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Accurate measurement of mechanical forces in cells is key to
understanding how cells sense and respond to mechanical stimuli, a central
aspect of mechanobiology. However, accurately quantifying dynamic forces at
the single-molecule level in living cells is a significant challenge. Here, we've
developed the DNA-based ForceChrono probe to enable in-depth studies of
integrin force dynamics at the single-molecule level in living cells. By
illuminating two distinct mechanical points and circumventing the inherent
fluctuations of single-molecule fluorescence, the ForceChrono probe enables
analysis of the complex dynamics of mechanical forces at the single-molecule
level, such as loading rates and durations. Our results refine previous broad
estimates of cellular loading rates to a more precise range of 0.5 to 2 pN/s,
shedding light on the specifics of cellular mechanics. In addition, this study
reveals a critical link between the magnitude and duration of integrin forces,
consistent with the catch-bond behavior demonstrated in vitro. The
ForceChrono probe has distinct advantages, such as precise analysis of single-
molecule force dynamics and robust resistance to fluorescence fluctuations,
which will significantly advance our understanding of cell adhesion and
mechanotransduction at the single-molecule level.
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Introduction

The cellular microenvironment is not just a passive milieu where cells exist,
but rather a dynamic theater where intricate molecular dramas unfold. Cells are
not mere spectators; they actively interpret and respond to the myriad of
mechanical cues presented to them'. These cues, often manifested as forces
exerted on cellular receptors, play a crucial role in dictating cellular behavior?3.
To fully understand this complex interplay, it's essential to delve deeper into the
three pivotal parameters that characterize these forces: the magnitude, the
loading rate, and the sustained duration*°.

Over the past decade, various types of immobilized molecular fluorescent
tension probes have emerged as a revolutionary tool in mechanobiology,
providing a detailed lens through which the magnitude of cellular forces can be
observed and quantified at the molecular level®'2. Notable examples include
the elucidation of integrin-mediated force transduction®1%.13.14 the dynamics of
T-cell receptor (TCR) forces'™ '8, and the mechanisms underlying cellular
rigidity sensing'’. These studies have not only quantified the magnitude
characteristics of cellular forces but have also underscored their pivotal role in
driving the mechanisms of mechanical force transduction. While the
achievements in quantifying force magnitude are commendable, the field still
grapples with challenges in measuring other critical parameters, notably the
force loading rate and force duration.

The duration of force reveals how long a protein or a molecular complex
can resist a mechanical force before detaching or undergoing a conformational
change'®?'. This parameter is vital for understanding the mechanical stability
and resilience of key molecular players in mechanotransduction
pathways'82223, Moreover, the duration of these forces can significantly
influence molecular interactions?*. The loading rate can determine how proteins

unfold, activate, or even interact with other molecules, thereby dictating the
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immediate cellular response to mechanical stimuli?232528 A key aspect to
highlight in the study of cellular mechanotransduction is the significant
dependence of rupture force and bonding lifetime on the loading rate?®2°. This
dependency underscores the complexity of understanding cellular mechanics,
as our current knowledge of physiologically relevant cellular loading rates is
limited. Often, studies resort to assuming an arbitrary loading rate or reporting
a spectrum of rates observed throughout the research. The estimated range of
force loading rates exerted by living cells, as predicted by various research
groups, is remarkably broad, spanning from a minimal 0.007 pN/s to an extreme
of 107 pN/s?7:3%.31_ This wide range often leads researchers to assume arbitrary
loading rates or report a series of rates to explain observed phenomena,
creating confusion in understanding cellular mechanics. Understanding and
quantifying these parameters in living cells is not just a biophysical curiosity but
a necessity to unravel the intricate dance of molecules under mechanical stress.

Here, we designed a ForceChrono probe that combined two DNA hairpin
probes with distinct force thresholds and fluorophores, enabling a tiered system
for force measurement. This design overcomes the limitations of traditional
DNA hairpin-based tension probes that only report force threshold values. This
multi-tiered approach not only measures information about the magnitude of
the single-molecule force in living cells, but also offers insights into the
dynamics of the force application, both in terms of the loading rate and duration
of the force. Our results using the ForceChrono probe reveal a correlation
between the magnitude and duration of integrin forces and accurately measure
the loading rate of cells in different environments, as well as the relevant
influences on these values. These studies fill a critical gap in current research
methods and thus deepen our understanding of mechanotransduction
pathways. Overall, we demonstrate that the DNA-based ForceChrono probe is
uniquely suited to reveal the complex dynamics of integrin force at the single-
molecule level, providing new insights into the molecular mechanisms of

cellular mechanotransduction.
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Results

Development of ForceChrono Probes

The ForceChrono probes comprise a dual DNA hairpin system, with each
hairpin tagged with a unique fluorophore—Cy3B for the lower force threshold
and Atto647N for the higher (Figure 1A and S1A). These probes are
synthesized and assembled using a modular strategy (Figure 1A and S1B). By
adjusting the force application geometry of the DNA hairpin, GC content, stem
lengths, or loop size (Table S1-3), these hairpins are engineered to unfold
sequentially at specific mechanical force thresholds, enabling real-time
measurement of force loading rates. A fluorescence quenching moiety, BHQ2,
is strategically positioned at the hairpin's junction, quenching both dyes in the
"off" state. To further enhance optical sensitivity and prevent photobleaching,
the entire probe is immobilized on a 3.5 nm gold nanoparticle. This design not
only provides an additional layer of fluorescence quenching through Nanoscale
Gold Surface Resonance Energy Transfer (NEST)'%15:32 put also ensures the
reliability and accuracy of ON-OFF signals in subsequent single-molecule
fluorescence imaging experiments.

Before cellular application, the ForceChrono probes were rigorously
calibrated using single-molecule magnetic tweezers (SMMTs), confirming that
the mechanical thresholds for hairpin unfolding aligned with theoretical
predictions (Figure S2 and Table S4). Two versions were developed to cover a
broader mechanical range (Figure 1B): one sensitive to 7 pN and 19 pN forces,
and another to 17 pN and 41 pN. The probes were diluted to single-molecule
concentrations and covalently attached to gold nanoparticles, along with non-
fluorescent cRGDfK peptides for cellular experiments. This created a
functionalized substrate for Mouse Embryonic Fibroblast (MEF) cells (Figure
S1).

Imaging was conducted using Total Internal Reflection Fluorescence (TIRF)
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microscopy (Figure 1C), equipped with dual EMCCDs and a dichroic short-
wavelength pass filter. This setup allowed for the simultaneous, real-time
capture of both Cy3B and Atto647N emissions. High temporal resolution was
maintained with an exposure time of 200 ms across 2000 continuous frames
(Figure 1D and Movie S1). The stability of the fluorescent dyes was validated
through photobleaching experiments (Figure S3A-D). We calibrated the
acquired images and extracted the single-molecule signal to generate time-
resolved fluorescence trajectories, yielding both the loading rate and duration
of integrin forces (Figure 1E). In particular, the time difference between the
sequential activations of the two fluorophores directly measures the force
loading rate, given the known mechanical thresholds of the hairpins (Figure 1F).
Furthermore, the duration for which both fluorophores remain activated
indicates sustained mechanical force, offering an unprecedented measure of
force duration at the single-molecule level. Specifically, the first hairpin's design
in unzipping mode eliminates hysteresis between unfolding and refolding forces
(Figure 1B), meaning the duration for which the first fluorescent molecule (Cy3B)
is illuminated should indeed represent the force duration (Figure 1G).
Additionally, we used a probe with only one hairpin structure as a control and
found that the opening of the second hairpin does not impact the measurement
of force duration (Figure S3E-G). This ensures the accuracy of our
measurements and validates the comparability of the loading rate results
across different probes.

In nearly all single-molecule events, both fluorescent molecules on the
ForceChrono probe continued to glow simultaneously for a duration before
extinguishing simultaneously (Figure 1E). This suggests that the force on the
integrin gradually increases and sustains for a period before abruptly
terminating. This abrupt termination is likely due to either a break in the integrin-
ligand bond outside the cell membrane or an internal protein-protein bond break,
such as talin-integrin®. This contrasts with a slow relaxation scenario, where

the two fluorescent molecules would extinguish sequentially due to the different
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refolding forces of the hairpins.

To further explore the temporal dynamics of single integrin force, we
employed MEFs stably expressing Paxillin-GFP and spread them onto
substrates modified with 7-19 pN ForceChrono probes (Figure 1H-K). During
the early stages of adhesion, cells formed highly dynamic needle-like and dot-
like adhesion structures (Figure 1H). At this stage, the duration of force on
integrin was short, averaging around 37 seconds, and the loading rate was high,
approximately 0.9 pN/s. However, as the cells spread over 2 hours, both the
force duration and the loading rate underwent significant changes (Figure 1J
and 1K). By 8 hours of spreading (Figure 11), the cells exhibited obvious
polarization, and the loading rate had decreased to about 0.5 pN/s.

These observations indicate an apparent spatio-temporal heterogeneity in
the mechanical dynamics of integrins at different stages of cell spreading. The
changes in mechanical dynamics may be closely related to the stability of the
adhesion structures and the slowing down of actin retrograde flow®. This
spatio-temporal heterogeneity underscores the complexity of mechanical force
regulation in cellular processes and highlights the utility of ForceChrono probes

in capturing these dynamics at the single-molecule level.
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Figure 1. Development of ForceChrono probes for visualizing individual integrin
mechanical force dynamics in living cells. A, Schematic of the ForceChrono probes
assembly (upper) and structure (lower). B, Calibration curves of ForceChrono probes with
SMMTs. Upper: representative force-extension curves of 7-19 pN and 17-41 pN probes.
Lower: Histograms and Gaussian-fitting results of applied forces at the unfolding force
events. C, Microscope setup for simultaneous single-molecule fluorescence imaging of two
channels. D, Representative fluorescence images of paxillin-GFP, Cy3B and Atto647N
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from the TIRF microscope. Integrin force signals in the Cy3B and Atto647N channels were
imaged using a 200 ms exposure time for 2000 frames without intervals. Then the images
were calibrated and the localization information of single molecules was extracted. E,
Representative fluorescence trace of individual integrin force signals reported by 17-41 pN.
At1 represents the time interval between the emergence of the force signal. Atz represents
the duration of the mechanical force on the integrin-ligand bond exceeding the unfolding
force. F, Distribution of integrin mechanical force loading rate and the fitting result of
Lorentzian Distribution. G, Distribution of integrin mechanical force duration and the fitting
result of exponential decay. H, I, Left: Representative paxillin-GFP images of MEF cells
spreading out at different times. Right: Representative fluorescence trace of integrin force
signals reported by 7-19 pN. J, Average duration of force on integrins measured using 7-
19 pN probes at different cell spreading times. Each point represents the mean duration of
a cell. The error bars represent mean * s.d. from three independent experiments. K,
Average loading rate of force on integrins measured using 7-19 pN probes at different cell
spreading times. The error bars represent mean + 95% CI from three independent
experiments. Two-tailed Student’s {-tests are used to assess statistical significance. Scale
bar=10 pm.

Probing the force duration of a single integrin in living cells

When dissecting the intricate dynamics of integrin-ligand interactions within
living cells using ForceChrono probes, it is essential to evaluate the sensitivity
of the probes (Figure 2A). Specifically, it is crucial to determine whether the
hairpin structures of the probe can open when the mechanical force on the
integrin reaches a certain threshold, with the recovery of the fluorescence signal.
To address this, we designed a ForceChrono probe with nearly identical
threshold forces for two DNA hairpins and examined the time interval of the
signals from the two fluorescent dyes (Table S5). Our experimental results
revealed that most signals appeared and disappeared almost simultaneously
(Figure 2B), with only 14.7% of the signals showing a time interval greater than
one second (Figure 2C). This result underscores the high sensitivity of the
ForceChrono probe.

Next, we used ForceChrono probes to classify integrins into two classes
based on the magnitude of mechanical force they exerted (Figure 2D and S4A):

Class | integrins exhibited a low magnitude of mechanical force (F1 < F < F2),
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while Class Il integrins displayed high mechanical forces (F>F2). Interestingly,
single-molecule fluorescence imaging revealed that Class | integrins are highly
dynamic, transmitting lower magnitudes of force with shorter durations. In
contrast, Class Il integrins exhibited a different trend: the frequency of
mechanical "blinking" events decreased, and the duration of force transmission
increased. We observed intriguing behavior when employing the 17-41 pN
ForceChrono probes (Figure 2E). At lower mechanical thresholds (17 pN < F <
41 pN), the mechanical force exerted on integrin-ligand bonds were
predominantly unstable, manifesting short force durations. Intriguingly, upon
exceeding a mechanical force of 41 pN, it exhibited remarkable stability. Upon
analyzing the force duration distribution of the two integrin classes (Figure 2F),
it was found that Class | integrins followed an exponential decay distribution.
On the other hand, the distribution of Class Il integrins decreased significantly
in the 0-20 s duration range, while increasing in the long duration range. Further
analysis of over 1000 integrins confirmed that Class Il integrins had a longer
average force duration compared to Class | integrins (Figure 2G). Similar
results were obtained using 7-19 pN probes (Figure S4A-D). In contrast to the
behavior of slip bonds, where bond stability decreases with increasing
mechanical force 34, our findings more closely align with the characteristics of
catch bonds. Our results reveal that the duration of force exerted on integrins
increases with mechanical force up to a certain threshold.

To further validate our findings, we administered the ROCK inhibitor
Y27632 to the cells, instigating a transition from Myosin lI-driven forces to actin
polymerization-driven forces (Figure 2H), which are intrinsically weaker. This
pharmacological intervention effectively reduced the upper limit of mechanical
forces exerted by individual integrins’®, as evidenced by the diminished
occurrence of forces exceeding 41 pN. We then used the 7-19 pN ForceChrono
probe to investigate the dynamic characteristics of integrin force in Y27632-
treated MEF cells, and we observed that the mechanical signals of Y27632-

treated MEF cells were predominantly centered at cell edge locations, which is
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consistent with previous observations (Figure 2H)'%35. Compared to untreated
cells, Y27632-treated cells exhibited a more dynamic mechano-fluorescence
pattern with a significantly shorter overall force duration (Figure 2I), with each
integrin force duration averaging about 20 seconds. This data further suggests
that weaker mechanical forces make it difficult to stabilize the integrin-ligand
bond.

Collectively, our data demonstrate the efficacy of ForceChrono probes in
precisely quantifying single-molecule force durations in living cells. Our findings
suggest a positive correlation between the magnitude and duration of
mechanical force exerted by individual integrins. Importantly, we observed that
lower mechanical forces are less effective in sustaining integrin-ligand
mechanical transduction. This phenomenon is likely to contribute to the role of
integrin as biomechanical sensors, facilitating the coupling of mechanical force
with downstream biochemical signaling cascades, aligning with the catch-bond

behavior previously observed in vitro studies®*.
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A. Evaluating the sensitivity of the probe
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Figure 2. Investigating the relationship between magnitude and duration of integrin
force. A, Evaluating the sensitivity of the probe. Left: The schematic illustrates that when
the unfolding force of the two DNA hairpins is equal, the mechanical force on the integrin
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reaches the corresponding threshold, resulting in the simultaneous appearance of signals
from the two fluorescent dyes. Right: The structure and oligonucleotide of the ForceChrono
probe with the same unfolding force. B, A representative fluorescence signal trace of
integrin force, showing that Cy3B and Atto647N signals appeared without delay. C,
Measurement of delay frames between Cy3B and Atto647N signals. D, Left:
Representative molecular force signal reported by 17-41 pN probes. Right: The schematic
shows that integrins are divided into two classes according to the force magnitude. Class
| integrins have a force between 17 pN and 41 pN, only Cy3B signals can be observed.
Class Il integrins have a force exceeding 41 pN, and Cy3B and Atto647N signals can be
observed. E, Representative fluorescence intensity traces for these two integrins. F,
Distribution of the duration of mechanical forces on these two integrins. G, Since the force
duration of class Il integrins cannot be fitted with an exponential function, the mean
duration of a single integrin is shown here, based on data from over 1000 integrins. The
error bars represent mean = s.d. from three independent experiments. H, Representative
7-19 pN single-molecule fluorescence images after being treated with Y27632. I, Average
duration of force on integrins with or without Y27632 treatment. Each point represents the
mean duration of a cell. The error bars represent mean * s.d. from three independent
experiments. Two-tailed Student’s {-tests are used to assess statistical significance. Scale
bar=10 pm.

The nonlinear dynamics of integrin loading rates

To comprehensively understand the dynamics of mechanical force loading
on integrins, we employed two ForceChrono probes with distinct mechanical
ranges: 7 pN-19 pN and 17 pN-41 pN. These probes offer a continuum of force
thresholds, allowing for a nuanced investigation. Control experiments
confirmed that the measured force durations were not significantly influenced
by the probe structure, validating the comparability of the results across
different probes (Figure S3E-G).

Our data revealed a striking heterogeneity in the loading rates of
mechanical forces on integrins (Figure 3A and 3B). Specifically, after 2 hours of
MEF cell spreading on surfaces modified with these probes, the loading rate
was approximately 0.6 pN/s in the low-force range (7-19 pN). However, this rate
escalated to about 1.5 pN/s in the 17-41 pN range. The nonlinear dynamic of

the integrin loading rate was further confirmed in 3T3, C2C12, and A375 cells
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(Figure S4E-G), although the measured loading rates were not entirely
consistent across different cell types.

Given the crucial role of actin in the dynamics of integrin mechanical force
loading, we investigated how filamin and a-actinin influence the mechanical
loading rate of individual integrins. These two important actin-binding proteins
are known for their ability to crosslink or bundle F-actin, forming specific actin
structures: actin networks by filamin and actin bundles by a-actinin3.
Additionally, they are involved in the linking and mechanical transduction of
integrin and actin cytoskeleton®”:38, To explore their impact, we knocked out
filamin A or a-actinin-4 in MEF cells and studied their effects on integrin loading
rates across various force intervals (Figure 3C and 3D). Our results showed
that filamin A knockout decreased the loading rate across the 7-41 pN range,
more noticeably in the lower force interval (7-19 pN). Conversely, a-actinin-4
knockout did not significantly affect the loading rate in the lower force interval
but resulted in a decrease in the higher force interval (17-41 pN). This implies
that filamin A contributes to integrin force loading across a broad range,
whereas a-actinin-4's influence becomes more pronounced at higher
mechanical force levels. These findings suggest that the roles of filamin A and
a-actinin-4 in integrin mechanical loading are distinct and depend on the force
level, highlighting the nuanced interplay between cytoskeletal components and
integrin mechanics.

Finally, we investigated the effect of myosin activity on the mechanical
loading dynamics of integrin (Figure 3E and 3F). Our experiments, involving
both Rho activator and Y27632 treatments, revealed that the integrin loading
rate decreased significantly across both force ranges of 7-19 pN and 17-41 pN.
This result suggests that myosin activity, a crucial factor in cytoskeletal
dynamics and cellular force generation, plays a significant role in modulating
integrin loading rates, impacting the overall mechanotransduction process.

Taken together, the compilation of our findings delineates a complex

interplay between cellular architecture and integrin force transduction. One of
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the central to this relationship is the integrin force loading rate, a key parameter
that bridges cellular mechano-sensitivity with the dynamics of integrin-mediated
forces. This coupling dictates cellular mechano-sensitivity and significantly
influences how cells respond and adapt within various mechanical

environments, highlighting the intricate nature of cellular mechanotransduction

processes.
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Figure 3. Integrin force loading rate in different mechanical magnitudes. A, Left:
Distribution of integrin mechanical force loading rate in 7-19 pN and 17-41 pN ranges and
the fitting results of Lorentzian distribution. Right: Average loading rate of force on integrins
measured using 7-19 pN or 17-41 pN ForceChrono probes. The error bars represent mean
+ 95% CI from three independent experiments. B, Upper: Diagram of measuring the
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significance.


https://doi.org/10.1101/2024.03.09.584267
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.09.584267; this version posted March 12, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

The vinculin-talin interaction affects the mechanical dynamics of integrin

Vinculin, a key player in the molecular clutch model, is pivotal for linking
integrin-talin complexes to the actin cytoskeleton, facilitating dynamic
engagement and disengagement with the extracellular substrate®®. Despite
extensive in vitro exploration of vinculin's interaction with talin?0:23.2440  jtg
specific impact on integrin-mediated force transmission within cells remains
less understood.

We developed a vinculin-null mouse embryonic fibroblast (Vc/ KO MEF) cell
line'”, stably expressing paxillin-GFP. Consistent with prior findings, vinculin
absence did not impede focal adhesion formation or maturation (Figure 4A)'741,
However, our observations revealed that Vel KO cells predominantly
maintained an integrin force around 7 pN (Figure 4B), with a substantial
decrease in integrins capable of exerting forces beyond 17 pN.

Additionally, we notice a significant difference in YAP nuclear translocation
efficiency between Vel KO and WT cells (Figure 4C and 4D). Previous studies
have linked extracellular matrix (ECM)-mediated force transmission to nuclear
flattening, facilitating nuclear pore stretching and lowering resistance to
molecular transport such as YAP entry*2. Since the vinculin is integral to
connecting integrin-talin complexes to the actin cytoskeleton*3, it is likely to play
a crucial role in regulating the mechanical forces that facilitate YAP's movement
into the nucleus. Therefore, exploring the stability and duration of single integrin
forces in the absence of vinculin informs our understanding of its mechanistic
impact on cellular processes. Single-molecule ForceChrono probe imaging
revealed stark contrasts in mechanical loading dynamics between WT and Vc/
KO MEFs (Figure 4E, Movie S2 and S3). Vinculin-deficient cells showed
transient, rapid fluctuations in single-molecule force signals, indicative of a
higher loading rate (~0.8 pN/s) and a shorter force duration (~16 seconds). This

suggests that vinculin absence disrupts the mechanical stability of the
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molecular clutch, leading to a "slipping" clutch mechanism with rapid force
application and release. This mechanical instability in V¢l KO cells could explain
the reduced YAP nuclear translocation efficiency, the transient and unstable
mechanical forces might be insufficient for consistently stretching nuclear pores
to the extent required for efficient YAP transport. Vinculin, therefore, emerges
not just as a force transmitter but as a crucial regulator in the
mechanotransduction pathway, influencing the nuclear translocation of
mechanosensitive molecules like YAP by modulating the sustained application
and stability of mechanical forces at the cellular level.

Further exploring vinculin's domain-specific functions, we engineered two
full-length vinculin mutants: vinA50I, deficient in talin-binding, and vinl997A,
lacking actin-binding capabilities*3, both GFP-tagged (Figure 4F).
Reintroducing these mutants into Vel KO MEFs, we observed that vinl997A
partially restored integrin mechanical dynamics, approximating WT cell patterns
(Figure 4G-J). This suggests that while the actin-binding domain is crucial**, it
is not the exclusive contributor to integrin mechanical stability. In contrast,
vinA50I exhibited mechanical dynamics akin to Vel KO MEFs, underscoring the
indispensable role of the talin-binding domain in maintaining force transmission
and cellular adhesion. These insights deepen our understanding of vinculin's
domain-specific roles in integrin mechanotransduction and shed light on its

integral function in cellular adhesion and mechanical equilibrium.
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Figure 4. Role of vinculin in the mechanical transduction of integrin. A,
Representative mechanical force images of GFP-paxillin stably expressed WT MEF or Vcl/
KO MEF cells on 7-19 pN or 17-41 pN ForceChrono probes. Scale bar=10 yum. B, Average
intensity of tension signal in 7 pN or 17 pN channels for WT MEF or Vcl KO MEF cells. The
error bars represent mean = s.d. from three independent experiments. C, Representative
images of YAP stainings of WT MEF or Vc/ KO MEF cells spread out for 2 h. Scale bar=20
pum. D, n/c YAP ratio of cells spread out at different times. The error bars represent mean
t s.d. from three independent experiments. E, Representative fluorescence signal trace of
WT MEF or Vel KO MEF cells on 5-10 pN probes. F, Vinculin mutants: A50I (talin-binding
deficient) and 1997A (F-actin-binding deficient). G, H, Representative fluorescence signal
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trace of integrin force in vinI997A MEF (G) or vinA501 MEF (H). I, Average duration of force
on integrins measured using 5-10 pN probes in WT, Vel KO, vinl997A or vinA501 MEF cells.
Each point represents the mean duration of a cell. The error bars represent mean + s.d.
from three independent experiments. J, Average loading rate of force on integrins
measured using 5-10 pN probes in WT, Vel KO, vinl997A or vinA50l MEF cells. The error
bars represent mean + 95% CI from three independent experiments. Two-tailed Student’s
t-tests are used to assess statistical significance.

Exploring the impact of ligand spacing on integrin mechanical dynamics

The density of ligands in the ECM plays a critical role in the formation of
cellular adhesion structures, influencing cellular mechanosensing and
behavior*>47. Previous research has established a critical threshold of 60-70
nm ligand spacing for the maturation of focal adhesions (FAs)*®4°, which is
essential for the force-mediated mechanosensing mechanism. However, the
temporal dynamics of these forces, particularly how loading rate and duration
vary with ligand spacing, have been less explored.

Using block copolymer micelle nanolithography (BCMN)*547 we fabricated
gold nanoparticle nanopatterned substrates with 40 nm and 100 nm ligand
spacings to regulate the integrin ligand spacing (Figure S5). After
functionalizing these substrates with 7-19 pN ForceChrono probes, we
observed enhanced FA formation on the low-spacing (40 nm) substrate (Figure
5A), consistent with previous findings3547.

The ForceChrono probe, featuring two series-connected probes with
different threshold forces, allows accurate determination of integrin force ratios.
The integrated structure of the ForceChrono probe ensures a more accurate
and representative analysis of the mechanical forces involved. We, therefore,
compared the difference in the mechanical ratio of cells on the substrates with
different ligand spacing and found that on the high-spacing ligand patterned
substrates (Figure 5B-E), the fluorescence intensity ratio of 19 pN to 7 pN was

significantly higher than that of cells on the low-spacing ligand patterned
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substrates. This suggests that while increasing the ligand spacing affects the
number of integrins activations and, ultimately, the focal adhesions, individual
integrins increase the mechanical force at lower ligand densities. We then
investigated the effect of ligand density on the mechanotransduction dynamics
of individual integrins (Figure 5F-1). We found that at low ligand spacing, force
fluorescence trajectories were stable, consistent with previous observations.
Interestingly, compared to low ligand spacing, single-molecule signals at high
ligand spacing exhibited transient and rapid flickering characteristics with an
average duration of only 20 seconds, leading to shorter force duration and
higher loading rates.

These findings suggest that ECM ligand density profoundly affects the
magnitude and dynamics of integrin forces. At lower ligand densities, the forces
exerted by myosin are distributed over fewer adhesions, increasing the load on
each integrin. This not only accelerates force increase, but also facilitates focal
adhesion disassembly, supporting recent predictions of molecular clutch

models*®.
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Figure 5. Ligand spacing affects the mechanical force of integrin. A, Representative
AFM micrograph of the low or high-spacing gold particle ordered pattern substrates (Scale
bar=100 nm), and the mechanical force signal reported by 7-19 pN probes after paxillin-
GFP tagged MEF cells were plated onto these substrates (Scale bar=10 pym). B,
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Representative force ratio map (/19 pn/I7 pn) Of cells at different ligand spacing substrates.
Scale bar=10 ym (zoom, 5 ym). C, D, Average intensity of tension signal in 7 pN (Cy3B)
or 19 pN (Atto647N) channels on these substrates. The error bars represent mean + s.d.
from three independent experiments. E, Fluorescence intensity ratio of the 19 pN to 7 pN.
The error bars represent mean + s.d. from three independent experiments. F, G,
Representative fluorescence signal trace of integrin force in MEF cells at different ligand
spacings. H, Average loading rate of force on integrins measured using 7-19 pN probes
with different ligand spacings. The error bars represent mean * 95% CI from three
independent experiments. |, Average duration of force on integrins measured using 7-19
pN probes with different ligand spacings. The error bars represent mean = s.d. from three
independent experiments. Two-tailed Student’s t-tests are used to assess statistical
significance.

Discussion

In this study, we developed the DNA-based ForceChrono probe for
analyzing integrin force dynamics at the single-molecule level in living cells.
This probe not only quantifies the magnitude of single-molecule forces but also
deciphers complex force application dynamics, including loading rate and
duration.

The covalent bonding of the core components in the ForceChrono probe
ensures structural precision and stability. Each ForceChrono probe molecule
consists of two DNA hairpin probes that maintain their integrity under
mechanical forces. This is in stark contrast to the annealing self-assembly
method®, which is not suitable for single-molecule experiments due to
structural instability and unreliable probe composition resulting from variations
in annealing efficiency. Further, the ForceChrono probe's method of calculating
the loading rate by illuminating two distinct mechanical points as the
monomolecular force increases effectively bypasses the problems associated
with fluctuations in single-molecule fluorescence resonance energy transfer
(smFRET) setups®'-53, enhancing force measurement accuracy. Additionally, its
dual-probe configuration enables more effective monitoring of force

disappearance, reducing misinterpretation risks due to dye photobleaching.
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This approach captures molecular spring unfolding dynamics with improved
accuracy and reliability.

Our findings significantly narrow the previously broad estimates of force
loading rates exerted by living cells, which ranged from 0.007 to 107 pN/s?7:30.31,
to a more precise range of approximately 0.5 to 2 pN/s. This finding brings
clarity to the field of cellular mechanics, suggesting a typical range for cell
membrane protein receptor-mediated force transduction. Moreover, the use of
ForceChrono probes allows for the dissection of the role of various proteins in
the mechanical dynamics of integrin, such as the crucial components of the
molecular clutch. Notably, the study sheds light on the nonlinear nature of
integrin loading rates, offering insights into the complex interplay of cellular
components in integrin  mechanodynamics and their role in
mechanotransduction.

In addition, the experimental results from the ForceChrono probe have
revealed a crucial relationship between the magnitude of integrin forces and
their duration, highlighting a key aspect of cellular mechanotransduction. We
observed that smaller integrin forces, approximately a few pN, correspond to
shorter durations of integrin-ECM binding. Conversely, as these forces increase
to higher magnitudes (e.g.,> 41 pN), integrin-ECM linkages exhibit greater
stability. This finding is consistent with the behavior of catch bonds observed in
in vitro studies* and provides critical insights into the molecular dynamics of
cellular adhesion and the mechanical stability of integrin-ECM interactions.

In summary, our results demonstrate that DNA-based ForceChrono probes
provide multiple perspectives for studying the dynamics of mechanical loading
in living cells. We believe that these probes will serve as powerful tools to
elucidate the link between cellular mechanical sensing and downstream
signaling cascades, including immune recognition, stem cell differentiation and

tumor metastasis.
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