

1 **Reconfigurable multi-component nanostructures built from DNA origami voxels**

2 Minh Tri Luu^{1,2,3,4}, Jonathan F. Berengut^{1,4,5,6}, Jasleen Kaur Daljit Singh^{1,3,4}, Kanako Coffi Dit
3 Glieze^{1,4}, Matthew Turner¹, Karuna Skipper^{1,4}, Sreelakshmi Meppat^{1,4}, Hannah Fowler⁷, William
4 Close⁸, Jonathan P.K. Doye⁷, Ali Abbas^{3,4}, Shelley F.J. Wickham^{1,2,4}

5 ¹ School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia

6 ² School of Physics, The University of Sydney, Sydney, NSW 2006, Australia

7 ³ School of Chemical Engineering, The University of Sydney, NSW 2006, Australia

8 ⁴ The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia

9 ⁵ EMBL Australia Node for Single Molecule Science, School of Biomedical Sciences, University of
10 New South Wales, Sydney 2052, Australia

11 ⁶ ARC Centre of Excellence in Synthetic Biology, University of New South Wales, Sydney, Australia

12 ⁷ Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford,
13 Oxford, UK

14 ⁸ Australian Centre for Microscopy & Microanalysis, The University of Sydney, Sydney, NSW 2006,
15 Australia

16 E-mail: shelley.wickham@sydney.edu.au

17 Phone: +61 2 9351 3366

18 **Abstract**

19 In cells, proteins rapidly self-assemble into sophisticated nanomachines. Bio-inspired self-assembly
20 approaches, such as DNA origami, have achieved complex 3D nanostructures and devices. However,
21 current synthetic systems are limited by lack of structural diversity, low yields in hierarchical
22 assembly, and challenges in reconfiguration. Here, we develop a modular system of DNA origami
23 ‘voxels’ with programmable 3D connections. We demonstrate multifunctional pools of up to 12
24 unique voxels that can assemble into many shapes, prototyping 50 structures. Multi-step assembly
25 pathways with sequential reduction in conformational freedom were then explored to increase yield.
26 Voxels were first assembled into flexible chains and then folded into rigid structures, increasing yield
27 100-fold. Furthermore, programmable switching of local connections between flexible and rigid states
28 achieved rapid and reversible reconfiguration of global structures. We envision that foldable chains
29 of DNA origami voxels can be integrated with scalable assembly methods to achieve new levels of
30 complexity in reconfigurable nanomaterials.

31

32 A key goal in molecular self-assembly is to build synthetic systems approaching the complexity of
33 the molecular machines found in living cells, with emergent functions such as chemotaxis and
34 adaptation.^{1,2} The fundamental challenge is to achieve efficient self-assembly with high stability while
35 also allowing for rapid transitions between different states and functions. Synthetic self-assembly has
36 achieved remarkable advances, including supramolecular switches and materials,^{3,4} *de novo* design of
37 proteins,^{5,6} and functional molecular devices and crystals made from DNA.^{7–12} However, many
38 biologically inspired self-assembly strategies are yet to be fully explored. Biology exploits
39 multifunctionality, from the pluripotency of stem cells at the macroscale to the reuse of protein motifs
40 at the molecular level.¹³ Properties such as funnel-shaped energy landscapes, local-to-global folding
41 processes, and the use of molecular chaperones have been proposed to explain the efficiency of native
42 protein folding.^{14,15} Similarly, recent theoretical models predict that local-to-global folding of linear
43 chains could provide an effective strategy for molecular robotics.¹⁶ Here, we develop a system of
44 modular DNA nanoscale ‘voxels’ to explore these approaches to increase yield and reconfiguration
45 efficiency of multi-component nanostructures.

46 DNA is an excellent material for self-assembly of nanostructures due to its sequence-specific binding
47 and ease of both synthesis and chemical modification. Diverse self-assembly principles have been
48 demonstrated with DNA, including: algorithmic self-assembly,^{17,18} hierarchical assembly,^{19–22}
49 controlled nucleation of shapes,²³ pathways,²⁴ and micron-scale structures,²⁵ allosteric shape change
50 propagated across structures,²⁶ paper-folding,²⁷ molecular transport,¹² self-limiting growth,^{28,29} and
51 crystal growth to macroscale structures with nanoscale features.^{7,11}

52 One of the most robust and frequently used approaches is the DNA origami method,^{30,31} where a long
53 single-stranded DNA (ssDNA) scaffold is folded into diverse nanostructures cross-linked by short
54 ssDNA staple strands to form double-stranded DNA (dsDNA). DNA origami nanostructures provide
55 a 3D molecular canvas or ‘pegboard’ of addressable pixels that allow for the spatial arrangement of
56 guest molecules^{11,19,20,25,32–35} and reconfigurable interfaces for dynamic shape transformation.^{8–12,19–}
57 ^{21,25–27,32,33,35–41} However, scaling up DNA nanostructures in size and complexity is essential for
58 advanced applications and is limited by the finite length of the scaffold strand (<~10,000 nucleotides
59 (nt)) used in DNA origami, typically derived from the ssDNA genome of the M13 bacteriophage.

60 Hierarchical assembly of DNA origami subunits is a potential solution to scaffold size limits, but is
61 currently hampered by low yields in 2 dimensions,^{19,27} lack of rigidity in 3 dimensions,^{21,25,41,42} the
62 high cost of many unique DNA strands,⁴³ and laborious processes to achieve new shapes such as
63 redesign,²⁸ reassembly,²⁵ or stepwise remixing¹⁹ of components. Many current approaches also rely
64 on fixed binding interactions between subunits with a high degree of stability,^{19,20,25} whereas
65 reconfiguration typically requires flexible elements and reprogrammable interfaces.^{27,36–38}

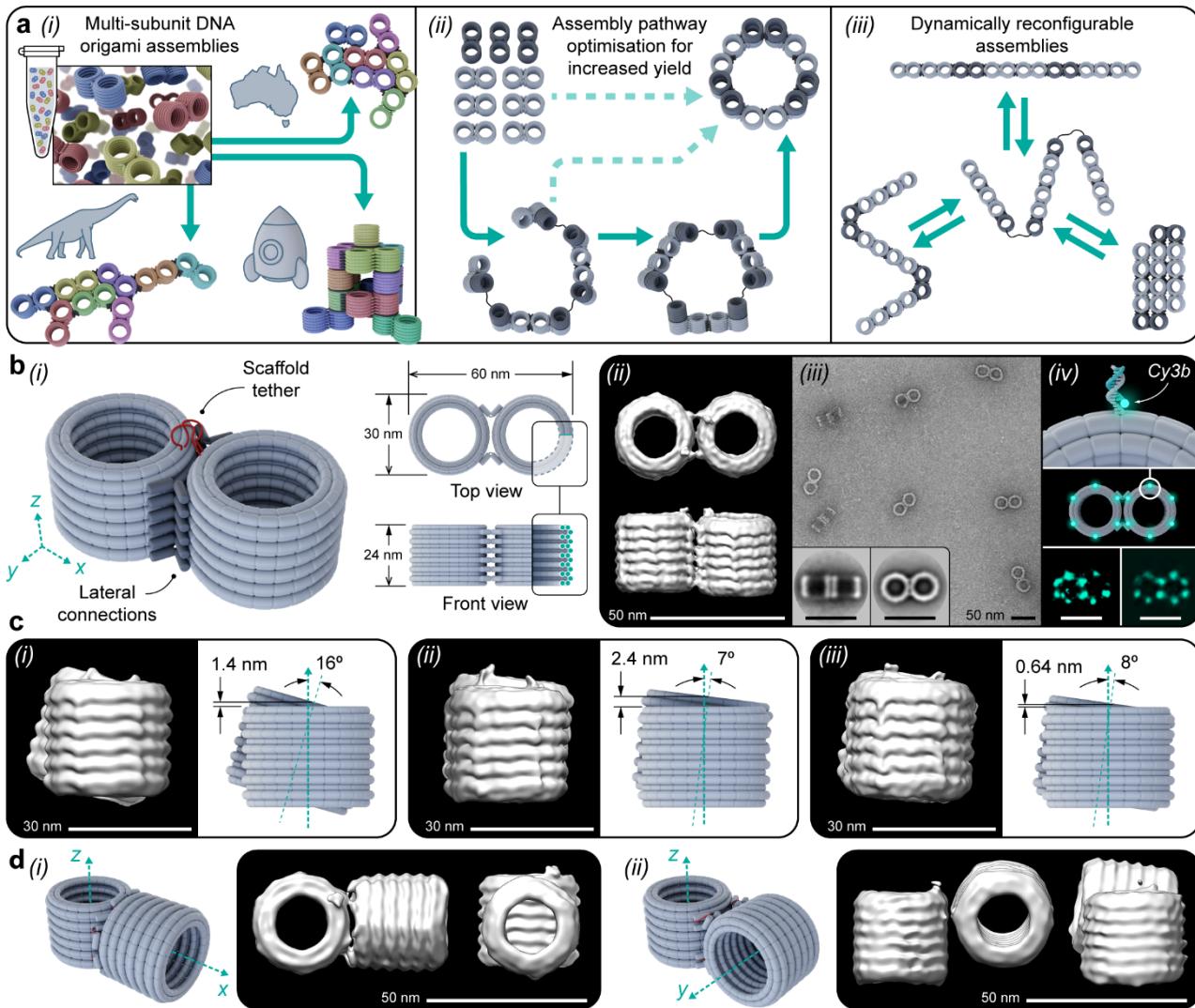
66 Here, we present a set of 3-dimensional DNA nanostructure ‘voxels’ with internal and external
67 connections that can be switched between inactive, rigid, and flexible states. DNA voxels are
68 combined to form a multipurpose pool of components for assembly of diverse 2- and 3-dimensional
69 hierarchical assemblies without redesign, refolding, or remixing of voxels. We then use the DNA
70 voxels to explore stepwise assembly pathways involving folding of flexible DNA voxel chains, to
71 improve assembly yield and achieve fast and reversible reconfiguration (Fig.1a).

72 **Construction of rigid DNA origami voxels**

73 The hierarchical DNA origami assembly system described here builds on an existing DNA barrel
74 design.²⁰ The barrel is selected because it is rigid, high yield, does not form nonspecific aggregates
75 though DNA blunt-end stacking, can polymerise along its coaxial axis, and can be used to template
76 other materials on both inside and outside surfaces.^{32,44,45,20} Here, we extend this by building a new
77 monomer composed of two barrel subunits folded from the same scaffold and linked by a flexible
78 scaffold tether. The monomer has 12 external interfaces for connections to tile 3D space (Fig. 1b).
79 Each barrel forms an addressable ‘voxel’ in the 3D superstructure that can be specifically modified to
80 host different molecular guests.

81 Intra-monomer lateral connections between barrels are formed by ssDNA ‘connector’ strands that
82 hybridize to ssDNA ‘plugs’ extending laterally from the side of each barrel, crosslinking the two
83 barrels (Fig. 1b, Supplementary Figs 1,2). The interface consists of 24 7-nt plugs arranged in 2 vertical
84 arrays with ~15 nm spacing (Supplementary Fig. 3). Connectors consist of domains complementary
85 to plugs on adjacent barrels separated by a 4-thymine (T) spacer or ‘hinge’. All 24 plug sequences are
86 unique, and each interface has 12 unique 32-nt connector strands.

87 Negative-stain Transmission Electron Microscopy (TEM), cryo-Electron Microscopy Single Particle
88 Analysis (cryo-EM), and DNA points accumulation for imaging in nanoscale topography (DNA-
89 PAINT) were used to confirm the monomer structure (Fig 1b; Supplementary Figs 4-10,
90 Supplementary Table. 1). TEM 2D class averages give monomer dimensions of 28 ± 1 (width) by 56
91 ± 1.5 (length) by 19 ± 3 (height) nm, in good agreement with design dimensions of $30 \times 60 \times 24$ nm
92 estimated using caDNAno software (helix width 2 nm, 0.34 nm/base pair).⁴⁶ Measured spacing of
93 docking sites in DNA-PAINT particle averages is 15 ± 0.7 nm (N = 5), in agreement with design
94 spacing of 15 nm.


95 Cryo-EM reconstructions provide insight into the interface geometry (Fig. 1b(ii) and Supplementary
96 Fig. 6-8, gold-standard Fourier shell correlation (GSFSC) resolution 17.83 - 19.25 Å). Unintended
97 translational and rotational shifts were observed between the 2 subunits of the monomer (Fig. 1c,
98 Supplementary Fig. 6-8 and 11). Coarse-grained simulations using oxDNA^{47,48} predict that connector

99 strands will form straight helices instead of bent hinges (Supplementary Fig. 12), leading to global
100 monomer twist. Increasing the poly-T hinge predicted reduced twist but increased angular spread in
101 oxDNA simulations, which would likely result in less rigid monomers (Supplementary Fig. 13-17 and
102 Supplementary Table. 1). Instead, alternating patterns of inward and outward pointing hinges were
103 tested experimentally. Vertically alternating hinge directions were found to result in the smallest twist
104 and vertical shift (Fig. 1c(iii), Supplementary Note 1 and Supplementary Fig. 8). Alternative monomer
105 geometries were also developed where the coaxial axes of the barrel subunits point in different
106 directions, z-y, and z-x (Fig. 1d, Supplementary Fig. 18-22).

107

108

109

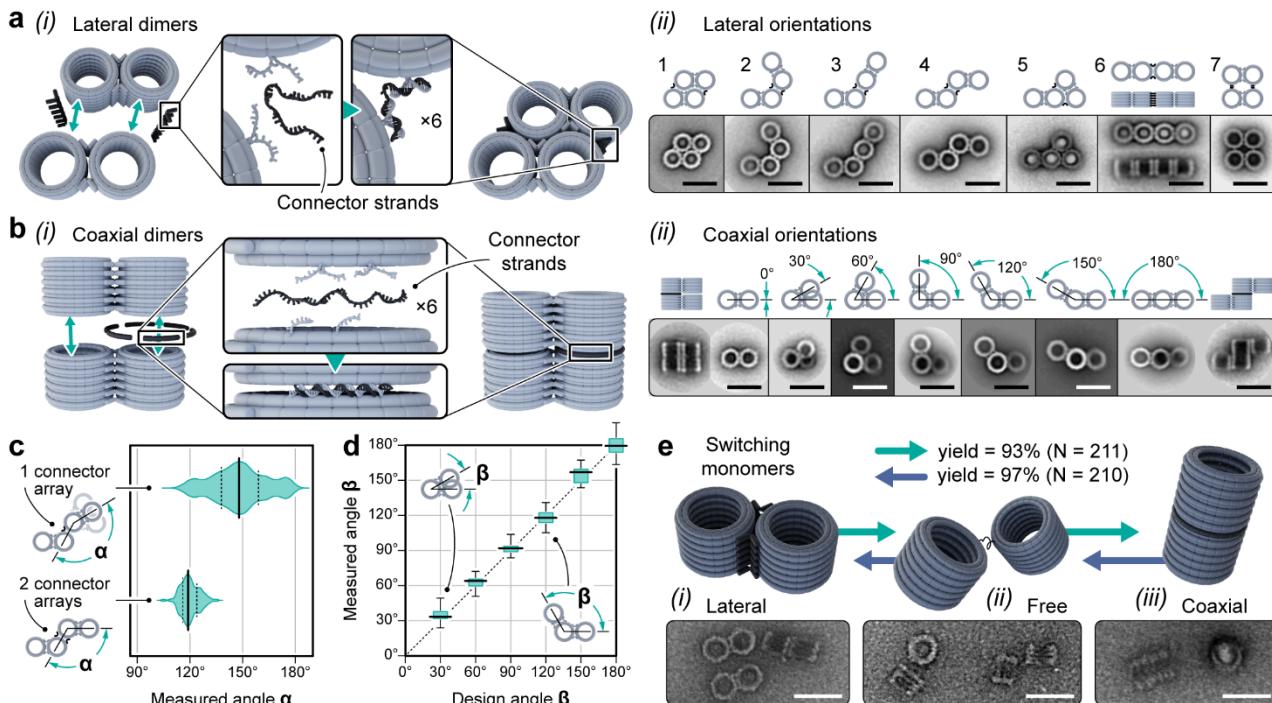
110

111 **Figure 1: DNA origami monomers consist of two barrels, or ‘voxels’, linked together by rigid or**
 112 **flexible connections. a (i)** Multiple shapes can be assembled from the same monomer pool by
 113 addition of different ssDNA connector strands, **(ii)** sequential addition of connector strands guides
 114 assembly pathways, **(iii)** toehold-mediated strand displacement of connector strands triggers dynamic
 115 reconfiguration. **b (i)** DNA origami monomer showing rigid intra-monomer connections (dark grey)
 116 and flexible scaffold tether (red); **(ii)** cryo-EM reconstruction ($N = 3449$); **(iii)** TEM and 2D class
 117 averages ($N_{front} = 112$, $N_{top} = 166$); **(iv)** DNA-PAINT reconstruction, top and middle: 12 docking
 118 strands hybridize fluorophore-labelled imager strands, bottom: example particle (left) and average
 119 (right, $N = 10$). **c** cryo-EM reconstructions ($N = 7125$, 3647 , 3449 , GSFSC resolution = 17.88 Å,
 120 17.83 Å, 19.25 Å respectively) show that **(i)** inward hinges result in 16° twist, **(ii)**, horizontally
 121 alternating inward and outward hinges reduce twist but increase vertical offset to 2.4 nm, **(iii)**
 122 vertically alternating inward and outward hinges give lowest twist (8°) and offset (0.64 nm). **d** cryo-
 123 EM reconstruction of alternative intra-monomer interface designs with coaxial-axes in **(i)** z-x, and **(ii)**
 124 z-y directions ($N = 1999$, 3928 , and GSFSC resolution = 18.54 Å, 23.5 Å respectively). Scale bars in
 125 c 30 nm, all others 50 nm.

126 **Multi-component lateral and coaxial assembly of voxels**

127 Voxels are assembled *via* inter-monomer lateral and coaxial connections (Fig. 2a, b). Unique
128 monomers (Fig 1a. colours) are defined by 96 unique lateral plug sequences and 72 unique coaxial
129 plug sequences (1212 nt), while core staple and miniscaf sequences are repeated (8952 nt, 88%). This
130 approach allows for efficient reuse of most middle-inner staples and all miniscaf strands in all
131 monomers (4848 nt, 49%). Voxels are folded in separate reactions, allowing for fully addressable
132 modification of both interface and core sequences during monomer folding. Lateral connections are
133 based on the intra-monomer design (Fig. 2a, Supplementary Fig. 23), while coaxial connections are
134 based on previously published designs²⁰ (Fig. 2b, Supplementary Fig. 24).

135 Connector strands were designed to successfully assemble all 14 uniquely identifiable dimers
136 (Supplementary Note 1). Gel analysis was used to determine dimer band yield relative to the whole
137 lane, then TEM was used to evaluate geometry and rigidity (Fig. 2a, b, Supplementary Figs. 25-54).
138 All 7 lateral dimers had high yields (81% to 91%), while yields for the 7 coaxial dimers were slightly
139 lower (45% to 86%) and depended on the connector sequence set (Supplementary Fig. 38). Using 2
140 coaxial connection sets instead of 1 increased yield, for example from 47% to 78% for the lowest
141 yield connector set (Supplementary Fig. 55). Only the target dimer geometry was observed in TEM
142 images for all designs indicating specificity of barrel connections. Reference-free 2D class averages
143 were generated for TEM images using automated particle selection with no particles discarded,
144 resulting in a small number of classes (n = 1-3). The fine structural detail visible in class averages
145 shows particle uniformity and lack of deformation in dry state, providing evidence of rigidity (Fig.
146 2a). In some cases, blurred regions of class averages indicate flexibility or instability (e.g. lateral
147 dimer 5, Supplementary Fig. 31).


148 A detailed analysis of the flexibility of lateral interfaces was performed for the ‘wave’ (Dimer 4),
149 comparing one and two vertical connector arrays. The angular spread ($\Delta\alpha$, s.d.) was found to reduce
150 3-fold from 15.4° for one array, to 5.2° for two, indicating an increase in rigidity (Fig. 2c). The single
151 array had a higher average angle (148°), indicating that when flexible the hinge prefers to swing
152 ‘closed’, likely caused by a combination of local blunt-end stacking within connectors and steric
153 repulsion between barrels (Supplementary Fig. 13). The precision of rotational shift was also tested
154 for the 7 coaxial dimers, in 30° rotation steps (β) from 0° to 180° (Fig. 2d). The observed rotation
155 agreed with designed values, with low angular spread ($\Delta\beta = 1.1^\circ - 9^\circ$) indicating rigidity.

156 To enable switching by strand displacement, intra-monomer connector strands were designed with
157 additional unique 7-nt toehold domains. ‘Invader’ strands, complementary to both toehold and
158 connector domains, are added to displace connectors by toehold mediated strand displacement

159 (TMSD)⁴⁹. Monomers are then in a ‘free’ state where subunits can reorient but remain tethered
160 allowing new structures to form on additions of alternative connector sets (Supplementary Figs. 56-
161 61). Invader and alternative connector strands were added simultaneously in one step and switching
162 yields were high (93 - 97%, 0.5 nM, Fig. 2e and Supplementary Figs. 59, and 60). However, at higher
163 monomer concentrations (1 nM), the switching yield decreased to 75% due to increased dimerization
164 (25%, Supplementary Fig. 61).

165

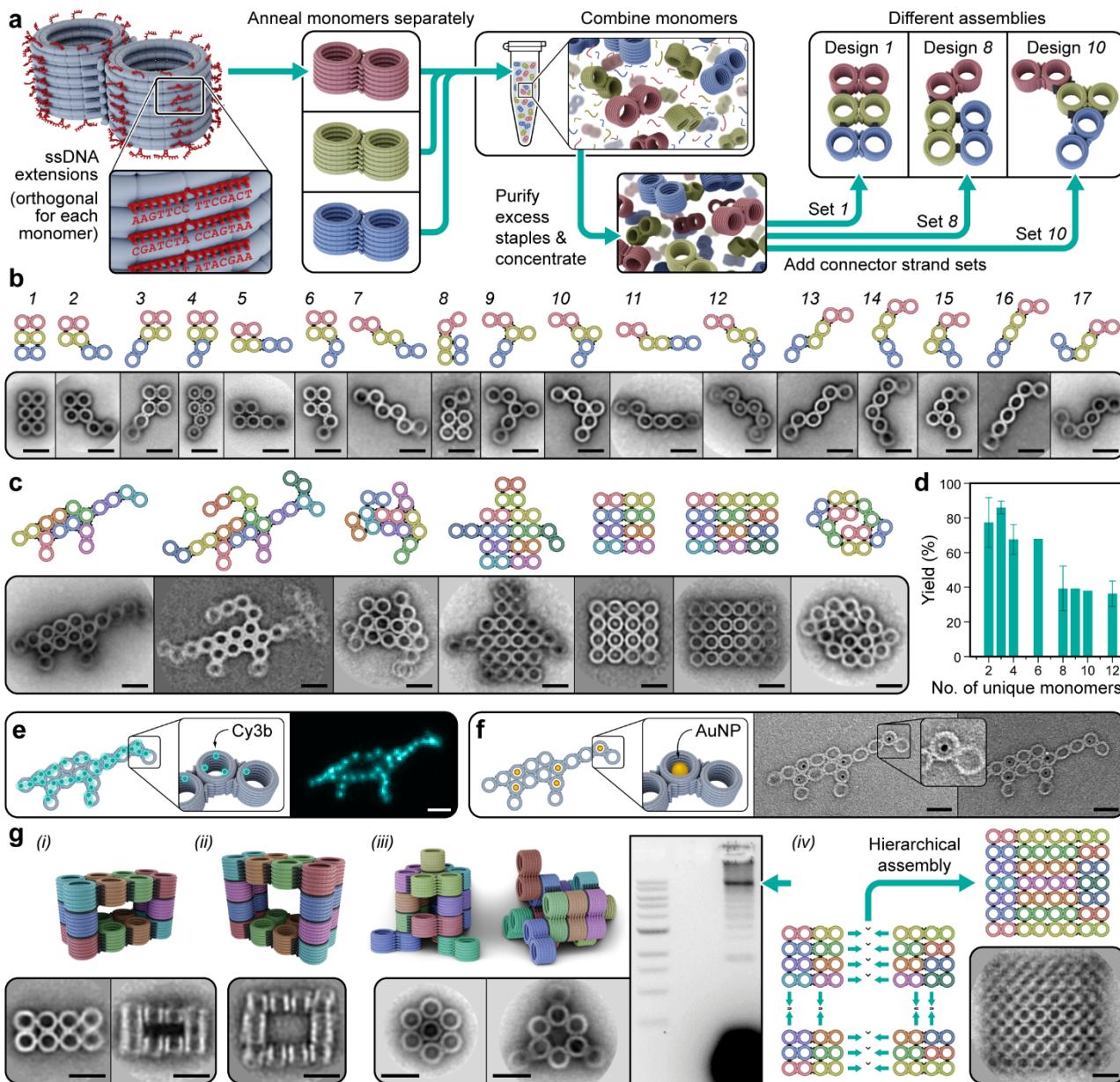
166

167

168 **Figure 2: Programmable rigid connections between monomers.** **a (i)** Lateral connections in x - y
169 are formed by hybridization of connector strands to 7-nt plugs extending from outer helix staples, **(ii)**
170 7 unique lateral dimers. Top row: 2D models, bottom row: TEM class averages (left to right: $N = 39$,
171 90, 37, 110, 24, 72, 30, 89). **b (i)** Coaxial connections in z are formed by connector strands hybridising
172 to plugs extending from middle helix staples, **(ii)** 7 unique coaxial dimers. Top row: 2D models,
173 bottom row: TEM class averages (from left to right: $N = 58, 29, 29, 30, 95, 303, 218, 257, 88$). **c**
174 Comparison of lateral dimer designs with one or two vertical arrays of connectors, the distribution of
175 angles is smaller for the two-array design and the one-array design has a larger preferred angle. Angles
176 measured from individual particles in TEM images ($N = 120, 103$). **d** Comparison of design and
177 measured angle of the coaxial dimers in (b), angles measured from TEM particles (left to right: $N =$
178 60, 37, 41, 31, 18, 26). **e** DNA strand displacement triggers reversible switching of monomers between
179 lateral and coaxial states, with forward and reverse yields of 93% and 97% respectively. Connector
180 strands have a 7-nt toehold, a one-step process involves simultaneous addition of invader strands to
181 remove existing connectors and new connector strands. Yields are calculated from TEM images. All
182 scale bars 50 nm.

183

184 **Multifunctional monomer pools for 2D and 3D superstructures**


185 A key goal of our design approach is to exploit the multifunctionality of a single set of monomers to
186 rapidly prototype many different shapes. Starting with 3 unique monomers (Fig. 3a), monomers were
187 initially folded separately then combined into a pool with equal concentrations and purified. The
188 purified pool was divided into sub-pools and different connector strand sets were added to
189 successfully construct 17 different trimers (Fig. 3b). Class averages show accurate shapes with good
190 uniformity ($n = 1-4$ classes), while assembly yields were high (gel yield, average $86.1 \pm 3.7\%$, Fig.
191 3b and Supplementary Fig. 62). TEM images show only the correct geometry forms (Supplementary
192 Figs. 63 - 96). We found that minimising the monomer twist (Fig. 1c) was essential to achieving
193 accurate assembly of larger structures (Supplementary Note 1).

194 To demonstrate increased complexity, pools of up to 12 unique monomers were used to construct
195 arbitrary 2D shapes, including 3 8-mers: dinosaur, Australia, rectangle, and 3 12-mers pool: dragon,
196 robot, square (Fig. 3c, Supplementary Note 1, Supplementary Figs. 99 - 112). It was also possible to
197 form 8-mer shapes, such as the dinosaur, from a 12-mer pool. TEM images confirm particles have the
198 correct geometry. Generally, resolution of class averages and hence rigidity was observed to be higher
199 for regions with more adjacent monomers (Fig. 3c). For example, monomers in the dinosaur body are
200 connected to 3 adjacent monomers and have high resolution in the class average, indicating rigidity.
201 The head monomer connects to 1 adjacent monomer and has lower resolution, indicating flexibility.
202 In agreement with previous studies¹⁹, a sharp decrease in yield of $78 \pm 14\%$ to $36 \pm 7\%$ was observed
203 from 3- to 12-mers (Fig. 3d). Addressability of voxels in the resulting hierarchical assembly was
204 confirmed using DNA-PAINT (Fig. 3e and Supplementary Fig 113). Lastly, we demonstrated a
205 potential templating application by successfully patterning 10 nm gold nanoparticles inside specific
206 voxels (Fig. 3f and Supplementary Fig 114).

207 Multifunctional voxel pools were then used to build more complex 3D shapes. Hollow 3D ‘boxes’
208 demonstrate cavity size control, a useful feature for templating nanoparticle assembly. Class averages
209 of small and large box show cavity sizes with potential to capture spherical 20 and 40 nm
210 nanoparticles, respectively (Fig. 3g(i,ii), Supplementary Fig 115-120). A 3D rocket ship was designed
211 on a hexagonal lattice to test greater asymmetry (Fig. 3g(iii), and Supplementary Fig 121 - 123).
212 Several design iterations were explored to optimize the connection pattern and resulted in an increase
213 in yield from 5% to 33% of the 12-mer (gel yield, Supplementary Fig. 124). However, while class
214 averages for subcomponent 4- and 8-mer rings show the correct structures by TEM (Fig. 3g(iii), and
215 Supplementary Fig 125-127), the complete 12-mer collapsed under dry TEM conditions (Fig. 3g(iii)).
216 Fractal, or multi-step, assembly strategies previously developed¹⁹ were also used to construct a 28-

217 mer rectangle from 2×8 -mer and 2×6 -mer sub-units (Fig. 3g(iv) and Supplementary Fig 128-129)
218 and a ‘swirl’ by homo-dimerization of 4-mers (Supplementary Fig. 111).

219

220

221 **Figure 3: Multifunctional monomer pools assemble diverse 2D and 3D shapes. a** Workflow to
222 build different shapes from the same set or ‘pool’ of monomers. Left to right: unique monomers have
223 unique plug sequences and reuse core sequences, are folded separately, combined, and purified as a
224 monomer pool. The specific connector strand sets added determine the final structure. **b** Seventeen
225 trimer assemblies built from the same trimer pool in (a), top row: rendered model and bottom row:
226 TEM class averages with N (left to right) = 133, 74, 73, 82, 31, 99, 48, 51, 21, 38, 32, 32, 43, 38, 46,
227 36, 34, and 37. **c** Models and class averages of larger assemblies built from the 8 or 12 monomer pools
228 with N (left to right) = 21, 11, 11, 11, 22, 21, and 21. **d** Assembly yield decreases with number of
229 unique monomers, N (number of designs) = 14, 18, 3, 1, 3, 1, and 6, respectively. **e** DNA-PAINT of
230 the dinosaur shape. Left to right: fully addressable pattern of DNA PAINT docking handles, and
231 particle average ($N = 10$). **f** Gold nanoparticle patterning. Left to right: addressable pattern of gold
232 nanoparticles, and TEM images. Selected monomers are folded with ssDNA handles on the inner

233 surface to hybridise with ssDNA-conjugated 10 nm gold nanoparticles. **g** Scale up of assembly
234 complexity and size. Model and class average for: (i) Small-cavity 3D box ($N = 27$), and (ii) Large-
235 cavity 3D box ($N = 10$). (iii) A 12-mer 3D shape resembles a rocket. TEM class averages of the tip
236 ($N = 16$) and base ($N = 33$) segments, and agarose gel electrophoresis result for entire structure
237 showing optimised assembly yield of 12-mers. (iv) Fractal assembly process and class average of 28-
238 mer rectangle ($N = 25$). In the first stage, monomers were assembled into 8-mer and 6-mer square
239 and rectangles, respectively, then combined to form a fully addressable 28-mer rectangle, 210 x 240
240 x 30 nm. Scale bars 50 nm.

241

242

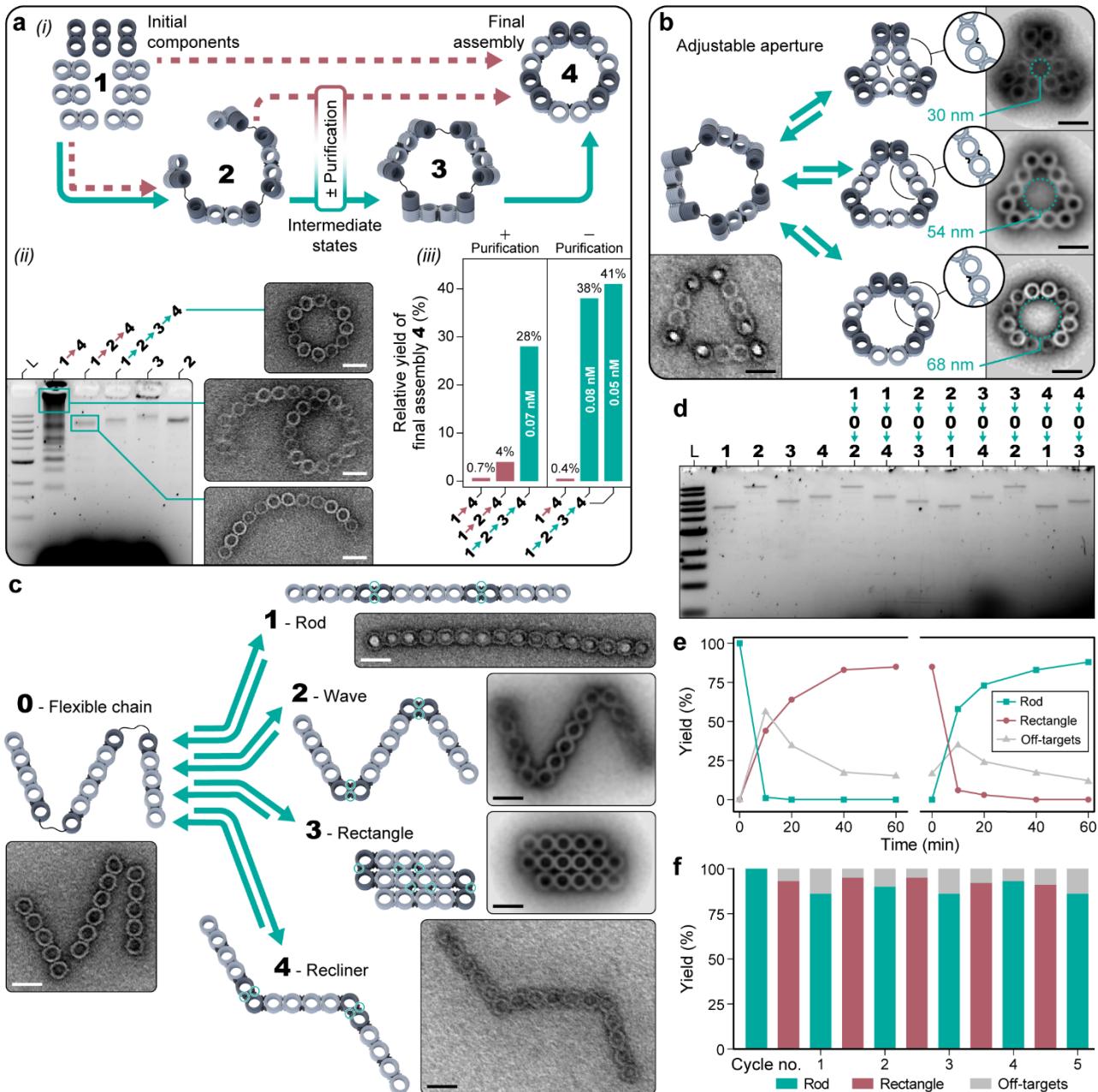
243 Improving assembly yield by folding monomer chains

244 Our results (Fig. 3d) and others¹⁹ show larger multi-component origami structures have decreasing
245 yield (Supplementary Note 2), limiting potential applications. However, for a given monomer number
246 some designs had higher yields (Fig. 3d), and monomer reconfiguration had high yields (93 - 97%,
247 Fig. 2e). This suggests assembly paths with efficient transitions between high-yield intermediate or
248 ‘precursor’ structures may improve yield.

249 A 9-mer 3D circle (Fig. 4a(i), structure ‘4’) was selected for pathway optimisation because single-
250 step yield was very low (gel yield < 0.4%, Fig. 4a(iii)), with no correct circles found in TEM images.
251 Instead, images of single-step products show polymer spirals (Fig. 4a(ii)). The single-array interfaces
252 used in the circle have a preferred angle of $150 \pm 15^\circ$ in dimers (Fig. 2c), but here are required to
253 form a 120° angle, potentially leading to strain that inhibits ring closing (Supplementary Fig. 130 -
254 132). Insight from supramolecular chemistry suggests that high-dilution conditions would shift
255 assembly from polymerisation to cyclisation, however low concentration also reduces the yield of
256 inter-monomer assembly. Thus, a flexible linear ‘chain’ was selected as a high-yield precursor, with
257 higher yield double-array inter-monomer connections and flexible intra-monomer tether connections
258 (Fig. 4a, structure ‘2’, Supplementary Fig. 133 - 135).

259 The flexible linear chain was first assembled at high monomer concentration (1 nM per monomer),
260 resulting in high yield ($52 \pm 5\%$, Fig. 4a(ii)). Unpurified or gel-purified chains were then folded into
261 circles at low concentration (0.05 – 0.08 nM). While assembly yield increased 6-fold, it remained low
262 (4%, gel-purified chain). TEM images show that polymerisation was avoided, but most circles failed
263 to close. Thus, a further intermediate step of a flexible cyclized triangle was added (Fig. 4a(ii),
264 structure ‘3’), in which the stronger double array interfaces are proposed to template ring closure.
265 Finally, the flexible intra-monomer tethers were then switched to rigid connections and the double-
266 array inter-monomer connections were removed to form single-array connections (Fig. 4a(i) and
267 Supplementary Fig. 136). Remarkably, compared to a single-step the longest pathway involving 2
268 intermediate states resulted in up to 100-fold increase (unpurified chains, 0.4% to 41%, gel yield)
269 with 40-fold increase for purified chains (0.7 % to 28%, TEM yield, excluding yield of purification
270 step, Supplementary Note 4, Fig. 4a(iii), Supplementary Fig. 137-143, Supplementary Table 2).

271


272 Dynamic reconfiguration of 2D and 3D voxel assemblies

273 Folding of monomer chains was then explored for dynamic reconfiguration of 2D and 3D shapes.
274 Similarly to dimers (Fig. 2e), intra-monomer interfaces on ‘vertex’ voxels were switched between

275 flexible and rigid states by addition of invader or connector strands. The length of the ssDNA scaffold
276 tether limits the possible monomer geometries (Supplementary Fig. 144). The 269-nt tether has
277 maximum ssDNA contour length of ~180 nm, but in oxDNA simulations the tether has secondary
278 structure (Supplementary Fig. 11). Experimentally, structures with tether spacings of 7 – 33 nm
279 formed with high yields ($N_{\text{designs}} = 7$, 79 – 89%, Supplementary Fig. 144 and 146), but not for 62 nm,
280 indicating an upper limit to the tether spacing (Supplementary Fig. 144).

281 Local to global reconfiguration was then tested for the 9-mer 3D circle to achieve reversible collapse
282 and expansion of the central aperture. The flexible cyclised structure (structure ‘3’, Fig 4a) was used
283 as a transitional structure, and vertex monomers (dark grey in Fig. 4b, Supplementary Fig. 147) were
284 switched between 0°, 60° and 180°. At the same time, the inter-monomer interfaces were switched
285 between concave, straight and convex states (Fig. 4b, inset). This resulted in reconfiguration between
286 the compact triangle, equilateral triangle, and circle (Fig. 4b). Correct switching was confirmed by
287 TEM for 1-step transitions (flexible-to-rigid and rigid-to-flexible), and for an example 2-step
288 reconfiguration pathway (flexible-compact-flexible-circle) (Supplementary Figs. 148 - 159).

289 An 8-mer flexible chain with 2 vertex voxels was used demonstrate reconfiguration between 4 shapes
290 with high yield (average $85 \pm 5\%$, Fig. 4c and 4d, Supplementary Fig. 160-167). The switching yield
291 for the rod-rectangle transition was measured as function of time and ~80% yield was reached in 60
292 minutes (Fig. 4e, Supplementary Tables 3-4), a comparable timescale to previous origami multimer
293 switching results³⁹. Over 5 complete cycles between the rod (30 x 480 nm) and rectangle (90 x 180
294 nm), consisting of 10 total transitions, the yield of the target shape was consistently above 75% (Fig.
295 4f, Supplementary Tables 5-6), demonstrating repeatable high-yield reconfiguration at larger length
296 scales.

297

298 **Figure 4: Programmable reconfiguration of DNA origami voxel chains. a** Optimization of assembly
 299 yield by directing assembly pathway, left to right: (i) schematic of voxel chain folding, (ii) agarose
 300 gel analysis of different pathways (left). Only path 1-2-3-4 (lane 4) results in high yield of the correct
 301 closed circle shape as determined by TEM. TEM images of mis-folded products from path 1-4 (lane
 302 2) which results in chains or spirals, and path 1-2-4 (lane 3) which results in open shapes (right). (iii)
 303 Optimal assembly yield (unpurified chains, Supplementary Note 4) from monomers to the final shape
 304 is 100-fold higher for the path with the most sequential steps (1-2-3-4). **b** The 9-mer DNA voxel ring
 305 from (a) can also be reconfigured into 3 different shapes with central aperture diameter from 30 to 68
 306 nm. Left: TEM image of the flexible ring (state 3 from panel a), Right, top to bottom: TEM class
 307 average of compact triangle, equilateral triangle, and circle ($N = 23, 90, 24$). **c** An 8-mer flexible voxel
 308 chain can be switched between extended and compact states. Left: TEM image of the flexible chain

309 (state 0, $N = 1$), Right top to bottom: TEM image of linear rod (state 1, $N = 1$), wave (state 2, $N =$
310 30), rectangle (state 3, $N = 111$), and recliner (state 4, $N = 1$). To reconfigure reversibly between states
311 (blue arrows), invader and connector strands can be added to disrupt key interfaces (blue circles) and
312 form the new structure. **d** Agarose gel analysis of switching reactions for pairwise transitions between
313 states for the flexible chain. Invaders and connectors are added sequentially in this example so that
314 sequences can be reused. **e** Switching yield as a function of time for the rod-to-rectangle pathway (i)
315 and reverse (ii) from TEM images. In this example invaders and connectors are added simultaneously
316 as no sequences are being reused. Rate constants can be estimated as $1 \times 10^7 \text{ M}^{-1}\text{s}^{-1}$ and $2 \times 10^7 \text{ M}^{-1}\text{s}^{-1}$
317 for forward (i) and reverse (ii) transitions, respectively, assuming second order reactions. **f** Switching
318 yield for 10 consecutive steps (5 cycles) from TEM statistics ($N_{average} = 147$). Scale bars 50 nm.

319

320 Conclusions

321 While custom multi-component DNA origami assemblies can be designed with high precision for
322 specific functions, such as rotary molecular motors¹⁰ or multimaterial lattices¹¹, our multipurpose
323 voxel pools allow for more rapid prototyping of diverse shapes for new applications. Many
324 applications require optimisation of geometric parameters such as cavity size, packing geometry and
325 rigidity, at sizes greater than achieved by a single M13 scaffold (10 – 100 nm). For example, to build
326 DNA-templated inorganic crystals with dynamic optical properties requires optimisation of cavity
327 size to host nanoparticles > 50 nm for strong plasmonic effects and with periodicity on the order of
328 the wavelength of light (200 – 800 nm) for photonic applications. Another important application area
329 for multi-component DNA origami systems is as scaffolds for biophysical studies of large-scale
330 protein assemblies approaching cell size (1-10 μ m), such as chemotaxis arrays and the cytoskeleton.
331 To mimic and study these biological systems, the DNA scaffolds must combine high yield assembly
332 with rapid and efficient dynamic reconfiguration. Here we have shown that small local changes in
333 geometry can achieve rapid changes in global structure on timescales suitable for driving protein
334 reconfiguration in single-molecule biophysical experiments.

335 The foldable DNA voxel chain also provides a new system to rapidly explore a range of self-assembly
336 strategies inspired by protein folding and supramolecular chemistry. We show that assembly pathways
337 with high-yield intermediate states were able to rescue a 3D circle design from essentially zero yield
338 to a usable yield. This system has future applications in exploring how strategies such as sequential
339 reduction in conformational freedom, templating and reuse of functional motifs can be useful in multi-
340 component origami assembly. In particular, longer foldable voxel chains could be folded into complex
341 shapes, analogous to the way the ssDNA scaffold can be folded into DNA origami shapes. DNA voxel
342 chains can also be used to explore how 3D origami chain displacement can mimic DNA strand
343 displacement, similar to 1D nanorod²¹ or 2D tile displacement,³⁷ to incorporate dynamic computing.
344 Overall, we have described multipurpose pools of DNA origami voxels that serve to rapidly prototype
345 dynamic 3D multi-component DNA origami nanostructures. We envision that foldable chains of DNA
346 origami voxels can be integrated with scalable assembly methods⁴⁰ to achieve new levels of
347 complexity in reconfigurable nanomaterials.^{32,33,41,50} The voxels retain a regular arrangement of
348 addressable surface sites for positioning of nanoparticle and protein guests with high precision.
349 Interfaces are optimised for both high-yield, high-stability assembly, and rapid dynamic
350 reconfiguration, and could be adapted to respond to more varied inputs including pH, small molecules
351 and external electric and magnetic fields. Finally, foldable DNA voxel chains provide new methods
352 to increase yield by optimizing assembly pathways, opening up future applications in optical and
353 magnetic nanomaterials, single molecule biophysics, and synthetic cells.

354 **Materials and Methods**

355 **Method 1: Folding of DNA origami voxels**

356 DNA strands were purchased from IDT (Integrated DNA Technology) and resuspended in MilliQ
357 water to minimum concentration 200 μ M. Monomers were folded from 7308-nt ssDNA M13 scaffold
358 (Guild BioSciences) and 10x minimum staple excess. Each 120 μ L reaction consists of: 12 μ L of
359 scaffold (0.1 μ M), 12 μ L of core staples (1 μ M), 12 μ L of modified staples (1 μ M), and 12 μ L of
360 connector strands (1 μ M) with 12 μ L of 10xTE (100 mM Tris-HCl, 10 mM EDTA, pH 8.0), 12 μ L of
361 MgCl₂ (120 mM, final concentration 12 mM), and 48 μ L of MilliQ water. After adding all the
362 components, samples were vortexed and annealed in a PCR machine (Eppendorf Mastercycler Nexus)
363 by heating to 65°C for 15 mins and then linearly cooling from 50°C to 40°C for 18 hrs.

364 **Method 2: Gel electrophoresis of DNA voxels**

365 Agarose gel electrophoresis (Thermo Fisher Scientific, EasyCast Mini Gel Electrophoresis System)
366 was used to separate correctly assembled monomers from the folding mixture. The gel contained 1.95
367 g of agarose powder (Bioline, final concentration 1.3% w/v) in 150 mL of 0.5 x TBE buffer (50 mM
368 Tris, 50 mM Boric acid, 1 mM EDTA, 11 mM MgCl₂, pH 8.3) and 3 μ L of SYBR safe (Thermo Fisher
369 Scientific). Gels were run at 70 V for approximately 2-3 hrs at room temperature. Gel images were
370 captured using a Bio-Rad ChemiDoc imaging system with either Cy3 or SYBR safe filter setting. Gel
371 image analysis and band densitometry were carried out using Bio-Rad Image Lab software. After
372 imaging, the bands of interest were excised on a blue light transilluminator (Fisher Biotec) and the
373 nanostructure was extracted from the cut gel band using a spin filter (Bio-Rad, Freeze and squeeze
374 column) at 18,000g 20 min, 4°C. The concentration of DNA was measured on a Nanodrop
375 spectrophotometer (Thermo Fisher Scientific), and this was used to calculate concentration of
376 nanostructure given total DNA molecular weight.

377 **Method 3: Voxel purification using PEG precipitation.**

378 PEG precipitation was used to concentrate gel-purified monomers to useful concentration ranges for
379 making assemblies and to remove free DNA in solution to reduce background noise in TEM images.
380 The Mg²⁺ in DNA samples was increased to 20 mM by adding an appropriate amount of 1 M MgCl₂.
381 Equal volume of the DNA sample and 2xPEG buffer (15% 8000 PEG (w/v), 5 mM Tris, 1 mM EDTA,
382 and 505 mM NaCl) were then mixed. The mixture was briefly vortexed and then centrifuged at 16,000
383 g, 25°C, for 25 mins. The supernatant was carefully removed using a pipette followed by a second
384 centrifugation at the same setting for 4 mins to allow removal of the residual supernatant. The pellet
385 was resuspended in 15 μ L of 1xTE, 10 mM MgCl₂ for 3 hrs at 30°C on a shaker at 1000 rpm.

386 **Method 4: Voxel purification using ultracentrifugation.**

387 To purify monomers, a rate-zonal centrifugation protocol with a 15% to 45% (v/v) glycerol gradient
388 was used⁵¹. A commercial Gradient Station (BIOCOP) unit was used to prepare the glycerol
389 gradient by gently rotating a compatible tube containing two layers of 15% glycerol followed by 45%
390 (1xTE, 10 mM MgCl₂) at 20 rpm, 85° for 1 minute. The glycerol gradient was spun in a Beckman
391 SW55-Ti rotor at 55,000 rpm and 4°C for 45 minutes. After that, the gradient was fractionated into
392 100 µL fractions using an automated system of the Gradient Station equipped with UV detection at
393 260 nm. For purification of large assemblies, a longer tube compatible with the SW41 rotor was used
394 for gradient preparation. The tube was gently rotated at 15 rpm, 81.5° for 2.5 minutes and then spun
395 in a Beckman SW41-Ti rotor at 41,000 rpm and 4°C for 25 minutes. Collected fractions were loaded
396 into an agarose gel to resolve the content and determine fractions with DNA. Before TEM, one round
397 of PEG precipitation was performed on the fractions of interest to exchange the glycerol buffer for
398 1xTE, 10 mM MgCl₂ buffer. A typical fluorescent trace during the fractionating process is shown in
399 Supplementary Fig. 164.

400 **Method 5: Multi-component assembly**

401 Unique monomers were folded in separate tubes. After that, relative folding yield was determined by
402 agarose gel electrophoresis. The band intensity of an arbitrary monomer was used as a reference for
403 normalization to obtain relative folding yields of all monomers in the gel. Based on this information,
404 unpurified monomers were combined into one pool with an appropriate volume to give equal
405 monomer concentrations. Monomer pools were gel purified, and PEG precipitated to obtain purified
406 and concentrated monomer pools. A typical unoptimized yield from M13 scaffold to gel purified
407 monomer pool was 6%. For assembly, monomer pools were mixed with intra and inter-monomer
408 connector strands, 1xTE buffer, and 1 M MgCl₂ to obtain a solution containing 1 nM per unique
409 monomer, 200 nM connector strands, 1xTE and 20 mM Mg²⁺. Inter-monomer connector strands were
410 added to assemble monomers while additional intra-monomer strands were added to ensure monomer
411 structure remains rigid during this step. The assembly mixture was incubated in a PCR machine at
412 40°C for 18 hours. For some structures multiple monomer pools were used. For example, when
413 building the Rocket ship assembly, two pools were used for purification, one for lateral monomers
414 and one for the coaxial monomer, due to the very different monomer recovery yields in the PEG
415 precipitation step for these two sub-pools.

416

417

418 **Method 6: Negative-stain transmission electron microscopy (TEM) and class averages**

419 For TEM imaging a plasma-treated grid with formvar film and heavy carbon coating (Ted Pella EM
420 grids, GSCU300CH-50) was used. A 5 μ L sample was pipetted onto the grid and incubated for 1 to
421 10 minutes, depending on the concentration of the DNA nanostructures, to ensure that enough
422 particles would be present on the grid. The excess sample was blotted off with a filter paper, and 10
423 μ L of 1xTE was quickly applied to the grid and blotted again to prevent the grid from drying out.
424 Subsequently, 10 μ L of a 2% uranyl acetate solution in water was added to the grid, which was then
425 blotted immediately on a filter paper. This was done by dragging the grid horizontally on the filter
426 paper to gradually soak up the stain droplet. TEM images were acquired on a JEOL 1400 in bright-
427 field mode at an accelerating voltage of 120 kV.

428 2D particle class averages were derived from TEM micrographs using the RELION software⁵²,
429 enabling the assessment of structural attributes such as flexible and rigid areas. Particle picking and
430 2D classification were performed using RELION software, with an automated particle picking
431 algorithm (Laplacian-of-Gaussian, RELION 3.0.6) employed for small assemblies (monomer, dimer,
432 and trimer) and manual picking for larger structures. The number of resulting non-zero classes in
433 RELION 2D classification was low ($n = 1-4$), typically clearly showing distinct particle orientations
434 (top, side, reflected). To give an unbiased assessment of particle homogeneity, no particles were
435 discarded, and all class averages are shown in Supplementary Figures. Some larger shapes required
436 uniform particle orientation on the TEM grid for determination of accurate 2D class averages. To
437 achieve this, TEM images were manually rotated before being integrated into the RELION workflow.
438 Class averages were not relied upon for yield calculations.

439 **Method 7: cryo-EM imaging and particle reconstruction**

440 Cryo-electron microscopy (cryo-EM) single particle analysis was used to elucidate structural details
441 of monomers. Sample conditions were 3 μ L, 700 nM nanostructure, and 1xTE buffer with 6 mM
442 MgCl₂. The preparation of specimens was carried out using C-flat grids, which were subjected to
443 plasma cleaning using a Gantan Solarus plasma cleaner to ensure optimal hydrophilicity and
444 cleanliness. Subsequently, the grids were plunge-frozen using a Vitrobot Mark IV, ensuring rapid
445 vitrification and minimal ice crystal formation. The prepared grids were then loaded into a Thermo
446 Fisher Scientific Glacios Cryo-EM, equipped with a 200kV Field Emission Gun (FEG) source.

447 Data acquisition was conducted on a Falcon 2 Direct Electron Detector, with Thermo Scientific EPU
448 software automating the data collection process. The magnification and electron dose were set for
449 data set in Fig 1 c(ii) such that the pixel resolution is 1.1 \AA per pixel, and electron dose is 40 electrons

450 per Å²; for all other cryo-EM models, the pixel resolution is 0.86 Å per pixel, and electron dose is 50
451 electrons per Å².

452 The subsequent image processing workflow was executed using CryoSPARC (v4) for particle
453 picking, 2D classification, and 3D reconstruction. Initially, a small subset of the micrograph data set
454 was selected for manual particle picking, followed by 2D classification, and 3D reconstruction. After
455 that, the 3D model was used to generate 50 templates, showing possible orientations of particles in
456 the ice. These preliminary templates were then utilized for automated particle picking from all
457 micrographs. Picked points were inspected and filtered by changing the power score and Normalized
458 Cross-Correlation (NCC) score to remove empty areas. The particles were then subjected to 2D
459 classification, allowing for the refinement of particle groups based on structural similarities. These
460 averages served as the foundation for the 3D reconstruction process, ultimately yielding detailed and
461 informative 3D models of the monomers.

462 **Method 8: Super resolution fluorescent microscopy (DNA-PAINT)**

463 A TIRF microscope (Oxford NanoImager) was used to perform DNA-PAINT imaging. To prepare
464 the sample, a protocol from the literature⁵³ was adopted to create a customized chamber with
465 immobilized DNA nanostructures and mobilized imager strands containing a cy3b fluorophore. In
466 line with the protocol, a DNA origami tile was used as a fiducial marker. The key experimental
467 parameters included 0.25 nM DNA barrel monomer, 0.25 nM DNA origami tile, and 5 nM imager
468 strand. Imaging parameters consisted of 70 mW laser power, 300 ms exposure time, in total internal
469 reflection mode. The localization of fluorophore binding sites was analyzed using the DNA-PAINT
470 software (Picasso), which processed 5,000-10,000 time-lapsed images. Typical parameters in Picasso
471 included baseline (400), sensitivity (0.47), quantum efficiency (0.8), and pixel size (117 nm).

472 **Method 9: Switching monomers between coaxial and lateral state**

473 Monomers were folded, and gel purified. The same staple pools were used to fold both coaxial and
474 lateral structures, but with different intra connectors. To switch between the two structures, lateral
475 invader and coaxial connector strands were added to the purified lateral monomer, and coaxial invader
476 and lateral connectors to the purified coaxial monomer. Concentrations used for the switching
477 reactions were: 0.5 nM monomer, 100 nM connectors, 100 nM invaders, and 20 mM Mg²⁺. Switching
478 samples were incubated at 40°C for 18 hours before TEM analysis.

479 **Method 10: Multistep ‘fractal’ assembly of the ‘swirl’ and the 28-mer rectangle**

480 The swirl was built using a 4-mer that self-dimerizes to form an 8-mer structure. In stage 1, purified
481 and concentrated monomers were used to construct first-stage assemblies. In stage 2, the previous

482 assemblies were gel purified and connector strands were added. The solution was annealed at 38°C
483 for 18 hours. Here the concentration values used were: 0.01 nM tetramer, 200 nM connector strands
484 (intra and inter), and 20 mM Mg²⁺. The 28-mer rectangle was assembled using two 8-mer and two 6-
485 mer assemblies in stage 1. In stage 2, sub-assemblies were purified, combined and connector strands
486 added. The solution was annealed from 40°C to 30°C over 18 hours. Concentration values used were:
487 0.065 nM per assembly, 40 nM connector strands (intra and inter), and 40 mM Mg²⁺.

488 **Method 11: DNA-PAINT imaging of Dinosaur assembly**

489 The slide preparation protocol as above was modified to increase the nanostructure incubation time
490 to 10 min due to low particle concentration. For one sample: 5 µL of the unpurified Dinosaur assembly
491 mixture was added to 3.18 µL of 1.57 nM gel-purified DNA tile, 2 µL of 0.5% Tween-20, and 9.82
492 µL of 1xTE, 10 mM Mg²⁺. Imaging parameters were as above used to acquire 10,000 time-lapsed
493 images.

494 **Method 12: Assembly of the circle, compact triangle, and equilateral triangle**

495 In step 1, flexible chains were assembled from monomers, and either used unpurified or gel purified.
496 In step 2, 200 nM connector strands were added to 0.05-0.008 nM flexible chain, in 20 mM Mg²⁺ and
497 incubated the sample at 40°C for 18 hours. In step 3, 400 nM connectors were added to 0.034 nM
498 flexible triangles and incubated at 37°C for 18 hours. Alternatively, compact triangles or equilateral
499 triangles could be assembled from the flexible triangle by adding different sets of connector strands.
500 To determine the yield for the first two steps (monomers to flexible strands, and flexible strands to
501 flexible circles), agarose gel electrophoresis was used. For the final steps, TEM was used to determine
502 the percentage of particles with the correct geometry. To reduce background signal in TEM
503 micrographs, PEG precipitation was used to remove free DNA strands.

504 **Method 13: Switching between rod (state 1), wave (state 2) and rectangle (state 3)**

505 To perform the switching reaction, the first state was assembled, and gel purified, then incubated with
506 invader strands for 6 hours at 37°C. Typical conditions used were 0.05 nM initial structure, 200 nM
507 invader strands, and 20 mM Mg²⁺. Second, connector strands were added and incubated for 6 hours
508 at 37°C. Typical conditions used were 0.04 nM flexible strand, 200 nM connectors, and 20 mM Mg²⁺.

509 **Method 14: Time-resolved switching**

510 Multiple aliquots of purified structures were prepared, and connector and invader strands were added
511 to each aliquot at time intervals of 60, 40, 20, 10, and 0 minutes. The mixtures were incubated at 40°C
512 at concentrations: 0.07 nM rod structure, 200 nM connector and invader strands, 20 mM Mg²⁺, in 25
513 µL aliquot. After incubation, aliquots were immediately placed in dry ice to stop assembly. To prepare

514 the TEM grids, frozen samples were defrosted by adding 20 μ L of 1xTE to the 25 μ L aliquot and
515 quickly mixing with a pipette. The percentage of correctly switched particles was determined from
516 TEM images and used to calculate the reaction rate constant, assuming a second-order reaction.

517 **Method 15: Multiple switching cycles**

518 Five complete switching cycles, equivalent to 10 switching steps, were performed for 18 hrs at 40°C
519 for each step. Using the same batch of starting material, 10 x 20 μ L aliquots were prepared. In each
520 switching step, the same connector and invaders solution was added to all aliquots to trigger
521 switching. In addition, one aliquot was reserved and stored at -20°C; and this aliquot was imaged
522 using TEM to determine the switching yield for a particular switching step. It was necessary to add
523 increasing amounts of connector and invader strands to achieve high switching yields (Supplementary
524 Fig. 165). For each switching step, the required amount of connector strand was added to achieve a
525 constant concentration ratio of connector: invader of 2.3. Connector concentration (nM) used for step
526 1 to 10 is: 50, 110, 215, 330, 512, 678, 917, 1082, 1309, and 1411. Invader concentration (nM) used
527 for step 1 to 10 is: 50, 48, 93, 143, 223, 295, 400, 470, 570, and 614. Except for the 1st step, all steps
528 2 to 10 had a constant connector to invader concentration ratio of 2.3.

529 **Method 16: Gold nanoparticle conjugation.**

530 Citrate-coated gold nanoparticles (10 nm) were purchased from Sigma-Aldrich. To prevent salt-
531 induced precipitation, the gold nanoparticles were pre-stabilized with a strong ligand (4,4-
532 (Phenylphosphinidene)bis(benzenesulfonic acid) dipotassium salt hydrate). For conjugation, dithiol
533 DNA purchased from IDT was added in 300x excess with phosphine-coated gold. The salt
534 concentration was raised to 100 mM by adding a 1 M NaCl solution. The final concentrations of gold
535 and DNA were 0.11 mM and 36 mM, respectively. The mixture was incubated at 25°C for 18 hours
536 and then purified and concentrated using an Amicon filter (50K) with three washes of 1xTE buffer.
537 The concentrated solution was stored at 4°C. To combine the AuNP-DNA complex with the
538 nanostructure, samples were mixed at a 1:20 molar ratio and incubated at 40°C for 18 hours.

539 **Acknowledgement**

540 The authors acknowledge funding from: the Australian Research Council (ARC): DE180101635
541 (S.W) and DP210101892 (S.M.); Westpac Research Fellowship (S.W., K.C.D.G, M.T.L.); The
542 University of Sydney, The University of Sydney Nano Institute (J.F.B., M.T.L., J.K.D.S), and the
543 University of Sydney Physics Foundation (M.T.L.); Australian Postgraduate Award (M.T.L., J.K.D.S,
544 M.T); Australian Department of Industry, Science, Energy and Resources AUSMURIV000001
545 (M.T.L). The authors acknowledge the facilities as well as the scientific and technical assistance of
546 the Australian Microscopy & Microanalysis Research Facility (ammrf.org.au) node at the University
547 of Sydney: Sydney Microscopy & Microanalysis, and Sydney Analytical, a core research facility at
548 the University of Sydney.

549

550

551 **References**

- 552 1. Whitesides, G. M. & Grzybowski, B. Self-Assembly at All Scales. *Science* **295**, 2418–2421
553 (2002).
- 554 2. Szostak, J. W., Bartel, D. P. & Luisi, P. L. Synthesizing life. *Nature* **409**, 387–390 (2001).
- 555 3. Feringa, B. L. The Art of Building Small: From Molecular Switches to Motors (Nobel Lecture).
556 *Angew. Chem. Int. Ed.* **56**, 11060–11078 (2017).
- 557 4. Whitesides, G. M., Mathias, J. P. & Seto, C. T. Molecular self-assembly and nanochemistry: a
558 chemical strategy for the synthesis of nanostructures. *Science* **254**, 1312–1319 (1991).
- 559 5. Chen, Z. *et al.* De novo design of protein logic gates. *Science* **368**, 78–84 (2020).
- 560 6. Lutz, I. D. *et al.* Top-down design of protein architectures with reinforcement learning. *Science*
561 **380**, 266–273 (2023).
- 562 7. Zheng, J. *et al.* From molecular to macroscopic via the rational design of a self-assembled 3D
563 DNA crystal. *Nature* **461**, 74–77 (2009).
- 564 8. Douglas, S. M., Bachelet, I. & Church, G. M. A Logic-Gated Nanorobot for Targeted Transport
565 of Molecular Payloads. *Science* **335**, 831–834 (2012).
- 566 9. Gopinath, A., Miyazono, E., Faraon, A. & Rothemund, P. W. K. Engineering and mapping
567 nanocavity emission via precision placement of DNA origami. *Nature* **535**, 401–405 (2016).
- 568 10. Pumm, A.-K. *et al.* A DNA origami rotary ratchet motor. *Nature* **607**, 492–498 (2022).
- 569 11. Michelson, A. *et al.* Three-dimensional visualization of nanoparticle lattices and multimaterial
570 frameworks. *Science* **376**, 203–207 (2022).
- 571 12. Benson, E., Marzo, R. C., Bath, J. & Turberfield, A. J. A DNA molecular printer capable of
572 programmable positioning and patterning in two dimensions. *Sci. Robot.* **7**, eabn5459 (2022).
- 573 13. Romero-Romero, S., Kordes, S., Michel, F. & Höcker, B. Evolution, folding, and design of TIM
574 barrels and related proteins. *Curr. Opin. Struct. Biol.* **68**, 94–104 (2021).
- 575 14. Dill, K. A. & MacCallum, J. L. The Protein-Folding Problem, 50 Years On. *Science* **338**, 1042–
576 1046 (2012).

577 15. Baker, D. What has de novo protein design taught us about protein folding and biophysics?

578 *Protein Sci.* **28**, 678–683 (2019).

579 16. Kostitsyna, I., Wood, C. & Woods, D. Turning machines: a simple algorithmic model for

580 molecular robotics. *Nat. Comput.* (2022) doi:10.1007/s11047-022-09880-8.

581 17. Woods, D. *et al.* Diverse and robust molecular algorithms using reprogrammable DNA self-

582 assembly. *Nature* **567**, 366–372 (2019).

583 18. Rothemund, P. W. K., Papadakis, N. & Winfree, E. Algorithmic Self-Assembly of DNA

584 Sierpinski Triangles. *PLOS Biol.* **2**, e424 (2004).

585 19. Tikhomirov, G., Petersen, P. & Qian, L. Fractal assembly of micrometre-scale DNA origami

586 arrays with arbitrary patterns. *Nature* **552**, 67–71 (2017).

587 20. Wickham, S. F. J. *et al.* Complex multicomponent patterns rendered on a 3D DNA-barrel

588 pegboard. *Nat. Commun.* **11**, 5768 (2020).

589 21. Yao, G. *et al.* Meta-DNA structures. *Nat. Chem.* **12**, 1067–1075 (2020).

590 22. He, Y. *et al.* Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra.

591 *Nature* **452**, 198–201 (2008).

592 23. Evans, C. G., O'Brien, J., Winfree, E. & Murugan, A. Pattern recognition in the nucleation

593 kinetics of non-equilibrium self-assembly. Preprint at

594 <https://doi.org/10.48550/arXiv.2207.06399> (2023).

595 24. Mohammed, A. M., Šulc, P., Zenk, J. & Schulman, R. Self-assembling DNA nanotubes to

596 connect molecular landmarks. *Nat. Nanotechnol.* **12**, 312–316 (2017).

597 25. Wintersinger, C. M. *et al.* Multi-micron crisscross structures grown from DNA-origami slats.

598 *Nat. Nanotechnol.* **18**, 281–289 (2023).

599 26. Song, J. *et al.* Reconfiguration of DNA molecular arrays driven by information relay. *Science*

600 **357**, eaan3377 (2017).

601 27. Kim, M. *et al.* Harnessing a paper-folding mechanism for reconfigurable DNA origami. *Nature*

602 **619**, 78–86 (2023).

603 28. Wagenbauer, K. F., Sigl, C. & Dietz, H. Gigadalton-scale shape-programmable DNA
604 assemblies. *Nature* **552**, 78–83 (2017).

605 29. Berengut, J. F. *et al.* Self-Limiting Polymerization of DNA Origami Subunits with Strain
606 Accumulation. *ACS Nano* **14**, 17428–17441 (2020).

607 30. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. *Nature* **440**, 297–
608 302 (2006).

609 31. Douglas, S. M. *et al.* Self-assembly of DNA into nanoscale three-dimensional shapes. *Nature*
610 **459**, 414–418 (2009).

611 32. Knudsen, J. B. *et al.* Routing of individual polymers in designed patterns. *Nat. Nanotechnol.* **10**,
612 892–898 (2015).

613 33. Liu, W., Halverson, J., Tian, Y., Tkachenko, A. V. & Gang, O. Self-organized architectures
614 from assorted DNA-framed nanoparticles. *Nat. Chem.* **8**, 867–873 (2016).

615 34. Smyrlaki, I. *et al.* Soluble and multivalent Jag1 DNA origami nanopatterns activate Notch
616 without pulling force. *Nat. Commun.* **15**, 465 (2024).

617 35. Dong, R. *et al.* DNA origami patterning of synthetic T cell receptors reveals spatial control of
618 the sensitivity and kinetics of signal activation. *Proc. Natl. Acad. Sci.* **118**, e2109057118 (2021).

619 36. Kopperger, E. *et al.* A self-assembled nanoscale robotic arm controlled by electric fields.
620 *Science* **359**, 296–301 (2018).

621 37. Sarraf, N., Rodriguez, K. R. & Qian, L. Modular reconfiguration of DNA origami assemblies
622 using tile displacement. *Sci. Robot.* **8**, eadfl511 (2023).

623 38. Marras, A. E., Zhou, L., Su, H.-J. & Castro, C. E. Programmable motion of DNA origami
624 mechanisms. *Proc. Natl. Acad. Sci.* **112**, 713–718 (2015).

625 39. Gerling, T., Wagenbauer, K. F., Neuner, A. M. & Dietz, H. Dynamic DNA devices and
626 assemblies formed by shape-complementary, non–base pairing 3D components. *Science* **347**,
627 1446–1452 (2015).

628 40. Gopinath, A. *et al.* Absolute and arbitrary orientation of single-molecule shapes. *Science* **371**,
629 eabd6179 (2021).

630 41. Lin, Z. *et al.* Engineering Organization of DNA Nano-Chambers through Dimensionally
631 Controlled and Multi-Sequence Encoded Differentiated Bonds. *J. Am. Chem. Soc.* **142**, 17531–
632 17542 (2020).

633 42. Zhou, Y., Dong, J., Zhou, C. & Wang, Q. Finite Assembly of Three-Dimensional DNA
634 Hierarchical Nanoarchitectures through Orthogonal and Directional Bonding. *Angew. Chem.*
635 *Int. Ed.* **61**, e202116416 (2022).

636 43. Ke, Y., Ong, L. L., Shih, W. M. & Yin, P. Three-Dimensional Structures Self-Assembled from
637 DNA Bricks. *Science* **338**, 1177–1183 (2012).

638 44. Zhao, Z. *et al.* DNA-corralled nanodiscs for the structural and functional characterization of
639 membrane proteins and viral entry. *J. Am. Chem. Soc.* (2018) doi:10.1021/jacs.8b04638.

640 45. Hahn, J., Chou, L. Y. T., Sørensen, R. S., Guerra, R. M. & Shih, W. M. Extrusion of RNA from
641 a DNA-Origami-Based Nanofactory. *ACS Nano* **14**, 1550–1559 (2020).

642 46. Douglas, S. M. *et al.* Rapid prototyping of 3D DNA-origami shapes with caDNAno. *Nucleic*
643 *Acids Res.* **37**, 5001–5006 (2009).

644 47. Šulc, P. *et al.* Sequence-dependent thermodynamics of a coarse-grained DNA model. *J. Chem.*
645 *Phys.* **137**, 135101 (2012).

646 48. Poppleton, E. *et al.* oxDNA: coarse-grained simulations of nucleic acids made simple. *J. Open*
647 *Source Softw.* **8**, 4693 (2023).

648 49. Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions.
649 *Nat. Chem.* **3**, 103–113 (2011).

650 50. Hendrikse, S. I. S. *et al.* Exploring Artificial Nucleic Acid Mimicking Peptide Nanofibers.
651 *Chem. Mater.* **35**, 4355–4365 (2023).

652 51. Lin, C., Perrault, S. D., Kwak, M., Graf, F. & Shih, W. M. Purification of DNA-origami
653 nanostructures by rate-zonal centrifugation. *Nucleic Acids Res.* **41**, e40–e40 (2013).

654 52. Scheres, S. H. W. RELION: Implementation of a Bayesian approach to cryo-EM structure
655 determination. *J. Struct. Biol.* **180**, 519–530 (2012).

656 53. Schnitzbauer, J., Strauss, M. T., Schlichthaerle, T., Schueder, F. & Jungmann, R. Super-
657 resolution microscopy with DNA-PAINT. *Nat. Protoc.* **12**, 1198–1228 (2017).

658

659