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ABSTRACT

We present a novel system that leverages curators in the loop to develop a dataset and model for detecting residue-level
functional annotations and other protein structure features from standard publication text. Our approach involves the integration
of data from multiple resources, including PDBe, EuropePMC, PubMedCentral, and PubMed, combined with annotation
guidelines from UniProt, while employing LitSuggest and Huggingface models as tools in the annotation process.

A team of seven annotators manually curated ten articles for named entities, which we utilized to train a starting PubmedBert
model from Huggingface. Using a human-in-the-loop annotation system, we developed the best model with commendable
performance metrics of 0.90 for precision, 0.92 for recall, and 0.91 for F1-measure.

Our proposed system showcases a successful synergy of machine learning techniques and human expertise in curating a
dataset for residue-level functional annotations and protein structure features. The results demonstrate the potential for broader
applications in protein research, bridging the gap between advanced machine learning models and the indispensable insights
of domain experts.

Background & Summary

The three-dimensional (3D) structure of a protein determines its function and provides insights into its mechanisms and processes
within a cell. In order to understand biology and its intricate systems, it is essential to determine protein structures, analyze them
on a residue level and identify which residues are the key to its function. For more than 50 years the Protein Data Bank (PDB)
managed by the wwPDB partners! (https://www.wwpdb.org/) has been the go-to data resource to access experimentally
determined protein structures. The team at Protein Data Bank in Europe (PDBe)? (https://www.ebi.ac.uk/pdbe/)
, as one of the founding partners in the wwPDB, processes and curates a couple of hundred new, experimentally derived
structure submissions every week. In a unified process, followed by all the wwPDB data centers, they provide a standard set of
annotations’ alongside the atomic coordinates for each structure. However, the structures are deposited before the publication is
available, which prevents biocurators from accessing additional knowledge hidden in scientific literature to support and enrich
the protein structure data.

To better understand the structure-function relationship for a protein and its relevance in biological context, it would
be beneficial to access additional knowledge locked away in unstructured text in scientific publications. For over 20 years,
UniProt* (https://www.uniprot.org/) has developed processes to manually curate scientific literature and enrich
protein sequences, the linear, one-dimensional representation of a protein. However, with a near-exponential increase in
publication rate and sequences released, it is impossible to comprehensively extract residue-level functional knowledge from
literature at scale and annotate structures or sequences solely through manual curation.

Here, we present a workflow to develop a transformer-based named entity recognition (NER) system to annotate full-text
publications as the first step to an automated pipeline to extract residue-level functional information from the literature to
provide 3D-structure based protein annotations. The presented algorithm achieved high overall precision, recall and F1-measure
scores of 0.90, 0.92 and 0.91, respectively.

Identified annotations can be used to highlight key text spans in publications but can also serve as a starting point for
future developments. Entity types and their relationships can be collated across all publications for a particular protein.
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Applying reasoning and weighing to the identified information may help to discover new knowledge and insight into the
intricate systems a protein is involved in within cells and organisms, such as new interaction partners or signaling and
metabolic pathways, and how these systems are dependent on a protein’s structure-function relationship. Furthermore, these
annotations can also serve as a validation source for assessing the biological relevance of predicted protein models. These
predicted models are generated by deep learning algorithms such as AlphaFold> and RosettaFold®. AlphaFold Protein Structure
Database (AlphaFold DB)’ (https://alphafold.ebi.ac.uk/) contains predicted models provided by DeepMind
(https://deepmind.google/) while other computationally created models can be deposited to the ModelArchive®
(https://modelarchive.org/). Large-scale structure predictions can also be made accessible by establishing a 3D-
Beacon and integrating it into the 3D-Beacons network” (https://www.ebi.ac.uk/pdbe/pdbe-kb/3dbeacons/)
which is designed to improve FAIRness!? (Findability, Accessibility, Interoperability and Reusability) of experimental and
predicted structure models. Nowadays, the computationally generated models achieve similar quality for chemical and physical
descriptors, such as geometry and bond lengths and angles, to those found for experimentally determined structures, at least in
areas with high-confidence predictions. Unlike structures in the PDB, these predictions are not supported by experimental
evidence like electron density maps or electric potential maps as determined through X-ray crystallography or cryo-electron
microscopy, respectively, or chemical shifts from nuclear magnetic resonance. Consequently, analyzing a predicted protein
model in isolation is prone to misinterpretation of a residue’s location and its interactions with neighbors. However, non-
structural publications can provide information on a variety of biochemical and mutational studies which can be used to check
if the predicted models are supported by the observations drawn from these studies. If predicted models can explain the
observations, the predicted models could be considered functionally validated.

Methods

The annotation team

Project manager

The project manager was the lead for the annotation project with more than 15 years of experience in structural biology,
more than 500 protein structures in the PDB, and over seven years experience in developing software and machine learning
algorithms. As lead, the project manager was responsible for the general management, planning and documentation of the
project and was involved in the annotation process.

Annotators

A team of six PDBe biocurators, involved in the curation of protein structures submitted to the PDB, volunteered in the
annotation process. All but one had a PhD, either in biochemistry, bioinformatics or structural biology with a strong background
in biochemistry and/or structural biology. Combined, they had 10 years of experience in bioinformatics, 24 years in biochemistry
and structural biology, and 31 years in biocuration. While undertaking the annotation process, the team was split over two
different sites and time zones, and annotation was carried out in a fully remote setting.

Literature selection

The general workflow for literature selection is depicted in Figure 1. In the first step we retrieved all the PubMed (https://
pubmed.ncbi.nlm.nih.gov/) IDs (PMIDs) for publications linked to a protein structure by querying PDBe’s ORACLE
database on 29th September 2022. On that date, the PDB contained 196,012 PDB entries with 73,019 associated, unique
PMIDs.

LitSuggest'! (https://www.ncbi.nlm.nih.gov/research/litsuggest /), an Al-driven web browser-based
trainable system that directly uses PMIDs, was used as a content filtering tool for assessing the abstract and title of our
short-listed publications. Using the list of PMIDs generated above, we created seven publication batches of 10,000 IDs each
(the positive samples) and batch 8, an exception, had only 3,019 IDs. All batches were matched with an equal number of
randomly picked PMIDs from the entire set in PubMed representing the negative samples. It has to be noted, that due to the
selection process, there is a small chance that the negative sets may contain some of the PMIDs from the positive batches. For
each batch, a model was trained using the corresponding titles and abstracts for the individual PMIDs in the batch. The trained
models were used to identify the relevance of newly added IDs to PubMed over several weeks.

The same exercise was repeated on the 23rd of January 2023, with 200,612 PDB entries having 74,253 unique PMIDs. The
additional PMIDs were added to batch 8 which now contained 4,253 IDs while preserving the original batches used in previous
training. Each of the eight trained models were presented with 7 batches, excluding the one that was used to train the model to
obtain relevance scores for individual PMIDs. A publication was deemed relevant when the predicted confidence score was
> 0.8 across all seven cross-prediction models. This resulted in 63,795 (86%) PMIDs predicted as relevant. The prediction
statistics across the eight different models are given in Table 1.
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87 To adhere to open data principles and to be able to annotate full-text articles, only open access publications with Pub-
s MedCentral'> (nttps://www.ncbi.nlm.nih.gov/pmc/) IDs (PMCIDs) were identified using the EuropePMC’s!3
89 (https://europepmc.org/) article API and included in further works. This further reduced the number of publications
90 included in the study to 14,390, 19% of the initial starting set of 74,253.

91 Lastly, a number of documents were further rejected during the annotation stage due to a primary focus other than a protein
92 structure, often covering drug and fragment screening campaigns or nucleic acid structures.

s The annotation tool and schema

s For our text annotation project, a number of free and paid-for annotation tools were evaluated regarding the following
o5 features: compatibility with PubMed and PubMedCentral, possibility for project management, multi-user co-annotation
9 option, integration of ontologies, open source distribution, web browser based, ease of use, and available documentation. The
& annotation tool of choice for our project was TeamTat!* (https://www.teamtat .org/). TeamTat is a free tool and
98 its developers focused on biomedical literature and compatibility with PubMed and PubMedCentral, retrieving publication
99 abstract and metadata such as title, authors, journal and publication year for a given PMID. For open access publications with a
10 PMCID, TeamTat retrieved the entire publication from a BioC XML FTP-server' (https://www.ncbi.nlm.nih.gov/
01 pmc/tools/openftlist/). The BioC XML format'® (https://bioc.sourceforge.net/) was introduced by
w2 the BioCreative Initiative!” as a way of making scientific publications interoperable. In the case of open access full-text
103 documents, these came with in-line figures, figure captions, tables and table captions.

104 TeamTat also allowed for project management with the project manager being able to upload/retrieve the relevant literature,
105 assign publications to annotators and control the start and end of an annotation round. Entity types, relationship types and
16 ontology referencing were set up and updated by the project manager. TeamTat also supported versioning and after each
107 annotation round, merging statistics were calculated across the corpus as well as inter-annotator agreement and a new version
1s for the publication set was created. Documents could be exported at any point in the annotation process as either BioC XML or
100 BioC JSON. We opted for the BioC XML format, as it enclosed the plain paragraph text and its identified annotations under the
1o same XML tag (<passage>), which allowed for easy retrieval of individual sentences with their respective in-line annotations
11 for downstream transformer training.

12 TeamTat provides access to Medical Subject Headings (MeSH)'® and the Gene Ontology (GO)'?,?° through hard-coded
s links. Additional ontologies relevant for our project were Sequence Ontology (SO)>!', Chemical Entities of Biological Interest
1 (ChEBI)??, Gene?® and PRotein Ontology (PR/PRO)?*. For each ontology a short-hand name similar to, e.g. "MESH:" for
s MeSH, was created and served as a prefix to link an entity type to an ontology. A "DUMMY:" short-hand name was used to
1e  collect terms that were not found in any of the other ontologies. Although we linked the different entity types to ontologies,
17 controlled vocabularies and reference databases, we did not apply grounding of terms in the annotation process by linking text
118 spans to unique references.

119 The annotation handbook published by the TeamTat developers (Supplemental Materials of Islamaj et al.>>) was adapted
120 to suit our project requirements. The final detailed annotation schema can be found in Supplemental Material. The project
121 manager generated an initial set of annotated publications to define a set of entity types which formed the basis for developing
122 initial guidelines, which were revisited in the subsequent annotation rounds following discussions with the biocurators (see
123 below in Manual annotation of initial set of publications). The updates to guidelines included adding or removing entity
124 types or clarification on the guidelines. The guidelines continued to be adapted even after switching from fully manual
125 annotation with a team of biocurators to a semi-automated process using a trained model to accommodate the increasingly
126 diverse set of publications. All alterations were done after consultation with the volunteer team of biocurators either in form
127 of open discussion or polling. Focusing on structure and sequence features curated by the UniProt biocurators, we selected
128 entity types that captured details about a particular protein, its structural make-up down to residue level, interaction partners,
120 bound molecules, general properties of the protein, changes to its sequence, organism of origin, experimental methods and
130 evidence to support drawn conclusions. The final list of entity types later used in transformer training was: "bond_interaction",
131 "chemical", "complex_assembly", "evidence", "experimental_method", "gene", "mutant”, "oligomeric_state", "protein",

non non non

12 "protein_state", "protein_type", "ptm", "residue_name", "residue_name_number", "residue_number", "residue_range", "site",
133 "species", "structure_element", "taxonomy_domain". The "Materials and Methods" and "References" sections were excluded
13« from the annotation process as little to no contextual, residue-level information was expected to be present in these sections.

135 We also developed a detailed user guide (see Supplemental Materials) on how to set up and operate TeamTat from a project
136 manager as well as biocurator perspective. This was used to support the biocurators after initial training when annotating

137 independently.

13s  Manual annotation of initial set of publications
139 Initially, ten publications (PMC4784909, PMC4786784, PMC4792962, PMC4832331, PMC4833862, PMC4848090, PMC4850273,
120 PMC4850288, PMC4852598, PM(C4887326) were chosen randomly from the filtered, open access list described in the Litera-
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ture selection section above. Each biocurator was given two publications to manually annotate, based on the guidance from
the example annotations and the handbook. A set of two-hour hackathons were organized weekly to annotate the assigned
publications. In case the biocurators were not able to attend the hackathon, web-based access through a personalized web-link
for the assigned documents was provided to annotate documents outside of the dedicated sessions. The project manager
annotated those publications that could not be annotated by the biocurators in order to achieve double-annotation for each
document. We acknowledge and are fully aware that the overrepresentation of the project manager annotated documents
increased the likelihood of bias. However, even with the best annotation guidelines shaped by a team of expert annotators,
assigning entity types to terms is a highly subjective process. A different team of experienced annotators may introduce a
different set of biases, based on their training and understanding. The first round of independent annotation lasted approximately
four months, after which the annotations across all ten publications were combined and annotation statistics were calculated
within TeamTat.

To increase efficiency and accelerate the annotation process, the decision was made to switch from a fully manual to a
semi-automated annotation process. The project manager was made responsible for cleaning and consolidating the annotations
for the ten initial publications. Upon completion of this task, the cleaned publications were passed to the lead biocurator, who
served as a proof-reader. In this capacity, the lead biocurator flagged annotations and entity types that were still ambiguous. In
a number of discussions between the project manager and the lead biocurator those ambiguities were resolved and entity types
and annotation guidelines were updated. A graphical illustration of the manual annotation workflow can be found in Figure 2.
The project manager then applied a final pass of cleaning and consolidating across the ten initial publications before using the
annotated text to train a named entity recognition system. This final, consolidated version was used as ground truth against
which the annotation performance of each annotator could be measured.

Annotation evaluation
The quality of manual annotations created by the biocurators was judged using the built-in calculation procedures in TeamTat,
which follow a partial agreement model. The following six categories of annotation outcomes were determined by TeamTat:

e FA - Full Agree: same type, concept ID and text span
* CA - Concept Agree: same concept ID and text span, but different types

e TA - Type Agree: same type and text span, but different concept IDs

L]

PA - Partial Agree: same type and concept ID for overlapping text
* DA - Disagree: different types, different concept IDs for text spans

* SN - Single: text annotated by only one of the annotators

The full set of outcomes was only relevant for the initial manual annotation by the biocurators and during the cleaning and
remediation steps to create the training data for the initial model. As mentioned in Annotation tool and schema, we did not use
concept IDs for grounding terms and only evaluated for prefix matches, which, as they were directly linked to an entity type,
always returned a perfect match.

In order to investigate whether there was any bias introduced into the annotations by individual biocurators we also applied
the SemEval procedure to the manually annotated publications, see Annotation evaluation using SemEval procedure.

Annotation processing for training and evaluation

In order to train a transformer-based annotation algorithm and to be able to calculate annotation statistics to monitor the
performance of both the algorithm and the human annotators, the publication text and its in-line annotations needed to be
converted from BioC XML into the IOB (Inside Outside Beginning) format>®. For each document we iterated over the individual
paragraphs, split them into sentences and combined them with their respective annotations using the offset values available
in the BioC XML file. For the total list of isolated sentences, we then generated an index. Next, the isolated sentences were
converted into tab-separated TSV files. These TSV files were used to calculate various statistics, see in section Annotation
evaluation using SemEval procedure. The index was then randomly split to create three smaller files holding train, test and
development sets, containing 70%, 15%, and 15% of sentences, respectively.

During the conversion process it was found that a number of open access documents retrieved from NCBI’s FTP site
had line breaks introduced within a paragraph, often in figure or table captions. These line breaks resulted in shifts of the
paragraph offset by "+1", which introduced character position miss-matches for the corresponding annotations. Through
personal communication with the maintainers of the FTP site, it was found that the offset shift was likely a result of the
conversion process from a number of input file formats provided by publishers to BioC XML. Occasionally, we also found
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identical sentences and annotations more than once. In this case, only the first occurrence would be included in the data.
Although all efforts were made to catch as many errors as possible, on average 21 annotations were lost in each batch, which
amounts to 0.2% as each batch had on average 10,037 annotations.

Training a first named entity recognition system

Using the TSV files from above, we trained a first model. The basic principles of our algorithm and training process are given
in Algorithm 1. The training routine described also provided the basis for the iterative training to build a semi-automatic
annotation system.

Algorithm 1: Iterative Deep Learning Model Training with Curators in Loop

Data: 10 curated articles by 7 curators in Team Tat
Result: Trained Deep Learning model D,, and Ground Truth (GT)
Input :n=1
1 while Performance improvement <= 0.5% OR n = 10 do
// Step 1
Initialise Load 10 curated articles and GT;
Train D,,—; with the 10 curated articles and GT;
Evaluate curator performance and generate GT using maximum vote;
// Iteration n=1
Perform inference using D,—; on 10 unseen articles;
Convert inferences to the Team Tat format;
Send articles to a curator for validation and correction;
Update GT using curator feedback and resolve discrepancies through maximum vote;
Incrementn =n+1;
10 Train D1 with updated (nx 10) curated articles and GT;
11 end

W N

NI -REE N B Y |

Taking advantage of the rapid developments in natural language processing (NLP), we chose a starting model based
on Google’s transformer?’. For our objective, NER, we looked at BERT (Bidirectional Encoder Representations from
Transformers)-based models such as BioBERT?®, PubmedBERT?’, and BioFormer®’. We employed a pre-trained transformer
model from Hugging Face (https://huggingface. co), namely microsoft/BiomedNLP-PubMedBERT-base-uncased-
abstract-fulltext. Fine-tuning was conducted for 3 epochs, initially, using the carefully selected hyperparameters listed in Table
2. Optimizing the hyperparameters resulted in an improved initial model, v1.2, which was used to annotate a new batch of
publications. We also reduced the number of entity types from 23 to 19, as we found during the data preparation step that
some entity types had too few samples to allow for a meaningful split into train, test and evaluation set and had a negligible
contribution to training.

Consecutive rounds of semi-automatic annotation and NER training

To develop a robust algorithm, a diverse corpus, larger than the initial ten publications, was needed. Therefore, a human-in-the
loop approach combined with a named entity recognition system (see Training a first named entity recognition system) was
used, to iteratively increase the number of annotated publications in the corpus.

In each iteration, a new batch of ten publications randomly selected from the open access list was presented to the current
best model to identify text spans and annotate them with their entity types. The returned predictions were in BioC XML format
which allowed for visual inspection in the annotation tool TeamTat.

At the end of each prediction round, the project manager inspected each of the ten publications in the batch, and fixed any
errors in the annotations produced by the NER model. This curation process did not only look at the predicted annotations but
rather the pre-annotated spans served as a guide for the annotator, who was still required to read the full text and add missing
annotations. Such an approach of post-prediction curation has been implemented as a standard tool in the NLP suite "prodigy"
version 3 https://prodi.gy/ in the function "ner.correct” ("ner.make-gold" in version 2). A similar approach was also
used by Gnehm et al.!. Any annotations predicted in the "Methods" and "References" sections were removed (see annotation
schema in the Supplemental Materials for details). The curated annotations were stored in BioC XML to be later combined
with other batches and converted to the IOB format for a new round of model training or being used as ground truth for model
performance monitoring. The applied workflow is presented in Figure 3.

For entity types that repeatedly produced large numbers of false-positives or false-negatives, i.e. were not correctly identified
by the predictor and required manual curation, anonymous biocurator polling was used to improve the annotation process. Here,
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examples of ambiguously labeled terms were given to all biocurators and they were asked to assign entity types. A majority
vote across the responses determined the entity type and the annotations in the publications were updated accordingly. For
example, it was not clear what should be labeled as entity type "mutant". After polling, point mutations at specific sequence
positions and deletions/insertions of sequence ranges or whole domains and proteins were included.

The decision was made that no new publications would be added for training once the NER model would not improve by
more than 0.5% for overall values for F1-measure, precision and recall across all entity types or reaching 100 publications,
whichever came first.

As a result of changes to the annotation schema in terms of entity types (described in section The annotation tool and
schema) and adding new publications over time, splitting into train, test and validation sets was carried out anew for every new
model training. In order to be able to judge and compare the performance of models v2.1 and v3.1, we therefore employed an
additional set of ten publications which had not been used for any training, testing or validation and provided a completely
independent test set.

It should also be noted that for inference on a new document, we supplied the publication text split into paragraphs rather
than sentences as was used during training. This was aimed at the transformer model’s ability to contextualize named entities
and as was shown by Luoma and Pyysalo®? and Wang et al.>® this was expected to improve the model’s performance.

Annotation evaluation using SemEval procedure

To monitor and evaluate the performance of the trained predictor, we followed the published assessment process for SemEva
Each predicted annotation was assessed whether it had a matching annotation in the ground truth using the following five
categories:

134,

* Correct - full agreement between predicted annotation and ground truth annotation in text span and entity type
* Incorrect - disagreement between predicted annotation and ground truth annotation in text span and entity type
* Partial - text span overlaps in predicted annotation and ground truth annotation but the entity type may differ

* Missing - annotation is only found in the ground truth but not in the predicted annotations

* Spurious - annotation is only found in the predicted annotations but not in the ground truth
SemEval then evaluated a found match whether it belonged to one of four different classes of matches:

e Strict - only evaluate annotations with exact text span boundaries and exact entity types between predicted and ground
truth annotations

* Exact - allow annotations to have exact text span boundaries with disagreement in entity type between predicted and
ground truth annotations

* Partial - allow annotations to have partially overlapping text span boundaries with disagreement in entity type between
predicted and ground truth annotations

* Type - allow annotations that have some form of agreement between predicted and ground truth annotations

For each class of match the precision, recall and F1-measure were determined. The statistics were calculated for annotations
in the selected sections title, abstract, introduction, results, discussion, tables, as well as table and figure captions. In order to
apply the SemEval procedure to the annotations, the text and in-line annotations had to be converted from BioC XML to the
IOB format as described above in Annotation processing for training and evaluation.

Please note that the evaluation was done by comparing the predictions to the ground truth. However, we used all the
predictions produced by the different models on the full-text BioC XML rather than predicting only on the sentences included
in the ground truth. As a consequence, the models produced predictions that are not found in the ground truth. Those additional
sentences were given the O(utside) label and appended to the ground truth. During the evaluation process these annotations
were classed as "spurious”.

For the batches used during consecutive training described above in Consecutive rounds of semi-automatic annotation and
NER training, we performed the evaluation across the entire batch. The independent test set, batch 5, for the comparison of
autoannotator versions v2.1 and v3.1, additionally underwent a per-document evaluation.
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Results

Manual annotation statistics and annotator performance

After merging the annotations from the initial manual annotation round, it became apparent that only seven out of ten
publications had been double-annotated, namely PMC4784909, PMC4786784, PMC4792962, PMC4832331, PMC4833862,
PMC4850273, and PMC4852598. The remaining three publications had very few double or only single annotations. We
therefore calculated inter-annotator agreement using the TeamTat analysis tool for both options, seven documents with double
annotations and ten documents with three only having partial annotations. The statistics are provided in Table 3. Excluding
the partially annotated publications caused a drop of 1.8% for the full-agreement statistics from 79% for ten documents to
77.2% for seven. Although gold-standard double-annotation could not be achieved for all documents, those that were fully
annotated had high agreement between the annotators and were expected to provide good quality training data for bootstrapping
a transformer model.

After further cleaning and term disambiguation discussed between the project manager and the lead biocurator, a consolidated
set of annotated documents was created, which served as a ground truth. Table 4 gives the total annotation counts for each
publication in the ground truth. We manually annotated 10,451 terms, across all publications ranging from 715 to 1,549 and a
mean of 1,045 annotations per article. Those annotations represented 2,988 unique terms across 19 different entity types. Table
5 contains the raw counts as well as the number of unique terms found for each entity type. We found that the top-10 entity
types for total number of counts were also those with the highest count for unique terms. Those specific entity types sorted
by total count in descending order are: "protein”, "structure_element", "protein_state", "chemical", "residue_name_number",
"protein_type", "evidence", "mutant”, "experimental_method" and "site". They represent the most relevant key terms to describe
residue-level details in a protein structure and do not only appear with high frequency in the training data, but also provide the
algorithm with a diverse set of terms to learn and generalize from.

This ground truth was also used to assess each biocurator’s performance in the initial annotation round using the SemEval
evaluation process. The evaluation was done for all the publications for an annotator, regardless of whether they had been
fully or partially annotated. In Table 6, the precision achieved by each annotator is given. Applying a "partial agreement"
evaluation strategy, we found that all annotators reach a score of 0.79 and above, which underlines the fact that all biocurators
have a strong biochemistry and structural biology background and generally look for the same terms within a publication and
find most of the occurrences in the ground truth. The scores for the recall, Table 7, are much lower which indicates that all
biocurators are not consistent in annotating the same terms, i.e. within the same document a term may have been assigned
different entity types, if a term spans multiple words there may be different span boundaries for the same term or a term may
have been missed. The F1-measure for each annotator in Table 8 again supports the finding that generally all annotators share
the same understanding for the key terms in the documents but differ in their assignment to a specific entity type and where
the span boundaries should be placed. It is worth noting that AnnotatorQO achieved the highest scores for precision, recall and
F1-measure for all four evaluation options. Such dominance from one annotator increases the risk of bias. However, considering
that the agreement between different annotators, given in Table 3, is > 75%, i.e. annotators agree at least partially on more than
75% of annotations, the majority of annotations will not have been biased by AnnotatorQ’s performance.

Overall, the annotator statistics underline the high level of expert knowledge of the biocurators and that, although gold
standard double annotation was not achieved across all documents and some bias from one annotator may have been introduced,
the identified annotations are of high quality.

Initial model trained on ten manually annotated publications

The initial model (v1.2) was trained on ten manually annotated publications described in Manual annotation of initial set of
publications. Its performance results on the development set are plotted in Figure 4. Throughout the training process, the
model’s performance consistently improved, as indicated by decreasing losses and increasing precision, recall, F1-measure, and
accuracy. However, the increasing gap between training and validation loss indicated overfitting. With the small sample size of
10,451 annotations used to develop this first model, overfitting was not surprising, but learning was clearly observed in the loss
curves. Consequently, we increased the sample size and explored some hyperparameter settings and iteratively improved the
model (see below Consecutive model training).

Consecutive model training

In Table 9 we give the overall performance statistics (precision, recall, F1-measure and accuracy) for the respective test sets
of the different consecutive models averaged across all entity types. Although there is only minimal change in the overall
statistics for the different models, plotting the training and validation loss for each training round and comparing the different
models revealed that those trained on the larger corpus are less prone to overfitting (see Figure 5). With each additional batch
of annotations added, the training loss for the corresponding model started at a higher point, as would be expected from a
larger, more diverse corpus, requiring a model to work harder to learn commonalities in the data. This followed a sharp drop,
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which lasted for the first three epochs and, finally, all models converged to a similar value after seven epochs. Therefore, all
models showed clear signs of learning. To assess how the models performed on data not used for training, we looked at the
validation loss determined for each respective validation set. For models v1.2 and v1.4 the validation loss never dropped, but
instead showed a continuous increase, which is a clear sign of overfitting (see Figure 5). A model that is prone to overfitting is
undesirable, as this would lead to unreliable predictions. After adding additional annotations for models v2.1 and v3.1, we
observed a similar drop in the validation loss as we found in the training loss (Figure 5) for the first three epochs followed by a
slow increase thereafter. Such behavior indicated that the models trained on a larger corpus exhibited reduced overfitting and
that predictions for new, unseen data could be expected to be of similar quality as for the training data.

To further judge the performance of the different models, we also monitored the changes in precision, recall and F1-measure
for the individual entity types in the respective test sets, Table 10, Table 11, Table 12, respectively. Generally, even the model
trained on only ten publications (v1.2) already did reasonably well across the different entity types with the vast majority of
scores for precision, recall and F1-measure being > 0.85. However, as observed above in the general training and validation
loss plots, model v1.2, and to a lesser degree v1.4, was prone to overfitting, which is supported by achieving scores of 1.00
for a number of entity types for precision, recall and F1-measure. We also found that not all entity types were predicted with
similar confidence by the different models. Such behavior reflects the fact that the training data is highly imbalanced for the
different entity types, but also that the annotation schema was updated between models. Therefore, a direct comparison of the
different models has to be done with caution.

The iterative training approach meant that for every batch that was automatically annotated by one of the models we also
had a set of ground truth annotations from curation, which served as training data for the next generation model, but could
also be used for evaluation of the predecessor. Following the SemEval protocol, we evaluated the performance of the different
models. The statistics for precision, recall and F1-measure for each model and its respective ground truth batch are given in
tables Table 13, Table 14 and Table 15. We found that with each training iteration using an increased and more diverse set of
annotations, the scores for precision, recall and F1-measure improved, reflecting a model’s ability to make predictions closer to
the respective ground truth.

Finally, we compared models v2.1 and v3.1 on an independent test set of ten publications to serve as ground truth for final
model selection. The prediction statistics for the two models on the individual documents in the independent test set are given
in Table 16 for precision, Table 17 for recall and F1-measure in Table 18. The statistics were calculated following the SemEval
process. We found that both models performed well on the independent test set with some publications proving easier to predict
on, i.e. models achieving higher scores. As model v2.1 achieved higher scores for the different evaluation types across all
documents, we chose it as the current best model.

Conclusion

Manually annotating a domain specific corpus with a team of experts is usually a time and cost intensive process. Our presented
approach shows that a small corpus of ten publications annotated by a team of highly qualified experts is sufficient to bootstrap
an initial model, v1.2, for a human-in-the-loop application. In consecutive rounds, we improved on this initial model to yield
our best performing version, v2.1. Our best model is highly specific in annotating biomedical literature concerned with protein
structures and should be used to identify key-terms describing the 3-dimensional composition of proteins. We made all our data
and models open access and they are available for download or programmatic access from https://huggingface.co/.
The code provided alongside can be used as a wrapper to run and evaluate the models locally or serve as a start to develop a
similar workflow in any other field.

Data availability
The various data files have been made available at: https://huggingface.co/PDBEurope
1. Stand-alone curator annotations
e CSV

* JSON

¢ Inside-outside-beginning (I0OB)

2. Full-text XML files (without annotations)

3. Full-text BioC with annotations in XML format
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368 4. Full-text BioC with annotations in JSON format

369 The annotations and documents are made available in a number of formats. We provide the annotations and publications
a0 grouped as they were used to train the models v1.2, v1.4, v2.1 and v3.1. The annotations for batch 5, used to compare models
an - v2.1 and v3.1 are provided separately. The plain, full-text XML files of all documents are provided in BioC without annotations.
a2 The annotations themselves are provided in-line in BioC for each publication, either as XML or as JavaScript Object Notation
a3 (JSON) format. Additionally, the annotations are available as standalone comma-separated values (CSV) and JSON. In these
a7+ standalone CSV and JSON files, an annotation is described by its unique “id”, “character start”, “character end” to locate the
a5 starting and ending character positions within a sentence, “span” representing the covered text span and “entity type” giving
a7e  its entity type. To identify from which document an annotation was retrieved, we also use the PMCID of the corresponding
a7 publication as “document id” in the standalone annotation files. We also provide the annotations and their respective sentences
w78 in the IOB format. The IOB files provide sentences with IOB tags and follow the CONLL NER corpus standards>*. The datasets
are  to develop the four different models and the independent test set are available from Huggingface:

380 e https://huggingface.co/datasets/PDBEurope/protein_structure_NER_model_vl.?2

38t e https://huggingface.co/datasets/PDBEurope/protein_structure_NER_model_vl.4

382 e https://huggingface.co/datasets/PDBEurope/protein_structure_NER_model_v2.1

383 e https://huggingface.co/datasets/PDBEurope/protein_structure_NER_model_v3.1

384 * https://huggingface.co/datasets/PDBEurope/protein_structure_NER_independent_val_
385 set

386 For example, the data folder for model v1.2 contains the following subfolders and files:

387 * annotated_BioC_JSON: one JSON file for each annotated publication in BioC; < PMCID >_ann.json

388 * annotated_BioC_XML: one XML file for each annotated publication in BioC; < PMCID >_ann.xml

389 * annotation_CSV: one CSYV file for each publication, annotations only; < PMCID >.csv

390  annotation_IOB: all annotated sentences in IOB format and training, testing, development subsets; all.tsv, train.tsv,
301 test.tsv, dev.tsv

392 * annotation_JSON: single JSON file containing all annotations from all documents

393 e raw_BioC_XML: one XML file for each NOT annotated publication in BioC; < PMCID >_raw.xml

394 The four trained models, v1.2, v1.4, v2.1 and v3.1 are available from Huggingface:

395 e https://huggingface.co/PDBEurope/BiomedNLP-PubMedBERT-ProteinStructure-NER-v1.2
396 e https://huggingface.co/PDBEurope/BiomedNLP-PubMedBERT-ProteinStructure-NER-v1.4
397 e https://huggingface.co/PDBEurope/BiomedNLP-PubMedBERT-ProteinStructure-NER-v2.1
398 e https://huggingface.co/PDBEurope/BiomedNLP-PubMedBERT-ProteinStructure-NER-v3.1

= Code availability

a0 The code is available at the repository https://github.com/PDBeurope/ner_for_protein_structures.
a1 Detailed documentation and how to install the tools can be found at https://ner—-for-protein-structures.
w2 readthedocs.io/en/latest/. Scripts include those used for cleaning and formatting of the annotations from annota-
03 tion tool TeamTat and how to generate the datasets in the IOB format for input to deep learning algorithms. Additional scripts
a4 allow the calculation of model performance and prediction outcome following the SemEval process.
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Table 1. Proportion of publications selected from batches of 10,000 using seven independent LitSuggest models and a

confidence score > 0.8

batch number of positive PubMed IDs  percent of total

1-10,000 8,682 87%
10,001-20,000 8,626 87%
20,001-30,000 8,612 86%
30,001-40,000 8,543 85%
40,001-50,000 8,601 86%
50,001-60,000 8,552 86%
60,001-70,000 8,543 85%
70,001-74,253 3,580 84%
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Hyperparameter Value Description

Evaluation Strategy Epoch-based evalua- The approach used to evaluate the model during
tion training.

Learning Rate 2e-5 The step size at which the model’s weights are

updated during training.

Per-Device Training 2 (v1.2, vl1.4); 5 The number of samples used for each gradient
Batch Size (v2.1); 10 (v3.1) update during training on each device.

Per-Device Evalua- 2 (v1.2, v1.4); 5 The number of samples used for evaluation on

tion Batch Size (v2.1); 10 (v3.1) each device.

Number of Training 10 The number of times the entire training dataset
Epochs is passed through the model during training.
Weight Decay 0.01 A regularization term used to prevent overfit-

ting by penalizing large weights in the model.

Table 2. Hyperparameters for the Named Entity Recognition Model - all models
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#docs Total  FA' CA?Z TA3 PA ? DA’ SN ©

10 11,388 8,997 191 334 283 1,388 195
(79.0 %) (1.68 %) (2.93 %) (2.49 %) (12.19 %) (1.71 %)

7 7,965 6,146 191 46 271 1,311 0

T72%)  (2.4%) 058%) (3.4 %) (1646 %) (0.0 %)

Table 3. Inter-annotator agreement between the biocurators for the initial ten publications after the first independent
annotation round

IFA - Full Agree: same type, concept ID and text span

2CA - Concept Agree: same concept ID and text span, but different types
3TA - Type Agree: same type and text span, but different concept IDs
4PA - Partial Agree: same type and concept ID for overlapping text

SDA - Disagree: different types, concept IDs or text spans

SN - Single: text annotated by only some of annotators
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Document ID  annotation count

PMC4784909 865
PMC4786784 1,549
PMC4792962 1,268
PMC4832331 739
PMC4833862 1,044
PMC4848090 987
PMC4850273 1,121
PMC4850288 716
PMC4852598 1,229
PMC4887326 933
Sum 10,451

Table 4. Total number of annotation count for each of the initial ten manually annotated publications, after curation and
consolidation
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Entity type

Total count

Unique mentions

Chemical
Complex_assembly
Evidence
Experimental_method
Gene
Mutant
Oligomeric_state
Protein
Protein_state
Protein_type
PTM
Residue_name
Residue_name_ number
Residue_number
Residue_range
Site
Species
Structure_element
Taxonomy_domain
Sum

1,030
289
645
570
154
614
151

1,457

1,093
756
134
139
795
48
90
519
205

1,448
314

10,451

260
81
155
302
43
188
23
122
303
267
40
49
281
20
85
209
60
453
47
2,988

Table 5. Total and unique annotation count for the different entity types in the initial ten manually annotated publications,

after curation and consolidation
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annotator  strict exact partial type # documents
annotator0  0.82  (0.88 0.92 0.87 8
annotator] 0.70  0.80 0.87 0.74 2
annotator2  0.52  0.80 0.88 0.59 2
annotator3 0.55  0.65 0.79  0.69 2
annotator4 049  0.71 085 0.72 2
annotator5 049  0.86 092 0.53 2
annotator6  0.78  0.90 094 0.82 2

Table 6. Precision for manual annotation compared to ground truth for each annotator using SemEval evaluation

18/31


https://doi.org/10.1101/2024.03.09.583700
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.09.583700; this version posted March 13, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

annotator  strict exact partial type # documents
annotator0 0.64  0.69 0.72  0.68 8
annotator] 0.39 0.44 0.49 0.41 2
annotator2  0.37  0.58 0.63 0.42 2
annotator3 043  0.50 0.62 0.61 2
annotator4  0.05  0.08 0.09 0.08 2
annotator5 0.14  0.24 025 0.14 2
annotator6  0.20  0.23 0.24 0.21 2

Table 7. Recall for manual annotation compared to ground truth for each annotator using SemEval evaluation
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annotator  strict exact partial type # documents
annotator0  0.72  0.77 0.81 0.76 8
annotatorl  0.50  0.57 0.62 0.53 2
annotator2 043  0.67 0.74 0.42 2
annotator3 048  0.57 0.69 0.61 2
annotator4  0.10  0.14 0.17 0.15 2
annotator5 0.21  0.37 040 0.23 2
annotator6  0.32  0.36 0.38 0.33 2

Table 8. Fl-measure for manual annotation compared to ground truth for each annotator using SemEval evaluation
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model

Overall precision Overall recall  Overall F1-measure  Overall accuracy

v1.2
vl4
v2.1
v3.1

0.87 0.89 0.88
0.90 0.92 0.91
0.90 0.92 0.91
0.91 0.92 0.91

0.95
0.96
0.96
0.96

Table 9. Overall training statistics for consecutive models
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Entity vl2 v14 v2.1 v3.1
Bond Interaction - - 0.93 0.82
Chemical 0.84 090 0.89 092
Complex Assembly 0.85 0.88 091 0.89
Evidence 0.74 0.86 0.84 0.89
Experimental Method 0.77 0.73 0.85 0.80
Gene 0.86 0.89 0.79 0.79
Mutant 0.83 093 091 092
Oligomeric State 094 0.88 093 0.96
Protein 091 097 094 0.96
Protein State 0.80 0.78 0.83 0.86
Protein Type 0.85 0.84 0.85 0.85
PTM 0.88 0.64 0.70 0.85
Residue Name 0.86 097 092 0.74
Residue Name Number 0.99 0.98 095 0.96
Residue Number 1.00 1.00 0.80 0.70
Residue Range 1.00 0.86 0.81 0.89
Site 0.83 0.83 0.85 0.88
Species 096 097 094 0095
Structure Element 0.88 091 091 0091
Taxonomy Domain 095 097 099 0.98

Table 10. Precision for the different models for the different entity types on the test set
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Entity vl2 v14 v2.1 v3.1
Bond Interaction - - 0.88 0091
Chemical 0.90 093 091 091
Complex Assembly 0.76 091 093 0.90
Evidence 0.76 0.89 0.88 0.88
Experimental Method 0.75 0.76 0.85 0.82
Gene 092 086 0.86 0.65
Mutant 092 095 097 094
Oligomeric State 1.00 1.00 0.99 1.00
Protein 093 097 097 0.96
Protein State 0.83 0.85 0.88 0.88
Protein Type 0.84 090 0.85 0.88
PTM 0.76 0.81 0.70 0.79
Residue Name 095 092 097 096
Residue Name Number 0.99 099 0.96 0.98
Residue Number 1.00 093 097 0.73
Residue Range 0.80 091 0.70 0.86
Site 0.82 0.86 0.87 0.90
Species 098 1.00 096 0.95
Structure Element 086 092 092 092
Taxonomy Domain 097 096 098 0.98

Table 11. Recall for the different models for the different entity types on the test set
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Entity vl2 v14 v2.1 v3.1
Bond Interaction - - 0.90 0.86
Chemical 0.87 092 090 0.92
Complex Assembly 0.80 0.89 092 0.90
Evidence 0.75 0.88 0.86 0.89
Experimental Method 0.76 0.75 0.85 0.81
Gene 0.89 0.88 0.82 0.71
Mutant 0.88 094 094 0.93
Oligomeric State 097 093 096 0098
Protein 092 097 095 0.96
Protein State 0.81 0.81 0.85 0.87
Protein Type 0.84 0.87 0.85 0.87
PTM 0.81 0.71 0.70 0.82
Residue Name 091 094 094 0.84
Residue Name Number 0.99 099 096 0.97
Residue Number 1.00 096 0.88 0.71
Residue Range 0.89 0.89 0.75 0.87
Site 0.82 0.85 0.86 0.89
Species 097 098 095 0.95
Structure Element 0.87 091 092 091
Taxonomy Domain 096 097 098 0.98

Table 12. Fl-measure for the different models for the different entity types on the test set
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model databatch strict exact partial type
vl.2 batch 2 066 075 083 075
vl.4 batch 3 069 0.79 085 0.75
v2.1 batch 4 075 083 0.88 0.82
v2.1 batch 5 078 085 091 0.85
v3.1 batch 5 077 084 090 0.86

Table 13. Precision for models and their respective publication batches compared to ground truth for each batch using
SemEval evaluation

model databatch strict exact partial type
v1.2 batch 2 0.67 077 085 0.76
vl.4 batch 3 071 080 087 0.77
v2.1 batch 4 075 083 089 0.83
v2.1 batch 5 075 082 0.87 0.8l
v3.1 batch 5 075 079 086 0.81

Table 14. Recall for models and their respective publication batches compared to ground truth for each batch using SemEval
evaluation

model databatch strict exact partial type
vl.2 batch 2 067 0.76 084 0.76
vl.4 batch 3 070 0.79 086 0.76
v2.1 batch 4 0.75 0.83 0.89 0.82
v2.1 batch 5 0.76  0.83 0.89 0.83
v3.1 batch 5 0.75 0.81 0.88 0.83

Table 15. Fl-measure for models and their respective publication batches compared to ground truth for each batch using
SemEval evaluation

v2.1 v3.1
Document ID  strict exact partial type | strict exact partial type
PMC4806292 0.78 0.84 091 087 | 078 0.84 091 0.86
PMC4817029 086 090 094 091 | 086 0.89 094 092
PMC4980666 0.74 0.76 0.83 0.82 | 072 0.75 0.83 0.82
PMC4981400 0.74 0.81 089 087|076 0.83 089 0.86
PMC4993997 0.78 0.84 091 0.85 | 0.78 0.81 090 0.85
PMC5012862 0.85 092 095 0.89 | 0.83 090 094 0.89
PMC5014086 0.74 087 093 083 | 072 0.84 092 0.83
PMC5063996 0.77 088 092 083 | 077 087 092 0.85
PMC5173035 0.69  0.81 089 0.75| 068 0.77 087 0.80
PMC5603727 0.74 080 0.89 085|074 079 0.88 0.86

Table 16. Precision for models v2.1 and v3.1 on individual documents of batch 5 using SemEval evaluation

25/31


https://doi.org/10.1101/2024.03.09.583700
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.09.583700; this version posted March 13, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

n = 10,000

o

— | g8

S 2

©

) al o
LN 2
P =l e B 3
-~ Ln q:
= & o %
[sTs} [ -~ At (*)] =
3 o non gJD 22 =
< )} = = < S
< =i = 5
= =1 = e = I 2
aa m =i (@) c Q
.:g l\ EQ V}m - - [0)
] w =
€5 |1 an |88 |8 3
T uie C £ Nyl 8O G| 5
o [ e NE =
@] [T = =
Q< o nn O C o o [
a = — = o 9 o ©
C el = o & o 5 ]
= > b= = = + %) <
W a O C O = 3)
8 8 ‘ 23 |8 |[Z 3
— - m .
= o =l | & - I~
o g = i o
o o =
— = Oy Y - i

=)
—

26/31


https://doi.org/10.1101/2024.03.09.583700
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.09.583700; this version posted March 13, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Manual annotation
cleaning/consolidating
proofreading
cleaning/consoclidating
finalizing

2
S
Z
-
5]
1 E .
9 E o
. = o S
a et = =
o [=] 1+ =
c = w g
g = = s
- o =] <
o Q d=] —
1] <
= =1 ] =
o = 5 8 2
= £ c g i s
] ] 3 g
b = [ g
i < E 2 s
3 = <
@ B g
@ )
- <
A Q
] %]
E .
n A (4]
2 = s o
- = . =
- N S
o 7 g [T
5] w "
= m g
7] = k=
£ = @
(il] ]
@ 5
T
=
&
L
[+1]
2
[
=]
8
(-]

[

27/31


https://doi.org/10.1101/2024.03.09.583700
http://creativecommons.org/licenses/by/4.0/

28/31

) f

b
<

()
T
c ®©
55
a=
22
T3
28 eyep Sururen jo dn pring doof-oyj-ur-uewiny ‘9AnEIAN] "¢ a4nbi4
38
[o)y =
2 m_mcc 195159] aJedwod
= £
Wm. —
mw oleljouue-ald
=
o] 55 w._mgrc7
N
.2 € pJepueisp|oo
g 1591 ues|d
989 e ¢ PIERCEBPID pue ajejouue-ald |
< c
s8¢ T plepuelsp|o9
Sz ep Surure / 2
825 ueapd
EE pue ajejouue-aid
S mm ASp
$82 JEPUBISP|O
WWJ“ 1591 ¢ PJEpuUBISP|OS
2Ly
u.m.mw uied} T piepuelsp|oD
o o
m.mm PIEp surure
() —
By ues|d
25
522 pue a1ejouue-aid
28 Asp
o 1591
5&
do uien
o=
S& ueap
= >
.M e pue ajejouue-aid
=
W.M ASp
=3 1591 L PIERUELSPIOS UOIIeIOUUE |BNUBIA|
m.m ulen
T
S8
zg
xcoc
8.8
“E


https://doi.org/10.1101/2024.03.09.583700
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.09.583700; this version posted March 13, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

1.0 1.2
= Training Loss = Precision
= = Validation Loss == Recall
- AcCcuracy - F1 Score
- 1.0
0.8 A
- 0.8
0.6 -
[}
o
o
9 L 0.6 £
. 8
&
0.4 - = ——-
/’___-"
”*‘.—'--..__-.-”/ - 0.4
-
0.2 -
- 0.2
0.0 T T T T —— T 0.0
2 4 6 8 10

Epoch

Figure 4. Training and validation loss for the first model v1.2 as well as accuracy, precision, recall and F1-measure
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Figure 5. Training and validation loss for the different consecutive models v1.2, v1.4, v2.1 and v3.1
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v2.1 v3.1
Document ID  strict exact partial type | strict exact partial type
PMC4806292 0.73 078 085 081 | 073 0.79 085 0.81
PMC4817029 084 089 092 090 | 083 086 090 0.88
PMC4980666 0.74 0.77 084 082 | 0.71 074 082 0.81
PMC4981400 0.75 082 090 088 | 0.73 080 086 0.83
PMC4993997 0.74 080 087 0.81 | 0.75 078 0.86 0.81
PMC5012862 0.78 0.84 087 0.82 | 0.75 0.81 0.84 0.80
PMC5014086 0.70 0.82 088 0.78 | 0.68 0.80 0.87 0.78
PMC5063996 0.74 0.86 088 080 | 0.72 0.82 087 0.80
PMC5173035 0.67 0.79 087 0.73 | 0.67 0.75 0.85 0.78
PMC5603727 0.72 0.77 086 0.82 | 0.71 0.75 0.86 0.83

Table 17. Recall for models v2.1 and v3.1 on individual documents of batch 5 using SemEval evaluation

\ v2.1 H v3.1 ‘

Document ID  strict exact partial type | strict exact partial type
PMC4806292 0.75 0.81 088 084 | 076 0.82 088 0.83
PMC4817029 0.85 090 093 091 | 0.85 088 092 090
PMC4980666 0.74 0.77 084 0.82| 072 074 0.82 0.81
PMC4981400 0.75 0.82 089 087 | 074 0.82 088 0.84
PMC4993997 0.76 082 0.89 0.83 ] 076 079 0.88 0.83
PMC5012862 0.81 088 091 085|079 086 0.89 0.84
PMC5014086 0.72 085 091 080 | 070 082 0.89 0.80
PMC5063996 0.75 086 090 082 075 085 090 0.83
PMC5173035 0.68 0.80 088 0.74| 067 0.76 086 0.79
PMC5603727 0.73 079 0.87 0.83] 072 077 0.86 0.85

Table 18. Fl-measure for models v2.1 and v3.1 on individual documents of batch 5 using SemEval evaluation
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