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I. ABSTRACT

Understanding the temporal evolution of cells
poses a significant challenge in developmental biol-
ogy. This study embarks on a comparative analysis
of various machine-learning techniques to classify
sequences of cell colony images, thereby aiming
to capture dynamic transitions of cellular states.
Utilizing transfer learning with advanced classi-
fication networks, we achieved high accuracy in
single-timestamp image categorization. We intro-
duce temporal models—LSTM, R-Transformer, and
ViViT—to explore the effectiveness of integrating
temporal features in classification, comparing their
performance against non-temporal models. This re-
search benchmarks various machine learning ap-
proaches in understanding cellular dynamics, set-
ting a foundation for future studies to enhance
our understanding of cellular developments with
computational methods, contributing significantly to
biological research advancements.

II. INTRODUCTION

Recent advancements in developmental biology
and bioengineering have paved the way for ground-
breaking approaches in regenerative medicine and
cellular therapies, particularly through the applica-
tions of stem cells [1]. The study of morphogen-
esis reveals the complex processes by which cell
populations coordinate to form intricate structures
from a single cell [2]. Human induced pluripotent
stem cells (hiPSCs) have emerged as an essential
resource for investigating the processes of cellular
organization, differentiation, and assembly into tis-
sues [3].

Building on recent advancements in develop-
mental biology, bioengineering, and the utility of
hiPSCs, our research is fundamentally aimed at
exploring the capacity of computational approaches
to accurately capture the temporal dynamics of
stem cell morphogenesis. We concentrate on cel-
lular structures as represented in microscope im-
ages captured over a 24-hour period of hiPSC
evolution. At the heart of our investigation is the
challenge of classifying cell colony images across
these timestamps, a task that not only tests the limits
of current computational biology methods but also
seeks to illuminate the complex process of cellular
development and differentiation.

By analyzing models trained on single-timestamp
images, we explore network characteristics over
time to identify temporal patterns, validating the
presence of temporal context within our dataset.
This leads us to assess the effectiveness of advanced
sequential models which incorporate these temporal
features. Then by conducting a thorough compara-
tive analysis of temporal models like Long Short
Term Memory Networks (LSTM), R-Transformers,
and the Video Vision Transformer (ViViT), we as-
sess these temporal models’ performance compared
with non-temporal models.

This paper addresses three core questions:

o Can machine learning models effectively clas-
sify cell colony images at different times-
tamps?

o What insights are the networks deriving from
the images to facilitate classification?

o How do sequential models compare to single-
timestamp models in terms of performance?

o What temporal relationships can be discerned
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from the classification results provided by
these models?

Through this exploration, our research highlights
the significant potential of integrating computa-
tional methods with biological research, aiming
to push the boundaries of current capabilities in
modeling biological processes. The findings and
methodologies developed from this study are ex-
pected to significantly advance computational tech-
niques in biological research, offering new avenues
for the study of morphogenesis and cell biology.

III. RELATED WORK

The landscape of cell image classification has
undergone advancements in recent years, driven
by the intersection of machine learning techniques
and biomedical research. This cross-disciplinary
area has sparked numerous studies, each exploring
different methods to overcome cell image classifi-
cation challenges.

Central to these endeavors has been the adoption
of Convolutional Neural Networks (CNNs), which
have become the cornerstone for cell image classi-
fication tasks [4]-[10]. CNNs have exhibited unpar-
alleled efficacy in distilling and leveraging the intri-
cate patterns present in cell imagery, fundamentally
transforming our ability to interpret these visual
data sources. Furthermore, the practice of Transfer
Learning has further augmented the capabilities of
CNNs in this domain [11]-[14]. Despite the suc-
cesses of Convolutional Neural Networks (CNNs)
and Transfer Learning in cell image classification,
these approaches primarily excel in analyzing static
images without considering the temporal dynamics
inherent in cellular processes.

Our research explores the application of tem-
poral models in image classification, spotlighting
the innovative efforts that have advanced this field.
The integration of Convolutional Neural Networks
(CNNs) with Recurrent Neural Networks (RNN)
[15]-[19] and the adoption of Transformer models
for sequential image and video classification [20]-
[23] exemplify the significant potential of sequential
modeling in image classification tasks. A notable
contribution by Karpathy et al. in the field of
large-scale video classification using CNNs [15]

particularly highlights the nuanced challenges en-
countered and the modest advancements achieved
through incorporating spatio-temporal information
into CNN architectures. This study reveals that,
despite progress, the enhancements from embedding
temporal dynamics within CNN frameworks tend to
be more incremental than transformative.

Our study uniquely contributes by systematically
comparing several temporal models in the context of
cell image classification, contributing to the field of
computational biology. We aim to identify models
that best interpret temporal information in cell im-
age sequences, thereby improving our understand-
ing and predictive capabilities regarding cellular dy-
namics. This research not only challenges existing
methodologies for temporal image classification but
also opens new pathways for developmental biology
research.

IV. METHODS

A. Dataset

Our research utilizes a comprehensive dataset
derived from the study conducted on human induced
pluripotent stem cells (hiPSCs) to investigate the in-
trinsic cellular behaviors that guide morphogenesis
during early lineage specification [3]. The dataset
encompasses a collection of time-lapse images cap-
turing the dynamic evolution of hiPSC colonies
under various experimental conditions. The dataset
serves as a valuable resource for developing and
testing image classification algorithms, particularly
those aimed at distinguishing between different
states of cellular development. The temporal aspect
of the dataset offers unique opportunities to apply
and refine time-series analysis in the context of
developmental biology.

TABLE I: Number of Samples for Each Category

Treatment | Number of Samples
WT 12
DS 17
BMP4 16
CHIR 15
DS+CHIR 17
Total 78
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The dataset comprises 78 unique samples, cate-
gorized based on the treatment conditions applied
to the hiPSC colonies as follows:

1) WT: Wild Type/Untreated control samples

2) DS: Dual SMAD neuroectoderm protocol

3) BMP4: BMP4-induced trilineage protocol

4) CHIR: WNT activator CHIR

5) DS+CHIR: Addition of CHIR pre-treatment
to the dual SMAD neuroectoderm

The distribution of samples over the 5 different
categories is shown in table 1. Figure 1 shows some
sample images from the 5 classes. Each sample
contains a sequence of 289 time-lapse images, cor-
responding to the 289 timestamps with a 5-minute
interval across the 24-hour experimental duration,
total to 22542 images, providing a rich temporal
dimension to analyze cell behavior, morphological
changes, and differentiation patterns.

B. Non temporal Approach

In the non-temporal approach to cell image clas-
sification, each timestamped image of the same
sample is considered an independent entity, disre-
garding temporal sequence. We utilized the power
of Convolutional Neural Networks (CNNs) and
transfer learning to develop separate classification
models for each timestamp. Through this approach,
we achieved promising results by training and test-
ing with various pre-trained deep learning models.
This approach not only establishes a benchmark for
accuracy in identifying distinct cellular features but
also lays the groundwork for conducting compar-
ative analysis to aid in the exploration of cellular
dynamics.

1) Convolutional Neural Networks: Convolu-
tional Neural Networks (CNNs) have become the
baseline standard in image classification. CNN’s
unique architecture is specifically good for cap-
turing both the local details and global structure
present within images [24]. A CNN typically con-
sists of convolutional layers that apply various
filters to the input images, pooling layers that re-
duce dimensionality, and fully connected layers that
make the final classification decision [25].

Cell image classification with CNNs presents
unique challenges, particularly due to the high vari-

ability in cell images and the often limited size of
annotated datasets [26]. Cells can exhibit a wide
range of appearances even within the same category,
due to differences in staining, imaging conditions,
and biological variability. Moreover, the scarcity
of labeled data in cell imaging can hinder the
ability of CNNss to learn effectively. We will utilize
different methods in IV-B2, IV-B3 to overcome
these obstacles and further optimize our results.

2) Transfer Learning: At the core of transfer
learning lies the assumption that features learned
from one task or domain can be beneficial for
solving related tasks or domains. Transfer learning
in machine learning/deep learning references the
process of applying the knowledge learned from a
pre-trained machine learning model to a different
but related problem [27]. The new problem can
then be trained with less data and achieve better
results with less computational power. The pre-
trained models are trained on large and comprehen-
sive datasets, during which they adjust their internal
parameters, such as weights and biases based on
the data. In the context of image classification, pre-
trained models are trained on large image datasets
such as ImageNet [28] under different architectures.
Since the datasets are general in content and include
rich categories of objects and features, the pre-
trained models thus can extract optimal features
from all kinds of images.

Training deep learning models, particularly
CNNs, often requires large datasets that are not
always available in specialized scientific fields.
Transfer learning addresses this by enabling models
trained on small datasets to still perform effectively.
Additionally, transfer learning significantly reduces
the computational resources and training time re-
quired, making it a valuable approach for domains
facing data scarcity and computational constraints.

In our research, we employed transfer learning
to train with several state-of-the-art CNN architec-
tures, each known for its unique strengths in feature
extraction and classification capabilities. These in-
clude:

o AlexNet [29]: As one of the pioneering ar-
chitectures in deep learning, AlexNet laid the
groundwork for CNNs in image classification.
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(a) WT from timestamps 1, 70, 140, 210 and 180

(b) BMP4 treatment from timestamps 1, 70, 140, 210 and 180

(c) CHIR treatment from timestamps 1, 70, 140, 210 and 180

(d) DS treatment from timestamps 1, 70, 140, 210 and 180

(e) DS+CHIR treatment from timestamps 1, 70, 140, 210 and 180

Fig. 1: Sample images from dataset for the 5 treatments
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Its architecture, though simpler compared to
newer models, provides a solid starting point
for transfer learning in our study.

e VGG [30]: Known for their deep architec-
tures and excellent performance in capturing
intricate textures and patterns, VGG models
are highly effective in distinguishing subtle
differences in images.

o GoogleNet (Inception_vl) [31] and Incep-
tion_v3 [32]: These models introduce the con-
cept of inception modules, allowing the net-
work to adapt to various scales of image fea-
tures.

o DenseNet [33]: Utilizes dense connections be-
tween layers to ensure maximum information
flow, enhancing feature extraction capabilities
for complex image structures.

« ResNet [34] and ResNeXt [35], including its
variant Wide ResNeXt [36]: These architec-
tures introduce residual connections to facil-
itate training of very deep networks, enabling
them to learn high-level features without the
vanishing gradient problem.

For each of these architectures, we initiated the
transfer learning process by replacing the final
classification layer with a new layer tailored to our
specific task — classifying 5 types of cell images.
During the process, the weights of the layers before
the final classification layer are frozen (fig. 2). This
approach of transfer learning can be referred to as
feature extractor (as opposed to fine-tuning from
scratch) which takes the advantage of minimizing
computational costs [37] for faster training.

Through transfer learning, we aim to capitalize
on the knowledge embedded in pre-trained models
and adapt it to the specific challenges of cell image
classification, ultimately improving the accuracy
and efficiency of cell image classification.

3) Data Enrichment: Data enrichment, a cru-
cial step in preparing datasets for deep learning
models, involves augmenting the original dataset
to enhance model training and performance. In the
context of our cell image classification project, we
implemented data enrichment by rotating images
in our dataset. This technique not only increases
the volume of data available for training but also

introduces a variety of perspectives, enabling the
model to learn more generalized features of the cell
images.

For our original dataset, initially comprising 78
images split into training, validation, and testing
sets with a ratio of 8:1:1, resulting in only 62 sam-
ples for training, 8 for validation and 8 for testing.
We applied a simple yet effective data augmentation
strategy: rotating each image in four directions.
By rotating each image in four orientations (0°,
90°, 180°, and 270°), we effectively quadrupled
our dataset size. The new distribution consisted of
249 training samples, 31 validation samples, and 32
testing samples with an 8:1:1 ratio and 218 training
samples, 47 validation samples, and 47 testing sam-
ples with a 7:1.5:1.5 ratio. This enrichment process
ensured that our model was not just learning from a
limited set of images but was exposed to a broader
variation of cell orientations, crucial for improving
the model’s ability to accurately classify cell images
under different conditions.

By augmenting the number of images, we mit-
igate the risk of overfitting, a common challenge
when training deep learning models with limited
data [38]. Introducing varied orientations of the
same cell images helps the model learn more com-
prehensive features, enhancing its ability to gener-
alize from the training data to new, unseen images.
Most importantly, with the enriched dataset, we
were able to achieve better model accuracy across
all base models used in transfer learning.

C. Temporal Approaches

In this section, we introduce three temporal ap-
proaches tailored for our cell image classification
task: Long Short Term Memory Networks (LSTM),
R-Transformer with feature extraction and Video
Vision Transformer(ViVit). Our hypothesis posits
that these temporal methodologies can proficiently
capture the intricate dynamics present in our se-
quential images and thus can outperform the models
trained for separate timestamps.

1) Feature Extraction: Extracting the features
from images is an important step in many image
processing tasks as it extracts meaningful infor-
mation and characteristics from images [39]. In
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Fig. 2: Transfer Learning with a common CNN architecture

the general CNN architecture as shown in fig. 2,
all the layers before the classification step (fully
connected layer) are part of feature extraction,
aiming to identify distinctive patterns, structures,
or attributes within an image. The importance of
feature extraction lies in its ability to transform
high-dimensional image data into a more compact
and informative representation, facilitating more
efficient and effective analysis [39].

In our experiments, we aim to leverage the
features extracted from pre-trained models which
are more compact and informative representations
of the input images. We then group sequences of
extracted features from images of the same sample
together and input them into our LSTM and R-
transformer model.

2) RNN/LSTM + Feature Extraction: Recurrent
Neural Networks (RNN) and their advanced variant,
Long Short Term Memory Networks (LSTM), are
designed to handle sequential data with the ca-
pability to capture dependencies at different time
scales. Their architectures are shown in fig. 3.
RNNSs are adept at modeling short-term dependen-
cies due to their recurrent structure, which processes
sequences one element at a time, maintaining a
’memory’ of previous inputs [41]. LSTMs extend
this capability by incorporating mechanisms—such

© 0 O
B

[ cel — cell — Cell — cel —
b & 6 o
o

Architectures of an RNN Cell
°ouw

— 1

& @
Cell State Updated
Input Gate Cell State

LSTM Cell

Forget
Gate I

oo (Wb ¥
L] !
= ¥
O I WO L I

Previous Output = output
| & | - sigmoid Activation Function

| T | - Tanh Activation Function

Output Gate

Architectures of an LSTM Cell
Fig. 3: Architectures of RNN and LSTM Cell [40]

as input, output, and forget gates—that allow the
network to retain or discard information over longer
periods [42]. This makes LSTMs particularly suited
for tasks where understanding both immediate and
extended context within the data is crucial.
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In our approach, we utilize LSTMs in con-
junction with feature extraction from pre-trained
CNN models. By doing so, we aim to harness
the detailed, high-level features extracted from each
image frame, presenting these as a sequence to the
LSTM. This allows the LSTM to analyze the tem-
poral evolution of these features across the sequence
of images.
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3) R-Transformer + Feature Extraction: While
RNNSs and their variants have laid the groundwork
for sequence modeling, their limitations in pro-
cessing long-term dependencies and parallelization
have led to the development of transformer mod-
els. Transformers revolutionize sequence modeling
through their attention mechanisms, enabling the
model to weigh the importance of different parts of
the input data without the constraints of sequential
processing [43]. However, transformers typically
require significant computational resources and may
struggle with capturing localized sequence patterns
due to their global attention mechanism.

The R-transformer architecture combines the
strengths of RNNs and transformers, addressing
both local and global modeling of sequence data
[44]. Fig. 4 shows one R-transformer layer con-
taining localRNNs that process local sequence pat-
tern, multi-head attention networks for global con-
text understandings and Position-wise feedforward
networks that transform the features non-linearly.
This hybrid model is particularly effective in our
context, where capturing the detailed evolution at
each timestamp and the overarching trends across
the sequence is crucial for accurate classification.

4) ViVit Transformer: The ViVit Transformer
architecture represents a leap forward in processing
spatio-temporal data, such as video sequences, by
applying the principles of transformers to capture
both spatial and temporal dynamics [20]. Unlike
traditional CNNs that may require complex archi-
tectures to handle time series data, ViVit simplifies
this process by treating the sequence of images
as spatio-temporal tokens as shown in fig. 5. This
approach enables the model to directly learn the
intricate patterns of change within the data, making
it an excellent candidate for our task of classifying
cell images across different timestamps.

Our implementation of these temporal mod-
els—LSTM, R-Transformer, and ViVit—aims to
leverage their unique strengths in capturing the tem-
poral dynamics present in sequential cell images.
By comparing their performance with the single
timestamp models, we seek to identify the most
effective methods for understanding the complex
evolution of cell colonies, potentially setting new
standards for temporal analysis in cell image clas-
sification.

V. RESULTS AND COMPARISONS
A. Non-Temporal Approach Results

1) Comparison of Transfer Learning Models
Overall Performance: Table II and III presents a
detailed comparison of the average accuracy and
training time for a range of pre-trained models
employed in the classification of cell colony images
across 289 timestamps. These architectures were
consistently trained using identical epochs and hy-
perparameters to ensure a fair comparison.

It is evident that all models experienced sig-
nificant performance improvement when data en-
richment techniques were applied, underscoring the
importance of augmenting training data to enhance
model accuracy, particularly in scenarios with small
datasets.

DenseNet emerged as the leading model in terms
of accuracy after data enrichment, achieving re-
markable performance with an average accuracy
of 96.3020% and 95.7079% for test ratios of 0.2
and 0.3, respectively. Inception_v3 also performed
admirably with 94.7664% and 94.3164%. Notably,
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TABLE II: Average Accuracy and Training Time of Transfer Learning Models with training/validation/test

ratio 8:1:1
Model Without Data Enrichment  With Data Enrichment Training Time/Timestamp (s)
AlexNet 87.0675 95.5125 2
VGG16 89.2734 96.3884 18
GoogleNet 88.7111 95.4477 8
Inception_v3 87.7163 94.7664 14
ResNet18 89.5761 93.4256 5
ResNet50 86.4187 94.5609 11
DenseNet 91.2630 96.3020 23
ResNeXt 89.0571 94.3555 11
Wide ResNeXt 84.3858 93.9446 16

TABLE III: Average Accuracy and Training Time of Transfer Learning Models with training/validation/test
ratio 7:1.5:1.5

Model Without Data Enrichment = With Data Enrichment
AlexNet 88.2353 89.1188
VGG16 87.5144 90.4734
GoogleNet 89.3022 94.0587
Inception_v3 89.3022 94.3164
ResNet18 84.2849 93.0796
ResNet50 87.6298 91.6955
DenseNet 91.7820 95.7079
ResNeXt 88.6678 91.7249

Wide ResNeXt 85.1211 93.1090
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these two models, while providing excellent ac-
curacy, also required the most substantial com-
putational resources, as reflected in their longer
training times of 23 and 14 seconds per timestamp,
respectively. GoogleNet, on the other hand, demon-
strated a consistent performance with accuracies of
95.4477% and 94.0587% across both test ratios,
combined with a relatively quick training time of
8 seconds per timestamp.

Interestingly, while VGG16’s accuracy was no-
tably high with a training ratio of 0.8 at 96.3884%,
its performance declined to 90.4734% when the
dataset was divided with a training ratio of 0.7. This
drop highlights VGG16’s sensitivity to the size of
the training set, emphasizing the need for ample
data to maintain its high classification accuracy.

In summary, while DenseNet and Inception_v3
offer the highest accuracies, their computational
demands are significant. GoogleNet presents a com-
pelling alternative, offering a balanced compromise
between accuracy and speed. VGG16’s variable
performance across different dataset sizes further
highlights the importance of selecting models based
on specific project requirements and data availabil-
ity.

2) Comparison of Model Performance Across
Timestamps: The examination of model perfor-
mance across various timestamps reveals critical
insights into the dynamic behavior and evolution of
cell colonies in response to treatments over time. By
analyzing the accuracy plots for the models across
all timestamps (fig. 6), we can infer the following
patterns:

a) Early Stage Performance: Initially, at the
first timestamp, all models show lower accuracies,
suggesting that the cell colonies have yet to ex-
hibit significant divergences. Interestingly, although
lower, the accuracy is not minimal, implying that
the models must be picking up on early, nuanced
differences post-treatment. This observation opens
promising pathways for future research to explore
the early cellular responses to treatments and the
subtle morphological changes or features these
models are detecting, potentially offering insights
that may not be easily observable by human ana-
lysts. .

b) Trend Over Time: As expected, there is
a noticeable improvement in model accuracy over
time, reflecting the increasing distinctiveness of cell
features as colonies evolve. This trend is particu-
larly evident in models like inception_v3, DenseNet
and googlenet, which demonstrate consistently high
performance. The increasing accuracy over time
aligns with the hypothesis that as cellular features
become more defined, they are easier for models to
classify correctly.

c) Ending Stage Performance: Across all
models, a decrease in accuracy at later times-
tamps becomes evident, particularly in models like
VGGI16, ResNetl8, ResNet50, and ResNeXt. This
trend suggests a convergence in the models’ ability
to differentiate between cell states as the experiment
progresses. Notably, this fall may indicate that the
cell colonies have reached a developmental stage
characterized by minimal changes in their features
or that these features have become increasingly
challenging for the models to distinguish. Moreover,
this phenomenon could imply that the cells have
developed into similar forms by these later stages,
making discrimination more difficult for automated
analysis. This observation prompts further investi-
gation into biological aspects—such as pinpointing
the stages at which cellular features stabilize or
become visually indistinguishable.

3) Analysis of Misclassifications: The confusion
matrices for the models at various timestamps
provide a deep dive into the classification perfor-
mance and the evolution of the model’s predictive
capabilities over time, as illustrated in examples
shown in 7. Additionally, Table IV, which compiles
statistics of misclassified pairs across all models and
timestamps, helps identify specific patterns:

Misclassifications WT vs. BMP4 and WT vs.
CHIR are notably high in the initial timestamps
but significantly decrease or virtually disappear in
later timestamps. This trend suggests that BMP4
and CHIR treatments induce slower initial changes
in cell morphology, making these cells more chal-
lenging to distinguish from untreated WT cells
early on. However, as the experiment progresses,
the distinctive features of BMP4 and CHIR-treated
cells become more pronounced, leading to improved
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(b) Accuracy of inception_v3, ResNet18 and ResNet50
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(c) Accuracy of DenseNet, ResNeXt and Wide ResNeXt

Fig. 6: Accuracy of Transfer Learning Models

classification accuracy.

Conversely, DS treatment is associated with the
fewest misclassifications among other classes, likely
due to the distinct morphological characteristics it
induces in cells, such as shallow spots, which are
readily identifiable in sample images (see Figure 1).

Interestingly, while pairs like BMP4 vs. CHIR
and CHIR vs. DS+CHIR continue to be confused
across nearly all timestamps, indicating their sim-
ilarity, BMP4 vs. DS+CHIR pairs show a lower
rate of misclassification. This suggests that the
likelihood of misclassifying certain treatment pairs
does not necessarily follow a pattern of transitivity,
highlighting the complexity of cellular responses to

different treatments.

Moreover, it’s crucial to note that the highest
incidence of misclassifications occurs at the first
timestamp across most pairs. Yet, specific pairs such
as WT vs. DS and WT vs. DS+CHIR show zero
misclassifications even from the outset. This zero
misclassification rate for such pairs from the first
timestamp underscores the immediate and distinct
impact of DS and DS+CHIR treatments on cell
morphology, making these cells instantly recogniz-
able compared to WT, even at the earliest stage
of the experiment. This clear delineation from the
beginning suggests a rapid onset of morphological
changes that are readily captured by the models,
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contrasting with the more gradual evolution ob-
served with BMP4 and CHIR treatments.

4) Heatmaps Analysis: The analysis of model-
generated heatmaps offers a window into the neural
network’s decision-making process and allows us to
understand the features deemed significant for clas-
sifying cell images. This comparison between the
features the model focuses on and human precepts
is crucial for validating the model’s effectiveness in
uncovering subtle biological features and whether it
includes more details than the human eye.

In fig. 8, we show some examples of heatmaps
generated by DenseNet and VGG models. While
DenseNet leads in accuracy, the VGG-generated
heatmaps align more closely with human inter-
pretations of cellular characteristics. For example,
VGG’s attention to the distinctive holes in DS-
treated cell colonies and the fading edges indicative
of CHIR treatment mirrors the human eye’s cues for
these conditions. Despite its marginally lower ac-
curacy, this alignment suggests VGG’s potential to
provide interpretable insights into treatment effects
on cells presented in the images.

Moreover, the discrepancy between DenseNet’s
classification success and its heatmap focus areas
presents a curious case for deeper analysis. De-
spite DenseNet’s high accuracy, its heatmaps do
not always emphasize the same key features that
VGG does, which are readily identifiable by hu-
man observers as indicative of specific treatments.
This divergence raises intriguing questions about
the underlying mechanisms of DenseNet’s learning
process and its ability to classify images accurately
without apparently prioritizing the same visually
distinctive features. It suggests that DenseNet might
be leveraging more subtle, perhaps less intuitive
aspects of the images that are not immediately
obvious to human analysts.

The frequent misclassifications between BMP4
and CHIR treatments, as evidenced in our con-
fusion matrices, further underscore the challenges
in distinguishing these conditions. Heatmaps from
the VGG model, particularly Fig. 9, illustrate a
dynamic focus: early attention to the cell’s core
morphological features gradually expands to in-
clude peripheral or adjacent areas. This shift may

reflect the model’s adaptation to more nuanced,
time-evolving cellular responses not immediately
apparent in the initial stages. These observations
suggest a layered complexity in how different treat-
ments manifest in cellular morphology over time.
The initial model focuses on central cell features,
followed by a broader consideration of surrounding
areas, hints at a temporal dimension in cellular
response patterns that models begin to recognize
and attempt to decode.

B. Temporal Approach Results

Our experimental setup was designed to rig-
orously evaluate the performance of both non-
temporal and temporal models in classifying cell
colony images across a series of developmental
stages represented by timestamps. To this end, we
utilized a set of pre-trained models for non-temporal
classification tasks and adapted temporal mod-
els—LSTM, R-Transformer, and ViVit—for a com-
parative analysis. For LSTM and R-Transformer, we
extracted features and input a sequence of features
for the sequence of images to the network, whereas
ViVit directly processed sequences of images as
input. For LSTM and R-Transformer, we opted for
feature extraction using VGG16, a decision under-
pinned by experimental observations that VGG16
generally outperforms DenseNet as a feature ex-
tractor. This preference is further supported by
heatmap analyses V-A4, which suggest VGG16’s
superior capability in highlighting relevant features
for classification tasks.

Tables V and VI present a comparison of model
accuracies across various timestamp ranges of cell
colonies. For non-temporal models (DenseNet and
VGG16), the accuracies reported are the average
performances for each of the models within each
specified timestamp range. In contrast, for tempo-
ral models, including LSTM, R-Transformer, and
ViVit, we have a single model for each timestamp
range, to ensure a balanced comparison, the accu-
racies for these models are averaged over multiple
runs. For enhanced clarity, the highest accuracy
within each timestamp range is highlighted in the
tables.
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Confusion Matrix for timestamp 1

True labels
DS CHIR BMP4
o o

DS+CHIR
o

BMP4 CHIR DS+CHIR
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Predicted labels

confusion matrice at timestamp 1

Confusion Matrix for timestamp 160

True labels
CHIR BMP4

DS+CHIR

CHIR

Ds DS+CHIR
Predicted labels

confusion matrice at timestamp 160

Fig. 7: Example of DenseNet model’s confusion matrices

TABLE IV: Misclassified Classes from timestamps 1, 40, 80, 120, 160, 200, 240, 280, 289 from all
models. (Note: that the total column represents the total number for all timestamps instead of the shown

ones, thus it is not the sum of the row)

Misclassified Pair/Count Timestamps Total
1 40 | 80 | 120 | 160 | 200 | 240 | 280 | 289
WT vs. BMP4 11 7 13 0 2 0 0 0 0 1133
WT vs. CHIR 14 ] 14 | 8 1 0 0 0 1 2 1301
WT vs. DS 0 0 0 2 0 0 2 0 1 136
WT vs. DS+CHIR 0 0 0 0 1 1 7 10 9 459
BMP4 vs. CHIR 14 15 7 4 8 13 8 5 8 2863
BMP4 vs. DS 1 2 0 0 0 0 0 0 0 40
BMP4 vs. DS+CHIR 3 0 0 0 0 0 4 5 0 544
CHIR vs. DS 6 1 0 0 0 0 0 0 0 127
CHIR vs. DS+CHIR 14 15 17 4 0 0 1 8 7 2248
DS vs. DS+CHIR 14 ] 2 0 0 1 0 0 1 2 211
Total 77 | 56 | 45 11 12 14 22 30 29 -

1) Temporal Models Exhibit Early Strength:
Analysis of average accuracies over timestamp
ranges reveals a distinctive pattern: temporal models
generally achieve higher accuracy in the earlier
stages of cell development (Tables V and VI).
For example, in the initial 1-20 timestamp range,
LSTM and R-Transformer models demonstrate a
notable advantage over their non-temporal coun-
terparts. This suggests that temporal models are
particularly adept at capturing the subtle dynamics

and changes
development.

occurring in the early stages of cell

2) Non-Temporal Models Gain in Later Stages:
As cell colonies progress through their develop-
mental stages, the advantage of temporal models
diminishes. In later timestamp ranges, non-temporal
models, particularly DenseNet, consistently out-
perform temporal approaches. This shift could be
attributed to the evolving complexity of cellular
features, which become more pronounced and eas-
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TABLE V: Comparison of Average Accuracy Over Timestamp Ranges for VGG16, LSTM and R-
Transformer and ViVit

Timestamp Range/ | Non Temporal Temporal

Model VGG16 LSTM  R-Transformer ViVit
1-20 86.9048 85.1063 83.6879 82.2695
21-40 83.3333 82.2695 84.3972 82.9787
41-60 80.9524 83.6879 85.8156 88.6525
61-80 83.3333 88.6525 87.9433 87.2340
81-100 82.1429 87.2340 88.6525 89.3617
101-120 84.1270 95.0355 92.9078 87.2340
121-140 90.8730 97.8723 94.3262 93.6170
141-160 83.3333 91.4894 90.780 90.0709
161-180 84.5238 90.7801 95.7447 89.3617
181-200 89.2857 90.0709 90.0709 87.2340
201-221 95.2381 95.0354 93.6170 87.9433
221-240 94.0476 88.6525 92.1986 90.7801
241-261 96.0317 87.2340 87.2340 97.8723
261-281 92.4603 85.8156 90.7801 88.652
281-289 85.1852 82.9787 85.1064 85.1064
130-220 88.7363 93.6170 95.0354 94.3262

TABLE VI: Comparison of Average Accuracy Over Timestamp Ranges for DenseNet, LSTM, R-
Transformer and ViVit

Timestamp Range/ | Non Temporal Temporal

Model DenseNet LSTM  R-Transformer ViVit
1-20 82.5397 85.1063 83.6879 82.2695
21-40 82.9365 82.2695 84.3972 82.9787
41-60 79.3651 83.6879 85.8156 88.6525
61-80 90.8730 88.6525 87.9433 87.2340
81-100 88.4921 87.2340 88.6525 89.3617
101-120 90.4762 95.0355 92.9078 87.2340
121-140 94.0476 97.8723 94.3262 93.6170
141-160 93.2540 91.4894 90.780 90.0709
161-180 95.2381 90.7801 95.7447 89.3617
181-200 97.2222 90.0709 90.0709 87.2340
201-221 95.6349 95.0354 93.6170 87.9433
221-240 96.8254 88.6525 92.1986 90.7801
241-261 98.8095 87.2340 87.2340 97.8723
261-281 96.8254 85.8156 90.7801 88.6525
281-289 94.4444 82.9787 85.1064 85.1064

130-220 95.2380 93.6170 95.0354 94.3262
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d

(a) Heatmaps for DenseNet from timestamps 160, 180, 220

. {8,

(b) Heatmaps for VGG16 from timestamps 160, 180, 220

Fig. 8: DenseNet vs. VGG heatmaps on the same set of correctly predicted images

(a) Heatmaps for BMP4 that are mistakenly classified as CHIR from timestamps 130, 200, 260

-

.P

(b) Heatmaps for CHIR that are mistakenly classified as BMP4 from timestamps 141, 180, 254

Fig. 9: Heatmaps for misclassification pair BMP4 vs. CHIR

ier for non-temporal models to discern individually.
DenseNet, the best-performing single model, show-
cases superior overall accuracy across the majority
of timestamp ranges, affirming its robustness in
identifying diverse cellular states as they become
more distinct.

Furthermore, an intriguing pattern emerged dur-
ing our analysis, particularly with temporal models
such as R-Transformer and ViVit. These models
consistently identified BMP4 vs. CHIR treatments
as their sole significant challenge, leading to mis-
classifications. As illustrated in the confusion ma-
trix in Fig. 10, this specific pairing was the only

one that consistently confused the models across
most timestamp ranges. This unique misclassifi-
cation points to a pronounced similarity between
BMP4 and CHIR treatments, which, notably, was
not as perplexing for non-temporal models like
DenseNet. DenseNet’s ability to accurately distin-
guish between these two treatments in later times-
tamps—where temporal models continued to strug-
gle—highlights a discernible gap in the models’ ca-
pabilities. This singular misclassification challenge
raises pivotal questions about the distinctive fea-
tures that DenseNet may be leveraging to achieve its
classification success, underscoring a critical area
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Confusion Matrix for timestamp 130-220

True labels

DS CHIR BMP4

o N
N
o
o
o
-
15

DS+CHIR
o

BMP4 CHIR DS+CHIR wT

Ds
Predicted labels

Fig. 10: An example of a confusion matrix for
timestamp ranges 130-220 for ViVit

for future research to refine the sensitivity of tem-
poral models to the nuanced differences between
such closely related treatments.

VI. DISCUSSION AND FUTURE DIRECTIONS

This study’s exploration into the classification of
cell colony images across various developmental
stages has underscored the nuanced capabilities of
both non-temporal and temporal models. The dif-
ferential performance of these models, particularly
in early versus later stages of cell development,
highlights the complexity of cellular evolution and
the dynamic nature of biological processes.

Notably, our findings reveal a distinct advantage
of temporal models in capturing the early dynamics
of cell development, an area ripe for further explo-
ration. This early-stage sensitivity could be pivotal
in applications requiring early detection of cellular
changes, such as in disease diagnosis or monitoring
the efficacy of treatments.

In our analysis, DenseNet’s high classification
accuracy presents a paradox when juxtaposed with
its heatmap analysis, which does not consistently
align with human visual interpretations. This dis-
crepancy raises critical questions about the nature of
features DenseNet leverages for its predictions. Un-
like human observers who may rely on recognizable
morphological traits, DenseNet might be identifying

and utilizing more abstract or subtle features not
immediately apparent to researchers. The consistent
misclassification of BMP4 and CHIR treatments
by temporal models, yet their clear distinction by
DenseNet in later stages, raises important questions
about the models’ feature prioritization and learning
mechanisms. Future studies should aim to delve
into the interpretability of these models, poten-
tially through techniques like layer-wise relevance
propagation or feature visualization, to uncover the
underlying features that drive model decisions.

VII. CONCLUSIONS

Our comprehensive analysis has demonstrated the
potential of machine learning techniques, both non-
temporal and temporal, to significantly advance our
understanding of cellular dynamics. By leverag-
ing state-of-the-art models and innovative sequence
modeling techniques, we have provided new in-
sights into the behavior of cell colonies over time,
contributing to the broader field of computational
biology.

Future research should focus on enhancing the
interpretability of these models, exploring hybrid
approaches that combine the strengths of both non-
temporal and temporal models, and extending the
application of these findings to practical biological
and medical challenges. The journey towards fully
understanding cellular evolution is complex and
multifaceted, and this study represents a significant
step forward in that ongoing exploration.
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