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Few described archaeal, and fewer bacterial, lineages thrive at salt-saturating conditions,
such as solar saltern crystallizers (salinity above 30%-w/v). They accumulate molar K*
cytoplasmic concentrations to maintain osmotic balance (‘salt-in’ strategy), and have
proteins adaptively enriched in negatively charged, acidic amino acids. Here, we analyzed
metagenomes and metagenome-assembled genomes (MAGs) from geothermally
influenced hypersaline ecosystems with increasing chaotropicity in the Danakil
Depression. Normalized abundances of universal single-copy genes confirmed that
haloarchaea and Nanohaloarchaeota encompass 99% of microbial communities in the
near life-limiting conditions of the Western-Canyon Lakes (WCLs). Danakil
metagenome- and MAG-inferred proteomes, compared to those of freshwater, seawater
and solar saltern ponds up to saturation (6-14-32% salinity), showed that WCL archaea
encode the most acidic proteomes ever observed (median protein isoelectric points £4.4).
We identified previously undescribed Halobacteria families as well as an
Aenigmatarchaeota family and a bacterial phylum independently adapted to extreme
halophily. Despite phylum-level diversity decreasing with increasing salinity-
chaotropicity, and unlike in solar salterns, adapted archaea exceedingly diversified in
Danakil ecosystems, challenging the notion of decreasing diversity under extreme
conditions. Metabolic flexibility to utilize multiple energy and carbon resources
generated by local hydrothermalism along feast-and-famine strategies seemingly shape
microbial diversity in these ecosystems near life limits.

Keywords: chaotropicity, water activity, halophile, archaea, diversification, amino acid bias,
molecular adaptation, salt-in strategy, convergence, hydrothermal, extremophile
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Extremely halophilic archaea excel in their adaptation to grow in salt-saturating ecosystems,
such as solar salterns or athalassohaline hypersaline lakes*?. They include four known lineages
recently shown to have independently adapted to halophily®: the diverse and long-studied
Halobacteria (haloarchaea)!, the widespread episymbiotic Nanohaloarchaeota within the
DPANN supergroup?®, and the less conspicuous Methanonatronarchaeia’ and
Halarchaeoplasmatales®. Compared to moderate halophiles, which produce compatible solutes
to cope with osmotic stress, extremely halophilic archaea accumulate up to 4M K™ in their
cytoplasm®20, This ‘salt-in> strategy is concomitant with an excess of acidic amino acids,
typically glutamic and aspartic acids, in proteins to preserve their functional structure, such
that proteome acidification is a hallmark of extreme halophily!!. In addition to halophilic
archaea, some bacteria and eukaryotes, notably some green algae (Dunaliella spp.) and
heterotrophic protists, thrive at rather high salt concentrations. However, they use ‘salt-out’
osmoadaptive strategies'®!?, being absent from saturating environments, such as saltern
crystallizer ponds, largely dominated by archaea'®. The only described exception corresponds
to the Salinibacter clade, grouping extremely halophilic bacteria mimicking ‘salt-in’ and other
archaeal adaptations!**°, partly mediated by horizontal gene transfer from haloarchaea®®.

Most studied hypersaline ecosystems are NaCl-saturated (~5 M). However, NaCl-
dominated brines are thermodynamically moderate? compared to systems of even lower water
activity (aw) enriched in chaotropic (e.g. Mg, Ca, Li, Fe) salts, which tend to disorganize
organic macromolecules'’*8, Highly chaotropic brines are deleterious and seem devoid of
microbial life, such as some hydrothermal brines at and around the Dallol proto-volcano®®2°.
The Dallol area on the Northern Danakil Depression (Afar region, Ethiopia) is situated at the
confluence of three major tectonic plates. The local combination of evaporitic and
hydrothermal processes?*?? produces up-welling thermal fluids enriched in diverse salts and
minerals, generating polyextreme brines of contrasting hydrochemistry?®24. While some brines
across the observed gradients of polyextreme conditions (pH from -1.5 to 6; salinity from ~30
to >70% wi/v; temperature from ~30°C to 110°C) seem lifeless, others host microbial
communities largely dominated by extremely halophilic archaea (up to 99% of community
members)'®2°, In this study, we analyze metagenomes of these hypersaline ecosystems and
show that halophilic archaea thriving in the most chaotropic brines permissive for life are
remarkably diversified, rely exclusively on heterotrophic processes and push known
adaptations to unprecedented limits.

Results and Discussion

Proteome-wide adaptation of archaea and bacteria in increasingly chaotropic brines

We sequenced, assembled and annotated metagenomes from microbial communities thriving
in geothermally influenced hypersaline systems in the north Danakil salt desert (Fig.la;
Supplementary Table 1). These included two locations from Lake Karum or Assale sampled in
different years (Ass, 9Ass), one cave reservoir at the Dallol proto-volcano salt canyons (9Gt)
and two of the Western-Canyon Lakes (WCL2, WCL3). WCL3 displayed the highest salinity
and the lowest water activity (aw) and pH along the sampled gradient!®? (Fig.1a). The WCLs
had the highest joint Ca?*+Mg?* concentrations, followed by Lake Assale samples
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91  (Supplementary Table 2), making these systems highly chaotropic’®?. The microbial
92  community composition inferred from the normalized abundance of selected universal single-
93  copy genes (USCGs; Supplementary Fig.1) in metagenomes was dominated by archaea,
94  overwhelmingly so in the WCLs (Fig.1b), consistent with previous 16S/18S rRNA gene
95  metabarcoding studies!®®. Members of the class Halobacteria and the phylum
96  Nanohaloarchaeota were by far the most abundant archaea. They encompassed widely diverse
97  generathat showed different distribution patterns among samples, particularly marked between
98  Assale and WCL samples (Extended Data Fig.1). Bacteria were relatively diverse, with
99  photosynthetic cyanobacteria detected only in Lake Assale, where Salinibacteraceae were also
100 relatively abundant (Fig.1b). Eukaryotic sequences were negligible to undetectable, notably in
101 WCLs, also confirming previous observations'®%,
102 We investigated known proteome-wide adaptations to extreme halophily at metagenome
103 level (Fig.2). First, we calculated the isoelectric point (pl) of proteins encoded by the Danakil
104  metagenomes in comparison to those from ecosystems of increasing salinity: a freshwater lake
105 in France, Mediterranean seawater samples and solar saltern ponds containing 6%, 14% and
106 32% salt (w/v), the latter relatively enriched in Mg?*; Supplementary Table 2). As expected?,
107  samples up to 14% salt displayed a bimodal distribution, with some acidic and some basic
108  proteins, while the 32%-salt saltern pond displayed a unimodal distribution with a marked peak
109  at acidic pH (median pl, 4.55; Supplementary Table 2). The Danakil inferred proteomes also
110  displayed a unimodal distribution, with Lake Assale exhibiting similar values to those of the
111 32%-salt pond. However, the WCLs exhibited a more pronounced peak shifted to even more
112 acidic values (median pl~4.4) (Fig.2a). This reflected a strong amino acid bias, with aspartic
113 and glutamic acids (D+E) being enriched and isoleucine and lysine (1+K) depleted in Danakil
114  metagenomes, a well-known adaptation to extreme halophily*!. The DE/IK ratio was much
115 higher in the WCL metagenomes, concurrent with the higher [Ca?*] and [Mg?*] of these brines
116  (Fig.2b-c). We also observed a marked preference, among positively charged amino acids, for
117  arginine versus lysine in proteomes from environments displaying increasing salt
118  concentrations, with the R/K ratio being also highest in the WCLs (Fig.2c; Extended Data
119  Fig.2). This is partly due to the usually high GC content of haloarchaeal genomes: arginine
120  codons are GC-rich whereas lysine codons are AT-rich?’. This trend extends to all GC-enriched
121 and depleted codons, corresponding to GARP and FIMNKY amino acid groups, respectively®.
122 In addition, arginine is further favored over lysine due to its higher coil forming propensity?’
123 and the ability to bind more water molecules along its lateral chain, which helps maintain a
124  hydrated protein state?2°,
125 These adaptations were also clearly visible at the level of individual MAGs and their
126  affiliated taxa. As expected, archaeal MAGs displayed the lowest pl values as compared to the
127  few bacterial MAGs retrieved (Fig.2d). Interestingly, MAGs affiliating to marine uncultured
128  Myxococcota (genus CAIJXPBO, Bradymonadaceae) and the phylum T1Sed10-126 exhibited
129  pl values comparable to the Salinibacteraceae (Fig.2d; Supplementary Table 3), suggesting the
130  occurrence of similar adaptations to hypersaline environments in bacteria other than the
131 Salinibacteraceae. Average pl values of MAGs were clearly lower in the WCLs as compared
132 to Lake Assale and 9Gt samples (Fig.2e) and their respective pl distributions were also more
133 shifted towards unimodal low pl distributions (Extended Data Fig.3a). This reflects the stronger
134  selection pressure exerted by the near life-limiting WCL hypersaline chaotropic conditions.
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135  Despite the acidic pl values, amino acid biases were slightly different depending on the taxon.
136  Thus, Halobacteria MAGs displayed the highest DE/IK and R/K ratios, except for the recently
137  described deep-branching Afararchaeaceae family®, which showed a less biased amino acid
138  content, more comparable to that of Nanohaloarchaeota MAGs (Extended Data Figs.2b and
139 3c-d).

140

141  Expanded diversity of extremely halophilic lineages

142 It is generally believed that microbial diversity decreases as the physicochemical conditions
143 approach those that are limiting for life*>3!, This seems valid at least at high-rank taxon level.
144  For instance, only members of the archaeal domain, and from a limited number of phyla,
145  optimally thrive at temperatures higher than 95°C3%34, Likewise, as illustrated by the Danakil
146  systems studied here, only members from a small number of archaeal phyla or classes thrive in
147  salt-saturated brines®*"8 with extremely halophilic bacteria being anecdotal in hypersaline
148  chaotropic systems, such as the WCLs (Figs.1-2). To investigate whether this restricted
149  diversity is also observable at finer taxonomic scale, we generated operational taxonomic units
150 (OTUs) based on clusters of USCGs and determined their normalized relative abundance
151  across metagenomes from increasingly salty ecosystems. We observed a decrease in global
152  alpha diversity and Shannon and Simpson diversity indexes in 14% and, most especially, 32%
153  salinity ponds compared to freshwater, marine and 6%-salt solar saltern ponds (Fig.3;
154  Supplementary Fig.2a). The diversity indexes decreased in the 32%-salt pond relative to that
155  of 14%-salt even for Halobacteria, as a consequence of the overdominance of Haloquadratum
156  spp. in the 32%-salt pond analyzed metagenomes?®=® (Supplementary Fig.2b). In contrast,
157  global alpha diversity and diversity indexes were much higher in the Danakil brines, and
158  comparable to those of non-extreme ecosystems, the key distinction being that, in the Danakil
159  hypersaline chaotropic systems, the Halobacteria diversity virtually represented the total
160  ecosystem diversity. A similar trend, albeit to a lesser extent, was observed for the
161  Nanohaloarchaeota diversity parameters (Fig.3a-b). This implies that, after they evolved the
162  necessary adaptations to thrive in hypersaline environments, haloarchaea radiated greatly,
163  secondarily adapting to a variety of additional environmental constraints and ecological niches.
164 This wide multiplicity of extremely halophilic archaea in the Danakil ecosystems was
165  partially captured by the phylogenetic diversity of assembled MAGs. We could assemble 483
166  MAGs, from which 155 were more than 40% complete and less than 5% redundant. The
167  relatively low recovery of complete MAGs was partly due to the high genomic diversity. We
168  classified these MAGs based on both, the Genome Taxonomy Database (GTDB?%) taxonomy
169  classifier’’, as well as Maximum Likelihood (ML) phylogenomic analyses using a curated
170  dataset of 127 non-ribosomal protein markers for archaea that yields robust phylogenies®
171 (Fig.4). Out of the 155 most complete MAGs, 92 affiliated to the Halobacteria, 38 to the
172 DPANN supergroup and 25 to bacteria (Supplementary Table 3). Based on a phylogeny that
173 included a representative of each described genus of the class Halobacteria combining this
174  information, we not only identified diverse members in the families Halobacteriaceae,
175  Haloferacaceae and Haloarculaceae, with several potential new genera, but also up to four
176  additional Halobacteria families (Fig.4a; Supplementary Table 3). Two of them were recently
177  described from these Danakil ecosystems, the Afararchaeaceae and the Chewarchaeaceae®. In
178  our phylogenomic tree, Halorutilus salinus, the type species of a recently described new
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179  family®®, branched within the Afararchaeaceae, which therefore becomes a junior synonym for
180 the family Halorutilaceae (Fig.4a). We additionally identified two other family-level clades
181  that we name Karumarchaeaceae and Abyssiniarchaeaceae, having as representative genomes,
182  respectively, the MAGs DAL-Ass 21 92C4R, described as Karumarchaeum halophilus, and
183 DAL-8mg-83m_91C4R, as Abyssiniarchaeum dallolvicinus (estimated genome sizes of 2.6
184 and 2.4 Mbp, respectively; see formal description below). Curiously, we did not detect any
185  member of other Halobacteria families, several of which include alkaliphilic members. This
186  suggests that the conditions of these highly chaotropic ecosystems are not conducive to their
187  development, perhaps due to the slightly acidic conditions (pH~5-6.7). We also identified many
188  Nanohaloarchaeota members, including potential new genera, within the Nanosalinaceae and
189 the recently described family Asbonarchaeaceae from these Danakil ecosystems? (Fig.4b).
190 Interestingly, the MAG DAL-Ass_38_67C3R branched within the Aenigmarchaeota family
191 f PWEAOL (Fig.4b) and exhibited the characteristic pl unimodal distribution of extreme
192  halophiles (Extended Data Fig.4a). Two other Danakil MAGs branching more deeply within
193  the family, also showed similar pl distributions, albeit slightly less pronounced. GTDB
194  genomes belonging to f_ PWEAOL, but not to other families of the same order (0_PWEAQO1),
195  also display unimodal acidic pl distributions (Extended Data Fig.4a). These genomes were
196 retrieved from hypersaline soda lake sediments (Kulunda Steppe, Altai, Russia)®. Collectively,
197  this strongly suggest that the f PWEAOL represents a lineage of archaea independently adapted
198  to hypersaline conditions, which we propose to rename as Haloaenigmatarchaeaceae (type
199  species Haloaenigmatarchaeum danakilense, represented by the MAG DAL-Ass 38 67C3R,
200 of ~1.5 Mbp). Likewise, three Danakil MAGs branched within the bacterial GTDB phylum
201  p_T1Sed10-126 (Fig.4c), originally defined by two GTDB genomes retrieved from the same
202 hypersaline lake sediment in Siberia®. This genomic clade, as other newly detected lineages
203  mentioned above, was cohesive, as suggested by average nucleotide identity values*
204  (Supplementary Fig.3). These five genomes also display biased pl distributions, with median
205  pl values lower than 5, similar to the Salinibacteraceae (Extended Data Fig. 4b-c). This
206  suggests that the bacterial phylum p_T1Sed10-126, which we have renamed Salsurabacteriota
207  (type species Salsurabacterium abyssinicum, represented by the MAG DAL-
208  3Gt_29 1 96C5R) independently adapted to extreme halophily.

209 Why is the diversity of extremely halophilic archaea so high in the increasingly chaotropic
210  brines of the Northern Danakil compared to the apparently less harsh conditions of solar saltern
211 salt-saturating ponds? We hypothesize that it is associated with richer resource availability due
212 to the local geochemical settings and the occurrence of diverse metabolic capacities to exploit
213 those resources.

214

215  Metabolic flexibility and feast-and-famine strategies

216  The hydrothermal activity affecting the Danakil ecosystems not only provides an input of
217  reduced gases, which can serve as potential electron donors, but are also enriched in organics
218  derived from the interaction of mantle fluids and Proterozoic sediments below the salt-
219  crust?™#!, Chemical analyses showed the presence of diverse organics in the Dallol area brines,
220 including the WCLs'®?°, To determine whether these resources could sustain the observed
221 microbial communities, we characterized their metabolic potential using complementary
222 approaches. We first carried out general metabolic inferences based on diagnostic functional
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223 genes and KEGG modules detected in the reconstructed MAGs and several genomes from their
224  closest neighbor and outgroup taxa. This showed that Halobacteria members were heterotrophs
225  possessing classical core biosynthetic functions for amino acids, nucleotides and lipid
226 components, alongside capabilities for aerobic and anaerobic respiration (Extended Data
227  Fig.b). Different MAGs/taxa encoded genes to utilize different organics: diverse, including
228  branched, amino acids, hydrocarbons, fatty acids or aromatic compounds. Thus, in addition to
229  core functions such as the Krebs cycle, glycolysis, gluconeogenesis and biosynthesis of amino
230 acids and nucleotides, Karumarchaeaceae and Abyssiniaceae shared aerobic and anaerobic
231 (nitrite and CO) respiration, fermentation, and chlorite and iron/manganese reductive
232 capabilities. However, whereas Abyssiniarchaeum seemed to rely mostly on amino acid and
233 fatty acid degradation, Karumarchaeum likely uses diverse complex hydrocarbons, encoding
234 endohemicellulases, and amylotytic and cellulose-degrading enzymes (Extended Data Fig.5).
235 By contrast, the metabolic potential of Nanohaloarchaeota MAGs was considerably reduced,
236 having missing or incomplete essential biosynthetic pathways (Extended Data Fig.6), which
237  suggests that they depend on their haloarchaeal hosts for survival®®. They seem able to ferment
238  and, like other Nanohaloarchaeota, have an ATP-synthase despite the absence of an identifiable
239  electron-transport chain. Intriguingly, several MAGs possessed amylolytic-type enzymes
240 (Extended Data Fig.6a). This opens the possibility that some nanohaloarchaea’s parasitic
241  relationships skirt on the edge of mutualism along the symbiotic spectrum. They could provide
242  metabolic complementation to their hosts for the degradation of specific hydrocarbons in
243  exchange for numerous essential compounds, as has been already observed in some
244  haloarchaea-nanohaloarchaea consortia***3, This peculiar mutualism could explain the
245  apparently stable prevalence of Nanohaloarchaeota in these ecosystems, notably the WCLs
246  (close to 40%, Fig.1), without leading to parasitic overload and population collapse. Members
247  of the bacterial phylum Salsurabacteriota, similar to classical haloarchaea, encoded core
248  metabolic pathways, being likely able to respire aerobically and anaerobically and to use amino
249  acids and fatty acids (Extended Data Fig.7).

250 Second, to determine the primary electron acceptors preferentially used by the Danakil
251 microbial communities, we investigated and manually verified the presence of diagnostic genes
252 involved in energy-transducing redox reactions in both, metagenomes and MAGs (Fig.5). We
253  focused on redox processes leading to the reduction of oxygen, nitrogen and sulfate. In dynamic
254  microaerophilic conditions, like those encountered in these geothermally influenced Danakil
255  lakes, especially in the actively degassing WCLs, microorganisms adapt by either utilizing
256  cytochromes with a high affinity for nanomolar Oz2 levels* or alternative compounds such as
257  organic molecules, nitrogen derivatives, or sulfur species. Oxygen respiration genes, including
258 low and high-affinity cytochromes, were consistently abundant in all metagenomes, indicating
259  adaptation to varying Oz concentrations* (Fig.5). Cytochromes were present across all MAGs
260  recovered in this study, except for those of Nanohaloarchaeota. Nitrate respiration is adaptive
261 in hypersaline ecosystems, especially at relatively high temperatures, due to the low oxygen
262 solubility under these conditions®. Indeed, genes encoding nitrate reductases, which catalyze
263  the reduction of nitrate to nitrite, were far more prevalent than oxygen respiration genes. They
264  were widespread across all metagenomic samples, being encoded in up to 20% of genomes in
265  Lake Assale. They occurred in MAGs from virtually all the detected Halobacteria families, and
266 in Salsurabacterium (Fig.5). Other genes associated with the nitrogen cycle were also highly
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267  prevalent. The isotopic signature of nitrogen compounds in the Dallol area volatiles suggests
268 an important input of mantle-derived N sources*. Nitrate can oxidize organic matter®,
269  methane*®4?, sulfur compounds® or iron®®, in addition to being a source of nitrogen®. The
270  conversion of nitrite to ammonium is also utilized for both dissimilatory and assimilatory
271 processes®. Ferredoxin-dependent assimilatory nitrite reductase was relatively abundant in all
272 Danakil metagenomes and occurred in Karumarchaeum, Haloferacaceae and Haloarculaceae
273 MAGs (Fig.5; Supplementary Table 4), further supporting that nitrate and nitrite are primary
274  nitrogen sources. Additionally, genes responsible for denitrification, which facilitate the
275  sequential conversion of nitrite to nitric oxide, nitrous oxide, and ultimately nitrogen gas, were
276  also prevalent. Genes encoding copper-dependent nitrite reductases, converting nitrite to nitric
277  oxide, nitric oxide and nitrous oxide reductases were present in several Halobacteria MAGs
278  and Salsurabacterium (Fig.5). Assimilatory nitrite reduction and denitrification are well known
279  in haloarchaea®!. Genes related to sulfur and fumarate reduction were as abundant as aerobic
280  respiration-related cytochromes, again indicative of low Oz levels. Fumarate reductase, used in
281 reducing fumarate to succinate was present in almost all MAGs, while sulfate
282  adenylytransferase (Sat) was present in Karumarchaeum, Halobacteriaceae, Salsurabacterium
283  and even Nanohaloarchaeota, but was missing in Haloferacaceae MAGs. Given the geothermal
284  settings, we investigated genes involved in chemolithotrophy, i.e. energy-generating redox
285  reactions involving the oxidation of inorganic compounds, including sulfur reduced species,
286  hydrogen, and carbon monoxide. Among these, CO oxidation appeared the most prominent in
287  the Dallol area lakes, with CO-dehydrogenase encoded in 3-7% of genomes from these
288  ecosystems (Fig.5). However, the genes for CO and hydrogen oxidation were not identified in
289 any of the retrieved MAGs, suggesting that are distributed in diverse, less dominant
290  microorganisms. Sulfur oxidation genes (sulfide dehydrogenase and sulfide:quinone
291  oxidoreductase), were present in Abyssiniarchaeum, Karumarchaeum, Halobacteriaceae,
292  Haloferacaceae and Haloarculaceae, reinforcing the idea that geothermal activity significantly
293 influences the microbial communities in these polyextreme lakes.

294 These Danakil communities seem to largely rely on heterotrophic processes. They
295 apparently lack chemosynthetic carbon fixation and the WCLs also lack photosynthetic
296  members® (Fig.1). Since, in addition to amino acid and fatty acid degradation, hydrocarbon
297  utilization appeared important (Extended Data Fig.5), we searched for glycoside hydrogenase
298  (GH) and alkane degradation genes. In Lake Assale samples (Ass, 9Ass) and 9Gt, the most
299 prevalent GH genes participate in the degradation of starch/glycogen and mixed
300  polysaccharides (GH15, GH29, and GH3°2%3; Extended Data Fig.8). In addition, the consistent
301 presence of haloalkane dehalogenases and alkane monooxygenase across metagenomes
302  suggests an input of haloalkanes and/or short-chain alkanes, consistent with the analysis of
303  volatiles in some Dallol area lakes*. However, flavin-binding monooxygenase genes, known
304  to be involved in the breakdown of long-chain molecules® were rare across samples except for
305 Lake Assale, suggesting limited capability to decompose long-chain carbon molecules (+32C)
306 in these ecosystems. The diversity and abundance of GH genes increased with salinity-
307  chaotropicity, especially in the WCLs (Extended Data Fig.8), suggesting that these extremely
308 halophilic archaea and possibly also bacteria®® degrade a broad range of hydrocarbons®®,
309  mirroring observations in Ethiopian soda lakes®’. In addition, Danakil MAGs contained genes
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310  for carbon storage, such as polyhydroxybutyrate biosynthesis genes (phbC), a common trait in
311 many haloarchaea®.

312 The ability, inferred in several MAGs, to degrade a wealth of polysaccharides, store carbon
313  and reduce oxygen, nitrate, nitrous oxide, nitric oxide, sulfate and fumarate, points towards a
314  “feast-or-famine” metabolic strategy. This is an adaptive response to fluctuating environmental
315 conditions, whereby microorganisms must rapidly exploit available resources and be able to
316  survive periods of scarcity. Feast-or-famine strategies are observed in energy-depleted
317  environments, which occasionally (periodically or spatially) receive inputs of nutrients, such
318  as the deep sea®. During “famine” periods, microorganisms derive energy from stored carbon
319  storage or the degradation of recalcitrant organic matter. In the Danakil hypersaline ponds,
320 “famine” periods could correspond to dominant evaporative phases leading to full desiccation
321 or trapping in halite brine inclusions®®. “Feast” phases could be triggered by the geothermal
322 activity linked to meteoric waters infiltrating from the high Ethiopian plateau towards the
323 depression and the concomitant generation of upwelling fluids??%2# providing hydration and
324  nutrients. The high variety of exploitable metabolic resources and abilities may partly explain
325 the diversification of extremely halophilic archaea in these chaotropic Danakil ecosystems.
326 Since microbial diversity depends not only on the accessibility to various resources but also in
327  resource partitioning through trophic interactions®::%2, the combination of multiple resources
328 linked to the local geothermal context amplified by trophic network interactions likely drive
329 the adaptation to a myriad ecological niches and, consequently, the observed diversity.

330

331 Conclusions

332 We analyzed metagenomes of several hypersaline and increasingly chaotropic ecosystems
333 influenced by geothermal activity in the Dallol area, Northern Danakil Depression, Ethiopia.
334 Some of these ecosystems, notably the WCLs, were the most polyextreme environments
335  sampled in the area harboring microbial life?®2%25 We showed that these ecosystems were
336  overwhelmingly dominated by extremely halophilic Halobacteria and Nanohaloarchaeota but,
337  contrary to expectations suggesting that low diversity associates with increasingly extreme
338  conditions, we observed an unprecedented diversity of archaea. They adapt to the challenging
339  osmotic conditions via a ‘salt-in’ strategy and have record-acidic proteomes when compared
340  with archaea thriving in aquatic environments of increasing salinity (freshwater to 32%-salinity
341  solar saltern ponds). We uncovered several family-level and genus-level clades of Halobacteria
342  and Nanohaloarchaeota previously undescribed, as well as a new family of Aenigmarchaeota
343  (Haloaenigmatarchaeaceae), which likely represents a fifth independent convergent adaptation
344  to extreme halophily in the archaeal domain®. Additionally, we identified a new phylum of
345  extreme halophilic bacteria, the Salsurabacteriota (p_T1Sed10-126), displaying proteomes as
346  enriched in acidic amino acids as the halophilic Salinibacteraceae. Metagenome and MAG
347 analyses allow to infer that these microbial communities rely on a wide variety of carbon
348  sources and electron donors and acceptors. In particular, the WCLs likely constitute fully
349  heterotrophy-based ecosystems depending on organics largely mobilized by upwelling
350  hydrothermal fluids interacting with Proterozoic marine sediments below the Danakil desert
351 salt crust?>?>24, Alkane and haloalkane degradation seem particularly important resources for
352  these communities. Collectively, the vast array of carbon sources and redox reactions combined
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353  with resource partitioning through trophic networks can explain the unprecedented diversity
354  observed in these microbial communities thriving close to life-limiting boundaries.

355

356  Taxonomic descriptions

357  All new taxa have been described under the SeqCode® as follows:

358

359  Karumarchaeum gen. nov. Etymology. archaeum (N.L. neut. n.): an archaeon;
360  Karumarchaeum (N.L. neut. n.): an archaeon from Lake Karum, Afar region, Ethiopia. Type
361  species, Karumarchaeum halophilus.

362
363  Karumarchaeum halophilus sp. nov. Etymology. halophilus (N.L. masc. adj.): salt-loving.
364 Diagnosis. This archaeon lives in in suboxic hypersaline waters influenced by

365 hydrothermal activity. It encodes for aerobic and anaerobic respiration, including
366  denitrification. It is able to use amino acids and likely relies on halogenated compounds as well
367  as cellulose and other complex hydrocarbon polymers for organo- and/or chemo-heterotrophic
368  growth. Its genome is around 2.6 Mbp (GC content: 62%). It is known from environmental
369  sequencing only. The designated type MAG is DAL-Ass 21 92C4R.

370

371 Karumarchaeaceae fam. nov. Etymology. Karumarchaeum (N.L. neut. n.): a genus name; -
372  aceae, ending to denote a family; Karumarchaeaceae (N.L. fem. pl. n.): the Karumarchaeum
373 family.

374

375  Abyssiniarchaeum gen. nov. Etymology. archaeum (N.L. neut. n.): an archaeon;
376  Abyssiniarchaeum (N.L. neut. n.): an archaeon from Abyssinia, former name of the Ethiopian
377  Empire. Type species, Abyssiniarchaeum dallolvicinus.

378

379  Abyssiniarchaeum dallovicinus sp. nov. Etymology. dallolvicinus (N.L. masc. adj.):
380 neighboring the Dallol proto-volcano in the north Danakil Depression.

381 Diagnosis. This archaeon lives in suboxic hypersaline environments influenced by
382  hydrothermal activity. It encodes for aerobic and anaerobic respiration. It can use amino acids
383 and likely relies on halogenated compounds, fatty acids and some hydrocarbons for organo-
384  and/or chemo-heterotrophic growth. Its genome is around 2.4 Mbp (GC content: 67%). It is
385 known from environmental sequencing only. The designated type MAG is DAL-8mg-
386  83m_91C4R.

387

388  Abyssiniarchaeaceae fam. nov. Etymology. Abyssiniarchaeum (N.L. neut. n.): a genus name;
389  -aceae, ending to denote a family; Abyssiniarchaeaceae (N.L. fem. pl. n.): the
390  Abyssiniarchaeum family.

391

392 Haloaenigmatarchaeum gen. nov. Etymology. archaeum (N.L. neut. n.): an archaeon;
393  Haloaenigmatarchaeum (N.L. neut. n.): a salt-loving archaeon of the phylum
394  Aenigmatarchaeota). Type species: Haloaenigmatarchaeum danakilense.

395

10


https://doi.org/10.1101/2024.03.10.584303
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.10.584303; this version posted March 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

396  Haloaenigmatarchaeum danakilense sp. nov. Etymology. danakilense (N.L. neut. adj.):
397  pertaining to the Danakil Depression.

398 Diagnosis. This archaeon lives in hypersaline systems of the Danakil Depression. It has a
399  reduced genome of around 1.5 Mbp (GC content: 48%) and lacks most essential biosynthetic
400 pathways, most likely growing as a symbiont of an unknown host. It is known from
401  environmental sequencing only. The designated type MAG is DAL-Ass_38 67C3R.

402

403  Haloaenigmatarchaeaceae fam. nov. Etymology. Haloaenigmatarchaeum (N.L. neut. n.): a
404  genus name; -aceae, ending to denote a family; Haloaenigmatarchaeaceae (N.L. fem. pl. n.):
405  the Haloaenigmatarchaeum family.

406

407  Salsurabacterium gen. nov. Etymology. bacterium (N.L. neut. n.): a bacterium;
408  Salsurabacterium (N.L. neut. n.): a bacterium thriving in brine. Type species:
409  Salsurabacterium abyssinicum.

410

411 Salsurabacterium abyssinicum sp. nov. Etymology. abyssinicum (N.L. neut. adj.): pertaining
412  to Abyssinia, former name of the Ethiopian Empire.

413 Diagnosis. This bacterium thrives in brines of the Danakil Depression, Ethiopia. Itis likely
414  capable of aerobic and anaerobic respiration and organoheterotrophic growth. Its genome has
415 3.8 Mbp (GC content: 51%). It is known from environmental sequencing only. The designated
416  type MAG is DAL-3Gt_29 1 96C5R.

417

418  Salsurabacteriota phyl. nov. Etymology. Salsurabacterium (N.L. neut. n.): a genus name; -
419 ota, ending to denote a phylum; Salsurabacteriota (N.L. neut. n.): the Salsurabacterium
420  phylum).

421

422

423 Materials & Methods

424

425  Danakil samples, DNA purification and metagenome sequencing

426  Northern Danakil brine samples used for metagenome sequencing were collected from Lake
427  Karum or Assale in 2016 (Ass) and 2019 (9Ass) and from an underground cave reservoir in
428  the Dallol canyons (La Grotte, 9Gt) and the Western Canyon Lakes (WCL2, WCL3) in 2019.
429  The specific description of these sites, their hydrochemistry and the associated microbial
430 community composition based on 16S rRNA gene amplicon metabarcoding studies has been
431 published!®?, The main physicochemical parameters and cation concentrations are highlighted
432  in Fig.1 and Supplementary Table 2. Brine samples (5-25 I) were sequentially filtered through
433 30-pum and 0.22-pum pore-diameter Nucleopore filters (Whatman, Maidstone, UK) and the
434  filters retaining the 0.2-30 pm cell fraction were fixed with absolute ethanol (>80% final
435  concentration) in 2-ml cryotubes and stored at —20°C until use. After ethanol elimination and
436 biomass rehydration, DNA was purified using the Power Soil DNA Isolation Kit (MoBio,
437  Carlsbad, CA, USA) under a UV-irradiated Erlab CaptairBio DNA/RNA PCR Workstation.
438  DNA was resuspended in 10 mM Tris-HCI, pH 8.0 and stored at -20°C. Total DNA was

11


https://doi.org/10.1101/2024.03.10.584303
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.10.584303; this version posted March 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

439  sequenced using HiSeq Illumina paired-end (2x125 bp) by Eurofins Genomics (Ebersberg,
440  Germany). Metagenome statistics and GenBank accession numbers are provided in Table S1.
441

442  Sequence analysis, functional annotation, and metagenome-inferred microbial
443  community composition

444 Raw Illumina reads were quality verified with FastQC v0.11.8 and cleaned with
445  Trimmomatic® v0.39, adjusting the parameters as needed (usually LEADING:3 TRAILING:3
446 MAXINFO:30:0.8 MINLEN:36) and eliminating the Illumina adapters if any. Clean reads
447  were assembled with Metaspades® v3.13.1 with default parameters and k-mer iteration cycles
448  of “21,25,31,35,41,45,51,55”. Gene annotation was performed with Prokka®® v1.14.5 in
449  metagenome mode (contigs >200 bp). We assigned coding sequences to PFAMs (Pfam-A
450  database v3.1b2) with HMMER hmmsearch v3.2.1 with the trust cut-off threshold. To
451  determine the phylogenetic diversity of microbial communities, we used a set of 15 ribosomal
452  proteins highly conserved across the three cellular domains, including the reduced and often
453  fast-evolving members of the Patescibacteria and the DPANN archaea. These universal single-
454  copy genes (USCGs; Supplementary Fig.1) were identified via their PFAM motifs (Pfam-A
455  database v3.1b2)%". These were then blasted (blastp) against a collection of the 15 selected
456  markers from all GTDB representative genomes (r214; https://gtdb.ecogenomic.org/) and
457  assigned to the corresponding GTDB taxa when best hits had more than 35% identity over at
458  least 70% of query lengths. To determine the relative abundance of the identified taxa, their
459  USCGs were indexed with Bowtie2%8 v2.3.5.1 and the clean reads from their corresponding
460  metagenome were mapped back onto them. Mapped reads were retrieved with Samtools®® v1.9
461 and, for each gene, the Reads Per Kilobase (of gene sequence) per Million of mapped
462  metagenomic reads (RPKMs) were calculated using ad hoc Perl scripts, allowing normalization
463  for gene length and sample sequencing depth. We then averaged the results from the 15
464  USCGs. Plots were generated with ad hoc R scripts using the ggplot2 package at the phyla
465 level (Fig.1) and the genus level for haloarchaea and Nanohaloarchaea (Extended Data Fig.1).
466

467  Diversity indexes

468  To calculate diversity indexes, we used operational taxonomic units (OTUs) defined by clusters
469  of USCG genes at 99% identity. Clusters were generated by cd-hit’* (parameters -c 0.99, -n 5,
470 -d 0, -M 0) and assigned to species-level taxa (GTDB r214) as described above. Species
471  abundance was calculated by the sum of RPKMs of clustered genes for each OTU after
472 averaging the RPKMs for the different USCGs assigned to the same species. These values
473  served to build an abundance matrix and calculate several diversity indices (alpha diversity,
474  Shannon entropy, Pielou’s evenness and Simpson’s dominance) using an ad hoc R script using
475  the Vegan package’?. These were visualized as lollipop plots using the ggplot2 R package. In
476  addition to diversity indexes for the Danakil metagenomes, we included data from
477  metagenomes of freshwater, Mediterranean plankton and solar saltern ponds previously
478  generated and treated in the same way* for comparison.

479

480 Metagenome-assembled genomes (MAGS)

481  To generate MAGs, we co-assembled reads from, respectively, Ass and 9Ass (co-assembly
482  DAL-Ass), and WCL2 and WCL3 (co-assembly DAL-WCL) with Metaspades using the same
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483  parameters as above (statistics shown in Supplementary Table 1). These co-assemblies were
484  used for binning via the anvi’o pipeline’® v5, using Concoct™ v1.1.0 and Metabat”™ v2.15 as
485  binning software and the DASTool”® v1.1.2 to merge and dereplicate bins. The resulting bins
486  were manually refined using the anvi-interactive graphical user interface to obtain high quality
487  MAGS. In the case of the single 9Gt metagenome assembly, MAGs were binned using Concoct
488 using default parameters except for contig splitting (10,000 nt fragments). Low-yield
489  metagenomes from La Grotte were mapped onto the 9Gt Concoct bins using anvi’o to enable
490  the use of the anvi-interactive graphical user interface for manual bin refinement. Final MAG
491 identifiers (IDs) consist of the prefix DAL- (Dallol region), the name of the metagenome where
492  they binned from (DAL-9Gt, DAL-Ass, DAL-WCL), followed by the original bin number and
493  a label indicating completion and redundancy as determined by anvi’o (e.g. 90C3R indicates
494  90% completion and 3% redundancy). Completion and redundancy values were independently
495 inferred using CheckM’” v1.1.1 and CheckM2 v1.0.1. We assembled a total of 483 MAGs,
496  from which 155 had good quality (>40% completion and <5% redundancy; Supplementary
497  Table 3). MAGs were annotated with prokka® specifying the domain of each respective MAG
498  (Archaea or Bacteria). Coverage was only calculated for the set of good-quality MAGs, and it
499  was determined with CoverM™ v0.6.1 by mapping the corresponding metagenomic reads to
500 each of the MAG contigs. Different MAG statistics are shown in Supplementary Table 3.

501

502  Phylogenetic classification of MAGs

503  All assembled MAGs were initially classified using the GTDB-tk pipeline®’ v2.3.0 according
504 to the GTDB r214 taxonomy. Average nucleotide identity (ANI) comparisons among groups
505  of MAGs were conducted using the ANI matrix calculator’. High-quality MAGs were more
506  robustly classified according to their phylogenetic position in phylogenomic analysis; their
507  statistics are shown in Supplementary Table 3. The phylogenomic analyses for archaea were
508 carried out using a subset of 127 proteins from a previously identified set of core archaeal
509  markers allowing to robustly infer the tree of archaea®®. We added our Danakil MAGs to an
510 initial sample of 178 proteomes spanning all major archaeal super-groups® and additional
511 GTDB representative genomes for the Halobacteriota, Aenigmatarchaeota, and
512  Nanohaloarchaeota. We gathered orthologs of the 127 markers from the Danakil MAG
513  predicted proteomes by using sequences from previous alignments® as queries for BLASTp.
514  For each marker, the best BLAST hit from each proteome was added to the dataset. Each
515  dataset was aligned using mafft-linsi 8! and ambiguously aligned positions were trimmed using
516  TrimAI® (‘automaticl’ mode). All trimmed alighments were concatenated into a supermatrix
517 (533 taxa, 32,985 amino acid positions). A preliminary phylogeny was inferred using
518  FastTree® v2 (-Ig -gamma model of evolution) that served as basis to select two subsets of taxa
519  focusing on the DPANN and the Halobacteriota (188 and 260 taxa, respectively). Those subsets
520  were used for phylogenetic reconstruction with IQ-TREE v284 under the LG + C60 + G model;
521 1,000 ultrafast bootstrap replicates were used to assess branch statistical support. Independent
522  phylogenomic trees were carried out for the different bacterial clades detected (T1Sed10-126,
523  Cyanobacteria, Myxococcota, Rhodothermia, including Salinibacteraceae, Patescibacteria, and
524  Bipolaricaulota). Representative reference genomes were selected from GTDB for each group,
525 and the 120 gene markers used by the GTDB-tk classifier retrieved. The corresponding proteins
526  were aligned with mafft®® v7.453, and ambiguously aligned positions trimmed with trimAI%2
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527  vl.4.rev22 prior to their concatenation with an ad hoc Perl script. ML phylogenetic trees were
528  reconstructed with 1Q-tree®® v1.6.11 with the following parameters: -bb 1000 -m
529 LG+C60+G+F. Full trees for Fig.4 are provided as Supplementary Figs.4-6; other bacterial
530 trees are shown in Supplementary Figs.7-11.

531

532 Isoelectric point, amino acid biases and statistical analyses

533  To calculate the pl of each protein from metagenomes and MAGs, we used the EMBOSS’ iep
534  software®’. The output was processed with an ad hoc Perl script, and density plots were
535 visualized using an ad hoc R script with the ggplot2 package. Median pl values for each
536  proteome were calculated using a Perl script. Amino acid ratios (R/K and D+E/I+K) were
537  calculated for each inferred proteome with an ad hoc Perl script (AAfreg.pl). Metagenome R
538 and K frequency bar-plots were built with an ad hoc R script using the ggplot2 package. pl and
539  amino acid frequencies and ratios are shown in Supplementary Table 2. Principal Component
540 Analyses (PCA) including those values as well as some physicochemical parameters
541  (Supplementary Table 2) were carried out with the ggbiplot and corrplot packages in R,

542

543  Metabolic inference

544  The general metabolic potential of MAGs with more than 50% completion was automatically
545  evaluated using the Metabolic-G software®® v4.0. The resulting tables 2 (Function Hit) and 3
546 (KEGG Module Hit) were used for visualization via an ad hoc R script. Function Hit was
547  visualized as a heatmap with the presence/absence of each function using the gplots package.
548  For the KEGG module Hit, pathway completeness was calculated based on the number of steps
549  needed to achieve the module function. A gradient of 0-100% completion of the module was
550 visualized via heatmap with the gplots R package. The haloarchaeal and nanohaloarchaeal
551  MAG heatmaps were ordered according to guiding phylogenetic trees using the phylogram R
552 package. To look for diagnostic genes, we used the collection of HMMs from KOfams
553  developed by KEGG® to scan the whole metagenomic space with hmmsearch (e-value <le-
554 1), To look for more specific functions, we predicted and annotated genes following adapted
555  pipelines®; marker genes for reduction and oxidation of both organic and inorganic compounds
556  were searched manually. We annotated the genes against the UniProtKB-SwissProt (05.2022)
557  using Diamond®? blastp v2 (parameters: -k1 --evalue 1e-10 --query-cover 50 --id 40 --sensitive)
558 and the Pfam database (release 35.0) using HMMsearch v3.3.2 (parameters: cut_ga).
559  Carbohydrate-active enzymes (CAZymes) were annotated using the specialized database
560 CAZyDB (release 09242021). The number of genes was normalized based on genome
561  estimated number, calculated by average count of USCG and sequence depth following
562  MicrobeCensus®® v1.1.1. The metabolic potential of the most complete MAGs was used to
563 illustrate the metabolism of given clades (Fig.5; Supplementary Table 4).

564

565 Data availability

566 ~ Metagenomes are available in GenBank with the following accession numbers under the
567 Bioproject PRINA541281: SAMN37693137 (DAL-Ass), SAMN37693138 (DAL-9AsS),
568 SAMN37693139 (DAL-9Gt), SAMN37693140 (DAL-WCL2) and SAMN37693141 (DAL-
569  WCLJ3).

570
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571  Code availability

572 Custom code for these analyses (perl and R scripts) is available at Gitlab
573  https://gitlab.com/DeemTeam/dal-metagenomes.
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796  FIGURE LEGENDS
797

798  Fig.1. Microbial community composition inferred from metagenomes of polyextreme
799  chaotropic ecosystems in the north Danakil Depression. a, Sampling sites around the Dallol
800  proto-volcano and Lake Assale or Karum in the north Danakil Depression, Ethiopia; some
801 major abiotic parameters for each system are shown (aw, water activity). b, Global microbial
802  community composition at high-rank taxonomic level of sampled polyextreme ecosystems
803 inferred from the normalized frequency of universal single-copy genes (USCGs; selection of
804  ribosomal proteins expressed in RPKM). Note that DAL-WCL2 and WCL3 are composed of
805  99% archaea (Halobacteriota and Nanohaloarchaeota; classification according to GTDB r214).
806

807  Fig.2. Isoelectric point and amino acid compositional biases of inferred proteomes for
808  microorganisms thriving in increasingly chaotropic ecosystems from the north Danakil
809  Depression. a, Distribution of isoelectric point (pl) values inferred for proteins encoded by the
810 analyzed Danakil metagenomes in comparison with representative metagenomes from
811  freshwater, seawater and solar saltern brines of increasing salt concentration (6-14-32%).
812  Values for reference ecosystems were inferred from two replicate metagenomes each. The inlet
813  shows a barplot displaying pl values per ecosystem type. b, Principal component analysis
814 (PCA) of the Danakil polyextreme systems and ecosystems sampled along a salinity and
815  chaotropicity gradient as a function of major abiotic determinants; chaotropicity is associated
816  with high Mg?* and Ca?" concentrations. ¢, PCA of the GC content and inferred pl median
817  values, amino acid composition and DE/IK and R/K ratios from the analyzed metagenomes. d,
818 jitter-violin plot showing protein pl values inferred from individual metagenome-assembled
819  genomes (MAGs) affiliating to the domains Archaea and Bacteria. e, jitter-violin plot showing
820  proteome pl values inferred from MAGs in Danakil brine systems.

821

822  Fig.3. Diversity indexes for all species and dominant archaeal taxa in Danakil
823  geothermally influenced chaotropic brines compared to other ecosystems of increasing
824  salinity. a, Shannon index calculated from normalized USCGs from individual metagenomes
825  grouped at species-level operational taxonomic units (OTUs; see Methods) considering OTUs
826  for all taxa, Halobacteria and Nanohaloarchaeota. b, PCA of various compositional biases,
827  abiotic factors and alpha-diversity and Shannon diversity indexes for dominant archaeal taxa
828 in Danakil polyextreme brines as compared to reference ecosystems along a salinity gradient.
829

830 Fig.4. Phylogenomic trees of newly identified archaeal and bacterial MAGs in hypersaline
831 chaotropic north Danakil ecosystems. a, Phylogenomic tree of archaeal MAGs affiliating to
832 the class Halobacteria (Halobacteriota). b, Phylogenomic tree of MAGs affiliating to the
833  Nanohaloarchaeota and Aenigmatarchaeota (DPANN supergroup). ¢, Phylogenomic analysis
834  of the bacterial phylum Candidatus Salsurabacteriota (p_T1Sed10-126), grouping seemingly
835  extreme halophilic members. Bootstrap value ranges are indicated at nodes. Names of MAGs
836  assembled from our Danakil metagenomes are highlighted in color; reference sequences are
837 indicated in black. Some taxa were collapsed to facilitate visualization of trees (detailed trees
838 are shown in Supplementary Figs. 4-6); the number of total representatives included in
839  collapsed taxa is given in brackets. Asterisks indicate genera and families newly identified in
840 this study.
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841

842  Fig.5. Major processes involved in energy metabolism in microbial communities from
843  Danakil polyextreme brine ecosystems. The relative abundance of genes in the different
844  metagenomes, shown on the left, is expressed in terms of the inferred proportion of genomes
845  harboring them. The presence absence of the corresponding genes in MAGs of the selected
846  taxa is shown on the right. DNRA, Dissimilatory Nitrate Reduction to Ammonium. APS, 5'-
847  adenylsulfate.
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Extended Data Fig. 7. Heat maps showing major metabolic potential functions and KEGG pathways for MAGs of the
halophilic candidate bacterial phylum Salsurabacteriota (T1Sed10-126). a, Presence-absence of metabolic functions as
inferred by Metabolic G in the two most complete Danakil MAGs and known GTDB genomes. b, Modules of KEGG pathways
identified in Salsurabacteriota. The names of our MAGs are highlighted in green.
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Extended Data Fig. 8. Heat map showing the relative abundance of hydrocarbon degrada-
tion genes in metagenomes from north Danakil hypersaline ecosystems.
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