

1 **Title of article:**

2 *Botrytis cinerea* detoxifies the sesquiterpenoid phytoalexin rishitin through
3 multiple metabolizing pathways

4

5 **Authors:**

6 Abriel Salaria Bulasag^{1,2}, Akira Ashida¹, Atsushi Miura¹, Sreynich Pring¹,
7 Teruhiko Kuroyanagi¹, Maurizio Camagna¹, Aiko Tanaka¹, Ikuo Sato¹, Sotaro
8 Chiba¹, Makoto Ojika¹ and Daigo Takemoto^{1*}

9

10 **Affiliation:**

11 ¹Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa,
12 Nagoya, 464-8601, Japan

13 ²College of Arts and Sciences, University of the Philippines Los Baños, College,
14 Laguna 4031, Philippines

15

16 ***Corresponding Author:**

17 Daigo Takemoto

18 E-mail: dtakemo@agr.nagoya-u.ac.jp

19 Telephone: +81 90 4264 4192

20 Fax: +81 52 789 5525

21

22 **Number of figures and tables:**

23 6 Figures and 1 Table (9 Supplementary Figures)

24

25 **ABSTRACT**

26 *Botrytis cinerea* is a necrotrophic pathogen that infects across a broad range of
27 plant hosts, including high-impact crop species. Its generalist necrotrophic
28 behavior stems from its ability to detoxify structurally diverse phytoalexins. The
29 current study aims to provide evidence of the ability of *B. cinerea* to tolerate the
30 sesquiterpenoid phytoalexin rishitin, which is produced by potato and tomato.
31 While the growth of potato pathogens *Phytophthora infestans* (late blight) and
32 *Alternaria solani* (early blight) was severely inhibited by rishitin, *B. cinerea* was
33 tolerant to rishitin. After incubation of rishitin with the mycelia of *B. cinerea*, it
34 was metabolized to at least six oxidized forms. Structural analysis of these
35 purified rishitin metabolites revealed a variety of oxidative metabolism including
36 hydroxylation at C7 or C12, ketone formation at C5, and dihydroxylation at the
37 10,11-olefin. Six rishitin metabolites showed reduced toxicity to *P. infestans* and
38 *A. solani*, indicating that *B. cinerea* has at least 5 distinct enzymatic reactions to
39 detoxify rishitin. Four host-specialized phytopathogenic *Botrytis* species, namely
40 *B. elliptica*, *B. allii*, *B. squamosa*, and *B. tulipae* also had at least a partial ability
41 to metabolize rishitin as *B. cinerea*, but their metabolic capacity was significantly
42 weaker than that of *B. cinerea*. These results suggest that the ability of *B. cinerea*
43 to rapidly metabolize rishitin through multiple detoxification mechanisms could
44 be critical for its pathogenicity in potato and tomato.

45

46 **1. Introduction**

47 When plant cells recognize an attempt of infection by pathogens, they may
48 produce low molecular weight antimicrobial substances as a countermeasure.
49 These substances are collectively referred to as phytoalexins, and plants have been
50 shown to produce phytoalexins of diverse chemical groups. The production of
51 phytoalexins is a key plant defensive strategy against plant pathogens
52 (Hammerschmidt 1999; Ahuja et al., 2012; Shibata et al., 2016; Imano et al.,
53 2022). Through evolutionary lineages and plant-pathogen contact events, these
54 phytoalexins were sculpted and diversified, giving rise to a vast range of
55 structurally different molecules. These phytoalexins provide sufficient defense
56 against the majority of non-host fungal diseases due to their structural variations,

57 precise timing, and synergistic action (Pedras and Abdoli, 2017; Allan et al.,
58 2019; Newman and Derbyshire, 2020). The ability to detoxify phytoalexins can
59 therefore have a decisive impact on whether a pathogen can successfully infect a
60 given plant. In the case of pathogens with wide host ranges, such as *Sclerotinia*
61 and *Botrytis*, the detoxification of diverse phytoalexins appears to have been a
62 prerequisite for their host range expansion (Westrick et al., 2021; Kuroyanagi et
63 al., 2022, Kusch et al., 2022, Bulasag et al., 2023).

64 Among the best-known phytoalexin metabolizing enzymes is pisatin
65 demethyltransferase (PDA) produced by the pea pathogen *Nectria haematococca*
66 mating population VI. Knockout of the PDA gene impaired the virulence of *N.*
67 *haematococca* on peas, clearly demonstrating directly the importance of PDA for
68 successful infection by this pathogen. A correlation between pathogenicity to
69 pisatin-producing plants and the ability to produce active PDA has been reported,
70 indicating that it is the enzyme that determines the host range of *N. haematococca*
71 and *Fusarium oxysporum* races (Wasmann and VanEtten, 1996; Coleman et al.,
72 2011).

73 *B. cinerea* is a necrotrophic plant pathogen notorious for its ability to infect
74 hundreds of plant species, many of which produce phytoalexins. It follows,
75 therefore, that *B. cinerea* must excel at coping with a diverse range of
76 phytoalexins. Previously, we have reported that *B. cinerea* can metabolize the
77 sesquiterpenoid phytoalexin capsidiol, a major phytoalexin of *Nicotiana* (e.g.
78 tobacco) and *Capsicum* (e.g. chill pepper) species, into non-toxic capsenone using
79 the dehydrogenase BcCPDH (Kuroyanagi et al., 2022). In contrast, risitin, a
80 structurally similar phytoalexin found in certain *Solanum* species, was not
81 targeted by BcCPDH. This study aims to profile the enzymatic metabolism of
82 risitin by *B. cinerea* and to determine the toxicity of these products.

83

84 **2. Materials and methods**

85 **2.1. Biological material and growth conditions**

86 *Botrytis cinerea* strain AI18 was isolated from strawberry (Kuroyanagi et al.,
87 2022). The following pathogen stocks were obtained from the stock center of the
88 Ministry of Agriculture, Forestry and Fisheries (MAFF), Japan: *Alternaria solani*

89 strain KL1 isolated from potato (MAFF244036), *A. brassicicola* strain BA31
90 isolated from Broccoli (MAFF242993), *B. elliptica* strain S0210 isolated from
91 *Lilium* sp. (MAFF306626), *B. allii* strain Yuki11-1 isolated from onion
92 (MAFF307143), *B. squamosa* strain 5ND4 isolated from Chinese chive
93 (MAFF244973) and *B. tulipae* strain 4-3 isolated from tulip (MAFF245230). The
94 stocks were grown on potato dextrose agar (PDA) at 23°C. *Phytophthora*
95 *infestans* strain 08YD1 (Shibata et al., 2010) was grown on rye media at 20°C.
96

97 **2.2. Incubation of pathogens in phytoalexin solutions and detection of rishitin
98 and its metabolites using LC/MS**

99 Synthesized rishitin (Murai et al., 1975) was provided by former Prof. Akira
100 Murai (Hokkaido University, Japan). For the incubation in rishitin or its
101 metabolites, mycelia plug (approx. 1 mm³) were excised from the growing edge of
102 the colony using a dissection microscope (Stemi DV4 Stereo Microscope, Carl
103 Zeiss, Oberkochen, Germany) and submerged in 50 µl of water or rishitin solution
104 in a sealed 96 well clear plate. The plate was incubated at 23°C for the indicated
105 time. Outgrowth of hyphae was monitored under a BX51 light microscope
106 (Olympus, Tokyo, Japan) and measured using ImageJ software (Schneider et al.,
107 2012).

108 For LC/MS measurement, the supernatant of mycelial blocks (1 mm³) incubated
109 for 72 h in 50 µl of 100 µM rishitin in a sealed 96-well plate well was mixed with
110 50 µl acetonitrile and measured by LC/MS (Accurate-Mass Q-TOF LC/MS 6520,
111 Agilent Technologies, Santa Clara, CA, USA) with ODS column Cadenza CD-
112 C18, 75 x 2 mm ODS column (Imtakt, Kyoto, Japan), using a 10-100% MeCN
113 (20 min), 0.2 ml/min.

114
115 **2.3 Separation and structural determination of rishitin metabolites**

116 **2.3.1. General.** UV spectra and specific rotations were obtained by a V-730 BIO
117 spectrophotometer and a D-1010 polarimeter (Jasco, Tokyo, Japan), respectively.
118 NMR spectra were investigated on an Avance ARX400 spectrometer (Bruker Bio
119 Spin, Yokohama, Japan). The chemical shifts (ppm) were referenced to the
120 solvent residual peak at δ_H 7.26 ppm (CDCl₃). HPLC purification was performed

121 by using a high-pressure gradient system equipped with PU-2087plus pumps, a
122 DG-2080-53 degasser, and a UV-2075plus detector (Jasco). LC/MS was
123 measured by a 6520 Accurate-Mass Q-TOF spectrometer (Agilent Technologies)
124 connected to an 1100 high-performance liquid chromatography (HPLC) system
125 (Agilent).

126 **2.3.2. Separation of rishitin metabolites.** The supernatants obtained from two
127 10 ml and two 30 ml of 500 μ M rishitin solution in CM media incubated with *B.*
128 *cinerea* mycelia for over 5 days were combined and extracted twice with EtOAc
129 (60 ml). The organic layers were combined and concentrated, and the obtained
130 residual oily material was separated by HPLC [Develosil ODS-UG-5 (10 mm i.d.
131 \times 250 mm) (Nomura Chemical, Seto, Aichi, Japan), 15-55% MeCN (40 min), 3
132 mL/min, detected at 205 nm], yielding **1a** (0.11 mg, t_R = 9.9 min), **1b** (0.11 mg, t_R
133 = 10.4 min), **2** (0.28 mg, t_R = 17.2 min), **3** (0.23 mg, t_R = 19.3 min), **4** (0.09 mg, t_R
134 = 24.9 min), and the fraction containing **5** (t_R = 25.8 min). The **5**-containing
135 fraction was further purified by HPLC [Develosil ODS-UG-5 (10 mm i.d. \times 250
136 mm), 50-90% MeOH (40 min), 2.8 mL/min, detected at 210 nm], giving pure **5**
137 (0.16 mg, t_R = 21.5 min) (Supplementary Fig. 1). These metabolites were
138 subjected to high-resolution MS and NMR analyses.

139 **1a:** $[\alpha]^{20}_D$ +37 (*c* 0.01, CHCl₃); high-resolution mass spectra (HR MS) *m/z*
140 279.1554 (calcd for C₁₄H₂₄O₄Na [M+Na]⁺ 279.1567), *m/z* 221.1519 (calcd for
141 C₁₄H₂₁O₂ [M-OH-H₂O]⁺ 221.1536), *m/z* 203.1417 (calcd for C₁₄H₁₉O [M-OH-
142 2H₂O]⁺ 203.1430). **1b:** $[\alpha]^{20}_D$ +57 (*c* 0.01, CHCl₃); HR MS *m/z* 279.1548 (calcd
143 for C₁₄H₂₄O₄Na [M+Na]⁺ 279.1567), *m/z* 221.1521 (calcd for C₁₄H₂₁O₂ [M-OH-
144 H₂O]⁺ 221.1536), *m/z* 203.1416 (calcd for C₁₄H₁₉O [M-OH-2H₂O]⁺ 203.1430). **2:**
145 $[\alpha]^{20}_D$ -120 (*c* 0.026, CHCl₃); HR MS *m/z* 261.1440 (calcd for C₁₄H₂₂O₃Na
146 [M+Na]⁺ 261.1461), *m/z* 221.1527 (calcd for C₁₄H₂₁O₂ [M-OH]⁺ 221.1536), *m/z*
147 203.1419 (calcd for C₁₄H₁₉O [M-OH-H₂O]⁺ 203.1430). **3:** $[\alpha]^{20}_D$ -39 (*c* 0.024,
148 CHCl₃); HR MS *m/z* 261.1445 (calcd for C₁₄H₂₂O₃Na [M+Na]⁺ 261.1461), *m/z*
149 203.1418 (calcd for C₁₄H₁₉O [M-OH-H₂O]⁺ 203.1430). **4:** $[\alpha]^{20}_D$ -90 (*c* 0.008,
150 CHCl₃), UV (MeCN) 244 nm (ϵ 10,700); HR MS *m/z* 259.1294 (calcd for
151 C₁₄H₂₀O₃Na [M+Na]⁺ 259.1305), *m/z* 237.1465 (calcd for C₁₄H₂₁O₃ [M+H]⁺
152 237.1485), *m/z* 219.1359 (calcd for C₁₄H₁₉O₂ [M-OH]⁺ 219.1380). **5:** $[\alpha]^{20}_D$ -94 (*c*

153 0.014, CHCl_3); HR MS m/z 261.1445 (calcd for $\text{C}_{14}\text{H}_{22}\text{O}_3\text{Na} [\text{M}+\text{Na}]^+$ 261.1461,
154 m/z 203.1412 (calcd for $\text{C}_{14}\text{H}_{19}\text{O} [\text{M}-\text{OH}-\text{H}_2\text{O}]^+$ 203.1430). ^1H NMR data are
155 summarized in Table 1.

156

157 **2.5 Determination of antimicrobial activity of rishitin metabolites**

158 Mycelia blocks (approx. 1 mm^3) of fungal pathogens grown on PDA or
159 oomycete pathogen grown on rye media were excised from the growing edge of
160 the colony using a dissection microscope (Stemi DV4 Stereo Microscope) and
161 submerged in 50 μl of 500 μM rishitin solution or purified rishitin metabolites in a
162 sealed 96 well clear plate. The plate was incubated at 23°C for the indicated time
163 and the outgrowth of hyphae was monitored under a BX51 light microscope
164 (Olympus) and measured using ImageJ software (Schneider et al., 2012).

165

166 **3. Results**

167 **3.1 Rishitin can inhibit the growth of potato pathogens, *Phytophthora infestans*
168 and *Alternaria solani*, but not polyphagous *B. cinerea*.**

169 Rishitin is the major phytoalexin produced in potato tubers and tomato fruits
170 (Katsui et al., 1968; de Wit and Flach, 1979). The sensitivity of potato late blight
171 pathogen, *P. infestans* (oomycete), and potato early blight pathogen, *A. solani*
172 (fungus), to rishitin was tested. The mycelial block of pathogens grown on solid
173 culture media was incubated in 500 μM rishitin for 12 or 24 h and outgrowth of
174 pathogen hyphae was measured. For both pathogens, hyphal growth was
175 significantly inhibited by rishitin (93% for *P. infestans* and 73% for *A. solani*, Fig.
176 1A and B). An inhibitory effect was also detected for *A. brassicicola* (88 %),
177 which causes black spot disease on Brassicaceae plants such as cabbage, canola,
178 and *Arabidopsis* (Maude and Humpherson-Jones, 1980; van Wees et al, 2003) (Fig.
179 1C). In contrast, *Botrytis cinerea* was relatively resistant to rishitin, showing a
180 mere growth inhibition of approximately 20% (Fig. 1D).

181

182 **3.2. Rishitin was metabolized into at least 4 oxidized and 2 oxidized/hydrated
183 forms by *B. cinerea***

184 Our previous study indicated that *B. cinerea* can metabolize rishitin into several
185 oxidized forms (Kuroyanagi et al., 2022). To identify these rishitin metabolites,

186 rishitin was incubated with mycelia of *B. cinerea* for 72 h and the metabolites
187 obtained were detected by LC/MS. After the incubation, original rishitin was not
188 detected anymore, and at least 4 oxidized metabolites ($m/z = 261.15$) were
189 detected (Fig. 2). Moreover, 2 peaks for metabolized rishitin (oxidized followed
190 by hydrated, $m/z=279.16$) were also detected (Fig. 3), indicating that *B. cinerea*
191 possesses multiple mechanisms to transform rishitin, into presumably less toxic
192 compounds.

193

194 **3.3. Purification and structural analysis of rishitin metabolites produced after**
195 **the incubation with *B. cinerea***

196 The supernatants of 500 μ M rishitin solutions incubated with *B. cinerea*
197 mycelia were extracted with ethyl acetate and subjected to reversed-phase HPLC
198 separation, yielding six rishitin metabolites **1a**, **1b**, **2**, **3**, **4**, and **5** (Supplemental
199 Fig. 1). The chemical structures of these metabolites were determined based on
200 their molecular formulae obtained by high-resolution MS data and NMR analysis
201 (Fig. 3, Table 1, Supplementary Figs. S2-S8, and Materials and methods).

202 The most polar metabolites **1a** and **1b** have the same molecular formulae
203 ($C_{14}H_{22}O_2$), but in contrast to rishitin ($C_{14}H_{22}O_2$), possess two additional hydrogen
204 and oxygen atoms. They appear to be stereoisomers because their 1H NMR data
205 were quite similar (Table 1). The most striking difference of **1a,b** from rishitin in
206 the NMR spectra is the lack of the 1,1-disubstituted alkene at C10-C11 and a
207 newly emerging hydroxymethylene (- CH_2OH) moiety, which resulted in the high-
208 field shifts at H11 (Fig. 3). The hydroxymethylene moiety was unambiguously
209 demonstrated by the change of multiplicity at H11 from two dd to two sharp d
210 (AB quartet type) by D_2O exchange experiment. The other structural parts were
211 found to be the same as those for rishitin by 2-dimensional NMR experiments
212 (DQF-COSY) (Supplementary Fig. S3 and 4). The small shift differences at H6-
213 H8 (Fig. 3) could be due to the hydroxyl group at C10. These findings support the
214 proposed structures of **1a,b**. The stereochemistry at C10 of each metabolite was
215 not determined.

216 The metabolites **2**, **3**, and **5** are isomers possessing the molecular formula of
217 $C_{14}H_{22}O_3$, and exceed the mass of rishitin by one oxygen. Therefore, they were

thought to be monooxygenated (hydroxy or epoxy) rishitins. A DQF-COSY experiment of **2** indicated the disconnection between the ethyldene H5-H6 and the methylene H8 due to the lack of methine H7 (Supplementary Fig. S5). This observation and the small low-field shift of the adjoining protons (H6, H8, and H11) indicate that **2** is 7-hydroxyrishitin (Fig. 3). The significant chemical shift difference in **3** from rishitin was the low-field shifts at H12 ($\Delta\delta = +2.4$ ppm, Fig. 3). The DQF-COSY data indicated that other structural parts were identical to those of rishitin (Supplementary Fig. S6). These findings and small low-field shift at H11 indicate that **3** is 12-hydroxyrishitin (Fig. 3). The most characteristic feature of **5** in NMR is the appearance of a new olefinic proton (δ 5.66, -CH=), which was not observed for rishitin. A DQF-COSY experiment indicated that this olefinic proton connected to the H6-H7-H8 substructure (Supplementary Fig. S8). Since the two methylene protons H5 of rishitin disappeared in **5**, the new olefinic proton was assigned to H5. This finding suggested that the olefin C4a=C8a in rishitin was rearranged to C4a=C5. On the other hand, position C8a was possibly hydroxylated in view of the molecular formula of **5**. Therefore, **5** is not a simple hydroxy product but rather the 8a-hydroxylation accompanied by an olefin shift as shown in Fig. 3. This was supported by the significant low-field shifts at H5, small low-field shifts at H6, and small high-field shifts at H1 and H8 (Fig. 3). The stereochemistry of the introduced hydroxy group in **2** and **5** was not determined. Unlike the simple hydroxyrishitins, compound **4** was unique among the metabolites because it showed UV absorption at 244 nm, suggesting the presence of a conjugated ketone system in the molecule. A DQF-COSY experiment indicated the presence of the H6-H7-H8 connectivity but a lack of the signals for H5, suggesting that **4** is 5-ketorishitin or the dehydro product of 5-hydroxyrishitin. This was supported by the molecular formula smaller than those for the hydroxyrishitins by H₂ and the low-field shifts at H4 and H6 due to the anisotropic effect (Fig. 3, Supplementary Fig. S7).

3.4. Purified 6 rishitin metabolites showed impaired antimicrobial activity against *P. infestans* and *A. solani*.

249 To investigate the toxicity of the six purified rishitin metabolites, rishitin-
250 sensitive *P. infestans* and *A. solani* were incubated with these compounds, to
251 evaluate the effect of rishitin oxidation on antimicrobial activity. Mycelial growth
252 of these two pathogens was examined after treatment with 500 μ M of rishitin or
253 its 6 metabolites. While 4a,8a-dihydro-4a,5-didehydro-8a-hydroxyrishitin (5)
254 slightly inhibited the hyphal growth of pathogens, the other 5 metabolites lost
255 their antimicrobial activity against *P. infestans* and *A. solani* (Fig. 4). Results with
256 similar trends were obtained with the antimicrobial activity test using *A.*
257 *brassicicola* (Supplemental Fig. S9). These results indicate, that all six
258 compounds are indeed products of rishitin detoxification by *B. cinerea*.

259

260 **3.5. Host-specialized phytopathogenic *Botrytis* species can partially metabolize**
261 **rishitin**

262 Fungi in the genus *Botrytis* include a number of phytopathogenic fungi. *B. cinerea*,
263 and its cryptic species *B. pseudocinerea* and *B. prunorum*, are polyphagous
264 pathogens, whereas most of *Botrytis* species have limited host range (Garfinkel et
265 al., 2021). To compare the rishitin detoxification capacity of other *Botrytis* species,
266 the metabolism of rishitin by four *Botrytis* species with narrow host range, namely
267 *B. elliptica* (isolated from lily), *B. allii* (from onion), *B. squamosa* (from Chinese
268 chive) and *B. tulipae* (from tulip), were investigated. As these *Botrytis* species are
269 sensitive to rishitin compared with *B. cinerea* at 500 μ M (Kuroyanagi et al., 2022),
270 mycelial blocks of these species are incubated in 100 μ M rishitin for 72 h.

271 As shown in Fig. 2, *B. cinerea* can completely metabolize rishitin into various
272 metabolites within 72 h. Four host-specialized phytopathogenic *Botrytis* species
273 also can metabolize rishitin, although remaining rishitin was detected for these
274 species after 72 h incubation (Fig. 5 top), indicating that *B. cinerea* retains the
275 highest rishitin metabolic capacity. Significant reduction in rishitin content was
276 shown by *B. elliptica*, while *B. allii*, and *B. squamosa* and *B. tulipae* exhibited
277 minimal reduction of rishitin. Comparison of the profiles of oxidized rishitin
278 produced by the four species indicated that all tested species have similar rishitin
279 metabolic pathways as *B. cinerea*, though the quantity ratios are variable (Fig. 5
280 middle). Similarly, these four species were also shown to be capable of

281 metabolizing rishitin into two stereoisomers of 10,11-dihydro-10,11-
282 dihydroxyrishitin (Fig. 5 bottom).

283

284

285 **4. Discussion**

286 Induced production of phytoalexins, in response to pathogen attack, is a basal
287 resistance mechanism commonly employed by plants against pathogens. Some
288 polyxenous phytopathogens are known to detoxify phytoalexins enzymatically or
289 export phytoalexins by transporters (Schoonbeek et al., 2001; Pedras and
290 Ahiahonu, 2005; Sexton et al., 2009; Kuroyanagi et al., 2022; Bulasag et al, 2023).
291 In contrast, biotrophic and hemi-biotrophic pathogens (typically *P. infestans*)
292 generally use a vast array of effectors to suppress plant resistance mechanisms,
293 including the production of phytoalexins (Zhou et al., 2011; Whisson et al., 2016).
294 The toxicity of phytoalexins is often not specific to pathogens but is also harmful
295 to plant cells (Shiraishi et al., 1975; Lyon, 1980; Stukkens et al., 2005). Thus, in
296 plants, phytoalexins are effectively transported and exported to the site of
297 pathogen attack, and accumulated phytoalexins are detoxified by healthy plant
298 tissues (Shibata et al., 2016; Camagna et al., 2019; He et al., 2019).
299

300 **4.1. Proposal of 5 pathways for the metabolism of rishitin by *B. cinerea***

301 The results of this study indicate that rishitin is converted into a variety of
302 metabolites by *B. cinerea*. We propose five pathways for the detoxification of
303 rishitin by *B. cinerea*, which we deem most likely to explain the observed
304 compounds (Fig. 6). The rishitin metabolites determined in this study were all
305 oxidized derivatives, possibly produced by monooxygenases (Fig. 3). 7-
306 hydroxyrishitin (**2**) and 12-hydroxyrishitin (**3**) are both simple hydroxylation
307 products, whereas the other metabolites could be produced by undergoing multi-
308 step reactions including hydroxylation and epoxidation, etc. (Fig. 6). The isomeric
309 metabolites 10,11-dihydro-10,11-dihydroxyrishitins (**1a** and **1b**) are possibly
310 produced by the epoxidation at the C10-C11 double bond followed by the ring
311 opening via a water molecule. It is unclear whether the second step (hydration) is
312 enzymatic (Fig. 6). The unique ketone product 5-oxorishitin (**4**) could be
313 produced by the hydroxylation at C5 followed by dehydrogenation of the resulting
314 hydroxy group. Although the dehydrogenation of an allyl alcohol to the
315 conjugated ketone is a common chemical reaction, a second enzyme such as
316 dehydrogenase may be involved in the second reaction (Fig. 6). 4a,8a-dihydro-

317 4a,5-didehydro-8a-hydroxyrishitin (**5**) is possibly produced by the epoxidation at
318 the C4a-C8a double bond followed by the ring opening accompanied by H5
319 proton shift. It is also unclear whether a second enzyme is involved in the
320 isomerization steps.

321

322 **4.2. Detoxification of rishitin by plant pathogens and plants**

323 There have been some previous reports on the detoxification of rishitin.
324 *Gibberella pulicaris* (anamorph *Fusarium sambucinum*), the dry rot pathogen of
325 potato tubers, oxidizes rishitin to 12-hydroxyrishitin and 10,11-epoxyrishitin
326 (described as 13-hydroxyrishitin and 11,12-epoxyrishitin in Gardner et al. 1994).
327 Rishitin is also metabolized by healthy potato tuber to less toxic rishitin M1 (12-
328 hydroxyrishitin) and rishitin M2 (Ishiguri et al., 1978). A cytochrome P450 gene
329 *StSPH* (sesquiterpenoid phytoalexins hydroxylase, a cytochrome P450), which
330 metabolizes rishitin to rishitin M1, has been isolated from potato (Camagna et al.,
331 2019). Homologous genes to *SPH* are exclusively found and widespread in the
332 Solanaceae family, which produce sesquiterpenoid phytoalexins (Camagna et al.,
333 2019). *StSPH* catalyzes the same detoxification reaction that occurs in *B. cinerea*
334 and *G. pulicaris* (Fig. 6, Ishiguri et al., 1978; Gardner et al. 1994), but genes
335 encoding enzymes homologous to plant *SPH* homologs were not found in the
336 available fungal genome sequences including *B. cinerea* and *Fusarium* species.
337 This result indicates that the host plants and phytopathogens independently
338 evolved mechanisms to inhibit the antimicrobial activity of rishitin via
339 detoxification to 12-hydroxyrishitin.

340 Previously, RNAseq analysis of upregulated genes in capsidiol-treated *B.*
341 *cinerea* has allowed us to isolate and characterize capsidiol detoxifying enzyme
342 genes *Bccpdh* (Bcin08g00930) and Bcin16g01490, by heterologous expression of
343 candidate genes in grass endophytic fungi *Epichloë festucae* (Kuroyanagi et al.,
344 2022). Further studies on the rishitin-responsive *B. cinerea* genes should allow us
345 to isolate the genes involved in these detoxification reactions, to elucidate the
346 evolutionary origin of rishitin detoxification in *B. cinerea*, and further help us
347 understand why *B. cinerea* evolved five separate pathways for the detoxification
348 of a single phytoalexin.

349

350 **4.3. Metabolism of capsidiol and rishitin by *Botrytis* species**

351 Capsidiol is the major sesquiterpenoid phytoalexin produced by *Nicotiana* and
352 *Capsicum* species, which is metabolized to less toxic capsenone via dehydration
353 by *B. cinerea* (Ward and Stoessl, 1972, Kuroyanagi et al., 2022). Metabolism of
354 capsidiol by *B. elliptica*, *B. allii*, *B. squamosa*, and *B. tulipae* was not detected and
355 the gene for capsidiol dehydrogenase *Bccpdh* was exclusively found in *B. cinerea*,
356 but not in the genome of the other *Botrytis* species. Comparison of the genome
357 sequences of *B. cinerea* and its closely related species suggested that *B. cinerea*
358 may have acquired *Bccpdh* by means of horizontal gene transfer (Kuroyanagi et
359 al., 2022). In contrast, the results of this study indicated that in *Botrytis* species,
360 rishitin metabolism is, albeit to varying degrees, widespread, despite the fact that
361 the four host-specific *Botrytis* species we analyzed do not infect rishitin producing
362 plants. It follows therefore that the ability to metabolize rishitin is likely to be an
363 ancestral trait, which is conserved in *Botrytis* species.

364 In the previous study, the ABC transporter *BcatrB* was shown to be essential
365 for rishitin resistance and infection of plants producing rishitin, suggesting that it
366 may act as a rishitin efflux pump (Bulasag et al., 2023). *BcatrB* has also been
367 involved in the export of structurally unrelated phytoalexins such as resveratrol,
368 camalexin (Vermeulen et al., 2001; Stefanato et al., 2009), and phenylpyrrole
369 fungicides (Schoonbeek et al., 2001), thus *BcatrB* is considered as a multidrug
370 resistance transporter with low substrate specificity. Homologs of *BcatrB* are also
371 conserved in the *Botrytis* genus (Bulasag et al., 2023). It has been found that
372 fungicide-resistant field populations of *B. cinerea* show significantly increased
373 basal expression of *BcatrB* (Kretschmer et al., 2009), indicating that evolving a
374 more efficient efflux of newly encountered harmful substances appears to be an
375 effective first measure to tolerate toxins, and seems to evolve faster than a specific
376 detoxification pathway. It might therefore be the case that *B. cinerea* acquired its
377 broad host-range by means of an efficient phytoalexin efflux, allowing it to
378 establish a beachhead on a new host, before further adapting via more
379 sophisticated detoxification mechanisms. Discovery of the genes involved in the
380 rishitin detoxification may allow further insights into how efflux and

381 detoxification regulation are intertwined in *B. cinerea*, and shed light on the
382 evolutionary history that sets it apart from the various host-specific *Botrytis*
383 species.

384

385 **Author contributions**

386 DT designed the research. ASB, AA, AM, SP, TK, MO, and DT conducted the
387 experiments. ASB, MC, MO, and DT analyzed data. AT, IS, SC, MO, and DT
388 supervised the experiments. ASB, AA, MC, AT, IS, SC, MO, and DT contributed
389 to the discussion and interpretation of the results. ASB, MO, and DT wrote the
390 manuscript. ASB, MC, MO, and DT edited the manuscript.

391

392 **Declaration of Competing Interest**

393 The authors declare that they have no known competing financial interests or
394 personal relationships that could have appeared to influence the work reported in
395 this manuscript.

396

397 **Data availability**

398 Raw data is available on request from the corresponding author, D.T.

399

400 **Acknowledgments**

401 We are grateful to Drs. Kenji Asano and Kotaro Akai (National Agricultural
402 Research Center for Hokkaido Region, Japan) and Mr. Yasuki Tahara (Nagoya
403 University, Japan) for providing tubers of potato cultivars, and Ms. Kayo Shirai
404 (Hokkaido Central Agricultural Experiment Station, Japan) and Dr. Seishi Akino
405 (Hokkaido University, Japan) for providing *P. infestans* isolate 08YD1. We would
406 like to acknowledge the Japanese Ministry of Education, Culture, Sports and
407 Technology (MEXT) and the University of the Philippines Los Baños for
408 allowing Abriel Salaria Bulasag to pursue graduate studies in Japan on
409 scholarship. This work was supported by a Grant-in-Aid for Scientific Research
410 (B) (20H02985 and 23H02212) and Grant-in-Aid for Challenging Exploratory
411 Research (22K19176) to DT from the Japan Society for the Promotion of Science.

412

413 **References**

414 Ahuja, I., Kissen, R., Bones, A.M., 2012. Phytoalexins in defense against
415 pathogens. *Trends Plant Sci.* 17, 73–90.

416 Allan, J., Regmi, R., Denton-Giles, M., Kamphuis, L.G., Derbyshire, M.C., 2019.
417 The host generalist phytopathogenic fungus *Sclerotinia sclerotiorum*
418 differentially expresses multiple metabolic enzymes on two different plant
419 hosts. *Sci. Rep.* 9, 19966.

420 Bulasag, A.S., Camagna, M., Kuroyanagi, T., Ashida, A., Ito, K., Tanaka, A.,
421 Sato, I., Chiba, S., Ojika, M., Takemoto, D., 2023. *Botrytis cinerea* tolerates
422 phytoalexins produced by Solanaceae and Fabaceae plants through an efflux
423 transporter BcatrB and metabolizing enzymes. *Front Plant Sci.* 14, 1177060.

424 Camagna, M., Ojika, M., Takemoto D., Detoxification of the solanaceous
425 phytoalexins rishitin, lubimin, oxylubimin and solavetivone via a cytochrome
426 P450 oxygenase. *Plant Signal. Behav.* 15, 1707348.

427 Coleman, J.J., Wasmann, C.C., Usami, T., White, G.J., Temporini, E.D.,
428 McCluskey, K., VanEtten, H.D., 2011. Characterization of the gene encoding
429 pisatin demethylase (FoPDA1) in *Fusarium oxysporum*. *Mol. Plant Microbe*
430 *Interact.* 24, 1482–1491.

431 De Wit, P.J.G.M., Flach, W., 1979. Differential accumulation of phytoalexins in
432 tomato leaves but not in fruits after inoculation with virulent and avirulent
433 races of *Cladosporium fulvum*. *Physiol. Plant Pathol.* 15, 257–267.

434 Gardner, H.W., Desjardins, A.E., McCormick, S.P., Weisleder, D., 1994.
435 Detoxification of the potato phytoalexin rishitin by *Gibberella pulicaris*.
436 *Phytochemistry* 37, 1001–1005.

437 Garfinkel, A.R., 2021. The history of *Botrytis* taxonomy, the rise of phylogenetics,
438 and implications for species recognition. *Phytopathology* 111, 437–454.

439 Hammerschmidt, R., 1999. Phytoalexins: What have we learned after 60 years?
440 *Annu. Rev. Phytopathol.* 37, 285–306.

441 He, Y., Xu, J., Wang, X., He, X., Wang, Y., Zhou, J., Zhang, S., Meng, X., 2019.
442 The *Arabidopsis* pleiotropic drug resistance transporters PEN3 and PDR12
443 mediate camalexin secretion for resistance to *Botrytis cinerea*. *Plant Cell* 31,
444 2206–2222.

445 Imano, S., Fushimi, M., Camagna, M., Tsuyama-Koike, A., Mori, H., Ashida, A.,
446 Tanaka, A., Sato, I., Chiba, S., Kawakita, K., Ojika, M., Takemoto, D., 2022.
447 AP2/ERF transcription factor NbERF-IX-33 is involved in the regulation of
448 phytoalexin production for the resistance of *Nicotiana benthamiana* to
449 *Phytophthora infestans*. *Front. Plant Sci.* 12, 821574.

450 Ishiguri, Y., Tomiyama, K., Murai, A., Katsui, N., Masamune, T., 1978. Toxicity
451 of rishitin, rishitin-M-1, and rishitin-M-2 to *Phytophthora infestans* and
452 potato tissue. *Ann. Phytopath. Soc. Japan* 44, 52–56.

453 Katsui, N., Mural, A., Takasugi, M., Imaizumi, K., Masamune, T., Tomiyama, K.,
454 1968. The structure of rishitin, a new antifungal compound from diseased
455 potato tubers. *Chem. Commun.* 1, 43–44.

456 Kretschmer, M., Leroch, M., Mosbach, A., Walker, A.S., Fillinger, S., Mernke, D.,
457 Schoonbeek, H.J., Pradier, J.M., Leroux, P., De Waard, M.A., Hahn, M.,
458 2009. Fungicide-driven evolution and molecular basis of multidrug resistance
459 in field populations of the grey mould fungus *Botrytis cinerea*. *PLoS Pathog.*
460 5, e1000696.

461 Kuroyanagi, T., Bulasag, A.S., Fukushima, K., Ashida, A., Suzuki, T., Tanaka, A.,
462 Camagna, M., Sato, I., Chiba, S., Ojika, M., Takemoto, D., 2022. *Botrytis*
463 *cinerea* identifies host plants via the recognition of antifungal capsidiol to
464 induce expression of a specific detoxification gene. *PNAS Nexus* 1, pgac274.

465 Kusch, S., Larrouy, J., Ibrahim, H.M.M., Mounichetty, S., Gasset, N., Navaud, O.,
466 Mbengue, M., Zanchetta, C., Lopez-Roques, C., Donnadieu, C., Godiard, L.,
467 Raffaele, S., 2022. Transcriptional response to host chemical cues underpins
468 the expansion of host range in a fungal plant pathogen lineage. *ISME J.* 16,
469 138–148.

470 Lyon, G.D., 1980. Evidence that the toxic effect of rishitin may be due to
471 membrane damage. *J. Exp. Bot.* 37, 957–966.

472 Maude, R.B., Humpherson-Jones, F.M., 1980. Studies on the seed-borne phases
473 of dark leaf spot (*Alternaria brassicicola*) and grey leaf spot (*Alternaria*
474 *brassicae*) of brassicas. *Ann. Appl. Biol.* 95, 311–319.

475 Murai, A., Nishizakura, K., Katsui, N., Masamune, T., 1975. The synthesis of
476 rishitin. *Tetrahedron Lett.* 16, 4399–4402.

477 Newman, T.E., Derbyshire, M.C., 2020. The evolutionary and molecular features
478 of broad host-range necrotrophy in plant pathogenic fungi. *Front. Plant Sci.*
479 11, 591733.

480 Pedras, M.S.C., Abdoli, A., 2017. Pathogen inactivation of cruciferous
481 phytoalexins: detoxification reactions, enzymes and inhibitors. *RSC Adv.* 7,
482 23633–23646.

483 Pedras, M.S., Ahiahonu, P.W., 2005. Metabolism and detoxification of
484 phytoalexins and analogs by phytopathogenic fungi. *Phytochemistry* 66, 391–
485 411.

486 Prasad, L., Katoch, S., Shahid, S., 2022. Microbial interaction mediated
487 programmed cell death in plants. *3 Biotech.* 12, 43.

488 Sanchez-Vallet, A., Ramos, B., Bednarek, P., López, G., Piślewska-Bednarek, M.,
489 Schulze-Lefert, P., Molina, A., 2010. Tryptophan-derived secondary
490 metabolites in *Arabidopsis thaliana* confer non-host resistance to
491 necrotrophic *Plectosphaerella cucumerina* fungi. *Plant J.* 63, 115–127.

492 Schneider, C.A., Rasband, W.S., Eliceiri, K.W., 2012. NIH Image to ImageJ: 25
493 years of image analysis. *Nat. Methods* 9, 671–675.

494 Schoonbeek, H., Del Sorbo, G., De Waard, M.A., 2001. The ABC transporter
495 BcatrB affects the sensitivity of *Botrytis cinerea* to the phytoalexin
496 resveratrol and the fungicide fenpiclonil. *Mol. Plant Microbe Interact.* 14,
497 562–571.

498 Sexton, A.C., Minic, Z., Cozijnsen, A.J., Pedras, M.S., Howlett, B.J., Cloning,
499 purification and characterisation of brassinin glucosyltransferase, a
500 phytoalexin-detoxifying enzyme from the plant pathogen *Sclerotinia*
501 *sclerotiorum*. *Fungal Genet. Biol.* 46, 201–209.

502 Shibata, Y., Kawakita, K., Takemoto, D., 2010. Age-related resistance of
503 *Nicotiana benthamiana* against hemibiotrophic pathogen *Phytophthora*
504 *infestans* requires both ethylene- and salicylic acid-mediated signaling
505 pathways. *Mol. Plant Microbe. Interact.* 23, 1130–1142.

506 Shibata, Y., Ojika, M., Sugiyama, A., Yazaki, K., Jones, D.A., Kawakita, K.,
507 Takemoto, D., 2016. The full-size ABCG transporters Nb-ABCG1 and Nb-

508 ABCG2 function in pre- and postinvasion defense against *Phytophthora*
509 *infestans* in *Nicotiana benthamiana*. *Plant Cell* 28, 1163–1181.

510 Shiraishi, T., Oku, H., Isono, M., Ouchi, S., 1975. The injurious effect of pisatin
511 on the plasma membrane of pea. *Plant Cell Physiol.* 16, 939–942.

512 Stefanato, F.L., Abou-Mansour, E., Buchala, A., Kretschmer, M., Mosbach, A.,
513 Hahn, M., Bochet, C.G., Métraux, J.P., Schoonbeek, H.J., 2009. The ABC
514 transporter BcatrB from *Botrytis cinerea* exports camalexin and is a virulence
515 factor on *Arabidopsis thaliana*. *Plant J.* 58, 499–510.

516 Stukkens, Y., Bultreys, A., Grec, S., Trombik, T., Vanham, D., Boutry, M., 2005.
517 NpPDR1, a pleiotropic drug resistance-type ATP-binding cassette transporter
518 from *Nicotiana plumbaginifolia*, plays a major role in plant pathogen defense.
519 *Plant Physiol.* 139, 341–352.

520 van Wees, S.C., Chang, H.S., Zhu, T., Glazebrook, J. 2003. Characterization of
521 the early response of *Arabidopsis* to *Alternaria brassicicola* infection using
522 expression profiling. *Plant Physiol.* 132, 606–617.

523 Vermeulen, T., Schoonbeek, H., De Waard, M.A., 2001. The ABC transporter
524 BcatrB from *Botrytis cinerea* is a determinant of the activity of the
525 phenylpyrrole fungicide fludioxonil. *Pest Manag. Sci.* 57, 393–402.

526 Ward, E.W.B., Stoessl, A., 1972. Postinfectional inhibitors from plants. III.
527 Detoxification of capsidiol, an antifungal compound from peppers.
528 *Phytopathology* 62, 1186.

529 Wasmann, C.C., VanEtten, H.D., 1996. Transformation-mediated chromosome
530 loss and disruption of a gene for pisatin demethylase decrease the virulence of
531 *Nectria haematococca* on pea. *Mol. Plant Microbe. Interact.* 9, 793–803.

532 Westrick, N.M., Smith, D.L., Kabbage, M., 2021. Disarming the host:
533 detoxification of plant defense compounds during fungal necrotrophy. *Front.*
534 *Plant Sci.* 12, 651716.

535 Whisson, S.C., Boevink, P.C., Wang, S., Birch, P.R., 2016. The cell biology of
536 late blight disease. *Curr. Opin. Microbiol.* 34, 127–135.

537 Zhou, H., Lin, J., Johnson, A., Morgan, R.L., Zhong, W., Ma, W., 2011.
538 *Pseudomonas syringae* type III effector HopZ1 targets a host enzyme to

539 suppress isoflavone biosynthesis and promote infection in soybean. *Cell Host*
540 *Microbe.* 9, 177–186.

541

542 **Figure legends**

543 **Fig. 1.** Growth inhibition of phytopathogenic oomycete and fungi by rishitin, a
544 major anti-microbial compound (phytoalexin) produced by potato and tomato.
545 Mycelial blocks (approx. 1 mm³) of *Phytophthora infestans* (A), *Alternaria solani*
546 (B), *A. brassicicola* (C), or *Botrytis cinerea* (D) were incubated in 50 µl of 0.1%
547 DMSO (Cont.) or 500 µM rishitin. Outgrowth of hyphae from the mycelial block
548 (outlined by dotted red lines) was measured after 12 or 24 h incubation. Bars =
549 200 µm. Data are means ± SE (n = 20). Data marked with asterisks are
550 significantly different from the control as assessed by the two-tailed Student's *t*-
551 test: **P < 0.01, *P < 0.05.

552 **Fig. 2.** Metabolism of rishitin by *Botrytis cinerea*. Mycelial block (approx. 1
553 mm³) of *B. cinerea* was incubated in 100 µM rishitin for 72 h. Rishitin or its
554 metabolites were detected by LC/MS. (A, B) Detection of rishitin (m/z 245.15)
555 incubated without (A) or with (B) *B. cinerea*. (C, D) Detection of predicted
556 oxidized rishitins (C, m/z 261.15) and oxidized and hydrated rishitins (D, m/z
557 279.16) after incubation with *B. cinerea*.

558

559 **Fig. 3.** (left) Chemical structure of rishitin metabolites produced by *Botrytis*
560 *cinerea*. The position numbering of the ring system follows the IUPAC
561 nomenclature.

562 (right) Proton chemical shift differences between metabolites and rishitin. The $\Delta\delta$
563 values (in ppm) are defined as δ (metabolite) □ δ (rishitin), and the plus/minus
564 values indicate low/high-field shifts compared to the shifts of rishitin, respectively.
565 The shifts for the eliminated protons (H7 in 2 and H5 in 4) are temporarily set to 0
566 ppm.

567

568 **Fig. 4.** Anti-microbial activity of rishitin metabolites against phytopathogens.
569 Mycelial blocks (approx. 1 mm³) of *Alternaria solani* (A) and *Phytophthora*
570 *infestans* (B) were incubated in 50 µl of 0.1% DMSO (Cont. or C), 500 µM

571 rishitin (R) or 500 μ M rishitin metabolites. Outgrowth of hyphae from the
572 mycelial block (outlined by dotted red lines) was measured after 12 or 24 h
573 incubation. Bars = 200 μ m. Data are means \pm SE (n = 15). Data marked with
574 asterisks are significantly different from the control as assessed by the two-tailed
575 Student's *t*-test: **P < 0.01, *P < 0.05.

576

577 **Fig. 5.** Metabolism of rishitin by *Botrytis* species. Mycelial block (approx. 1 mm³)
578 of *Botrytis* species (**A**, *B. elliptica*; **B**, *B. allii*; **C**, *B. squamosa*; **D**, *B. tulipae*) was
579 incubated in 100 μ M rishitin for 72 h. Rishitin or its metabolites were detected by
580 LC/MS. (top) Detection of rishitin (m/z 245.15) incubated with indicated *Botrytis*
581 species. Profile of rishitin without incubation of mycelia is shown in grey lines.
582 (middle and bottom) Detection of oxidized rishitins (middle, m/z 261.15) and
583 oxidized/hydrated rishitins (bottom, m/z 279.16) after incubation with indicated
584 *Botrytis* species. Profiles of metabolites after incubation with *B. cinerea* are
585 shown in yellow lines.

586

587 **Fig. 6** Predicted pathways for the metabolism of rishitin by *Botrytis cinerea*.

588 **1a, 1b**, Rishitin is oxidized to form a tentative 10,11-epoxy intermediate that then
589 undergoes hydration to form a 10,11-diols that are stereoisomeric at C10; **2**,
590 Hydroxylation of rishitin at C7; **3**, Hydroxylation of the methyl group at C12; **4**,
591 Hydroxylation at C5 leads to a tentative 5-hydroxy intermediate that subsequently
592 undergoes dehydrogenation to form a carbonyl group at C5; **5**, Oxidation at the
593 C4a-C8a alkene of rishitin to form a tentative epoxide intermediate, which then
594 undergoes isomerization that leaves an allylic alcohol system at C5-C4a-C8a.

595

596 **Table 1.** ¹H NMR data for rishitin metabolites (400 MHz, in CDCl₃).

597

598 **Supplementary Figures**

599 **Supplementary Fig. S1.** HPLC separation of rishitin metabolites.

600

601 **Supplementary Fig. S2.** LC/MS data of an extract of *B. cinerea* cultured in the
602 presence of rishitin.

603

604 **Supplementary Fig. S3.** NMR of metabolite **1a** (in CDCl_3 at 400 MHz).

605

606 **Supplementary Fig. S4.** NMR of metabolite **1b** (in CDCl_3 at 400 MHz).

607

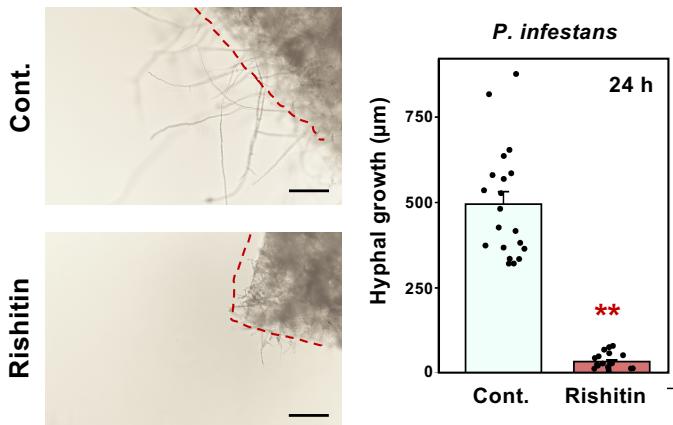
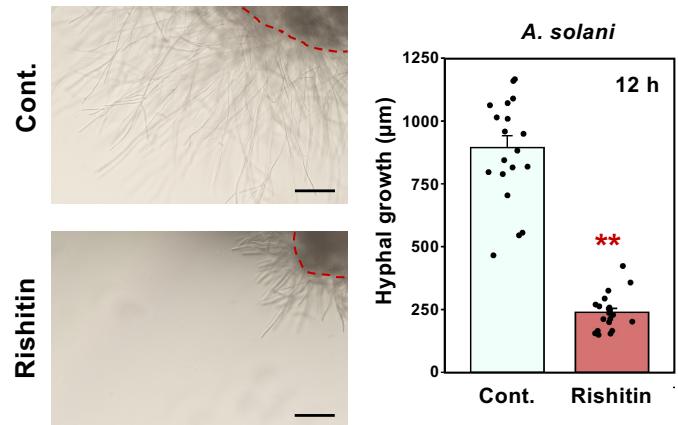
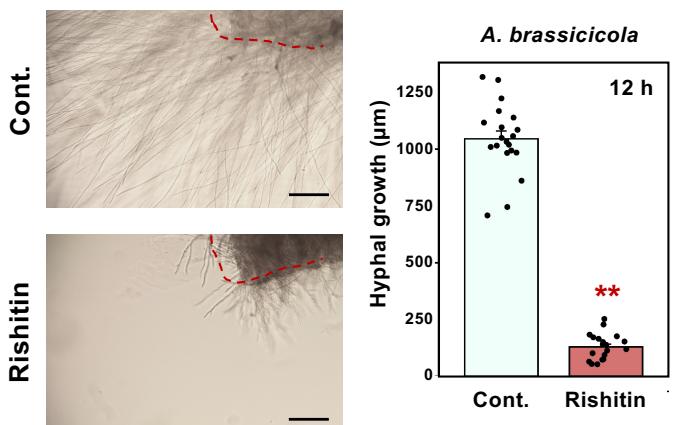
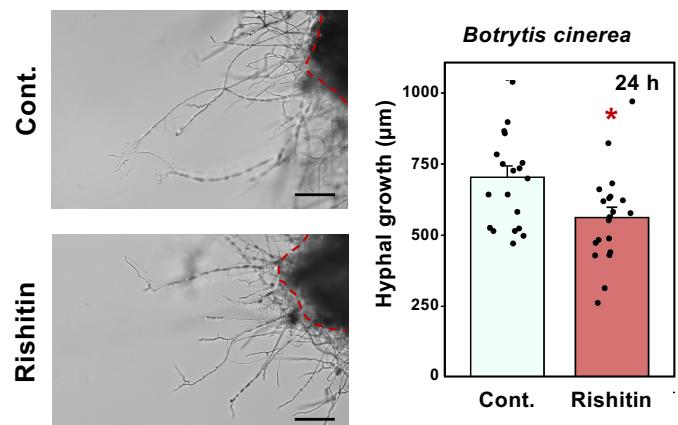
608 **Supplementary Fig. S5.** NMR of metabolite **2** (in CDCl_3 at 400 MHz).

609

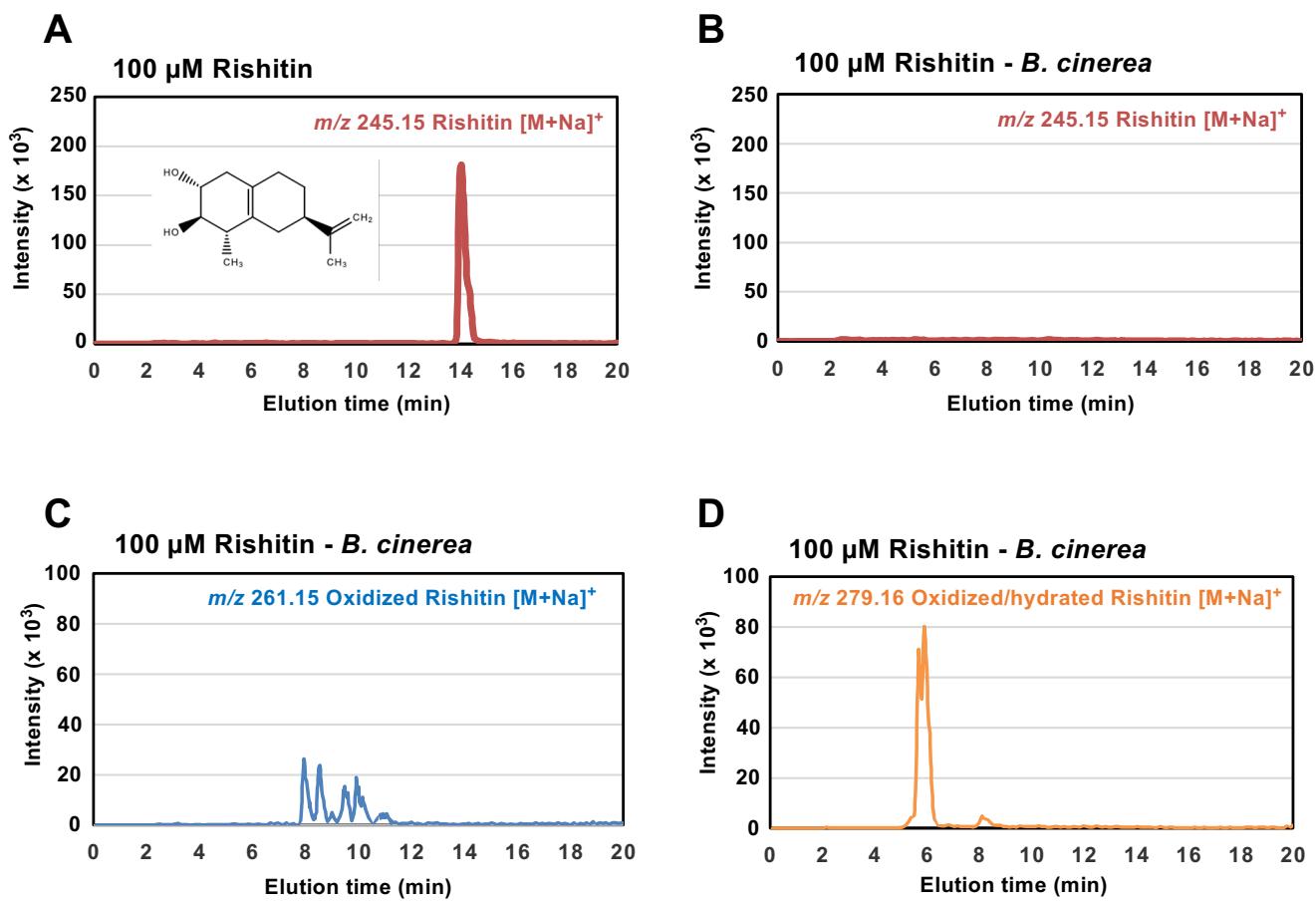
610 **Supplementary Fig. S6.** NMR of metabolite **3** (in CDCl_3 at 400 MHz).

611

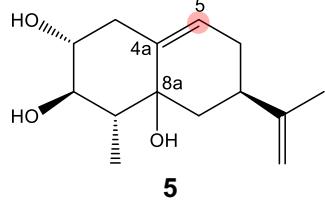
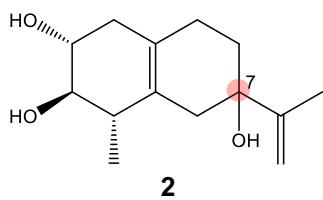
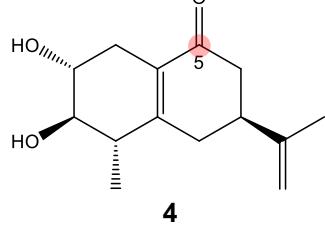
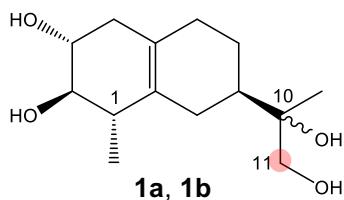
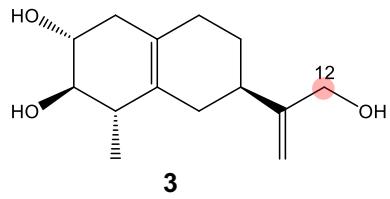
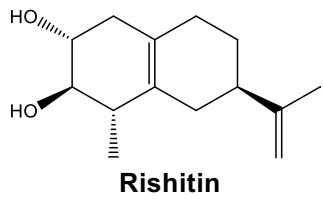
612 **Supplementary Fig. S7.** NMR of metabolite **4** (in CDCl_3 at 400 MHz).





613

614 **Supplementary Fig. S8.** NMR of metabolite **5** (in CDCl_3 at 400 MHz).


615

616 **Supplementary Fig. S9.** Anti-microbial activity of risitin metabolites against







617 phytopathogenic fungi *Alternaria brassicicola*.

A*Phytophthora infestans***B***Alternaria solani***C***A. brassicicola***D***Botrytis cinerea*

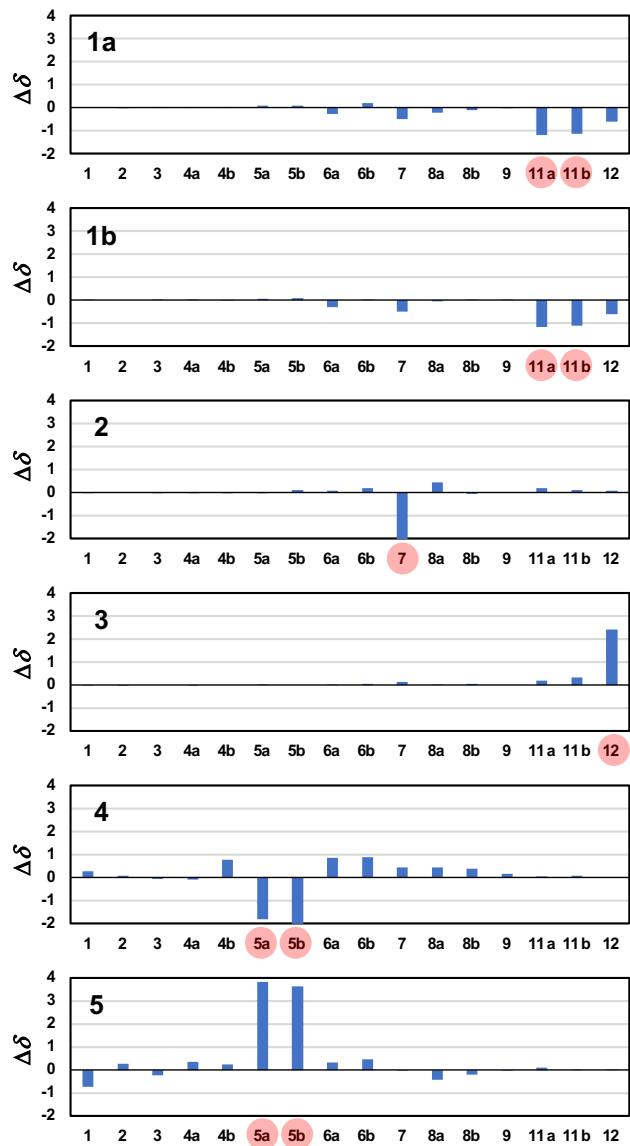
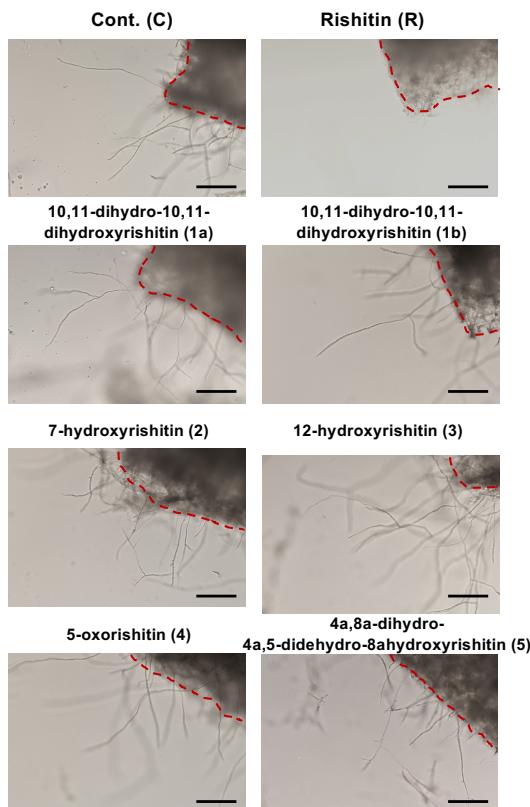

Fig. 1. Growth inhibition of phytopathogenic oomycete and fungi by rishitin, a major anti-microbial compound (phytoalexin) produced by potato and tomato. Mycelial blocks (approx. 1 mm³) of *Phytophthora infestans* (A), *Alternaria solani* (B), *A. brassicicola* (C) or *Botrytis cinerea* (D) were incubated in 50 μl of 0.1% DMSO (Cont.) or 500 μM rishitin. Outgrowth of hyphae from the mycelial block (outlined by dotted red lines) was measured after 12 or 24 h incubation (n = 20). Bars = 200 μm. Data are means ± SE (n = 20). Data marked with asterisks are significantly different from control as assessed by the two-tailed Student's *t*-test: **P < 0.01, *P < 0.05.

Fig. 2. Metabolism of rishitin by *Botrytis cinerea*. Mycelial block (approx. 1 mm³) of *B. cinerea* was incubated in 100 μ M rishitin for 72 h. Rishitin or its metabolites were detected by LC/MS. **(A, B)** Detection of rishitin (m/z 245.15) incubated without (A) or with (B) *B. cinerea*. **(C, D)** Detection of predicted oxidized rishitins (C, m/z 261.15) and oxidized and hydrated rishitins (D, m/z 279.16) after incubation with *B. cinerea*.



1a,1b 10,11-dihydro-10,11-dihydroxyrishitin
(stereoisomers at C10)
2, 7-hydroxyrishitin
3, 12-hydroxyrishitin
4, 5-oxorishitin
5, 4a,8a-dihydro-4a,5-didehydro-8a-hydroxyrishitin

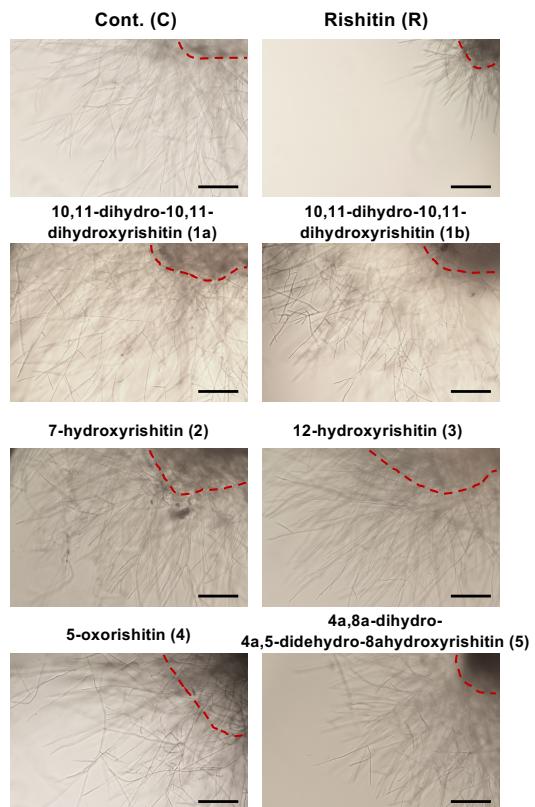
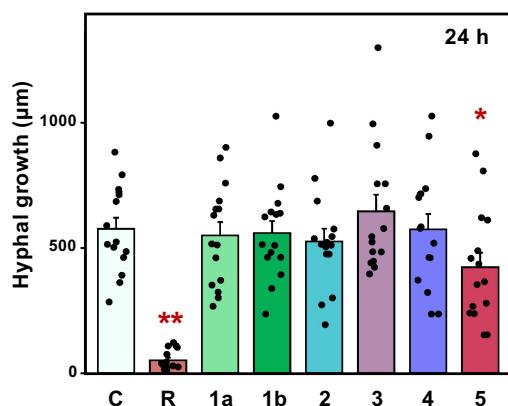
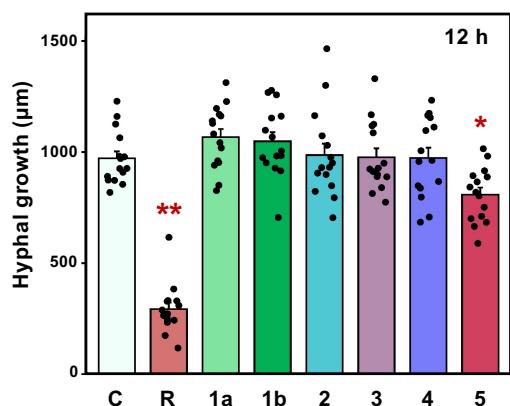
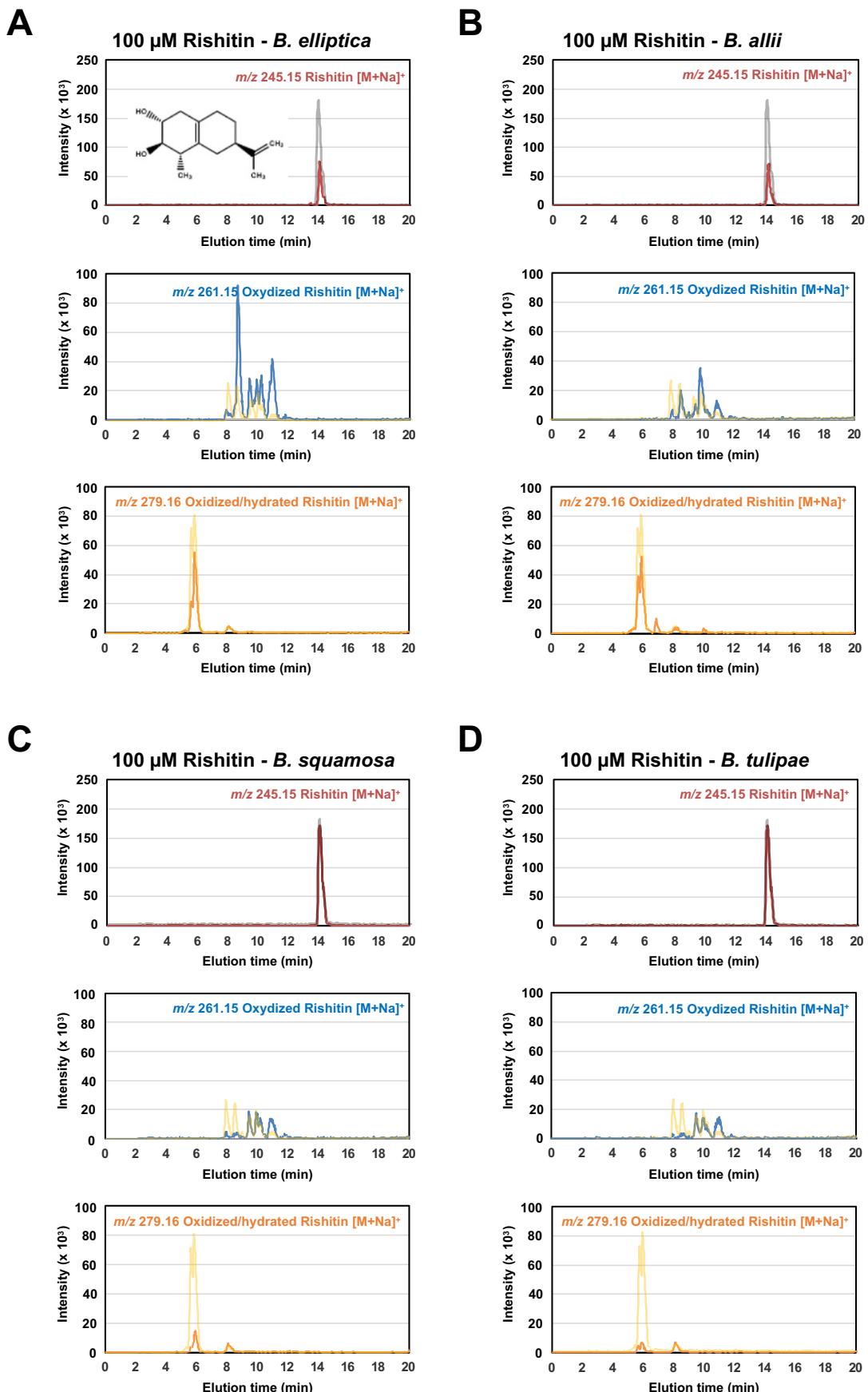


Fig. 3. (left) Chemical structure of rishitin metabolites produced by *Botrytis cinerea*. The position numbering of the ring system follows the IUPAC nomenclature. (right) Proton chemical shift differences between metabolites and rishitin. The $\Delta\delta$ values (in ppm) are defined as δ (metabolite)– δ (rishitin), and the plus/minus values indicate low/high-field shifts compared to the shifts for the eliminated protons (H7 in 2 and H5 in 4) are temporarily set to 0 ppm.


A *Phytophthora infestans*


B *Alternaria solani*


Phytophthora infestans

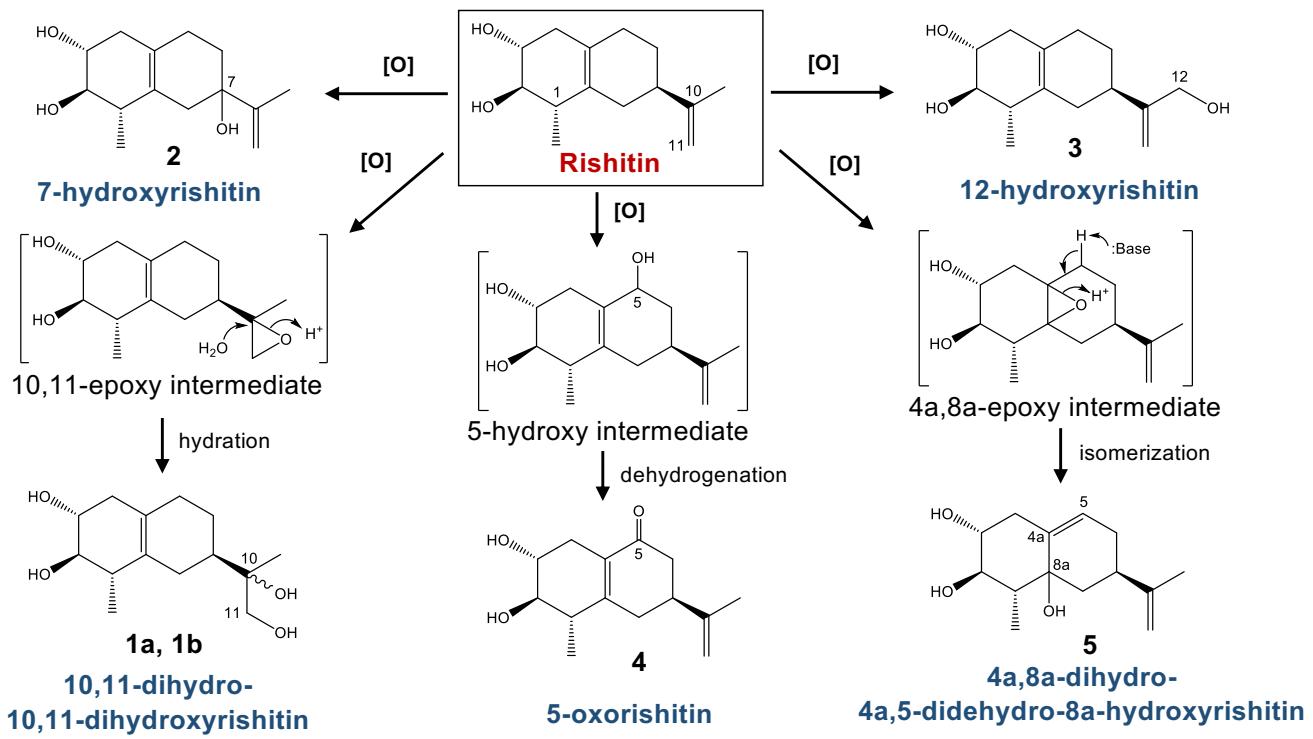

Alternaria solani

Fig. 4. Anti-microbial activity of rishitin metabolites against phytopathogens. Mycelial blocks (approx. 1 mm³) of *Phytophthora infestans* (oomycete) (A) and *Alternaria solani* (fungus) (B) were incubated in 50 μl of 0.1% DMSO (Cont. or C), 500 μM rishitin (R) or 500 μM rishitin metabolites. Outgrowth of hyphae from the mycelial block (outlined by dotted red lines) was measured after 12 or 24 h incubation. Bars = 200 μm. Data are means ± SE (n = 15). Data marked with asterisks are significantly different from control as assessed by the two-tailed Student's *t*-test: **P < 0.01, *P < 0.05.

Fig. 5. Metabolism of rishitin by *Botrytis* species. Mycelial blocks (approx. 1 mm^3) of *Botrytis* species (**A**, *B. elliptica*; **B**, *B. allii*; **C**, *B. squamosa*; **D**, *B. tulipae*) were incubated in 100 μ M rishitin for 72 h. Rishitin or its metabolites were detected by LC/MS. (top) Detection of rishitin (m/z 245.15) incubated with indicated *Botrytis* species. Profile of rishitin without incubation of mycelia is overlaid in grey line. (middle and bottom) Detection of oxidized rishitins (middle, m/z 261.15) and oxidized/hydrated rishitins (bottom, m/z 279.16) after incubation with indicated *Botrytis* species. Profiles of metabolites after incubation with *B. cinerea* are overlaid in yellow lines.

Fig. 6 Predicted pathways for the metabolism of rishitin by *Botrytis cinerea*.

1a, 1b, Rishitin is oxidized to form a tentative 10,11-epoxy intermediate that then undergoes hydration to form a 10,11-diols that are stereoisomeric at C10; **2**, Hydroxylation of rishitin at C7; **3**, Hydroxylation of the singlet methyl group at C12; **4**, Hydroxylation at C5 leads to a tentative 5-hydroxy intermediate that subsequently undergoes dehydrogenation to form a carbonyl group at C5; **5**, Oxidation at the C4a-C8a alkene of rishitin to form a tentative epoxide intermediate, which then undergoes isomerization that leaves an allylic alcohol system at C5-C4a-C8a.

Table 1. ^1H NMR data for rishitin metabolites (400 MHz, in CDCl_3)^a

Pos	1a	1b	2	3	4	5
1	2.09 (m)	2.12 (m)	2.07 (m)	2.08 (m)	2.35 (m)	1.35 (m)
2	3.23 (brt, 9.0)	3.24 (t, 9.0)	3.24 (t, 9.0)	3.23 (t, 9.2)	3.32 (t, 9.2)	3.51 (dt, 3.6, 9.6)
3	3.69 (m)	3.69 (m)	3.63 (dt, 6.0, 9.0)	3.66 (m)	3.6 (dt, 6.4, 9.2)	3.42 (m)
4	2.11 (m), 2.22 (m)	2.11 (m), 2.18 (m)	2.08 (m), 2.17 (m)	2.08 (m), 2.19 (m)	1.99 (m), 2.95 (dd, 16.2, 5.8)	2.44 (d, 7.2)
5	1.91 (m), 2.1 (m)	1.88 (m), 2.11 (m)	1.81 (m), 2.12 (m)	1.85 (m), 2.02 (m)	-	5.66 (brd, 5.6)
6	1.29 (dq, 5.4, 12.6), 1.88 (m)	1.26 (dq, 5.4, 11.8), 1.70 (m)	1.64 (m), 1.88 (m)	1.58 (m), 1.73 (m)	2.41 (dd, 16.2, 10.2), 2.58 (dd, 16.2, 4.4)	1.88 (dd, 15.6, 11.2), 2.14 (m)
7	1.74 (m)	1.77 (m)	-	2.37 (m)	2.69 (m)	2.24 (m)
8	1.54 (m), 2.14 (m)	1.68 (m), 2.25 (m)	2.19 (m)	1.77 (m), 2.30 (m)	2.20 (dd, 18.0, 8.4), 2.61 (brd, 18.0)	1.32 (t, 13.4), 2.04 (m)
9	1.15 (d, 6.8)	1.17 (d, 6.4)	1.17 (d, 6.8)	1.16 (d, 6.8)	1.32 (d, 6.8)	1.15 (d, 6.8)
11	3.45 (dd, 10.9, 5.2), 3.60 (dd, 10.9, 4.6)	3.47 (dd, 10.4, 4.8), 3.62 (dd, 10.4, 4.0)	4.84 (s), 4.86 (d, 1.2)	4.84 (s), 5.08 (s)	4.70 (s), 4.82 (s)	4.74 (s), 4.77 (s)
12	1.12 (s)	1.13 (s)	1.81 (s)	4.14 (s)	1.74 (s)	1.75 (s)
2-OH	2.28 (brd, 3.6)	2.27 (m)	2.3 (br)	2.27 (brs)	2.6 (brs)	2.13 (brd, 3.6)
3-OH	2.16 (brs)	2.18 (m)	2.19 (m)	2.17 (brs)	2.05 (brs)	2.21 (brd, 3.6)
Other OH	1.51 (s) ^b , 1.81 (m) ^c	1.51 (s) ^b , 1.79 (m) ^c	-	1.34 (brs) ^d	-	1.51 (s) ^e

^aMultiplicity and coupling constants (in Hz) are in parentheses. ^{b-e}Shifts for 10-OH, 11-OH, 12-OH, and 8a-OH, respectively.