

1 **Social ageing can protect against infectious disease in a group-living primate**

2
3 Erin R. Siracusa^{a*}, Melissa A. Pavez-Fox^b, Josué E. Negron-Del Valle^c, Daniel Phillips^c, Michael
4 L. Platt^{d,e,f}, Noah Snyder-Mackler^{c,g,h}, James P. Highamⁱ, Lauren J. N. Brent^a and Matthew J.
5 Silk^{j*}

6
7 **Affiliations:**

8 ^aSchool of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter,
9 UK

10 ^bDepartment of Psychology and Neuroscience, University of St Andrews, UK

11 ^cCenter for Evolution and Medicine, Arizona State University, Arizona, USA

12 ^dDepartment of Neuroscience, University of Pennsylvania, PA, USA

13 ^eDepartment of Psychology, University of Pennsylvania, PA, USA

14 ^fDepartment of Marketing, University of Pennsylvania, PA, USA

15 ^gSchool of Life Sciences, Arizona State University, Arizona, USA

16 ^hSchool for Human Evolution and Social Change, Arizona State University, Arizona, USA

17 ⁱDepartment of Anthropology, New York University, New York, USA

18 ^jInstitute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh,
19 Edinburgh, United Kingdom

20
21 *corresponding author; email: erinsiracusa@gmail.com, matthewsilk@outlook.com

22
23 **Abstract**

24 The benefits of social living are well established, but sociality also comes with costs, including
25 infectious disease risk. This cost-benefit ratio of sociality is expected to change across
26 individuals' lifespans, which may drive changes in social behaviour with age. To explore this
27 idea, we combine data from a group-living primate for which social ageing has been described
28 with epidemiological models to show that having lower social connectedness when older can
29 protect against the costs of a hypothetical, directly transmitted endemic pathogen. Assuming no
30 age differences in epidemiological characteristics (susceptibility to, severity, and duration of
31 infection), older individuals suffered lower infection costs, which was explained largely because
32 they were less connected in their social networks than younger individuals. This benefit of
33 'social ageing' depended on epidemiological characteristics and was greatest when infection
34 severity increased with age. When infection duration increased with age, social ageing was
35 beneficial only when pathogen transmissibility was low. Older individuals benefited most from
36 having a lower frequency of interactions (strength) and network embeddedness (closeness) and

37 benefited less from having fewer social partners (degree). Our study provides a first examination
38 of the epidemiology of social ageing, demonstrating the potential for pathogens to influence
39 evolutionary dynamics of social ageing in natural populations.

40

41 **Key words:** ageing, disease ecology, epidemiology, sociality, senescence, network modeling

42

43 **Introduction**

44 Social interactions have an important influence on individual fitness through their effects on
45 survival [1] and reproductive success [2–5]. However, sociality is not exclusively beneficial but
46 comes with important costs ranging from competition for food, mates, and other resources [6–8]
47 to increased risk of pathogen and parasite transmission [9,10]. Understanding how these costs
48 and benefits are balanced is central to understanding the evolution of social living [11].

49 Recent research indicates that social interactions and relationships are not stable over
50 time but differ across the lifespan [12–15]. There are multiple hypotheses for why individuals
51 might change their social behaviour as they get older, including physical and cognitive declines
52 [16,17], demographic changes and shifting kinship dynamics [18,19], or enhanced skill and
53 experience with age [20]. Fundamentally, the costs and benefits of interacting with others may
54 change across the lifespan [12], leading individuals to actively adjust their social behaviour in
55 response. Recent work, both in humans and non-human animals, suggests older individuals tend
56 to have fewer affiliative social partners than their younger counterparts [13,15,21–23], spend less
57 time in affiliative interactions [13,22–24], and to be less well embedded in the wider social
58 network [23,25,26]. There is evidence to suggest that in some species, at least, this is the result of
59 older individuals being more selective with whom they interact (i.e. ‘social selectivity’
60 [21,27,28]). This evidence is consistent with the hypothesis that age-based reductions in social
61 connectedness (i.e. ‘social ageing’) are not exclusively the by-product of declines in bodily
62 systems but instead reflect beneficial behavioral changes that ameliorate senescence-associated
63 costs [21].

64 One major cost of socialising, which has the potential to be exacerbated in old age, is the
65 increased risk and costs of contracting infectious diseases [29], with individuals that interact
66 more with others at greater risk of infection [30,31]. Therefore, one appealing hypothesis is that,
67 because immunosenescence often means that individuals are less able to fight infections as they

68 age and so suffer greater morbidity to infectious diseases [32–34], age-based reductions in
69 individual social network connectedness can help mitigate disease costs in older individuals [35].
70 By being socially selective (i.e., reducing their number of social partners while socialising for
71 longer with their closest associates [21,27]), older individuals may be able to reduce their risk of
72 infection while maintaining the benefits of social relationships [36,37]. However, we currently
73 lack evidence that these declines in sociality with age (hereafter referred to as social ageing) are
74 sufficient to protect an individual from infectious disease.

75 One challenge with demonstrating the disease-associated consequences of social ageing
76 is the fact that an individual's social interactions and relationships are embedded in a wider
77 group or population wide social network. These social networks are complex, emergent
78 structures that depend in a non-linear way on the behaviour of every individual [38]. As a result,
79 it can be difficult to predict both the consequences of individual behaviour change on the group-
80 level social structure and the knock-on implications for pathogen spread across the network.
81 While connectivity (or social network density) is an important component of the vulnerability of
82 a group or population to an infectious disease outbreak [10], other aspects of social network
83 structure such as the transitivity of social connections (the tendency of an individual's
84 connections to also be connected to each other) and modularity (division of the network into a set
85 of social communities) can also shape how pathogens spread [9]. Consequently, testing whether
86 being more socially selective with age can protect older individuals from infectious disease costs
87 requires the use of epidemiological network models [39,40].

88 Rhesus macaques (*Macaca mulatta*) offer an excellent system in which to test this
89 question. They live in matrilineal multi-male multi-female social groups [41] where the social
90 relationships that individuals form have important effects on their fitness [8,20,42,43]. A long-
91 term study of a free-ranging population of rhesus macaques on Cayo Santiago Island, Puerto
92 Rico, has generated a unique long-term dataset encompassing multiple social groups that has
93 provided important insights into primate social behaviour [44]. Recent research investigating
94 patterns of social ageing in female rhesus macaques has demonstrated that as females get older
95 they reduce their number of social connections and spend more time socializing with important
96 partners (such as kin and partners with strong and stable connections; [21]). These changes
97 resulted from females approaching fewer partners as they got older, while continuing to spend
98 the same amount of time socializing, and were not driven by partners dying or avoiding them.

99 This study provides one of the few examples in non-human animals where active reductions in
100 sociality with age have been distinguished from more passive processes such as declines in social
101 engagement driven by the loss of social partners, declining social motivation, or impaired
102 physical ability to engage [21]. The results suggest that age-based reductions in an individual's
103 number of social partners might enable individuals to cope with the physiological alterations or
104 limitations that come with age, such as immunosenescence. Female macaques also show changes
105 in their indirect connectedness (connections to partners of their social partners) with age, with
106 measures of both betweenness (bridging capacity) and closeness (ability to reach others or be
107 reached in the network) declining as females get older [25]. In addition to showing clear patterns
108 of social ageing, rhesus macaques are a powerful system to explore the intersection of social
109 ageing and disease risk because they are popular biomedical models of human health and ageing
110 [45–47] and are frequently used as a model species in studies of infection biology, thereby
111 providing information on the types of pathogen they are susceptible to [45] and how costs of
112 infection vary with age [48–51]. The fact that the observed patterns of social ageing in macaques
113 closely resemble those observed in human populations [21], combined with the similarity
114 between macaques and humans in patterns of immunosenescence [45,47,52] and susceptibility to
115 pathogens (such as SARS-CoV-2 [53,54]) makes this a uniquely relevant system for
116 understanding the potential implications of age-based changes in sociality for disease risk in
117 humans.

118 Here we combined epidemiological network models of pathogen spread with empirical
119 data on social ageing from a population of free-ranging rhesus macaques. Using susceptible-
120 infected-susceptible (SIS) models of the spread of a hypothetical directly-transmitted pathogen
121 (e.g. respiratory virus) across 23 real-world rhesus macaque social networks, we hypothesised
122 that lower social connectivity of older individuals [21] would protect them from accumulated
123 infection costs of an endemic (constantly present) pathogen. Specifically, we quantified how age-
124 based variation in three measures of social centrality - degree (number of partners), strength
125 (amount of time spent socializing) and closeness (capacity to reach or be reached in the network)
126 influenced infection costs with age. Our choice of social metrics was based on prior knowledge
127 that individuals in this system show within-individual declines in both degree and closeness with
128 age, but not in strength [21,25]. We explored the effects of strength given it is a measure of
129 social connectivity that is well-known to have important consequences for disease transmission

130 [30]. We assessed how an individual's accumulated costs of infection in each simulation were
131 influenced by their age and the aforementioned network measures of social connection.

132 We predicted that, (1) across all measures of social centrality, the cost of infection would
133 decrease with reduced social connectedness in an age-dependent manner, such that for older
134 individuals it would be much less costly to have lower connectedness in the social network
135 compared with younger individuals where the benefits of having lower connectedness would be
136 more moderate. Next, we predicted that (2) most of the decrease in infection cost associated with
137 social ageing would be driven by older individuals having lower degree and closeness since
138 strength was not expected to change with age in this population. We further predicted that (3)
139 social ageing would provide the greatest benefit, in terms of reducing infection cost, when
140 immunosenescence, and therefore infection cost with age, was greatest. To assess this we
141 explored the extent to which these social variables influenced infection cost across a range of
142 pathogen transmissibilities and under conditions where we varied different components of
143 immunosenescence, including how susceptibility to (likelihood of acquiring infection), as well as
144 severity (per timestep cost of infection) and duration of infection changed with age.

145 For the sake of clarity and brevity, throughout the manuscript we refer to this reduction
146 in infection cost that is the result of older individuals having lower social connectivity as the
147 'protective effect of social ageing' although our analyses are at the population level rather than
148 being exclusively within-individual, and this interpretation therefore warrants caution. However,
149 given that our previous results [21,25] have shown that age-based differences in sociality are
150 driven by within-individual changes rather than between individual differences (at least for
151 degree and closeness), it is appropriate to assume that population level trends are the result of
152 within-individual processes [55,56]. Our models are the first to explicitly test whether reduced
153 social connectivity among older individuals is sufficient to buffer against infectious disease costs
154 in a free-ranging population.

155

156 **Methods**

157 **Study System**

158 We studied a population of rhesus macaques on the island of Cayo Santiago off the southeast
159 coast of Puerto Rico. This population was first introduced to the island in 1938 from India and
160 currently consists of ~ 1800 individuals living in 12 mixed-sex social groups. The population is

161 maintained by the Caribbean Primate Research Center, which is responsible for monitoring the
162 population daily and collecting data on births, deaths, and social group membership. The animals
163 are food supplemented and provided *ad libitum* access to fresh water. The island is predator free
164 and there is no veterinary intervention for sick or wounded animals, meaning that the majority of
165 deaths on the island are from natural causes such as illness and injury [8].

166 For this study we focused on adult female rhesus macaques (aged 6 years and older) from
167 six social groups that have been studied intensively between 2010 and 2022 and therefore for
168 which we had detailed behavioural data to build social networks. In total we used behavioural
169 data collected from twenty-three different group years (group F 2010-2017, group HH 2014 &
170 2016, group KK 2013, 2015 & 2017, group R 2015 & 2016, group S 2011 & 2019, group V
171 2015-2017, 2019, 2021-2022). For these analyses we excluded data collected in 2018 and 2020
172 because Hurricane Maria and the COVID-19 pandemic, respectively, precluded use of our
173 typical protocol to collect behavioural data. In total this resulted in 1176 macaque-years of data
174 from 410 unique females whose ages ranged from 6-28 years old (mean = 11.2; see Fig. S1). We
175 collected behavioural data between 07:30 - 14:00, which are the working hours of the field
176 station. Behavioural data were collected using 10-min (20 group years) or 5-min (3 group years)
177 focal animal samples, where all behaviours were recorded continuously. We stratified sampling
178 to ensure balanced data collection on individuals throughout the day and over the course of the
179 year. Given that previous research in this system has shown that there are clear age-based
180 changes in grooming associations among female macaques [21,25], in addition to the fact that
181 behaviours with prolonged contact (such as grooming) are known to be highly relevant for
182 parasite transmission [57–62], we focused specifically on grooming interactions to build our
183 social networks (see below). During focal observations, we recorded the duration of the
184 grooming bout as well as the identity of the monkeys and the direction of the grooming
185 behaviour (give or receive). Grooming bouts had to be at least 5 seconds long to be recorded and
186 a new bout of grooming was recorded if the identity of the monkeys or direction of grooming
187 changed or there was at least a 15 second pause in grooming behaviour. These thresholds are
188 based on long-term expert knowledge of the study system and have been used since 2010 in the
189 collection of grooming interactions. We focused our study on adult females because the age-
190 based changes in sociality previously demonstrated in this system were for female networks that
191 excluded interactions with males and juveniles or subadults of either sex [21,25]. Focusing on

192 female-female interactions also allowed us to isolate how changes in cooperative interactions
193 with age influence disease transmission outside of age-based changes in socio-sexual behaviour.
194 This is because females' interactions with males are likely to capture both cooperative
195 interactions as well as reproductive behaviours, making it difficult to parse age-based changes in
196 cooperation from age-based changes in reproduction.

197

198 **Social network construction**

199 We constructed grooming networks for 23 group years (6 groups across 12 years; mean = 3.8,
200 range = 2-8 years per group). In these networks, nodes represent individuals and edges represent
201 the undirected rate of grooming between a pair of individuals (number of grooming bouts/total
202 number of foci of both individuals). Although we have data on both grooming given and
203 received, here grooming serves as a proxy for time spent in close contact. We expected that the
204 total amount of time and number of partners with which an individual spent time in close contact
205 was likely to be most relevant for infection risk from a hypothetical directly-transmissible
206 pathogen, regardless of directionality. Because our social networks were constructed from
207 observational data, which represent a sample of the interactions between individuals, we used the
208 R package *bisonR* [63] to estimate uncertainty in the quantified edge weights based on sampling
209 effort. Explicitly incorporating uncertainty around the observed social network allows us to
210 account for how well the estimated network represents the true underlying latent network and
211 therefore confirm the robustness of our modelling results to sampling effects. For example,
212 typical network approaches would assign an edge weight of 0.5 both for a dyad that had been
213 seen together once and apart once as well for a dyad that had been seen together 100 times and
214 apart 100 times, despite the fact that our certainty about the edge weight of the second dyad is
215 much greater than the first [64]. By generating a distribution of possible networks from the
216 observed data rather than a single network, *BISoN* (Bayesian Inference of Social Networks)
217 allows us to account for this uncertainty, which can drastically affect the performance of
218 statistical models [64]. Specifically, for each group year we fitted a Bayesian 'edge model' with
219 a count conjugate prior to our observed network data, which returns a posterior distribution of
220 edge weights for each dyad in our network rather than a point estimate (for more information see
221 [64,65]). We extracted 1000 draws from this posterior distribution and used these draws as the
222 social networks over which we modelled pathogen spread. From each *BISoN* network we

223 calculated three different social centrality measures for each individual: strength (weighted sum
224 of an individual's social connections); closeness (the inverse of the mean weighted path length
225 from each individual to all others in the network); and degree centrality (the number of social
226 connections each individual has). All three measures were chosen because they have well-
227 established and important consequences for pathogen transmission [30,66–68], and degree and
228 closeness are known to decline with age in this system [25,69]. BISoN model outputs include
229 only non-zero edge weights because even though a particular dyad may never have been seen
230 interacting, BISoN naturally accounts for the possibility that those individuals may have
231 interacted in a future sample and so computes uncertainty for all edge weights [64]. Therefore, in
232 order to calculate degree centrality, we set a threshold at which individuals were deemed to have
233 a social connection or not. As females age, they lose their weakest social connections first. To
234 best capture this change, and ensure that our measure of degree was as independent of strength as
235 possible, we set our threshold using the minimum empirical observed non-zero edge weight for
236 each group-year (mean = 0.017; range = 0.008 - 0.027). We therefore calculated degree centrality
237 by counting all edges in each BISoN network that were equal to or greater than this minimum
238 edge weight in the observed network for each group-year.

239

240 **Epidemiological model**

241 Overview

242 We modelled SIS (susceptible-infected-susceptible) epidemiological dynamics to simulate the
243 spread of a hypothetical, directly-transmitted endemic pathogen by close contact through our
244 social networks (e.g., a respiratory virus). In our modelling framework individuals could either
245 be susceptible (S) or infected (I), thus we assumed that individuals retained no immunity from
246 previous infections. In a baseline ('control') version of the model, the probability of infection
247 depended on interaction strength in the grooming network (parameter: si ; more grooming =
248 higher transmission probability), individuals were then infected for 5 time-steps (parameter: di)
249 and accumulated 1 unit cost per time step that they were infected (i.e., baseline per time step cost
250 - parameter: ci). While our per time step cost value was arbitrary, we were interested in the
251 relative differences between individuals rather than the absolute values of this parameter as our
252 goal was to compare infection cost between individuals of different ages and social centralities.
253 As a result, the exact value of this cost parameter was not important. In total, the model ran for

254 500 time-steps allowing individuals to be infected multiple times within each simulation. We
255 quantified their total cost of infection during a simulation. We then ran additional iterations of
256 the model where we allowed for immunosenescence in three different individual characteristics
257 (infection susceptibility, infection duration and infection severity) based on previous evidence
258 showing immune dysregulation and delayed response to infection in older rhesus macaques
259 ([49,52,70]; see also Supplementary Methods). To examine how immunosenescence may impact
260 how changes in social centrality with age influence accumulated disease costs, we included
261 parameters that allowed us to increase susceptibility to infection (likelihood of acquiring
262 infection; parameter: ai), duration of infection (parameter: adi) and severity of infection (per
263 timestep cost of infection; parameter: aci) linearly with age. We simulated pathogen spread
264 across different combinations of these model parameterisations to provide data linking infection
265 cost to age and social network centrality.

266

267 Model details

268 We used a stochastic, discrete time implementation of the SIS model. Individuals could either be
269 susceptible (S) or infected (I). (The model code also includes a recovered state (R) but we set its
270 duration to 0 for this analysis so that individuals transitioned immediately from infected back to
271 susceptible). Individuals stayed in a susceptible state until they interacted with an infected
272 individual. For each interaction with an infected individual, a susceptible individual had a
273 probability of transitioning into the infected state of

274

$$P(tr)_{j,i} = (si + ai_i) \times A_{i,j}$$

275

276 where $P(tr)_{j,i}$ is the probability of transmission from individual j to individual i , si is a baseline
277 transmission probability, ai_i is the age effect on susceptibility to infection and $A_{i,j}$ is the
278 (undirected) edge weight between i and j in the grooming network. The ai_i term allowed us to
279 either assume that the probability of infection was homogeneous for every individual (when set
280 to a constant value) or that the probability of infection changed approximately linearly with age
281 so that immunosenescent individuals were more susceptible to infection. $A_{i,j}$ allowed the
282 probability of transmission to depend on how often pairs of animals groomed one another, with
283 this relationship assumed to be linear.

284

285 Once an individual is infected, the cost of each infection was calculated as

286

$$Cost = (di + adi_i) \times (ci + aci_i)$$

287

288 where di is the baseline duration of infection (set at 5 time steps for this analysis) before
289 returning to the susceptible (S) state, adi is the age effect on infection duration that allows a
290 linear increase in infection duration with age (to a maximum of 15 time steps), ci is the baseline
291 per time step cost of infection (set at 1 for this analysis) and aci is the age effect on infection
292 severity that allows a linear increase in infection severity per time step with age (to a maximum
293 of 3).

294

295 Model Parameterisation

296 We ran in total 24 combinations of parameters (24 models, Table S1). In all versions of the
297 model, we fixed the parameters $di = 5$ (baseline infection duration; considered representative of
298 a typical respiratory infection if a time step is considered to be a day [48,71]; see also
299 Supplementary Methods), $dr = 0$ (baseline duration of recovered period; set to zero to model
300 SIS epidemiological dynamics), $ci = 1$ (arbitrary). We also used a correction such that
301 $A(model)_{i,j} = A(data)_{i,j}^{0.7}$ to facilitate the calculation of the transmission probability per edge
302 by slightly increasing the importance of weak connections for transmission dynamics. We varied
303 the parameters si (baseline transmission probability), ai (age-based susceptibility to infection),
304 adi (age-based duration of infection) and aci (age-based severity of infection).

305 • We varied si to have low (0.45), medium (0.6) and high (0.75) transmissibility values.
306 These values were selected so that equilibrium pathogen prevalence equated to a basic
307 reproductive ratio (R_0) of approximately 1-1.5, 1.5-2 and 2-3 respectively (the R_0 varied
308 considerably between groups). R_0 was estimated using the approximation $R_0 = 1/(1 -$
309 prevalence), where prevalence corresponded to the proportion of infected individuals in a
310 group.
311 • We varied ai , adi and aci to either be independent of age (no age effect) or increase
312 linearly with age (age effect). adi had a maximum value of 10 so that the duration of
313 infection was between 5 (for the youngest) and 15 (for the oldest) time steps, and aci had

314 a maximum value of 2 so that the per time step cost of infection was between 1 (for the
315 youngest) and 3 (for the oldest). All values of adi were rounded to the nearest whole
316 number.

317

318 Simulations contained all possible combinations of ai , adi and aci being ‘on’ (linear age effect)
319 or ‘off’ (no age effect) resulting in 8 possible parameterisations for each transmission
320 probability, and 24 parameter combinations in total (see Table S1).

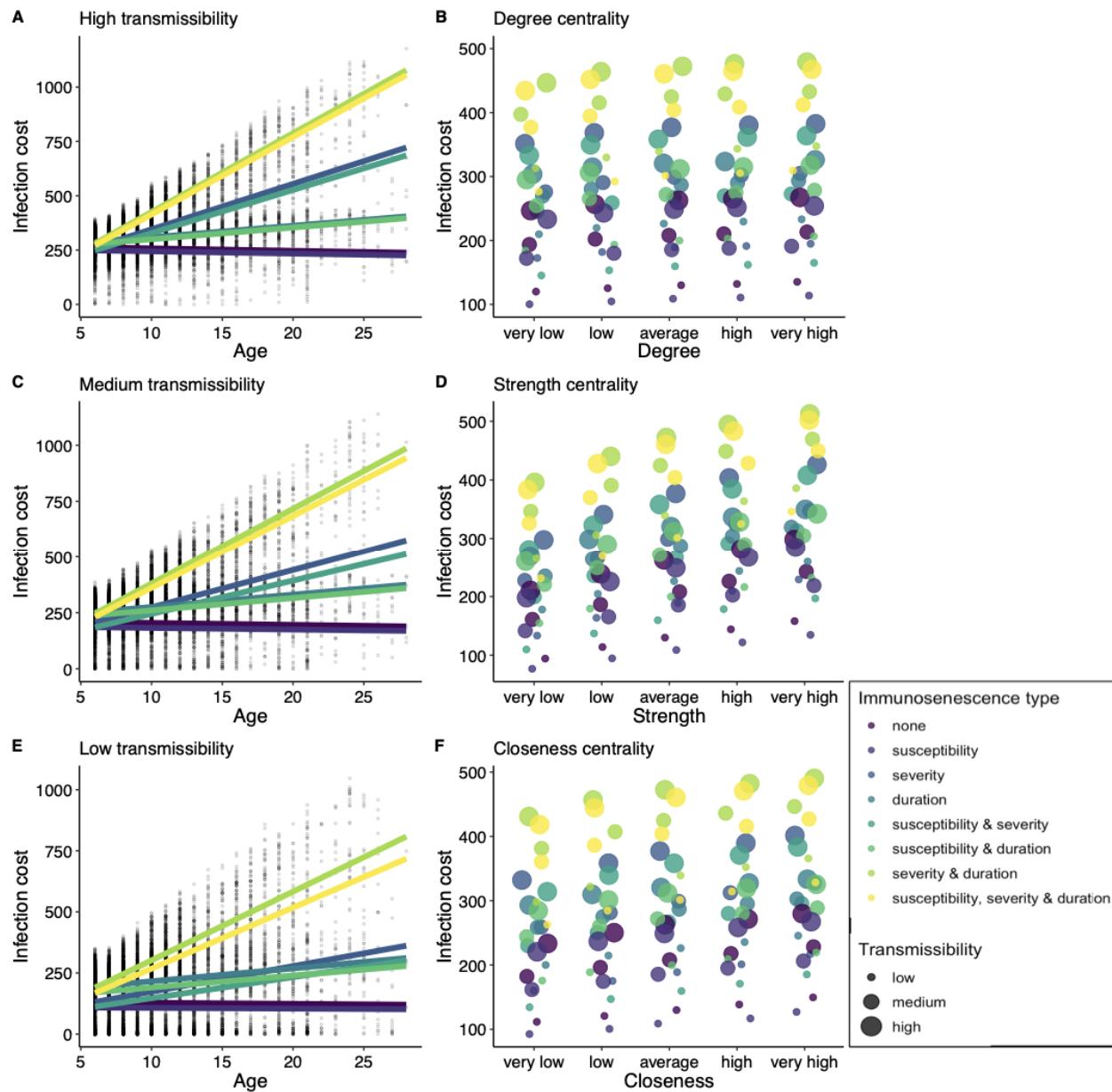
321

322 Simulations

323 Each simulation run consisted of applying the epidemiological model to a given draw from a
324 BISoN generated posterior (a weighted network) for 500 time steps. We applied each
325 parametrisation of the model to each network that we generated - 1000 BISoN posterior
326 networks from each of the 23 group-years (23,000 networks x 24 parameterisations) - resulting
327 in 552,000 simulation runs in total. From each simulation run we calculated the total cost of
328 infection across the whole time period for each individual. Total individual infection costs were
329 collated together with individual data and measures of social network centrality (*see Social*
330 *Network Construction*) for subsequent analyses.

331

332 **Analysis**


333 We used linear mixed effects models (Gaussian error distribution) to summarise the outputs from
334 our epidemiological models (nb. we focus on effect size estimates rather than p-values here as
335 our aim is description rather than inference). We fitted three different linear mixed effects
336 models to understand the relationship between age and sociality on infection cost. For all models
337 we used the same random effect structure, fitting group-year, individual ID and combined group-
338 year and simulation number as random intercepts. We first fitted a model with age as the only
339 continuous fixed effect (model 1) to assess how infection cost changed with age under different
340 model parameterisations (i.e., combinations of transmission probabilities and
341 immunosenescence). We then fitted a model with age, degree, strength, and closeness as fixed
342 effects (model 2) to assess whether the effect of age on infection cost was in part being buffered
343 by social variation across ages. We standardized (z-scored) these three measures of social
344 centrality within group-year and included them as categorical variables in the model to improve

345 fit. We defined 5 categories for each social centrality measure (degree, strength and closeness) as
346 follows: < -1.5 = very low, -1.5 to -0.5 = low; -0.5 to 0.5 = average; 0.5 to 1.5 = high; >1.5 =
347 very high. The estimate of age in model 1 represents the effect of age on infection cost that
348 incorporates any effects of age-related variation in social centrality measures. The estimate of
349 age in model 2 represents the effect of age that occurs independently of the effects of degree,
350 strength, and closeness, and therefore represents the effect of age on infection cost in the
351 “absence” of social effects. This approach allowed us to calculate the overall protective effect of
352 social ageing on age-based infection cost by subtracting the age estimate in model 2 from the age
353 estimate in model 1. If this difference was negative, it would indicate that age-based infection
354 costs were lower when the social effects were not controlled for, indicating that age-based
355 variation in social centrality buffers the effects of age on infection cost and therefore has a
356 protective effect. Finally, we fitted a linear mixed effects model that included an interaction
357 between age (continuous) and each of the social centrality metrics (categorical) to better
358 understand how each of the different social metrics contributed to this overall protective effect
359 (model 3). Fitting an interaction term with each social metric allowed us to assess how the
360 effects of degree, strength, and closeness on infection cost varied with age.

361 Our first prediction (see Introduction) was that being less socially central at old ages
362 would be more beneficial in terms of reducing infection cost than at young ages. To test this
363 idea, we used the results from model 3 to calculate the reduction in infection cost that resulted
364 from having “average” rather than “high” social centrality when old (18 years old) versus when
365 young (8 years old). We chose these ages for our “young” and “old” categories as age 8 reflects
366 the lower quartile of data and age 18 is the median age of death for females that survive to
367 reproductive age in this population [20,47]. By including all three social metrics in model 3 we
368 could also determine their relative effect on infection risk and therefore assess prediction 2 - that
369 most of the decrease in infection cost associated with social ageing would be driven by older
370 individuals having lower degree and closeness. Finally, by applying models 1-3 across all
371 parameter combinations, we tested prediction 3 - that these protective effects of social ageing
372 would be stronger under conditions where there was greater immunosenescence with age. All
373 analyses were conducted in R version 4.3.1 and modelling was conducted in R version 4.1.1.

374

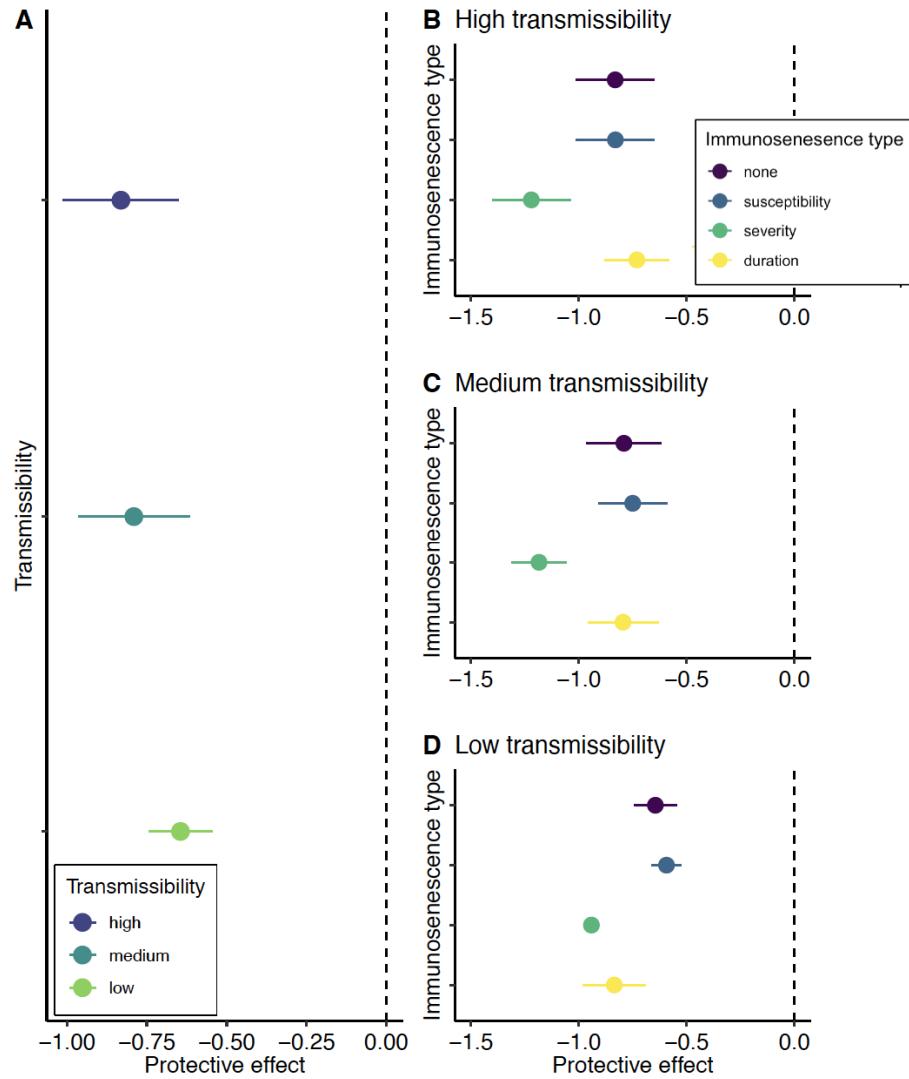
375

376

377 **Figure 1.** Predicted age and social centrality effects on accumulated infectious disease costs in
 378 our simulation results. Effect of age on infection cost at A) high transmissibility, C) medium
 379 transmissibility and E) low transmissibility. Across all transmissibilities, infection costs decrease
 380 slightly with age with no immunosenescence or immunosenescence only in infection
 381 susceptibility, but otherwise increase with age. Points in panel A, C, E represent a random
 382 sample of simulation data. Infection costs are higher for individuals with B) higher degree, D)
 383 higher strength and F) higher closeness. Transmission probability is represented by point size in
 384 B, D, F. In all panels, colour represents the combination of immunosenescent effects included.

385 **Results**

386 **Cost of infection increases with increased social centrality**


387 On average, there were 51 females in each network (range: 19-73 females) and 169
388 grooming bouts per network (range: 33-392 bouts). Average network degree, strength and
389 closeness centrality were 9.60 (range: 5.46 - 14.26), 0.62 (range: 0.40 - 0.88), 0.0008 (range:
390 0.0003 - 0.0025), respectively. All social centrality metrics were weakly to moderately correlated
391 (see Table S2). Each of the three social centrality measures had independent, positive effects on
392 infection cost under all parameter combinations (Fig. 1B,D,F). The effects of strength and
393 closeness on disease cost were particularly strong (Fig. 1D,F), while the effects of degree were
394 more moderate (Fig. 1B). These results confirmed that more socially central individuals suffer
395 greater costs of infection.

396

397 **In the absence of immunosenescence, lower infection cost in old age is mediated through
398 lower social connectedness**

399 Under conditions with no immunosenescence (no change in susceptibility (*ai*), severity
400 (*aci*), or duration (*adi*) of infection with age), age had a negative effect on infection cost at all
401 transmissibilities (high: $\beta = -1.09 \pm 0.25$; med: $\beta = -0.86 \pm 0.23$; low: $\beta = -0.44 \pm 0.17$; Fig.
402 1A,C,E). This means that, for example, at high transmissibility, each year increase in age results
403 in a decrease in 1 cost unit, equating to a reduction of 22 cost units or 4.4 infections between the
404 ages of 6 (our minimum age) and 28 (our maximum age). At the population level, all three
405 sociality measures were negatively correlated with age in our data (degree: $r = -0.11$; strength: r
406 = -0.13 ; closeness: $r = -0.12$; all $p < 0.001$; Fig. S2). When we included these social centrality
407 measures in the model with age (model 2), the age estimate became less negative (high: $\beta = -0.26$
408 ± 0.06 ; med: $\beta = -0.07 \pm 0.05$; low: $\beta = 0.20 \pm 0.07$) compared to the age estimate in a
409 model with just age (model 1). This indicates that most of the variation that was explained by age
410 in model 1, is now explained by sociality in model 2, suggesting that lower social centrality
411 among older individuals is responsible for a substantial part of the reduction in infection cost
412 with age. For example, at high transmissibility, the protective effect of our three measures of
413 social centrality (i.e., the difference between the age estimate in models 1 and 2) was estimated
414 to be -0.83 ($-1.09 - -0.26$), meaning that age-based variation in strength, closeness and degree
415 were expected to account for a reduction in 0.83 cost units per year of age, which translates to a
416 reduction of about 3.7 infections between individuals of the minimum and maximum ages in our

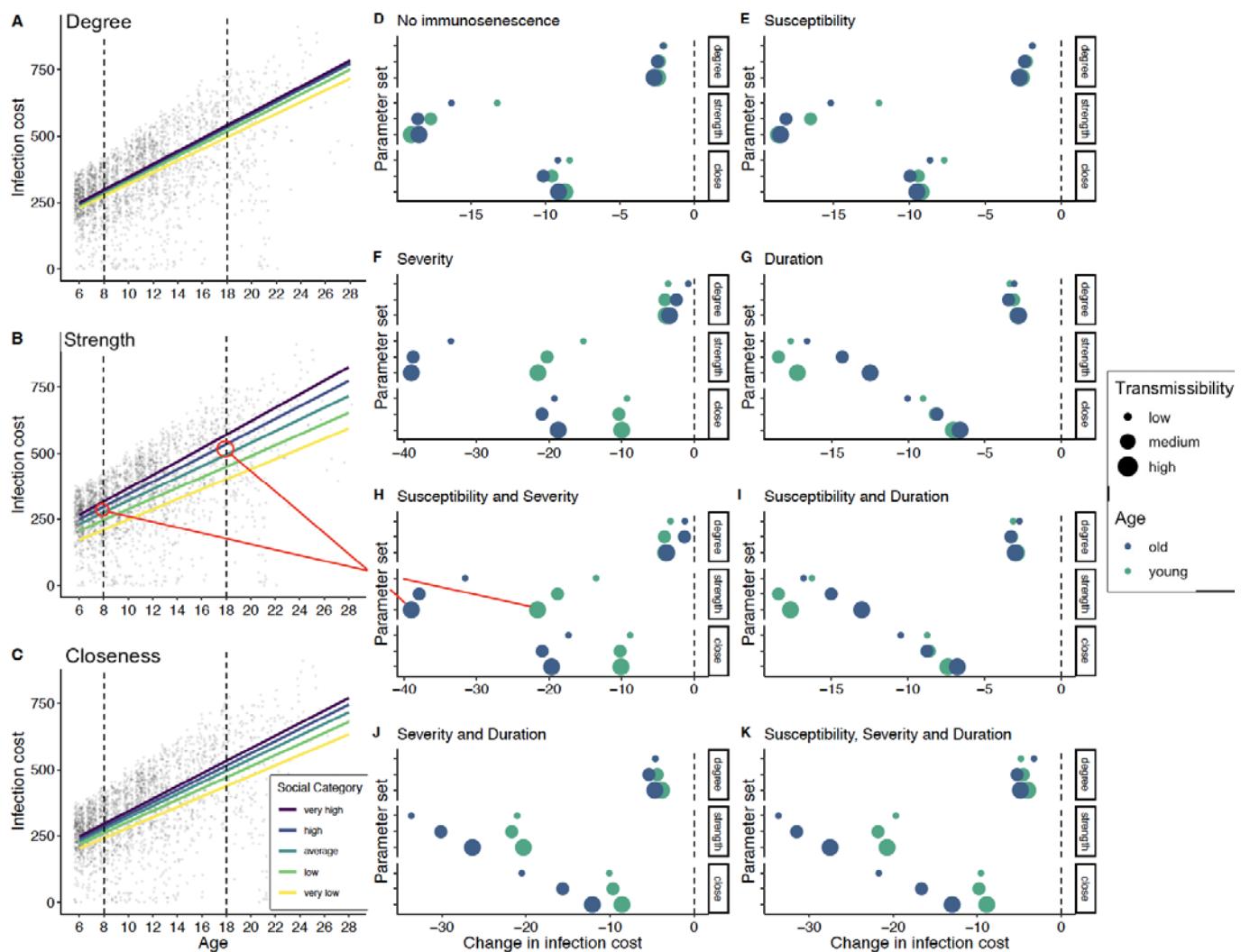
417 study (Fig. 2A). We found that this protective effect of social ageing was greatest at medium
418 and high transmissibility and somewhat less prominent at low transmissibility (Fig. 2A).

419

420 **Figure 2.** The protective effect of social ageing, measured as the difference in the age estimate
421 between model 1 (without social covariates) and model 2 (with social covariates). A more
422 negative protective effect indicates that the effect of age on infection cost was lower when social
423 centrality measures were not included in the model (model 1), compared to when they were
424 included (model 2). Therefore, the stronger the negative effect, the more variation in infection
425 cost was explained by age-related differences in sociality. Results show the protective effect of
426 social ageing: A) across different transmission probabilities when there is no
427 immunosenescence, and B-D) across each (independent) form of immunosenescence (none,
428 susceptibility, severity, duration) at each transmission probability (high, medium, low).

429 **The protective effects of lower social connectedness in old age depend on epidemiological
430 characteristics**

431 As expected, linear increases in susceptibility, severity, and duration of infection with age
432 led to infection cost increasing with age, although the strength of this effect depended on the
433 specific combination of parameters in the model (Fig. 1A,C,E). The one exception was when
434 there was only an increase in susceptibility with age, changes in infection cost were similar to
435 those when there was no immunosenescence (Fig. 1A,C,E). In line with prediction 3, the
436 protective effects associated with social ageing tended to get stronger when there was
437 immunosenescence, but this was not always true as it depended on the type of
438 immunosenescence (e.g., whether there were changes in susceptibility, severity, or duration of
439 infection with age) as well as the transmissibility of the pathogen (Fig. 2 & Fig. S3). The
440 protective effects of social ageing were greatest under conditions where there was an increase in
441 infection severity with age, across transmissibilities (Fig. 2B-D). For example, under high
442 transmissibility, when there was an increase in severity with age, the estimate for age in model 1
443 (just age) was 20.9 while the estimate for age in model 2 (age + sociality) was 22.1. The
444 protective effect was therefore -1.2 meaning that social ageing reduced infection cost by 1.2 units
445 for each year of increase in age. When there were age-based increases in susceptibility, on the
446 other hand, age-associated differences in sociality provided no additional protective effects
447 relative to baseline (i.e., no immunosenescence; Fig. 2B-D). When there were changes in
448 duration of infection with age, the protective effect of social ageing was more complex and
449 depended on the pathogen transmissibility. Relative to when there was no immunosenescence,
450 when transmissibility was low and duration of infection increased with age, social ageing
451 provided more of a protective effect. However, when transmissibility was medium or high and
452 duration increased with age, social ageing provided no additional protective effect compared to
453 baseline. Our results therefore suggest that age-based changes in sociality are likely to provide
454 the greatest benefit when there are increases in the severity or duration of infection with age, or a
455 combination thereof (for a full breakdown of the protective effects across all parameter
456 combinations see Fig. S3).


457 **Old individuals benefit most from having lower strength and closeness**

458 When considering interactions between age and each of the social metrics (model 3), the
459 reduction in infection cost associated with lower social centrality in old age came primarily from

460 having lower strength and closeness, which ran somewhat contrary to our expectations (see
461 prediction 2 above). Strength and closeness showed clear sociality-age interactions whereby
462 having “average” strength rather than “high” strength when old (18 years) resulted in a
463 substantially greater decrease in infection cost than having “average” strength rather than “high”
464 strength when young (8 years) (Fig. 3). For example, under high pathogen transmissibility and
465 increased infection susceptibility and severity with age, having average rather than high strength
466 when young decreased infection cost by 21.6 units (equivalent to 4.3 infections for a young
467 individual), while having average rather than high strength when old decreased infection cost by
468 almost double this amount (39.0 units; 7.8 infections for a young individual) (Fig. 3B,H).
469 Similarly, having lower closeness when young reduced infection cost by 10.0 units (2
470 infections), while having lower closeness when old reduced infection cost by 19.6 units (3.9
471 infections) (Fig 3C,H). This supported our prediction that lower connectedness would be more
472 beneficial at old than young ages (see prediction 1 above). However, contrary to our second
473 prediction, lower degree had little to no protective effect, meaning that having “average” degree
474 instead of “high” degree was no more beneficial when old than when young. Following on from
475 the example above, lower degree when young decreased infection cost by 3.9 units and when old
476 by 3.8 units (Fig. 3A,H). In fact, in some cases having fewer social partners for a given strength
477 and closeness centrality seemed to reduce infection cost more at young ages than at old ages
478 (Fig. 3F,H). In line with the results described above, the reduction in infection cost associated
479 with having lower strength or closeness when older was dependent on pathogen transmissibility
480 and on the type of immunosenescence. The reduction in infection cost at old ages compared to
481 young ages was most pronounced when there were age-based increases in infection severity (Fig.
482 3F,H,J,K). This reduction was somewhat dampened when there were also changes in duration of
483 infection with age (Fig. 3J,K), especially at high/medium transmissibility. When there were
484 changes in infection duration with age but no changes in infection severity, lower values of
485 closeness at old ages were no more beneficial than at young ages, except when pathogen
486 transmissibility was low (Fig. 3G,I). Under this parameter combination, having lower strength
487 was actually more beneficial at young ages than at old ages (Fig. 3G,I). Generally, these findings
488 align well with the results described above, suggesting that having lower values of social
489 centrality when old is less protective when there are increases in infection duration with age and
490 transmissibility is high. We explored the robustness of these patterns by also looking at the

491 difference in infection cost when an individual had “average” social centrality versus “low”
 492 social centrality and comparing this at young and old ages. We found the patterns highly
 493 comparable to those described above (see Fig. S4).

494

495
 496 **Figure 3. An illustration of how social network centrality and age interact to determine**
 497 **accumulated infection costs. A-C) Predicted age effects on infection costs separated by social**
 498 **centrality category for A) degree, B) strength and C) closeness centrality. Results shown for a**
 499 **specific parameter combination where pathogen transmissibility is high and infection**
 500 **susceptibility and severity show linear increases with age. Points represent a random sample of**
 501 **simulation data. D-K) The change in infection cost for an individual moving from high social**
 502 **centrality to average social centrality when old (18 years; blue points) versus when young (8**
 503 **years old; green points), for each social centrality measure. Different panels (labelled) show**

504 *results for different combinations of immunosenescence and point size represents transmission*
505 *probability. Similar results for a change from average to low centrality are shown in the*
506 *Supplementary Materials.*

507

508 **Discussion**

509 Our model results suggest that social ageing in rhesus macaques (i.e., lower social
510 centrality in older individuals) is associated with reduced costs accrued from socially transmitted
511 infections. We found that infectious disease cost was strongly positively associated with the
512 network centrality of an individual, as would be expected. Specifically, we found that strength
513 and closeness centrality had strong, independent effects on the overall cost of infection, while the
514 effects of degree on infection cost were more moderate. Given the probability of infection in our
515 model depends on edge weight, the importance of strength on overall cost of infection was
516 expected but nevertheless reflects the widespread importance of strength in explaining infection
517 risk in free-living populations [30]. Under conditions with no immunosenescence (no increases
518 in infection susceptibility, severity, or duration with age) older individuals accrued a lower cost
519 of infection compared to younger individuals across all transmissibilities modelled, with the
520 benefits peaking for pathogens with intermediate-high transmission probabilities. These lower
521 costs of infection were driven by age-associated differences in social centrality, as all three social
522 centrality metrics were negatively correlated with age and including centrality measures within
523 the same model resulted in the protective effect largely disappearing. When we included (linear)
524 immunosenescence we were able to show that having lower social centrality had a much greater
525 benefit for older than younger individuals, with this effect strongest when the severity of
526 infection increased with age.

527

528 **The protective effect of lower social centrality on infection risk in older individuals**

529 We found that older individuals accrued lower disease costs than younger individuals in
530 the absence of immunosenescence. Given previously documented within-individual declines in
531 closeness centrality and degree with age [21,25], we anticipated that this protective effect would
532 be driven by age-based differences in social centrality, which our results support. Our analyses,
533 however, were not explicitly longitudinal, meaning that we cannot fully rule out selective
534 disappearance of more central individuals partly explaining these results. It is possible that the

535 high infectious disease risk associated with being more socially central leads these individuals to
536 die earlier. However, given that social centrality is associated with survival in this population
537 [8,20,42], it seems likely that longitudinal changes in social network position reduce older
538 individual's exposure to infection. This is likely to be particularly true for degree and closeness
539 for which we have clear evidence that population level differences are driven by within-
540 individual changes with age [21,25]. The fact that strength was negatively correlated with age
541 and contributed substantially to the protective effect provided by social ageing was surprising
542 given that previous analyses in this study system have found a non-significant (although weakly
543 negative) relationship between age and strength both within and between individuals [21].
544 However, it is possible that, combined, this weakly negative relationship at both the within and
545 between-individual level results in a more substantial population-level decline in strength with
546 age, which we detect in our analyses. It is also possible that the inclusion of more data than
547 previous analyses has enabled us to detect change in strength with age not previously evident.

548 Overall, we found the protective effect of social ageing to be strongest for pathogens with
549 intermediate-high transmissibility and weaker for less transmissible pathogens. That is, the
550 reduction in infection costs with age (in the absence of immunosenescence) was highest when
551 transmissibility was high and pathogen prevalence (i.e., proportion of infected individuals in the
552 group) within groups was therefore relatively high (>30% or more), with a weaker reduction
553 when transmissibility, and therefore pathogen prevalence, in groups was low. There are a variety
554 of pathogens that are transmitted via direct contact, and which vary in their level of
555 transmissibility, which could be represented by our model. For example, *Shigella* (a bacterial
556 pathogen) is transmissible by close contact in macaques [62] and has spread very rapidly through
557 the Cayo Santiago macaque population previously [72]. Additionally, macaques are known to be
558 infected by a range of respiratory viruses (e.g, coronaviruses, influenza viruses), which will
559 likely fall across the range of transmissibilities considered in our study (see Supplementary
560 Methods), suggesting our findings are likely to be highly relevant for real-world pathogens.

561

562 **Immunosenescence enhances the protective effect of lower social centrality in older 563 individuals**

564 When adding immunosenescence to our models, we found that the protective effects of
565 social ageing were generally stronger than under conditions with no immunosenescence. Overall,

566 we found that lower levels of social centrality at old ages led to the most substantial reductions in
567 infection costs when infection severity increased with age. If we instead considered conditions
568 where infection duration increased with age, then the protective effects of social ageing
569 depended on pathogen transmissibility. That is, lower connectivity at older ages was more
570 important for decreasing disease costs at low compared to high transmissibility when infection
571 duration increased with age. These results can be explained intuitively based on the
572 epidemiological dynamics of high versus low pathogen transmissibility within an SIS model.
573 When transmissibility, and therefore (in our model) prevalence is very high, individuals will
574 typically be re-infected very quickly once they recover [73], meaning that the duration of each
575 infection is less important to overall disease cost. However, when transmissibility, and therefore
576 prevalence, is low it may take a while for an individual to be re-infected once it recovers from
577 infection. As a result of this reduced frequency of infection, the fact that each infection lasts
578 longer is disproportionately costly. Therefore, having lower social centrality when old relative to
579 when young under this low transmissibility scenario has a more substantial protective effect.
580 When we looked at conditions where infection susceptibility increased with age, we found that
581 older individuals gained very little protective effect from having lower social connectivity
582 relative to younger individuals.

583 It should be noted that comparisons of the relative importance of age-related changes in
584 susceptibility, severity and duration for disease cost are limited somewhat by how their relative
585 effects match (e.g., infection severity can be 3 times higher for our oldest compared with our
586 youngest individual, while the difference caused by changes in susceptibility is between 1.33 and
587 1.56 times depending on the baseline transmission probability). These differences arise because
588 parameters were chosen to be reflective of a reasonable parameter space for many respiratory
589 infections rather than specifically for comparisons of relative effects. Despite this limitation, we
590 can still draw some general conclusions. When pathogen transmissibility is high, most of the
591 age-based differences in accumulated disease cost are driven by increases in the severity of
592 infection with age, while increases in infection susceptibility or duration with age increase age-
593 based infection cost only minimally. When pathogen transmissibility is lower, age-related
594 changes in infection duration become relatively more important for age-based infection costs,
595 although changes to severity still dominate. Generally, this suggests that age-based differences in
596 social centrality are most likely when there are increases in severity of infection with age. In the

597 case of a pathogen with low transmissibility, increases in duration of infection with age might
598 also result in social declines.

599

600 **Social trade-offs in old age and the role of infectious disease**

601 The measures of social centrality that were most important for cost of infection in older
602 individuals were not exclusively those known to change within-individuals as they age,
603 indicating that there may be potentially important social trade-offs. We found that, in general,
604 older individuals would benefit most from having lower strength followed by lower closeness
605 centrality, with lower values of degree having smaller and less consistent effects on infection
606 risk. When we contrast this with observed within-individual changes in social centrality [21,25],
607 it is noteworthy that individuals in this population show behavioural changes with age that
608 reduce both their degree and closeness centrality but not their strength. Although here we have
609 shown that strength is negatively correlated with age it remains unclear whether this negative
610 relationship is driven by within-individual changes or between-individual differences because of
611 selective disappearance or differences between cohorts. Strength to top partners has a positive
612 link to health and survival in rhesus macaques [42] and diverse group-living species [1].
613 Therefore, it seems possible that while having lower strength may be the most effective way for
614 older animals to cut infectious disease risk, the costs of doing so may be high, and preserving
615 strong social relationships may itself be an important form of social buffering that can protect
616 against infectious disease ([74]; see Limitations section below). By maintaining strong social
617 connections and avoiding interactions with less familiar or new social partners [21,25]
618 individuals can instead reduce other aspects of their social centrality (e.g., closeness) that also
619 reduce infectious disease costs but which are less strongly associated with other aspects of health
620 and fitness. In this way, older individuals may still reap the benefits of social relationships while
621 minimizing the risks of infection [35].

622 While, to date, most research on social ageing has focused on age-based differences in
623 direct connectedness (cf. [23,25,26]), measures of “flow” through a network, as captured through
624 indirect metrics, can also be highly relevant for pathogen transmission [30]. Our previous work
625 has shown that by changing simple behavioural rules (in this case, reassociating with the same
626 partners and mixing less widely with the broader network) ageing individuals can facilitate
627 changes in both their direct connectedness (i.e. degree) and their indirect connectedness (i.e.

628 closeness) [25]. Here we have seen that it is the effects of these age-based behavioural changes
629 on closeness which are particularly beneficial, relative to the effects on degree, for mitigating
630 infection risk. Furthering our understanding of the intersection between social ageing and
631 infectious disease therefore necessitates deepening our understanding of how behavioural
632 changes with age facilitate changes not only in direct connectedness but also changes in
633 connectedness to the wider network.

634

635 **Potential implications for the evolution of social ageing**

636 While our results suggest that individuals could benefit from reduced infectious disease
637 risk by reducing their social networks in old age [21,25], more work is required before we can
638 say that social ageing is adaptive. While, it is appealing to consider that social ageing might be
639 an evolved strategy to counteract declines in immunity and associated increases in disease
640 burden in later life, the strength of selection on a trait will typically decline with age [75,76].
641 This has two implications for the evolution of social ageing in response to infectious disease risk.
642 First, it means that when social network centrality influences fitness we would expect social
643 behaviour to senesce as a result of weakening selection in later life [75], independent of any late-
644 life benefits of reduced social centrality. This expected decline could even be enhanced in rhesus
645 macaques where positive effects of social relationships on survival are reduced for older
646 individuals [20]. Second, under most conditions the declining strength of selection with age
647 makes it less likely that social ageing could have evolved to reduce the costs attributed to
648 infection late in life when immunosenescence increases the risk and severity of infections [35].
649 However, substantial immunosenescence at ages where individuals still have some reproductive
650 value could cause infectious disease to influence social ageing. It may be in these cases that
651 observed patterns of social ageing are a plastic response that can be selected for to mitigate rapid
652 declines in immune performance with age. Additionally, predictions related to the strength and
653 direction of demographic selection at old ages can depend on assumptions about density-
654 dependent population regulation [77–79], and it is not immediately clear where mortality related
655 to infectious disease fits in this context. Therefore, any selection acting on age-related changes in
656 social behaviour are likely to be highly context dependent and may change depending on which
657 aspects of sociality predict fitness earlier in life too. Expanding theory to integrate age-related

658 changes in social behaviour within existing evolutionary models of age-dependent mortality and
659 senescence will be key to better understanding the role of infectious disease in social ageing.

660

661 **Limitations**

662 There are some limitations to our model that should be considered when interpreting our
663 results and that offer fruitful choices for future work. First, we have considered only directly
664 transmitted pathogens and focused on SIS (susceptible-infected-susceptible) epidemiological
665 dynamics. These methodological choices make sense. Directly transmitted pathogens are
666 widespread threats to human and non-human animal health [80] and their epidemiological
667 dynamics will be most strongly influenced by social interaction patterns [81]. However,
668 incorporating indirectly transmitted pathogens may be important if co-infection affects morbidity
669 [82,83]. We focused on SIS dynamics as this provides a convenient way to model endemic
670 disease without explicitly incorporating demography or immune dynamics. Future work could
671 build on ours by testing how the choice of disease model can affect results, or by developing
672 long-term integrated network-demographic models of disease.

673 We have also assumed a linear relationship between interaction duration and the
674 probability of infection. However, for some pathogens with high transmissibility almost any
675 social contact may be sufficient, while for others only prolonged interactions may allow the
676 pathogen to spread. These differences would likely mean that the impact of social ageing on
677 pathogen transmission will depend on the shape of the dose-response curve. For example, we
678 might predict that social ageing is ineffective against mitigating disease risks for pathogens that
679 can spread easily via even short duration proximity. While social relationships are known to
680 expose individuals to disease risk, they can simultaneously help individuals cope with infections
681 once acquired [74,84]. We have not explicitly modeled these ‘social support effects’, which we
682 may expect to play a role in macaques [74]. In general, we would expect the greatest social
683 support effects from an individual’s strongest social relationships [42,85,86], which may amplify
684 any protective effects of social ageing against disease as long these types of relationships are
685 maintained [21,27]. Existing models have incorporated social support effects into network
686 models of infectious disease spread [87], and using them explicitly in this context could provide
687 additional insight.

688 Further, while we have focused here on how differences in social behaviour can affect
689 infection risk we have not considered how the spread of infection can also influence social
690 behaviour and network structure. In some cases, sickness behaviour and social avoidance of
691 infected individuals can change an individual's social interactions (reviewed in [88,89])
692 influencing the structure of the network [90]. Given older individuals tend to be more susceptible
693 to pathogens, lower connectedness with age could be a consequence of, rather than a proactive
694 response to, infectious disease risk. However, this seems an unlikely explanation of social ageing
695 in our system given evidence that older females appear to be more selective in their partner
696 choice rather than arbitrarily decreasing their connectedness as might be expected with sickness
697 behaviour or being avoided by other individuals [69]). Alternatively, if social selectivity is
698 selected for by infectious disease costs (see caveats above), then older individuals might actually
699 be hyper-responsive to cues of infection, leading to greater infection avoidance behaviour with
700 age. Older individuals' may also be better able to detect infections in the small number of
701 individuals they know well and this could enhance avoidance strategies [35]. Ultimately, how
702 social ageing fits into the co-dynamics of social behaviour and infectious disease spread is likely
703 to be complex and warrants further research.

704

705 **Conclusions**

706 We used epidemiological models to demonstrate that reduced social connectedness in old age
707 has the potential to provide a protective effect against the accrued costs of endemic infectious
708 diseases in a free-ranging population of rhesus macaques. By considering the impacts of different
709 forms of immunosenescence we showed that the benefits of social ageing could vary
710 considerably depending on the interaction between pathogen traits (transmissibility) and how
711 changes to an individual's immune performance manifest in terms of susceptibility, severity and
712 duration of infection. In addition, the aspects of social centrality that most impacted disease costs
713 for older individuals were not exclusively those that we know change within-individuals as they
714 age, highlighting the trade-offs inherent to interacting with others. Although we focused in this
715 paper on how age-based changes in susceptibility to infectious disease might facilitate social
716 ageing, the other way that immunosenescence might affect age-based changes in sociality is
717 through reduced healing ability. Being less able to recover from wounds might impose greater
718 social costs at old ages leading individuals to alter their social centrality to avoid competitive

719 interactions [12]. Generally, understanding how immunosenescence intersects with age-based
720 variation in sociality remains an open and intriguing question. Our results demonstrate the clear
721 potential for infectious disease to influence social ageing and point towards the value of
722 developing new theoretical models that consider the evolutionary dynamics involved.

723

724 **Acknowledgements** Thank you to J. Firth, G. Albery, S. Bouwhuis and R. Salguero-Gomez for
725 organizing this special issue. We are grateful to the Caribbean Primate Research Center for
726 maintaining the Cayo Santiago population and for access to the study site, and all the field
727 technicians who have contributed to the long-term behavioural database over the years. Thank
728 you to S. Ellis, D. Nussey, and J. Moorad for thoughtful discussion during the manuscript's
729 development. This work was supported by the following grants from the National Institute of
730 Health (NIH): grant nos R01-AG060931, R00-AG051764, R01-MH096875, R37-MH109728,
731 R01-MH108627, R01-MH118203, U01MH121260, R01-NS123054 and the Kaufman
732 Foundation: grant no KA2019-105548. The Cayo Santiago Field Station is supported by the
733 Office of Research Infrastructure Programs of the NIH (2P40OD012217). MJS is supported by a
734 Royal Society University Research Fellowship URF\R1\221800.

735

736 **References**

737

- 738 1. Snyder-Mackler N *et al.* 2020 Social determinants of health and survival in humans and
739 other animals. *Science* **368**. (doi:10.1126/science.aax9553)
- 740 2. Feldblum JT, Krupenye C, Bray J, Pusey AE, Gilby IC. 2021 Social bonds provide multiple
741 pathways to reproductive success in wild male chimpanzees. *iScience* **24**, 102864.
742 (<https://doi.org/10.1016/j.isci.2021.102864>)
- 743 3. Vander Wal E, Festa-Bianchet M, Réale D, Coltman DW, Pelletier F. 2015 Sex-based
744 differences in the adaptive value of social behavior contrasted against morphology and
745 environment. *Ecology* **96**, 631–641.
- 746 4. Siracusa ER, Boutin S, Dantzer B, Lane JE, Coltman DW, McAdam AG. 2021 Familiar
747 Neighbors, but Not Relatives, Enhance Fitness in a Territorial Mammal. *Curr. Biol.* **31**,
748 438–445.e3.
- 749 5. Cameron EZ, Setsaas TH, Linklater WL. 2009 Social bonds between unrelated females
750 increase reproductive success in feral horses. *Proc. Natl. Acad. Sci. U. S. A.* **106**, 13850–
751 13853.

752 6. Stockley P, Bro-Jørgensen J. 2011 Female competition and its evolutionary consequences in
753 mammals. *Biol. Rev. Camb. Philos. Soc.* **86**, 341–366.

754 7. Clutton-Brock T, Huchard E. 2013 Social competition and its consequences in female
755 mammals. *J. Zool.* **289**, 151–171.

756 8. Pavez-Fox MA *et al.* 2022 Reduced injury risk links sociality to survival in a group-living
757 primate. *iScience*. **12**, 105454. <https://doi.org/10.1016/j.isci.2022.105454>

758 9. Sah P, Mann J, Bansal S. 2018 Disease implications of animal social network structure: A
759 synthesis across social systems. *J. Anim. Ecol.* **87**, 546–558.

760 10. Altizer S *et al.* 2003 Social Organization and Parasite Risk in Mammals: Integrating Theory
761 and Empirical Studies. *Annu. Rev. Ecol. Evol. Syst.* **34**, 517–547.

762 11. Alexander RD. 1974 The Evolution of Social Behavior. *Annu. Rev. Ecol. Syst.* **5**, 325–383.

763 12. Siracusa ER, Higham JP, Snyder-Mackler N, Brent LJN. 2022 Social ageing: exploring the
764 drivers of late-life changes in social behaviour in mammals. *Biol. Lett.* **18**, 20210643.

765 13. Albery GF, Clutton-Brock TH, Morris A, Morris S, Pemberton JM, Nussey DH, Firth JA.
766 2022 Ageing red deer alter their spatial behaviour and become less social. *Nat Ecol Evol* **6**,
767 1231–1238.

768 14. Machanda ZP, Rosati AG. 2020 Shifting sociality during primate ageing. *Philosophical
769 Transactions of the Royal Society B: Biological Sciences*. **375**, 20190620.
770 (doi:10.1098/rstb.2019.0620)

771 15. Wrzus C, Hänel M, Wagner J, Neyer FJ. 2013 Social network changes and life events
772 across the life span: a meta-analysis. *Psychol. Bull.* **139**, 53–80.

773 16. Guan X, Dluzen DE. 1994 Age related changes of social memory/recognition in male
774 Fischer 344 rats. *Behav. Brain Res.* **61**, 87–90.

775 17. Ryu H, Graham KE, Sakamaki T, Furuichi T. 2016 Long-sightedness in old wild bonobos
776 during grooming. *Curr. Biol.* **26**, R1131–R1132.

777 18. Croft DP, Weiss MN, Nielsen MLK, Grimes C, Cant MA, Ellis S, Franks DW, Johnstone
778 RA. 2021 Kinship dynamics: patterns and consequences of changes in local relatedness.
779 *Proc. Biol. Sci.* **288**, 20211129.

780 19. Rodrigues AMM. 2018 Demography, life history and the evolution of age-dependent social
781 behaviour. *Journal of Evolutionary Biology*. **31**, 1340–1353. (doi:10.1111/jeb.13308)

782 20. Brent LJN, Ruiz-Lambides A, Platt ML. 2017 Family network size and survival across the
783 lifespan of female macaques. *Proc. Biol. Sci.* **284**. (doi:10.1098/rspb.2017.0515)

784 21. Siracusa ER, Negron-Del Valle JE, Phillips D, Platt ML, Higham JP, Snyder-Mackler N,

785 Brent LJN. 2022 Within-individual changes reveal increasing social selectivity with age in
786 rhesus macaques. *bioRxiv*. , 2022.05.31.494118. (doi:10.1101/2022.05.31.494118)

787 22. Almeling L, Hammerschmidt K, Sennhenn-Reulen H, Freund AM, Fischer J. 2016
788 Motivational Shifts in Aging Monkeys and the Origins of Social Selectivity. *Curr. Biol.* **26**,
789 1744–1749.

790 23. Rathke E-M, Fischer J. 2021 Social aging in male and female Barbary macaques. *Am. J.*
791 *Primateol.* , e23272.

792 24. Schino G, Pinzaglia M. 2018 Age-related changes in the social behavior of tufted capuchin
793 monkeys. *Am. J. Primatol.* **80**, e22746.

794 25. Siracusa ER *et al.* 2023 Ageing in a collective: the impact of ageing individuals on social
795 network structure. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* **378**, 20220061.

796 26. Kroeger SB, Blumstein DT, Martin JGA. 2021 How social behaviour and life-history traits
797 change with age and in the year prior to death in female yellow-bellied marmots. *Philos.*
798 *Trans. R. Soc. Lond. B Biol. Sci.* **376**, 20190745.

799 27. Lang FR, Carstensen LL. 1994 Close emotional relationships in late life: further support for
800 proactive aging in the social domain. *Psychol. Aging* **9**, 315–324.

801 28. Rosati AG, Hagberg L, Enigk DK, Otali E, Emery Thompson M, Muller MN, Wrangham
802 RW, Machanda ZP. 2020 Social selectivity in aging wild chimpanzees. *Science* **370**, 473–
803 476.

804 29. Kappeler PM, Cremer S, Nunn CL. 2015 Sociality and health: impacts of sociality on
805 disease susceptibility and transmission in animal and human societies. *Philos. Trans. R.*
806 *Soc. Lond. B Biol. Sci.* **370**. (doi:10.1098/rstb.2014.0116)

807 30. Briard L, Ezenwa VO. 2021 Parasitism and host social behaviour: a meta-analysis of
808 insights derived from social network analysis. *Anim. Behav.* **172**, 171–182.

809 31. Lucatelli J, Mariano-Neto E, Japyassú HF. 2021 Social interaction, and not group size,
810 predicts parasite burden in mammals. *Evol. Ecol.* **35**, 115–130.

811 32. Peters A, Delhey K, Nakagawa S, Aulsebrook A, Verhulst S. 2019 Immunosenescence in
812 wild animals: meta-analysis and outlook. *Ecol. Lett.* **22**, 1709–1722.

813 33. Kang SJ, Jung SI. 2020 Age-Related Morbidity and Mortality among Patients with COVID-
814 19. *Infect Chemother* **52**, 154–164.

815 34. Palacios MG, Winkler DW, Klasing KC, Hasselquist D, Vleck CM. 2011 Consequences of
816 immune system aging in nature: a study of immunosenescence costs in free-living Tree
817 Swallows. *Ecology* **92**, 952–966.

818 35. Albery GF, Sweeny AR, Webber Q. 2023 How behavioural ageing affects infectious

819 disease. *Neurosci. Biobehav. Rev.* **155**, 105426.

820 36. Ezenwa VO, Worsley-Tonks KEL. 2018 Social living simultaneously increases infection
821 risk and decreases the cost of infection. *Proc. Biol. Sci.* **285**. (doi:10.1098/rspb.2018.2142)

822 37. Romano V, MacIntosh AJJ, Sueur C. 2020 Stemming the Flow: Information, Infection, and
823 Social Evolution. *Trends Ecol. Evol.* **35**, 849–853.

824 38. Hinde RA. 1976 Interactions, Relationships and Social Structure. *Man* **11**, 1–17.

825 39. Craft ME, Caillaud D. 2011 Network models: an underutilized tool in wildlife
826 epidemiology? *Interdiscip. Perspect. Infect. Dis.* **2011**, 676949.

827 40. Keeling MJ, Eames KTD. 2005 Networks and epidemic models. *J. R. Soc. Interface* **2**, 295–
828 307.

829 41. Cooper EB, Brent LJN, Snyder-Mackler N, Singh M, Sengupta A, Khatiwada S,
830 Malaivijitnond S, Qi Hai Z, Higham JP. 2022 The rhesus macaque as a success story of the
831 Anthropocene. *Elife* **11**. (doi:10.7554/eLife.78169)

832 42. Ellis S, Snyder-Mackler N, Ruiz-Lambides A, Platt ML, Brent LJN. 2019 Deconstructing
833 sociality: the types of social connections that predict longevity in a group-living primate.
834 *Proc. Biol. Sci.* **286**, 20191991.

835 43. Brent LJN, Heilbronner SR, Horvath JE, Gonzalez-Martinez J, Ruiz-Lambides A, Robinson
836 AG, Skene JHP, Platt ML. 2013 Genetic origins of social networks in rhesus macaques. *Sci.
837 Rep.* **3**, 1042.

838 44. Rawlins RG, Kessler MJ. 1986 *The Cayo Santiago Macaques: History, Behavior, and
839 Biology*. SUNY Press.

840 45. Roth GS, Mattison JA, Ottinger MA, Chachich ME, Lane MA, Ingram DK. 2004 Aging in
841 rhesus monkeys: relevance to human health interventions. *Science* **305**, 1423–1426.

842 46. Shively CA, Register TC, Clarkson TB. 2009 Social stress, visceral obesity, and coronary
843 artery atherosclerosis: product of a primate adaptation. *Am. J. Primatol.* **71**, 742–751.

844 47. Chiou KL *et al.* 2020 Rhesus macaques as a tractable physiological model of human ageing.
845 *Philos. Trans. R. Soc. Lond. B Biol. Sci.* **375**, 20190612.

846 48. Yu P *et al.* 2020 Age-related rhesus macaque models of COVID-19. *Animal Model Exp
847 Med* **3**, 93–97.

848 49. Speranza E *et al.* 2022 Age-related differences in immune dynamics during SARS-CoV-2
849 infection in rhesus macaques. *Life Sci Alliance* **5**. (doi:10.26508/lsa.202101314)

850 50. Didier ES, Sugimoto C, Bowers LC, Khan IA, Kuroda MJ. 2012 Immune correlates of
851 aging in outdoor-housed captive rhesus macaques (*Macaca mulatta*). *Immun. Ageing* **9**, 25.

852 51. Messaoudi I, Estep R, Robinson B, Wong SW. 2011 Nonhuman primate models of human
853 immunology. *Antioxid. Redox Signal.* **14**, 261–273.

854 52. Rosado MRS *et al.* 2023 Immune cell composition varies by age, sex and exposure to social
855 adversity in free-ranging Rhesus Macaques. *Geroscience* (doi:10.1007/s11357-023-00962-
856 8)

857 53. Salguero FJ *et al.* 2021 Comparison of rhesus and cynomolgus macaques as an infection
858 model for COVID-19. *Nat. Commun.* **12**, 1260.

859 54. Munster VJ *et al.* 2020 Respiratory disease in rhesus macaques inoculated with SARS-
860 CoV-2. *Nature* **585**, 268–272.

861 55. Pol M van de, van de Pol M, Verhulst S. 2006 Age□Dependent Traits: A New Statistical
862 Model to Separate Within□ and Between□Individual Effects. *The American Naturalist*.
863 **167**, 766–773. (doi:10.1086/503331)

864 56. Van de Pol M, Wright J. 2009 A simple method for distinguishing within-versus between-
865 subject effects using mixed models. *Anim. Behav.* **77**, 753.

866 57. Drewe JA. 2010 Who infects whom? Social networks and tuberculosis transmission in wild
867 meerkats. *Proc. Biol. Sci.* **277**, 633–642.

868 58. MacIntosh AJJ, Hernandez AD, Huffman MA. 2010 Host age, sex, and reproductive
869 seasonality affect nematode parasitism in wild Japanese macaques. *Primates* **51**, 353–364.

870 59. Müller-Klein N, Heistermann M, Strube C, Franz M, Schülke O, Ostner J. 2019 Exposure
871 and susceptibility drive reinfection with gastrointestinal parasites in a social primate. *Funct.*
872 *Ecol.* **33**, 1088–1098.

873 60. Rimbach R, Bisanzio D, Galvis N, Link A, Di Fiore A, Gillespie TR. 2015 Brown spider
874 monkeys (*Ateles hybridus*): a model for differentiating the role of social networks and
875 physical contact on parasite transmission dynamics. *Philos. Trans. R. Soc. Lond. B Biol. Sci.*
876 **370**. (doi:10.1098/rstb.2014.0110)

877 61. Habig B, Jansen DAWAM, Akinyi MY, Gesquiere LR, Alberts SC, Archie EA. 2019
878 Multi-scale predictors of parasite risk in wild male savanna baboons (*Papio cynocephalus*).
879 *Behav. Ecol. Sociobiol.* **73**, 134.

880 62. Balasubramaniam KN, Beisner BA, Hubbard JA, Vandeleest JJ, Atwill ER, McCowan B.
881 2019 Affiliation and disease risk: social networks mediate gut microbial transmission
882 among rhesus macaques. *Anim. Behav.* **151**, 131–143.

883 63. Hart J. 2023 *bisonR: Bayesian Inference of Social Networks in R*.
884 <https://jhart96.github.io/bisonR>, <https://github.com/JHart96/bisonR>.

885 64. Hart J, Weiss MN, Franks D, Brent L. 2023 BISoN: A Bayesian framework for inference of
886 social networks. *Methods Ecol. Evol.* **14**, 2411–2420.

887 65. Hart JDA, Franks DW, Brent L, Weiss MN. 2022 BisonR - Bayesian inference of social
888 networks with R. (doi:10.31219/osf.io/ywu7j)

889 66. Williams AE, Worsley-Tonks KEL, Ezenwa VO. 2017 Drivers and consequences of
890 variation in individual social connectivity. *Anim. Behav.* **133**, 1–9.

891 67. Grear DA, Luong LT, Hudson PJ. 2013 Network transmission inference: host behavior and
892 parasite life cycle make social networks meaningful in disease ecology. *Ecol. Appl.* **23**,
893 1906–1914.

894 68. Christley RM, Pinchbeck GL, Bowers RG, Clancy D, French NP, Bennett R, Turner J. 2005
895 Infection in social networks: using network analysis to identify high-risk individuals. *Am. J.*
896 *Epidemiol.* **162**, 1024–1031.

897 69. Siracusa ER, Negron-Del Valle JE, Phillips D, Platt ML, Higham JP, Snyder-Mackler N,
898 Brent LJN. 2022 Within-individual changes reveal increasing social selectivity with age in
899 rhesus macaques. *Proc. Natl. Acad. Sci. U. S. A.* **119**, e2209180119.

900 70. Coe CL, Lubach GR, Kinnard J. 2012 Immune senescence in old and very old rhesus
901 monkeys: reduced antibody response to influenza vaccination. *Age* **34**, 1169–1177.

902 71. Nelson CE *et al.* 2022 Mild SARS-CoV-2 infection in rhesus macaques is associated with
903 viral control prior to antigen-specific T cell responses in tissues. *Sci Immunol* , eabo0535.

904 72. Testard C *et al.* 2021 Rhesus macaques build new social connections after a natural disaster.
905 *Curr. Biol.* **31**, 2299–2309.e7.

906 73. Parshani R, Carmi S, Havlin S. 2010 Epidemic threshold for the susceptible-infectious-
907 susceptible model on random networks. *Phys. Rev. Lett.* **104**, 258701.

908 74. Balasubramaniam K, Beisner B, Vandeleest J, Atwill E, McCowan B. 2016 Social buffering
909 and contact transmission: network connections have beneficial and detrimental effects on
910 Shigella infection risk among captive rhesus macaques. *PeerJ* **4**, e2630.

911 75. Hamilton WD. 1966 The moulding of senescence by natural selection. *J. Theor. Biol.* **12**,
912 12–45.

913 76. Williams GC. 1957 Pleiotropy, Natural Selection, and the Evolution of Senescence.
914 *Evolution* **11**, 398–411.

915 77. Abrams PA. 1993 DOES INCREASED MORTALITY FAVOR THE EVOLUTION OF
916 MORE RAPID SENESCENCE? *Evolution* **47**, 877–887.

917 78. Moorad J, Promislow D, Silvertown J. 2019 Evolutionary Ecology of Senescence and a
918 Reassessment of Williams' 'Extrinsic Mortality' Hypothesis. *Trends Ecol. Evol.* **34**, 519–
919 530.

920 79. de Vries C, Galipaud M, Kokko H. 2023 Extrinsic mortality and senescence: a guide for the

921 perplexed. *Peer Community Journal* **3**. (doi:10.24072/pcjournal.253)

922 80. Daszak P, Cunningham AA, Hyatt AD. 2000 Emerging infectious diseases of wildlife--
923 threats to biodiversity and human health. *Science* **287**, 443–449.

924 81. White LA, Forester JD, Craft ME. 2017 Using contact networks to explore mechanisms of
925 parasite transmission in wildlife. *Biol. Rev. Camb. Philos. Soc.* **92**, 389–409.

926 82. Griffiths EC, Pedersen AB, Fenton A, Petchey OL. 2011 The nature and consequences of
927 coinfection in humans. *J. Infect.* **63**, 200–206.

928 83. Risco D *et al.* 2014 Severity of bovine tuberculosis is associated with co-infection with
929 common pathogens in wild boar. *PLoS One* **9**, e110123.

930 84. Akinyi MY, Tung J, Jeneby M, Patel NB, Altmann J, Alberts SC. 2013 Role of Grooming
931 in Reducing Tick Load in Wild Baboons (*Papio cynocephalus*). *Anim. Behav.* **85**, 559–568.

932 85. Silk JB, Beehner JC, Bergman TJ, Crockford C, Engh AL, Moscovice LR, Wittig RM,
933 Seyfarth RM, Cheney DL. 2010 Strong and consistent social bonds enhance the longevity
934 of female baboons. *Curr. Biol.* **20**, 1359–1361.

935 86. Schülke O, Bhagavatula J, Vigilant L, Ostner J. 2010 Social bonds enhance reproductive
936 success in male macaques. *Curr. Biol.* **20**, 2207–2210.

937 87. Chen X, Wang R, Tang M, Cai S, Eugene Stanley H, Braunstein LA. 2018 Suppressing
938 epidemic spreading in multiplex networks with social-support. *New J. Phys.* **20**, 013007.

939 88. Stockmaier S, Stroeymeyt N, Shattuck EC, Hawley DM, Meyers LA, Bolnick DI. 2021
940 Infectious diseases and social distancing in nature. *Science* **371**.
941 (doi:10.1126/science.abc8881)

942 89. Townsend AK, Hawley DM, Stephenson JF, Williams KEG. 2020 Emerging infectious
943 disease and the challenges of social distancing in human and non-human animals. *Proc.
944 Biol. Sci.* **287**, 20201039.

945 90. Stroeymeyt N, Grasse AV, Crespi A, Mersch DP, Cremer S, Keller L. 2018 Social network
946 plasticity decreases disease transmission in a eusocial insect. *Science* **362**, 941–945.