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Abstract

SARS-CoV-2 still presents a global threat to human health due to the continued
emergence of new strains and waning immunity amongst vaccinated populations.
Therefore, it is still relevant to investigate potential therapeutics, such as therapeutic
interfering particles (TIPs). Mathematical and computational modelling are valuable
tools to study viral infection dynamics for predictive analysis. Here, we expand on the
previous work by Grebennikov et al. (2021) on SARS-CoV-2 intra-cellular replication
dynamics to include defective interfering particles (DIPs) as potential therapeutic
agents. We formulate a deterministic model that describes the replication of wild-type
(WT) SARS-CoV-2 virus in the presence of DIPs. Sensitivity analysis of parameters to
several model outputs is employed to inform us on those parameters to be carefully
calibrated from experimental data. We then study the effects of co-infection on WT
replication and how DIP dose perturbs the release of WT viral particles. Furthermore,
we provide a stochastic formulation of the model that is compared to the deterministic
one. These models could be further developed into population-level models or used to
guide the development and dose of TIPs.
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Author summary

SARS-CoV-2 continues to evolve, with new strains or sub-strains being identified thanks
to efforts to monitor the virus. Consequently, new strains threaten human health as
current vaccinations may not adequately protect against future strains. It is therefore
important to understand the roles that additional therapeutics could play in protecting
against these future strains.

Therapeutic interfering particles (TIPs), otherwise referred to as defective interfering
particles (DIPs), could provide an additional treatment option against future strains.
Previous models have examined the role of DIPs at the within-host level during
co-infection with wild-type virus, but have paid little attention to intra-cellular
dynamics. Here we extend the previous intra-cellular replication model of SARS-CoV-2
by Grebennikov et al. (2021) to include co-infection of WT virus with DIPs. We show
that DIPs lead to a reduction in the WT virus in a dose-dependent manner, with higher
doses leading to up to 10-fold reduction in total WT virus released from a cell
depending on the multiplicity of infection (MOI). We find these results to be consistent
for both deterministic and stochastic formulations of the model. Our approaches could
be developed into a within-host model or population-level model, which could then be
used to guide therapeutic DIP doses.

Introduction 1

In December 2019, a new infectious disease was reported to the World Health 2

Organisation (WHO) that would later be identified as a novel coronavirus 3

(SARS-CoV-2) [1]. By 30 January 2020, the WHO declared SARS-CoV-2 a “public 4

health emergency of international concern” [2], as it rapidly spread to 113 countries. By 5

the 11th of March 2020, it had caused 118,319 infections and 4,292 deaths. 6

Consequently, the WHO declared SARS-CoV-2 a pandemic [3, 4], and as of the 29th of 7

July 2022, about 572 million infections and over 6 million deaths have been recorded 8

worldwide. During the early stages of the pandemic, treatment options were limited to 9

chloroquine and remdesivir [5, 6]. However, since then several effective vaccines have 10

been developed that provide protection and reduce transmission, with many countries 11

rolling out mass vaccination programs [7]. Although vaccines for SARS-CoV-2 now 12

exist, the emergence of new strains due to mutations has led to further concerns about 13

vaccine effectiveness [8, 9]. This fact, together with that of waning immunity and the 14

existence of individuals who are unable to be vaccinated or out-right refuse to do so, 15

highlight the need for additional therapeutics and prophylactics [10,11]. 16

One such potential therapy is viral interfering particles. During viral replication, 17

mutants lacking essential parts of the viral genome arise [12,13], which are unable to 18

replicate in the absence of wild-type (WT) virus. These are known as defective 19

interfering particles (DIPs). DIPs can be exploited to make therapeutic interfering 20

particles (TIPs), which inhibit the replication of WT virus by outcompeting WT gene 21

segments for resources required during viral replication and assembly [14,15]. 22

TIPs/DIPs have been investigated for several viruses, including HIV, Ebola, influenza, 23

and SARS-CoV-2 and have been found to cause a two-fold reduction in viral 24

titres [14–16]. However, caveats exist in their production; for instance, which sections of 25

the viral genome are to be removed to allow for replication at a faster rate than WT, 26

they are virus-specific, and little is known about how mutations change replication 27

dynamics [13,17]. 28

From a mathematical modelling perspective, a long-standing effort exists to describe 29

transmission dynamics at the population and within-host levels (see Ref. [18] and 30

references therein). At the within-host level DIPs, as therapeutics, have been studied in 31
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Refs. [19, 20]. However, little effort has been devoted to investigating the intra-cellular 32

replication kinetics of DIPs in the presence of WT virus. Grebennikov et al. [21] have 33

recently proposed a SARS-CoV-2 intra-cellular replication dynamics model. This model 34

allowed for the quantification of viral genomes and proteins during the replication cycle. 35

We wish to exploit this model to explore co-infection with DIPs and the effect of DIPs 36

on the replication dynamics of the WT virus. In particular, in this study, we formulate 37

a mathematical model of SARS-CoV-2 replication in a cell co-infected with DIPs. As in 38

Ref. [21], we will follow a deterministic approach to calibrate model parameters. We 39

shall use sensitivity analysis to study the impact parameters have on the release of both 40

WT and DIP viral particles. We also introduce a stochastic description of this model to 41

compare to the deterministic one. We shall also investigate how initial doses of each 42

virus affect viral particle production (WT and DIPs) to quantify DIP-related inhibition 43

of WT replication and the reliance of DIPs on the WT replication machinery. 44

Materials and methods 45

The kinetics of the corresponding biochemical reactions are described in the 46

deterministic mathematical model introduced in the mathematical model section of 47

this paper. The system of ordinary differential equations (ODEs) is formulated under 48

the assumption of mass action kinetics, Michaelis-Menten approximations, and on the 49

biological scheme presented in Fig 1. The model can, in principle, be defined as a 50

stochastic process. 51

Sensitivity analysis 52

The mathematical model included parameters which encode the biological mechanisms 53

under investigation. Since many parameters required calibration, it is important to 54

identify which have the greatest effect on model outputs. Global sensitivity analysis 55

allowed us to evaluate the results of simultaneous changes in parameter values [22]. For 56

implementing this approach, consider the vector of parameters θ = (θ1, θ2, . . . , θn) such 57

that the model output is described as Y = g(θ). We use the Sobol approach to 58

determine global sensitivities [23]. Each parameter θi can be considered a random 59

variable with an associated range. Since Y is a function of these variables, it is also a 60

random variable with variance V (Y ). We were interested in the conditional variance 61

V (Y |θi = θ∗i ). However, since the value of θ∗i is not known, we instead considered the 62

average conditional variance, E[V (Y |θi = θ∗i )], where the expectation is with respect to 63

θi, and the variance is taken over all remaining parameters θj , j ̸= i. The law of total 64

probability gives 65

V (Y ) = E[V (Y |θi)] + V (E[Y |θi]), (1)

from which the first order Sobol index for parameter θi is defined as 66

Si =
V (E[Y |θi])

V (Y )
. (2)

We also investigated the result of multiple fixed parameter values. If we let 67

V (E[Y |θ−θj ]) be the expected reduction in the variance by fixing all parameters except 68

θj , then the total effect of parameter θi can be defined as 69

STi =
E[V (Y |θ−θi)]

V (Y )
= 1− V (E[Y |θ−θi ])

V (Y )
, (3)

where a larger sensitivity index indicates greater importance of the associated parameter 70

to the given model output [22]. 71
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Fig 1. Biological scheme of the competitive replication of the infectious
SARS-CoV-2 and defective interfering viral particles. There are three types of
arrows shown on the scheme: (i) arrows without a T-end (which are not green) indicate
the synthesis processes, i.e., translation or transcription, (ii) arrows with T-shaped
beginning indicate that the variable at which the arrow points with the arrow-end is
increased while the variable at which the arrow points with a T-end is decreased (e.g.,
transitions of the entities from one state to another, or a decrease of non-structural
proteins during the transcription activation), (iii) green arrows indicate the transport of
the entities from one place to another (to or from double-membrane vesicles or to the
cell membrane in vesicles), which is not modelled explicitly. All entities are subject to
degradation, however, these processes are not shown to avoid cluttering the figure.
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Table 1. Dynamical variables of the mathematical model for the life cycle of SARS-CoV-2, with defective
interfering particles.

Variable Definition Value
[V wt

free] number of free infectious (i.e., wild-type) virions outside the cell membrane 10

[V wt
bound]

number of infectious virions bound to ACE2
and activated by TMPRSS2

1-10

[V wt
endosome] number of infectious virions in endosomes 1-10

[V dip
free]

number of free non-infectious (i.e., defective interfering particles)
virions outside the cell membrane

[V dip
bound]

number of non-infectious virions bound to ACE2
and activated by TMPRSS2

[V dip
endosome] number of non-infectious virions in endosomes

[gRNAwt
(+)] single strand positive sense genomic RNA 1-5

[gRNAdip
(+)] single strand positive sense DIP genomic RNA

[NSP ] population of non-structural proteins −
[gRNAwt

(−)] negative sense genomic and subgenomic RNAs of infectious virus 10

[gRNAwt] positive sense genomic and subgenomic RNAs of infectious virus 104

[gRNAdip
(−)] negative sense subgenomic RNAs of DIPs

[gRNAdip] positive sense subgenomic RNAs of DIPs

[SP ]
total number of structural proteins

S +M + E per virion
2× 103 ∈ (1, 125, 2, 230)

[N ] N proteins per virion 456 ; 1, 465 ∈ (730, 2, 200)
[N -gRNAwt] ribonucleocapsid molecules for infectious virions
[N -gRNAdip] ribonucleocapsid molecules for non-infectious virions
[V wt

assembled] assembled infectious virions in endosomes −

[V wt
released] released infectious viruses

10− 104 virions
in 7 to 24 hours

[V dip
assembled] assembled non-infectious virions in endosomes

[V dip
released] released non-infectious virions

Model development and calibration 72

In formulating the new mathematical model, we introduced several additional 73

parameters that relate to the kinetics of DIPs and the loss of non-structural proteins 74

due to DIPs using trans-elements from WT virus for their replication. These variables 75

are summarised in Table 1. Grebennikov et al. provided parameter estimates for the 76

WT virus [21]. These values are summarised in Table 2. 77

The remaining parameters were estimated using approximate Bayesian computation 78

(ABC) [51]. The ABC algorithm allows a user to define a set of prior beliefs about 79

parameter distributions, π(θ), and combine this with model simulations and data to 80

arrive at a posterior distribution π(θ|D). Given a sample parameter set, θ∗ ∼ π(θ), a 81

user can simulate data D∗ ∼ π(D|θ∗) and compare them to the experimental data, D. 82

If the simulated data are within a given threshold distance, ε (with distance measure 83

d(·, ·)), from the experimental data, D, then the sample parameter set (θ∗,D∗) is 84

accepted. Otherwise, the parameter set is rejected and this process is continued until N 85

parameter sets are accepted [51]. We made use of an Euclidean distance measure, 86

defined as 87

d(M(θ∗),D) =

√∑
t∈T

(M(θ∗, t)−D(t))2,

where T is the set of time points within the experimental data set, D, and M is the 88
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Table 2. Estimates of previously calibrated model parameter values.

Parameter Description, Units Value Range [References]
kbind rate of virion binding to ACE2 receptor, h−1 12 (3.6, 12) [24,25]
dwt
V clearance rate of WT extracellular virions, h−1 0.12 (0.06, 3.5) [26–28]

kdiss dissociation rate constant of bound virions, h−1 0.61 (0.32, 1.08) [24,25]
kfuse fusion rate constant, h−1 0.5 (0.33, 1) [29]
kuncoat uncoating rate constant, h−1 0.5 (0.33, 1) [29]
dwt
endosome degradation rate of WT virions in endosomes, h−1 0.06 (0.0001, 0.12) [26,30] ,

ktransl translation rate, nt/mRNA h−1 45,360 (40,000, 50,000) [31,32]

1/fORF1 length of ORF1 of the RNA genome coding NSP s, nt 21,000 fixed [33]
dNSP degradation rate of proteins in the cell, h−1 0.069 (0.023, 0.69) [32,34],

tuned to (0.023, 0.1)
kwt
tr(−)

transcription rate of WT negative sense 3 (1, 100) [32],

genomic and subgenomic RNAs, copies/mRNA h−1 tuned to (1, 20)
KNSP threshold number of NSP s 100 (10, 150)

enhancing vRNA transcription, molecules
dwt
gRNA degradation rate of WT positive sense RNAs in cell, h−1 0.2 (0.069, 0.69) [32,35],

tuned to (0.069, 0.4)
dwt
gRNA(−)

degradation rate of WT negative sense RNAs 0.1 (0.05, 0.2)

in double-membrane vesicles, h−1

kwt
tr(+)

replication rate of positive sense WT RNAs, copies/mRNA/h 1000 (620, 1380) [36]

kwt
complex rate of the WT nucleocapsid formation [N -gRNA], h−1 0.4 (0.02, 0.4) [37–41]

KN threshold number of N proteins at which 5× 106 (3.5, 6.5)× 106 [42–44]
nucleocapsid formation slows down, molecules

1/fN length of RNA genome coding N protein, nt 1200 fixed [45]
1/fSP length of genome coding structural proteins S, E, M , nt 104 fixed [45]
dN degradation rate of N protein, h−1 0.023 (0.023, 0.069) [34]
dSP mean degradation rate of the pool of E, S, M proteins, h−1 0.044 (0.023, 0.36) [34]
nwt
SP total number of structural proteins S, M , E per WT virion, molecules 2× 103 (1125, 2230) [37,46,47]

nwt
N number of N protein per WT virion, molecules 456 fixed [37]

Kwt
V rel threshold number of WT virions at which 103 (10, 104) [42,48]

the virion assembly process slows down, virions
kwt
assemb rate of WT virion assembling, h−1 1 (0.01, 10) [30,49]

dwt
N−gRNA degradation rate of WT ribonucleoprotein, h−1 0.2 (0.069, 0.69) [32,35]

kwt
release rate of WT virion release via exocytosis, h−1 8 (8, 7,200) [49,50]

dwt
assembled assembled WT virion degradation rate, h−1 0.06 (10−4, 0.12) [26]

The above table contains estimates of the calibrated model parameters, for the model presented in Eqs. (4)-(27), for the
variables defined in Table 1, as reported in Ref. [21]
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Table 3. Fold log reductions for 24 and 48 hours post-infection as reported in Ref. [15]
for TIP2 to 2 decimal places (2.d.p.).

Time (hours) Fold log reduction (2 d.p.)
24 1.20
48 1.14

mathematical model under consideration. 89

Data sets for defective interfering particles are limited, with little investigation of the 90

intra-cellular replication kinetics of WT virus in the presence of DIPs. Chaturvedi et 91

al. [15] investigated two SARS-CoV-2 DIPs as TIPs. Both DIPs had shorter genomes, 92

around 6%-10% than the WT virus. Chaturvedi et al. [15] performed a virus 93

yield-reduction assay by transfecting Vero cells with TIP or control RNAs (one 94

µg/million cells) 24 hours before infection with SARS-CoV-2 at an MOI=0.05, and 95

harvesting culture supernatants for titration at various time-points (24, 48, or 72 hours 96

post-infection). They discovered that these particles lead to a 1.5− 1.2 log fold 97

reduction in virus produced compared to control samples. We compared the fold 98

reduction generated by therapeutic interfering particle two (TIP2) [15], at 24 and 48 99

hours, to the fold reduction from our mathematical model of [V wt
released] against the 100

original model proposed by Grebennikov et al. [21]. These fold reductions are 101

summarised in Table 3. For the ABC rejection method, given that the choice of a 102

suitable ε is difficult, we sampled 106 parameter sets and kept the top 0.1% that 103

minimise the distance measure d(·, ·). We assumed uniform prior distributions for the 104

parameters within the search ranges summarised in Table 4. 105

Stochastic simulation algorithm 106

To perform stochastic simulations of the model formulated as a Markov chain, the most
popular exact approach is Gillespie’s direct method [52]. The Markov chain specifies the
propensity am for the m-th jump process (i.e., the respective elementary reaction rate),
which changes the variables by a discrete amount when that process takes place. The
propensity am defines the probability pm = amdt that the m-th process is triggered in
the infinitesimal time interval [t, t+ dt). At each step of the simulation, two random
numbers r1, r2 ∼ U(0, 1) are generated to sample the time of the next jump process, τ ,
and the index rm of the process to perform:

τ =
1

a0
log(1/r1), rm = argmin

µ

(
µ∑

m=1

am ≥ r2a0

)
,

where a0 =
∑M

m=1 am is the total sum of propensities. 107

In this work, we used the rejection stochastic simulation algorithm (RSSA) [53]. 108

This method estimates the upper and lower bounds on the propensities am, am, instead 109

of calculating the exact values, am, and uses the third random number, r3 ∼ U(0, 1), for 110

a rejection test to check if the exact value is needed to be computed (see details in 111

Ref. [53]). The propensity values are updated only when necessary, therefore, the 112

algorithm is practical when the propensity computation is time-consuming, e.g., for 113

non-linear process rates parameterised with Michaelis-Menten functions. Additionally, 114

two dependency graph structures are defined to reduce the number of propensity 115

updates and accelerate computations: the first one specifies for each process which 116

variables are affected when the corresponding jumps occur, and the second one specifies 117

for each variable the process indices with propensities dependent on the value of the 118

variable. Note that certain search strategies for the candidate process can also be 119

implemented (e.g., RSSA with composition-rejection search (RSSA-CR) groups the 120
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Table 4. Median estimates of unknown model parameter values

Parameter Description, Units Value Range [References]

ddipV clearance rate of DIP extracellular virions, h−1 0.481 10[−1.2,0.55] [26–28]

ddipendosome degradation rate of DIP virions in endosomes, h−1 3.29× 10−3 10[−4,−0.93] [26, 30] ,

kdiptr(−)
transcription rate of DIP negative sense 34 10[0,3] [32],

genomic and subgenomic RNAs, copies/mRNA h−1

ddipgRNA degradation rate of DIP positive sense RNAs in cell, h−1 0.218 10[−1.16,−0.16] [32, 35],

ddipgRNA(−)
degradation rate of DIP negative sense RNAs 0.218 10[−1.30,0]

in double-membrane vesicles, h−1

kdiptr(+)
replication rate of positive sense DIP RNAs, copies/mRNA/h 2, 540 10[2.79,4.14] [36]

kdipcomplex rate of the DIP nucleocapsid formation [N -gRNA], h−1 0.14 10[−1.69,0] [37–41]

ndip
SP total number of structural proteins 112 10[1,3.1] [37, 46,47]

S, M, E per DIP virion, molecules

ndip
N number of N protein per DIP virion, molecules 53 10[1,2.35]

Kdip
V rel threshold number of DIP virions at which 380 10[1,4.31] [42, 48]

the virion assembly process slows down, virions

kdipassemb rate of DIP virion assembling, h−1 0.38 10[−2,1.31] [30, 49]

ddipN−gRNA degradation rate of DIP ribonucleoprotein, h−1 0.268 10[−1.16,0] [32, 35]

kdiprelease rate of DIP virion release via exocytosis, h−1 105 10[0.9,3.15] [49, 50]

ddipassembled assembled DIP virion degradation rate, h−1 4.89× 10−3 10[−4,−0.62] [26]
kwt
trans(−)

rate of loss of NSP s by trans elements 5.39× 10−5 10[−5,−3.7]

from negative sense WT RNA, h−1

kwt
trans(+)

rate of loss of NSP s by trans elements 6.17× 10−3 10[−2.22,−1.86]

from positive sense WT RNA, h−1

kdiptrans(−)
rate of loss of NSP s by trans elements 4.72× 10−5 10[−5.69,−3]

from negative sense WT RNA, h−1

kdiptrans(+)
rate of loss of NSP s by trans elements 8.61× 10−3 10[−2.9,−1.17]

from positive sense WT RNA, h−1

Median estimates of unknown model parameters values for the model presented in Eqs. (4)-(27), with variables defined in
Table 1, as well as relevant search ranges.
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jump processes by their propensity bounds). Alternatively, one can use approximate 121

methods to significantly speed up computations, such as the tau-leaping method [52], or 122

the other hybrid methods that make use of SDE or ODE approximations [53,54]. In 123

this work, however, we used the exact RSSA method, as the performance of the 124

parallelised code to compute the ensemble of stochastic trajectories was acceptable. 125

Software 126

The following packages in Python (https://www.python.org, version 3.8.8 released 127

19th February 2021) were used to simulate and analyse the model: Scipy 128

(https://scipy.org/ version 1.8.1, released tbe 20th May 2022) to numerically solve 129

the system of ordinary differential equations, SALib (https://salib.readthedocs.io 130

version 1.4.5) for identification of Sobol sensitivity indices, Matplotlib 131

(https://matplotlib.org/, version 3.5.1 released the 11th December 2021) for 132

visualisations, and Joblib (https://joblib.readthedocs.io, version 1.0.1 released 133

the 9th February 2021) for parallelisation of the ABC rejection algorithm, which allows 134

to infer posterior distributions of model parameters. To perform stochastic simulations, 135

we used the package DifferentialEquations.jl (https://diffeq.sciml.ai/, version 136

7.4.0) in julia language (https://julialang.org/, version 1.8.1). Codes used to 137

simulate and analyse these models are available in the GitHub 138

repository https://github.com/MacauleyLockeml/SARS-CoV-2-DIP-Model. 139

Mathematical model of WT and DIP infection 140

The variables of the mathematical model characterising the life cycle of SARS-CoV-2 141

according to Figure 1 are listed in Table 1. 142

Cell entry and RNA release 143

The binding of infectious WT virion to the cellular trans-membrane protein ACE2 144

allows entry and release of the viral RNA into the host cell. We describe this process by 145

equations specifying the rates of change of free-, receptor-bound, and fused virions, as 146

well as the viral RNA genome in the cytoplasm: 147

d[V wt
free]

dt
= −kbind[V

wt
free]− dwt

V [V wt
free] + kdiss[V

wt
bound], (4)

d[V wt
bound]

dt
= kbind[V

wt
free]− (kfuse + kdiss + dwt

V )[V wt
bound], (5)

d[V wt
endosome]

dt
= kfuse[V

wt
bound]− (kuncoat + dwt

endosome)[V
wt
endosome], (6)

d[gRNAwt
(+)]

dt
= kuncoat[V

wt
endosome]− dwt

gRNA[gRNAwt
(+)]. (7)

Here [V wt
free] is the number of extra-cellular free infectious virions, [V wt

bound], the number 148

of virions bound to ACE2 and activated by TMPRSS2, [V wt
endosome], the number of 149

virions in endosomes, and [gRNAwt
(+)], the number of ss-positive sense genomic RNA. A 150

similar set of equations is used to describe the cell entry and RNA release of 151
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non-infectious viral defective interfering particles: 152

d[V dip
free]

dt
= −kbind[V

dip
free]− ddipV [V dip

free] + kdiss[V
dip
bound], (8)

d[V dip
bound]

dt
= kbind[V

dip
free]− (kfuse + kdiss + ddipV )[V dip

bound], (9)

d[V dip
endosome]

dt
= kfuse[V

dip
bound]− (kuncoat + ddipendosome)[V

dip
endosome], (10)

d[gRNAdip
(+)]

dt
= kuncoat[V

dip
endosome]− ddipgRNA[gRNAdip

(+)]. (11)

Here [V dip
free] is the number of extra-cellular free DIPs, [V dip

bound], the number of DIPs 153

bound to ACE2 and activated by TMPRSS2, [V dip
endosome], the number of DIPs in 154

endosomes, and [gRNAdip
(+)], the number of ss-positive sense genomic RNA. DIPs for 155

SARS-CoV-2 would require a functional spike (S) protein to successfully bind to ACE2 156

receptors and mediate cell entry. Consequently, we assume that the rates for kbind, 157

kdiss, kfuse, and kuncoat are the same for both WT virus and DIPs. However, 158

degradation rates related to cell entry will differ between WT and DIPs, since the 159

shorter genome of DIPs might imply a different degradation rate. 160

RNA transcription and DIP parasitism 161

The released WT viral genomic RNA undergoes translation into non-structural viral 162

polyproteins, [NSP ], which operate to form the viral replication and transcription 163

complex, i.e., the RNA-dependent RNA polymerase (RdRp). The main function of the 164

RdRp replication complex is to generate a negative sense full-length genomic and 165

subgenomic RNAs. As DIPs lack the ability of self-replication, the conditional 166

transcription of DIP RNAs results in competition with WT SARS-CoV-2 for replication 167

proteins [55]. The use of WT virus trans elements by DIPs reduces [NSP ] availability 168

for the transcription of WT viral RNA. The respective sets of equations have different 169

structures, as detailed below. The abundance of non-structural proteins, [NSP ], the 170

negative sense genomic and subgenomic RNAs, [gRNAwt
(−)], and positive sense genomic 171

and subgenomic RNAs, [gRNAwt], associated with the replication of the infectious 172

virions are described by the following equations: 173

d[NSP ]

dt
= ktranslfORF1[gRNAwt

(+)]− dNSP [NSP ]

− (kwt
trans(−)

[gRNAwt
(+)] + kwt

trans(+)
[gRNAwt

(−)]+ (12)

kdiptrans(−)
[gRNAdip

(+)] + kdiptrans(+)
[gRNAdip

(−)])[NSP ],

d[gRNAwt
(−)]

dt
= kwt

tr(−)
[gRNAwt

(+)]θRdRp − dwt
gRNA(−)

[gRNAwt
(−)], (13)

d[gRNAwt]

dt
= kwt

tr(+)
[gRNAwt

(−)]θRdRp − (kwt
complexθcomplex + dwt

gRNA)[gRNAwt], (14)

where 174

θRdRp =
[NSP ]

[NSP ] +KNSP
, θcomplex =

[N ]

[N ] +KN
. (15)

Eq. (12) reflects the fact that non-structural proteins are translated only from the viral 175

genomic RNA of infectious WT virions. Transcription of negative sense viral genomic 176

and subgenomic RNAs described by Eq. (13) and Eq. (14) is regulated by the positive 177
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sense viral genomic RNA. The set of equations for transcription of negative sense and 178

positive sense DIP subgenomic RNAs, i.e., [gRNAdip
(−)], [gRNAdip] are as follows: 179

d[gRNAdip
(−)]

dt
= kdiptr(−)

[gRNAdip
(+)]θRdRp − ddipgRNA(−)

[gRNAdip
(−)], (16)

d[gRNAdip]

dt
= kdiptr(+)

[gRNAdip
(−)]θRdRp − (kdipcomplexθcomplex + ddipgRNA)[gRNAdip]. (17)

Translation and competition for nucleocapsid protein and other 180

structural proteins 181

DIPs compete with WT virions for packaging proteins, e.g., nucleocapsid N proteins 182

([N ]) [55]. Structural S, envelope E, and membrane M proteins are translated from 183

positive sense subgenomic RNAs in the endoplasmic reticulum (ER) and are considered 184

in the mathematical model as a single population, [SP ]. Nucleocapsid proteins, on the 185

other hand, are translated in cytosolic ribosomes from positive sense RNAs. Both SP 186

and N proteins are required for the formation of virus like-particles, WT or DIPs. It 187

can be assumed that ndip
SP ≤ nwt

SP and ndip
N ≤ nwt

N , since the shorter DIP genome will 188

require fewer N proteins for the formation of the ribonucleocapsid and construction of a 189

viral particle. Translation of N and SP proteins are described by the following two 190

equations: 191

d[N ]

dt
= ktranslfN [gRNAwt]− kwt

complexn
wt
N θcomplex[gRNAwt]

− kdipcomplexn
dip
N θcomplex[gRNAdip]− dN [N ], (18)

d[SP ]

dt
= ktranslfSP [gRNAwt]− kwt

assembn
wt
SP θ

wt
assemb[N -gRNAwt]

− kdipassembn
dip
SP θ

dip
assemb[N -gRNAdip]− dSP [SP ], (19)

where 192

θwt
assemb =

[SP ]

[SP ] +Kwt
Vrel

nwt
SP

, (20)

and 193

θdipassemb =
[SP ]

[SP ] +Kdip
Vrel

ndip
SP

, (21)

Assembly and release of WT SARS-CoV-2 and DIPs 194

New virions are assembled at the endoplasmic reticulum-Golgi compartment, where 195

N-RNA complexes become encapsulated. These assembled virions can then exit an 196

infected cell by exocytosis via the lysosomal pathway, budding, or cell death [56,57]. 197

There is no competition associated with the release of new infectious and DIP virions, 198

but the viral assembly rates, θwt
assemb and θdipassemb, depend on the availability of 199

structural proteins, since DIPs will likely require fewer of them than WT virions. The 200

rates of change of the ribonucleocapsid, assembled and released infectious SARS-CoV-2 201
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and DIPs are described below: 202

d[N -gRNAwt]

dt
= kwt

complexθcomplex[gRNAwt]

− (kwt
assembθ

wt
assemb + dN-gRNAwt)[N -gRNAwt], (22)

d[V wt
assembled]

dt
= kwt

assembθ
wt
assemb[N -gRNAwt]

− (kwt
release + dwt

assembled)[V
wt
assembled], (23)

d[V wt
released]

dt
= kwt

release[V
wt
assembled]− dwt

V [V wt
released], (24)

and 203

d[N -gRNAdip]

dt
= kdipcomplexθcomplex[gRNAdip]

− (kdipassembθ
dip
assemb + dN-gRNAdip)[N -gRNAdip], (25)

d[V dip
assembled]

dt
= kdipassembθ

dip
assemb[N -gRNAdip]

− (kdiprelease + ddipassembled)[V
dip
assembled], (26)

d[V dip
released]

dt
= kdiprelease[V

dip
assembled]− ddipV [V dip

released]. (27)

In this study, we wish to explore model behaviour for different initial conditions, 204

[V wt
free](0) and [V dip

free](0), and thus, understand the replication dynamics of WT viral 205

particles in the presence of DIPs, and how the initial dose of WT or DIP particles 206

regulates infection and production kinetics of WT virions. We are also interested in 207

investigating the sensitivities to model parameters of different outputs. 208

Stochastic Markov chain model 209

The deterministic model defined by Eqs. (4)-(27) can be generalised to a stochastic one 210

formulated as a discrete-state continuous-time Markov chain (DSCT MC). The 211

stochastic model allows one to account for integer-valued variables, to obtain probability 212

distributions rather than mean field estimates for the variables of interest, and to 213

compute the probabilities of productive cell infection at low MOI [58]. It is convenient 214

to estimate model parameters for the system of ODEs and then, with a calibrated 215

deterministic system, and a defined Markov chain model, perform stochastic simulations 216

making use of Monte Carlo methods. We follow our previous effort on the stochastic 217

modelling of SARS-CoV-2 [58] and HIV-1 [54] life cycles to formulate and simulate the 218

Markov chain. The Markov chain corresponding to Eqs. (4)-(27) is presented in Table 5. 219

It includes the state transition events and the propensities, am, for the m-th jump 220

process. The propensity am defines the probability pm = amdt that the m-th process 221

takes place in the infinitesimal time interval [t, t+ dt). This definition yields exponential 222

distributions for the time between jumps and various Monte Carlo methods can be used 223

to simulate the stochastic trajectories from these distributions [52,53]. We note that the 224

processes of ribonucleocapsid formation (m = 33, 34) and virion assembly (m = 37, 38) 225

are formulated as single events, yet involve the simultaneous change of three different 226

variables. In these processes, protein copy numbers are decreased by the corresponding 227

number of protein molecules, np, needed to form a complex or assemble a pre-virion 228

particle (i.e., by nwt
N , ndip

N , nwt
SP , or n

dip
SP , respectively). Alternatively, one can formulate 229

the Markov chain (MC) with three separate processes for each assembly event, in which 230

the protein molecules are decreased by only one molecule with the propensity multiplied 231
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by np (see Ref. [58] for an example of the extended MC formulation). We have verified 232

that the extended and reduced MCs produce similar statistics. This reduction can be 233

viewed as a weighted sampling strategy used in probability-weighted dynamic Monte 234

Carlo method (PW-DMC) to accelerate computations [53]. 235

Results 236

Sensitivity analysis 237

We now evaluate how model outputs change with parameter values. To that end a 238

Sobol global sensitivity analysis was performed on four different model outputs. We 239

first considered the variability of WT genomic RNA, [gRNAwt], and DIP genomic 240

RNA, [gRNAdip], as a result of modifying parameter values within a set range 241

summarised in Table 2 and Table 4. Secondly, we investigated how parameter variability 242

affects the release kinetics of both WT [V wt
released] and DIP [V dip

released] particles 48 hours 243

post-infection. Understanding which parameters cause the most variability in our model 244

will allow us to calibrate it with careful consideration to minimise output perturbations. 245

Figure 2 illustrates the first and total order sensitivities for WT genomic RNA, 246

[gRNAwt], and DIP genomic RNA, [gRNAdip], as outputs of the proposed model. For 247

[gRNAdip], the parameter kdiptr(−) was identified as generating the largest variation. 248

kdiptr(−) is associated with the transcription of negative sense RNAs for DIPs, and thus, is 249

essential in the formation of new positive sense genomic and subgenomic RNAs. The 250

rate kdiptr(+) was also identified as a high sensitivity parameter, since it is associated with 251

the transcription of positive sense RNAs. Consequently, kwt
tr(−) was the second most 252

important parameter in minimising variation in model output for [gRNAwt], following 253

the same reasoning as for DIP positive sense genomic RNA. 254

A parameter that was of great importance, and not only caused large variation in 255

model outputs of [gRNA] for WT or DIPs, but also [Vreleased], was the threshold 256

parameter of non-structural proteins, KNSP . KNSP causes the most variation for 257

[V dip
released] and [gRNAwt] compared to any other parameter, and for [V wt

released] and 258

[gRNAdip] it is the second most important parameter. KNSP is associated with the 259

transcription of both negative and positive sense genomic RNAs, and changes in the 260

value of this parameter will modify the number of WT virions and DIPs released. kwt
tr(−) 261

was identified as an important parameter to minimise variation in the release of both 262

WT [V wt
released] and DIPs [V dip

released]. Consequently, transcription of negative sense WT 263

genomic RNAs is an essential first step in producing positive stranded gRNA, which is 264

then translated to form structural proteins S, M , and E ([SP ]), as well as nucleocapsid 265

proteins ([N ]) which are required to form new viral particles. Parameters associated 266

with WT virion or DIP assembly are also important to monitor to reduce variation in 267

model outputs. Several of the parameters identified by the Sobol sensitivity analysis 268

have been previously estimated in Ref. [21] and are summarised in Table 2. Other 269

parameters required estimation and these are listed in Table 4. 270

Parameter calibration 271

In our extension of the model proposed by Grebennikov et al. in Ref. [21], we 272

introduced several parameters which have not been previously quantified. To estimate 273

their values, we performed Bayesian parameter calibration. Since experimental data sets 274

on co-infection with DIPs is limited, we aimed to achieve the fold reduction 275

experimentally quantified by Chaturvedi et al. in Ref. [15]. We made use of an ABC 276

rejection algorithm with 106 sample sets. As previously mentioned, since a choice of ε is 277
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Table 5. The Markov chain models: individual transitions and their propensities.

m Transition Propensity, am

Entry and RNA release (WT):

1 [V wt
free] → [V wt

free]− 1, [V wt
bound] → [V wt

bound] + 1 kbind[V
wt
free]

2 [V wt
free] → [V wt

free]− 1 dwt
V [V wt

free]

3 [V wt
free] → [V wt

free] + 1, [V wt
bound] → [V wt

bound]− 1 kdiss[V
wt
bound]

4 [V wt
bound] → [V wt

bound]− 1, [V wt
endosome] → [V wt

endosome] + 1 kfuse[V
wt
bound]

5 [V wt
bound] → [V wt

bound]− 1 dwt
V [V wt

bound]

6 [V wt
endosome] → [V wt

endosome]− 1, [gRNAwt
(+)] → [gRNAwt

(+)] + 1 kuncoat[V
wt
endosome]

7 [V wt
endosome] → [V wt

endosome]− 1 dwt
endosome[V

wt
endosome]

8 [gRNAwt
(+)] → [gRNAwt

(+)]− 1 dwt
gRNA[gRNAwt

(+)]

Entry and RNA release (DIPs):

9 [V dip
free] → [V dip

free]− 1, [V dip
bound] → [V dip

bound] + 1 kbind[V
dip
free]

10 [V dip
free] → [V dip

free]− 1 ddipV [V dip
free]

11 [V dip
free] → [V dip

free] + 1, [V dip
bound] → [V dip

bound]− 1 kdiss[V
dip
bound]

12 [V dip
bound] → [V dip

bound]− 1, [V dip
endosome] → [V dip

endosome] + 1 kfuse[V
dip
bound]

13 [V dip
bound] → [V dip

bound]− 1 ddipV [V dip
bound]

14 [V dip
endosome] → [V dip

endosome]− 1, [gRNAdip
(+)] → [gRNAdip

(+)] + 1 kuncoat[V
dip
endosome]

15 [V dip
endosome] → [V dip

endosome]− 1 ddipendosome[V
dip
endosome]

16 [gRNAdip
(+)] → [gRNAdip

(+)]− 1 ddipgRNA[gRNAdip
(+)]

ORF1 translation and competitive viral RNA replication:

17 [NSP ] → [NSP ] + 1 ktranslfORF1[gRNAwt
(+)]

18 [NSP ] → [NSP ]− 1 dNSP [NSP ]

19 [NSP ] → [NSP ]− 1 kwt
trans(−)

[gRNAwt
(+)][NSP ]

20 [NSP ] → [NSP ]− 1 kwt
trans(+)

[gRNAwt
(−)][NSP ]

21 [NSP ] → [NSP ]− 1 kdip
trans(−)

[gRNAdip
(+)][NSP ]

22 [NSP ] → [NSP ]− 1 kdip
trans(+)

[gRNAdip
(−)][NSP ]

23 [gRNAwt
(−)] → [gRNAwt

(−)] + 1 kwt
tr(−)

θRdRp[gRNAwt
(+)]

24 [gRNAwt
(−)] → [gRNAwt

(−)]− 1 dwt
gRNA(−)

[gRNAwt
(−)]

25 [gRNAwt] → [gRNAwt] + 1 kwt
tr(+)

θRdRp[gRNAwt
(−)]

26 [gRNAwt] → [gRNAwt]− 1 dwt
gRNA[gRNAwt]

27 [gRNAdip
(−)] → [gRNAdip

(−)] + 1 kdip
tr(−)

θRdRp[gRNAdip
(+)]

28 [gRNAdip
(−)] → [gRNAdip

(−)]− 1 ddipgRNA(−)
[gRNAdip

(−)]

29 [gRNAdip] → [gRNAdip] + 1 kdip
tr(+)

θRdRp[gRNAdip
(−)]

30 [gRNAdip] → [gRNAdip]− 1 ddipgRNA[gRNAdip]

Translation and ribonucleocapsid formation:

31 [N ] → [N ] + 1 ktranslfN [gRNAwt]

32 [N ] → [N ]− 1 dN [N ]

33
[gRNAwt] → [gRNAwt]− 1, [N ] → [N ]− nwt

N ,
[N -gRNAwt] → [N -gRNAwt] + 1

kwt
complexθcomplex[gRNAwt]

34
[gRNAdip] → [gRNAdip]− 1, [N ] → [N ]− ndip

N ,

[N -gRNAdip] → [N -gRNAdip] + 1
kdip
complexθcomplex[gRNAdip]

35 [SP ] → [SP ] + 1 ktranslfSP [gRNAwt]

36 [SP ] → [SP ]− 1 dSP [SP ]

Assembly and release:

37
[N -gRNAwt] → [N -gRNAwt]− 1, [SP ] → [SP ]− nwt

SP ,
[V wt

assembled] → [V wt
assembled] + 1

kwt
assembθ

wt
assemb[N -gRNAwt]

38
[N -gRNAdip] → [N -gRNAdip]− 1, [SP ] → [SP ]− ndip

SP ,

[V dip
assembled] → [V dip

assembled] + 1
kdip
assembθ

dip
assemb[N -gRNAdip]

39 [N -gRNAwt] → [N -gRNAwt]− 1 dwt
N-gRNA[N -gRNAwt]

40 [N -gRNAdip] → [N -gRNAdip]− 1 ddipN-gRNA[N -gRNAdip]

41 [V wt
assembled] → [V wt

assembled]− 1, [V wt
released] → [V wt

released]− 1 kwt
release[V

wt
assembled]

42 [V wt
assembled] → [V wt

assembled]− 1 dwt
assembled[V

wt
assembled]

43 [V wt
released] → [V wt

released]− 1 dwt
V [V wt

released]

44 [V dip
assembled] → [V dip

assembled]− 1, [V dip
released] → [V dip

released]− 1 kdip
release[V

dip
assembled]

45 [V dip
assembled] → [V dip

assembled]− 1 ddipassembled[V
dip
assembled]

46 [V dip
released] → [V dip

released]− 1 ddipV [V dip
released]
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Fig 2. Sensitivity analysis for positive sense genomic RNA. First and total
order sensitivities from 104 samples with 95% confidence interval (black line). (Left:)
sensitivities for the variable [gRNAdip](48). (Right:) sensitivities for the variable
[gRNAwt](48). Initial conditions used for sensitivity analysis were [V wt

free](0) = 10 and

[V dip
free](0) = 10.
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Fig 3. Sensitivity analysis for released particles. First and total order sensitivities
from 104 samples with 95% confidence interval (black line). (Left:) sensitivities for the

variable [V dip
released](48). (Right:) sensitivities for the variable [V wt

released](48). Initial

conditions of [V wt
free](0) = 10 and [V dip

free](0) = 10 were used for sensitivity analysis.
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Fig 4. Time evolution of viral particle release for the parameter values
estimated with the ABC method. Viral particle release kinetics predicted by the
model with initial conditions [V wt

free](0) = 10 and [V dip
free](0) = 10 48 hours post-infection

after model calibration using ABC rejection and data from Chaturvedi et al. [15].
Median parameter values summarised in Table 4 were used for previously unknown
parameter values. (Yellow line:) shows the reference solution to a model where DIPs
are not considered in the replication dynamics. (Red line:) illustrates the production

of WT virions [V wt
released] with DIPs (blue line) [V dip

released].

hard to determine, we instead took the 0.1% of parameter sets which minimise the 278

Euclidean distance. We sampled the exponent of the search ranges shown in Table 4. 279

As a result, our sample size provided a large coverage of parameter space. We compared 280

the fold log reduction between the reference solution of a model without DIPs and the 281

one with DIPS to the data in Table 3, and Figure 4 illustrates the model output where 282

we used the median values from the accepted 0.1% sample sets. From these median 283

values we obtained a fold change of 1.08 (two d.p.) at 24 hours post-infection and 1.14 284

(two d.p.) at 48 hours post-infection, compared to the reference solution [21]. Posterior 285

histograms in Figure S1 showed that with the data set and the mathematical model, 286

Bayesian inference has led to poor learning for all but one of the newly introduced 287

parameters. Posterior distributions are still extremely wide, with kwt
trans(+) being the 288

only parameter with a narrow posterior distribution. This was due to lack of 289

longitudinal data to compare modelled DIP replication dynamics with. 290

Figure 5 illustrates the time evolution for each variable in Table 1 given the median 291

values found via ABC rejection. From the upper panels of Figure 5 we examined that 292

the entry kinetics of WT virus into the cell are similar to those of the reference solution. 293

DIPs, however, enter the cell at a faster rate than WT virions. It is important to 294

remember that we assumed there are sufficient ACE2 receptors mediating viral entry; 295

thus, there is no competition between WT and DIP for receptor binding. The number 296

of non-structural proteins is greatly reduced (Figure 5 middle left panel), peaking at 7 297

hours with ≈ 20 molecules as opposed to the reference solution, which peaks at roughly 298

13 hours with ≈ 40 molecules. The production of [gRNAwt
(−)] halves and peaks earlier in 299

the time course, with a greater number of DIP negative sense genomic RNA than WT. 300

Consequently, we then saw an approximate fold reduction of positive sense genomic 301

RNA, ribonucleocapsid proteins, assembled and released WT viral particles. 302
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Fig 5. Deterministic model outputs. Time-dependent state variables of the
mathematical model for the life cycle of SARS-CoV-2, including wild-type virions and
defective interfering particles with initial conditions [V wt

free](0) = 10 and [V dip
free](0) = 10

over a 48 hour time course. (Upper left:) free WT or DIP virions bind and fuse to the
cell ACE2 receptors, and (upper right:) virions entering endosomes and uncoating of
viral positive sense genomic RNA. (Middle left:) transcription and translation to form
a negative sense genome and ORF1 to form non-structural proteins (NSP s), which is
then followed by (middle right:) the production of new positive sense genomic RNAs
and translation of N protein. (Bottom left:) translation of structural proteins and
formation of ribonucleocapsid molecules, which lead to (bottom right:) the assembly
and release of new virions, both WT and DIP. (Dashed lines:) represent the reference
model solution proposed in Ref. [21].
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Fig 6. Stochastic model outputs. Statistics of time-dependent state variables of the
stochastic model with initial conditions [V wt

free](0) = 10 and [V dip
free](0) = 10 over a 24

hour time course based on an ensemble of 106 simulated trajectories. Solid lines:
medians, dashed lines: mean values, filled areas: inter-quartile ranges.

Stochastic model results 303

Figure 6 shows the kinetics of the stochastic model variables for initial doses of 304

wild-type virus [V wt
free](0) = 10 and DIPs [V dip

free](0) = 10). The figure illustrates 305

parametric (mean values) and non-parametric (medians, inter-quartile ranges) statistics 306

computed on an ensemble of 106 trajectories. Additionally, the histograms of the 307

simulated variable values at particular time points can be produced from the ensemble 308

for analysis (Figure S2). The means and medians follow approximately the deterministic 309

model outputs, while the inter-quartile ranges estimate the uncertainty of the 310

simulations due to stochastic effects caused by the discrete nature of the model variables. 311

These stochastic effects are more prominent for variables which are present in a cell in 312

small numbers, and the assumption that their mean values can be approximated by the 313

deterministic model may not be satisfied. In particular, the deterministic model predicts 314

that an infection is productive for every positive initial dose of [V wt
free](0) = 10, while the 315
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Fig 7. Probability of productive infection. Probability of a productive infection
for varying initial doses of both WT [V wt

free](0) = 1-20 and DIPs [V dip
free](0) = 1-20 24

hours post-infection. Left: dependence of probability on [V wt
free](0) for various

[V dip
free](0), right: dependence of probability on [V dip

free](0) for various [V
wt
free](0).

stochastic trajectories can become extinct due to stochasticity. Figure 7 illustrates the 316

probability of productive infection as a function of the initial WT virion (MOI) and 317

DIP doses. As can be seen in Figure 7 (left panel), the probability of a productive 318

infection tends to one as the initial dose of the WT virus hits 20 viral particles. 319

However, the probability is affected by the initial dose of DIP particles (Figure 7, right 320

panel), with this probability being reduced linearly as the dose increases. 321

The mean values of WT virion and DIP production 24 hours post-infection closely 322

follow the outputs predicted by the deterministic model. However, a part of the 323

trajectories simulated with the stochastic model become extinct. The probability of 324

productive infection as a function of WT MOI and DIP0 is shown in Figure 7. When 325

this probability is close to one, a change in DIP0 does not significantly modify it. For 326

every WT MOI, an increase in DIP dose reduces this probability linearly. Figure S5 327

shows the dependence of this linear decay in probability, βwt, on WT MOI. 328

Dose response analysis 329

We examined the release kinetics, i.e., the abundance of WT virions compared to DIPs, 330

as a function of the initial doses [V wt
free](0) = [V dip

free](0) = 10. However, one can expect 331

that initial infection doses might vary from cell to cell. Therefore, we now examined the 332

release kinetics of WT virions under different initial conditions. Figure 8 illustrates the 333

total number of WT virions (left) and DIPs (right) released with initial conditions 334

[V wt
free](0) = 1-20 and [V dip

free](0) = 1-20 over a 24 hour time period. As can be seen from 335

Figure 8, a low dose of DIPs (MOI = 1) with a high dose of WT virus (MOI = 20) 336

results in an approximately 21% reduction of the WT particles released during DIP 337

co-infection. Furthermore, as we decreased the initial number of WT virions while DIPs 338

remained at an MOI = 1, we observed a continued decrease in WT virus released during 339

co-infection compared to the single infection case (no DIPs). As the dose of DIPs was 340

increased, the total number of WT virions released rapidly decreased, and at MOI=10 341

for WT and DIP MOI = 4 WT particles only account for approximately 30% of 342

particles released. These deterministic results were consistent with median estimates 343
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Fig 8. Effects of varying initial dose on viral particle release. Top: Total WT
virions released over the 24 hours post-infection for varying initial conditions of free WT
virions [V wt

free](0) = 0-20 and free DIPs [V dip
free](0) = 0-20 from the deterministic model.

Bottom: Total DIP particles released for varying initial doses. The isolines shown on
the heatmaps as white lines coincide with the corresponding ticks in the colorbars.

from the stochastic model presented in Figure S3 (upper panel), while the mean 344

estimates (Figure S3, lower panel) showed marginally higher release in WT virus and 345

lower release of DIPs. Additionally, for high doses of WT virus, a productive infection is 346

almost guaranteed (Figure 7), but as shown in Figure S3, even if an infection is 347

guaranteed the overall number of WT, and hence infectious particles, is reduced. 348

Figure 9 shows viral particle release kinetics predicted by the deterministic model 349

with fixed initial conditions for [V wt
free](0) ranging from 3 to 20 virions and varying 350

initial conditions for DIPs [V dip
free](0) = 1-100. DIP release peaks at a MOI = 6 and then 351

begins to decrease as the dose increases. An increase in dose continues to have an effect 352

on the release of WT virions, so that for a MOI = 40 total WT virion production is 353

< 30 virions released over the 24 hour time period considered. This highlights the 354

ability of DIPs to compete (with an advantage) for replication resources with WT 355

virions. Consequently, if the dose is high enough, DIPs sequester so many intra-cellular 356

resources that WT production is significantly reduced. Finally, the non-linear effects of 357

DIP MOI on WT virion and DIP production per cell suggest that there might be 358

optimal dosing of DIPs when used as a therapeutic agent. The maximum effect can 359
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Fig 9. Total WT virions and DIPs released for increased initial doses of
DIPs. Viral particle release kinetics predicted by the model with fixed initial
conditions for [V wt

free](0) ranging from 3 to 20 virions, as a function of varying DIP doses

[V dip
free](0) = 1-100.

potentially be achieved at around 5 to 10 DIPs per cell as this would maximise the 360

number of new DIPs produced by the infected cells, and these, in turn, will reduce the 361

WT virion production in other infected bystander cells. 362

DIP dose effect on WT virion production 363

Given the predicted three-dimensional curves of model outputs as function of initial 364

doses presented as heatmaps in Figure 8, we asked if the production of WT virions 24 365

hours post-infection WT24 = [V wt
released](24) as function of initial doses 366

MOI = [V wt
free](0) and DIP0 = [V dip

free](0) can be approximated by a compact analytic 367

expression. Figure 9 shows that WT24 as a function of DIP0, for a fixed MOI, exhibits 368

a decay that is slower than exponential (which would be displayed as a straight line on 369

a logarithmic scale). Therefore, we used several analytical expressions with slower than 370

exponential decay to fit the deterministic model predictions for WT virion production 371

for fixed MOI = 10. These include: (a) a Gompertz curve, and the probability density 372

functions (p.d.f.) of (b) power-law, (c) Weibull, (d) Cauchy, (e) Burr, (f) Lomax, and 373

(g) generalised Pareto heavy-tailed distributions. The error that was minimized is the 374

sum of squares between the WT virion production, WT24, predicted by an analytic 375

expression and predicted by the deterministic model for each DIP0 ranging from 1 to 376

100. The generalised Pareto distribution (with a location parameter equal to zero) was 377

chosen as the optimal analytic expression making use of the Akaike information 378

criterion. The parameters of the generalised Pareto distribution ξ (shape) and σ (scale) 379

can be fitted for different values of MOI, thus giving the functions ξ(MOI) and 380
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σ(MOI). The overall parameterisation is the following: 381

WT24(DIP0 > 0,MOI) ≈ WT24(DIP0 = 0,MOI)×
[
1 +DIP0 ·

ξ(MOI)

σ(MOI)

]− ξ(MOI)+1
ξ(MOI)

,

(28)
where WT24(DIP0 = 0,MOI) is the number of released WT virions 24 hours 382

post-infection with zero DIP initial dose for a given WT MOI. 383

Figure S4 shows the fit of a generalised Pareto function (28) for MOI = 10 and the 384

dependence of parameters ξ and σ on MOI. One can see that the fit follows the data 385

closely for suitable numbers of produced WT virions (WT24 > 1) and has some small 386

discrepancies for WT24 < 1 at large DIP doses DIP0 > 40. The dependences of 387

parameters ξ(MOI) and 1/σ(MOI) exhibit non-linear patterns. They can be 388

approximated with a Hill function and a Dagum distribution p.d.f., respectively. 389

However, when these analytic approximations are substituted in (28), the overall fit of 390

(28) behaves approximately as an exponential decay function (data not shown). 391

Therefore, one should use the computed estimates of the parameters ξ and σ for every 392

MOI, or approximate them with a higher degree polynomial that would follow the 393

estimates closely, e.g., with a 30-degree Chebyshev polynomial as shown in Figure S4. 394

Overall, the relative error of the fit (weighted residual sum of squares) of the 395

closed-form expression (28) reaches its peak for MOI ≈ 6, in the same region where the 396

parameters ξ and σ shown a non-linear dependence on MOI. The root-mean-square 397

deviation normalised to WT24(DIP0 = 0,MOI), the maximum value of produced WT 398

virions for each MOI, shows a similar increase near MOI ≈ 10, as well as a later 399

increase for large MOIs. This can be explained since the discrepancy in the tail of a 400

generalised Pareto distribution corresponds to larger numbers of WT24 with an increase 401

of MOI. In summary, we have provided a closed-form expression, (28), as a prediction 402

of the effect of DIPs on productive cell infection, i.e., the expected mean number of WT 403

virions produced in a productive infection scenario for a range of relevant MOIs. 404

Discussion 405

SARS-CoV-2 still presents a real threat to human health as a result of several 406

compounding factors: emergence of new strains due to mutation, waning immunity 407

amongst the vaccinated, and un-vaccinated individuals (for medical reasons or personal 408

choice). Therefore, it is still important to investigate new treatment options, especially 409

those that could be implemented early after infection, to alleviate pressure on 410

healthcare systems. One such potential therapy is defective interfering particles. DIPs 411

are virus-like particles with shorter genomes that require a wild-type (WT) virus to 412

replicate. In this paper, we investigated the intra-cellular replication kinetics of WT 413

virus in the presence of DIPs, making use of a mathematical model. To this end, we 414

extended the model proposed by Grebennikov et al. in Ref. [21], which focused on the 415

intra-cellular replication kinetics of SARS-CoV-2, to include co-infection with defective 416

interfering particles, given their therapeutic potential [59, 60]. In particular, we 417

investigated the ability of DIPs to reduce WT viral load by competing for resources 418

required to replicate or encapsulate the viral genome to form new virions. Since DIP 419

genomes lack key fragments, they need a “helper” virus, which encodes non-structural 420

and structural proteins, for their replication. There is evidence of DIPs leading to cause 421

a reduction in viral titres for several viruses including: influenza A, dengue fever and 422

SARS-CoV-2 [14,15,61]. With the emergence of new SARS-CoV-2 strains, the 423

effectiveness of a DIP particle (derived from a particular viral strain) against novel ones 424

remains to be investigated. 425

Mathematical models of WT virus and DIP co-infection have been investigated at 426
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the within host-level and either consider: a standard infection model with target, eclipse 427

phase and infected cells or include different localised areas of infection, such as the 428

upper and lower respiratory tract [15, 19]. There are, however, no models (to the best of 429

our knowledge) that examine the intra-cellular replication kinetics of SARS-CoV-2 in 430

the presence of DIPs. Our aim was to assess the hypothesis that DIPs lead to a 431

reduction not only in the number of released WT virions but also, negatively impact the 432

transcription of positive sense genomic RNAs. Additionally, we investigated the effects 433

of initial infection dose (WT and DIP) in the release of both new WT virions and DIPs. 434

Since experimental data sets are extremely limited, it is important to note that the 435

parameter values obtained in this manuscript are based on the data set used [15], and 436

may not be globally identifiable. By globally identifiable we mean the identification of a 437

unique parameter value from a data set. 438

The extension of the model presented by Grebennikov et al. in Ref. [21] required 439

new parameters to account for the kinetics of DIPs. Therefore, it was necessary to 440

investigate the sensitivities of all model parameters. In particular, we made use of the 441

Sobol sensitivity analysis to understand how variation in parameter values affects four 442

different model outputs: [gRNAwt], [gRNAdip], [V wt
released], and [V dip

released]. We found 443

several parameters that have an effect on all four model outputs: KNSP , the threshold 444

number of non-structural proteins, k
wt/dip
tr(−) , transcription rates of negative sense genomic 445

RNA for WT virus and DIPs, respectively, and k
wt/dip
tr(+) , the transcription rates for 446

positive sense genomic RNA. The rates associated with cell entry, kfuse and kuncoat, 447

also lead to some variation in model outputs. Finally, if we examine as output WT and 448

DIP release, we find their associated assembly rates, kwt
assembl and kdipassembl, as the most 449

sensitive parameters. 450

DIPs have potential as therapeutics, thus, it is important to explore how initial 451

infection doses of WT and DIP alter the release of WT virus, to inform a treatment 452

plan. We show that even a low MOI= 1 of DIPs can cause a reduction of approximately 453

50% in released WT virus compared to an infection in the absence of DIPs, with further 454

reduction in released WT up to 10-fold for increasing MOIwt and MOIdip. Figure 8 455

illustrates how increasing the dose of DIPs leads to a reduction in the fraction of 456

released WT virions, in relation to the initial WT infection dose. These trends are 457

consistent with the results from the stochastic model also developed in this paper 458

(Figure S3). The doses of both WT virus and DIPs also had an effect on the probability 459

of a productive infection, which decreased with increased doses of DIPs, but is almost 460

certain for high doses of WT virus. We also investigated the effect of initial MOI of 461

DIPs given a fixed dose of WT virus (MOI=10) on viral particle release. Our results 462

show that while DIP release peaks at an initial DIP dose of MOI=5, the release of WT 463

virions decreases in a dose-dependent manner. Furthermore, by an initial DIP dose of 464

MOI=40, WT virion release is effectively inhibited. 465

The deterministic and stochastic models we presented are a good first approximation 466

to the kinetics of WT and DIP co-infection. Yet, there are a number of biological 467

processes which have not been considered. First and foremost, we omitted the anti-viral 468

response of the cell. While we need not consider the adaptive immune response since 469

our time interval is 48 hours, the innate immune response would play a pivotal 470

role [62,63]. A family of cytosolic receptors, known as pattern recognition receptors 471

(PRR), exists that detect viral RNAs to induce the production of type I interferons. 472

Type I interferons (or viral IFNs), which are secreted by infected cells, include IFN-α, 473

IFN-β, IFN-ω and IFN-τ . These molecules are associated with activation of anti-viral 474

cell states, which in turn lead to inhibition of viral replication and eventual viral 475

clearance [64]. Furthermore, innate immune responses have been shown to be induced 476

by DIP binding to PRRs, providing additional stimuli and magnifying the anti-viral 477

cellular response [59]. As a consequence, it would, therefore be ideal to extend the 478
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proposed model to consider the role of an innate immune response. Another limitation 479

of our model is that for WT virions, we do not distinguish between infectious and 480

non-infectious particles. This would be important to understand the potential infectivity 481

of the viral particles released. We also fail to characterize the natural generation of 482

DIPs during the WT replication cycle (which is inherently characterised by mutations). 483

This process would contribute to the release of other defective interfering particles, and 484

would potentially reduce the number of WT virions released. However, a complete 485

calibration of such a model would require a data set not currently at hand. 486

To conclude, we believe the model we have proposed shows the potential benefits of 487

DIPs as a therapeutic tool to reduce WT virus production. We also have shown that 488

even low doses of these particles can have a positive effect on limiting WT virus 489

production and reducing the probability of a successful infection. This reduction 490

continues, in a dose dependent manner, to greatly reduce WT virus production. Future 491

work will focus on incorporating immune responses and the natural production of DIPs 492

into the mathematical model presented here but will require further carefully curated 493

data to assist in parameter estimation. 494
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Supporting information

Figure S1 Posterior histograms. Posterior histograms of the top 0.1% sampled
parameter sets from a total of 106 accepted sets. Table 4 lists the search ranges used to
obtain the above posterior histograms. (Purple histogram:) Posterior histogram of
accepted parameter sets, (blue histogram:) histogram of prior beliefs, and (black
dashed line:) the median parameter value listed in Table 4 used to generate
Figures 4-9.
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Figure S2 Stochastic model outputs 24 hours post-infection. The histograms
for the numbers of (left) genomic RNA ([gRNAwt](24), [gRNAdip](24)) and (right)

produced virions ([V wt
released](24), [V

dip
released](24)) are shown for an ensemble of 106

stochastic simulations with initial doses [V wt
free](0) = 10 and [V dip

free](0) = 10. The
histograms are normalised to approximate a true probability density distribution.
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Figure S3 Effects of varying initial dose on viral particle release (as
predicted by the stochastic model). Left panels: Median values, right panels:
mean values are presented as the outputs of ensembles of 105 trajectories simulated for
each combination of the initial conditions. Top: Total WT virions released over the 24
hours post-infection for varying initial conditions of free WT virions [V wt

free](0) = 0-20

and free DIPs [V dip
free](0) = 0-20 from the stochastic model. Bottom: Total DIP

particles released for varying initial doses. The isolines shown on the heatmaps as white
lines coincide with the corresponding ticks in the colorbars.
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Figure S4 Fitting WT virion production as function of initial DIP doses
with analytic expression. Left: fit of the deterministic model output (blue lines) for
fixed MOI = 10 using Eq. (28), which is based on the probability density function of a
generalised Pareto distribution (red dotted and green dashed lines). The upper plot is
presented in linear scale, the lower one in logarithmic scale. The formula with estimated
parameters is shown in the annotation of the upper plot. Center: fit of the parameters
of the analytic expression (28) for various MOIs. The upper plot shows the fitted values
of the parameter ξ and the lower one the reciprocal of the parameter σ. The fitted
estimates ξ(MOI) and 1/σ(MOI) can be approximated closely with a 30-degree
Chebyshev polynomial (red lines). The overall fit in the left panel denotes the fit with
Eq. (28), where the polynomials are used as ξ(MOI) and 1/σ(MOI). Right: the error
of the fit with Eq. (28) for various MOIs. The upper plot shows the residual sum of
squares (RSS) weighted by the data values for each DIP0. The lower plot shows the
root-mean-square deviation (RMSD) normalised by the number of produced WT virions
with DIP0 = 0.
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Figure S5 The estimation of the effect of DIP dose on the probability of
productive infection as a function of MOI. Left: the effect of DIP initial dose on
the probability of productive infection. For each MOI, the probability decreases linearly
as DIP dose, DIP0, increases. Right: the dependence of the linear decay rate, βwt, on
MOI. The decay rate, and therefore the effect of DIP dose, decrease with increase in
MOI.
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