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9 Abstract

1 A key challenge in cancer research is to reconstruct the somatic evolution within a tumor over time and
12 across space. Spatially resolved transcriptomics (SRT) measures gene expression at thousands of spatial
13 locations in a tumor, but does not directly reveal genetic aberrations. We introduce CalicoST, an algorithm
1 to simultaneously infer allele-specific copy number aberrations (CNAs) and a spatial model of tumor evo-
15 lution from SRT of tumor slices. By modeling CNA-induced perturbations in both total and allele-specific
16 gene expression, CalicoST identifies important types of CNAs - including copy-neutral loss of heterozy-
17 gosity (CNLOH) and mirrored subclonal CNAs— that are invisible to total copy number analysis. On SRT
15 data from nine patients from the Human Tumor Atlas Network (HTAN) with matched whole exome se-
v quencing (WES) data, CalicoST achieves an average accuracy of 86%, approximately 21% higher than
2 existing methods. On two patients with SRT data from multiple adjacent slices, CalicoST reconstructs a
2 tumor phylogeography that describes the spread of cancerous clones in three-dimensional space. CalicoST
2 analysis of multiple SRT slices from a cancerous prostate organ reveals five spatially coherent clones, with
23 mirrored subclonal CNAs distinguishing clones on the two sides of the prostate, forming a bifurcating
2 phylogeography in both genetic and physical space.
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» 1 Introduction

s Tumors evolve through acquisition of somatic mutations — including single nucleotide variations (SNVs),
» copy number aberrations (CNAs), and large-scale structural variations (SVs). Sequencing of somatic muta-
% tions in bulk tumors [1, 2] or disassociated single cells [3-5] has revealed the genetic heterogeneity within
s tumors and enabled the reconstruction of a tumor’s evolutionary history [6—8]. At the same time, tumors
» exhibit heterogeneity and undergo evolution within physical space, expanding and regressing based on
53 interactions with other cells and the local microenvironment. Incorporating the spatial perspective into
1 somatic evolution studies is a key challenge [9], but has been hampered by a lack of spatial data.

5 Recent technological advances in spatial sequencing provide a promising direction for studies of spatiotem-
s poral tumor evolution. While high-quality spatial DNA sequencing would provide the ideal dataset for
»» spatiotemporal evolution studies, such technologies remain in active development [10] and are not yet
3 widely applied. However, spatially resolved transcriptomics (SRT) technologies that measure RNA simul-
» taneously from thousands of spatial locations in a tissue has found extensive applications in analyzing the
w0 spatial organization of transcriptionally defined cell types within a tumor [11-14]. Even though somatic
a1 mutations occur in DNA and are not directly measured by SRT, large CNAs leave a signature in gene ex-
«2 pression; namely, a deletion of a genomic region tends to result in underexpression of genes in the region,
13 while an amplification tends to result in overexpression. Thus, identification of CNAs from transcriptomic
« data is a promising direction for analysis of somatic evolution in tumors.

ss  Inferring CNAs from single-cell or spatially resolved transcriptomics is challenging as there are multiple
s explanations for an observed gene expression change, such as chromatin accessibility and transcription
« factor binding. It is typically difficult to determine whether an observed gene expression change is a
s result of CNAs or these other causes. Existing methods to infer CNA from gene expression data [15-
» 17] assume that large CNAs alter the expression of multiple adjacent genes in a genomic region beyond
so expected by other regulatory effects. However, the variability of expression is so large between genes that
51 these methods have limited accuracy in inferring CNAs and are not robust across tissues, patients, and
2 cancer types. A few methods aim to address these challenges by combining single-cell RNA and DNA
53 sequencing [18, 19], but few researchers perform both modalities of sequencing, limiting the usability
ss  of these methods. In addition, SRT, as well as single-cell RNA sequencing data (scRNA-seq) are sparse,
s generally having more than 75% zero counts across genes and cells/spots. Furthermore, SRT technologies
ss  (such as 10x Genomics Visium [20] and Slide-seqV2 [21]) pose an additional challenge beyond scRNA-seq:
57 they measure a mixture of cells at each spatial spot, where normal cells can dilute the signals for CNAs.

s Importantly, a CNA in cancer alters one of the two parental chromosomes, and thus the identification
5o of allele-specific CNAs is essential for deriving a comprehensive description of CNAs in a tumor. For ex-
s ample, copy number neutral loss of heterozygosity (CNLOH) — an event where a region of one parental
¢t chromosome is deleted and the other parental chromosome is amplified so that the total copy number of
&2 thelocus is unchanged - is common in cancer [22-24]. Similarly, mirrored-subclonal CNAs — where differ-
s ent cancer cells have independent gains or losses of different parental alleles — also occur in cancer [4, 25]
s but these events also result in identical total copy numbers across cancer cells. Thus, total copy number
s analysis does not reveal the complete CNA spectrum and may lead to incorrect identification of tumor
s clones and inaccurate tumor phylogenies. Previous methods have limited power to identify allele-specific
¢ CNAs in SRT data. Many existing transcriptomics methods cannot distinguish between alleles and only
¢ identify total changes in copy number [15-17]. A few methods for identification of allele-specific copy
« number aberrations from scRNA-seq data have been recently been developed [26-28], but these methods
7 are challenged by the weak signal to distinguish the two parental alleles in scRNA-seq data.

n  We introduce a new method, CalicoST, that infers allele-specific CNAs in SRT data and uses these CNAs to
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72 reconstruct the phylogeographic evolution of a tumor. CalicoST identifies CNLOH and mirrored-subclonal
73 CNAs that are invisible to total copy number analysis. CalicoST constructs a phylogeny of cancer clones
74 that describes the accumulation of the inferred CNAs over time and a phylogeographic model that describes
75 the spread of the tumor across physical space. We validate CalicoST using nine patients from the Human
76 Tumor Atlas Network (HTAN) (WashU cohort) [29] with matched whole-exome sequencing (WES) data
77 with high tumor purity. CalicoST achieves at least 86% accuracy in its inferred allele-specific copy numbers,
7 21% higher than previous methods. We reconstruct a three-dimensional phylogeography for a colorectal
7w liver-metastasis and a breast cancer patients in HTAN with multiple adjacent slices. The phylogeography
s reveals the spatial direction of tumor growth, and particularly the expansion in the third dimension that
51 could not be identified from a single slice. We also apply CalicoST to multiple SRT slices from a prostate
2 cancer patient, identifying mirrored subclonal CNAs that suggest convergent evolution in the tumor. The
s reconstructed phylogeography partitions the cancer clones into the left and the right sides of the prostate,
s revealing the separation of the clones in both physical and genetic space. CalicoST enables the study of
s spatial tumor evolution, progression and metastasis, and will be helpful for further applications to cancer
ss  diagnosis and treatment.

s 2 Results

ss 2.1 CalicoST algorithm

s CalicoST infers allele-specific copy number aberrations (CNAs) and a phylogeographic model of tumor
% evolution from one or more SRT samples from a tumor (Fig. 1). CalicoST has the following key features.
o1 (1) Identifies allele-specific integer copy numbers for transcribed regions, revealing events such as copy
o2 neutral loss of heterozygosity (CNLOH) and mirrored subclonal CNAs that are invisible to total copy num-
93 ber analysis. (2) Assigns each spot a clone label indicating the clone it belongs to and the allele-specific
s copy number profiles it contain. (3) Infers a phylogeny relating the identified cancer clones as well as a
s phylogeography that combines genetic evolution and spatial dissemination of clones. (4) Handles normal
o cell admixture in SRT technologies that are not single-cell resolution (e.g. 10x Genomics Visium) to in-
o7 fer more accurate allele-specific copy numbers and cancer clones. (5) Simultaneously analyzes multiple
s regional or aligned SRT slices from the same tumor.

9 The inputs to CalicoST are a transcript count matrix X whose entries are the total number of reads from
wo each transcript in each spot, and an allele count matrix Y whose entries are the number of reads from
1 the non-reference allele of germline heterozygous SNPs (Fig. 1a). The matrix X is readily obtained from
w2 standard SRT analysis pipelines, while the matrix Y is calculated from a specialized pipeline that uses
03 known locations of germline SNPs as well as reference-based phasing [30] to aggregate signal from multiple
s adjacent SNPs in the same haplotype (Section S3). This latter step is necessary because SRT data is generally
s sparse and the allele counts are even sparser: 98.8% SNP loci have zero total count within each individual
s spot and another 0.9% has only one total count.

17 In addition, some SRT technologies, (e.g. 10x Genomics Visium), may lack single-cell resolution, measuring
s multiple cells within each spatial spot. This admixture dilutes the signal for identification of CNAs and
s cancer clones. To ameliorate this issue, CalicoST optionally takes in a tumor proportion (6 € [0, 1]" for
no N spots) as input. This proportion can be obtained using established methods for deconvolving cell type
i proportions in SRT data [31, 32].

12 The core of CalicoST is a generative probabilistic model of the observed variables X, Y as a function of the
1z unobserved allele-specific copy numbers and clone labels £. Individual entries in X and Y provide poor
s estimates of the allele-specific copy number at the corresponding locus due to low sequence coverage and
ns confounding by other sources of variation, such as variable gene expression. Thus, CalicoST aggregates
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Figure 1: CalicoST infers allele-specific copy numbers and a phylogeography of a tumor from
one or more SRT samples from the same patient. (a) Inputs to CalicoST are transcript counts X,
allele counts Y, spatial coordinates S, and optionally the proportion of tumor counts per spot 8 from
one or more SRT slices or a 3D alignment of slices. (b) CalicoST jointly models transcript counts and
allele counts as functions of allele-specific copy number states within each clone. CalicoST uses a Hidden
Markov Model (HMM) to model correlations between copy number states from adjacent genomic regions
and a Hidden Markov Random Field (HMRF) to model correlations between the cancer clones assigned
to neighboring spatial locations. (c) CalicoST infers allele-specific integer copy numbers for one or more
cancer clones, a phylogeny relating these clones, a clone label for each spot, and a phylogeographic model
of the spatial expansion of cancer clones.
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ne  signals from multiple adjacent loci in the genome and multiple adjacent spots. Specifically, we use a hidden
17 Markov Model (HMM) to model correlations between the allele-specific copy number state of adjacent
ns  genomic loci and a hidden Markov Random Field (HMRF) to model the correlations between clone label £
o in adjacent spots assuming that adjacent spots are likely to be genetically similar. We jointly infer the allele-
10 specific copy number states and clone labels leveraging standard HMM and HMRF inference algorithms
m  (Section 4.5,4.6).

12 Finally, we reconstruct a phylogeographic model to describe the ancestral relationships between the in-
13 ferred clones as well as the spatial location of the ancestors of these clones (Fig. 1c). It is generally challeng-
14 ing to reconstruct a phylogeny from copy number profiles and requires complicated evolutionary mod-
s els [33, 34]. Instead we leverage the fact that CalicoST infers loss of heterozyosity (LOH) events, which
s have the important property of being irreversible phylogenetic characters; i.e. once a parental haplotype
17 is lost in a lineage, it cannot be regained. We construct a tumor phylogeny among cancer clones using
s the inferred LOH events and the star homoplasy model in Startle [35]. Then, we project the phylogeny in
19 space and infer the spatial location of ancestors using a diffusion model (Section 4.7).

1w 2.2 CalicoST infers accurate allele-specific integer copy numbers across HTAN
131 samples

12 We evaluated CalicoST’s accuracy in inference of allele-specific copy numbers on 10x Genomics Visium
133 Spatial Transcriptomics of twelve patients (twenty six slices) in HTAN (WashU cohort) [29] across three
1 cancer types (Section 4.8). Whole exome sequencing (WES) data from adjacent bulk tumor sections was
155 available for eleven patients. We determined the allele-specific integer copy numbers for nine bulk WES
s samples using HATCHet2 [36], while the remaining two samples have insufficient tumor purity to infer
137 copy numbers. We used these copy numbers as the ground truth to benchmark the inferred CNAs from
s SRT data by CalicoST.

1 Across nine patients whose matched WES sample had sufficient tumor purity, the best-matching CalicoST
w cancer clone had 86% accuracy on average (min. 68% and max. 97%) (Fig. 2a), and an average of 95%
1 precision and 90% recall in the prediction of genome segments with abnormal copy number (Section 4.9),
w2 respectively (Fig. S2a,b). The median length of CNA events detected by CalicoST was 80 Mb, often spanning
13 entire chromosomes (Fig. 2b), which is of a lower resolution than CNA detected by HATCHet2 on WES
s samples. Nevertheless, CalicoST identified CNA events as small as 1 Mb for regions with high coverage.
us  Notably, CalicoST infers allele-specific copy numbers and cancer clones from SRT data on two pancreatic
us cancer patients (HT270P1 and HT288P1) whose tumor purity in the bulk WES was insufficient for reliable
w7 identification of CNAs. We observed clear LOH regions from the observed B allele frequency (BAF) values
us  of these two patients and the cancer clones are well distinguished by the read depth ratio (RDR) and BAF
w  signals (Fig. S2c,d).

150 CalicoST identifies large-scale changes in tumor ploidy that are often challenging to be inferred accurately,
51 particularly for methods that infer only total copy numbers [36]. CalicoST identified near-triploid genomes
12 in three colorectal liver-metastasis (CRLM) patients and a breast cancer patient (Fig. 2¢,S3). For example,
153 the estimated ploidy of CRLM patient HT230C1-Th1 is 2.7 with 40.5% and 12.6% of genomic bins having
154 allele-specific copy number of {2, 1} and {2, 2} respectively (Fig. 2c). A triploid genome of this patient is
155 also inferred in the matched WES sample (Fig. 2d). Previous studies have shown an association between
156 triploidy and worse prognosis/poor survival [37]. Allelic information is key to the identification of near-
157 triploid genomes from gene expression data; methods that only infer total changes in copy numbers miss
158 many regions with copy number {2, 1} because the transcript counts in these regions many not differ
19 substantially from copy number neutral regions, particularly because the gene expression signal is highly
1w variable across the genome (Fig. S2e).
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Figure 2: CalicoST infers accurate allele-specific copy numbers in HTAN samples. (a) Accuracy
of allele-specific copy numbers across 12 HTAN patients (WashU cohort) inferred by CalicoST. Each bar
represents an inferred cancer clone. (b) Length distribution of CNAs identified by CalicoST from SRT data
and identified by HATCHet2 from WES for the nine patients with matched WES of sufficient tumor purity.
The median length is 80Mb for CalicoST and 30Mb for HATCHet2 (vertical dashed lines). (c) Allele-specific
integer copy numbers inferred by CalicoST from SRT data from CRLM patient HT230C1. Rows are cancer
clones, and columns are genomic segments. Colors indicate allele-specific copy numbers. (d) The observed
BAF (x-axis) and fractional copy numbers (y-axis) from the matched WES data of HT230C1-Th1. Each
point is a genomic bin and colors indicate the allele-specific copy numbers inferred by HATCHet2 [36]. (e)
Allele-specific integer copy numbers inferred by CalicoST from SRT data from CRLM patient HT260C1-
Thi. (f) Observed RDR and BAF for chromosome 8 of HT260C1-Th1. Points are colored by the inferred
allele-specific copy numbers. Horizontal black lines indicate the RDR and BAF of the corresponding copy
number states estimated by HMM. (g) Allele-specific integer copy numbers inferred by HATCHet2 from
WES from patient HT260C1-Th1. (h) The RDR and BAF values from WES data for bins from chromosome
8q region and bins from other genomic regions with {3,0} copy number state. Black points are expected
RDR and BAF values for {3,0} and {2,1} states from HATCHet2 analysis.
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Figure 3: Comparing accuracy of CNAs and spatial coherence of inferred clones between Cali-
coST and other CNA inference methods. (a) Accuracy and (b) spatial coherence comparison among
CalicoST, Numbat, InferCNV, and STARCH on colorectal liver-metastasis (CRLM) patients. Solid bars in-
dicate predictions of allele-specific copy number states and dotted bars indicate predictions of total copy
number states. (¢) H&E image of a CRLM sample HT260C1-Th1. (d) Cancer clones inferred by CalicoST.
x- and y-axes are spatial coordinates, and grayscale represents the proportion of normal cells within each
spot, as inferred by RCTD. Other colors indicates cancer clones. (e) Cancer clones inferred by Numbat
using the same color scheme as (d).

161 CalicoST also revealed tumor heterogeneity and clone-specific copy number alterations that were missed
12 in bulk WES data. On CRLM patient HT260C1-Th1, CalicoST identified two cancer clones (Fig. 2e) with
13 CNAs that were shared by both clones, such as CNLOH in chr17 and chr18, including well-known tumor
s suppressor genes TP53 and DCC [38-41]. Other CNAs were unique to cancer clones. For instance, chr2
16 and chr3 had symmetric amplifications in the two cancer clones and chr8q has a loss of heterozygosity in
s clone 1 with allele-specific copy number {3, 0}, but has an allele-specific copy number of {2, 1} in clone
17 2. All three events are supported by the BAF signal in both clones (Fig. S4,Fig. 2f). The chr8q region was
s assigned to {3,0} copy-number by HATCHet2 in the bulk WES (Fig. 2g). Although HATCHet2 detected
19 one cancer clone in the bulk WES, its BAF and RDR measurements of chr8q highlight an unusual deviation
10 from the expected BAF value of {3, 0} copy-number state (Fig. 2h), supporting CalicoST’s hypothesis that
171 this region has undergone different CNAs in different cancer clones.
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2 2.3 CalicoST identifies more accurate CNAs and spatially coherent clones than
173 single-cell and spatial methods

1 We compared CalicoST with existing methods for identifying CNAs from single-cell RNA-sequencing
s (scRNA-seq) data [27, 42] and spatial transcriptomcs [17], evaluating both the accuracy of inferred CNAs
s and the spatial distribution of inferred cancer clones. Specifically, we compared CalicoST with (1) Num-
7 bat [16], an allele-specific CNA inference method for scRNA-seq data; (2) STARCH [17], a total copy
s number inference method for SRT data, and (3) inferCNV [42], a total copy number inference method
19 for scRNA-seq data. Numbat and STARCH do not output integer copy numbers but rather copy number
o  states (amplification, deletion, etc.), and thus their results are not directly comparable with CalicoST and
151 HATCHet2. Thus, to perform a comparison, we projected the integer allele-specific copy numbers from
12 CalicoST and HATCHet2 to copy number states (Section 4.9).

13 CalicoST had the highest accuracy on all but one sample, both when comparing allele-specific copy num-
14 bers to Numbat and total copy numbers to STARCH and inferCNV (Fig. 3a,S5). For allele-specific copy
s number, CalicoST was 25% more accurate than Numbat on average across the four samples. For total copy
s number, CalicoST had substantially higher accuracy in inferring CNAs than STARCH (59% higher on aver-
w7 age) and InferCNV (90% higher on average). We compared the two allele-specific inference methods on all
s nine HTAN patients: CalicoST was 21% more accurate than Numbat on average and had better accuracy
1w for eight of the nine patients (Fig. S5).

wo The spatial distribution of cancer clones inferred by CalicoST was substantially more coherent than the
w1 other three methods on the two CRLM patients where all methods identify multiple cancer clones (Fig. 3b,
w2 Fig. S5). For example, on patient HT260C1-Th1 (Fig. 3c), CalicoST identified two spatially coherent clones
w3 that partition the tissue into the top left and bottom left regions, partitioned by normal spots indicated by
wa the gray color (Fig. 3d). In contrast, Numbat identified cancer clones with lower spatial coherence with
ws  some cancer clones (yellow and pink) spread almost uniformly through the slice and on both tumor regions
ws separated by normal spots (Fig. 3e).

w7 2.4 CalicoST reconstructs tumor evolution in three-dimensional space

ws  We applied CalicoST to infer phylogeographic trees in space (phylogeography in short) for two HTAN
s patients where 10x Genomics Visium Spatial Transcriptomics data was obtained from multiple adjacent
20 slices of the tumor: CRLM patient HT112C1-T1 with two slices separated by 60 um and breast cancer
a1 patient HT268B1-Th1 with five slices, with a distance of 100 um between four of the slices, and an unknown
22 distance between the first two slices. We aligned adjacent sections and derived a multi-slice alignment
203 using PASTE2 [43], which was input into CalicoST.

24 For the CRLM patient, CalicoST identified three spatially coherent clones in the 3D tumor tissue and infers
25 aphylogenetic tree from the CNAs in these clones (Fig. 4a). This phylogeographic tree shows the expansion
ws of the tumor, branching from the ancestral clone 1 (green) to two clones on either side (orange and blue).
27 The three clones have distinct allele-specific copy number profiles (Fig. 4b). Specifically, the orange clone 2
2s has a unique LOH on chr21, and the blue clone 3 has a unique LOH on chr 11p. Both events are supported
20 by a strong allelic imbalance in the BAF (Fig. S6a). We observe a high consistency in clone composition
20 and localization between the two slices, which is not surprising as the distance between the two slices
an (60 pm) is small and almost the same as the diameter of a spot within one slice (55 pm).

a2 CalicoST identifies two cancer clones in a breast cancer patient HT268B1-Th1 across five slices that are
23 aligned in 3D space and reconstructs a phylogeography between the two clones (Fig. 4c). The phylogeog-
a4 raphy indicates the ancestor (black diamond) is located between the two clones, which expanded leftward
25 and downward along the z axis to clone 1 (green) and rightward and upward to clone 2 (orange). The
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Figure 4: Tumor evolution in 3D inferred by CalicoST from patient HT112C1-T1 and HT268B1-
Th1. (a) Spatial distribution of three cancer clones identified by CalicoST in two adjacent slices from CRLM
patient HT112C1-T1. Grayscale indicates the inferred proportion of normal cells within each spot. Dia-
monds are the spatial centroid of each clone or inferred ancestor locations and arrows indicate the inferred
directions of tumor development. Distance between two slices in the z coordinate is enlarged for clearer
visualization. (b) Allele-specific copy number profiles for the three cancer clones and the corresponding
phylogeny (right) with branches in the phylogeny labeled by the number of unique large LOH events that
occur on the branch. (c) Spatial distribution and phylogeographic tree of two cancer clones in five adjacent
slices from breast cancer patient HT268C1-Th1. Color scheme is the same as (a). (d) Inferred allele-specific
copy numbers and reconstructed tumor phylogeny.
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26 spatial evolution of this patient contains a strong component in the z-axis direction, which can only be re-
a7 vealed due to the multiple slices of SRT data. The two clones have copy number aberrations that are shared
23 between both clones and unique to each clone including a mirrored deletion on chr19 (Fig. 4d), which is
2o supported by the RDR and BAF values in this genomic region (Fig. S6b). Notably, clone 1 has fewer unique
20 LOH events than clone 2, suggesting that clone 1 is genetically closer to the common ancestor than clone
a2 2, which is reflected in the inferred location of the ancestor in the phylogeography (Fig. 4c).

» 2.5 Mirrored copy number aberrations in multiple regions of a cancerous prostate
223 organ

24 We applied CalicoST to infer allele-specific CNAs and a phylogeography jointly from five slices from a
25 single cross-section of a cancerous prostate [44] (Section 4.8). CalicoST identifies five cancer clones across
xs the SRT slices with some clones shared across multiple slices. (Fig. 5a). The spatial distribution of the
27 inferred cancer clones are visually consistent with the pathologist-annotated tumor regions shown in [44],
2s even though CalicoST was not given information about the locations of normal spots or estimated tumor
20 purity in each spot. The five clones have distinct copy number profiles (Fig. 5b), which are supported by
20 the BAF in each clone (Fig. S7). Notably, clone 5 (blue) is shared across all three slices on the right side of
an  the prostate organ, forming a contiguous spatial region, even though CalicoST was not given information
22 about the relative locations of slices in the prostate. This demonstrates the advantage of CalicoST’s joint
23 inference across multiple slices.

24 The clones on the two halves of the prostate cross-section (left and right) are distinguished by multiple
25 aberrations that are unique to each half. Most prominent among these are four mirrored CNA events, on
16 chromosomes 2, 6, and 8 where clones 1 and 2 have different amplified/deleted alleles than clones 4 and
a5 (Fig. 5¢). Specifically, chr8p, one of the most frequently deleted regions in prostate cancer [45], has a
25 mirrored deletion in the two halves of the prostate, and chr8q has a mirrored amplification containing the
29 MYC gene, a well-known oncogene in aggressive prostate cancer. Also, chr6 has a mirrored deletion of the
20 region 73-99Mb, which is also a commonly deleted region in prostate cancer [46], harboring three reported
a1 tumor suppressor genes (ZNF292, HMGN3, and UBE271) [47]. The occurrences of three independent dele-
22 tions and an independent amplification in different clones indicate of the high frequency of corresponding
u3  events in prostate cancer and are potential signal of convergent evolution [25]. In contrast, the original
x4 published analysis of this data [44] used InferCNV, and concluded that the deletion in chréq is a truncal
25 event based on changes in total copy numbers, missing the differential loss of the two alleles in the two
us halves of the prostate.

27 The inferred phylogeography splits the cancer clones into two main lineages, which coincide with the left
25 and right spatial partition of the prostate cross-section (Fig. 5a). On the left half, clone 3 contains only one
20 CNA event, a deletion in chrl, and is the closest to a normal state; clones 1 and 2 share the deletion in chr1
0 and many other deletions in chromosomes 2, 4, 6, 8, 10, and 11. On the right half, clone 4 shares multiple
1 CNAs with clone 5, but does not have any unique CNA and thus clone 4 is marked as an ancestor of clone
»2 5, which is consistent with its spatial location closest to the root. Interestingly, the absence of truncal CNA
3 events and the clear bifurcation in both genetic and physical space suggests that the tumor on the left and
x4 right halves diverged in a very early stage and had relatively independent evolution.

» 3 Discussion

6 We introduced CalicoST, an algorithm that infers allele-specific copy numbers and reconstructs a phy-
»7  logeography relating cancer clones in time and space using SRT data. We applied CalicoST to SRT data
»s  from twelve HTAN patients across three cancer types (WashU cohort) and multiple slices from a cancer-
20 ous prostate. CalicoST showed high concordance with copy number aberrations (CNAs) identified in bulk
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Figure 5: CalicoST infers a phylogeography and mirrored CNA events in a cancerous prostate.
(a) Spatial distribution of cancer clones inferred jointly by CalicoST across five slices from a cancerous
prostate. Positioning of five slices is according to [44]. Colors indicate inferred clones, including the
normal clone in grey. Arrows represent the phylogeography of tumor evolution. (b) Allele-specific copy
number profiles for the five cancer clones and the corresponding phylogeny (right) with branches in the
phylogeny labeled by the number of unique large LOH events that occur on the branch. Colors indicate
allele-specific copy numbers. The orientation and position of triangles indicate mirrored CNA events. (c)
BAF of each clone in (top) chré and (bottom) chr8. Colors indicate allele-specific copy numbers using the
same color scheme as panel (b).
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20  whole-exome sequencing (WES) from nine patients with sufficient tumor purity, but also revealed multiple
21 cancer clones in many samples as well as cancer clones in low purity samples that were not identified in
x2  bulk WES. CalicoST is more accurate and yields more spatially coherent clonal organization compared to
23 existing methods that identify CNAs from single-cell or spatial transcriptomics data.

x4 CalicoST uses the inferred CNAs to construct a phylogeny relating the cancer clones, and the spatial lo-
s cations of the cancer clones to construct a phylogeography, which combines both the genetic and spatial
xss  evolution of a tumor in a unified model. This reconstruction is enabled by allele-specific copy numbers,
27 as CalicoST uses loss of an allele/haplotype as irreversible phylogenetic characters, circumventing some
s of the difficulties in deriving phylogenies from copy number aberrations [33]. Applied to colorectal liver-
20 metastasis samples from HTAN with multiple consecutive slices, we construct 3D models of spatial tumor
20 evolution which describe both the genetic aberrations and spatial directions of tumor growth. On a spatial
o transcriptomics dataset containing multiple sections from cancerous prostate [44], CalicoST identifies mir-
22 rored subclonal copy number aberrations that are missed in the analysis of total copy number; moreover,
23 CalicoST infers a phylogeography that bifurcates the left and right halves of the prostate in both genetic
zs  and physical space, pointing toward an early divergence between tumor cells on different halves of the
275 prostate.

26 CalicoST has some limitations, some of which are directions for future improvement. First, the length of the
27 copy number aberrations that can be reliably detected is limited by the sequencing coverage as well as the
s inherent difficulties in detecting DNA aberrations from gene expression data. On the 10x Genomics Visium
a9 data analyzed in this study, we detected aberrations as small as 1 Mb, with a median aberration size of 80
20  Mb. This resolution depends on the gene density within a genomic region as well as the number of spots
21 that contain the aberration. However, it will be nearly impossible to detect aberrations in single genes,
22 since these are indistinguishable from differential expression. Second, CalicoST’s use of allele/haplotype
3 deletion as phylogenetic markers helps infer accurate phylogenies, but requires that a tumor sample have
¢ enough of these events. Some tumors may have insufficient losses to yield robust phylogenies, particularly
5 among tumors containing many cancer clones. Leveraging other CNAs in phylogeny reconstruction may
16 address this issue but requires further investigation of the trade-off between the increased number of
»7  events and potential inaccuracies in phylogeny inference. Third, CalicoST struggles with inferring the
s exact integer copy numbers for amplifications with a high total copy number because of the high variance
2 in gene expression. For example, CalicoST infers chr13 of HTAN patient HT260C1-Th1 to have three and
0 four total copies across the inferred cancer clones but the total copy numbers inferred from WES data by
1 HATCHet2 is five copies. Inference of CNAs jointly from SRT and DNA data may help with this issue,
»2 when both measurements are available. Fourth, further improvements can be made in the model selection
w3 criteria that CalicoST uses to select the number of clones (Section S7) and the parameter in the HMRF
»4 that governs the spatial coherence of the inferred clones (Section 4.6). Particularly, for tumor samples
»s containing cancerous cells with little spatial organization, a strong spatial coherence prior may lead to
»s inaccurate inference of CNAs and cancer clones.

»7 The use of spatially resolved transcriptomics in cancer analysis is growing rapidly. CalicoST can help bring
»s valuable insights into copy number drivers of cancer, spatial tumor heterogeneity, and spatial evolution,
»9  serving as a foundation for additional biological analyses integrating genetic evolution, epigenetic (gene
w0 expression) changes, and spatial organization.
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4 Methods
4.1 CalicoST workflow
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Figure 6: Workflow of CalicoST. CalicoST extracts the B allele and total counts of heterozygous SNP loci
from the BAM file to distinguish between two alleles. CalicoST phases the SNPs and aggregates transcript
counts and allele counts of each haplotype along the genome. Next, CalicoST identifies normal spots,
jointly infers tumor clones and estimates a latent RDR and BAF value for each copy number state across
all involved genomic bins in each clone. CalicoST infers integer allele-specific copy numbers using the
latent RDR and BAF values. Finally, CalicoST reconstructs a phylogeographic model of tumor evolution
by inferring a tumor phylogeny using LOH events and inferring spatial locations of ancestral clones.

CalicoST has the following main steps. In a preliminary step, CalicoST extracts allele and total counts at
germline heterozygous SNP loci to distinguish between alleles (Fig 6 step 0, Section S1). The first step is to
aggregate counts along genome to reduce the sparsity (Fig 6 step 1, Section S3). Because each CNA event
occurs on a parental allele, we infer a grouping of SNPs by parental alleles (also known as phasing) to avoid
mixing the counts. The second step is to infer normal spots (Fig 6 step 2, Section S4). The inferred normal
spots provide baseline gene expression in normal cells; higher-than-baseline expression are potentially due
to copy number gains and lower-than-baseline expression indicate copy number losses. Additionally, we
use normal spots to remove genomic bins that potentially have allele-specific gene expression irrelevant
to CNAs (Section S5). In the third step, CalicoST relaxes the constraint that allele-specific copy numbers
are integers, and clusters genomic bins into copy number states and infers cancer clones simultaneously
(Fig 6 step 3). CalicoST explicitly models the correlation among genomic bins along the genome using a
Hidden Markov Model and among the cancer clones in space using a Hidden Markov Random Field in this
step. Particularly, CalicoST estimates a latent value for the read depth ratio (RDR) in HMM underlying the
genomic bins corresponding to each copy number state to indicate the relative copy numbers compared
to diploid, and a latent value for the BAF for each copy number state to indicate the imbalance of copy
numbers between the two alleles. Next, CalicoST finds allele-specific integer copy numbers for each copy
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s number state that best explain the inferred latent RDR and BAF (Fig 6 step 4, Section S6). Finally, Cali-
a7 coST reconstructs a tumor phylogeography by inferring a phylogeny using the inferred LOH events and
a8 projecting to space.

s> In the sections below we provide further details for steps 3 and 5 of CalicoST. Section 4.2 describes the
w0 objective function of inferring allele-specific CNAs. Section 4.3 explains the underlying probabilistic model
s of the observed counts. Section 4.4, 4.5, and 4.6 describe the solution of the allele-specific CNA inference
w2 objective function. Section 4.7 explains the phylogeography reconstruction. The remaining subsections
w3 describe the details of analyses on HTAN (WashU cohort) and the prostate cancer samples.

4.2 Copy number aberrations (CNAs) and clone inference problem

w5 Given the aggregated transcript counts X = [z,,], phased B allele counts Y = [y, ], and total allele
w6 counts D = [dy ] acrossn =1,..., N spotsand g = 1,..., G genomic segments, CalicoST finds a clone
w label £ € {1,..., M} to indicate one of the M clones each spot belongs to, and two allele-specific copy
w5 number matrices for each clone for each segment, A = [a,,]| of A allele copies, and B = [b, | of B
w9 allele copies.

so0 CalicoST formulates a maximum likelihood problem to infer £, A and B. CalicoST also uses the following
s quantities in the problem: the normalized transcript counts in normal cells A = [)\,] € RY (Zf:1 Ag = 1),
sz and the spatial coordinates S € RY*2. CalicoST optionally takes in the alignment W across slices when
s03 jointly identifying clones and CNAs across multiple SRT slices, and the tumor count proportion @ = [0,,] €
su  [0,1]" for each spot n. The overall likelihood objective of CalicoST is:

s CNA and clone inference problem. Given SRT data (X,Y,D,S), optionally (8,W), and a given the
s.s number M of clones, find clone labels € and integer allele-specific copy numbers A and B that maximize the
sor  log-likelihood of the data:

argmax P(X,Y | €A, B,A,D, (6), (W)P(£S). (1)
ee{l,...M}N
A,BGZGX]M

ss  Solving this problem with integer-valued A and B is challenging. Notably, the probabilistic model of X
so0 involves fractional values derived from all values in A and B, as detailed in the following section. Previous
sio - 'work on copy number inference [4, 28, 36, 48] usually transform the integer copy numbers to a discrete
sn set of real-valued latent parameters: read depth ratio (RDR) p and B allele frequency (BAF) p. We use the
sz same parameter transformation and split the problem into step 3 to infer clone labels and the latent RDR
s13 and BAF parameters and step 4 to infer A, B from the estimated RDR and BAF parameters.

s Allele-specific copy numbers can only take values from a finite set of size K, which we call the copy number
si5 states. Accordingly, the latent RDR and BAF also have K unique values. We introduce a categorical variable
w6 Z = [2gm] € {1,..., K}¥*M to indicate which of the K copy number states each genome segment in
s each clone takes. We infer K’ RDR parameters p = [j1;] € R¥, K BAF parameters p = [pi] € RY, state
si5  indicator Z, and clone labels £ by:

sv.  Copy number state and clone inference problem. Given SRT data (S,X,Y,D), optionally (6, W),
s0 and a given the number M of clones, find clone labels £, copy number states Z, latent RDR p and BAF p that
s maximize the log-likelihood of the data:

argmax  P(X,Y | £,Z;u,p, A\, D, (0),(W))P(Z)P(L;S). (2)
ee{1,...M}N
p,peRE
Ze{l,..., K}GxM
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s We model the correlation of copy number states along the genome by specifying P(Z) as a Markov chain,
s» and the correlation of cancer clones in space by specifying P(£) as a Markov Random Field. Overall, the
s likelihood (2) combines a Hidden Markov Model of copy number states with a Hiddem Markov Random
s Field of cancer clones. In the notation of probabilistic models, we separate the conditional random variables
s26  from the parameters and constants by a semicolon. So £ and Z are random variables in the above equation,
s2 and p, p,D, 0 and W are parameters or constants. We also put the optional input data in parentheses.

53 4.3 Copy number probabilistic model

s Copy number aberrations affect X and Y in the following ways: increasing total copy number leads to
s  increased gene expression and hence higher values in the corresponding entries in X; increase or decrease
31 of copy number of one allele leads to imbalanced read counts between the two alleles and hence the ratio
52 between Y and D is biased away from 0.5 at corresponding entries. Considering that spatial spots contain
533 a mixture of tumor and normal cells, the degree of increased gene expression or imbalanced alleles de-
51 pends on the proportion of reads coming from tumor (or normal). We derive the probabilistic model when
533 assuming each spot contains a homogeneous tumor clone in the following of this section, and extend to
s3s  the case of a tumor-normal mixture in Section S2.

s LetT,, = Zg’;l 4., be the total transcript counts across all genomic bins for the n'® spot. Suppose the cells
s33  in this spot are all from clone m. We assume the copy numbers at each bin g scale the baseline proportion
s of transcript counts A, by W We model x4, by a Negative Binomial distribution parameterized

s by T, A, A, B and an additional over-dispersion parameter ¢:

Ag(agm + bgm)
Ton | bp=m~NB | T,=—9" 9T _ 4 |. (3)
o | ( Zg Ag(agm + bg,m) )

sn The Negative Binomial distribution can be viewed as an approximation for the Dirichlet Multinomial distri-
s bution Dir Mult(T,, o), where agochg W The Multinomial probability parameters are constrained
se3  to be a simplex, and are more difficult to optimize than a Negative Binomial distribution.

s«a - We model Y using a Beta-binomial distribution given the ratio between B allele copy number and total
s copy numbers at each genomic bin and the total SNP-covering reads D. The Beta distribution prior in
s4s  the Beta-binomial distribution allows large variance than a binomial distribution, thus taking into account
se7  potential sequencing biases and other unknown factors related to allele imbalance.

b a
{, = m ~ BetaBinom | D, ,,, T g.m T g.m . 4
yg,n | n ( g,mn» a/g’m + bgym7 ag7m + bg7m ( )

ses ' The mean of the Negative Binomial distribution has a fractional form of A, B, making a direct optimization
s of integer A and B challenging. We transform A and B into latent RDR @ and BAF p parameters with K
s unique values across copy number states. Suppose the segment g in clone m takes the k" copy number
ss1  state, the corresponding latent RDR and BAF is:

agm + bgm
Ui =
Zg Ag(agm + bgm) (5)
Pk = _bgm__
agm + bgm

52 Note that the denominator of py, is a weighted average of total copy numbers along the genome in each
53 clone, and technically takes different values in different clones. But under the assumption that differ-
ss¢  ent clones share many common CNA events, specifically when they are close in lineage, we assume the
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55 denominators are similar across clones and the K unique RDR values p are shared across clones. This
sss  transformation (5) is the basis for inferring integer copy numbers (Section S6). Also note that we express
ss7 the probabilistic model for individual spots, but it is generalizable to a pseudobulk of multiple spots.

sss Visualization the data: We define observed RDR as T" /\” and observed BAF as %"’ - for data visualization.
sso  Additionally, if the latent RDR and BAF are found to be close to 1 and 0. 5, respectlvely, along the genome
so  in a clone, we drop this clone for visualization because it does not contain CNAs detectable to CalicoST
s and likely contains mainly normal cells.

s2 4.4 Block coordinate ascent optimization of joint likelihood

sss  The clone labels £ and the copy number states and parameters Z, i, p are interleaved in the probabilistic
ss« models (3)(4). To make the optimization tractable, we use a block coordinate ascent method to solve for £
ss and for p, p, Z iteratively. Given £, we solve for u, p, Z under the Hidden Markov Model in Section 4.5;
ss¢  given w, p, Z, we solve for £ under the Hidden Markov Random Field in Section 4.6.

sv 4.5 Hidden Markov Model (HMM) to infer copy number states

sss  Given clone labels £, we optimize the following objective for Z, i, and p:

argmax  P(X,Y | Z;pu,p, £, D, (0), (W))P(Z)
p,peRE
Ze{l,... , K}GxM

M (6)
= argmax H ( H P(X. 0, Y. 5 | Z.ym;u,p,)\,D.vn,(Gn))>
w,peR” m=1 “n:l,=m
Ze{l,..., K}GxM
so0  With an abuse of notation, we use £ to denote the values that the random variable of clone label takes,
s rather than the random variable itself.

Given that CNAs affect large contiguous regions in the genome, adjacent genomic bins tend to have the
same copy number state. We model the copy number states Z. ,,, using a Markov model for each clone m
with equal values for the start probability and inter-state transition probabilities:

G
P(Z. ) = P(zim HIP’ (2gm | Zg—1,m) (7)
g=2
B(z1,m) = (%, =) ®
(2g,m = Zg—1,m)
IP)(Zg,m | ngl,m) = 1—t¢ (9)

K —1 (2g,m # Zg—1,m)
sn where the parameter ¢ is a user-defined parameter of self-transition probablity. The objective (6) is a
s hidden Markov Model (HMM) under this prior distribution of P(Z. ;,,). While the transition probability
s3 t can be inferred during HMM inference, X and Y tend to have large variances in SRT data; thus, the
s estimated ¢ tends to favor a high probability of inter-state transition and disagrees with CNA event sizes
55 and frequencies in reality. We use t = 1 — 10~° by default. We use the Baum-Welch algorithm to estimate
s RDR p and BAF p parameters.

While the MLE estimate of Z in (6) can be solved by Viterbi algorithm, we instead compute the full posterior
distribution of zg ,,, given by the forward-backward algorithm, which marginalizes 2, ,, over all possible
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copy number states of other segments.

Zg,m

= argmaxP(zgm | X.m, Y. )

Zg,m

In practice, the counts of individual spots are still sparse and the HMM likelihood optimization may fall
into local maxima. We showed that the likelihood of aggregated counts across spots within each clone is
only different from that of individual spots by a constant, if dropping the over-dispersion parameters in
the probabilistic model (Section S9). But the aggregated counts are much less sparse and suffer less from
the local maxima, therefore we optimize the following likelihood function.

argmaxH <Z]P’( D Xows D Yool Zomipp A D D.,n,(en),(W))P(Z.vm))

w,peRE ) 1y Z.., nlp=m nilp=m nlp=m

s7 4.6 Leveraging spatial coherence for inferring clone labels by Hidden Markov
578 Random Field

s»  Given an estimated RDR p and BAF p and the most probable values of Z, we optimize the following
5o objective over clone labels £

argmax P(X,Y | £;Z, u,p, A\, D, (0),(W))P(£;S)

ee{1,..,M}N
(10)
= argmax (HP(X.’H,Y.,H | by 2., o, P, X, D, (0), (W)))P(E; S)
e{1,....M}N

We assume clones are spatially coherent and impose a Potts model [49] as the prior distribution for P(¢; S).
Let E = [epn] € RgDXN be the weighted spatial adjacency matrix, which combines intra-slice adjacency
and inter-slice alignment W. Let o, be the proportion of spots in clone m and let 5 be the strength of
spatial coherence. Then

N
log P(#; S)oc Z

||M§

= m] + 5 Z €n7n/ﬂ[€n = fn/].

1<n<n/<N

ss1 - Note that the weighted adjacency matrix F contains both within-slice spatial adjacency and the alignment
ss2 W across slices if it is available. The objective (10) is a hidden Markov Random Field (HMRF) and we use
ss3  iterated conditional modes [50] for optimizing £.

Notice that we obtain the full posterior probability of P(zg , | X. m, Y. ) via forward-backward algo-
rithm, and accordingly we give the option in CalicoST to leverage the full posterior probability. Denote
the full posterior probability Q(Z.,,) = [ [, P(2g,m | X.m, Y. m), CalicoST can alternatively solve the
following objective function that uses Q(Z. ,,):

N
arg max (H Xn,Yn|€n;ADn79n7WlJ’ p)) (e S)
£e{1,....M}N =1

:m]

1[0,
= argmax H H (Z (X, Yo | z.,m;A,Dm,en,w,u,p)@(z.,m)) P(¢; S).

£e{1,.. 7M} n=1m=1
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s« 4.7 Reconstructing tumor phylogeography

55 We use a two-step approach to reconstruct a tumor phylogeography: first inferring a tumor phylogeny
sss  using the inferred CNAs and then projecting the tumor phylogeny in space and inferring ancestor spatial
7 locations.

s We apply Startle [35] to reconstruct a tumor phylogenetic tree among CalicoST-inferred clones using the
s»» inferred LOH events. Using LOH events in phylogeny reconstruction brings the following advantages:
s firstly, LOH events can be more accurately identified by the imbalanced BAF signals than other CNAs;
s secondly, LOH is irreversible when traversing the phylogenetic tree from the root to each leaf, and thus
s2 compatible with the state-of-the-art phylogeny reconstruction methods such as Startle. Startle infers a
3 phylogeny to describe how the “labels” of a list of genomic “sites” evolve. The list of “sites” is the refinement
s of genome partitions based on CNAs in our application, and the “labels” are one of the three states: no
sss  LOH, LOH of A allele, and LOH of B allele. Startle finds a phylogenetic tree with minimum number of
s LOH events along the edges.

To infer a phylogeography, we project the leaf nodes (which correspond to inferred clones) to the center
of involved spots in space (denoted by s, for node v), and infer the spatial location of ancestor nodes using
a Gaussian diffusion model. Specifically, we assume the spatial distance between a node v and its parent
p(v) in the phylogenetic tree follows a Gaussian distribution with a variance proportional to the number
of mutations w,, ,(,) on the edge.
sv ~ N (8p(0) Wo,p(0) )

We estimate the ancestor locations in the phylogenetic tree by maximizing the joint probability of spatial
locations of all nodes, {s, },, under the above Gaussian distribution:

arg max logP({s,},) = arg maleog P(sy | sp(w))
v

sv» 4.8 Running CalicoST on HTAN and prostate cancer samples

ss For each HTAN patient, we used CalicoST to infer CNAs and tumor clones jointly across all SRT slices. If
s a patient has multiple slices, we jointly identified germline heterozygous SNPs across all slices before run-
0 ning CalicoST to increase the SNP calling sensitivity. We ran CalicoST with the tumor count proportions
o1 O that are derived from deconvolving SRT spots using matched and cell-type-annotated snRNA-seq data
o2 using RCTD [31] for all HTAN patients. Two CRLM patients (HT112C1-T1 and HT225C1) have multiple
«3 slices processed from a 3D tissue cube. We aligned the adjacent slices using PASTE2 [43] and provided the
o4 alignment matrix W to CalicoST infer CNAs and tumor clones in 3D space.

s We used CalicoST to infer CNAs and tumor clones jointly across all five 10x Genomics Visium slices of
«s the prostate organ. We also jointly identified germline heterozygous SNPs across the slices. Because there
07 is no matched single-cell gene expression measurement, we treated all spots as pure in CalicoST. Since
s the slices are more likely to contain distinct clones because of their distant spatial location in the prostate
o organ, we initialized with five clones in CalicoST, which is higher than the default.

s0 4.9 Evaluating the accuracy of inferred (allele-specific) copy numbers

We applied three metrics to evaluate the inferred allele-specific integer copy numbers: exact match, pre-

cision, and recall. Given G genome segments, the inferred allele-specific copy numbers (a4, by) at bin g,
and the ground truth allele-specific copy numbers (a4, by), the exact match is the proportion of genomic
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segments where the inferred allele-specific copy numbers match the ground truth:

G

1 .

G(Z 1[ag = ay and by = bg]>.
g=1

The precision is the proportion of predicted genome segments with CNAs that are supported by the ground
truth, where a change of copy number in either A copy or B copy indicates the existence of CNA:

>, Lag # Lorby # 1] x Lag # 1 or by # 1]
3, 1lag # Lorby # 1]

The recall is the proportion of genome segments with CNAs that are predicted:

>, Lag # Lorby # 1] x L[ag # 1 or by # 1]
2y Lag # Lorby # 1]

We extended the exact match to evaluate inferred copy number states (e.g. amplification state, deletion
state) without integer copy numbers. With an abuse of notation, we denote £, (z,) as the inferred (ground
truth) copy number states at bin g. The exact match of copy number states is

é(gﬂ[ég - zg]>.

Numbat predicts Z4 to be one of six copy number states: imbalanced amplification (amp), balanced ampli-
fication (bamp), balanced copy number neutral (neu), copy number neutral loss of heterozygosity (cnloh),
imbalanced deletion (del), and balanced deletion (bdel). STARCH predicts 2, to be one of the three copy
number states: amplification (amp), neutral (neu), and deletion (del). We converted the allele-specific inte-
ger copy numbers inferred by CalicoST or from WES to these states and compared the exact match values
with the other methods.

4.10 Evaluating spatial coherence of tumor clones by z score of joincount statistics

We use joincount statistics [51, Chapter 3] to evaluate the spatial coherence of each inferred cancer clone.
Joincount statistics describes the spatial autocorrelation of binary data. Given a weighted graph G =
(V, E, W) where W is the weighted adjacency matrix, and let £ € {0, 1}/V| be the vertex label, the join-
count statistics is the number of edges for which the two endpoints have labels {a, b}:

Jab = Z Wu7v]].{gu7£u}:{a,b}'
e= ('u,,'l))EE

The z-score of joincount describes whether the number of edges is larger or smaller than the expectation
assuming labels of the endpoints of each edge are i.i.d. samples from a Bernoulli distribution.

J — (Zu’,v’ Wu/,v/)E(]]‘{éu,ev}:{avb})

A 2w W St (Lt )= (a,))

The higher the z-score of J,;, for a = b, the more spatially coherent the data is. Let P, and P, be the
probability of a and b (a, b € {0, 1}) in the Bernoulli distribution. The expectation and standard deviation

z-score(Jyp) =
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is given by

P,Py,(a=b
E(Lie,0,)~fa0}) = {2pa;3b< (a # 2)
V(A = PP (P.Py) (a = b)
VI = 2P, B (2P, By) (a # b)

Std(ﬂ{guygv}z{aub}) = {

When there are multiple tumor clones, we compute the z-score of joincount, z-score(.J11 ), for each clone
by binarizing clone labels into whether each spot is in the given clone.

Data Availability

Sequencing data are part of Human Tumor Atlas Network (HTAN) dbGaP Study Accession: phs002371.v3.p1
(https://www.ncbinlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs002371.v3.p1), which will be re-
leased after publication. Sequencing data of the prostate cancer was obtained from the European Genome-
phenome Archive (EGA) with accession EGAS00001006124.

Code Availability
The code is publicly available at https://github.com/raphael-group/CalicoST under BSD 3-Clause license.
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