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16 Abstract

7 Standard single-cell RNA-sequencing (scRNA-seq) pipelines nearly always include unsupervised

18 clustering as a key step in identifying biologically distinct cell types. A follow-up step in these

19 pipelines is to test for differential expression between the identified clusters. When algorithms over-

20 cluster, downstream analyses will produce inflated P-values resulting in increased false discoveries. In

21 this work, we present callback (Calibrated Clustering via Knockoffs): a new method for protecting

2 against over-clustering by controlling for the impact of reusing the same data twice when performing

23 differential expression analysis, commonly known as “double-dipping”. Importantly, our approach

2% can be applied to a wide range of clustering algorithms. Using real and simulated data, we show

25 that callback provides state-of-the-art clustering performance and can rapidly analyze large-scale

26 scRNA-seq studies, even on a personal laptop.

» Main

s Recent advances in single-cell RNA sequencing (scRNA-seq) technologies have enabled the generation of
2 datasets that contain the transcriptomic profiles of thousands to millions of individual cells [1, 2]. Unless
» an additional assay is paired with sequencing (e.g., CITE-seq [3]), cell type labels are not provided with
a1 the corresponding genomic profiles. This has led to many scRNA-seq bioinformatic pipelines requiring
2 both (i) clustering to identify putative cell types based on shared gene expression covariation and (ii)
;3 differential gene expression analysis between cells in each cluster to identify “marker genes” uniquely
s expressed by each putative cell type. The most commonly used software packages, such as Seurat [4]
s and Scanpy [5], perform these two steps on the same dataset. This double use of data is often referred
3% to as “circular analysis” or “double-dipping,” and is known to result in highly inflated P-values, even
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s in the null case when gene expression is identically distributed and there are no true groupings that
s distinguish cell populations [6, 7]. Due to the miscalibrated test statistics produced by circular analyses,
3 it is challenging to assess whether the genes found to be differentially expressed between two putative cell
w0 groups are “real” or solely identified due to chance based on the way that the cells are being partitioned
by the clustering algorithm that is being used. Importantly, simple solutions such as sample splitting
©» between cells do not appropriately correct for this type of post-selective inference [7].

43 Several methods have been recently developed to correct for post-selective inference after clustering.
s These methods include: (i) an approximate test based on the truncated normal distribution [8], (ii) a data
s splitting strategy that splits data at the level of individual gene counts [7], and (iii) using synthetic null
s variables called knockoffs for calibrating hypothesis testing [6]. The point of each of these methods is to
« identify an appropriate hypothesis testing significance threshold to account for the statistical inflation that
s occurs due to the double use of data. However, none of these tests inform if (or how) the re-clustering
s of cells should be done. They simply return a list of calibrated P-values. As a result, approaches
so for protecting against over-clustering have recently been proposed including “single cell significance of
si  hierarchical clustering” (sc-SHC) and “clustering hierarchy optimization by iterative random forests”
2 (CHOIR)[9, 10]. Here, we introduce callback (Calibrated Clustering via Knockoffs): a method that
53 integrates the negative control variable framework of knockoffs [11, 12] to the problem of identifying the
s« number of clusters that have statistical support in a single-cell dataset. Our approach can be paired with
s any existing clustering algorithm that has a hyperparameter for tuning the number of clusters and it
s makes no strong assumptions about the input data. We statistically motivate the need for an algorithm
57 like callback, evaluate its utility against other recently proposed clustering correction methods, and
ss  demonstrate its ability to efficiently scale to large-scale scRNA-seq studies.

50 The callback algorithm consists of three simple steps (Methods). First, we generate synthetic null
o variables, formally called knockoff features [11], where we augment the single-cell data being analyzed
e with “fake” genes that are known not to contribute to any unique cell type but that match the real data
62 in distribution. Second, we perform both preprocessing and clustering on this augmented dataset. Third,
63 we calibrate the number of inferred clusters by using a hypothesis testing strategy with a data-dependent
6 threshold to determine if there is a statistically significant difference between groups and if re-clustering
s should occur (Fig. 1a). The synthetic knockoff genes act as negative control variables; they go through
e the same analytic steps as the real data and are presented with the same opportunity to be identified
o as marker genes. The callback algorithm uses the guiding principle that well-calibrated clusters (i.e.,
s those representing real groups) should have statistically significant differentially expressed genes after
s correcting for post-selective testing, while over-clustered groups will have greatly fewer. We use this rule
7 to iteratively re-cluster cells until the inferred clusters are well-calibrated and the observed differences in
n  expression between groups are not due to the effects of double-dipping.

2 As a simple proof-of-concept, we simulated single-cell gene expression data to compare the clus-
7 ters found by the widely used Louvain algorithm with default parameter settings in Seurat (with the
7 FindClusters function where the resolution parameter is set to 0.8) versus using the same Louvain al-
75 gorithm paired with callback. We generated data under two scenarios. In the first scenario, there was
% only one true “cell type”. Here, the default approach with Seurat incorrectly identified four clusters
7 while callback correctly identified only a single cluster (Fig. 1b). In the second scenario, we simulated
7 the data such that there were three true cell types. In this case, the Seurat default incorrectly identified
7o four clusters by splitting the larger group into two clusters whereas callback correctly identified three
w clusters (Fig. 1c).

81 To evaluate the performance of callback on real single-cell RNA sequencing studies, we analyzed 20
& different tissues from the Tabula Muris dataset [13]. We compared callback with two recently proposed
53 methods for preventing over-clustering: (i) single-cell significance of hierarchical clustering (sc-SHC) [9]
s and (ii) clustering hierarchy optimization by iterative random forests (CHOIR) [10]. Both of these methods
e utilize hierarchical clustering paired with permutation tests to decide whether or not to merge clusters.
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Figure 1. Overview of the callback algorithm and examples of results from different clus-
tering approaches on simple simulated datasets. (a) Schematic of the clustering workflow with the
callback approach. (b) Demonstration of the traditional clustering framework versus the alternative
using callback for simulated data with one known group. Panels left to right show the true labels, clus-
ters found using the Louvain algorithm with default parameter settings in Seurat, and the clusters found
using the same Louvain algorithm paired with callback. (c¢) Demonstration of the traditional clustering
framework versus the alternative using callback for simulated data with three known groups. Panels left
to right show the true labels, clusters found using the Louvain algorithm with default parameter settings
in Seurat, and the clusters found using the same Louvain algorithm paired with callback.
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s All callback results are determined using the Louvain algorithm. We analyzed the 20 different tissues
s separately and evaluated the performance of each method by comparing their inferred cluster assignments
e to the manually curated cell type annotations from the original Tabula Muris study. To empirically
s assess the relative quality of clustering assignments, we utilized common metrics including the adjusted
o Rand index (ARI), the Jaccard index, the Fowlkes-Mallows index (FMI), V-measure, completeness, and
o homogeneity [14]. We include a vignette on these cluster evaluation metrics showing their behavior in a
o simple case study of over-clustering and under-clustering (Supplementary Note and Fig. S1). In the main
e text, we focus on ARI due to its popularity in the literature [14] and V-measure because it is the harmonic
o mean of completeness and homogeneity and balances the impact of over-clustering and under-clustering
os  (Supplementary Note).

% When evaluated by ARI (Fig. 2a), V-measure (Fig. 2b), completeness (Fig. S2), homogeneity (Fig. S3),
o Jaccard index (Fig. S4), and FMI (Fig. S5), callback shows state-of-the-art performance. In particular,
¢ when evaluated by ARI, callback performs best in 17 out of the 20 tissues, sc-SHC performs best in 2
o tissues, and CHOIR performs best in 1 tissue. Similarly, when evaluated by V-measure, callback performs
w0 best in 18 tissues, while sc-SHC and CHOIR perform best in 1 tissue each. The clustering results for all
1 algorithms across all 20 tissues are displayed via uniform manifold approximation and projection (UMAP)
102 plots in Figs. S6-S25 (for visualization purposes only). For many tissues, CHOIR tended to group cells
103 into many small sub-populations; while, for other tissues, sc-SHC severely under-clustered and failed to
e find any distinct cell types at all, returning only a single group (e.g., aorta, brain myeloid, and pancreas).
s In the diaphragm tissue, which contains five manually curated cell types, callback and sc-SHC matched
10 the five manually curated cell type labels almost exactly, while CHOIR seemingly over-clustered the data
w7 (Fig. 2¢). On the other hand, in the limb muscle dataset, which contains six manually curated cell types,
s callback finds six clusters that closely match the manually curated labels (ARI = 0.97 and V-measure
0o = 0.95), while sc-SHC finds 8 clusters (ARI = 0.74 and V-measure = 0.79), and CHOIR finds 16 clusters
o (ARI = 0.40 and V-measure = 0.69) (Fig. 2d). Importantly, callback exhibited better computational
w  efficiency (i.e., shorter runtime) than the other methods. While implementing each method on a personal
12 laptop with 6 cores, callback was overall the fastest, sc-SHC exhibited a similarly short runtime, and
us  CHOIR was the slowest (Fig. 2e). For example, in the fat tissue, callback finished 1 minute faster than
s sc-SHC and 15.6 minutes faster than CHOIR.

115 In order to show that callback generates useful hypotheses for downstream analyses, we further
ue compared the clusters determined by the default Seurat implementation of the Louvain algorithm to
u7  the clusters determined by using the Louvain algorithm with callback for the limb muscle tissue in the
us  Tabula Muris study (Fig. 3a-c). Using the FindMarkers function in Seurat, we identified the top 10 marker
e genes for each inferred cluster from both approaches. Qualitatively, the default Louvain implementation
10 appears over-clustered, where inferred clusters 1, 2, 6, and 7 show similar marker gene expression to
21 one another, as do inferred clusters 3 and 5 (Fig. 3d). In contrast, the groups found by callback show
122 much less shared expression between clusters (Fig. 3e). To further investigate whether cells had been
123 over-clustered by the default Louvain algorithm, we performed differential expression analysis between its
e inferred clusters and observed a high correlation in P-values when comparing (i) inferred clusters 1 and
15 2 versus 3 (Pearson correlation r = 0.923) and (ii) inferred clusters 1 and 2 versus 5 (r = 0.925) (Fig. 3f).
16 For the default Louvain algorithm, the inferred clusters 1 and 2 both correspond to skeletal muscle
127 satellite cells as annotated by the Tabula Muris Consortium, and inferred clusters 3 and 5 correspond to
128 mesenchymal stem cells. As a comparison, only the inferred clusters 1 and 2 from callback correspond
19 to skeletal muscle satellite and mesenchymal stem cells, respectively. Differential expression analysis for
10 the callback clusters (Fig. 3g) results in 506 differentially expressed genes (adjusted P-value < 0.05
wm  and an absolute log-fold change greater than one) which include many known skeletal muscle satellite
12 cell markers up-regulated in the inferred cluster 1 relative to the inferred cluster 2 (e.g., Des, Chodl,
ws Myll2a, Asbs, Sdeq, Apoe, Musk, Myf5, Chrdl2, Notch3) [15] and mesenchymal stem cell type markers
13 up-regulated in the inferred cluster 2 relative to the inferred cluster 1 (e.g., Col6a3, Collal, Igfbp6,
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s Pdgfra, Cls, Mfap5, Ecml1, Dcn, Dpepl) [16].

136 As a final analysis of computational scalability, we benchmarked the runtime and peak memory use
17 of callback, sc-SHC, and CHOIR on several other publicly available datasets containing 2700, 8444, 30K,
s and 40K cells (Figs. S26-S27) [17-20]. Each method was run on a machine with 16 cores (Methods).
139 On these datasets, sc-SHC was the fastest, closely followed by callback, and CHOIR was an order of
1w magnitude slower. Additionally, we applied each method using their default settings on subsets of the
w1 68,579 total peripheral blood mononuclear cells (PBMCs) provided by Zheng et al. [1]. These subsets
w2 were of sizes 1K, 2K, 5K, 10K, 20K, 30K, 40K, 50K, and 60K cells as well as the full dataset. On these
13 subsets, both callback and sc-SHC were very similar in speed, while CHOIR was an order of magnitude
e slower (Fig. S28). In terms of peak memory consumption, callback used the least memory while sc-SHC
1s  showed quadratic memory growth as a function of the number of cells (Fig. S29). In summary, callback
us is as fast (or faster) than alternatives and uses less memory. Notably, callback required less than 10
w  gigabytes (GB) of memory on datasets with nearly 70K cells and was able to cluster those cells in less
us  than 15 minutes (with 16 cores). This demonstrates the ability to analyze large datasets with callback
1 on a personal laptop.

150 The callback approach is not without its limitations. First, the algorithm works downward from an
151 upper bound on the number of clusters (often parameterized by K in the literature). This strategy could
152 potentially lead to under-clustered results if the starting upper bound is too conservative (i.e., if K is too
153 small). To circumvent this limitation, callback can be initialized with a large set of clusters; however,
1sa this will come with an additional computational cost because more iterations will likely need to be
155 performed until the algorithm converges onto a statistically appropriate number of clusters. Second, the
156 current implementation of callback does not account for additional metadata or confounding that might
157 be present in a scRNA-seq dataset. For example, in the presence of batch effects, spurious relationships
18 between cells can be created and callback might determine that cells of the same type need to be
150 partitioned into different groups (or vice versa). To that end, incorporating data integration steps, like
w0 batch effect correction, into the callback software is a relevant direction for future work. One possible
11 extension of the callback algorithm would be to run an integration approach (e.g., Harmony [21]) on
12 the principal component embeddings of the augmented count matrix to correct for possible confounding
163 before building a KNN graph and performing calibrated clustering.

164 In conclusion, we have presented callback, a novel approach aimed to protect against over-clustering
s when analyzing single-cell transcriptomic data. Through the analysis of several large-scale datasets,
16 we have shown that callback provides state-of-the-art clustering results at a fraction of the runtime
17 and computer memory when compared to other competing algorithms. Importantly, callback can be
168 efficiently run on a personal laptop when analyzing tens of thousands of cells. As a disclaimer, cells may
1o exhibit a variety of heterogeneous cell states, continuous axes of variation rather than discrete groups,
o or other complexities for which callback, or any clustering algorithm, is not completely well-suited.
i Overall, we envision that callback will be a useful aid when needing to assign labels to unknown cell
2 types. With both its speed and flexibility, callback will save practitioners the hours often spent manually
w3 investigating and re-clustering single-cell RNA sequencing datasets.

«» Methods

s Overiew of the callback algorithm

e  Consider a study with single-cell RNA sequencing (scRNA-seq) expression data for i = 1,..., N cells
w7 that each have measurements for j = 1,..., G genes. Let this dataset be represented by an N x G matrix
e X where the column-vector x; denotes the expression profile for the j-th gene. The callback method
179 augments the real expression matrix with knockoff genes which are generated to have no association with
o any particular cell type [11, 12]. These negative control variables go through the same preprocessing,
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Figure 2. (Continued on the following page).
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Figure 2. The callback algorithm shows state-of-the-art performance according to com-
monly used cluster quality metrics when compared to competing methods in the Tabula
Muris dataset. (a-b) Comparison of callback, sc-SHC, and CHOIR using (a) ARI and (b) V-measure
for each tissue. (c-d) Uniform manifold approximation and projection (UMAP) plots displaying the
cell type annotations for (c) the diaphragm tissue and (d) the limb muscle tissue datasets, respectively.
From left to right, we show the manually curated labels from the original study and clusters inferred by
callback, sc-SHC, and CHOIR, respectively. (e) Runtime comparison of callback, sc-SHC, and CHOIR
for each tissue in the Tabula Muris dataset. Each method was run using 6 cores on a personal laptop.

11 clustering, and differential expression analyses as the real observed genes in the study; therefore, they
12 are presented with the same opportunity to be identified as marker genes. Since the knockoff genes are
183 essentially noise variables, the distribution of their test statistics represent the impact of post-selective
e inference (i.e., deviations from the null). As a result, we can correct for these same deviations from
15 the null in the observed test statistics for the real genes which allows us to also calibrate our cluster
s assignments. This process is also known as implementing a “knockoff filter” (which controls the false
w7 discovery rate) when testing for differentially expressed genes between clusters [11, 12]. If there are no
s detectable differences between the inferred clusters, we assume that over-clustering has occurred and
189 re-cluster with a smaller number of groups.

190 More specifically, callback works by implementing the following steps:
101 1. For each gene in the study x;, generate a knockofl expression vector X;. Next, concatenate all of
19 the knockoff genes together and construct a matrix of knockoff variables X = [Xq,...,Xqg].
103 2. Combine the real gene expression matrix with the knockoff features into a single object X* =
104 [X;X]. Then perform the usual preprocessing on the augmented data matrix X*. In this paper,
105 preprocessing consists of normalizing the expression counts followed by principal component analysis
196 (PCA)
107 3. Apply a given clustering algorithm (e.g., the Louvain algorithm) to the PCA embeddings of the
198 augmented matrix X* (or, alternatively, apply the clustering algorithm to the augmented matrix
199 directly) .
200 4. Conduct differential expression analysis between each k-th and [-th cluster pair, denoted by Cy and
201 Ci, respectively. Obtain P-values for all genes (real and knockofl) across each comparison.
202 5. Let p;(k;l) represent the P-value for the j-th real gene when comparing differential expression
203 between clusters C, and C;. Similarly, let p;(k;) represent the P-value for the same comparison
204 but for the corresponding j-th knockoff gene. We use these two P-values to compute the following
205 knockoff test statistic
206 W;(k;1) = —logp;(k;1) — [—logp;(k;1)]. (1)
207 Intuitively, a large, positive value of W;(k; ) represents evidence that the j-th gene is truly different
208 between clusters Cy, C;, while a value less than or equal to zero represents strong evidence that there
200 is no difference in the expression of the j-th gene between the groups.
210 6. Next, compute the data-dependent threshold via the following formulation
Wk l) < —t

211 T(k,l):min{t>01 #{] " J( >_ } SCI} (2)

max{#{j : Wj(k;l) > t}}
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Figure 3. Using callback to avoid over-clustering leads to improved hypothesis generation
for downstream analyses. (a-c) Uniform manifold approximation and projection (UMAP) plots of
(a) the manually curated cell ontology class labels, (b) inferred clusters using the Louvain algorithm with
default parameter settings in Seurat, and (c) inferred clusters using the Louvain algorithm paired with
callback for the limb muscle tissue from the Tabula Muris study. (d) Heatmap of the top 10 marker
genes for each inferred cluster shown in panel b with the default Louvain implementation. (e) Heatmap of
the top 10 marker genes for each inferred cluster shown in panel ¢ with the Louvain algorithm paired with
callback. (f) Scatter plots and corresponding Pearson correlation coefficient (r) of the log,,P-values for
all genes being tested for differential expression between (i) inferred clusters 1 and 2 versus 3 (r = 0.923)
and (ii) inferred clusters 1 and 2 versus 5 (r = 0.925) from panel (d) using the default Louvain algorithm
in Seurat. (g) Volcano plot of all genes being tested for differential expression between inferred clusters 1
and 2 from panel (e) using the callback version of the Louvain algorithm. The genes colored in red and
blue are those with a significant P-value after Bonferroni correction and with a log,-fold change greater
than 1 (i.e., up-regulated in cluster 1) or less than -1 (i.e., up-regulated in cluster 2), respectively. The
inferred cluster 1 from callback corresponds to skeletal muscle satellite cells and cluster 2 corresponds to
mesenchymal stem cells. The genes that are labeled are well-known markers of both skeletal muscles (red,
up-regulated in cluster 1 relative to cluster 2) and cardiac mesenchymal stem cells (blue, up-regulated in
cluster 2 relative to cluster 1).
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212 where #{e} denotes the cardinality of a set and ¢ is a hyperparameter representing the desired
213 false discovery rate (FDR) when testing for differential expression. By default, and for all results

214 presented in this paper, callback sets ¢ = 0.05. If no such ¢ > 0 exists, we set 7(k,l) = oco.

zs If, for any pair of clusters, 7(k,l) = oo, we return to step #3 and rerun the clustering algorithm with a
26 smaller number of clusters. However, if 7(k,l) < oo for all pairs of clusters, then we see no evidence of
a7 over-clustering and return the inferred cluster assignments to the user.

2: Knockoff test statistics. To compute the knockoff test statistics for each cluster W;(k;1) in Eq. (1),
2o callback uses P-values p;(k;l) and p;(k;!) from the Wilcoxon rank sum test as implemented by the
20 FindMarkers function in the Seurat software package [4] and accelerated by Presto [22].

21 Differences between callback and ClusterDE. Both callback and ClusterDE [6] use synthetic null
2 variables and the knockoff filter. The key distinction between these methods is that ClusterDE takes
23 given cell clusters and computes knockoff data to calibrate statistical null hypothesis tests between those
24 clusters, while callback computes knockoff data on the full dataset first and uses the augmented data
»s  matrix as input to the clustering algorithm in order to calibrate the choice of clusters.

» Construction of knockoff genes

2r To construct knockoff genes that “match” the distribution of expression for the original real genes (but
2 without being associated with any particular cell types), we use a univariate parametric modeling ap-
29 proach which we apply to each individual gene separately. There has been a large body of work focused
20 on choosing the correct distributions for modeling scRNA-seq count data [23-26]. Here, we utilize the
o zero-inflated Poisson (ZIP) model. Importantly, this parametric generative method creates knockoff gene
a2 variables that (i) do not have any association with any particular cell group and (ii) do not retain any
233 covariance structure with the original real genes. The ZIP model mixes two generative processes—the
24 first generates zeros and the second is governed by a Poisson distribution that generates counts (some of
25 which may also be zero) [27]. For a random variable X ~ ZIP(m, A), we have the following mixture

236 Pr[X =0] = mo + (1 — mo) exp{—A}, Pr[X =z] = (1 - ﬁo)ﬂ%!{_/\} 3)

27 where z € N1 is any non-negative integer value, \ is the expected count from the Poisson distribution
28 (i.e., the rate parameter), and 7 is the proportion of extra zeroes arising in addition to those from
20 the underlying Poisson distribution. The maximum likelihood estimators for the ZIP model, given the
a0 expression of the j-th gene, take the following form

241 )\j =Wy (70j exp{—ej}) + Hj, Toj = 1-— 5\*] (4)

J

22 where 7g; = Y . I(2;; = 0)/N denotes the proportion of observed zeroes for the j-th gene across all cells
23 (with I(e) being an indicator function), 6; = z;/(1 — ro;), Z; is the sample average expression for the
24 j-th gene of interest, and Wy is the principal branch of the Lambert W function (i.e., Wy(a) = b implies
2 bexp{b} = a). For each j-th real gene x;, we fit the maximum likelihood estimators 7y; and A; and then

2 sample the synthetic expression for the corresponding knockoff gene as x; ~ ZIP(7o;, A;j).

7 Parameters for the callback algorithm

28 The default starting resolution parameter for the Louvain and Leiden algorithms within callback is
29 7 = 0.8, the same as the default in the FindClusters function in Seurat. Since callback works by
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»0 iteratively reducing the starting number of clusters, if the starting parameter is too low (i.e., if you start
251 with correctly calibrated clusters or under-cluster) there is no opportunity for callback to iteratively
2 reduce the number of clusters. There is a warning produced by callback software when this occurs and
23 users can re-run callback with a new parameter to begin with a larger number of clusters.

= Simulation study

25 We simulated scRNA-seq data using the splatter R package [28] which implements a gamma-Poisson
»s  model to create a count matrix for cells. In Fig. 1, the one-group dataset was simulated with 1000 genes
7 and 1000 cells; while the three-group dataset was simulated to have 1000 genes and 4000 cells with the
s three groups being separated in proportions of 0.6, 0.2, and 0.2, respectively. Differential gene expression
0 between the groups was controlled using the de.prob parameter with a value 0f 0.05.

x Preprocessing and data availability

1 Below we briefly describe all of the datasets used in this work. All datasets outside of the Tabula Muris
%  were used exclusively to test the scalability of callback and competing methods; therefore, clustering
x%3  performance was not recorded. All preprocessing steps were done using the Seurat software package. For
sa  each of these datasets, the count matrices were log-normalized using the NormalizeData function with
s the default parameters. Here, we set the scale.factor = 10000. The number of variable genes was set
2% to 1000 for all analyses. These were determined by using the vst selection method implemented by the
27 FindVariableFeatures function. All data were centered and scaled using the ScaleData function with
s default parameters, principle components were computed with the RunPCA using the variable genes as
9 input, and the nearest neighbor graphs were computed using the first 10 principal components within the
20 FindNeighbors function. Each evaluated method (callback, sc-SHC, and CHOIR) was provided with the
on top 1000 highly variable genes and the first 10 principal component embeddings. The implementations
a2 of the Louvain clustering algorithms analyzed the nearest neighbor graphs with resolution values set to
213 Y = 0.8.

s Tabula Muris. To compare the clustering performance of callback against competing methods, we
x5 utilized the 20 organs from the Tabula Muris dataset [13]. This dataset contains 53,760 total cells with
s human-curated cell type labels for each organ. After following the quality control steps outlined in the
a7 original study (i.e., filtering to exclude cells with less than 500 total genes detected and to exclude cells
a7 with less than 50,000 total reads) and additionally removing cells without a manually curated cell type
a0 label, we were left with a total of 45,423 cells for the analysis. The individual scRNA-seq expression
w0 datasets for each tissue can be found on figshare: https://figshare.com/articles/dataset/Single
21 —cell_RNA-seq_data_from_Smart-seq2_sequencing_of_FACS_sorted_cells/5715040.

% PBMC 3K, Bone Marrow 30K, and Bone Marrow 40K. To assess the runtime and peak memory
23 usage of callback and other competing approaches, we utilized multiple datasets available through the
x4 SeuratData R package found here: https://github.com/satijalab/seurat-data. In particular, we
25 downloaded data under the pbmc3k, bmcite, and hcabm40k variable names. For each of these datasets,
2 callback was run with a larger starting resolution parameter of v = 1.5 to ensure that more than one
27 iteration took place.

s PBMC 68K. We took scRNA-seq data from fluorescence-activated cell sorted (FACS) populations
20 of peripheral blood mononuclear cells (PBMCs) provided by Zheng et al. [1] and concatenated each
20 population into one dataset. This dataset contains 68,579 cells with ten different labels corresponding
21 to each purified population that was sorted. The dataset can be found on the 10X Genomics website
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22 and the URL can be found on this GitHub page: https://github.com/10XGenomics/single-cell-3
203 prime-paper/blob/master/pbmc68k_analysis/README.md. It can also be directly downloaded here:
24 https://cf.10xgenomics.com/samples/cell/pbmc68k_rds/pbmc68k_data.rds.

205 Liver 8K. This dataset contains 8,444 cells provided by MacParland et al. [18]. It can be loaded using
s the HumanLiver R package available here: https://github.com/BaderLab/HumanLiver. For this
27 dataset, callback was run with a larger starting resolution parameter of v = 1.5 to ensure that more
28 than one iteration took place.

» Code availability

s0  All code is available under the open-source MIT license at https://github.com/lcrawlab/callback
s with documentation at https://lcrawlab.github.io/callback. The scripts used to analyze the data
2 and to reproduce the figures from this paper are available at https://github.com/lcrawlab/callback
3 reproducibility. The fully rendered results can also be viewed at https://lcrawlab.github.io/cal
34 lbackreproducibility.
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