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Abstract

Viruses which infect animals regularly spill over into the human population, but individual events
may lead to anything from a single case to a novel pandemic. Rapidly gaining an understanding
of a spillover event is critical to calibrating a public health response. We here propose a novel
method, using likelihood free rejection sampling to evaluate the properties of an outbreak of
swine-origin influenza A(H1N2)v in the United Kingdom, detected in November 2023. From the
limited data available we generate historical estimates of the probability that the outbreak had
died out in the days following the detection of the first case. Our method suggests that the
outbreak could have been said to be over with 95% certainty between 19 and 29 days after the
first case was detected, depending upon the probability of a case being detected. We further
estimate the number of undetected cases conditional upon the outbreak still being live, the
epidemiological parameter Ry, and the date on which the spillover event itself occurred. Our

method requires minimal data to be effective. While our calculations were performed after the
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event, the real-time application of our method has potential value for public health responses to

cases of emerging viral infection.

Introduction

Viral transmission from animals to humans poses a serious threat in terms of its potential to
generate novel pandemics[1]. Influenza viruses have a track record of causing serious impacts
upon human health, with the 1918, 1957, and 1968 pandemics each being associated with more

than one million deaths[2,3].

While such pandemics are rare events, they occur in a context of much more frequent animal-
to-human spillover events: In 2022, epidemiological monitoring detected close to 60 cases of
avian and swine influenza infection in humans worldwide[4]. While most of these events do not
lead to large numbers of people being infected, at the very earliest stages of detection the
distinction between an outbreak that will remain localised, and an outbreak that will go on to
seed a pandemic, may be small. Efforts are required to understand spillover events in their

earliest stages.

Statistical approaches for understanding outbreaks work on very different quantities of data.

The SARS-CoV-2 pandemic saw the implementation of a broad range of computational and
statistical approaches to track the nature and impact of the virus. Studies early in the pandemic
characterised the epidemiological properties of the virus[5,6], and produced estimates of the
epidemiological reproductive number Ry in different contexts[7]. Methods for ‘nowcasting’
combined multiple datasets to estimate local levels of viral prevalence[8,9]. A UK-wide project
generated and shared hundreds of thousands of SARS-CoV-2 viral sequences[10]. Genome

sequence data were used to study virus evolution and transmission on multiple scales[11-13].
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Soon after a spillover occurs, data limitations may present themselves. Where multiple
instances of infection from an emerging pathogen are observed, epidemiological models can
highlight possible viral adaptation [14]. Inferences can be made of the epidemiological
transmission parameter Ro[15], and of differences in Ry across settings[16]. Sequence data can
be used to assess the evolutionary origins and epidemiological characteristics of emergent

viruses[17,18].

At the very earliest stages of an outbreak, data limitations may be severe; the detection of a
spillover event may begin with a single case of infection. To explore what might be achieved in
this minimal case, we here investigate a case of human influenza A(H1N2)v virus infection,
observed the UK in November 2023. The detected case had no known contact with pigs, so
was here assumed not to be the first case in the outbreak[19]. After the one detection, no
further observations of infection were made. Considering the period immediately following the
detection, we use a novel method to estimate the probability of the outbreak having ceased, and
the potential number of undetected cases of infection. We discuss the potential for minimal
datasets to inform the public health response in the days following the detection of a viral

spillover event.

Results

As a precursor to our method, we estimated the probability of a single case of influenza
A(H1N2)v being detected as being between 4% and 10%. Publicly available data shows that in
week 48 of 2023 the UK rate of GP consultations for influenza-like illness (ILI) was 4.6 per
100,000 individuals, equal to a national total of approximately 3,100 consultations per week.

Following these consultations, 557 samples were tested as part of a sentinel swabbing scheme,
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78  suggesting that approximately 18% of GP consultations for ILI led to swabbing and further

79  testing[20]. Following the detection of a case, swabbing was increased in the Yorkshire and

80 Humber region, where the case was found[20]. While data specific to the UK population are

81 sparse, published estimates suggest that between 25 and 50% of individuals with ILI might seek

82  healthcare[21,22]. Our estimate range was derived from these values.

83

84  We evaluated the properties of the A(H1N2)v influenza outbreak using likelihood free rejection

85  sampling, first carrying out a form of historical nowcasting. Given a day following the detection

86  of the outbreak, and supposing the knowledge that no further cases had been detected up until

87 that day, we generated large numbers of simulated influenza outbreaks, identifying the

88  statistical properties of simulations that matched the observed data up until the considered day.

89 In this manner we estimated that, fourteen days after the first detection of A(H1N2)v influenza,

90 the probability that the outbreak had died out was between 66% and 88% (Figure 1A). The

91 range in this value reflects uncertainty in the probability of a case being detected, with higher

92  detection probabilities leading to greater probabilities of the outbreak having ended. Ata

93  detection rate of 4%, we inferred that the outbreak could be said to have ended with 95%

94  confidence by day 29 after the first detection; the same conclusion could be drawn by day 19

95 given a detection rate of 10%.

96

97  We further estimated the number of active cases of infection, conditional upon the outbreak

98 having not died out. In the considered case, the median number of active cases fourteen days

99  after the detection of the first case was estimated as between 55 and 91 (Figure 1B). Estimated
100 numbers of active cases decreased slowly with time, considering days successively further from
101  that of the detection (Supplementary Figure 1). Our model therefore suggested a dichotomy of
102  potential circumstances: The outbreak was likely to have died out, but could have involved

103 numbers of active cases if it was still live. We note that, soon after the detection of the first
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104  case, there exists the potential for the outbreak to involve very large numbers of cases. This
105 result is explained by the 18-day delay between symptom onset and detection for the first

106 detected case[23]. Given a high Ry, this delay would have been sufficient for the virus to have
107  spread substantially within the population. More rapid identification of outbreaks limits the

108 potential for spread prior to detection.

109

110 We made a retrospective estimate of the time of the first, undetected, case of infection;

111  estimates were made a nominal date 90 days after the first detection. Our model predicted that
112 this first infection occurred 22 days prior to the first detection, on 15 November, only a few days
113 before the first detected case became symptomatic (Figure 1B). The inferred likelihood function
114 s steeply skewed, with the mean of this distribution between 25 and 28 days prior to the first
115  detection, varying with the detection rate. However, the interval between the time of the first
116 infection and the time at which the first detected individual became symptomatic was likely

117  short, with the detected individual potentially being a direct contact of the index case.

118

119  We also made a retrospective estimate of Rq for this outbreak, obtaining a value of 0.9 (Figure
120  1D). This lies below the threshold necessary to sustain an outbreak, and is lower than

121  estimates for seasonal influenza viruses, for which R is in the region of 1.3[24]. The very

122 sparse data used in making our estimate led to a large degree of uncertainty in this estimate;
123 further data would sharpen the inferred distribution.

124

125  Exploring our data further, we examined the extent to which our retrospective estimates of Ro
126  and the time of first infection could have been made closer to the observation of the first case.
127  In the first few days after the detection of the case there was little power to rule out large values
128  of Ro (Supplementary Figure 2A), but large values were progressively excluded with time. By

129 contrast the inferred time of the first case of infection was relatively stable, with estimates
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130 calculated a few days after the observation being very close to our final estimate

131  (Supplementary Figure 2B).

132

133  Our results are dependent upon the prior distribution chosen for Rg. By default we used a

134  uniform prior between zero and 4, but the highest values in this range are beyond those

135  previously observed even for the 1918 pandemic virus[25]. Recalculating results with a uniform
136  prior between zero and 2 did not strongly affect our results (Supplementary Figure 3).

137

138 Discussion

139

140 Examining data describing a spillover event of a swine influenza virus into the human population
141  we used a method of rejection sampling to explore what can be learnt, both at the time of the
142  immediate response, and in retrospect, from the limited public data describing this event. Our
143  method provided time-dependent estimates of the probability that the outbreak had died out,
144  and for the number of undetected cases in the case that the outbreak was still live. It further
145  provided estimates for the date of the spillover event itself, and for the parameter Ro. Our model
146  achieves what it does because both the observation of a case of infection, and the subsequent
147  non-observation of cases, are informative for the model: The failure to observe a second case
148  of infection is an important piece of data.

149

150 Our work pushes at the boundary of the amount of data required to learn about a spillover

151  event, showing that even minimal data are sufficient to draw early and provisional conclusions
152  about the outbreak. Our approach may be of value in a public health context: Estimating the
153  certainty with which we can say whether an outbreak is likely to have died out could inform

154  decisions about the investigation of cases and the resources applied to this task.

155  Simultaneously, the provisional nature of our conclusions should not be underemphasised.
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156  Methods such as contact tracing would provide substantially more information about the

157  potential for the virus to have spread, while genome sequencing of any further cases would
158 facilitate phylogenetic and other genomic approaches to epidemiology.

159

160  Our approach is limited by its simplicity. For example, we assumed a homogeneous population,
161 in which each infected person is equally infectious to the others, and neglected the potential for
162  evolution to change the infectivity of the virus. We modelled data collection in a simple manner,
163  assuming for example a fixed time between symptom onset and test result. We note that the
164  epidemiological dynamics of infection, expressed as distributions of the time to symptom onset
165 and to infecting others, are of critical importance to our method, but were of necessity based
166  upon distributions inferred for other influenza strains: The A/H1N2 virus detected potentially
167  would not mirror seasonal influenza in this way. Many of the assumptions made by our method
168 could be elaborated upon, for example by allowing for heterogeneity in transmission[26]. The
169 limited data available in this case did not encourage the use of more complex models.

170

171  The variation in our results under different detection scenarios highlights the potential value of
172 improved systems for detecting cases of infection following a spillover event. In this case,

173  detection efforts were stepped up in the region of the detection of the first case. More thorough
174  and faster testing provides a greater certainty that a spillover has not led to a persistent

175 outbreak and reduces the potential for an outbreak to grow undetected.

176

177  While we have applied our model to a specific event, describing the spillover of influenza

178  A(H1N2)v into the human population in the UK, our approach has the potential for broader use.
179  Given reasonable estimates for epidemiological parameters, viruses other than influenza could
180 also be modelled. Events involving more than one detection of a positive case could also be

181  assessed, though as the number of cases of infection increases our approach becomes less
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182  computationally efficient. Once large amounts of data become available, alternative methods
183  for epidemiological inference are likely to perform better than our own. Our approach is of

184  potential value in the first stages of an outbreak when data are most limited.

185

186  Methods

187

188  We used likelihood free rejection sampling to evaluate the likely state of the outbreak underlying
189 the available data. This method generated a large number of simulated outbreaks, retaining
190 only those which were compatible with the data collected from the A(H1N2)v outbreak, counting
191 the number of cases detected on each day, and assuming that a given number of days, denoted
192 by t,, had passed since the day on which the first detected case was observed. For the

193 historical now-casting calculations simulations which exactly matched the data up to time t,

194  were accepted. The Ry parameters of the accepted simulations provided samples of the

195 posterior distribution of this statistic. The properties of these simulations for different values of t,
196  were used to estimate the properties of the outbreak. Where retrospective estimates of

197 parameters were made, these were calculated at the point t, = 90 days.

198

199  Simulation of outbreaks

200 Time was modelled discretely, in units of whole days. Each simulated outbreak started with a
201  primary case. The simulation then proceeded day by day. Infected individuals were assumed
202  to become symptomatic a random number of days ts after being infected. Every symptomatic
203 individual then infected a total of R others, with the time of each infection event occurring a

204  random number of days t; after symptom onset, and where R was Poisson distributed with

205 parameter Ro. The random numbers ts and ti were drawn from Weibull distributions with

206  parameters based upon published parameters describing influenza infection[27], but with
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207 samples rounded to the nearest integer. Specifically, where w is the cumulative distribution

208 function

X a
209 w(x,a,b) =1— e_(F)

210 t; had probability mass function

1 1
211 P(ty=1t) =w(ts+§,a,b)—w<max{t5—5,0},a,b),

212 And similarly for t. Parameters for the distribution of ts were given by a=7.4026 and b=1.7375,
213  while parameters for the distribution of t were given by a=1.0314 and b=1.0025.

214

215  For each infected individual in our simulation we randomly determined whether the case was
216  detected. Detection was modelled as occurring with fixed probability ps. Detection was

217  assumed to occur 18 days after the day of symptom onset, following data from the influenza
218 A(H1N2)v case[23]. The exception to this rule was the primary case in the outbreak. Following
219 information that the index case had no contact with animals, the primary case was assumed not
220 to have been detected[19].

221

222 Each simulated outbreak was continued until it either died out, with no more cases of infection
223 existing, or until the first day we were certain whether or not the numbers of cases detected in
224  the simulation matched the number of detected cases in the dataset up to the observation time.
225

226  We assumed a uniform prior over the epidemiological parameter R, within the window [0.1, 4.0].
227  Rather than randomly sample, we performed a grid search, conducting 10° simulations for each

228  of 40 equally spaced discrete values of Ro from 0.1 to 4.0.
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229  Once simulations were complete, we calculated the proportion of simulations for each Ry that
230  were accepted, P, (accepted|R,). Normalising this statistic gave the posterior probability of Ro
231 at a given observation time t,,

P, (accepted|Ro)m(Ry)
Yr, P, (accepted|Ro) m(Ro)’

232 P (Rolaccepted) =

233 where the prior T(R,) is uniform. Using the accepted simulations, we estimated properties of the
234  viral population, using the formula

#(simulations accepted at t, and Q)
235 P(Q|accepted at t,) =

)

#(simulations accepted at t)
236  for properties Q including the number of infected individuals being k at time t; days after the

237  detected case, the outbreak having died out at time t; days after the detected case, or the time
238  of the first infection having occurred a specific number of days before the detected case.

239

240 In the calculations above, we assumed that infection lasted for seven days following infection.
241  We note that alternative prior distributions for Ry could be used in our calculation; we show in
242  Supplementary Information the results of placing a lower upper bound on this statistic.

243

244  Data/Code availability

245

246  All data used for this analysis was obtained from publicly available sources. Our code is named
247  OINK (Outbreak Inference given Negligible Knowledge) and is available from

248  https://github.com/cjri/OINK/.
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343  Figure 1: Statistics describing the influenza A/H1N2 spillover event calculated using our

344  bootstrapping method. A. Time-dependent probability that the outbreak had died out. The
345  value pqg describes the probability of a case of A/HIN2 influenza being detected. B. Calculated
346  distribution describing the time at which the first case in the outbreak was infected. The

347  detection of the first case was on 23 November. C. Calculated distribution of the number of
348 infected individuals 14 days after the date of the first detection, conditional on the outbreak
349  having not died out. The vertical dashed lines show the median values of each distribution. D.
350 Estimate of the epidemiological parameter Ro for the influenza A/H1N2 virus involved in this
351  spillover event.
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