

1 Local FK506 delivery induces osteogenesis in *in vivo* rat bone defect and rabbit spine fusion
2 models

3 Concise running title: FK506 induces osteogenesis in bone defect and spine fusion models

4 Julia Andraca Harrer^{1,2,3,4*} and Travis M. Fulton^{1,2*}, Sreedhara Sangadala^{1,2}, Jarred Kaiser^{1,2},
5 Emily J. Devereaux², Colleen Oliver¹, Steven M. Presciutti^{1,2}, Scott D. Boden², and Nick J.
6 Willett^{1,2,3,4**}

7 ¹ Atlanta VA Medical Center, Decatur, GA 30033, USA

8 ² Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA

9 ³ Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory
10 University, Atlanta, GA 30332, USA

11 ⁴ Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA

12

13 * These authors have contributed equally to this work and share first authorship

14 ** Correspondence: nwillett@uoregon.edu (NJW)

15 Contributions:

16 JAH: conceptualization, data curation, formal analysis, interpretation, writing, editing

17 TMF: conceptualization, data curation, formal analysis, editing

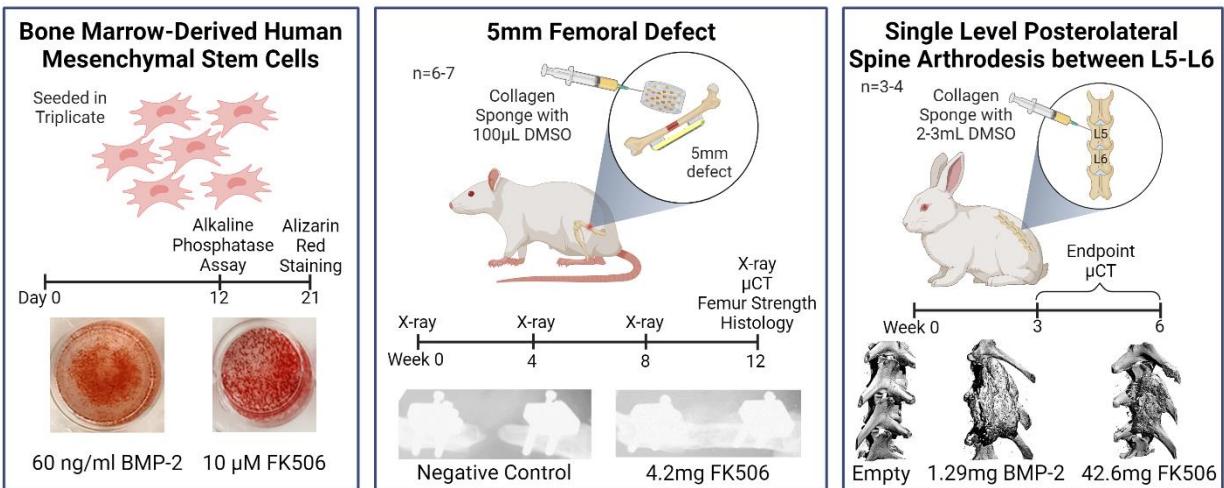
18 SS: conceptualization, data curation, formal analysis, funding acquisition, editing

19 JK: conceptualization, interpretation, editing

20 EJD: conceptualization, data curation, editing

21 CO: data curation, editing

22 SMP: conceptualization, interpretation, funding acquisition, editing


23 SDB: conceptualization, interpretation, funding acquisition, editing

24 NJW: conceptualization, interpretation, funding acquisition, writing, editing

25 Abstract:

26 Bone grafting procedures are commonly used for the repair, regeneration, and fusion of bones in
27 in a wide range of orthopaedic surgeries, including large bone defects and spine fusion procedures.
28 Autografts are the clinical gold standard, though recombinant human bone morphogenetic proteins
29 (rhBMPs) are often used, particularly in difficult clinical situations. However, treatment with
30 rhBMPs can have off-target effects and significantly increase surgical costs, adding to patients'
31 already high economic and mental burden. Recent studies have identified that FDA-approved
32 immunosuppressant drug, FK506 (Tacrolimus), can also activate the BMP pathway by binding to
33 its inhibitors. This study tested the hypothesis that FK506, as a standalone treatment, could induce
34 osteogenic differentiation of human mesenchymal stromal cells (hMSCs), as well as functional
35 bone formation in a rat segmental bone defect model and rabbit spinal fusion model. FK506
36 potentiated the effect of low dose BMP-2 to enhance osteogenic differentiation and mineralization
37 of hMSCs *in vitro*. Standalone treatment with FK506 delivered on a collagen sponge, produced
38 consistent bone bridging of a rat critically-sized femoral defect with functional mechanical
39 properties comparable to naïve bone. In a rabbit single level posterolateral spine fusion model,
40 treatment with FK506 delivered on a collagen sponge successfully fused the L5-L6 vertebrae at
41 rates comparable to rhBMP-2 treatment. These data demonstrate the ability of FK506 to induce
42 bone formation in human cells and two challenging *in vivo* models, and indicate FK506 can be
43 utilized either as a standalone treatment or in conjunction with rhBMP to treat a variety of spine
44 disorders.

45 Graphical Abstract:

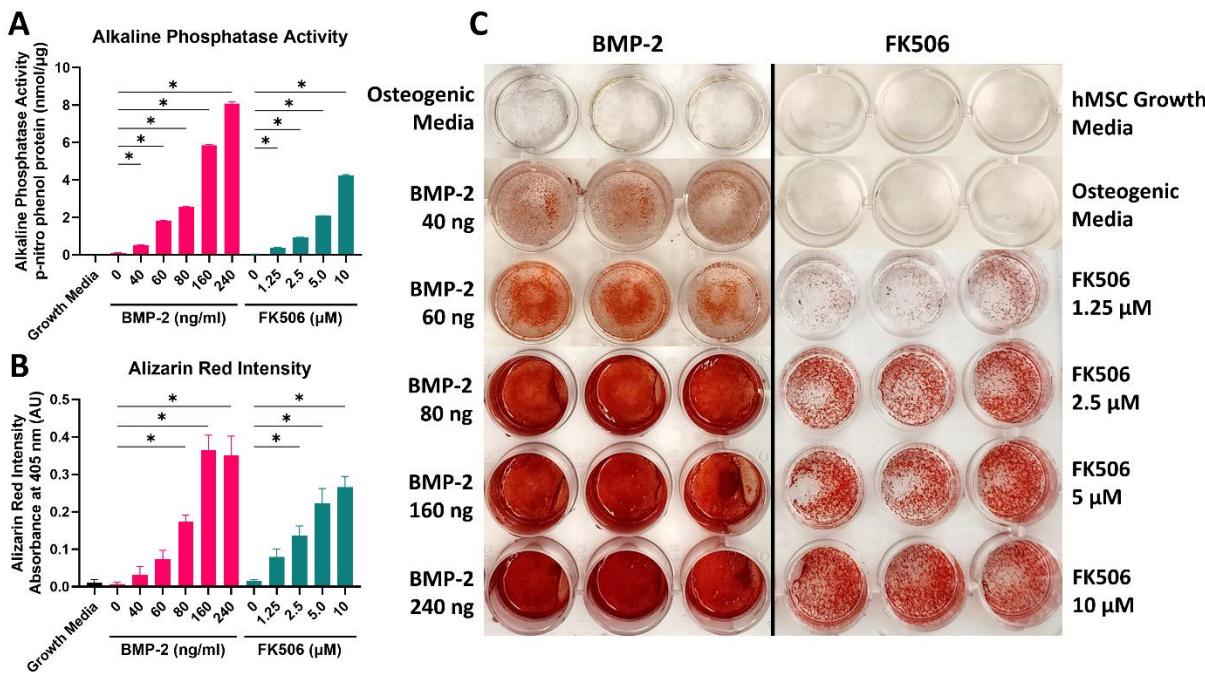
47 Introduction

48 Bone grafting procedures are commonly used in a wide variety of orthopaedic procedures
49 ranging from regeneration of bone defect procedures to fusion of joints, such as during spinal
50 fusion procedures. Spinal fusion is used to treat a variety of spine disorders including tumors,
51 deformities, and traumatic injuries. Success rates reported for these procedures vary greatly, with
52 non-union rates ranging from 1.1%-43.3%, and can take up to 3 years to reach union ¹⁻⁴. The
53 incidence of spinal fusion and refusion procedures has increased drastically in recent years, with a
54 137% and 187% increase from 1998 to 2013, respectively ^{5,6}. Historically, the most common
55 method of achieving spinal fusion is through an autologous bone graft treatment, which has
56 potential limitations and complications including increased infection rates, donor site pain and
57 morbidity, limited tissue availability, and revision surgeries ⁷⁻¹¹. In 2002, recombinant human
58 Bone Morphogenetic Protein-2 (rhBMP-2) was FDA approved for use in spine surgeries, and has
59 been increasingly employed in spine fusions as an alternative to autograft procedures ^{12,13}.
60 However, surgeries using rhBMP-2 have increased rates of inflammation, radiculitis, bone
61 resorption and ectopic bone formation, as well as the possibility of developing BMP-2 neutralizing
62 antibodies ^{12,14,15}. Additionally, initial rhBMP-2 surgeries increase surgical costs by \$15,000 on
63 average ^{13,16}. A combination of cost, complications, and transportation/storage difficulties has led
64 to an increased interest in the use of alternate approaches, such as osteoinductive small molecule
65 treatment, to replace rhBMP-2's role in bone regeneration ¹⁷.

66 FK506, or Tacrolimus, is an FDA approved small molecule that is currently used as an
67 immunosuppressant for organ transplant patients ^{18,19}. FK506 has also been shown to enhance
68 BMP-2 activity and osteogenic cell differentiation by binding to BMP inhibitor FKBP12 and
69 inhibiting calcineurin activity ^{20,21}. *In vitro* studies have demonstrated that FK506 promotes

70 osteogenic differentiation in multiple rodent cell lines, including murine C2C12 myoblasts, murine
71 MC3T3 pre-osteoblasts, and rat bone marrow mesenchymal stromal cells ^{22,23}. Most *in vivo* studies
72 investigating the potential of FK506 in bone regeneration have used the drug as an
73 immunosuppressant to supplement other treatments. In a rat ectopic bone formation model, local
74 injection of FK506 along with BMP-2 or a BMP-2-expressing recombinant adenoviral vector
75 improved bone formation ^{24,25}. In other ectopic bone formation models, the supplementation of
76 isograft, allograft, or demineralized bone matrix implantations with FK506 demonstrated that
77 FK506 injection significantly enhanced bone formation ^{26,27}. In orthotopic bone defect models,
78 systemic FK506, as an immunosuppressant, demonstrated enhanced the osteogenic effects of local
79 bone regeneration, including demineralized bone matrix and BMP-2 expressing adenovirus ^{28,29}.
80 While these data have demonstrated clear potential of FK506 as a supplemental treatment during
81 bone regeneration procedures, the utility and potential of local, standalone treatment of FK506 for
82 clinically relevant procedures, such as bone defect repair and spinal fusion surgeries, has yet to be
83 investigated.

84 In previous studies, we evaluated the ability of FK506 as a standalone treatment to induce
85 osteogenic differentiation in murine C2C12 cells and an ectopic bone formation model in rats ³⁰.
86 Culturing cells with FK506 induced alkaline phosphatase (ALP) activity at a comparable level to
87 BMP-2. Additionally, cells treated with FK506 showed increased pSMAD, ID1, and TIEG1 levels,
88 indicating activation of BMP and TGF- β pathways. FK506-loaded collagen sponges implanted
89 subcutaneously in rats induced bone volume and mineralization levels comparable to bone volume
90 and mineralization induced by BMP-2. These data demonstrate the potential of FK506 as a
91 standalone treatment and alternative to BMP-2 for bone healing and spinal fusion procedures.

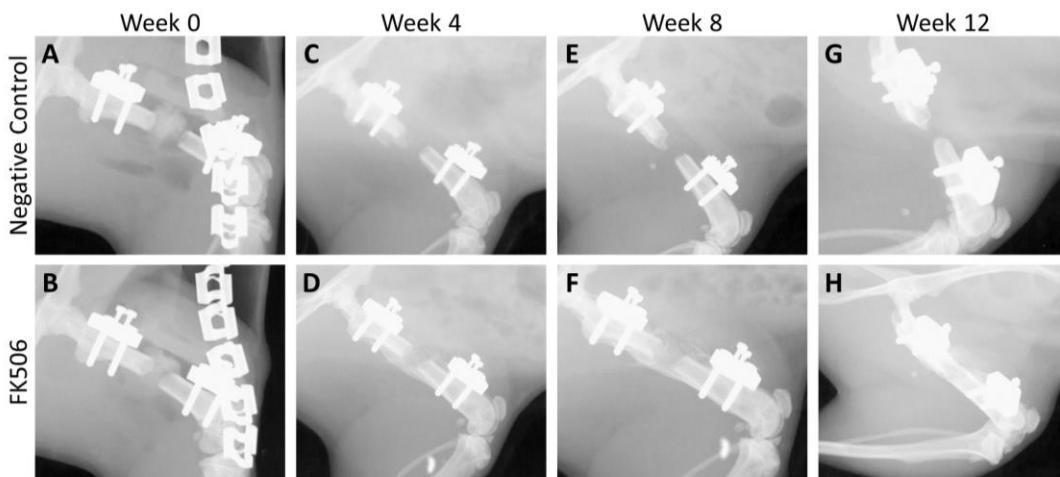

92 The objective of this current study was to evaluate the effects of standalone FK506
93 treatment on osteogenic differentiation in human mesenchymal stromal cells and as a locally
94 delivered treatment for both segmental bone defects and spinal fusion. We hypothesized that
95 FK506 would induce bone formation in each model at a level comparable to that of BMP-2. This
96 study assessed *in vitro* treatment of FK506 in human bone marrow-derived MSCs both in
97 conjunction with BMP-2 and independently. We also assessed standalone treatment of FK506 in
98 an established rat femoral defect model and dose response studies in a rabbit single level
99 posterolateral spine fusion model to evaluate the efficacy of FK506 as a potential treatment for
100 bone defect and spinal disorders.

101 **Results**

102 *FK506 Induced Mineralization in Adult Human Mesenchymal Stromal Cells*

103 Adult human mesenchymal stromal cells (hMSCs) were cultured with hMSC growth
104 media, osteogenic media, or osteogenic media with various concentrations of BMP-2 or FK506.
105 Induction of early osteogenic differentiation was measured through alkaline phosphatase (ALP)
106 expression at day 12 (Fig. 1A). All doses of BMP-2 treatment resulted in significantly higher ALP
107 activity compared to the growth media and osteogenic media (0 ng BMP-2) controls
108 (Supplementary Table S1). Similarly, all doses of FK506 treatment resulted in significantly higher
109 ALP activity compared to the growth media and osteogenic media (0 μ M FK506) controls. Both
110 treatment with 160 ng BMP-2 and 240 ng BMP-2 resulted in significantly higher ALP activity
111 compared to 10 μ M FK506 (160 ng BMP-2: 5.857 nmol/ μ g \pm 0.02443 nmol/ μ g and 240 ng BMP-
112 2: 8.087 nmol/ μ g \pm 0.04737 nmol/ μ g vs. 10 μ M FK506: 4.250 nmol/ μ g \pm 0.02259 nmol/ μ g, $p <$
113 0.001).

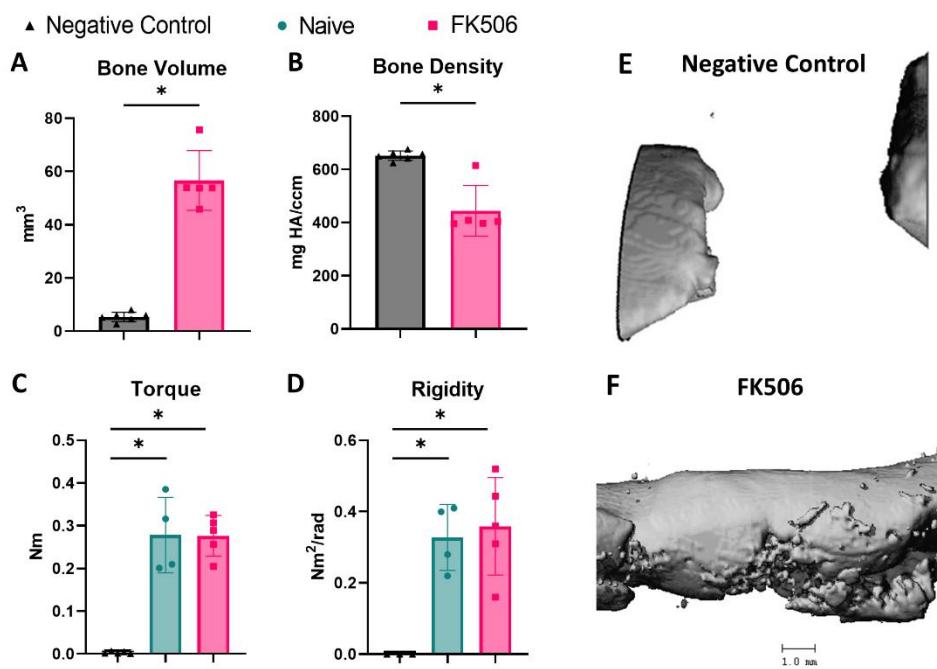
114 Induction of calcium mineralization of hMSCs at day 21 in response to increasing doses of
115 BMP-2 and FK506 was analyzed by staining with alizarin red (Fig. 1C). Treatment with 80 ng,
116 160 ng, and 240 ng BMP-2 and 2.5 μ M, 5.0 μ M, and 10 μ M FK506 were significantly increased
117 compared to growth media and osteogenic media controls (Supplementary Table S2). Treatment
118 with 160 ng and 240 ng BMP-2 was significantly higher than all doses of FK506 (160 ng BMP-2:
119 0.3643 AU \pm 0.02325 AU vs 10 μ M FK506: 0.2660 AU \pm 0.01652 AU, p = 0.0094, and 240 ng
120 BMP-2: 0.3507 AU \pm 0.02973 AU vs 10 μ M FK506: 0.2660 AU \pm 0.01652 AU, p = 0.0372).
121 Treatment with 80 ng BMP-2 was not significantly different from treatment with and 2.5 μ M and
122 5.0 μ M FK506, but was significantly lower than treatment with 10 μ M FK506 (80 ng BMP-2:
123 0.1733 AU \pm 0.01033 AU vs. 2.5 μ M FK506: 0.1373 AU \pm 0.01443 AU, p = 0.8963, 5.0 μ M
124 FK506: 0.2223 AU \pm 0.02310 AU, p = 0.5864, and 10 μ M FK506: 0.2660 AU \pm 0.01652 AU, p =
125 0.0168).



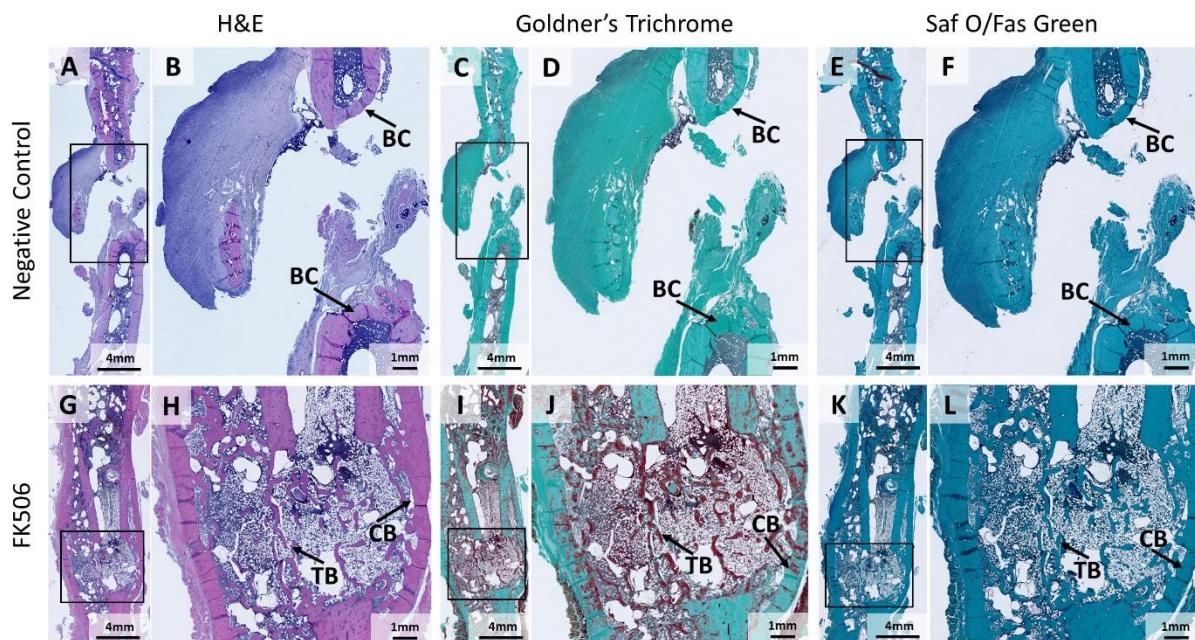
126

127 Figure 1. Human mesenchymal stromal cells showed increased osteogenic differentiation in response to FK506.
128 Quantification of alkaline phosphatase activity (A) and Alizarin red stain for calcium mineralization (B). Alizarin red
129 staining (C). One-way ANOVA with Tukey's multiple comparisons.

130 *Local Delivery of FK506 Bridges Critically-Sized Defects in Rat Femurs*


131 A critically-sized 5 mm bone defect was created in 14 rat femurs to compare the treatment
132 effects of 4.2 mg of FK506 in DMSO to a negative control DMSO delivery on a collagen sponge.
133 Radiographs were obtained immediately after surgery and at four-week intervals until the study
134 endpoint at Week 12 (Fig. 2). Radiographs were evaluated by three blinded scorers; 7/7 femurs
135 bridged in the FK506 treatment group and 0/6 in the negative control group. In the FK506 group,
136 radiographic evidence of bridging was noted as early as 4 weeks post-surgery.

137
138 Figure 2. Representative radiographs of defect site at (A,B) post-operation, (C,D) 4 weeks, (E,F) 8 weeks, and (G,H)
139 12 weeks.


140 All femurs were resected for micro-computed tomography (μ CT) analysis and mechanical
141 testing. The defect region showed substantially greater bone volume in the FK506 treatment group
142 compared to the negative control group ($56.63 \text{ mm}^3 \pm 5.007$ vs. $5.4 \text{ mm}^3 \pm 0.7191$, $p < 0.001$) and
143 bone mineral density was lower in FK506 treated defects compared to those from negative control
144 femurs ($444.48 \text{ mgHA/cm}^3 \pm 42.74$ vs. $651.96 \text{ mgHA/cm}^3 \pm 7.19$, $p < 0.001$) (Fig. 3 A,B, E, F).

145 When evaluating mechanical properties of the femurs, contralateral limbs were used as naïve
146 controls. Naïve, FK506 treated, and negative control femora were evaluated for maximum torque
147 to failure and rigidity. FK506 treated femurs were found to have no significant difference in
148 maximum torque to failure compared to naïve femurs ($0.2764 \text{ Nmm} \pm 0.02118$ vs. 0.2780 Nmm
149 ± 0.0442 , $p = 0.9989$) and FK506 treated femurs also had no significant differences in rigidity
150 compared to the naïve femurs ($0.3586 \text{ Nmm}^2/\text{rad} \pm 0.06124$ vs. $0.3275 \text{ Nmm}^2/\text{rad} \pm 0.04644$, $p =$
151 0.9006) (Fig. 3 C,D). The negative control group was significantly different from both the FK506
152 treated femurs and the naïve control groups for both measurements (Torque: 0.0034 ± 0.001122
153 Nmm, $p < 0.001$, Rigidity: $0 \text{ Nmm}^2/\text{rad}$, negative control vs. FK506 $p = 0.0031$, negative control
154 vs. naïve control $p = 0.0073$).

155
156 Figure 3. μCT analysis of bone volume and density showed increased bone volume in FK506 group compared to the
157 negative control (A,B). Results of maximum torque to failure and rigidity mechanical testing demonstrated that FK506
158 treated femurs and naïve control femurs had no differences in mechanical properties, both were significantly higher
159 than the negative control group (C,D). μCT 3D reconstruction of defect site at 12 weeks (E,F). * denotes $p < 0.05$,
160 unpaired t test (A,B) and one-way ANOVA with Tukey's multiple comparisons (C,D).

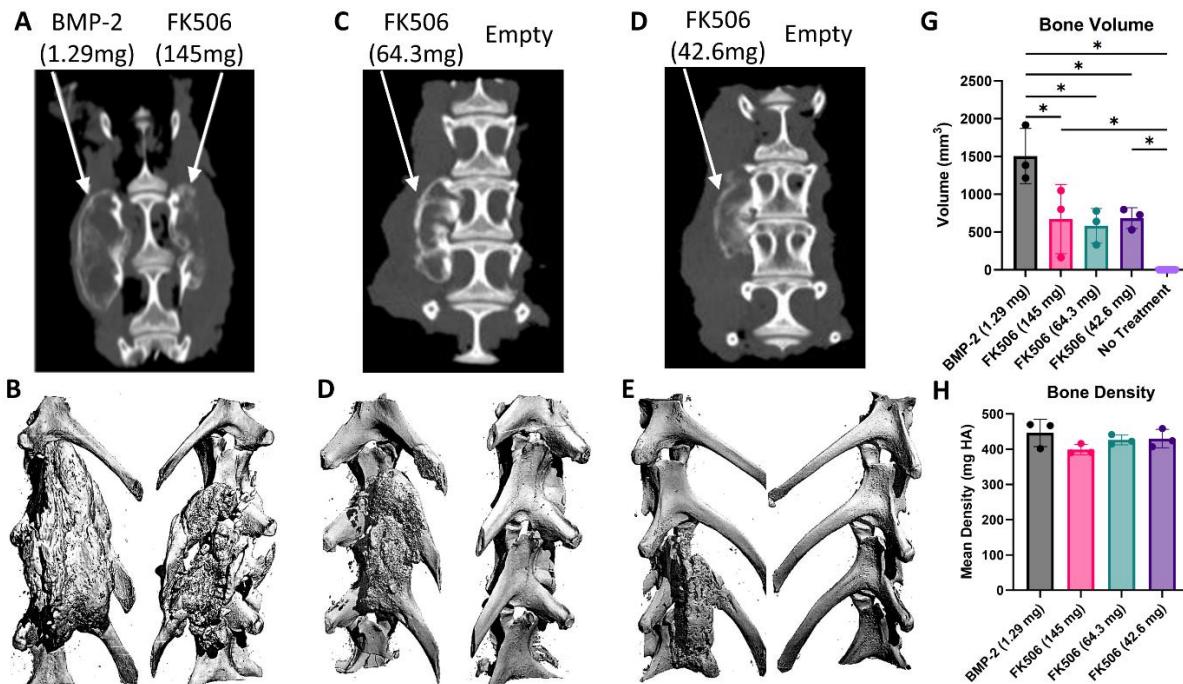
161 Following μ CT analysis, rat femora were decalcified, fixed, sectioned, and stained with
162 Hematoxylin and Eosin (H&E), Goldner's Trichrome, and Safranin-O/Fast-green. Femora in the
163 FK506 treatment group were prepped for histology immediately after μ CT, while femora in the
164 negative control group were prepped for histology following mechanical testing. In the negative
165 control group, no bridging was visible, with some fibrous tissue forming between bone caps on
166 either end of the defect (Fig. 4 A-F). Robust bridging was visible in FK506-treated femora, with
167 cortical bone fully surrounding the trabecular bone forming within (Fig. 4 G-L). No cartilage was
168 seen bridging or around the defect region in either group.

169
170 Figure 4. Hematoxylin and Eosin (A,B, G,H), Goldner's Trichrome (C,D,I,J), Safranin-O (E,F,K,L) staining of
171 negative control defect site and FK506 defect site respectively at 12 weeks. Stained longitudinal sections of defect
172 site, box denotes defect site (A,C,E,G,I,K). Enlarged view of defect sites, arrows identify trabecular bone growth (TB),
173 cortical bone growth (CB), and bone cap formation (BC) (B,D,F,H,J,L). Both trabecular and cortical bone bridge
174 FK506 femora, while bone caps indicate non-union in negative control group.

175 *Local Delivery of FK506 Induces Spinal Fusion between Rabbit Lumbar Vertebrae*

176 Ten New Zealand White rabbits underwent a single level posterolateral spine arthrodesis
177 procedure between L5-L6 to compare BMP-2 treatment to varying doses of FK506. All treatments

178 were delivered by first injecting the treatment solution onto the collagen sponge and then
179 implanting the sponge between the L5-L6 vertebrae. Bilateral procedures were performed for two
180 treatment groups, with 1.29 mg BMP-2 on one side and 145 mg FK506 on the other side (n=4).
181 Unilateral procedures were performed for the 64.3 mg FK506 and 42.6 mg FK506 treatment
182 groups (n=3), with no treatment on the other side. Rabbits with higher FK506 dosage levels (4/4
183 rabbits with 145 mg FK506, 1/3 with 64.3 mg FK506, 0/3 with 42.3 mg FK506) lost over 25% of
184 their body weight over the course of the study compared to their baseline weight recorded at time
185 of surgery; these animals were euthanized at the timepoint of these measurements which ranged
186 from 3-6 weeks post-surgery. Following euthanasia, animals were examined, and it was noted that
187 all rabbits with weight loss appeared to have large volumes of hard, impacted food in the stomach
188 and distended intestines.


189 Rabbits from 1.29 mg BMP, 145 mg FK506, 64.3 mg FK506, and 42.6 mg FK506 groups
190 showed varied amounts of bone formation and spine fusion. Rabbits in the 145 mg FK506
191 treatment group had bone formation in 3/4 samples and rabbits in the 1.29 mg BMP-2, 64.3 mg
192 FK506, and 42.6 mg FK506 groups had bone formation in all animals (Table 1). Successful fusion
193 between L5-L6 vertebrae was evaluated by 2 blinded orthopaedic surgeon scorers. The 1.29 mg
194 BMP group had 3/4 successful fusions, 145 mg FK506 had 1/4, 64.3 mg FK506 had 1/3, and 42.6
195 mg FK506 had 2/3 successful fusions (Table 1). μ CT scans were used to evaluate bone volume
196 and mineralization (Fig. 5). All treatment groups except the 64.3 mg FK506 group had
197 significantly greater bone volume compared to the no treatment group (No treatment: 0.06437
198 $\text{mm}^3 \pm 0.02296$ vs. BMP-2: $1506.01 \text{ mm}^3 \pm 210.8$, $p < 0.001$, 145 mg FK506: $671.09 \text{ mm}^3 \pm 264.0$,
199 $p = 0.0238$, 64.3 mg FK506: $582.53 \text{ mm}^3 \pm 132.4$, $p = 0.0616$, 42.6 mg FK506: $684.4 \text{ mm}^3 \pm 79.78$,
200 $p = 0.0207$). Bone volume due to BMP treatment was significantly greater than all treatment

201 groups, however the BMP-induced bone formation resulted in notable ectopic bone formation
202 often bridging well past a single level fusion (BMP-2: $1506.01 \text{ mm}^3 \pm 210.8$ vs. 145 mg FK506:
203 $671.09 \text{ mm}^3 \pm 264.0$, $p = 0.0137$, 64.3 mg FK506: $582.53 \text{ mm}^3 \pm 132.4$, $p = 0.0062$, 42.6 mg
204 FK506: $684.4 \text{ mm}^3 \pm 79.78$, $p = 0.0155$, no treatment: $0.06437 \text{ mm}^3 \pm 0.02296$, $p < 0.001$). There
205 was no significant difference in bone mineral density between groups (BMP: $446.0 \text{ mgHA/cm}^3 \pm$
206 22.30 , 145 mg FK506: $398.9 \text{ mgHA/cm}^3 \pm 8.565$, 64.3 mg FK506: $426.3 \text{ mgHA/cm}^3 \pm 8.004$, 42.6
207 mg FK506: $430.0 \text{ mgHA/cm}^3 \pm 15.19$).

Treatment	Bone Formation	Fused
rh-BMP-2 (1.29mg)	4/4	3/4
FK506 (145mg)	3/4	1/4
FK506 (64.3mg)	3/3	1/3
FK506 (42.6mg)	3/3	2/3

208

209 Table 1: Evaluation of bone formation and fusion. Blinded scorers evaluated whether bone formation and fusion were
210 noted in each rabbit. Both scorers were orthopaedic spinal surgeons.

211

212 Figure 5: μ CT analysis of bone volume and density. μ CT slices (A,C,E) and 3-dimensional reconstruction (B,D,F)
213 showing bone formation. μ CT analysis of bone volume showed significant differences between the no treatment group
214 and all treatment groups except 64.3 mg FK506 treatment group (G). There was no significant difference in bone
215 mineral density in all groups (H). * denotes $p < 0.05$, one-way ANOVA with Tukey's multiple comparisons.

216 Discussion

217 The incidence of bone grafting procedures has consistently increased in recent years; however,
218 complication rates have not improved, underscoring the need to improve the current method of
219 treatment^{5,6,33}. rhBMP-2 is FDA approved for spine fusion and has been increasingly used as an
220 alternative to autografts, however both autografts and BMPs have associated complications.
221 rhBMP-2 has reported adverse side effects that can occur including infection, inflammation,
222 ectopic bone formation, bone resorption, neurological effects, radiculitis, and negative impacts to
223 several other organ systems in the body^{15,34-37}. In addition to these effects, BMP-induced bone
224 formation at supra-physiological doses can produce thin and wispy bone that has cyst-like
225 properties filled with adipose tissue and low mechanical strength^{38,39}. As an alternative to using
226 supraphysiologic doses of BMP, we investigated the potential to repurpose FK506, an FDA-
227 approved immunosuppressant drug, to induce osteogenic differentiation and bone formation in
228 multiple rigorous pre-clinical bone regeneration and fusion models. Our previous research
229 demonstrated the ability of FK506 to induce bone formation as a standalone treatment by targeting
230 the BMP pathway³⁰. Here we hypothesized that FK506 would induce mineralization in human
231 mesenchymal stromal cells and bone formation in two rigorous *in vivo* models at comparable levels
232 to rhBMP-2.

233 The clinical translation pathway of an osteoinductive therapy or bone graft alternative has a
234 well-established series of pre-clinical milestones and models used to show therapeutic efficacy and
235 safety. These include demonstrating efficacy in human cells *in vitro*, efficacy in small animal
236 ectopic and orthotopic bone regeneration models, and then scaling to large animal orthotopic

237 models (rabbits and then non-human primates). Here we assessed mineralization and osteogenic
238 differentiation in hMSCs treated with increasing doses of FK506 and BMP-2 to assess
239 responsiveness in human cells. Treatment with FK506 enhanced both mineralization and markers
240 of osteoblastic differentiation in hMSCs, suggesting that FK506 could be a viable treatment either
241 as a standalone treatment or to supplement lower BMP dosages in patients, potentially reducing
242 adverse side effects associated with supraphysiologic doses of BMP. Osteogenic differentiation
243 resulting from standalone FK506 treatment is consistent with other cell culture studies. In rat
244 derived MSCs and human gingival derived stem cells that showed increased alizarin red staining,
245 alkaline phosphatase activity, osteocalcin, and pSmad1/5 expression with standalone FK506
246 treatment ^{22,40-42}. Gene expression analysis in a human osteoblast cell line treated with FK506
247 showed an increase in TGF- β 1 receptor and Smad2 expression, along with EGF receptor, MMP2,
248 biglycan, osteonectin, and collagen types III and XII ⁴³. This indicates FK506 may play a role in
249 osteogenesis through extracellular matrix formation and remodeling, osteoblast differentiation,
250 and mineralization through TGF- β signaling ⁴⁴. Examination of changes in miRNA expression
251 following FK506-induced osteogenic differentiation demonstrated upregulation of Smad5, Jagged
252 1, and MAPK9 and downregulation of Smad7 and other negative regulators of osteogenic
253 differentiation ⁴⁵. These pathways can be downstream of both BMP signaling and
254 calcineurin/FKBP12 signaling, as demonstrated in our previous studies ³⁰. Future research could
255 further discern the direct mechanism of action and to uncover any crosstalk between the different
256 pathways activated by FK506.

257 Bone grafting procedures and osteoinductive therapies are commonly used in trauma injury
258 procedures and segmental bone defect repair. We evaluated the ability of FK506 to induce bone
259 formation in a well-established rat segmental bone defect model. Both bridging and bone

260 formation were significantly enhanced by treatment with FK506 as seen by radiographs, μ CT, and
261 histological assessment. In addition, the regenerated bone from the FK506 treatment had similar
262 properties to naïve bone, indicating functional restoration of the femur. While these data are
263 generally consistent with previous literature, previous studies have shown mixed data in part due
264 to a variety of local and systemic treatment modalities with FK506, as well as primarily using
265 FK506 as an immunosuppressive supplement to other osteoinductive treatments rather than a
266 standalone treatment. Previous studies using a rat bone defect model investigated the effects of
267 systemic FK506 treatment in combination with a local treatment an adenovirus expressing BMP-
268 2; this study showed that systemic FK506 treatment enhanced the bone regeneration from the local
269 BMP-2 gene therapy ^{28,29}. In another study in a critically-sized bone defect model, systemic
270 delivery of FK506 was tested in combination with a local treatment of MSCs, BMP-2, or
271 genetically modified MSCs expressing BMP-2. This study showed that FK506 delivery in the
272 genetically modified MSCs, the FK506 treatment more than tripled the number of bridged bone
273 defects, though FK506 did not impact healing outcomes in bone defects treated with rhBMP-2 or
274 unmodified MSCs ⁴⁶. While these studies all showed potential benefit of systemic FK506 delivery
275 to potentiate a local osteoinductive treatment, these studies predominantly focused on FK506 as
276 an indirect immunosuppressant, with doses at approximately 1 mg/kg rather than a direct
277 osteoinductive treatment, indicating the dose may not be at a level needed to activate BMP
278 signaling. As a standalone immunosuppressive treatment, systemic FK506 has been tested in a
279 combined TA muscle trauma and endogenously healing tibial osteotomy model in a rat; this study
280 showed that daily systemic delivery of FK506 alone at a 1 mg/kg dose improved mechanical
281 properties of the tibia in the combined injury model, but did not affect mechanical properties in
282 the isolated osteotomy model ⁴⁷. This study showed that standalone systemic FK506 treatment

283 could improve bone formation and healing, similar to the results seen in our study. The differences
284 seen in the above studies could be due to the other treatments used in combination with FK506,
285 the dose and delivery frequency of FK506, and the wide variety of carriers used for delivery. The
286 various systemic delivery methods used may also have limited the effect on the bone healing
287 pathway. In fact, there have been multiple studies, with contradictory results, investigating whether
288 systemic delivery of FK506 for immunosuppression could induce osteopenia ⁴⁸⁻⁵¹. Despite the
289 variability in the method of delivery, multiple studies have demonstrated the potential for systemic
290 FK506 treatment to induce local bone regeneration in a variety of bone defect models.

291 Local delivery of FK506 has been tested in various bone healing models. In rodent fracture
292 and osteotomy models, local delivery through daily intramuscular injections or an osmotic pump
293 at a 1 mg/kg or 10 mg/kg dose both showed no change in bone healing rate, with all fractures and
294 defects bridging by weeks 3-4, regardless of FK506 dose ^{52,53}. Both studies were performed in a
295 sub-critical injury model which would already heal and did not have much range to see an effect
296 of the FK506 treatment. One previous study investigated standalone local treatment of FK506 in
297 a critically-sized, 7 mm rat calvarial defect model. In this study, 1 mg FK506 (approximately 3.7-
298 4.0 mg/kg dose) loaded on a collagen hydrogel with a PLC/gelatin membrane was implanted into
299 the calvarial defect and showed significantly increased bone formation compared to other groups
300 ⁵⁴. This study is consistent with our findings that FK506 can be used as a standalone osteoinductive
301 therapy in critically-sized bone defect and fusion procedures.

302 Another common bone grafting application, and the primary FDA approved clinical indication
303 for rhBMP delivery, is in spine fusion procedures. The standard pre-clinical model is to use the
304 rabbit spine fusion model before moving to a non-human primate model ³². We therefore aimed to
305 test the efficacy of FK506 treatment in the rabbit spine fusion model. However, in previous studies

306 investigating the effects of FK506 immunosuppression in rabbits, rabbits were shown to have a
307 low toxicity threshold and elevated side effects in response to systemic FK506 levels including
308 anorexia, weight loss, and renal complications ⁵⁵⁻⁵⁷. As such, multiple doses were tested to
309 determine which dose increased bone formation while minimizing adverse effects. The dosing was
310 scaled up from rat concentration to rabbit concentration based on metabolism scaling predictions
311 as well as previous data from systemic rabbit toxicity data. Of the three doses tested, all rabbits in
312 the highest dose category and one in the middle dose exhibited greater than 25% weight loss
313 compared to baseline weight, impacted food in the stomach, and distended intestines. This
314 indicates issues with gut secretions, mobility, or absorption ability; consistent with complications
315 other groups have found specific to rabbit response to FK506 treatment ⁵⁵⁻⁵⁷. The rabbits treated
316 with the lowest dose of FK506, however, did not show these side effects. Various studies in
317 humans have detailed gastrointestinal effects of long-term delivery of FK506 as an
318 immunosuppressant, including effects on absorption and intestinal barrier function ^{19,58,59}.
319 However, it is unclear how the effects of chronic, systemic, and repeated administration FK506
320 would compare to a single, localized high dose of FK506. This warrants further investigation into
321 the effects of a high localized dose of FK506 as this treatment is scaled to larger pre-clinical and
322 clinical models. Regardless of the side effects, local FK506 delivery produced bone formation at
323 the spinal fusion site in all rabbits receiving the treatment. There was no difference in bone mineral
324 density between rhBMP-2 and all FK506 doses, though rhBMP-2 treatment had statistically higher
325 regenerated bone volume compared to all FK506 doses. However, only the lowest dose of FK506
326 resulted in comparable fusion rates to BMP-2. The fusion rates seen in the 42.6 mg FK506 and
327 1.29 mg BMP-2 groups (66% and 75%, respectively) are comparable to historical fusion rates
328 achieved by the gold standard treatment, iliac crest autologous bone graft, in previous spinal fusion

329 studies using this rabbit model. In the original study establishing the rabbit posterolateral spine
330 arthrodesis model, autograft resulted in a 66% fusion rate at 6 weeks ³². Two reviews conducted
331 comparing fusion rates in this model in 900 and 700 surgeries found that autografts resulted in
332 55% and 70% fusion rates, respectively ^{60,61}. The fusion rates from the 42.6 mg FK506 treatment
333 is within the range of the clinical gold standard and benchmark BMP-2 positive control. When
334 looking at the 3D reconstructions of bone formation, treatment with BMP-2 results in bone
335 formation beyond the single level fusion location up to the adjacent facet joint (Fig. 5 A,B). This
336 highlights one of the more prominent issues with BMP treatment, ectopic bone formation, as fusion
337 of an additional joint would limit the patient's range of motion. Conversely, the bone formed by
338 FK506 remained within the single joint space it was meant to fuse. This lack of ectopic bone
339 formation resulting from FK506 treatment is corroborated by a study into a genetic disorder,
340 Fibrodysplasia ossifans progressiva (FOP), which causes ectopic bone formation in soft tissues ⁶².
341 When investigating the mechanism of action, it was found that FK506 did not enhance the
342 responsiveness to endogenous BMPs, and therefore does not cause the ectopic bone formation seen
343 in FOP ⁶². When viewed alongside the lack of ectopic bone formation in the rabbit spine fusion
344 model (Fig. 5), this suggests that FK506 may reduce the potential complications related to ectopic
345 bone formation observed with BMP-2.

346 While direct activation of FK506 in osteoprogenitor cells through activation of the BMP
347 pathway may be a key mechanism of action for local FK506 induced bone formation, other actions
348 of FK506 may also influence the bone regeneration and fusion. Complications due to inflammation
349 is one of the major off-target effects of BMP-2, and there is potential that FK506 may suppress
350 this response. FK506 is a potent immunosuppressant via suppression of T cell proliferation, which
351 could be beneficial to the bone healing process. It is well known that chronic inflammation can

352 result in poor bone healing outcomes ^{63–65}. Specifically, imbalance in macrophage polarization,
353 elevated myeloid-derived suppressor cells, and increased levels of pro-inflammatory cytokines
354 have been implicated in reduced bone healing ^{66–68}. The increased inflammatory response may
355 inadvertently induce osteoclast activation which leads to increased bone resorption ⁶⁴. FK506
356 functions through inhibiting calcineurin activity and thus preventing T cell proliferation and IL-2
357 expression ^{20,21}. FK506 has also been shown to suppress osteoclast formation by decreasing
358 NFATc1 activation, and has been successfully used in humans to induce bone formation ^{69,70}.
359 Further investigation into changes in cell populations and the cytokine profile after treatment with
360 FK506 could further inform the role of FK506-induced immunosuppression in bone healing.

361 This study provides evidence that FK506 could be utilized as an alternative osteoinductive
362 treatment for spine fusion and bone defect repair procedures; however, this study does have some
363 limitations. Including a group of BMP-2-treated femora in the bone defect study would have been
364 beneficial in comparing the quality of the regenerated bone between BMP-2 and FK506. The rabbit
365 spine fusion study was limited by the range of doses tested, lacked decorticated and untreated
366 controls, and lacked histological analysis. Additionally, groups were not fully randomized, as the
367 BMP and highest FK506 dose (145mg) were performed bilaterally, while the lower two FK506
368 doses (64.3mg and 42.6mg) were performed unilaterally. In the future, including a control group
369 that receives a sham decortication procedure but no osteoinductive treatment, adding lower doses
370 of FK506, and performing histological analysis would provide further insight into the efficacy of
371 FK506 as a therapeutic to induce spinal fusion. In addition, since the hMSC work demonstrated
372 the added benefit of combining BMP-2 with FK506, a treatment combining the two would inform
373 the possibility of utilizing FK506 to potentiate a lower dose of BMP-2 required for fusion. This

374 could maximize osteogenic effect without requiring the current supra-physiological BMP-2 dose
375 that currently has several adverse, off-target effects.

376 These studies build upon previous FK506 research and demonstrates the ability of local FK506
377 treatment to induce osteogenic differentiation in human cells and bone formation in two pre-
378 clinical *in vivo* orthotopic bone repair models. This is the first demonstration of an osteoinductive
379 small molecule used as a standalone treatment for a critically bone defect or a spinal fusion
380 procedure. In order to translate this therapy towards clinical utilization, future studies will scale
381 local FK506 treatment and test the efficacy in a non-human primate spinal fusion model. This
382 research has the potential to improve healing outcomes for patients and reduce complications
383 caused by current treatments.

384 **Materials and Methods**

385 **Cell culture**

386 Commercially available primary adult human mesenchymal stem cells (hMSCs) from
387 Donor 47506 were used (Lonza Group Ltd., Basel, Switzerland). Cells were cultured at passage 3
388 and seeded in triplicate in hMSC Growth Medium (MSCGM™ Mesenchymal Stem Cell Growth
389 Medium, Lonza) with 10% FBS, 1% p/s, and 1% L-Glutamine (Lonza). At 24 hr post seeding, the
390 medium was changed to osteogenic differentiation medium (hMSC Osteogenic Differentiation
391 BulletKit™ Medium, Lonza) with L-ascorbic acid-2-phosphate (AA2P) (5mg/ml stock, 10 µl/ml),
392 and β-glycerolphosphate (BGP) (20 mM stock, 20 µl/ml) (Lonza). The cell culture medium was
393 changed every 3 days. Cultures on various days were subjected to either alkaline phosphatase or
394 mineralization assays.

395 **Alkaline Phosphatase (ALP) Assay**

396 hMSC were plated at 15,000 cells/well in 24-well plates and grown overnight in a growth
397 medium containing 10% FBS (Lonza). When cells reach 80% confluence, cells were treated with
398 various concentrations of BMP-2 or FK506 in an osteogenic media (Lonza). Cell culture medium
399 was changed every 3 days. On day 12, the cells were washed with phosphate-buffered saline (PBS)
400 and lysed by addition of lysis buffer (10 mM Tris–HCl pH 8.0, 1 mM MgCl₂, and 0.5% Triton X-
401 100). The cell lysates were centrifuged for 5 min at 13,000 g. The supernatant was removed and
402 the aliquots were assayed for ALP activity and protein amount. The ALP activity was measured
403 in triplicate using an ALP assay kit (Sigma-Aldrich, St. Louis, MO) in microtiter plates. The
404 protein amount was determined with Bio-Rad protein assay reagent (Bio-Rad, Hercules, CA) using
405 bovine serum albumin (BSA) as a standard. The ALP activity (nmoles of p-nitrophenol per ml)
406 was normalized to the protein amount (nmoles of p-nitrophenol per µg).

407 **Alizarin Red Staining**

408 hMSC were plated at 15,000 cells/well in 24-well plates and grown overnight in a growth
409 medium containing 10% FBS (Lonza). Once cells reached 80% confluence, they were treated with
410 various concentrations of BMP-2 or FK506 in an osteogenic media (Lonza). The medium was
411 replaced every 3-4 days, and deposition of mineral was observed after 3 weeks. To assess
412 mineralization, the cultures were washed with phosphate-buffered saline and fixed in a solution of
413 ice-cold 70% ethanol for 2-3 h. The cultures were rinsed with water and stained for 10 min with 1
414 ml of 40 mM alizarin red (pH 4.1). The cultures were rinsed two or three times with phosphate-
415 buffered saline to reduce nonspecific staining, air-dried, and photographed. To assess relative
416 levels of matrix mineralization the Alizarin Red stain was extracted from the samples (3 samples

417 per group) by adding 400 μ L of 10% acetic acid followed by 30 min incubation at room
418 temperature. The absorbance at 405 nm of the solubilized Alizarin red dye from the samples was
419 measured using a microplate plate reader (Molecular Devices). An Alizarin red staining standard
420 curve was established with a known concentration of the dye.

421 **Segmental defect surgery**

422 10-week-old Sprague-Dawley rats underwent a unilateral 5 mm segmental bone defect in
423 the mid diaphysis of the left femur, as previously described ³¹. Briefly, an anterior incision
424 followed by blunt dissection exposed the left femurs. An internal polysulfone fixation plate was
425 fixed to the femurs, and a critically sized 5mm defect was created using Gigli wire saw (RISystem,
426 Davos, Switzerland). Animals were randomly assigned to one of two groups: treatment with
427 FK506 or negative control group. A collagen sponge was used as a vehicle to carry either 4.2 mg
428 of FK506 in 100 μ l of Dimethyl sulfoxide (DMSO), or 100 μ l of DMSO alone for the negative
429 control group and was implanted into the defect. Bi-weekly radiographs were acquired for a period
430 of 12 weeks at which point the rodents were euthanized and femurs were resected. All femurs
431 underwent μ CT analysis and were then used for either histology (n=2/group) or mechanical testing
432 (n=5/group). After surgery, animals were monitored for signs of distress and evaluated for ability
433 to bear weight on the surgical limb during 3-day post-surgery period. One animal from the negative
434 control group had hardware fixation failure and was excluded from the study. All procedures were
435 approved by the Atlanta Veterans Affairs Medical Center IACUC.

436 **Rabbit spine fusion surgery**

437 6-8 month old female New Zealand White rabbits received single level posterolateral
438 intertransverse process lumbar spine arthrodesis of the 5th and 6th lumbar vertebrae via the

439 bilateral paraspinal muscle-splitting approach as previously described ³². Briefly, after the
440 paraspinal muscles were bluntly divided in line with the incision, the transverse processes were
441 exposed and decorticated with an electric burr. Collagen sponge was then implanted based on the
442 treatment groups, and the fascia and skin were then closed with sutures. Bilateral or unilateral
443 procedures were performed and fusion sites were assigned to treatment with one of 4 treatment
444 groups: 1.29 mg BMP-2 in 3 mls PBS (n=4), 145 mg FK506 in 3 mls DMSO (n=4), 64.3 mg
445 FK506 in 2 mls DMSO (n=3), or 42.6 mg FK506 in 2 mls DMSO (n=3). Treatments were loaded
446 onto sterile collagen sponges (two strips/treatment at 15 mm x 40 mm x 3.5 mm for 3 mls DMSO,
447 15 mm x 30 mm x 3.5 mm for 2 mls DMSO) and implanted. Rabbits were weighed throughout
448 study to monitor weight loss. Rabbits who lost >25% of their baseline body weight were
449 euthanized according to endpoint criteria approved in the IACUC protocol's Euthanasia
450 Guidelines. All four rabbits that received the bilateral 1.29 mg BMP-2 and 145 mg FK506
451 treatments exhibited 25% weight loss and were euthanized at 3 weeks, 5.2 weeks, and the last two
452 were euthanized at 6 weeks. One rabbit that received 64.3 mg FK506 exhibited 25% weight loss
453 and was euthanized at week 4. Otherwise, rabbits were euthanized 6 weeks after implantation at
454 which point the spine was resected for μ CT analysis. All procedures were approved by the Atlanta
455 Veterans Affairs Medical Center IACUC.

456 **Micro-computed tomography**

457 Micro-computed tomography (μ CT) scans were performed ex vivo (Micro-CT40, Scanco
458 Medical, Bruttisellen, Switzerland). Rat femora were scanned with a 36 μ M voxel size at a voltage
459 of 70 kVp and current of 114 μ A. Evaluations were performed within defect region on newly
460 formed bone. Rabbit spines were scanned with a 30 μ M voxel size at a voltage of 55kVp and

461 current of 145 μ A. Scans were contoured to isolate newly formed bone at the fusion site for
462 evaluation.

463 **Mechanical testing**

464 At 12 weeks, rat hindlimbs were dissected, and fixation plates and soft tissue were
465 removed. Femora were then wrapped in saline-soaked gauze and stored at -80°C until testing. The
466 day of testing, femora were thawed and each end was potted in Wood's metal (Alfa Aesar). Failure
467 in torsion was tested using a TA Electroforce 3220 load frame at a rotation of 3°/second. Maximum
468 torque to failure was defined as the peak torque value at failure and rigidity was calculated by
469 finding the slope of the linear region of the torque-rotation curve and multiplying that by the gauge
470 length.

471 **Histology**

472 Rat femurs were fixed in 10% NBF and decalcified with Cal-Ex® II (Fisher Chemical
473 CS5114D Cal-Ex® II Fixative/Decalcifier). Following decalcification and fixation, samples were
474 dehydrated in increasing concentrations of alcohol (70%, 95%, 100%), followed by xylene before
475 embedding in paraffin and cut into 5 micron slices (Accu-Cut SRM 200 Rotary Microtome,
476 Sakura Finetek USA, Torrance, CA, USA). Slides were stained with Hematoxylin and Eosin,
477 Goldner's Trichrome, and Safranin-O/Fast-green. Images were obtained with Aperio VERSA200
478 (Leica Biosystems, Inc., Buffalo Grove, IL, USA) with a 40X HC PL APO objective with .95
479 numerical aperture and captured with Aperio ImageScope v12.4.3 (Leica Biosystems, Inc., Buffalo
480 Grove, IL, USA).

481 **Statistical Analysis**

482 Data are presented as the mean \pm standard error of the mean. Results were analyzed using
483 a one-way analysis of variance (ANOVA) with Tukey post-hoc analysis for pairwise comparisons
484 (95% confidence interval) or unpaired t test using GraphPad Prism 9 (GraphPad Prism Software
485 Inc., San Diego, CA, USA).

486 **Acknowledgements**

487 The authors thank Mila Friedman for performing histological preparation and staining and
488 BioRender for providing the platform to create the graphical abstract. This work was supported in
489 part by: NIH R21 TR001751; NIH R01 AR078892; Veteran Affairs Career Development Award
490 (IK2-BX003845); and the Wu Tsai Human Performance Alliance and the Joe and Clara Tsai
491 Foundation.

492 **Conflict of Interests**

493 Unrelated to this research, Scott D. Boden has previously received compensation for consulting
494 work for Medtronic Sofamor Danek and for intellectual property. Emory University and some
495 authors may receive future royalties for improved cellular responsiveness to BMP. The terms of
496 this arrangement have been reviewed and approved by Emory University in accordance with its
497 conflict of interest policies.

498 **Contributions**

499 JAH: conceptualization, data curation, formal analysis, interpretation, writing, editing
500 TMF: conceptualization, data curation, formal analysis, editing
501 SS: conceptualization, data curation, formal analysis, funding acquisition, editing
502 JK: conceptualization, interpretation, editing

503 EJD: conceptualization, data curation, editing

504 CO: data curation, editing

505 SMP: conceptualization, interpretation, funding acquisition, editing

506 SDB: conceptualization, interpretation, funding acquisition, editing

507 NJW: conceptualization, interpretation, funding acquisition, writing, editing

508 **References**

- 509 1. Guppy, K. H. *et al.* Operative Nonunion Rates in Posterolateral Lumbar Fusions: Analysis of a Cohort
510 of 2591 Patients from a National Spine Registry. *World Neurosurg.* **145**, e131–e140 (2021).
- 511 2. Guppy, K. H., Harris, J., Chen, J., Paxton, E. W. & Bernbeck, J. A. Reoperation rates for symptomatic
512 nonunions in posterior cervicothoracic fusions with and without bone morphogenetic protein in a
513 cohort of 450 patients. *J. Neurosurg. Spine* **25**, 309–317 (2016).
- 514 3. Tavares, W. M., de França, S. A., Paiva, W. S. & Teixeira, M. J. A systematic review and meta-analysis
515 of fusion rate enhancements and bone graft options for spine surgery. *Sci. Rep.* **12**, 7546 (2022).
- 516 4. Watkins, R., Watkins, R. & Hanna, R. Non-Union Rate With Stand-Alone Lateral Lumbar Interbody
517 Fusion. *Medicine (Baltimore)* **93**, e275 (2014).
- 518 5. Salzmann, S. N. *et al.* Cervical Spinal Fusion: 16-Year Trends in Epidemiology, Indications, and In-
519 Hospital Outcomes by Surgical Approach. *World Neurosurg.* **113**, e280–e295 (2018).
- 520 6. Singh, K., Andersson, G. & Watkins-Castillo, S. I. Spine Procedures. *BMUS: The Burden of*
521 *Musculoskeletal Diseases in the United States* [https://www.boneandjointburden.org/fourth-](https://www.boneandjointburden.org/fourth-edition/iiad0/spine-procedures)
522 edition/iiad0/spine-procedures (2013).
- 523 7. Buser, Z. *et al.* Synthetic bone graft versus autograft or allograft for spinal fusion: a systematic review.
524 *J. Neurosurg. Spine* **25**, 509–516 (2016).
- 525 8. Flierl, M. A. *et al.* Outcomes and complication rates of different bone grafting modalities in long bone
526 fracture nonunions: a retrospective cohort study in 182 patients. *J. Orthop. Surg.* **8**, 33 (2013).
- 527 9. Roddy, E., DeBaun, M. R., Daoud-Gray, A., Yang, Y. P. & Gardner, M. J. Treatment of critical-sized
528 bone defects: clinical and tissue engineering perspectives. *Eur. J. Orthop. Surg. Traumatol. Orthop.*
529 *Traumatol.* **28**, 351–362 (2018).
- 530 10. Tuchman, A. *et al.* Iliac Crest Bone Graft versus Local Autograft or Allograft for Lumbar Spinal
531 Fusion: A Systematic Review. *Glob. Spine J.* **6**, 592–606 (2016).

532 11. Tuchman, A. *et al.* Autograft versus Allograft for Cervical Spinal Fusion: A Systematic Review. *Glob.*
533 *Spine J.* **7**, 59–70 (2017).

534 12. Tannoury, C. A. & An, H. S. Complications with the use of bone morphogenetic protein 2 (BMP-2) in
535 spine surgery. *Spine J. Off. J. North Am. Spine Soc.* **14**, 552–559 (2014).

536 13. Deyo, R. A. *et al.* Use of Bone Morphogenetic Proteins in Spinal Fusion Surgery for Older Adults with
537 Lumbar Stenosis: Trends, Complications, Repeat Surgery, and Charges. *Spine* **37**, 222–230 (2012).

538 14. Schmidt-Bleek, K., Willie, B. M., Schwabe, P., Seemann, P. & Duda, G. N. BMPs in bone
539 regeneration: Less is more effective, a paradigm-shift. *Cytokine Growth Factor Rev.* **27**, 141–148
540 (2016).

541 15. Rihn, J. A. *et al.* Complications associated with single-level transforaminal lumbar interbody fusion.
542 *Spine J.* **9**, 623–629 (2009).

543 16. Carreon, L. Y. *et al.* RhBMP-2 versus iliac crest bone graft for lumbar spine fusion in patients over 60
544 years of age: a cost-utility study. *Spine* **34**, 238–243 (2009).

545 17. Laurencin, C. T., Ashe, K. M., Henry, N., Kan, H. M. & Lo, K. W.-H. Delivery of small molecules for
546 bone regenerative engineering: preclinical studies and potential clinical applications. *Drug Discov.*
547 *Today* **19**, 794–800 (2014).

548 18. Kershner, R. P. & Fitzsimmons, W. E. Relationship of FK506 whole blood concentrations and efficacy
549 and toxicity after liver and kidney transplantation. *Transplantation* **62**, 920–926 (1996).

550 19. Tung, T. H. Tacrolimus (FK506): Safety and Applications in Reconstructive Surgery. *Hand N. Y. N* **5**,
551 1–8 (2010).

552 20. Kang, C. B., Hong, Y., Dhe-Paganon, S. & Yoon, H. S. FKBP family proteins: immunophilins with
553 versatile biological functions. *Neurosignals* **16**, 318–325 (2008).

554 21. Dumont, F. J. FK506, an immunosuppressant targeting calcineurin function. *Curr. Med. Chem.* **7**, 731–
555 748 (2000).

556 22. Byun, Y.-K. *et al.* Effects of immunosuppressants, FK506 and cyclosporin A, on the osteogenic
557 differentiation of rat mesenchymal stem cells. *J. Periodontal Implant Sci.* **42**, 73–80 (2012).

558 23. Darcy, A. *et al.* A NOVEL LIBRARY SCREEN IDENTIFIES IMMUNOSUPPRESSORS THAT
559 PROMOTE OSTEOBLAST DIFFERENTIATION. *Bone* **50**, 1294–1303 (2012).

560 24. Kaihara, S. *et al.* Effect of FK506 on osteoinduction by recombinant human bone morphogenetic
561 protein-2. *Life Sci.* **72**, 247–256 (2002).

562 25. Kaihara, S. *et al.* Simple and effective osteoinductive gene therapy by local injection of a bone
563 morphogenetic protein-2-expressing recombinant adenoviral vector and FK506 mixture in rats. *Gene*
564 *Ther.* **11**, 439–447 (2004).

565 26. Yoshikawa, T. *et al.* In Vivo Osteogenic Capability of Cultured Allogeneic Bone in Porous
566 Hydroxyapatite: Immunosuppressive and Osteogenic Potential of FK506 In Vivo. *J. Bone Miner. Res.*
567 **15**, 1147–1157 (2000).

568 27. Voggenreiter, G. *et al.* Immunosuppression with FK506 Increases Bone Induction in Demineralized
569 Isogenic and Xenogeneic Bone Matrix in the Rat. *J. Bone Miner. Res.* **15**, 1825–1834 (2000).

570 28. Liu, F. *et al.* Rapid and reliable healing of critical size bone defects with genetically modified sheep
571 muscle. *Eur. Cell. Mater.* **30**, 118–131 (2015).

572 29. Tsuchida, H., Hashimoto, J., Crawford, E., Manske, P. & Lou, J. Engineered allogeneic mesenchymal
573 stem cells repair femoral segmental defect in rats. *J. Orthop. Res.* **21**, 44–53 (2003).

574 30. Sangadala, S., Devereaux, E., Presciutti, S., Boden, S. & Willett, N. FK506 Induces Ligand-
575 Independent Activation of the Bone Morphogenetic Protein Pathway and Osteogenesis. *Int. J. Mol. Sci.*
576 **20**, 1900 (2019).

577 31. Willett, N. J. *et al.* Attenuated human bone morphogenetic protein-2-mediated bone regeneration in a
578 rat model of composite bone and muscle injury. *Tissue Eng. Part C Methods* **19**, 316–325 (2013).

579 32. Boden, S. D., Schimandle, J. H. & Hutton, W. C. An Experimental Lumbar Intertransverse Process
580 Spinal Fusion Model: Radiographic, Histologic, and Biomechanical Healing Characteristics. *Spine* **20**,
581 412 (1995).

582 33. Archunan, M. W. & Petronis, S. Bone Grafts in Trauma and Orthopaedics. *Cureus* **13**, e17705.

583 34. Fu, R. *et al.* Effectiveness and harms of recombinant human bone morphogenetic protein-2 in spine
584 fusion: a systematic review and meta-analysis. *Ann. Intern. Med.* **158**, 890–902 (2013).

585 35. James, A. W. *et al.* A Review of the Clinical Side Effects of Bone Morphogenetic Protein-2. *Tissue*
586 *Eng. Part B Rev.* **22**, 284–297 (2016).

587 36. Carragee, E. J., Hurwitz, E. L. & Weiner, B. K. A critical review of recombinant human bone
588 morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. *Spine*
589 *J. Off. J. North Am. Spine Soc.* **11**, 471–491 (2011).

590 37. Panos, J. A. *et al.* IL-1Ra gene transfer potentiates BMP2-mediated bone healing by redirecting
591 osteogenesis toward endochondral ossification. *Mol. Ther.* (2022) doi:10.1016/j.ymthe.2022.10.007.

592 38. Pan, H. C. *et al.* Cyst-Like Osteolytic Formations in Recombinant Human Bone Morphogenetic
593 Protein-2 (rhBMP-2) Augmented Sheep Spinal Fusion. *Am. J. Pathol.* **187**, 1485–1495 (2017).

594 39. Zara, J. N. *et al.* High doses of bone morphogenetic protein 2 induce structurally abnormal bone and
595 inflammation in vivo. *Tissue Eng. Part A* **17**, 1389–1399 (2011).

596 40. Dong, J., Dai, W., Fang, T., Lin, H. & Uemura, T. [Osteoblastic differentiation and in vivo osteogenic
597 activity of marrow-derived mesenchymal stem cells stimulated by Tacrolimus: experiment with rats].
598 *Zhonghua Yi Xue Za Zhi* **87**, 190–194 (2007).

599 41. Ha, D.-H. *et al.* Potential differentiation ability of gingiva originated human mesenchymal stem cell in
600 the presence of tacrolimus. *Sci. Rep.* **6**, 34910 (2016).

601 42. Ha, D.-H., Yong, C. S., Kim, J. O., Jeong, J.-H. & Park, J.-B. Effects of tacrolimus on morphology,
602 proliferation and differentiation of mesenchymal stem cells derived from gingiva tissue. *Mol. Med.*
603 *Rep.* **14**, 69–76 (2016).

604 43. Krocker, D. *et al.* Effects of tacrolimus, cyclosporin A and sirolimus on MG63 cells. *Transpl. Int.* **19**,
605 563–569 (2006).

606 44. Wu, M., Chen, G. & Li, Y.-P. TGF- β and BMP signaling in osteoblast, skeletal development, and bone
607 formation, homeostasis and disease. *Bone Res.* **4**, 1–21 (2016).

608 45. Zhang, J., Yu, X., Yu, Y. & Gong, Y. MicroRNA expression analysis during FK506-induced
609 osteogenic differentiation in rat bone marrow stromal cells. *Mol. Med. Rep.* **16**, 581–590 (2017).

610 46. De la Vega, R. E. *et al.* EFFECTS OF FK506 ON THE HEALING OF DIAPHYSEAL, CRITICAL
611 SIZE DEFECTS IN THE RAT FEMUR. *Eur. Cell. Mater.* **40**, 160–171 (2020).

612 47. Hurtgen, B. J. *et al.* Impairment of early fracture healing by skeletal muscle trauma is restored by
613 FK506. *BMC Musculoskelet. Disord.* **18**, 253 (2017).

614 48. Inoue, T. *et al.* Lesser reduction in bone mineral density by the immunosuppressant, FK506, compared
615 with cyclosporine in rats. *Transplantation* **70**, 774–779 (2000).

616 49. Kanda, J. *et al.* **Effects of the calcineurin inhibitors cyclosporine and tacrolimus on bone**
617 **metabolism in rats**. *Biomed. Res.* **39**, 131–139 (2018).

618 50. Ni, L.-H. *et al.* FK506 prevented bone loss in streptozotocin-induced diabetic rats via enhancing
619 osteogenesis and inhibiting adipogenesis. *Ann. Transl. Med.* **7**, 265 (2019).

620 51. Rubert, M. *et al.* Sirolimus and tacrolimus rather than cyclosporine A cause bone loss in healthy adult
621 male rats. *Bone Rep.* **2**, 74–81 (2015).

622 52. Voggenreiter, G. *et al.* Immunosuppression with FK506 has no influence on fracture healing in the rat.
623 *Bone* **37**, 227–233 (2005).

624 53. Liu, T.-Y. *et al.* Healing of sub-critical femoral osteotomies in mice is unaffected by tacrolimus and
625 deletion of recombination activating gene 1. *Eur. Cell. Mater.* **41**, 345–354 (2021).

626 54. Nabavi, M. H. *et al.* A collagen-based hydrogel containing tacrolimus for bone tissue engineering.
627 *Drug Deliv. Transl. Res.* **10**, 108–121 (2020).

628 55. Almansoori, A. A. *et al.* FK506 immunosuppression for submandibular salivary gland
629 allotransplantation in rabbit. *J. Korean Assoc. Oral Maxillofac. Surg.* **46**, 197–203 (2020).

630 56. Blackham, A. & Griffiths, R. J. The effect of FK506 and cyclosporin A on antigen-induced arthritis.
631 *Clin. Exp. Immunol.* **86**, 224–228 (1991).

632 57. Giessler, G. A., Gades, N. M., Friedrich, P. F. & Bishop, A. T. Severe tacrolimus toxicity in rabbits.
633 *Exp. Clin. Transplant. Off. J. Middle East Soc. Organ Transplant.* **5**, 590–595 (2007).

634 58. Gabe, S. M. *et al.* The effect of tacrolimus (FK506) on intestinal barrier function and cellular energy
635 production in humans. *Gastroenterology* **115**, 67–74 (1998).

636 59. Parrilli, G. *et al.* Effect of chronic administration of tacrolimus and cyclosporine on human
637 gastrointestinal permeability. *Liver Transpl.* **9**, 484–488 (2003).

638 60. Crowley, J. D. *et al.* Single level posterolateral lumbar fusion in a New Zealand White rabbit
639 (Oryctolagus cuniculus) model: Surgical anatomy, operative technique, autograft fusion rates, and
640 perioperative care. *JOR SPINE* **4**, e1135 (2021).

641 61. Riordan, A. M., Rangarajan, R., Balts, J. W., Hsu, W. K. & Anderson, P. A. Reliability of the rabbit
642 postero-lateral spinal fusion model: A meta-analysis. *J. Orthop. Res.* **31**, 1261–1269 (2013).

643 62. Hatsell, S. J. *et al.* ACVR1R206H receptor mutation causes fibrodysplasia ossificans progressiva by
644 imparting responsiveness to activin A. *Sci. Transl. Med.* **7**, 303ra137-303ra137 (2015).

645 63. Loi, F. *et al.* Inflammation, Fracture and Bone Repair. *Bone* **86**, 119–130 (2016).

646 64. Claes, L., Recknagel, S. & Ignatius, A. Fracture healing under healthy and inflammatory conditions.
647 *Nat. Rev. Rheumatol.* **8**, 133–143 (2012).

648 65. Bahney, C. S. *et al.* Cellular biology of fracture healing. *J. Orthop. Res.* **37**, 35–50 (2019).

649 66. Cheng, A. *et al.* Early systemic immune biomarkers predict bone regeneration after trauma. *Proc. Natl.*
650 *Acad. Sci.* **118**, (2021).

651 67. Vantucci, C. E. *et al.* Systemic Immune Modulation Alters Local Bone Regeneration in a Delayed
652 Treatment Composite Model of Non-Union Extremity Trauma. *Front. Surg.* **9**, (2022).

653 68. Maruyama, M. *et al.* Modulation of the Inflammatory Response and Bone Healing. *Front. Endocrinol.*
654 **11**, 386 (2020).

655 69. Kadlub, N. *et al.* The Calcineurin Inhibitor Tacrolimus as a New Therapy in Severe Cherubism. *J. Bone*
656 *Miner. Res.* **30**, 878–885 (2015).

657 70. Mukai, T. *et al.* SH3BP2 Cherubism Mutation Potentiates TNF- α -Induced Osteoclastogenesis via
658 NFATc1 and TNF- α -Mediated Inflammatory Bone Loss. *J. Bone Miner. Res.* **29**, 2618–2635 (2014).

659