  The R0 parameters of the accepted simulations provided samples of the 194 

posterior distribution of this statistic.  The properties of these simulations for different values of to 195 

were used to estimate the properties of the outbreak.  Where retrospective estimates of 196 

parameters were made, these were calculated at the point to = 90 days. 197 

 198 

Simulation of outbreaks 199 

Time was modelled discretely, in units of whole days.  Each simulated outbreak started with a 200 

primary case.  The simulation then proceeded day by day.  Infected individuals were assumed 201 

to become symptomatic a random number of days ts after being infected.  Every symptomatic 202 

individual then infected a total of R others, with the time of each infection event occurring a 203 

random number of days ti after symptom onset, and where R was Poisson distributed with 204 

parameter R0.  The random numbers ts and ti were drawn from Weibull distributions with 205 

parameters based upon published parameters describing influenza infection[27], but with 206 
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samples rounded to the nearest integer.  Specifically, where w is the cumulative distribution 207 

function 208 

𝑤(𝑥, 𝑎, 𝑏) = 1 − 𝑒!"
#
$%

!

 209 

𝑡! had probability mass function 210 

𝑃(t& = 𝑡) = 𝑤 /𝑡' +
1
2 , a, b4 − 𝑤 /max 7𝑡' −

1
2 , 09 , a, b4, 211 

And similarly for ti.  Parameters for the distribution of ts were given by a=7.4026 and b=1.7375, 212 

while parameters for the distribution of ti were given by a=1.0314 and b=1.0025. 213 

 214 

For each infected individual in our simulation we randomly determined whether the case was 215 

detected.  Detection was modelled as occurring with fixed probability pd.  Detection was 216 

assumed to occur 18 days after the day of symptom onset, following data from the influenza 217 

A(H1N2)v case[23].  The exception to this rule was the primary case in the outbreak.  Following 218 

information that the index case had no contact with animals, the primary case was assumed not 219 

to have been detected[19]. 220 

 221 

Each simulated outbreak was continued until it either died out, with no more cases of infection 222 

existing, or until the first day we were certain whether or not the numbers of cases detected in 223 

the simulation matched the number of detected cases in the dataset up to the observation time. 224 

 225 

We assumed a uniform prior over the epidemiological parameter R0 within the window [0.1, 4.0]. 226 

Rather than randomly sample, we performed a grid search, conducting 106 simulations for each 227 

of 40 equally spaced discrete values of R0 from 0.1 to 4.0.   228 
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Once simulations were complete, we calculated the proportion of simulations for each R0 that 229 

were accepted, 𝑃"!(accepted|𝑅#).  Normalising this statistic gave the posterior probability of R0 230 

at a given observation time to, 231 

𝑃"!(𝑅#|accepted) =
𝑃"!(accepted|𝑅#)𝜋(𝑅#)

∑ 𝑃"!(accepted|𝑅#)$" 𝜋(𝑅#)
, 232 

where the prior 𝜋(𝑅#) is uniform. Using the accepted simulations, we estimated properties of the 233 

viral population, using the formula  234 

𝑃(𝑄|𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑	𝑎𝑡	𝑡%) =
#(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠	𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑	𝑎𝑡	𝑡#	𝑎𝑛𝑑	𝑄)	

#(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠	𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑	𝑎𝑡	𝑡#)
, 235 

for properties Q including the number of infected individuals being k at time ti days after the 236 

detected case, the outbreak having died out at time ti days after the detected case, or the time 237 

of the first infection having occurred a specific number of days before the detected case. 238 

 239 

In the calculations above, we assumed that infection lasted for seven days following infection.  240 

We note that alternative prior distributions for R0 could be used in our calculation; we show in 241 

Supplementary Information the results of placing a lower upper bound on this statistic. 242 

 243 

Data/Code availability 244 

 245 

All data used for this analysis was obtained from publicly available sources.  Our code is named 246 

OINK (Outbreak Inference given Negligible Knowledge) and is available from 247 

https://github.com/cjri/OINK/. 248 
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Figures 341 

 342 

Figure 1: Sta2s2cs describing the influenza A/H1N2 spillover event calculated using our 343 

bootstrapping method.  A. Time-dependent probability that the outbreak had died out.  The 344 

value pd describes the probability of a case of A/H1N2 influenza being detected.  B.  Calculated 345 

distribu/on describing the /me at which the first case in the outbreak was infected.  The 346 

detec/on of the first case was on 23rd November.  C. Calculated distribu/on of the number of 347 

infected individuals 14 days aQer the date of the first detec/on, condi/onal on the outbreak 348 

having not died out.  The ver/cal dashed lines show the median values of each distribu/on.  D.  349 

Es/mate of the epidemiological parameter R0 for the influenza A/H1N2 virus involved in this 350 

spillover event. 351 
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