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Abstract9

10

A key challenge in cancer research is to reconstruct the somatic evolution within a tumor over time and11

across space. Spatially resolved transcriptomics (SRT) measures gene expression at thousands of spatial12

locations in a tumor, but does not directly reveal genetic aberrations. We introduce CalicoST, an algorithm13

to simultaneously infer allele-specific copy number aberrations (CNAs) and a spatial model of tumor evo-14

lution from SRT of tumor slices. By modeling CNA-induced perturbations in both total and allele-specific15

gene expression, CalicoST identifies important types of CNAs – including copy-neutral loss of heterozy-16

gosity (CNLOH) and mirrored subclonal CNAs– that are invisible to total copy number analysis. On SRT17

data from nine patients from the Human Tumor Atlas Network (HTAN) with matched whole exome se-18

quencing (WES) data, CalicoST achieves an average accuracy of 86%, approximately 21% higher than19

existing methods. On two patients with SRT data from multiple adjacent slices, CalicoST reconstructs a20

tumor phylogeography that describes the spread of cancerous clones in three-dimensional space. CalicoST21

analysis of multiple SRT slices from a cancerous prostate organ reveals five spatially coherent clones, with22

mirrored subclonal CNAs distinguishing clones on the two sides of the prostate, forming a bifurcating23

phylogeography in both genetic and physical space.24
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1 Introduction27

Tumors evolve through acquisition of somatic mutations — including single nucleotide variations (SNVs),28

copy number aberrations (CNAs), and large-scale structural variations (SVs). Sequencing of somatic muta-29

tions in bulk tumors [1, 2] or disassociated single cells [3–5] has revealed the genetic heterogeneity within30

tumors and enabled the reconstruction of a tumor’s evolutionary history [6–8]. At the same time, tumors31

exhibit heterogeneity and undergo evolution within physical space, expanding and regressing based on32

interactions with other cells and the local microenvironment. Incorporating the spatial perspective into33

somatic evolution studies is a key challenge [9], but has been hampered by a lack of spatial data.34

Recent technological advances in spatial sequencing provide a promising direction for studies of spatiotem-35

poral tumor evolution. While high-quality spatial DNA sequencing would provide the ideal dataset for36

spatiotemporal evolution studies, such technologies remain in active development [10] and are not yet37

widely applied. However, spatially resolved transcriptomics (SRT) technologies that measure RNA simul-38

taneously from thousands of spatial locations in a tissue has found extensive applications in analyzing the39

spatial organization of transcriptionally defined cell types within a tumor [11–14]. Even though somatic40

mutations occur in DNA and are not directly measured by SRT, large CNAs leave a signature in gene ex-41

pression; namely, a deletion of a genomic region tends to result in underexpression of genes in the region,42

while an amplification tends to result in overexpression. Thus, identification of CNAs from transcriptomic43

data is a promising direction for analysis of somatic evolution in tumors.44

Inferring CNAs from single-cell or spatially resolved transcriptomics is challenging as there are multiple45

explanations for an observed gene expression change, such as chromatin accessibility and transcription46

factor binding. It is typically difficult to determine whether an observed gene expression change is a47

result of CNAs or these other causes. Existing methods to infer CNA from gene expression data [15–48

17] assume that large CNAs alter the expression of multiple adjacent genes in a genomic region beyond49

expected by other regulatory effects. However, the variability of expression is so large between genes that50

these methods have limited accuracy in inferring CNAs and are not robust across tissues, patients, and51

cancer types. A few methods aim to address these challenges by combining single-cell RNA and DNA52

sequencing [18, 19], but few researchers perform both modalities of sequencing, limiting the usability53

of these methods. In addition, SRT, as well as single-cell RNA sequencing data (scRNA-seq) are sparse,54

generally having more than 75% zero counts across genes and cells/spots. Furthermore, SRT technologies55

(such as 10x Genomics Visium [20] and Slide-seqV2 [21]) pose an additional challenge beyond scRNA-seq:56

they measure a mixture of cells at each spatial spot, where normal cells can dilute the signals for CNAs.57

Importantly, a CNA in cancer alters one of the two parental chromosomes, and thus the identification58

of allele-specific CNAs is essential for deriving a comprehensive description of CNAs in a tumor. For ex-59

ample, copy number neutral loss of heterozygosity (CNLOH) – an event where a region of one parental60

chromosome is deleted and the other parental chromosome is amplified so that the total copy number of61

the locus is unchanged – is common in cancer [22–24]. Similarly, mirrored-subclonal CNAs – where differ-62

ent cancer cells have independent gains or losses of different parental alleles – also occur in cancer [4, 25]63

but these events also result in identical total copy numbers across cancer cells. Thus, total copy number64

analysis does not reveal the complete CNA spectrum and may lead to incorrect identification of tumor65

clones and inaccurate tumor phylogenies. Previous methods have limited power to identify allele-specific66

CNAs in SRT data. Many existing transcriptomics methods cannot distinguish between alleles and only67

identify total changes in copy number [15–17]. A few methods for identification of allele-specific copy68

number aberrations from scRNA-seq data have been recently been developed [26–28], but these methods69

are challenged by the weak signal to distinguish the two parental alleles in scRNA-seq data.70

We introduce a newmethod, CalicoST, that infers allele-specific CNAs in SRT data and uses these CNAs to71
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reconstruct the phylogeographic evolution of a tumor. CalicoST identifies CNLOH andmirrored-subclonal72

CNAs that are invisible to total copy number analysis. CalicoST constructs a phylogeny of cancer clones73

that describes the accumulation of the inferred CNAs over time and a phylogeographicmodel that describes74

the spread of the tumor across physical space. We validate CalicoST using nine patients from the Human75

Tumor Atlas Network (HTAN) (WashU cohort) [29] with matched whole-exome sequencing (WES) data76

with high tumor purity. CalicoST achieves at least 86% accuracy in its inferred allele-specific copy numbers,77

21% higher than previous methods. We reconstruct a three-dimensional phylogeography for a colorectal78

liver-metastasis and a breast cancer patients in HTAN with multiple adjacent slices. The phylogeography79

reveals the spatial direction of tumor growth, and particularly the expansion in the third dimension that80

could not be identified from a single slice. We also apply CalicoST to multiple SRT slices from a prostate81

cancer patient, identifying mirrored subclonal CNAs that suggest convergent evolution in the tumor. The82

reconstructed phylogeography partitions the cancer clones into the left and the right sides of the prostate,83

revealing the separation of the clones in both physical and genetic space. CalicoST enables the study of84

spatial tumor evolution, progression and metastasis, and will be helpful for further applications to cancer85

diagnosis and treatment.86

2 Results87

2.1 CalicoST algorithm88

CalicoST infers allele-specific copy number aberrations (CNAs) and a phylogeographic model of tumor89

evolution from one or more SRT samples from a tumor (Fig. 1). CalicoST has the following key features.90

(1) Identifies allele-specific integer copy numbers for transcribed regions, revealing events such as copy91

neutral loss of heterozygosity (CNLOH) and mirrored subclonal CNAs that are invisible to total copy num-92

ber analysis. (2) Assigns each spot a clone label indicating the clone it belongs to and the allele-specific93

copy number profiles it contain. (3) Infers a phylogeny relating the identified cancer clones as well as a94

phylogeography that combines genetic evolution and spatial dissemination of clones. (4) Handles normal95

cell admixture in SRT technologies that are not single-cell resolution (e.g. 10x Genomics Visium) to in-96

fer more accurate allele-specific copy numbers and cancer clones. (5) Simultaneously analyzes multiple97

regional or aligned SRT slices from the same tumor.98

The inputs to CalicoST are a transcript count matrix X whose entries are the total number of reads from99

each transcript in each spot, and an allele count matrix Y whose entries are the number of reads from100

the non-reference allele of germline heterozygous SNPs (Fig. 1a). The matrix X is readily obtained from101

standard SRT analysis pipelines, while the matrix Y is calculated from a specialized pipeline that uses102

known locations of germline SNPs aswell as reference-based phasing [30] to aggregate signal frommultiple103

adjacent SNPs in the same haplotype (Section S3). This latter step is necessary because SRT data is generally104

sparse and the allele counts are even sparser: 98.8% SNP loci have zero total count within each individual105

spot and another 0.9% has only one total count.106

In addition, some SRT technologies, (e.g. 10x Genomics Visium), may lack single-cell resolution, measuring107

multiple cells within each spatial spot. This admixture dilutes the signal for identification of CNAs and108

cancer clones. To ameliorate this issue, CalicoST optionally takes in a tumor proportion (θ P r0, 1sN for109

N spots) as input. This proportion can be obtained using established methods for deconvolving cell type110

proportions in SRT data [31, 32].111

The core of CalicoST is a generative probabilistic model of the observed variablesX,Y as a function of the112

unobserved allele-specific copy numbers and clone labels ℓ. Individual entries in X and Y provide poor113

estimates of the allele-specific copy number at the corresponding locus due to low sequence coverage and114

confounding by other sources of variation, such as variable gene expression. Thus, CalicoST aggregates115
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Figure 1: CalicoST infers allele-specific copy numbers and a phylogeography of a tumor from

one or more SRT samples from the same patient. (a) Inputs to CalicoST are transcript counts X,
allele counts Y, spatial coordinates S, and optionally the proportion of tumor counts per spot θ from
one or more SRT slices or a 3D alignment of slices. (b) CalicoST jointly models transcript counts and
allele counts as functions of allele-specific copy number states within each clone. CalicoST uses a Hidden
Markov Model (HMM) to model correlations between copy number states from adjacent genomic regions
and a Hidden Markov Random Field (HMRF) to model correlations between the cancer clones assigned
to neighboring spatial locations. (c) CalicoST infers allele-specific integer copy numbers for one or more
cancer clones, a phylogeny relating these clones, a clone label for each spot, and a phylogeographic model
of the spatial expansion of cancer clones.
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signals frommultiple adjacent loci in the genome andmultiple adjacent spots. Specifically, we use a hidden116

Markov Model (HMM) to model correlations between the allele-specific copy number state of adjacent117

genomic loci and a hidden Markov Random Field (HMRF) to model the correlations between clone label ℓ118

in adjacent spots assuming that adjacent spots are likely to be genetically similar. We jointly infer the allele-119

specific copy number states and clone labels leveraging standard HMM and HMRF inference algorithms120

(Section 4.5,4.6).121

Finally, we reconstruct a phylogeographic model to describe the ancestral relationships between the in-122

ferred clones as well as the spatial location of the ancestors of these clones (Fig. 1c). It is generally challeng-123

ing to reconstruct a phylogeny from copy number profiles and requires complicated evolutionary mod-124

els [33, 34]. Instead we leverage the fact that CalicoST infers loss of heterozyosity (LOH) events, which125

have the important property of being irreversible phylogenetic characters; i.e. once a parental haplotype126

is lost in a lineage, it cannot be regained. We construct a tumor phylogeny among cancer clones using127

the inferred LOH events and the star homoplasy model in Startle [35]. Then, we project the phylogeny in128

space and infer the spatial location of ancestors using a diffusion model (Section 4.7).129

2.2 CalicoST infers accurate allele-specific integer copy numbers across HTAN130

samples131

We evaluated CalicoST’s accuracy in inference of allele-specific copy numbers on 10x Genomics Visium132

Spatial Transcriptomics of twelve patients (twenty six slices) in HTAN (WashU cohort) [29] across three133

cancer types (Section 4.8). Whole exome sequencing (WES) data from adjacent bulk tumor sections was134

available for eleven patients. We determined the allele-specific integer copy numbers for nine bulk WES135

samples using HATCHet2 [36], while the remaining two samples have insufficient tumor purity to infer136

copy numbers. We used these copy numbers as the ground truth to benchmark the inferred CNAs from137

SRT data by CalicoST.138

Across nine patients whose matched WES sample had sufficient tumor purity, the best-matching CalicoST139

cancer clone had 86% accuracy on average (min. 68% and max. 97%) (Fig. 2a), and an average of 95%140

precision and 90% recall in the prediction of genome segments with abnormal copy number (Section 4.9),141

respectively (Fig. S2a,b). Themedian length of CNA events detected by CalicoSTwas 80Mb, often spanning142

entire chromosomes (Fig. 2b), which is of a lower resolution than CNA detected by HATCHet2 on WES143

samples. Nevertheless, CalicoST identified CNA events as small as 1 Mb for regions with high coverage.144

Notably, CalicoST infers allele-specific copy numbers and cancer clones from SRT data on two pancreatic145

cancer patients (HT270P1 and HT288P1) whose tumor purity in the bulk WES was insufficient for reliable146

identification of CNAs. We observed clear LOH regions from the observed B allele frequency (BAF) values147

of these two patients and the cancer clones are well distinguished by the read depth ratio (RDR) and BAF148

signals (Fig. S2c,d).149

CalicoST identifies large-scale changes in tumor ploidy that are often challenging to be inferred accurately,150

particularly for methods that infer only total copy numbers [36]. CalicoST identified near-triploid genomes151

in three colorectal liver-metastasis (CRLM) patients and a breast cancer patient (Fig. 2c,S3). For example,152

the estimated ploidy of CRLM patient HT230C1-Th1 is 2.7 with 40.5% and 12.6% of genomic bins having153

allele-specific copy number of t2, 1u and t2, 2u respectively (Fig. 2c). A triploid genome of this patient is154

also inferred in the matched WES sample (Fig. 2d). Previous studies have shown an association between155

triploidy and worse prognosis/poor survival [37]. Allelic information is key to the identification of near-156

triploid genomes from gene expression data; methods that only infer total changes in copy numbers miss157

many regions with copy number t2, 1u because the transcript counts in these regions many not differ158

substantially from copy number neutral regions, particularly because the gene expression signal is highly159

variable across the genome (Fig. S2e).160
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Figure 2: CalicoST infers accurate allele-specific copy numbers in HTAN samples. (a) Accuracy
of allele-specific copy numbers across 12 HTAN patients (WashU cohort) inferred by CalicoST. Each bar
represents an inferred cancer clone. (b) Length distribution of CNAs identified by CalicoST from SRT data
and identified by HATCHet2 fromWES for the nine patients with matchedWES of sufficient tumor purity.
Themedian length is 80Mb for CalicoST and 30Mb for HATCHet2 (vertical dashed lines). (c) Allele-specific
integer copy numbers inferred by CalicoST from SRT data from CRLM patient HT230C1. Rows are cancer
clones, and columns are genomic segments. Colors indicate allele-specific copy numbers. (d) The observed
BAF (x-axis) and fractional copy numbers (y-axis) from the matched WES data of HT230C1-Th1. Each
point is a genomic bin and colors indicate the allele-specific copy numbers inferred by HATCHet2 [36]. (e)
Allele-specific integer copy numbers inferred by CalicoST from SRT data from CRLM patient HT260C1-
Th1. (f) Observed RDR and BAF for chromosome 8 of HT260C1-Th1. Points are colored by the inferred
allele-specific copy numbers. Horizontal black lines indicate the RDR and BAF of the corresponding copy
number states estimated by HMM. (g) Allele-specific integer copy numbers inferred by HATCHet2 from
WES from patient HT260C1-Th1. (h) The RDR and BAF values from WES data for bins from chromosome
8q region and bins from other genomic regions with {3,0} copy number state. Black points are expected
RDR and BAF values for {3,0} and {2,1} states from HATCHet2 analysis.
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Figure 3: Comparing accuracy of CNAs and spatial coherence of inferred clones between Cali-

coST and other CNA inference methods. (a) Accuracy and (b) spatial coherence comparison among
CalicoST, Numbat, InferCNV, and STARCH on colorectal liver-metastasis (CRLM) patients. Solid bars in-
dicate predictions of allele-specific copy number states and dotted bars indicate predictions of total copy
number states. (c) H&E image of a CRLM sample HT260C1-Th1. (d) Cancer clones inferred by CalicoST.
x- and y-axes are spatial coordinates, and grayscale represents the proportion of normal cells within each
spot, as inferred by RCTD. Other colors indicates cancer clones. (e) Cancer clones inferred by Numbat
using the same color scheme as (d).

CalicoST also revealed tumor heterogeneity and clone-specific copy number alterations that were missed161

in bulk WES data. On CRLM patient HT260C1-Th1, CalicoST identified two cancer clones (Fig. 2e) with162

CNAs that were shared by both clones, such as CNLOH in chr17 and chr18, including well-known tumor163

suppressor genes TP53 and DCC [38–41]. Other CNAs were unique to cancer clones. For instance, chr2164

and chr3 had symmetric amplifications in the two cancer clones and chr8q has a loss of heterozygosity in165

clone 1 with allele-specific copy number t3, 0u, but has an allele-specific copy number of t2, 1u in clone166

2. All three events are supported by the BAF signal in both clones (Fig. S4,Fig. 2f). The chr8q region was167

assigned to t3, 0u copy-number by HATCHet2 in the bulk WES (Fig. 2g). Although HATCHet2 detected168

one cancer clone in the bulkWES, its BAF and RDRmeasurements of chr8q highlight an unusual deviation169

from the expected BAF value of t3, 0u copy-number state (Fig. 2h), supporting CalicoST’s hypothesis that170

this region has undergone different CNAs in different cancer clones.171

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2024. ; https://doi.org/10.1101/2024.03.09.584244doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.09.584244
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.3 CalicoST identifies more accurate CNAs and spatially coherent clones than172

single-cell and spatial methods173

We compared CalicoST with existing methods for identifying CNAs from single-cell RNA-sequencing174

(scRNA-seq) data [27, 42] and spatial transcriptomcs [17], evaluating both the accuracy of inferred CNAs175

and the spatial distribution of inferred cancer clones. Specifically, we compared CalicoST with (1) Num-176

bat [16], an allele-specific CNA inference method for scRNA-seq data; (2) STARCH [17], a total copy177

number inference method for SRT data, and (3) inferCNV [42], a total copy number inference method178

for scRNA-seq data. Numbat and STARCH do not output integer copy numbers but rather copy number179

states (amplification, deletion, etc.), and thus their results are not directly comparable with CalicoST and180

HATCHet2. Thus, to perform a comparison, we projected the integer allele-specific copy numbers from181

CalicoST and HATCHet2 to copy number states (Section 4.9).182

CalicoST had the highest accuracy on all but one sample, both when comparing allele-specific copy num-183

bers to Numbat and total copy numbers to STARCH and inferCNV (Fig. 3a,S5). For allele-specific copy184

number, CalicoST was 25% more accurate than Numbat on average across the four samples. For total copy185

number, CalicoST had substantially higher accuracy in inferring CNAs than STARCH (59% higher on aver-186

age) and InferCNV (90% higher on average). We compared the two allele-specific inference methods on all187

nine HTAN patients: CalicoST was 21% more accurate than Numbat on average and had better accuracy188

for eight of the nine patients (Fig. S5).189

The spatial distribution of cancer clones inferred by CalicoST was substantially more coherent than the190

other three methods on the two CRLM patients where all methods identify multiple cancer clones (Fig. 3b,191

Fig. S5). For example, on patient HT260C1-Th1 (Fig. 3c), CalicoST identified two spatially coherent clones192

that partition the tissue into the top left and bottom left regions, partitioned by normal spots indicated by193

the gray color (Fig. 3d). In contrast, Numbat identified cancer clones with lower spatial coherence with194

some cancer clones (yellow and pink) spread almost uniformly through the slice and on both tumor regions195

separated by normal spots (Fig. 3e).196

2.4 CalicoST reconstructs tumor evolution in three-dimensional space197

We applied CalicoST to infer phylogeographic trees in space (phylogeography in short) for two HTAN198

patients where 10x Genomics Visium Spatial Transcriptomics data was obtained from multiple adjacent199

slices of the tumor: CRLM patient HT112C1-T1 with two slices separated by 60 µm and breast cancer200

patient HT268B1-Th1with five slices, with a distance of 100 µm between four of the slices, and an unknown201

distance between the first two slices. We aligned adjacent sections and derived a multi-slice alignment202

using PASTE2 [43], which was input into CalicoST.203

For the CRLM patient, CalicoST identified three spatially coherent clones in the 3D tumor tissue and infers204

a phylogenetic tree from the CNAs in these clones (Fig. 4a). This phylogeographic tree shows the expansion205

of the tumor, branching from the ancestral clone 1 (green) to two clones on either side (orange and blue).206

The three clones have distinct allele-specific copy number profiles (Fig. 4b). Specifically, the orange clone 2207

has a unique LOH on chr21, and the blue clone 3 has a unique LOH on chr 11p. Both events are supported208

by a strong allelic imbalance in the BAF (Fig. S6a). We observe a high consistency in clone composition209

and localization between the two slices, which is not surprising as the distance between the two slices210

(60 µm) is small and almost the same as the diameter of a spot within one slice (55 µm).211

CalicoST identifies two cancer clones in a breast cancer patient HT268B1-Th1 across five slices that are212

aligned in 3D space and reconstructs a phylogeography between the two clones (Fig. 4c). The phylogeog-213

raphy indicates the ancestor (black diamond) is located between the two clones, which expanded leftward214

and downward along the z axis to clone 1 (green) and rightward and upward to clone 2 (orange). The215
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Figure 4: Tumor evolution in 3D inferred by CalicoST from patient HT112C1-T1 and HT268B1-

Th1. (a) Spatial distribution of three cancer clones identified by CalicoST in two adjacent slices from CRLM
patient HT112C1-T1. Grayscale indicates the inferred proportion of normal cells within each spot. Dia-
monds are the spatial centroid of each clone or inferred ancestor locations and arrows indicate the inferred
directions of tumor development. Distance between two slices in the z coordinate is enlarged for clearer
visualization. (b) Allele-specific copy number profiles for the three cancer clones and the corresponding
phylogeny (right) with branches in the phylogeny labeled by the number of unique large LOH events that
occur on the branch. (c) Spatial distribution and phylogeographic tree of two cancer clones in five adjacent
slices from breast cancer patient HT268C1-Th1. Color scheme is the same as (a). (d) Inferred allele-specific
copy numbers and reconstructed tumor phylogeny.
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spatial evolution of this patient contains a strong component in the z-axis direction, which can only be re-216

vealed due to the multiple slices of SRT data. The two clones have copy number aberrations that are shared217

between both clones and unique to each clone including a mirrored deletion on chr19 (Fig. 4d), which is218

supported by the RDR and BAF values in this genomic region (Fig. S6b). Notably, clone 1 has fewer unique219

LOH events than clone 2, suggesting that clone 1 is genetically closer to the common ancestor than clone220

2, which is reflected in the inferred location of the ancestor in the phylogeography (Fig. 4c).221

2.5 Mirrored copy number aberrations in multiple regions of a cancerous prostate222

organ223

We applied CalicoST to infer allele-specific CNAs and a phylogeography jointly from five slices from a224

single cross-section of a cancerous prostate [44] (Section 4.8). CalicoST identifies five cancer clones across225

the SRT slices with some clones shared across multiple slices. (Fig. 5a). The spatial distribution of the226

inferred cancer clones are visually consistent with the pathologist-annotated tumor regions shown in [44],227

even though CalicoST was not given information about the locations of normal spots or estimated tumor228

purity in each spot. The five clones have distinct copy number profiles (Fig. 5b), which are supported by229

the BAF in each clone (Fig. S7). Notably, clone 5 (blue) is shared across all three slices on the right side of230

the prostate organ, forming a contiguous spatial region, even though CalicoST was not given information231

about the relative locations of slices in the prostate. This demonstrates the advantage of CalicoST’s joint232

inference across multiple slices.233

The clones on the two halves of the prostate cross-section (left and right) are distinguished by multiple234

aberrations that are unique to each half. Most prominent among these are four mirrored CNA events, on235

chromosomes 2, 6, and 8 where clones 1 and 2 have different amplified/deleted alleles than clones 4 and236

5 (Fig. 5c). Specifically, chr8p, one of the most frequently deleted regions in prostate cancer [45], has a237

mirrored deletion in the two halves of the prostate, and chr8q has a mirrored amplification containing the238

MYC gene, a well-known oncogene in aggressive prostate cancer. Also, chr6 has a mirrored deletion of the239

region 73-99Mb, which is also a commonly deleted region in prostate cancer [46], harboring three reported240

tumor suppressor genes (ZNF292, HMGN3, and UBE2J1) [47]. The occurrences of three independent dele-241

tions and an independent amplification in different clones indicate of the high frequency of corresponding242

events in prostate cancer and are potential signal of convergent evolution [25]. In contrast, the original243

published analysis of this data [44] used InferCNV, and concluded that the deletion in chr6q is a truncal244

event based on changes in total copy numbers, missing the differential loss of the two alleles in the two245

halves of the prostate.246

The inferred phylogeography splits the cancer clones into two main lineages, which coincide with the left247

and right spatial partition of the prostate cross-section (Fig. 5a). On the left half, clone 3 contains only one248

CNA event, a deletion in chr1, and is the closest to a normal state; clones 1 and 2 share the deletion in chr1249

and many other deletions in chromosomes 2, 4, 6, 8, 10, and 11. On the right half, clone 4 shares multiple250

CNAs with clone 5, but does not have any unique CNA and thus clone 4 is marked as an ancestor of clone251

5, which is consistent with its spatial location closest to the root. Interestingly, the absence of truncal CNA252

events and the clear bifurcation in both genetic and physical space suggests that the tumor on the left and253

right halves diverged in a very early stage and had relatively independent evolution.254

3 Discussion255

We introduced CalicoST, an algorithm that infers allele-specific copy numbers and reconstructs a phy-256

logeography relating cancer clones in time and space using SRT data. We applied CalicoST to SRT data257

from twelve HTAN patients across three cancer types (WashU cohort) and multiple slices from a cancer-258

ous prostate. CalicoST showed high concordance with copy number aberrations (CNAs) identified in bulk259
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Figure 5: CalicoST infers a phylogeography and mirrored CNA events in a cancerous prostate.

(a) Spatial distribution of cancer clones inferred jointly by CalicoST across five slices from a cancerous
prostate. Positioning of five slices is according to [44]. Colors indicate inferred clones, including the
normal clone in grey. Arrows represent the phylogeography of tumor evolution. (b) Allele-specific copy
number profiles for the five cancer clones and the corresponding phylogeny (right) with branches in the
phylogeny labeled by the number of unique large LOH events that occur on the branch. Colors indicate
allele-specific copy numbers. The orientation and position of triangles indicate mirrored CNA events. (c)
BAF of each clone in (top) chr6 and (bottom) chr8. Colors indicate allele-specific copy numbers using the
same color scheme as panel (b).
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whole-exome sequencing (WES) from nine patients with sufficient tumor purity, but also revealed multiple260

cancer clones in many samples as well as cancer clones in low purity samples that were not identified in261

bulk WES. CalicoST is more accurate and yields more spatially coherent clonal organization compared to262

existing methods that identify CNAs from single-cell or spatial transcriptomics data.263

CalicoST uses the inferred CNAs to construct a phylogeny relating the cancer clones, and the spatial lo-264

cations of the cancer clones to construct a phylogeography, which combines both the genetic and spatial265

evolution of a tumor in a unified model. This reconstruction is enabled by allele-specific copy numbers,266

as CalicoST uses loss of an allele/haplotype as irreversible phylogenetic characters, circumventing some267

of the difficulties in deriving phylogenies from copy number aberrations [33]. Applied to colorectal liver-268

metastasis samples from HTAN with multiple consecutive slices, we construct 3D models of spatial tumor269

evolution which describe both the genetic aberrations and spatial directions of tumor growth. On a spatial270

transcriptomics dataset containing multiple sections from cancerous prostate [44], CalicoST identifies mir-271

rored subclonal copy number aberrations that are missed in the analysis of total copy number; moreover,272

CalicoST infers a phylogeography that bifurcates the left and right halves of the prostate in both genetic273

and physical space, pointing toward an early divergence between tumor cells on different halves of the274

prostate.275

CalicoST has some limitations, some ofwhich are directions for future improvement. First, the length of the276

copy number aberrations that can be reliably detected is limited by the sequencing coverage as well as the277

inherent difficulties in detecting DNA aberrations from gene expression data. On the 10x Genomics Visium278

data analyzed in this study, we detected aberrations as small as 1 Mb, with a median aberration size of 80279

Mb. This resolution depends on the gene density within a genomic region as well as the number of spots280

that contain the aberration. However, it will be nearly impossible to detect aberrations in single genes,281

since these are indistinguishable from differential expression. Second, CalicoST’s use of allele/haplotype282

deletion as phylogenetic markers helps infer accurate phylogenies, but requires that a tumor sample have283

enough of these events. Some tumors may have insufficient losses to yield robust phylogenies, particularly284

among tumors containing many cancer clones. Leveraging other CNAs in phylogeny reconstruction may285

address this issue but requires further investigation of the trade-off between the increased number of286

events and potential inaccuracies in phylogeny inference. Third, CalicoST struggles with inferring the287

exact integer copy numbers for amplifications with a high total copy number because of the high variance288

in gene expression. For example, CalicoST infers chr13 of HTAN patient HT260C1-Th1 to have three and289

four total copies across the inferred cancer clones but the total copy numbers inferred from WES data by290

HATCHet2 is five copies. Inference of CNAs jointly from SRT and DNA data may help with this issue,291

when both measurements are available. Fourth, further improvements can be made in the model selection292

criteria that CalicoST uses to select the number of clones (Section S7) and the parameter in the HMRF293

that governs the spatial coherence of the inferred clones (Section 4.6). Particularly, for tumor samples294

containing cancerous cells with little spatial organization, a strong spatial coherence prior may lead to295

inaccurate inference of CNAs and cancer clones.296

The use of spatially resolved transcriptomics in cancer analysis is growing rapidly. CalicoST can help bring297

valuable insights into copy number drivers of cancer, spatial tumor heterogeneity, and spatial evolution,298

serving as a foundation for additional biological analyses integrating genetic evolution, epigenetic (gene299

expression) changes, and spatial organization.300
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position and spatial architecture in human squamous cell carcinoma. Cell, 182(2):497–514, 2020.336

[12] Dalia Barkley, Reuben Moncada, Maayan Pour, Deborah A Liberman, Ian Dryg, Gregor Werba, Wei337

Wang, Maayan Baron, Anjali Rao, Bo Xia, et al. Cancer cell states recur across tumor types and form338

specific interactions with the tumor microenvironment. Nature Genetics, 54(8):1192–1201, 2022.339

[13] Jana Biermann, Johannes C Melms, Amit Dipak Amin, Yiping Wang, Lindsay A Caprio, Alcida Karz,340

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2024. ; https://doi.org/10.1101/2024.03.09.584244doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.09.584244
http://creativecommons.org/licenses/by-nc-nd/4.0/


Somnath Tagore, Irving Barrera, Miguel A Ibarra-Arellano, Massimo Andreatta, et al. Dissecting the341

treatment-naive ecosystem of human melanoma brain metastasis. Cell, 185(14):2591–2608, 2022.342

[14] YipingWang, Joy Linyue Fan, Johannes CMelms, Amit DipakAmin, YohannaGeorgis, Irving Barrera,343

Patricia Ho, Somnath Tagore, Gabriel Abril-Rodrı́guez, Siyu He, et al. Multimodal single-cell and344

whole-genome sequencing of small, frozen clinical specimens. Nature Genetics, 55(1):19–25, 2023.345

[15] Anoop P Patel, Itay Tirosh, John J Trombetta, Alex K Shalek, Shawn M Gillespie, Hiroaki Wakimoto,346

Daniel P Cahill, Brian V Nahed, William T Curry, Robert L Martuza, et al. Single-cell RNA-seq347

highlights intratumoral heterogeneity in primary glioblastoma. Science, 344(6190):1396–1401, 2014.348

[16] Ruli Gao, Shanshan Bai, Ying C Henderson, Yiyun Lin, Aislyn Schalck, Yun Yan, Tapsi Kumar, Min349

Hu, Emi Sei, Alexander Davis, et al. Delineating copy number and clonal substructure in human350

tumors from single-cell transcriptomes. Nature Biotechnology, 39(5):599–608, 2021.351

[17] Rebecca Elyanow, Ron Zeira, Max Land, and Benjamin J Raphael. STARCH: Copy number and clone352

inference from spatial transcriptomics data. Physical Biology, 18(3):035001, 2021.353

[18] Kieran R Campbell, Adi Steif, Emma Laks, Hans Zahn, Daniel Lai, AndrewMcPherson, Hossein Fara-354

hani, Farhia Kabeer, Ciara O’Flanagan, Justina Biele, et al. clonealign: statistical integration of inde-355

pendent single-cell rna and dna sequencing data from human cancers. Genome Biology, 20(1):1–12,356

2019.357

[19] Pedro F Ferreira, Jack Kuipers, and Niko Beerenwinkel. Mapping single-cell transcriptomes to copy358

number evolutionary trees. In International Conference on Research in Computational Molecular359

Biology, pages 380–381. Springer, 2022.360

[20] 10x Genomics. Spatial transcriptomics, 2021.361

[21] Robert R Stickels, Evan Murray, Pawan Kumar, Jilong Li, Jamie L Marshall, Daniela J Di Bella, Paola362

Arlotta, Evan Z Macosko, and Fei Chen. Highly sensitive spatial transcriptomics at near-cellular363

resolution with Slide-seqV2. Nature biotechnology, 39(3):313–319, 2021.364

[22] Jacqueline A Langdon, Jayne M Lamont, Debbie K Scott, Sara Dyer, Emma Prebble, Nick Bown,365

Richard G Grundy, David W Ellison, and Steven C Clifford. Combined genome-wide allelotyping366

and copy number analysis identify frequent genetic losses without copy number reduction in medul-367

loblastoma. Genes, Chromosomes and Cancer, 45(1):47–60, 2006.368

[23] Daisuke Kuga, Masahiro Mizoguchi, Yanlei Guan, Nobuhiro Hata, Koji Yoshimoto, Tadahisa Shono,369

Satoshi O Suzuki, Yoji Kukita, Tomoko Tahira, Shinji Nagata, et al. Prevalence of copy-number370

neutral loh in glioblastomas revealed by genomewide analysis of laser-microdissected tissues.371

Neuro-Oncology, 10(6):995–1003, 2008.372

[24] Christine O’Keefe, Michael A McDevitt, and Jaroslaw P Maciejewski. Copy neutral loss of heterozy-373

gosity: a novel chromosomal lesion in myeloid malignancies. Blood, The Journal of the American374

Society of Hematology, 115(14):2731–2739, 2010.375

[25] Mariam Jamal-Hanjani, Gareth A Wilson, Nicholas McGranahan, Nicolai J Birkbak, Thomas BK376

Watkins, Selvaraju Veeriah, Seema Shafi, Diana H Johnson, Richard Mitter, Rachel Rosenthal,377

et al. Tracking the evolution of non–small-cell lung cancer. New England Journal of Medicine,378

376(22):2109–2121, 2017.379

[26] Jean Fan, Hae-Ock Lee, Soohyun Lee, Da-eun Ryu, Semin Lee, Catherine Xue, Seok Jin Kim, Kihyun380

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2024. ; https://doi.org/10.1101/2024.03.09.584244doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.09.584244
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kim, Nikolaos Barkas, Peter J Park, et al. Linking transcriptional and genetic tumor heterogeneity381

through allele analysis of single-cell RNA-seq data. Genome Research, 28(8):1217–1227, 2018.382

[27] Teng Gao, Ruslan Soldatov, Hirak Sarkar, Adam Kurkiewicz, Evan Biederstedt, Po-Ru Loh, and Pe-383

ter V Kharchenko. Haplotype-aware analysis of somatic copy number variations from single-cell384

transcriptomes. Nature Biotechnology, pages 1–10, 2022.385

[28] Chi-Yun Wu, Anuja Sathe, Jiazhen Rong, Paul R Hess, Billy Lau, Susan M Grimes, Hanlee P Ji, and386

Nancy R Zhang. Cancer subclone detection based on DNA copy number in single cell and spatial387

omic sequencing data. bioRxiv, 2022.388

[29] Chia-Kuei Mo, Jingxian Liu, Siqi Chen, Erik Storrs, Andre Luiz Targino da Costa, Michael D. Igle-389

sia, Cong Ma, Reyka G. Jayasinghe, Andrew Houston, John M. Herndon, Jacqueline Mudd, Xinhao390

Liu, Alla Karpova, Andrew Shinkle, Austin N. Southard-Smith, Michael C. Wendl, S. Peter Goedege-391

buure, Abdurrahman Taha Mousa Ali Abdelzaher, Peng Bo, Lauren Fulghum, Samantha Livingston,392

Metin Balaban, Angela Hill, Joseph E. Ippolito, Vesteinn Thorsson, Jason M. Held, Eric H. Kim, Pe-393

ter O. Bayguinov, Albert H. Kim, Kooresh I. Shoghi, Sidharth V. Puram, Tao Ju, Melissa A. Reimers,394

Cody Weimholt, Liang-I Kang, Deborah J. Veis, Milan G. Chheda, Russell Pachynski, Katherine C.395

Fuh, William E. Gillanders, Ryan C. Fields, Benjamin J. Raphael, Feng Chen, and Li Ding. Spatial396

clonal evolution and clone-specific microenvironment interactions within three-dimensional tumor397

structures. Nature, 2023. Submitted.398

[30] Po-Ru Loh, Petr Danecek, Pier Francesco Palamara, Christian Fuchsberger, Yakir A Reshef, Hilary K399

Finucane, Sebastian Schoenherr, Lukas Forer, Shane McCarthy, Goncalo R. Abecasis, Richard Durbin,400

and Alkes L Price. Reference-based phasing using the Haplotype Reference Consortium panel. Nature401

Genetics, 48(11):1443–1448, nov 2016.402

[31] Dylan M Cable, Evan Murray, Luli S Zou, Aleksandrina Goeva, Evan Z Macosko, Fei Chen, and403

Rafael A Irizarry. Robust decomposition of cell type mixtures in spatial transcriptomics. Nature404

Biotechnology, 40(4):517–526, 2022.405

[32] Ying Ma and Xiang Zhou. Spatially informed cell-type deconvolution for spatial transcriptomics.406

Nature Biotechnology, pages 1–11, 2022.407

[33] Simone Zaccaria, Mohammed El-Kebir, Gunnar W. Klau, and Benjamin J. Raphael. Phyloge-408

netic Copy-Number Factorization of Multiple Tumor Samples. Journal of Computational Biology,409

25(7):689–708, jul 2018.410

[34] Roland F. Schwarz, Anne Trinh, Botond Sipos, James D. Brenton, Nick Goldman, and Florian411

Markowetz. Phylogenetic quantification of intra-tumour heterogeneity. PLOS Computational412

Biology, 10(4):1–11, 04 2014.413

[35] Palash Sashittal, Henri Schmidt, Michelle M Chan, and Benjamin J Raphael. Startle: a star homoplasy414

approach for crispr-cas9 lineage tracing. bioRxiv, pages 2022–12, 2022.415

[36] Simone Zaccaria and Benjamin J Raphael. Accurate quantification of copy-number aberrations416

and whole-genome duplications in multi-sample tumor sequencing data. Nature Communications,417

11(1):1–13, 2020.418

[37] Susanne Schulze and Iver Petersen. Gender and ploidy in cancer survival. Cellular Oncology, 34:199–419

208, 2011.420

[38] OlagunjuAOgunbiyi, Paul J Goodfellow, KlausHerfarth, GuiseppeGagliardi, Paul E Swanson, ElisaH421

Birnbaum, Thomas E Read, James W Fleshman, Ira J Kodner, and Jeffrey F Moley. Confirmation that422

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2024. ; https://doi.org/10.1101/2024.03.09.584244doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.09.584244
http://creativecommons.org/licenses/by-nc-nd/4.0/


chromosome 18q allelic loss in colon cancer is a prognostic indicator. Journal of Clinical Oncology,423

16(2):427–433, 1998.424

[39] Jin Jen, Hoguen Kim, Steven Piantadosi, Zong-Fan Liu, Roy C Levitt, Pertti Sistonen, Kenneth W425

Kinzler, Bert Vogelstein, and Stanley R Hamilton. Allelic loss of chromosome 18q and prognosis in426

colorectal cancer. New England Journal of Medicine, 331(4):213–221, 1994.427

[40] L1 Cawkwell, FA Lewis, and P Quirke. Frequency of allele loss of dcc, p53, rbi, wt1, nf1, nm23 and428

apc/mcc in colorectal cancer assayed by fluorescent multiplex polymerase chain reaction. British429

Journal of Cancer, 70(5):813–818, 1994.430

[41] Keizou Ookawa, Michiie Sakamoto, Setsuo Hirohashi, Yutaka Yoshida, Takashi Sugimura, Masaaki431

Terada, and Jun Yokota. Concordant p53 and dcc alterations and allelic losses on chromosomes 13q432

and 14q associated with liver metastases of colorectal carcinoma. International journal of cancer,433

53(3):382–387, 1993.434

[42] Anoop P. Patel, Itay Tirosh, John J. Trombetta, Alex K. Shalek, Shawn M. Gillespie, Hiroaki Waki-435

moto, Daniel P. Cahill, Brian V. Nahed, William T. Curry, Robert L. Martuza, David N. Louis, Orit436
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4 Methods468

4.1 CalicoST workflow469
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Figure 6: Workflow of CalicoST. CalicoST extracts the B allele and total counts of heterozygous SNP loci
from the BAM file to distinguish between two alleles. CalicoST phases the SNPs and aggregates transcript
counts and allele counts of each haplotype along the genome. Next, CalicoST identifies normal spots,
jointly infers tumor clones and estimates a latent RDR and BAF value for each copy number state across
all involved genomic bins in each clone. CalicoST infers integer allele-specific copy numbers using the
latent RDR and BAF values. Finally, CalicoST reconstructs a phylogeographic model of tumor evolution
by inferring a tumor phylogeny using LOH events and inferring spatial locations of ancestral clones.

CalicoST has the following main steps. In a preliminary step, CalicoST extracts allele and total counts at470

germline heterozygous SNP loci to distinguish between alleles (Fig 6 step 0, Section S1). The first step is to471

aggregate counts along genome to reduce the sparsity (Fig 6 step 1, Section S3). Because each CNA event472

occurs on a parental allele, we infer a grouping of SNPs by parental alleles (also known as phasing) to avoid473

mixing the counts. The second step is to infer normal spots (Fig 6 step 2, Section S4). The inferred normal474

spots provide baseline gene expression in normal cells; higher-than-baseline expression are potentially due475

to copy number gains and lower-than-baseline expression indicate copy number losses. Additionally, we476

use normal spots to remove genomic bins that potentially have allele-specific gene expression irrelevant477

to CNAs (Section S5). In the third step, CalicoST relaxes the constraint that allele-specific copy numbers478

are integers, and clusters genomic bins into copy number states and infers cancer clones simultaneously479

(Fig 6 step 3). CalicoST explicitly models the correlation among genomic bins along the genome using a480

Hidden Markov Model and among the cancer clones in space using a Hidden Markov Random Field in this481

step. Particularly, CalicoST estimates a latent value for the read depth ratio (RDR) in HMM underlying the482

genomic bins corresponding to each copy number state to indicate the relative copy numbers compared483

to diploid, and a latent value for the BAF for each copy number state to indicate the imbalance of copy484

numbers between the two alleles. Next, CalicoST finds allele-specific integer copy numbers for each copy485
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number state that best explain the inferred latent RDR and BAF (Fig 6 step 4, Section S6). Finally, Cali-486

coST reconstructs a tumor phylogeography by inferring a phylogeny using the inferred LOH events and487

projecting to space.488

In the sections below we provide further details for steps 3 and 5 of CalicoST. Section 4.2 describes the489

objective function of inferring allele-specific CNAs. Section 4.3 explains the underlying probabilistic model490

of the observed counts. Section 4.4, 4.5, and 4.6 describe the solution of the allele-specific CNA inference491

objective function. Section 4.7 explains the phylogeography reconstruction. The remaining subsections492

describe the details of analyses on HTAN (WashU cohort) and the prostate cancer samples.493

4.2 Copy number aberrations (CNAs) and clone inference problem494

Given the aggregated transcript counts X “ rxg,ns, phased B allele counts Y “ ryg,ns, and total allele495

countsD “ rdg,ns across n “ 1, . . . , N spots and g “ 1, . . . , G genomic segments, CalicoST finds a clone496

label ℓ P t1, . . . ,MuN to indicate one of the M clones each spot belongs to, and two allele-specific copy497

number matrices for each clone for each segment, A “ rag,ms of A allele copies, and B “ rbg,ms of B498

allele copies.499

CalicoST formulates a maximum likelihood problem to infer ℓ,A andB. CalicoST also uses the following500

quantities in the problem: the normalized transcript counts in normal cells λ “ rλgs P RG (
řG

g“1
λg “ 1),501

and the spatial coordinates S P RNˆ2. CalicoST optionally takes in the alignment W across slices when502

jointly identifying clones and CNAs across multiple SRT slices, and the tumor count proportion θ “ rθns P503

r0, 1sN for each spot n. The overall likelihood objective of CalicoST is:504

CNA and clone inference problem. Given SRT data pX,Y,D,Sq, optionally pθ,W q, and a given the505

numberM of clones, find clone labels ℓ and integer allele-specific copy numbersA andB that maximize the506

log-likelihood of the data:507

argmax
ℓPt1,...,MuN

A,BPZGˆM

PpX,Y | ℓ;A,B,λ,D, pθq, pW qqPpℓ;Sq. (1)

Solving this problem with integer-valued A and B is challenging. Notably, the probabilistic model of X508

involves fractional values derived from all values inA andB, as detailed in the following section. Previous509

work on copy number inference [4, 28, 36, 48] usually transform the integer copy numbers to a discrete510

set of real-valued latent parameters: read depth ratio (RDR) µ and B allele frequency (BAF) p. We use the511

same parameter transformation and split the problem into step 3 to infer clone labels and the latent RDR512

and BAF parameters and step 4 to infer A,B from the estimated RDR and BAF parameters.513

Allele-specific copy numbers can only take values from a finite set of sizeK , which we call the copy number514

states. Accordingly, the latent RDR and BAF also haveK unique values. We introduce a categorical variable515

Z “ rzg,ms P t1, . . . ,KuGˆM to indicate which of the K copy number states each genome segment in516

each clone takes. We infer K RDR parameters µ “ rµks P RK , K BAF parameters p “ rpks P RK , state517

indicator Z, and clone labels ℓ by:518

Copy number state and clone inference problem. Given SRT data pS,X,Y,Dq, optionally pθ,W q,519

and a given the numberM of clones, find clone labels ℓ, copy number states Z, latent RDR µ and BAF p that520

maximize the log-likelihood of the data:521

argmax
ℓPt1,...,MuN

µ,pPRK

ZPt1,...,KuGˆM

PpX,Y | ℓ,Z;µ,p,λ,D, pθq, pW qqPpZqPpℓ;Sq. (2)
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We model the correlation of copy number states along the genome by specifying PpZq as a Markov chain,522

and the correlation of cancer clones in space by specifying Ppℓq as a Markov Random Field. Overall, the523

likelihood (2) combines a Hidden Markov Model of copy number states with a Hiddem Markov Random524

Field of cancer clones. In the notation of probabilistic models, we separate the conditional random variables525

from the parameters and constants by a semicolon. So ℓ andZ are random variables in the above equation,526

and µ,p,D,θ and W are parameters or constants. We also put the optional input data in parentheses.527

4.3 Copy number probabilistic model528

Copy number aberrations affect X and Y in the following ways: increasing total copy number leads to529

increased gene expression and hence higher values in the corresponding entries inX; increase or decrease530

of copy number of one allele leads to imbalanced read counts between the two alleles and hence the ratio531

betweenY andD is biased away from 0.5 at corresponding entries. Considering that spatial spots contain532

a mixture of tumor and normal cells, the degree of increased gene expression or imbalanced alleles de-533

pends on the proportion of reads coming from tumor (or normal). We derive the probabilistic model when534

assuming each spot contains a homogeneous tumor clone in the following of this section, and extend to535

the case of a tumor-normal mixture in Section S2.536

Let Tn “
řG

g“1
xg,n be the total transcript counts across all genomic bins for the nth spot. Suppose the cells537

in this spot are all from clonem. We assume the copy numbers at each bin g scale the baseline proportion538

of transcript counts λg by
ag,m`bg,m

2
. We model xg,n by a Negative Binomial distribution parameterized539

by Tn,λ,A,B and an additional over-dispersion parameter ϕ:540

xg,n | ℓn “ m „ NB

˜

Tn

λgpag,m ` bg,mq
ř

g λgpag,m ` bg,mq
, ϕ

¸

. (3)

TheNegative Binomial distribution can be viewed as an approximation for the Dirichlet Multinomial distri-541

butionDirMultpTn,αq, whereαg9λg
ag,m`bg,m

2
. TheMultinomial probability parameters are constrained542

to be a simplex, and are more difficult to optimize than a Negative Binomial distribution.543

We model Y using a Beta-binomial distribution given the ratio between B allele copy number and total544

copy numbers at each genomic bin and the total SNP-covering reads D. The Beta distribution prior in545

the Beta-binomial distribution allows large variance than a binomial distribution, thus taking into account546

potential sequencing biases and other unknown factors related to allele imbalance.547

yg,n | ℓn “ m „ BetaBinom

ˆ

Dg,n, τ
bg,m

ag,m ` bg,m
, τ

ag,m

ag,m ` bg,m

˙

. (4)

Themean of the Negative Binomial distribution has a fractional form ofA,B, making a direct optimization548

of integerA andB challenging. We transformA andB into latent RDR µ and BAF p parameters withK549

unique values across copy number states. Suppose the segment g in clone m takes the kth copy number550

state, the corresponding latent RDR and BAF is:551

µk “
ag,m ` bg,m

ř

g λgpag,m ` bg,mq

pk “
bg,m

ag,m ` bg,m
.

(5)

Note that the denominator of µk is a weighted average of total copy numbers along the genome in each552

clone, and technically takes different values in different clones. But under the assumption that differ-553

ent clones share many common CNA events, specifically when they are close in lineage, we assume the554
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denominators are similar across clones and the K unique RDR values µ are shared across clones. This555

transformation (5) is the basis for inferring integer copy numbers (Section S6). Also note that we express556

the probabilistic model for individual spots, but it is generalizable to a pseudobulk of multiple spots.557

Visualization the data: We define observed RDR as
xg,n

Tnλg
and observed BAF as

yg,n
Dg,n

for data visualization.558

Additionally, if the latent RDR and BAF are found to be close to 1 and 0.5, respectively, along the genome559

in a clone, we drop this clone for visualization because it does not contain CNAs detectable to CalicoST560

and likely contains mainly normal cells.561

4.4 Block coordinate ascent optimization of joint likelihood562

The clone labels ℓ and the copy number states and parameters Z,µ,p are interleaved in the probabilistic563

models (3)(4). To make the optimization tractable, we use a block coordinate ascent method to solve for ℓ564

and for µ,p,Z iteratively. Given ℓ, we solve for µ,p,Z under the Hidden Markov Model in Section 4.5;565

given µ,p,Z, we solve for ℓ under the Hidden Markov Random Field in Section 4.6.566

4.5 Hidden Markov Model (HMM) to infer copy number states567

Given clone labels ℓ, we optimize the following objective for Z,µ, and p:568

argmax
µ,pPRK

ZPt1,...,KuGˆM

PpX,Y | Z;µ,p, ℓ,λ,D, pθq, pW qqPpZq

“ argmax
µ,pPRK

ZPt1,...,KuGˆM

M
ź

m“1

ˆ

ź

n:ℓn“m

PpX¨,n,Y¨,n | Z¨,m;µ,p,λ,D¨,n, pθnqq

˙ (6)

With an abuse of notation, we use ℓ to denote the values that the random variable of clone label takes,569

rather than the random variable itself.570

Given that CNAs affect large contiguous regions in the genome, adjacent genomic bins tend to have the
same copy number state. We model the copy number states Z¨,m using a Markov model for each clone m
with equal values for the start probability and inter-state transition probabilities:

PpZ¨,mq “ Ppz1,mq
G

ź

g“2

Ppzg,m | zg´1,mq (7)

Ppz1,mq “ p
1

K
, . . . ,

1

K
q (8)

Ppzg,m | zg´1,mq “

$

&

%

t pzg,m “ zg´1,mq

1 ´ t

K ´ 1
pzg,m ‰ zg´1,mq

(9)

where the parameter t is a user-defined parameter of self-transition probablity. The objective (6) is a571

hidden Markov Model (HMM) under this prior distribution of PpZ¨,mq. While the transition probability572

t can be inferred during HMM inference, X and Y tend to have large variances in SRT data; thus, the573

estimated t tends to favor a high probability of inter-state transition and disagrees with CNA event sizes574

and frequencies in reality. We use t “ 1´ 10´5 by default. We use the Baum-Welch algorithm to estimate575

RDR µ and BAF p parameters.576

While theMLE estimate ofZ in (6) can be solved by Viterbi algorithm, we instead compute the full posterior
distribution of zg,m given by the forward-backward algorithm, which marginalizes zg,m over all possible
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copy number states of other segments.

ẑg,m “ argmax
zg,m

Ppzg,m | X¨,m,Y¨,mq

In practice, the counts of individual spots are still sparse and the HMM likelihood optimization may fall
into local maxima. We showed that the likelihood of aggregated counts across spots within each clone is
only different from that of individual spots by a constant, if dropping the over-dispersion parameters in
the probabilistic model (Section S9). But the aggregated counts are much less sparse and suffer less from
the local maxima, therefore we optimize the following likelihood function.

argmax
µ,pPRK

M
ź

m“1

ˆ

ÿ

Z¨,m

Pp
ÿ

n:ℓn“m

X¨,n,
ÿ

n:ℓn“m

Y¨,n | Z¨,m;µ,p,λ,
ÿ

n:ℓn“m

D¨,n, pθnq, pW qqPpZ¨,mq

˙

.

4.6 Leveraging spatial coherence for inferring clone labels by Hidden Markov577

Random Field578

Given an estimated RDR µ and BAF p and the most probable values of Z, we optimize the following579

objective over clone labels ℓ580

argmax
ℓPt1,...,MuN

PpX,Y | ℓ;Z,µ,p,λ,D, pθq, pW qqPpℓ;Sq

“ argmax
ℓPt1,...,MuN

ˆ

ź

n

PpX¨,n,Y¨,n | ℓn;Z¨,n,µ,p,λ,D, pθq, pW qq

˙

Ppℓ;Sq
(10)

We assume clones are spatially coherent and impose a Potts model [49] as the prior distribution for Ppℓ;Sq.
Let E “ ren,n1s P RNˆN

ě0
be the weighted spatial adjacency matrix, which combines intra-slice adjacency

and inter-slice alignment W . Let αm be the proportion of spots in clone m and let β be the strength of
spatial coherence. Then

logPpℓ;Sq9
N
ÿ

n“1

M
ÿ

m“1

αm✶rℓn “ ms ` β
ÿ

1ďnăn1ďN

en,n1✶rℓn “ ℓn1s.

Note that the weighted adjacency matrixE contains both within-slice spatial adjacency and the alignment581

W across slices if it is available. The objective (10) is a hidden Markov Random Field (HMRF) and we use582

iterated conditional modes [50] for optimizing ℓ.583

Notice that we obtain the full posterior probability of Ppzg,m | X¨,m,Y¨,mq via forward-backward algo-
rithm, and accordingly we give the option in CalicoST to leverage the full posterior probability. Denote
the full posterior probability QpZ¨,mq “

ś

g Ppzg,m | X¨,m,Y¨,mq, CalicoST can alternatively solve the
following objective function that uses QpZ¨,mq:

argmax
ℓPt1,...,MuN

ˆ N
ź

n“1

PpX¨,n,Y¨,n | ℓn;λ,D¨,n, θn,W,µ,pq

˙

Ppℓ;Sq

“ argmax
ℓPt1,...,MuN

N
ź

n“1

M
ź

m“1

ˆ

ÿ

Z¨,m

PpX¨,n,Y¨,n | Z¨,m;λ,D¨,n, θn,W,µ,pqQpZ¨,mq

˙

✶rℓn“ms

Ppℓ;Sq.
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4.7 Reconstructing tumor phylogeography584

We use a two-step approach to reconstruct a tumor phylogeography: first inferring a tumor phylogeny585

using the inferred CNAs and then projecting the tumor phylogeny in space and inferring ancestor spatial586

locations.587

We apply Startle [35] to reconstruct a tumor phylogenetic tree among CalicoST-inferred clones using the588

inferred LOH events. Using LOH events in phylogeny reconstruction brings the following advantages:589

firstly, LOH events can be more accurately identified by the imbalanced BAF signals than other CNAs;590

secondly, LOH is irreversible when traversing the phylogenetic tree from the root to each leaf, and thus591

compatible with the state-of-the-art phylogeny reconstruction methods such as Startle. Startle infers a592

phylogeny to describe how the łlabels” of a list of genomic łsites” evolve. The list of łsites” is the refinement593

of genome partitions based on CNAs in our application, and the łlabels” are one of the three states: no594

LOH, LOH of A allele, and LOH of B allele. Startle finds a phylogenetic tree with minimum number of595

LOH events along the edges.596

To infer a phylogeography, we project the leaf nodes (which correspond to inferred clones) to the center
of involved spots in space (denoted by sv for node v), and infer the spatial location of ancestor nodes using
a Gaussian diffusion model. Specifically, we assume the spatial distance between a node v and its parent
ppvq in the phylogenetic tree follows a Gaussian distribution with a variance proportional to the number
of mutations wv,ppvq on the edge.

sv „ N psppvq, wv,ppvqIq

We estimate the ancestor locations in the phylogenetic tree by maximizing the joint probability of spatial
locations of all nodes, tsvuv , under the above Gaussian distribution:

argmax logPptsvuvq “ argmax
ÿ

v

logPpsv | sppvqq

4.8 Running CalicoST on HTAN and prostate cancer samples597

For each HTAN patient, we used CalicoST to infer CNAs and tumor clones jointly across all SRT slices. If598

a patient has multiple slices, we jointly identified germline heterozygous SNPs across all slices before run-599

ning CalicoST to increase the SNP calling sensitivity. We ran CalicoST with the tumor count proportions600

θ that are derived from deconvolving SRT spots using matched and cell-type-annotated snRNA-seq data601

using RCTD [31] for all HTAN patients. Two CRLM patients (HT112C1-T1 and HT225C1) have multiple602

slices processed from a 3D tissue cube. We aligned the adjacent slices using PASTE2 [43] and provided the603

alignment matrixW to CalicoST infer CNAs and tumor clones in 3D space.604

We used CalicoST to infer CNAs and tumor clones jointly across all five 10x Genomics Visium slices of605

the prostate organ. We also jointly identified germline heterozygous SNPs across the slices. Because there606

is no matched single-cell gene expression measurement, we treated all spots as pure in CalicoST. Since607

the slices are more likely to contain distinct clones because of their distant spatial location in the prostate608

organ, we initialized with five clones in CalicoST, which is higher than the default.609

4.9 Evaluating the accuracy of inferred (allele-specific) copy numbers610

We applied three metrics to evaluate the inferred allele-specific integer copy numbers: exact match, pre-
cision, and recall. Given G genome segments, the inferred allele-specific copy numbers pâg, b̂gq at bin g,
and the ground truth allele-specific copy numbers pag, bgq, the exact match is the proportion of genomic
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segments where the inferred allele-specific copy numbers match the ground truth:

1

G

ˆ G
ÿ

g“1

✶râg “ ag and b̂g “ bgs

˙

.

The precision is the proportion of predicted genome segments with CNAs that are supported by the ground
truth, where a change of copy number in either A copy or B copy indicates the existence of CNA:

ř

g ✶râg ‰ 1 or b̂g ‰ 1s ˆ ✶rag ‰ 1 or bg ‰ 1s
ř

g ✶râg ‰ 1 or b̂g ‰ 1s
.

The recall is the proportion of genome segments with CNAs that are predicted:

ř

g ✶râg ‰ 1 or b̂g ‰ 1s ˆ ✶rag ‰ 1 or bg ‰ 1s
ř

g ✶rag ‰ 1 or bg ‰ 1s
.

We extended the exact match to evaluate inferred copy number states (e.g. amplification state, deletion
state) without integer copy numbers. With an abuse of notation, we denote ẑg (zg) as the inferred (ground
truth) copy number states at bin g. The exact match of copy number states is

1

G

ˆ G
ÿ

g“1

✶rẑg “ zgs

˙

.

Numbat predicts ẑg to be one of six copy number states: imbalanced amplification (amp), balanced ampli-611

fication (bamp), balanced copy number neutral (neu), copy number neutral loss of heterozygosity (cnloh),612

imbalanced deletion (del), and balanced deletion (bdel). STARCH predicts ẑg to be one of the three copy613

number states: amplification (amp), neutral (neu), and deletion (del). We converted the allele-specific inte-614

ger copy numbers inferred by CalicoST or fromWES to these states and compared the exact match values615

with the other methods.616

4.10 Evaluating spatial coherence of tumor clones by z score of joincount statistics617

We use joincount statistics [51, Chapter 3] to evaluate the spatial coherence of each inferred cancer clone.
Joincount statistics describes the spatial autocorrelation of binary data. Given a weighted graph G “

pV,E,W q where W is the weighted adjacency matrix, and let ℓ P t0, 1u|V | be the vertex label, the join-
count statistics is the number of edges for which the two endpoints have labels ta, bu:

Jab “
ÿ

e“pu,vqPE

Wu,v✶tℓu,ℓvu“ta,bu.

The z-score of joincount describes whether the number of edges is larger or smaller than the expectation
assuming labels of the endpoints of each edge are i.i.d. samples from a Bernoulli distribution.

z-scorepJabq “
J ´ p

ř

u1,v1 Wu1,v1qEp✶tℓu,ℓvu“ta,buq
b

ř

u1,v1 W 2

u1,v1Stdp✶tℓu,ℓvu“ta,buq

The higher the z-score of Jab for a “ b, the more spatially coherent the data is. Let Pa and Pb be the
probability of a and b (a, b P t0, 1u) in the Bernoulli distribution. The expectation and standard deviation
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is given by

Ep✶tℓu,ℓvu“ta,buq “

#

PaPb pa “ bq

2PaPb pa ‰ bq

Stdp✶tℓu,ℓvu“ta,buq “

#a

p1 ´ PaPbqpPaPbq pa “ bq
a

p1 ´ 2PaPbqp2PaPbq pa ‰ bq

When there are multiple tumor clones, we compute the z-score of joincount, z-scorepJ11q, for each clone618

by binarizing clone labels into whether each spot is in the given clone.619

Data Availability620

Sequencing data are part of HumanTumorAtlas Network (HTAN) dbGaP StudyAccession: phs002371.v3.p1621

(https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study id=phs002371.v3.p1), whichwill be re-622

leased after publication. Sequencing data of the prostate cancer was obtained from the European Genome-623

phenome Archive (EGA) with accession EGAS00001006124.624

Code Availability625

The code is publicly available at https://github.com/raphael-group/CalicoST under BSD 3-Clause license.626
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