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Abstract16

Standard single-cell RNA-sequencing (scRNA-seq) pipelines nearly always include unsupervised17

clustering as a key step in identifying biologically distinct cell types. A follow-up step in these18

pipelines is to test for differential expression between the identified clusters. When algorithms over-19

cluster, downstream analyses will produce inflated P -values resulting in increased false discoveries. In20

this work, we present callback (Calibrated Clustering via Knockoffs): a new method for protecting21

against over-clustering by controlling for the impact of reusing the same data twice when performing22

differential expression analysis, commonly known as “double-dipping”. Importantly, our approach23

can be applied to a wide range of clustering algorithms. Using real and simulated data, we show24

that callback provides state-of-the-art clustering performance and can rapidly analyze large-scale25

scRNA-seq studies, even on a personal laptop.26

Main27

Recent advances in single-cell RNA sequencing (scRNA-seq) technologies have enabled the generation of28

datasets that contain the transcriptomic profiles of thousands to millions of individual cells [1, 2]. Unless29

an additional assay is paired with sequencing (e.g., CITE-seq [3]), cell type labels are not provided with30

the corresponding genomic profiles. This has led to many scRNA-seq bioinformatic pipelines requiring31

both (i) clustering to identify putative cell types based on shared gene expression covariation and (ii)32

differential gene expression analysis between cells in each cluster to identify “marker genes” uniquely33

expressed by each putative cell type. The most commonly used software packages, such as Seurat [4]34

and Scanpy [5], perform these two steps on the same dataset. This double use of data is often referred35

to as “circular analysis” or “double-dipping,” and is known to result in highly inflated P -values, even36
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in the null case when gene expression is identically distributed and there are no true groupings that37

distinguish cell populations [6, 7]. Due to the miscalibrated test statistics produced by circular analyses,38

it is challenging to assess whether the genes found to be differentially expressed between two putative cell39

groups are “real” or solely identified due to chance based on the way that the cells are being partitioned40

by the clustering algorithm that is being used. Importantly, simple solutions such as sample splitting41

between cells do not appropriately correct for this type of post-selective inference [7].42

Several methods have been recently developed to correct for post-selective inference after clustering.43

These methods include: (i) an approximate test based on the truncated normal distribution [8], (ii) a data44

splitting strategy that splits data at the level of individual gene counts [7], and (iii) using synthetic null45

variables called knockoffs for calibrating hypothesis testing [6]. The point of each of these methods is to46

identify an appropriate hypothesis testing significance threshold to account for the statistical inflation that47

occurs due to the double use of data. However, none of these tests inform if (or how) the re-clustering48

of cells should be done. They simply return a list of calibrated P -values. As a result, approaches49

for protecting against over-clustering have recently been proposed including “single cell significance of50

hierarchical clustering” (sc-SHC) and “clustering hierarchy optimization by iterative random forests”51

(CHOIR)[9, 10]. Here, we introduce callback (Calibrated Clustering via Knockoffs): a method that52

integrates the negative control variable framework of knockoffs [11, 12] to the problem of identifying the53

number of clusters that have statistical support in a single-cell dataset. Our approach can be paired with54

any existing clustering algorithm that has a hyperparameter for tuning the number of clusters and it55

makes no strong assumptions about the input data. We statistically motivate the need for an algorithm56

like callback, evaluate its utility against other recently proposed clustering correction methods, and57

demonstrate its ability to efficiently scale to large-scale scRNA-seq studies.58

The callback algorithm consists of three simple steps (Methods). First, we generate synthetic null59

variables, formally called knockoff features [11], where we augment the single-cell data being analyzed60

with “fake” genes that are known not to contribute to any unique cell type but that match the real data61

in distribution. Second, we perform both preprocessing and clustering on this augmented dataset. Third,62

we calibrate the number of inferred clusters by using a hypothesis testing strategy with a data-dependent63

threshold to determine if there is a statistically significant difference between groups and if re-clustering64

should occur (Fig. 1a). The synthetic knockoff genes act as negative control variables; they go through65

the same analytic steps as the real data and are presented with the same opportunity to be identified66

as marker genes. The callback algorithm uses the guiding principle that well-calibrated clusters (i.e.,67

those representing real groups) should have statistically significant differentially expressed genes after68

correcting for post-selective testing, while over-clustered groups will have greatly fewer. We use this rule69

to iteratively re-cluster cells until the inferred clusters are well-calibrated and the observed differences in70

expression between groups are not due to the effects of double-dipping.71

As a simple proof-of-concept, we simulated single-cell gene expression data to compare the clus-72

ters found by the widely used Louvain algorithm with default parameter settings in Seurat (with the73

FindClusters function where the resolution parameter is set to 0.8) versus using the same Louvain al-74

gorithm paired with callback. We generated data under two scenarios. In the first scenario, there was75

only one true “cell type”. Here, the default approach with Seurat incorrectly identified four clusters76

while callback correctly identified only a single cluster (Fig. 1b). In the second scenario, we simulated77

the data such that there were three true cell types. In this case, the Seurat default incorrectly identified78

four clusters by splitting the larger group into two clusters whereas callback correctly identified three79

clusters (Fig. 1c).80

To evaluate the performance of callback on real single-cell RNA sequencing studies, we analyzed 2081

different tissues from the Tabula Muris dataset [13]. We compared callback with two recently proposed82

methods for preventing over-clustering: (i) single-cell significance of hierarchical clustering (sc-SHC) [9]83

and (ii) clustering hierarchy optimization by iterative random forests (CHOIR) [10]. Both of these methods84

utilize hierarchical clustering paired with permutation tests to decide whether or not to merge clusters.85
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Figure 1. Overview of the callback algorithm and examples of results from different clus-
tering approaches on simple simulated datasets. (a) Schematic of the clustering workflow with the
callback approach. (b) Demonstration of the traditional clustering framework versus the alternative
using callback for simulated data with one known group. Panels left to right show the true labels, clus-
ters found using the Louvain algorithm with default parameter settings in Seurat, and the clusters found
using the same Louvain algorithm paired with callback. (c) Demonstration of the traditional clustering
framework versus the alternative using callback for simulated data with three known groups. Panels left
to right show the true labels, clusters found using the Louvain algorithm with default parameter settings
in Seurat, and the clusters found using the same Louvain algorithm paired with callback.
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All callback results are determined using the Louvain algorithm. We analyzed the 20 different tissues86

separately and evaluated the performance of each method by comparing their inferred cluster assignments87

to the manually curated cell type annotations from the original Tabula Muris study. To empirically88

assess the relative quality of clustering assignments, we utilized common metrics including the adjusted89

Rand index (ARI), the Jaccard index, the Fowlkes-Mallows index (FMI), V -measure, completeness, and90

homogeneity [14]. We include a vignette on these cluster evaluation metrics showing their behavior in a91

simple case study of over-clustering and under-clustering (Supplementary Note and Fig. S1). In the main92

text, we focus on ARI due to its popularity in the literature [14] and V -measure because it is the harmonic93

mean of completeness and homogeneity and balances the impact of over-clustering and under-clustering94

(Supplementary Note).95

When evaluated by ARI (Fig. 2a), V -measure (Fig. 2b), completeness (Fig. S2), homogeneity (Fig. S3),96

Jaccard index (Fig. S4), and FMI (Fig. S5), callback shows state-of-the-art performance. In particular,97

when evaluated by ARI, callback performs best in 17 out of the 20 tissues, sc-SHC performs best in 298

tissues, and CHOIR performs best in 1 tissue. Similarly, when evaluated by V -measure, callback performs99

best in 18 tissues, while sc-SHC and CHOIR perform best in 1 tissue each. The clustering results for all100

algorithms across all 20 tissues are displayed via uniform manifold approximation and projection (UMAP)101

plots in Figs. S6-S25 (for visualization purposes only). For many tissues, CHOIR tended to group cells102

into many small sub-populations; while, for other tissues, sc-SHC severely under-clustered and failed to103

find any distinct cell types at all, returning only a single group (e.g., aorta, brain myeloid, and pancreas).104

In the diaphragm tissue, which contains five manually curated cell types, callback and sc-SHC matched105

the five manually curated cell type labels almost exactly, while CHOIR seemingly over-clustered the data106

(Fig. 2c). On the other hand, in the limb muscle dataset, which contains six manually curated cell types,107

callback finds six clusters that closely match the manually curated labels (ARI = 0.97 and V -measure108

= 0.95), while sc-SHC finds 8 clusters (ARI = 0.74 and V -measure = 0.79), and CHOIR finds 16 clusters109

(ARI = 0.40 and V -measure = 0.69) (Fig. 2d). Importantly, callback exhibited better computational110

efficiency (i.e., shorter runtime) than the other methods. While implementing each method on a personal111

laptop with 6 cores, callback was overall the fastest, sc-SHC exhibited a similarly short runtime, and112

CHOIR was the slowest (Fig. 2e). For example, in the fat tissue, callback finished 1 minute faster than113

sc-SHC and 15.6 minutes faster than CHOIR.114

In order to show that callback generates useful hypotheses for downstream analyses, we further115

compared the clusters determined by the default Seurat implementation of the Louvain algorithm to116

the clusters determined by using the Louvain algorithm with callback for the limb muscle tissue in the117

Tabula Muris study (Fig. 3a-c). Using the FindMarkers function in Seurat, we identified the top 10 marker118

genes for each inferred cluster from both approaches. Qualitatively, the default Louvain implementation119

appears over-clustered, where inferred clusters 1, 2, 6, and 7 show similar marker gene expression to120

one another, as do inferred clusters 3 and 5 (Fig. 3d). In contrast, the groups found by callback show121

much less shared expression between clusters (Fig. 3e). To further investigate whether cells had been122

over-clustered by the default Louvain algorithm, we performed differential expression analysis between its123

inferred clusters and observed a high correlation in P -values when comparing (i) inferred clusters 1 and124

2 versus 3 (Pearson correlation r = 0.923) and (ii) inferred clusters 1 and 2 versus 5 (r = 0.925) (Fig. 3f).125

For the default Louvain algorithm, the inferred clusters 1 and 2 both correspond to skeletal muscle126

satellite cells as annotated by the Tabula Muris Consortium, and inferred clusters 3 and 5 correspond to127

mesenchymal stem cells. As a comparison, only the inferred clusters 1 and 2 from callback correspond128

to skeletal muscle satellite and mesenchymal stem cells, respectively. Differential expression analysis for129

the callback clusters (Fig. 3g) results in 506 differentially expressed genes (adjusted P -value < 0.05130

and an absolute log-fold change greater than one) which include many known skeletal muscle satellite131

cell markers up-regulated in the inferred cluster 1 relative to the inferred cluster 2 (e.g., Des, Chodl,132

Myl12a, Asb5, Sdc4, Apoe, Musk, Myf5, Chrdl2, Notch3 ) [15] and mesenchymal stem cell type markers133

up-regulated in the inferred cluster 2 relative to the inferred cluster 1 (e.g., Col6a3, Col1a1, Igfbp6,134
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Pdgfra, C1s, Mfap5, Ecm1, Dcn, Dpep1 ) [16].135

As a final analysis of computational scalability, we benchmarked the runtime and peak memory use136

of callback, sc-SHC, and CHOIR on several other publicly available datasets containing 2700, 8444, 30K,137

and 40K cells (Figs. S26-S27) [17–20]. Each method was run on a machine with 16 cores (Methods).138

On these datasets, sc-SHC was the fastest, closely followed by callback, and CHOIR was an order of139

magnitude slower. Additionally, we applied each method using their default settings on subsets of the140

68,579 total peripheral blood mononuclear cells (PBMCs) provided by Zheng et al. [1]. These subsets141

were of sizes 1K, 2K, 5K, 10K, 20K, 30K, 40K, 50K, and 60K cells as well as the full dataset. On these142

subsets, both callback and sc-SHC were very similar in speed, while CHOIR was an order of magnitude143

slower (Fig. S28). In terms of peak memory consumption, callback used the least memory while sc-SHC144

showed quadratic memory growth as a function of the number of cells (Fig. S29). In summary, callback145

is as fast (or faster) than alternatives and uses less memory. Notably, callback required less than 10146

gigabytes (GB) of memory on datasets with nearly 70K cells and was able to cluster those cells in less147

than 15 minutes (with 16 cores). This demonstrates the ability to analyze large datasets with callback148

on a personal laptop.149

The callback approach is not without its limitations. First, the algorithm works downward from an150

upper bound on the number of clusters (often parameterized by K in the literature). This strategy could151

potentially lead to under-clustered results if the starting upper bound is too conservative (i.e., if K is too152

small). To circumvent this limitation, callback can be initialized with a large set of clusters; however,153

this will come with an additional computational cost because more iterations will likely need to be154

performed until the algorithm converges onto a statistically appropriate number of clusters. Second, the155

current implementation of callback does not account for additional metadata or confounding that might156

be present in a scRNA-seq dataset. For example, in the presence of batch effects, spurious relationships157

between cells can be created and callback might determine that cells of the same type need to be158

partitioned into different groups (or vice versa). To that end, incorporating data integration steps, like159

batch effect correction, into the callback software is a relevant direction for future work. One possible160

extension of the callback algorithm would be to run an integration approach (e.g., Harmony [21]) on161

the principal component embeddings of the augmented count matrix to correct for possible confounding162

before building a KNN graph and performing calibrated clustering.163

In conclusion, we have presented callback, a novel approach aimed to protect against over-clustering164

when analyzing single-cell transcriptomic data. Through the analysis of several large-scale datasets,165

we have shown that callback provides state-of-the-art clustering results at a fraction of the runtime166

and computer memory when compared to other competing algorithms. Importantly, callback can be167

efficiently run on a personal laptop when analyzing tens of thousands of cells. As a disclaimer, cells may168

exhibit a variety of heterogeneous cell states, continuous axes of variation rather than discrete groups,169

or other complexities for which callback, or any clustering algorithm, is not completely well-suited.170

Overall, we envision that callback will be a useful aid when needing to assign labels to unknown cell171

types. With both its speed and flexibility, callback will save practitioners the hours often spent manually172

investigating and re-clustering single-cell RNA sequencing datasets.173

Methods174

Overiew of the callback algorithm175

Consider a study with single-cell RNA sequencing (scRNA-seq) expression data for i = 1, . . . , N cells176

that each have measurements for j = 1, . . . , G genes. Let this dataset be represented by an N ×G matrix177

X where the column-vector xj denotes the expression profile for the j-th gene. The callback method178

augments the real expression matrix with knockoff genes which are generated to have no association with179

any particular cell type [11, 12]. These negative control variables go through the same preprocessing,180
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Figure 2. (Continued on the following page).
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Figure 2. The callback algorithm shows state-of-the-art performance according to com-
monly used cluster quality metrics when compared to competing methods in the Tabula
Muris dataset. (a-b) Comparison of callback, sc-SHC, and CHOIR using (a) ARI and (b) V -measure
for each tissue. (c-d) Uniform manifold approximation and projection (UMAP) plots displaying the
cell type annotations for (c) the diaphragm tissue and (d) the limb muscle tissue datasets, respectively.
From left to right, we show the manually curated labels from the original study and clusters inferred by
callback, sc-SHC, and CHOIR, respectively. (e) Runtime comparison of callback, sc-SHC, and CHOIR

for each tissue in the Tabula Muris dataset. Each method was run using 6 cores on a personal laptop.

clustering, and differential expression analyses as the real observed genes in the study; therefore, they181

are presented with the same opportunity to be identified as marker genes. Since the knockoff genes are182

essentially noise variables, the distribution of their test statistics represent the impact of post-selective183

inference (i.e., deviations from the null). As a result, we can correct for these same deviations from184

the null in the observed test statistics for the real genes which allows us to also calibrate our cluster185

assignments. This process is also known as implementing a “knockoff filter” (which controls the false186

discovery rate) when testing for differentially expressed genes between clusters [11, 12]. If there are no187

detectable differences between the inferred clusters, we assume that over-clustering has occurred and188

re-cluster with a smaller number of groups.189

More specifically, callback works by implementing the following steps:190

1. For each gene in the study xj , generate a knockoff expression vector x̃j . Next, concatenate all of191

the knockoff genes together and construct a matrix of knockoff variables X̃ = [x̃1, . . . , x̃G].192

2. Combine the real gene expression matrix with the knockoff features into a single object X∗ =193

[X; X̃]. Then perform the usual preprocessing on the augmented data matrix X∗. In this paper,194

preprocessing consists of normalizing the expression counts followed by principal component analysis195

(PCA).196

3. Apply a given clustering algorithm (e.g., the Louvain algorithm) to the PCA embeddings of the197

augmented matrix X∗ (or, alternatively, apply the clustering algorithm to the augmented matrix198

directly).199

4. Conduct differential expression analysis between each k-th and l-th cluster pair, denoted by Ck and200

Cl, respectively. Obtain P -values for all genes (real and knockoff) across each comparison.201

5. Let pj(k; l) represent the P -value for the j-th real gene when comparing differential expression202

between clusters Ck and Cl. Similarly, let p̃j(k; l) represent the P -value for the same comparison203

but for the corresponding j-th knockoff gene. We use these two P -values to compute the following204

knockoff test statistic205

Wj(k; l) = −log pj(k; l)− [−log p̃j(k; l)] . (1)206

Intuitively, a large, positive value of Wj(k; l) represents evidence that the j-th gene is truly different207

between clusters Ck, Cl, while a value less than or equal to zero represents strong evidence that there208

is no difference in the expression of the j-th gene between the groups.209

6. Next, compute the data-dependent threshold via the following formulation210

τ(k, l) = min

{
t > 0 :

#{j : Wj(k; l) ≤ −t}
max{#{j : Wj(k; l) ≥ t}}

≤ q

}
(2)211
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Figure 3. Using callback to avoid over-clustering leads to improved hypothesis generation
for downstream analyses. (a-c) Uniform manifold approximation and projection (UMAP) plots of
(a) the manually curated cell ontology class labels, (b) inferred clusters using the Louvain algorithm with
default parameter settings in Seurat, and (c) inferred clusters using the Louvain algorithm paired with
callback for the limb muscle tissue from the Tabula Muris study. (d) Heatmap of the top 10 marker
genes for each inferred cluster shown in panel b with the default Louvain implementation. (e) Heatmap of
the top 10 marker genes for each inferred cluster shown in panel c with the Louvain algorithm paired with
callback. (f) Scatter plots and corresponding Pearson correlation coefficient (r) of the log10P -values for
all genes being tested for differential expression between (i) inferred clusters 1 and 2 versus 3 (r = 0.923)
and (ii) inferred clusters 1 and 2 versus 5 (r = 0.925) from panel (d) using the default Louvain algorithm
in Seurat. (g) Volcano plot of all genes being tested for differential expression between inferred clusters 1
and 2 from panel (e) using the callback version of the Louvain algorithm. The genes colored in red and
blue are those with a significant P -value after Bonferroni correction and with a log2-fold change greater
than 1 (i.e., up-regulated in cluster 1) or less than -1 (i.e., up-regulated in cluster 2), respectively. The
inferred cluster 1 from callback corresponds to skeletal muscle satellite cells and cluster 2 corresponds to
mesenchymal stem cells. The genes that are labeled are well-known markers of both skeletal muscles (red,
up-regulated in cluster 1 relative to cluster 2) and cardiac mesenchymal stem cells (blue, up-regulated in
cluster 2 relative to cluster 1).
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where #{•} denotes the cardinality of a set and q is a hyperparameter representing the desired212

false discovery rate (FDR) when testing for differential expression. By default, and for all results213

presented in this paper, callback sets q = 0.05. If no such t > 0 exists, we set τ(k, l) = ∞.214

If, for any pair of clusters, τ(k, l) = ∞, we return to step #3 and rerun the clustering algorithm with a215

smaller number of clusters. However, if τ(k, l) < ∞ for all pairs of clusters, then we see no evidence of216

over-clustering and return the inferred cluster assignments to the user.217

Knockoff test statistics. To compute the knockoff test statistics for each cluster Wj(k; l) in Eq. (1),218

callback uses P -values pj(k; l) and p̃j(k; l) from the Wilcoxon rank sum test as implemented by the219

FindMarkers function in the Seurat software package [4] and accelerated by Presto [22].220

Differences between callback and ClusterDE. Both callback and ClusterDE [6] use synthetic null221

variables and the knockoff filter. The key distinction between these methods is that ClusterDE takes222

given cell clusters and computes knockoff data to calibrate statistical null hypothesis tests between those223

clusters, while callback computes knockoff data on the full dataset first and uses the augmented data224

matrix as input to the clustering algorithm in order to calibrate the choice of clusters.225

Construction of knockoff genes226

To construct knockoff genes that “match” the distribution of expression for the original real genes (but227

without being associated with any particular cell types), we use a univariate parametric modeling ap-228

proach which we apply to each individual gene separately. There has been a large body of work focused229

on choosing the correct distributions for modeling scRNA-seq count data [23–26]. Here, we utilize the230

zero-inflated Poisson (ZIP) model. Importantly, this parametric generative method creates knockoff gene231

variables that (i) do not have any association with any particular cell group and (ii) do not retain any232

covariance structure with the original real genes. The ZIP model mixes two generative processes—the233

first generates zeros and the second is governed by a Poisson distribution that generates counts (some of234

which may also be zero) [27]. For a random variable X ∼ ZIP(π0, λ), we have the following mixture235

Pr[X = 0] = π0 + (1− π0) exp{−λ}, Pr[X = x] = (1− π0)
λx exp{−λ}

x!
(3)236

where x ∈ N+ is any non-negative integer value, λ is the expected count from the Poisson distribution237

(i.e., the rate parameter), and π0 is the proportion of extra zeroes arising in addition to those from238

the underlying Poisson distribution. The maximum likelihood estimators for the ZIP model, given the239

expression of the j-th gene, take the following form240

λ̂j = W0 (−θj exp{−θj}) + θj , π̂0j = 1− xj

λ̂j

(4)241

where r0j =
∑

i I(xij = 0)/N denotes the proportion of observed zeroes for the j-th gene across all cells242

(with I(•) being an indicator function), θj = x̄j/(1 − r0j), x̄j is the sample average expression for the243

j-th gene of interest, and W0 is the principal branch of the Lambert W function (i.e., W0(a) = b implies244

b exp{b} = a). For each j-th real gene xj , we fit the maximum likelihood estimators π̂0j and λ̂j and then245

sample the synthetic expression for the corresponding knockoff gene as x̃j ∼ ZIP(π̂0j , λ̂j).246

Parameters for the callback algorithm247

The default starting resolution parameter for the Louvain and Leiden algorithms within callback is248

γ = 0.8, the same as the default in the FindClusters function in Seurat. Since callback works by249
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iteratively reducing the starting number of clusters, if the starting parameter is too low (i.e., if you start250

with correctly calibrated clusters or under-cluster) there is no opportunity for callback to iteratively251

reduce the number of clusters. There is a warning produced by callback software when this occurs and252

users can re-run callback with a new parameter to begin with a larger number of clusters.253

Simulation study254

We simulated scRNA-seq data using the splatter R package [28] which implements a gamma-Poisson255

model to create a count matrix for cells. In Fig. 1, the one-group dataset was simulated with 1000 genes256

and 1000 cells; while the three-group dataset was simulated to have 1000 genes and 4000 cells with the257

three groups being separated in proportions of 0.6, 0.2, and 0.2, respectively. Differential gene expression258

between the groups was controlled using the de.prob parameter with a value 0f 0.05.259

Preprocessing and data availability260

Below we briefly describe all of the datasets used in this work. All datasets outside of the Tabula Muris261

were used exclusively to test the scalability of callback and competing methods; therefore, clustering262

performance was not recorded. All preprocessing steps were done using the Seurat software package. For263

each of these datasets, the count matrices were log-normalized using the NormalizeData function with264

the default parameters. Here, we set the scale.factor = 10000. The number of variable genes was set265

to 1000 for all analyses. These were determined by using the vst selection method implemented by the266

FindVariableFeatures function. All data were centered and scaled using the ScaleData function with267

default parameters, principle components were computed with the RunPCA using the variable genes as268

input, and the nearest neighbor graphs were computed using the first 10 principal components within the269

FindNeighbors function. Each evaluated method (callback, sc-SHC, and CHOIR) was provided with the270

top 1000 highly variable genes and the first 10 principal component embeddings. The implementations271

of the Louvain clustering algorithms analyzed the nearest neighbor graphs with resolution values set to272

γ = 0.8.273

Tabula Muris. To compare the clustering performance of callback against competing methods, we274

utilized the 20 organs from the Tabula Muris dataset [13]. This dataset contains 53,760 total cells with275

human-curated cell type labels for each organ. After following the quality control steps outlined in the276

original study (i.e., filtering to exclude cells with less than 500 total genes detected and to exclude cells277

with less than 50,000 total reads) and additionally removing cells without a manually curated cell type278

label, we were left with a total of 45,423 cells for the analysis. The individual scRNA-seq expression279

datasets for each tissue can be found on figshare: https://figshare.com/articles/dataset/Single280

-cell_RNA-seq_data_from_Smart-seq2_sequencing_of_FACS_sorted_cells/5715040.281

PBMC 3K, Bone Marrow 30K, and Bone Marrow 40K. To assess the runtime and peak memory282

usage of callback and other competing approaches, we utilized multiple datasets available through the283

SeuratData R package found here: https://github.com/satijalab/seurat-data. In particular, we284

downloaded data under the pbmc3k, bmcite, and hcabm40k variable names. For each of these datasets,285

callback was run with a larger starting resolution parameter of γ = 1.5 to ensure that more than one286

iteration took place.287

PBMC 68K. We took scRNA-seq data from fluorescence-activated cell sorted (FACS) populations288

of peripheral blood mononuclear cells (PBMCs) provided by Zheng et al. [1] and concatenated each289

population into one dataset. This dataset contains 68,579 cells with ten different labels corresponding290

to each purified population that was sorted. The dataset can be found on the 10X Genomics website291
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and the URL can be found on this GitHub page: https://github.com/10XGenomics/single-cell-3292

prime-paper/blob/master/pbmc68k_analysis/README.md. It can also be directly downloaded here:293

https://cf.10xgenomics.com/samples/cell/pbmc68k_rds/pbmc68k_data.rds.294

Liver 8K. This dataset contains 8,444 cells provided by MacParland et al. [18]. It can be loaded using295

the HumanLiver R package available here: https://github.com/BaderLab/HumanLiver. For this296

dataset, callback was run with a larger starting resolution parameter of γ = 1.5 to ensure that more297

than one iteration took place.298

Code availability299

All code is available under the open-source MIT license at https://github.com/lcrawlab/callback300

with documentation at https://lcrawlab.github.io/callback. The scripts used to analyze the data301

and to reproduce the figures from this paper are available at https://github.com/lcrawlab/callback302

reproducibility. The fully rendered results can also be viewed at https://lcrawlab.github.io/cal303

lbackreproducibility.304
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