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Abstract 
Nearby cells within tissues communicate through ligand-receptor signaling interactions. 
Emerging spatial transcriptomic technologies provide a tremendous opportunity to 
systematically detect ligand-receptor signaling, but no method operates at cellular resolution in 
the spatial context. We developed CytoSignal to infer the locations and dynamics of cell-cell 
communication at cellular resolution from spatial transcriptomic data. CytoSignal is based on 
the simple insight that signaling is a protein-protein interaction that occurs at a specific tissue 
location when ligand and receptor are expressed in close spatial proximity. Our cellular-
resolution, spatially-resolved signaling scores allow several novel types of analyses: we identify 
spatial gradients in signaling strength; separately quantify the locations of contact-dependent 
and diffusible interactions; and detect signaling-associated differentially expressed genes. 
Additionally, we can predict the temporal dynamics of a signaling interaction at each spatial 
location. CytoSignal is compatible with nearly every kind of spatial transcriptomic technology 
including FISH-based protocols and spot-based protocols without deconvolution. We 
experimentally validate our results in situ by proximity ligation assay, confirming that CytoSignal 
scores closely match the tissue locations of ligand-receptor protein-protein interactions. Our 
work addresses the field's current need for a robust and scalable tool to detect cell-cell 
signaling interactions and their dynamics at cellular resolution from spatial transcriptomic data. 
 
Introduction 
Intercellular signaling, or cell-cell communication, occurs through many mechanisms, such as 
when secreted ligands bind to transmembrane receptors or when membrane-bound proteins 
on adjacent cells dimerize. This communication is crucial for many biological processes in 
multicellular organisms. For example, cell signaling influences differentiation and fate 
specification during normal development[1], and intercellular communication coordinates 
immune response, growth, and physiological tissue function[2] in the developed organism. 
However, identifying which signaling interactions operate between which cells under particular 
conditions remains challenging. Single-cell RNA sequencing (scRNA)[3] datasets allowed some 
progress by revealing which ligands and receptors are expressed by each cell type within a 
heterogeneous tissue[4]. Numerous methods to infer cell-cell communication from scRNA data 
have been published, including CellPhoneDB[5], CellChat[6], NicheNet[7], SingleCellSignalR[8], 
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and Scriabin[9], among others. However, these methods have two key limitations: either (1) 
they do not incorporate information about the spatial proximity of cells; or (2) they infer 
signaling among groups of cells, rather than at single-cell resolution; or both. 
 
Spatial transcriptomic (ST) protocols measure both gene expression profiles and spatial 
coordinates within a tissue, providing crucial information about the spatial proximity of cells 
expressing ligands and receptors. Some computational methods have been developed for 
detecting cell signaling from ST data, such as CellPhoneDB v4.0[10] and SquidPy[11], but as with 
most methods for scRNA data, they look for interactions among large predefined groups of cells 
(cell types).  
 
However, signaling fundamentally reduces to protein-protein interactions between a ligand and 
a receptor that occur at a particular location in a tissue. The locations at which the interactions 
occur are in turn determined by the complete spatial microenvironment surrounding the cell; 
cells do not check the “types” of other cells before interacting. Thus, existing ST methods that 
detect interactions among cell types are based on abstractions that are necessary for 
dissociated cell data but limiting when spatial context is available. In short, previous ST 
computational tools do not make full use of the spatial nature of ST data to infer signaling 
interactions at cellular resolution. An additional limitation is that existing methods for scRNA 
and ST data model different types of signaling interactions in the same way. For example, 
contact-dependent interactions require cells to be immediately adjacent in the tissue[12–14], 
while interactions between diffusible ligands and transmembrane receptors require cells to be 
close but not necessarily touching. Furthermore, existing approaches infer only the current 
state of cell signaling at the moment in time the cells were measured–not how these signaling 
interactions change over time. 
 
To address these limitations, we developed a novel approach that uses spatially resolved gene 
expression for estimating static and dynamic signaling among single cells at specific spatial 
positions. CytoSignal uses a simple, principled score to identify which cells and locations within 
a tissue have significant activity for a particular signaling interaction. We further developed 
VeloCytoSignal, a method for predicting the rate of change for a signaling interaction at each 
tissue location. 
 
Another key challenge in cell-cell communication studies is the validation of inferred signaling 
activities in real tissues. Previous methods have often relied solely on computational validation, 
and therefore do not convincingly demonstrate their accuracy and applicability in a real tissue 
context. In fact, because interactions among cell types are a high-level abstraction, it is difficult 
to envision what direct validation would look like. In contrast, because CytoSignal predicts 
something much closer to the mechanism of ligand-receptor interactions, it is possible to 
validate our predictions more directly. In particular, we designed an in situ validation analysis 
through the proximity ligation assay (PLA) [15–17] to verify the tissue locations at which these 
interactions occur in the developing mouse embryo. This analysis confirmed the physical 
locations where a ligand binds to its receptor, providing direct evidence to support CytoSignal's 
predictions. 
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Results 
 
CytoSignal and VeloCytoSignal identify locations and dynamics of signaling 
interactions at cellular resolution 
 
The key idea of CytoSignal is that ligand-receptor signaling is fundamentally driven by a protein-
protein interaction that happens at a specific tissue position. This interaction happens, in turn, 
when all of the requisite ligand and receptor components are expressed in close spatial 
proximity. Following this assumption, we construct a score to measure the signaling interaction 
strength at each position within a tissue (Fig. 1a). The ligand-receptor interaction score 
(LRscore) 𝑆 is the product of ligand (𝐿) and receptor (𝑅) expression in the spatial neighborhood 
of the cell: 𝑆 = 𝐿 × 𝑅. Intuitively, this score is motivated by an underlying chemical reaction in 
which the ligand and receptor proteins interact to form a complex: 𝐿 + 𝑅 → 𝐿𝑅. Note that the 
rate of this binding reaction is directly related to the product of ligand and receptor 
concentration. This strategy gives a simple, interpretable metric of the signaling activity 
occurring at each position within the tissue. 
 
Calculating a signaling score for each spatial position also allows us to separately quantify the 
locations at which interactions based on diffusible vs. contact-dependent factors occur. We 
define the spatial neighborhood differently for these two classes of interactions (Fig. 1a, Infer 
gene expression in neighborhood). Contact-dependent interactions require cells to be directly 
adjacent in the tissue, such as when two or more membrane-bound receptors on different cells 
dimerize. For contact-dependent interactions, we calculate 𝐿 and 𝑅 for cell 𝑖 using only cells 𝑗 
that are immediate spatial neighbors of cell 𝑖. In contrast, diffusion-dependent interactions can 
affect cells that are not immediately adjacent to the source cell, though the signal strength still 
depends on spatial proximity. For diffusion-dependent interactions, we calculate 𝐿 for cell 𝑖 
using all other cells 𝑗 weighted by the physical distances between them. In calculating 𝐿, we use 
a Gaussian kernel with bandwidth chosen so that most of the kernel density lies within a user-
specified radius of the receiving cell (default 200 𝜇m). Next, we use receptor expression to 
calculate 𝑅, then calculate 𝑆 using directly connected cell neighbors. In this way, unlike 
previous approaches, we can quantify the amount of contact-dependent vs. diffusion-
dependent signaling happening at each position within a tissue.  
 
Intuitively, our LRscore quantifies the amount of signal received by each cell, which is related to 
the amount of protein-protein interaction between ligand and receptor occurring at that 
position. Additionally, because of the simple form of our score, we can infer signal-sending cells 
for each signal-receiving cell. For contact-dependent interactions, cell 𝑖 is a signal-sending cell 
for cell 𝑗 and ligand-receptor interaction 𝑘 if 𝑖 expresses the ligand and 𝑗 expresses the 
receptor. For diffusion-dependent interactions, we determine the signal-sending cell in a similar 
way, but weight the signal-sending strength by distance (using the same Gaussian kernel 
described above). 
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The LRscore serves as a direct estimate for the strength of a signaling interaction at each 
position in a tissue. However, it is also desirable to know which positions have the most 
significant evidence for a given signaling interaction. To determine this, CytoSignal constructs a 
null distribution for 𝑆 by permuting the spatial locations of cells (Fig. 1a). We then calculate a 
one-sided p-value for the null hypothesis that the signal strength observed for a particular cell 
is no larger than expected based on the ligand and receptor expression levels within the tissue. 
To control for multiple hypothesis testing and potential biases caused by cellular density 
differences, we further perform spatial false discovery rate correction[18]. Cells with significant 
signaling activity can then be identified by setting a significance level such as 𝛼 = 0.05. To 
identify the most interesting interactions, we can rank them by either the number of significant 
spatial positions or the spatial variability statistic of the LRscore calculated by SPARK-X[19]. 
 
CytoSignal can also identify spatial gradients in signaling strength. Because we measure the 
strength of the signaling interaction at each position in the tissue, independent of discrete cell 
types, we can readily investigate continuous variation in signaling across a tissue (Fig. 1a). 
Previous approaches that calculate signaling interactions between cell types or using 
dissociated cell data are not designed to detect this sort of continuous variation. 
 
Another benefit of our approach is that it enables identification of differentially expressed 
genes associated with a signaling interaction. Because we calculate a score for each signaling 
interaction at each position in the tissue, we can look for signaling-associated genes in an 
unbiased fashion. In contrast, previous methods that investigate expression of downstream 
signaling genes often rely on annotations of signaling pathways[6–8], which can be unreliable 
and incomplete. To identify differentially expressed genes associated with each signaling 
interaction, we perform a sparse regression analysis using the output statistic 𝑆 from CytoSignal 
as the response variable. This also allows us to control for cell type as a confounder when 
identifying signaling-associated genes. These signaling-associated genes can subsequently be 
used to identify GO terms or transcription factors associated with the signaling interaction. 
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Fig.1 CytoSignal and VeloCytoSignal model the spatiotemporal dynamics of ligand-receptor signaling 
interactions at cellular resolution. a, Diagram of CytoSignal approach. CytoSignal predicts the amount of 
ligand-receptor protein-protein interaction at each position in a tissue (LRscore 𝑆 = 𝐿	 × 𝑅) for each 
interaction while considering both the spatial neighbors of each cell and the diffusion- or contact-
dependent nature of the interaction. Expression of individual components within interactions involving 
multiple subunits is also considered. Cytosignal then identifies which cells have significant activity for a 
particular signaling interaction by spatial permutation. CytoSignal also detects spatial gradients in 
signaling and signaling-associated differentially expressed genes. b, Diagram of VeloCytoSignal 
approach. VeloCytoSignal predicts the temporal dynamics of a signaling interaction at each spatial 
location by combining RNA velocity from the ligand and receptor genes to calculate the time derivative 
(𝑑𝑆/𝑑𝑡) of the CytoSignal test statistic (𝑆). The direction of the arrows indicates whether the signaling 
activity is increasing (pointing upward, colored in red) or decreasing (pointing downward, colored in 
blue) in each spatial neighborhood, and the lengths of the arrows indicate the rate of change. 
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We also developed a method of inferring temporal changes in signaling strength at each 
position in a tissue (Fig. 1b). Intuitively, our key insight is that the signaling interaction strength 
changes when either the ligand or receptor expression changes. Previous work has shown that 
spliced and unspliced counts can be used to estimate the time derivative of a gene’s expression, 
a concept called RNA velocity[20–22]. These velocity estimates of the rate of change for ligand 
and receptor expression can then be used to predict whether a particular signaling interaction 
will increase or decrease in strength over time. In particular, RNA velocity estimates the time 
derivative of ligand (𝐿) and receptor (𝑅) expression individually (!"

!#
 and !$

!#
). Because the 

CytoSignal test statistic is simply 𝑆 = 𝐿 × 𝑅, we can calculate the time derivative of 𝑆 using the 
product rule of differential calculus: 
 

𝑑𝑆
𝑑𝑡 = 𝐿	 ×

𝑑𝑅
𝑑𝑡 + 𝑅	 ×

𝑑𝐿
𝑑𝑡	 

 
The quantity !%

!#
 then gives the direction and magnitude of the predicted change in signaling 

strength for each cell; positive !%
!#

 indicates increasing signal strength, while negative !%
!#

 means 
the signal strength will decrease over time. Of course, this approach relies on having accurate 
estimates of !"

!#
 and !$

!#
 for individual genes. Single-gene velocity estimates from scVelo[21] and 

velocyto[20] are often unreliable [23], but we utilized our previously published tool, 
VeloVAE[24], which uses gene-shared latent times to calculate much more accurate velocity 
estimates for individual genes. We refer to our approach for calculating the rate of change of 
signaling interactions as VeloCytoSignal, since it merges velocity analysis with signaling analysis. 
 
CytoSignal detects spatially resolved signaling interactions, spatial gradients, and 
signaling associated-genes in Slide-seq and Slide-tag data 
 
We first applied CytoSignal to spatial transcriptomic data captured by Slide-seq V2 and Slide-
tags from embryonic mouse brains. Slide-seq is a barcoded spatial transcriptomic protocol that 
measures transcriptome-wide expression of RNAs on 10 μm beads[25]. Slide-tags captures 
single nuclei after tagging them with spatially mapped barcodes, thus ensuring that transcripts 
sharing a spatial barcode come from the same cell[26]. Both protocols enable transcriptome-
wide detection of RNAs and achieve single-cell (or near single-cell) resolution.  
 
Using these datasets, we performed several analyses that are now possible with cellular-
resolution, spatially-resolved signaling inference (Fig. 2). In particular, we identified spatial 
gradients in cell signaling; determined signaling-associated differentially expressed genes; and 
mapped spatial differences in the amount of contact-dependent vs. diffusion-dependent 
signaling. We demonstrate these new types of analyses and visualizations using several of the 
most significant signaling interactions inferred by CytoSignal. 
 
The output of CytoSignal is a score for each signaling interaction at each individual spatial 
location. Thus, we can visualize a single signaling interaction using a spatial plot where each 
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point is a tissue position with measured gene expression (bead, spot, or cell), and we color the 
point by the inferred signaling activity (Fig. 2a, h, e, and m). We also developed a novel 3D 
visualization method (see Methods), depicting signal-sending cells (Fig. 2b, i, f and n, bottom 
layer) and signal-receiving cells (Fig. 2b, i, f and n, top layer). Each cell is colored by its cluster 
assignment, and the edges between cells represent inferred signaling interactions. To provide a 
cluster-level perspective, we utilized Circos plots to show the total number of significant edges 
sent and received from each cluster across all diffusion-dependent and contact-dependent 
interactions separately (Fig. 2c, g, k and q).  
 
The top interactions inferred by CytoSignal are known to be highly significant in embryonic 
neural development. In the cerebral cortex captured by Slide-seq, CytoSignal revealed an 
interaction mediated by a diffusible ligand Sema3a and PlexinA4-Nrp1 co-receptor complex[27], 
which has a well-described role in neuronal axon guidance[28] and neuronal migration[29](Fig. 
2a). In the embryonic mouse brain captured by Slide-tags, CytoSignal identified another 
diffusible-ligand-dependent interaction, Wnt5a-Epha7, that is potentially involved in the 
patterning decisions in the embryonic cortical areas[30,31](Fig. 2h). The contact-dependent 
interaction between Efnb1 and Epha4 was identified in both datasets and is known to be 
involved in axon guidance and nerve regeneration[32](Fig. 2e and m).  
 
By inferring a signal strength at each spatial position, CytoSignal is able to identify continuous 
spatial gradients of signal strength. To demonstrate this capability, we calculated the LRscore of 
the interaction between Sema3a and Plexina4-Nrp1 complex in each bead as a function of its 
cortical depth (see Methods) (Fig. 2d). The LRscore of this signaling interaction shows a unique 
spatial gradient which transiently increases, reaches its highest level in the SVZ layer, and finally 
decreases. We then performed a similar analysis in the slide-tags data by plotting the LRscore of 
the interaction Efnb1-Epha4 in each nucleus against its distance from the centroid of the tissue 
(Fig. 2r). This signaling interaction also shows a spatial gradient of LRscores that remains low for 
neurons near the centroid but increases rapidly with distance from the centroid (Fig. 2m and 
3n).  
 
We next asked what differentially expressed genes are associated with these signaling 
interactions. For each interaction, we fit an elastic net regression model to predict the LRscore 
from gene expression and cluster labels, then select the features with nonzero coefficients that 
are most predictive for the LRscore (Fig. 1). By incorporating cluster labels into the regression 
model, we can control for cell type as a confounder when identifying signaling-associated gene 
expression. Note that to avoid circularity we do not include the ligand or receptor genes as 
predictors in the regression model for a given interaction, since these genes were used to 
calculate the LRscore, the dependent variable in the regression analysis. We then perform gene 
ontology (GO) enrichment analysis of the genes with nonzero coefficients. To present these 
results more clearly, we plot the regression weights of the selected genes as a heatmap along 
with their enriched GO terms (Fig. 2j,o). For the diffusion-dependent interaction Wnt5a-Epha7, 
interaction-related genes selected by the model are strongly enriched for Wnt signaling terms 
including “regulation of Wnt signaling pathway” and “canonical Wnt signaling pathway” (Fig. 
2j). For contact-dependent interaction Efnb1-Epha4, interaction-related genes are strongly 
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enriched for GO terms associated with nervous system development including “positive 
regulation of neuron differentiation” and “neural tube development” (Fig. 2o).  
 

 
Fig. 2 CytoSignal identifies spatial gradients in signaling strength and signaling-associated genes in 
mouse cortical development. a, Ligand (Sem3a) and receptor (PlexinA4 complex1) expression data, 
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Sem3a-PlexA4 signaling interaction scores (LRscores), and inferred locations with significant signaling 
activity. Each dot is a Slide-seq bead, the x and y coordinates are spatial position, and color indicates 
expression level, LRscore, or cell type. b, Inferred signal-sending and signal-receiving cell interactions for 
Sem3a-PlexA4. Top layer: locations with significant signaling activity inferred by CytoSignal (signal-
receiving cells). Bottom layer: signal-sending cells. c, Circos plot showing cluster level summary of 
signaling activities between tissue locations across all diffusion-dependent interactions. Line thickness 
indicates the number of significant diffusion-dependent interactions between cells in the corresponding 
clusters. Clusters with “s-” and “r-” prefixes represent clusters serving as the signal-sending cluster or 
signal-receiving cluster. d, Spatial gradient of LRscores for the Sem3a-PlexinA4 interaction along cortical 
layers. Each dot represents a bead in the Slide-seq dataset, the x-axis is the cortical depth in µm, and the 
y-axis is the LRscore. Colors indicate cluster assignments. e, Efnb4 (ligand) and Epha4 (receptor) 
expression, Efnb1-Epha4 signaling interaction scores (LRscores), and inferred locations with significant 
signaling activity. Each dot is a Slide-seq bead, the x and y coordinates are spatial position, and color 
indicates expression level, LRscore, or cell type. f, Inferred signal-sending and signal-receiving cell 
interactions for the Efnb1-Epha4 interaction in the Slide-seq cortex data. g, Circos plot across all contact-
dependent interactions in the Slide-seq cortex data. h, Wnt5a and Epha7 expression, Wnt5a-Epha7 
LRscores, and inferred locations with significant signaling activity. i, Inferred signal-sending and signal-
receiving cell interactions for the Wnt5a-Epha7 interaction in the Slide-tags brain data. j, Heatmap 
representation of genes and GO terms associated with the Wnt5a-Epha7 interaction. The color of each 
grid square represents the regression weight of each gene (positive weight means positive association 
with Wnt5a-Epha7 signaling). White indicates that this gene is not annotated with the corresponding GO 
terms in the column. k, Circos plot across all diffusion-dependent interactions in the Slide-tags brain 
data.  l, Total number of significant diffusion-dependent interactions per spatial location in the Slide-tags 
brain data. m, Efnb1 and Epha7 expression, Efnb1-Epha7 LRscores, and inferred locations with 
significant signaling activity. n, Inferred signal-sending and signal-receiving cell interactions for the 
Efnb1-Epha7 interaction in the Slide-tags brain data. o, Genes associated with the Efnb1-Epha7 
interaction and their related GO terms. p, Total number of significant contact-dependent interactions 
per spatial location in the Slide-tags brain data. q, Circos plot across all contact-dependent interactions 
in the Slide-tags brain data. r, Efnb1-Epha7 interaction strength as a function of distance from the 
centroid of the brain. 
 
CytoSignal can also identify spatial regions that are enriched for contact-dependent or 
diffusion-dependent interactions. To demonstrate this, we summarized the total number of 
significant contact-dependent and diffusible interactions per spatial location (Fig. 2l and 2p). 
Across the tissue, spatial locations near fibroblasts and their adjacent cells seem to have the 
largest number of significant diffusible interactions (Fig. 2l). Circos plots also identify 
fibroblasts, which are located near choroid plexus, to be both the most active signal-sending 
and signal-receiving cluster across all diffusible interactions (Fig. 2k). This is consistent with 
biological knowledge that CNS fibroblasts are largely involved in a variety of diffusible signaling 
pathways including TGFβ, PDGFRβ, and IFNγ signaling[33]. Furthermore, CytoSignal highlights 
that spatial locations including radial glia beads and their surrounding neurons have the largest 
number of significant contact-dependent interactions compared with other locations in the 
tissue (Fig. 2p). This aligns with a recent study demonstrating that the contact between radial 
glia cells and neurons is vital for directing axon-dendrite polarization[34]. Circos plots also 
provide additional support that radial glia serves as the most intensive signal-sending and 
signal-receiving cluster (Fig. 2q). Another study has shown that radial glial cells constantly 
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interact with each other, which contributes crucially to the formation of the cerebral cortex in 
the mouse embryonic brain[35].  
 
CytoSignal reveals locations and signaling-associated genes for contact-dependent and 
diffusible signaling interactions in mouse embryo Stereo-seq data 
 
We next applied CytoSignal to spatial transcriptomic data measured by Stereo-seq from whole 
mouse embryos, captured at 8 different time points ranging from embryonic day 9.5 (E9.5) to 
16.5 (E16.5)[36]. Stereo-seq uses DNA nanoball-patterned arrays to measure transcriptome-
wide expression at sub-cellular resolution. As with the Slide-seq and Slide-Tags data, we used 
CytoSignal to quantify the strength of signaling interactions at individual tissue locations, which 
allowed us to identify signaling-associated genes and differences in the locations of diffusible 
vs. contact-dependent signaling interactions.  
 
Using the Stereo-seq data, CytoSignal was able to detect spatially significant and biologically 
meaningful interactions. One of the clearest examples was the diffusion-dependent interaction 
Fgf8-Fgfr1 in the E12.5 E1S1 slice (Fig. 3a). Fibroblast growth factor (FGF) signaling mediated by 
FGF ligands including Fgf8 and their receptors FGF receptors (FGFRs) including Fgfr1 has been 
well described for patterning and neurogenesis [37–40]. Both LRscore and permutation tests 
indicated strong activity of the Fgf8-Fgfr1 interaction near the choroid plexus, which is located 
at the border between the meninges and brain (Fig. 3a). Using the LRscores at individual tissue 
positions, we identified signaling-associated differentially expressed genes. These genes were 
strongly enriched in GO terms associated with neural development (Fig. 3c). Additionally, 
previous studies have demonstrated the essential role of Fgf8 and Fgfr1 in neural tube 
development [41,42], which is consistent with the GO term “neural tube development” that is 
enriched among the signaling-associated genes. The role of Fgf8 in neocortex patterning has 
also been described previously [43], which is consistent with the GO term “forebrain 
anterior/posterior pattern specification” that is enriched among the signaling-associated genes.  
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Fig. 3 CytoSignal reveals spatiotemporal variation between diffusion and contact-dependent 
interactions at cellular resolution. a, Ligand (Fgf8) and receptor (Fgfr1) expression data, Fgf8-Fgfr1 
signaling interaction scores (LRscores), and inferred locations with significant signaling activity. Each dot 
is a tissue position, the x and y coordinates are spatial positions, and color indicates expression level, 
LRscore, or cell type. b, Inferred signal-sending and signal-receiving cell interactions for the Fgf8-Fgfr1 
interaction. c, REVIGO plot of GO terms enriched among genes associated with Fgf8-Fgfr1 interaction. d, 
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Circos plot of total diffusion-dependent interactions between tissue locations for all clusters. e, Total 
number of significant ligand-receptor interactions per location focusing on the jaw region across five 
time points from E12.5 to E16.5. Each dot represents a tissue location in each dataset. The first two rows 
are colored by the total counts of contact-dependent or diffusion-dependent interactions while the third 
row is colored by cell type annotations. f, Ligand (Dll1) and receptor (Notch1) expression data, Dll1-
Notch1 signaling interaction scores (LRscores), and inferred locations with significant signaling activity. 
g, Inferred signal-sending and signal-receiving cell interactions for the Dll1-Notch1 interaction. h, 
REVIGO plot of GO terms enriched among genes associated with Dll1-Notch1 interaction. i, Circos plot of 
total contact-dependent interactions between tissue locations for all clusters. j, Total number of 
significant ligand-receptor interactions per location focusing on the brain region across five time points 
from E12.5 to E16.5. Dotted rectangles highlight the regions that best reflect differences in spatial 
enrichment between diffusion- and contact-dependent interactions. 
 
 
A clear example of a contact-dependent interaction identified by CytoSignal is Dll1-Notch1 in 
the E12.5 E1S2 slice (Fig. 3f). The Notch-Delta signaling system plays a vital role in the 
development of the central nervous system [44,45]. For example, sustained expression of 
Notch1 triggers choroid plexus tumor development in mice [46,47]. This aligns with our results, 
which indicated an enrichment of Dll1-Notch1 in the right half of the choroid plexus cluster and 
the intersection area between the Brain cluster and the left half of the Choroid plexus cluster 
(Fig. 3f). Using the LRscores at individual tissue positions, we identified signaling-associated 
differentially expressed genes. These genes were strongly enriched for GO terms correlated 
with CNS development including “central nervous system development” and “neuron fate 
commitment” (Fig. 3h). Consistent with these results, it has also been shown that Notch1 in 
activated forms promotes progenitor cell identity in the mouse embryonic forebrain [48], which 
corresponds to GO terms including “positive regulation of neuron differentiation” and “neural 
precursor cell proliferation”.  
 
We also identified interesting patterns in the locations of diffusion-dependent and contact-
dependent interactions at the whole embryo scale. For instance, the edge plot for the diffusion-
dependent interaction Fgf8-Fgfr1 displays that cells are receiving signals not only from nearby 
locations but also from more distant locations within adjacent clusters (Fig. 3b, bottom layer). 
As a comparison, the edge plot for contact-dependent interaction Dll1-Notch1 reveals almost 
straight edges, indicating that cells are primarily communicating with direct neighboring cells 
(Fig. 3g, bottom layer). We also summarized the total number of significant edges sent and 
received from each cluster across all 209 significant diffusion-dependent and 49 significant 
contact-dependent interactions separately (Fig. 3d and Fig. 3i). We identified the spatial 
locations near jaw and tooth and epidermis to be the most active signal-sending and signal-
receiving region (Fig. 3d). Strikingly, diffusible interactions seem to dominate over the contact-
dependent ones in the spatial region near the jaw when comparing the total number of 
significant interactions within each cell across five timepoints (Fig. 3e). This aligns with the 
known regulatory mechanisms of bone development in the jaw and teeth that heavily rely on 
famous signaling pathways mediated by diffusible molecules, such as Shh, BMP, FGF, and WNT 
pathways [49–52]. Similarly, from the circos plot, the communication through contact-
dependent interactions in the spatial region near choroid plexus and brain exceeds those found 
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in other locations (Fig. 3i). Comparing across timepoints, the total number of significant 
contact-dependent interactions within each cell in this region is nearly at the same level as 
diffusion-dependent interactions (Fig. 3j). However, contact-dependent interactions are 
primarily concentrated near the boundary between the choroid plexus cluster and the brain 
cluster. This suggests that contact-dependent interactions have a vital role in guiding the 
development of border epithelial cells and nearby embryonic neural tissue during 
development. 
 
In situ proximity ligation confirms locations of ligand-receptor protein-protein 
interactions predicted by CytoSignal 
 
A key challenge in computational analysis of ligand-receptor signaling is the lack of ground truth 
to evaluate predictions and the difficulty of direct validation. Previous methods often rely solely 
on computational validation, which is not sufficient for demonstrating their robustness and 
applicability. However, the simple, direct nature of the ligand-receptor scores calculated by 
CytoSignal allows direct validation in real tissues. Specifically, the detection of protein-protein 
interactions in situ can be accomplished using the proximity ligation assay (PLA) (Fig. 4a). PLA 
involves the use of two primary antibodies that specifically bind to the target proteins, followed 
by oligonucleotide-labeled secondary antibodies (PLA probes). When the two proteins of 
interest are in close proximity (40 nm), the PLA probes can hybridize with connector oligos and 
generate a detectable fluorescence signal. Thus, in the context of ligand-receptor interactions, 
PLA provides direct evidence that both proteins are co-localized within close spatial proximity. 
 
To validate CytoSignal predictions in real tissues, we performed PLA on E12.5 mouse embryos 
and compared the locations of the PLA signal with the CytoSignal interaction scores predicted 
from Stereo-Seq data (Fig. 4a). We selected five representative interactions with both a large 
number of significant locations and spatial variation in signaling activity across the embryo. 
These interactions include three diffusion-dependent interactions (Fgf8-Fgfr1, Ostp-Cd44, Igf2- 
Igf2r) and two contact-dependent interactions (Efna3-Epha5 and Dll1-Notch1). We assayed 
these interactions using PLA in a total of eight different spatial fields of view (Fig. 4b). 
CytoSignal’s spatially resolved scores represented by the column “LRscore” colored in red 
closely match the physical locations of ligand-receptor PLA fluorescence signals. In comparison, 
we included negative control samples to which we only applied primary antibodies of receptors 
to block PLA probe hybridization. Importantly, PLA signals from negative control samples shown 
by the column “Control” confirm the absence of background signal. Furthermore, high 
magnification imaging (Fig. 4c) validates that the PLA signals occur on the cell membrane, 
consistent with protein-protein interaction between extracellular ligands and membrane-bound 
receptors. This experiment suggests that spatial positions with high CytoSignal scores indeed 
correspond with the locations of ligand-receptor interactions in situ (Fig. 4c).  
 
Additionally, these experiments identified clear examples of how previous cluster-level 
approaches for cell signaling inference often report false signaling interactions (false positives) 
or fail to detect signaling interactions that are actually occurring (false negatives) (Fig. 4c). To 
demonstrate this, we ran CellPhoneDB, CellChat and CellChat Spatial (CellChat ST) on the same 
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Stereo-Seq dataset from E12.5 mice. To quantify these cluster-level results, we defined and 
calculated a connectivity ratio (r) for each pair of clusters in all five interactions. The 
connectivity ratio, ranging from 0 to 1, represents the ratio of statistically significant interacting 
cells compared to the total number of interacting cells within a pair of interacting clusters. 
CytoSignal infers at cellular resolution and therefore gives different connectivity ratios 
according to the real signaling activities of each ligand-receptor interaction. However, previous 
methods only output cluster-level inferences that indicate all cells in the signal-sending and 
signal-receiving cluster are interacting, and therefore generate binary connectivity ratios that 
are either 0 or 1 for all cells in a pair of clusters. For all five interactions we investigated using 
PLA, CytoSignal successfully detected true positive signaling activity supported by PLA validation 
(Fig. 4d, False Negative, column of CytoSignal), but undetectable by cluster-based methods (Fig. 
4d, False Negative, other columns in gray). Additionally, CytoSignal correctly predicted the 
absence of signal (Fig. 4d, False Negative, column of CytoSignal in gray) for interactions inferred 
by previous methods but shown to be false positives by PLA validation (Fig. 4d, False Positive, 
other columns in blue). Specifically, the column of “LRscore” demonstrates that CytoSignal 
identifies no signal–consistent with the PLA results in the “PLA” column–whereas cluster-based 
methods reported signaling interactions at those positions (Fig. 4c, False Positive). 
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Fig. 4  Proximity ligation assay confirms in situ ligand-receptor protein-protein interaction locations 
recovered by CytoSignal. a, Diagram of proximity ligation assay (PLA). PLA detects protein-protein 
interactions using two primary antibodies that specifically bind to the ligand and receptor proteins, 
followed by PLA probes. The PLA probes bind the primary antibodies and create a fluorescent signal only 
when the ligand and receptor proteins are within 40 nm of each other. c, Fields of view used for PLA 
imaging and comparison with CytoSignal’s predictions. Numbers colored in black correspond to the 
numbers colored in white at the upper right corner of c. c, PLA imaging results and CytoSignal 
predictions. Each row represents the predictions of CytoSignal and PLA signals for one ligand-receptor 
interaction. The “LRscore” column shows CytoSignal predictions, and column “PLA” and the “Control” 
column represents PLA signals in the experimental and negative control samples, respectively. Columns 
labeled “False Negative” and “False Positive” indicate fields of view where CytoSignal’s predictions are 
correct but cluster-level methods report false negatives or false positives. The number in white indicates 
the FOV; numbers correspond to panel b. Inset images are high-magnification (63X) views. Scale bar: 
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200 µm. Scale bar for Ostp-Cd44: 100 µm. Scale bar for inset images: 5 µm. d, Quantitative summary of 
CytoSignal benchmarking with previous methods using PLA validated signaling activities. Each grid 
square represents the connectivity ratio of each interaction inferred by CytoSignal or previous methods 
in a pair of clusters. Scores range from 0 (gray) to 1 (blue). 
 
CytoSignal avoids many of the false positives reported by cluster-level methods since it utilizes 
spatial gene expression at cellular resolution. To further quantify this advantage, we compared 
the physical distances between sending and receiving cells identified by CytoSignal and 
previous methods. Because CytoSignal models signaling activities at the cellular level, we 
directly calculated the distances between each significant pair of signal-sending and signal-
receiving cells. For previous methods that infer at the cluster level, we sampled 1000 cells 
randomly in the sending and receiving clusters separately, randomly paired them, and 
calculated the distance between each pair of cells.  
 
Our results demonstrate that CytoSignal only detects significant signaling activities occurring 
within a 200 μm radius for diffusion-dependent interactions and 40 μm for contact-dependent 
interactions (Supplementary Fig. 1a). However, previous methods such as CellChat and 
CellPhoneDB that do not consider spatial information predict both diffusion-dependent and 
contact-dependent interactions even in cells over 8000 μm apart (Supplementary Fig. 1c, 1d). 
Importantly, even cluster-level methods that incorporate spatial information such as CellChat 
Spatial still predict signaling interactions (even contact-dependent interactions) between 
extremely distant cells (Supplementary Fig. 1b). These results clearly demonstrate CytoSignal’s 
unique advantage of performing cellular resolution signaling inference in the spatial context.  
 
We also benchmarked the time and memory usage of CytoSignal against previous methods on 8 
whole mouse embryo datasets with the exact same genes measured by stereo-seq. Despite 
operating at cellular resolution, CytoSignal scales to large numbers of cells and shows similar 
time and memory performance with previous cluster-level methods (Supplementary Fig. 2). For 
example, when applied on a dataset of 121,715 cells using a single core, CytoSignal finished 
running in 6 minutes and used 8,152 MiB of memory. 
 
CytoSignal detects ligand-receptor signaling activity from 10X Visium, Seq-Scope, 
MERFISH, and STARmap PLUS data 
 
An exciting advantage of CytoSignal is its wide applicability to many kinds of spatial 
transcriptomic technology, as long as the inputs are gene expression counts in cell-by-gene 
matrix format and spatial coordinates in cell-by-spatial format. We applied CytoSignal to a 
whole-embryo dataset measured by 10X Visium, a protocol that captures transcriptome-wide 
expression within 55𝜇m spots. Unlike data types we analyzed in previous sections, the spots in 
10X Visium usually contain 1-10 cells depending on tissue type (Fig. 5f). Nevertheless, 
CytoSignal is able to quantify signaling at spot level without requiring deconvolution. For 
diffusion-dependent interactions, since the spot size is smaller than the preset diffusion radius, 
we can still infer signaling activities for spatial neighbors within a 200 μm radius (Fig. 5f). For 
contact-dependent interactions, because cells will only touch their directly connected cells 
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within the same spot, we only need to consider gene expression within each spot without 
applying spatial smoothing across spots (Fig. 5f). 
 
CytoSignal identifies clear examples of spatially constrained ligand-receptor interactions 
involving diffusible and contact-dependent ligands from 10X Visium data. One example is a 
well-described diffusion-dependent interaction between the Gdf11 ligand and the Alk5-ActRIIA 
receptor complex. TGF-β family member Gdf11, activin type I including Alk4, Alk5 and Alk7, and 
activin type II including ActRIIA/ACVR2A and ActRIIB/ACVR2B together activate the canonical 
BMP/TGF-𝛽 signaling pathway and therefore uniquely contribute to CNS development 
[53][54,55]. Similarly, our results indicate a strong enrichment of both LRscore and significant 
spots near the brain and meninges (Fig. 5a, 5b). Using the LRscores at individual tissue 
positions, we identified signaling-associated differentially expressed genes. These genes were 
strongly enriched for GO terms including “brain development” and “forebrain 
anterior/posterior pattern specification" (Fig. 5c). Moreover, Gdf11 negatively controls the 
number of neurons in the retina [56], and regulates hindlimb development [57] and bone mass 
[58]. Consistent with this, the interaction is enriched in the developing eye, forelimb, and 
hindlimb bone, with GO terms including “forelimb morphogenesis” and “eye development”.  
 
CytoSignal also highlights numerous contact-dependent interactions, such as Sema4G-PlexinB2. 
Class 4 Semaphorins and Plexins are cognate ligand-receptor families that play crucial roles 
during the development of the mammalian nervous system [59–61]. Previous studies have also 
described Semaphorin 4G and 4C as ligands of receptor Plexin B2, and these interactions are 
essential for the migration of cerebellar granule cells in mice [62]. Correspondingly, our results 
suggest a strong enrichment of both LRscore and significant spots within the brain and part of 
the meninges (Fig. 5g and 5h), with correlated GO terms including “regulation of nervous 
system development” and “regulation of neuron differentiation” (Fig. 5i). Heatmaps of total 
significant interactions per spot indicate that the locations close to the forelimb and those 
around the brain and meninges have the largest number of significant diffusible and contact-
dependent interactions, respectively (Fig. 5e and 5k). Similarly, forelimb bone cells, and brain 
cells are the most active signal-sending and signal-receiving cell types, respectively (Fig. 5d and 
5j). 
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Fig. 5 CytoSignal identifies spot-level signaling activity without requiring deconvolution. a, Ligand 
(Gdf11) and receptor (Alk5-ActRIIA complex) expression data, Gdf11-Alk/Act signaling interaction scores 
(LRscores), and inferred locations with significant signaling activity. Each dot is a tissue position, the x 
and y coordinates are spatial positions, and color indicates expression level, LRscore, or cell type. b, 
Inferred signal-sending and signal-receiving cell interactions for the Gdf11-Alk/Act interaction. c, REVIGO 
plot of GO terms enriched among genes associated with the Gdf11-Alk5/ActRIIA interaction. d, Circos 
plot of total diffusion-dependent interactions between tissue locations for all clusters. e, Total number 
of significant diffusion-dependent interactions per spot. f, Diagram of how LRscores are calculated for 
Visium spots containing multiple cells. LRscores for contact-dependent interactions are calculated using 
genes co-expressed within the same spot, while diffusion-dependent interactions are calculated as with 
cellular-resolution data types using nearby spots weighted by distance. g, Ligand (Sema4G) and receptor 
(PlexinB2) expression data, Sema4G-PlexinB2 signaling interaction scores (LRscores), and inferred 
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locations with significant signaling activity. Ligand (Sema4G) and receptor (PlexinB2) expression data 
used by CytoSignal and its inferred locations with significant signaling activity. h, Inferred signal-sending 
and signal-receiving cell interactions for the Sema4G-PlexinB2 interaction. i, REVIGO plot of terms 
enriched among genes associated with the Sema4G-PlexinB2 interaction. j, Circos plot of total contact-
dependent interactions between tissue locations for all clusters. k, Total number of significant contact-
dependent interactions per spot. 
 
In addition to sequencing-based ST protocols, we have also applied our method to data 
measured by fluorescence-based protocols including MERFISH [63]. MERFISH is a ST protocol 
that can simultaneously detect transcripts and their spatial positions at single-molecule 
resolution. We utilized QuickNii [64] to register the MERFISH data to the Allen Brain Atlas 
common coordinate framework [65,66] and assign each cell to a brain region. CytoSignal 
identified multiple significant signaling interactions, including an interaction between the 
diffusible ligand Sdf1 and the receptor Cxcr4 [67] in the lateral ventricle. Neural progenitor cells 
(NPCs) located in the subventricular zone (SVZ) play a crucial role in adult neurogenesis [68]. 
Stromal cell-derived factor Sdf1 is vital for regulating and maintaining both adult and embryonic 
NPCs [69,70]. Previous studies have shown that the Sdf1-Cxcr4 signaling interaction plays a vital 
role in adult SVZ cell differentiation and proliferation [71,72]. Correspondingly, in both slices, 
CytoSignal identified that cells with significant signaling activities are mostly enriched in the 
lateral ventricle (Supplementary Fig. 3).  
 
We then applied CytoSignal to another probe-based protocol called STARmap PLUS [73]. We 
used a dataset from a mouse model of Alzheimer’s disease (AD). CytoSignal identified multiple 
significant signaling interactions from among the ligand and receptor genes included in the 
STARmap PLUS gene panel. One example is an interaction between the diffusible ligand 
Semaphorin 3a (Sema3a) and its receptor Plexin D1 (Plxnd1) [74]. Semaphorins such as Sema3a 
are well described to be relevant to neurodegenerative diseases including AD [75]. Our results 
showed cells with significant signaling activity are mostly enriched near the Cornu Ammonis 1 
(CA1), with another minor enrichment in the Dentate gyrus (DG) (Supplementary Fig. 4a). 
CytoSignal also identified a contact-dependent interaction between Amyloid precursor protein 
(App) and the transmembrane receptor Cd74. AD is characterized by the presence of 
extracellular plaques, which are primarily composed of amyloid-β (Aβ) peptides. Previous 
studies have shown that the interaction of Cd74 and App suppresses Aβ production [76]. 
Correspondingly, CytoSignal inferred that this interaction has the largest number of cells with 
significant signaling activities compared to all other interactions, with a nearly ubiquitous 
distribution of this interaction across spatial locations (Supplementary Fig. 4b). 
 
VeloCytoSignal identifies spatiotemporal dynamics of signaling activity during mouse 
embryonic development 
 
Cell-cell communication plays a central role in dynamic processes such as cell differentiation. 
Thus, elucidating spatiotemporal changes in cell signaling activity is crucial for understanding 
the role of cell-cell communication in cell fate specification and tissue homeostasis. However, 
no existing computational approaches directly address the question of how to detect temporal 
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changes in signaling from snapshot single-timepoint data. Previous cluster-level methods 
[21,77,78] based on scRNA-seq data do not model spatial positions and cannot infer the rate of 
change of signaling over time. Approaches that consider spatial positions only infer at cluster 
level and also do not model signaling dynamics.  

To address these limitations, we developed an approach for detecting spatiotemporal changes 
in signaling activity that we call VeloCytoSignal. Importantly, our approach can predict dynamics 
using spatial data from only a single time point. VeloCytoSignal predicts the instantaneous rate 
of change for a signaling interaction at a specific position within a tissue by combining RNA 
velocity from the ligand and receptor genes to calculate the time derivative (!%

!#
) of the 

CytoSignal LRscore (𝑆). One output of VeloCytoSignal is a 3D velocity plot, with the directions of 
the arrows indicating whether the signaling activity is currently increasing (pointing upward) or 
decreasing (pointing downward) at each spatial position (Fig. 6a, 6c, 6e).  

To validate the predicted temporal trends in signaling activity, we performed VeloCytoSignal on 
Stereo-Seq data from four consecutive time points (E10.5, E11.5, E12.5, and E13.5). We used 
each time point separately to predict the temporal trend in signaling activity, thus blinding 
VeloCytoSignal to the true time point information, then compared the predicted trend with the 
observed signaling activity at the next time point. To better show the coherence between gene 
and interaction velocity, we also employed an arrow plot showing the velocity estimates of 
genes and interactions against gene-shared latent time in downsampled spots (Fig. 6b, 6d, 6f). 
Gene velocity, predicted spliced counts, and latent time in each spot were inferred by our 
previously published method VeloVAE, and the interaction velocity values (LRvelo) were 
calculated by VeloCytoSignal. 

VeloCytoSignal is able to accurately predict temporal changes in signaling interactions vital for 
embryonic development. We first investigated a classical diffusion-dependent interaction 
between albumin (Alb) and neonatal crystallizable fragment receptor complex (FcRn), which is 
enriched in the liver across multiple timepoints from E10.5 to E13.5. Albumin is a circulating 
protein produced by hepatocytes of the liver that acts as a multi-functional transporter of 
essential substances and waste products [79]. FcRn serves as the receptor of Alb and regulates 
its homeostasis [80,81]. Recent research has revealed that the interaction between Alb and 
FcRn plays a crucial role in regulating liver homeostasis and response to injury [82]. Accordingly, 
our 3D velocity plots across four time points showed a sharp increasing trend in Alb-FcRn 
interaction uniquely in the liver (Fig. 6a). Velocity estimates for the ligand Alb along with the 
receptor components B2m and Fcgrt displayed a consistent trend, with the rate of increase 
becoming higher at each time point (Fig. 6b). We validated that this predicted temporal trend is 
correct by plotting the average LRscore of the real data across consecutive embryonic time 
points, which confirmed the trend predicted by VeloCytoSignal (Fig. 6g).  
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Fig. 6 VeloCytoSignal revolves spatiotemporal upregulating signaling activities across multiple 
embryonic stages. a, Signaling velocity (LRvelo) scores for the Alb-FcRn interaction across four time 
points (E10.5-E13.5). Each point is a spot and color indicates cell type. 3D arrows overlaid on the spatial 
coordinates indicate the signaling velocity for a spatial bin; arrow direction and color indicate the sign of 
the velocity (red and up indicate increasing signaling; blue and down indicate decreasing signaling). 
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Arrow length indicates velocity magnitude. Black rectangles highlight the liver. b, RNA velocity estimates 
for ligand Alb and receptor FcRn (calculated by VeloVAE) used as input to VeloCytoSignal and 
corresponding interaction velocity estimates (LRvelo). Each dot is a stereo-seq position, the x-axis is the 
inferred latent time, and the y-axis is the spliced expression level for RNA velocity and LRscore for 
interaction velocity. Arrow direction and length indicate the velocity of each cell. Note that cells are 
subsampled to avoid overplotting. c, LRvelo scores for the Lgals9-Cd47 interaction plotted as in a. d, RNA 
velocity estimates for ligand Lgals9 and receptor Cd47 (calculated by VeloVAE) and interaction velocity 
LRvelo. Black rectangles highlight the liver region. e, LRvelo scores for the Wnt5a-Antxr1 interaction 
plotted as in a and c. f, RNA velocity estimates for corresponding ligand gene Wnt5a and receptor gene 
Antxr1 and interaction velocity LRvelo. Black rectangles highlight the jaw and teeth region. g, Mean of 
spatially resolved scores calculated by CytoSignal as a function of time. Dots and lines are colored by cell 
types. 
 
Another striking example of signaling dynamics involves an interaction between the diffusible 
ligand Galectin-9 (Lgals9) and the Cd47 receptor [83]. As with the Alb-FcRn interaction, the 
VeloCytoSignal prediction of the temporal trend of Lgals9-Cd47 signaling closely matches the 
true temporal trend observed across the 4 consecutive time points (Fig. 6c and 6g). This trend is 
also consistent with previous findings: Galectin-9 (Gal-9) is a member of the galectin family and 
particularly enriched in the liver [84]. Additionally, Gal-9 is directly related to the accumulation 
of macrophages in the liver and reduces hepatocellular damage [85,86]. Cd47 is a 
transmembrane receptor located on the cell surface that regulates phagocytosis through 
macrophages in the liver [87,88]. Importantly, VeloCytoSignal is able to leverage the velocity 
differences between ligand and receptor genes when calculating the velocity of the signaling 
interaction. For example, Cd47 has a lower but still increasing velocity in E13.5 compared to 
E12.5, while the velocity of ligand Lgals9 in later time points is consistently higher than previous 
time points (Fig. 6d). These subtle differences are reflected in the 3D velocity plot by shorter 
arrows and in the arrow plot by lower LRvelo scores.  

We also found a signaling interaction with a clear temporal trend in the developing jaw region 
of the mouse embryo. VeloCytoSignal identified a significant interaction between the diffusible 
ligand Wnt5a and Anthrax toxin receptor 1 (Antxr1) [83] in the anatomical region that gives rise 
to the jaw and teeth. Tooth development is a complicated process that includes multiple stages 
[89]. Several signaling pathways including the WNT pathway are activated at all stages of tooth 
development [90]. Wnt5a is a representative member of the non-canonical WNT pathway and 
plays a well-established role in embryonic tooth development [91,92]. Meanwhile, Antrx1 
encodes a transmembrane protein and modulates Wnt signaling during vascular development 
[93], whereas recessive mutations of this gene are closely associated with tooth agenesis[94]. 
Our VeloCytoSignal analysis predicts that the signaling activity of the Wnt5a-Antxr1 interaction 
is largely static across the embryo, except for the jaw and tooth region, which shows significant 
signaling velocity (Fig. 6e). This trend is supported by the velocities of both ligand and receptor 
genes (Fig. 6f). Importantly, this trend matches closely with what is observed in the real data 
from consecutive time points (Fig. 6g). Interestingly, the signaling activity of this interaction 
dramatically increases from E11.5 to E12.5 (Fig. 6g). This timing aligns with the known stages of 
tooth development, in which teeth first become morphologically distinguishable at E11.5, while 
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the cells of the dental lamina proliferate at E12.5, leading to a dramatic increase in WNT 
signaling activity [95]. 

 
Discussion 
Cell-cell communication mediated by ligand-receptor interactions plays a crucial role in cell 
differentiation, tissue homeostasis, immune response, and disease, but has been difficult to 
study in an unbiased fashion. CytoSignal infers activities and dynamics of signaling interactions 
at each spatial position within a tissue using spatial transcriptomic data. By taking this cell-level 
approach, we can perform several novel types of analyses: identifying spatial gradients in 
signaling; finding signaling-associated genes; and locating contact-dependent vs. diffusion-
dependent interactions. Our model accurately identified interactions in the developing mouse 
embryo, neurogenesis in the adult mouse brain, and a mouse model of neurodegeneration. 
Additionally, we confirmed that the interaction scores predicted by CytoSignal correspond to 
the positions of ligand-receptor protein-protein interaction in situ. 
 
CytoSignal and VeloCytoSignal are applicable to most spatial transcriptomic techniques, 
requiring only a cell-by-gene matrix and a cell-by-spatial-position matrix. We hope that our 
methods can help solve the current need for analyzing rapidly increasing spatial transcriptomic 
datasets. As technology for in situ molecular measurement continues to advance, we aim to 
continue expanding applicability of these approaches across new data modalities.  
 
We anticipate that our approach can be used to unveil the signaling networks across a variety 
of physiological and pathological contexts, in addition to the developmental contexts we 
considered here. For instance, in the tumor microenvironment, CytoSignal could reveal 
interactions among malignant cells, healthy cells, and immune cells. Additionally, 
VeloCytoSignal could provide unique insights into how the dynamics of spatially resolved 
signaling pathways affect tissue repair over time when applied to time-series data from 
damaged tissue. We hope that our methods enable similar analyses across a range of tissue 
contexts. 
 
Data Availability 
Slide-seqV2 data, Slide-tags data and STARmap PLUS data are available at Broad Institute’s 
single-cell repository (https://singlecell.broadinstitute.org/single_cell/) with ID SCP815, 
SCP2170 and SCP1375. Stereo-seq datasets from all timepoints are available at 
https://db.cngb.org/stomics/mosta. The 10X VISIUM dataset is available at 
https://www.10xgenomics.com/datasets/visium-cytassist-mouse-embryo-11-mm-capture-
area-ffpe-2-standard. The MERFISH dataset is available at https://info.vizgen.com/mouse-brain-
data.  
 
Code Availability 
CytoSignal and VeloCytoSignal are implemented in R. The package is available on GitHub at 
https://github.com/welch-lab/CytoSignal. 
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Methods 
 
Spatially resolved scores of signaling interactions (LRscore) 
The spatially resolved interaction score of each interaction in each location is defined as the co-
expression of ligand and receptor genes within close spatial proximity. The computation can be 
divided into three main steps: 1) defining spatial neighbors for each location; 2) calculating the 
amount of ligand (𝐿) and receptor (𝑅) each location can receive from their spatial neighbors; 
and 3) calculating ligand-receptor co-expression within each spatial neighborhood.  
 
CytoSignal defines spatial neighborhoods for diffusion-dependent and contact-dependent 
interactions differently. For diffusion-dependent interactions, for each location 𝑖, we define its 
spatial neighbors as all locations 𝑗 within a circle centered on location 𝑖 with a predefined radius 
𝑟 (200 µm by default). For the amount of receptors expressed at each location (𝑅), we directly 
use the normalized gene expression without smoothing since receptors are located on cell 
membranes and are not diffusible. We next calculate the amount of ligand 𝐿 that location 𝑖 
receives using all other locations 𝑗 weighted by the physical distances between them 
transformed by a Gaussian kernel. For determining the parameters of the kernel, we assume 
that a ligand diffuses across a two-dimensional tissue space and its concentration follows a 
Gaussian distribution, with its overall concentration summing up to unity. We want to 
determine a standard deviation σ such that in the space beyond a predefined radius 𝑟, the total 
concentration is less than a trivial value ε. In other words: 

2
&'

(
2
)

*
𝐺(𝑟, Ө; 𝜎) 	≤ 	𝜀	 

The solution to the above inequality is the following:  

𝜎 ≤
𝑡

<−2	𝑙𝑜𝑔(𝜀)
	 

For predefined 𝑟 = 200 µm and ε = 0.001, we can get that 𝜎+,- = 53.8	µ𝑚.  
For contact-dependent interactions, we utilize Delaunay Triangulation (DT) to find the directly 
connected neighbors of each cell. To exclude outliers, we also filtered out DT neighbors that are 
too distant from the center cell, using a default threshold of 200 µm. For calculating the 
amount of ligands received at each location, we calculate a weighted average of gene 
expression across the neighborhood, including the index location itself. The overall weight sums 
up to 2, with the weights of the DT neighbors adding up to unity and the weight of index 
location also being unity. Finally, for calculating the LRscore of each interaction within each 
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spatial neighborhood, we multiply 𝐿 and 𝑅 within each location and apply an average within its 
DT neighborhood.  
 
Regression analysis and gene enrichment analysis 
For Stereo-seq data, we first subset the genes to 1239 TFs using a 1375 TFs list. An elastic net 
with identity link function is then fitted using the “glmnet” package in R with all selected TFs as 
well as all cluster labels. We tuned the model with 6 different mixing parameters (0.5, 0.6, 0.7, 
0.8, 0.9, 1) by cross validation. The best model is used to choose the most interaction score 
predictive TFs for each interaction.  
For Slide-tag data and Visium data, we filter genes expressing in less than 50 cells as well as the 
ligand and receptor genes. We iteratively apply one-sided wilcoxon-tests between inferred 
significant and insignificant cells within every cluster, with an alternative hypothesis that the 
significant cells have higher expression levels. For each cluster, top 50 significant genes 
(Benjamini–Hochberg correction applied, FDR < 0.05) from the Wilcoxon-test are selected as 
the predictors for the downstream analysis. For high-quality data with lower sparsity, we utilize 
all available transcription factors (TFs) from a publicly available TF list[96] as predictors. We do 
not apply any filtering steps on the TFs since they are usually well-described and relatively few 
in number. Cluster annotations are also considered as covariates and are added to all 
regression models.  
 
The output of regression is a set of predictive TFs or genes as well as their coefficients which 
are then passed to downstream analyses such as gene ontology (GO) enrichment analysis. The 
GO analysis by GOrilla can be done by the following settings: (1) organism: “Mus musculus”; (2) 
running mode: “Two unranked lists of genes”, with model selected TFs as the target set and the 
other TFs in the 1239 TFs be the background for the Stereo-Seq. For Slide-tag and Visium, we 
used model selected genes as the target set and other genes in the dataset as the background. 
(3) ontology: “Process”; (4) check the box “Show output also in REVIGO”. For the “P value 
threshold”, we used 0.001. 
 
For visualizing the signaling associated genes and their enriched GO terms by heatmap, we 
manually pick significant GO terms (p-value = 0.001) according to their functions. All elastic net 
selected genes are ranked by the regression weights and at most top 20 genes are shown in the 
heatmap. 
 
Calculating signaling interaction velocity (LRvelo) 
 
In VeloCytoSignal, the velocity of ligand-receptor interaction requires RNA velocity, which is 
based on mRNA splicing dynamics. We use VeloVAE to infer RNA velocity from stereo-seq data. 
VeloVAE is a deep generative model that recovers the temporal order of cells and gene splicing 
dynamics in terms of the transcription, mRNA splicing and degradation rates using a pair of 
neural networks. The model consists of an encoder, which performs variational inference of 
latent cell time and state, and a decoder, which predicts unspliced and spliced counts using an 
ODE model. 
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All datasets were preprocessed using the scVelo preprocessing pipeline. Specifically, we 
selected 2000 top highly variable genes while keeping all genes involved in a predetermined list 
of cell-cell interactions. Then, we trained VeloVAE using default hyper parameters except for 
the latent dimension and batch size. We used a latent dimension of 5 for stereo-seq E9.5 and 
10 for all other datasets. As for batch size, we set it to default (128) for stereo-seq 9.5, 
increased it to 256 for stereo-seq E12.5, further increased it to 512 for stereo-seq E10.5, E11.5, 
E13.5, E14.5, E15.5, and set it to 2048 for stereo-seq E16.5. The batch size is generally 
proportional to the cell number. After training, we extract the inferred parameters and 
compute RNA velocity using the analytical form: 𝑣. = 𝛼 − 𝛽𝑢,  𝑣/ = 𝛽𝑢 − 𝛾𝑠, using predicted u 
and s values.  
 
Next, we feed RNA velocity from VeloVAE to VeloCytoSignal to compute the LR velocity. Since 
gene expression is the sum of spliced and unspliced counts, we can rewrite the CytoSIgnal test 
statistic as follows:  

𝑆 = (𝐿/ + 𝐿.) 	× (𝑅. + 𝑅/) 
Since the statistic 𝐿 and 𝑅 are smoothed based on spatial neighbors, we also apply a spatial 
smoothing on RNA velocity estimates from VeloVAE following the exact strategy. Next, it’s 
straightforward to calculate the time derivative of 𝑆 at each location following the product rule 
of differential calculus:  

𝑑𝑆
𝑑𝑡 = (𝐿/ + 𝐿.) 	×

𝑑(𝑅. + 	𝑅/)
𝑑𝑡 + (𝑅. + 𝑅/) 	×

𝑑(𝐿/ + 	𝐿.)
𝑑𝑡 	 

After calculating LRvelo estimates at each location, we take the average across each location’s 
DT neighbors to get LRvelo estimates at each spatial neighborhood. 
 
Visualization of signal sender-receiver cell pairs and dynamics of signaling in 3D 
We adopt a public R package, plot3D, as a base dependency for making 3D visualizations. For 
making the 3D edge plot, we first export all significant receiver-sender pairs identified for the 
ligand-receptor interactions of interests. In the 3D space, we then create two vertically aligned 
scatter plots of cell locations for showing the significant receiver and sender cells respectively. 
To highlight the cells involved in the interaction, we set the transparency of sender cells and 
receiver cells higher than other cells in both scatter plots separately. Lastly, for each receiver-
sender pair, we connect them by a straight line. For a cleaner visualization, we randomly 
downsample the cell pairs in practice.  
 
For creating the 3D velocity plot of an interaction of interest, we first bin the cell locations into 
a desired number of hexagons. We then take the average of the LRvelo estimates of the cell 
within each hexagon. Next, we plot all cells using their spatial locations. Then we draw an arrow 
that vertically points from the center of each hexagon to the z-axis coordinate at the average 
representation of velocity. This way, the positive regional velocity results in an arrow pointing 
upwards and the negative velocity points downwards. Meanwhile, we color positive arrows red 
and negative arrows blue, to make it easier to discern the sign of the signaling velocity. 
Additionally, we draw a light gray dot for regional velocity that happens to be equal to zero. For 
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a better visualization experience, we elevate all arrows with an arbitrary height so that they 
don’t overlap with the scatter plot layer. 
 
Benchmarking analyses with previous methods 
For quantifying whether the results of CytoSignal and previous methods align with PLA results, 
we adopt the concept of signal-sending and receiving cluster pairs from earlier methods and 
define a connectivity ratio (r) as the ratio between the number of significant edges (s) and the 
number of all possible edges (t) between a signal-sending and a signal-receiving cluster. An 
edge represents the interaction between two nearby cells that are either directly connected or 
within 200 μm of each other. Significant edges (s) denote the edges that end in locations within 
the receiving cluster that are identified as statistically significant by spatial permutation.   
 
We then compared the physical distances between signal-sending and receiving cells identified 
by CytoSignal and previous methods. This analysis included all 332 interactions in the 
intersection of CellChatDB and CellphoneDB V2 and was applied to one whole mouse embryo 
dataset (E12.5 E1S2, 46,982 cells and 20 clusters). We ran four workflows with default 
parameters: CytoSignal, CellChat 2.1.0, CellChat spatial, and CellphoneDB 2.1.7. Since 
CytoSignal directly outputs signal-receiving cells and their corresponding signal-sending cells, 
we directly calculated their physical distances. Previous methods present the p-values of each 
interaction for each signal-sending and receiving cluster pair. To obtain the physical distances 
between each signal-sending and receiving cell pair from cluster-level inferences, we randomly 
sampled 1000 cells from the sending and receiving cluster individually and matched them into 
1000 pairs. This was done for each significant interaction identification and each cluster pair. 
We calculated the spatial distance between each cell pair and finally formed the distribution. 
 
We benchmarked the time and memory usage of CytoSignal and previous methods using their 
default settings. Each method was benchmarked using the same computational resources on 
the Fedora Linux OS platform with a single Intel Xeon 3.00GHz core and 32 GB of memory. Due 
to the difference in the database content of the methods we benchmark, we selected a total of 
50 interactions that are in the intersection of CellChatDB and CellPhoneDB V2. For the 50 
entries, we randomly selected 16 contact-dependent interactions, 17 diffusion-dependent 
interactions with single-molecule receptors, and 17 diffusion-dependent interactions with 
complex receptors. For CytoSignal, we benchmarked the imputation of ligands and receptors, 
the calculation of LRScores, and the permutation test as the main workflow. For CellChat 2.1.0, 
we benchmarked the computation of communication probabilities and the aggregation of the 
network. The same applies to the CellChat workflow with spatial information provided. These 
three sets of tests were performed in R 4.3.1, where we captured the time usage with package 
microbenchmark 1.4.10 and the RAM usage with package peakRAM 1.0.2. CellPhoneDB 2.1.7 is 
presented as a command-line interface (CLI) tool, thus the time usage was captured with shell 
command “time” whereas the memory usage report was generated with Python package 
cmdbench 0.1.13. 
 
Mouse experiments 
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C57BL/6J (JAX000664) mice were acquired from the Jackson Laboratory. All mice were housed 
in the animal facility accredited by the Association for Assessment and Accreditation of 
Laboratory Animal Care (AAALAC), located in the Behavioral and Biological Sciences Building 
(BBSB) of the University of Texas Health Science Center at Houston. Animal rooms were climate 
controlled to provide temperatures of 21+/-1°C, 30-65% of humidity on a 12 hr, light/dark cycle 
(lights on at 0600 Central Standard Time). Mice were housed in individually ventilated cages 
(Tecniplast, Buguggiate, Italy) and in a specific pathogen-free condition. We have complied with 
the ARRIVE 2.0 guidelines. Access to water and food (irradiated LabDiet 5053, St. Louis, 
Missouri) was ad libitum. All procedures complied with the Guide for the Care and Use of 
Laboratory Animals and approved by the University of Texas Health Science Center at Houston’s 
Animal Welfare Committee (AWC), protocol AWC-21-0070. For prenatal experiments, male 
C57BL/6 mice were mated to female C57BL/6 mice and the vaginal plug was checked in the 
morning and determined as 0.5dpf. Pregnant mice were sacrificed at embryonic day (E)12.5. 
Pups and fetuses were used for analysis regardless of the sex. A total of 2 pregnant female mice 
and 12 fetuses were used for the experiments. Mice were euthanized by over-dosage of 
inhalation anesthesia in a drop jar (Fluriso, Isoflurane USP, VetOne) followed by decapitation. 
 
Proximity ligation assay 
Proximity ligation assay (PLA) was performed according to the manufacturer’s instructions 
(DUO92105 Sigma Aldrich). Samples were fixed in 4% paraformaldehyde overnight at 4 °C, then 
were cryoprotected in 30% sucrose/PBS solutions and in 30% sucrose/PBS: OCT (1:1) solutions, 
each overnight at 4 °C. Samples were embedded in an OCT compound (Tissue-Tek, Sakura) and 
cryosectioned at 14 μm using a cryostat (Leica CM1860) and adhered to positively charged glass 
slides (Fisherbrand ColorFrost Plus). Sections were postfixed in 4% paraformaldehyde for 15 
min at room temperature, treated with 0.1% TritonX-100 for 10 min at RT for permeabilization, 
blocked with Duolink® blocking solution(DUO82007) at 37 °C for 1 h, and incubated with each 
antibodies for FGF8(Goat polyclonal, 1:200, Invitrogen, PA5-47598) and FGFR1(Rabbit 
polyclonal, 1:200, Abcam, ab59194), or for OSTP(Goat polyclonal, 1:200 R&D system, AF808) 
and CD44(Rabbit polyclonal, 1:200, Proteintech,15675-1-AP), or for IGF2 (Goat polyclonal 
antibody, 1:200, R&D systems, AF792) and MPRI (Rabbit polyclonal antibody, 1:200, Abcam, 
ab124767), for DLL1(Rabbit polyclonal, 1:200, Abcam, ab10554) and NOTCH1(Goat polyclonal, 
1:200, R&D system, AF1057) or for EFNA3(Rabbit polyclonal, 1:200, Proteintech, 12480-1-AP) 
and EPHA5(Goat polyclonal, 1:200, R&D system, AF3037) or each negative control (using only 
receptor antibodies for primary antibodies) overnight at 4℃. Subsequently, sections were 
incubated with Probe mix [Duolink® In Situ PLA-® Probe Anti-Rabbit MINUS(DUO92005) and 
Duolink® In Situ PLA-® Probe Anti-Goat PLUS(DUO92003)] in a preheated humidity chamber for 
1 h at 37 °C, followed by incubation with a ligation solution for 30 min at 37 °C and an 
amplification solution for 100 min at 37 °C. Sections were further incubated with DAPI (4ʹ,6-
diamidino-2-phenylindole, 5 μg/ml, Invitrogen D1306) to stain nuclei prior to imaging. Images 
were captured by an automated inverted fluorescence microscope with a structured 
illumination system (Zeiss Axio Observer7 with ApoTome 3 system) and Zen 3.4 software. The 
Filter Set 112 SBP was used with excitation (Ex), beam-splitter (Bs) and emission (Em) filter 
wheel consisting of: Ex. 385/30, 469/38, 555/30, 631/33, 735/40, Bs. 405 + 493 + 575 + 654 + 
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761, Em. 425/30, 514/30, 592/25, 681/45, 788/38 nm. The objectives used were: Plan-
Apochromat 10x/0.45, Plan-Apochromat 20x/0.80, and Plan-Apochromat 63x/1.40. 
 
Preprocessing and binning stereo-seq data 
Raw data files (FASTQ format) sequenced with Stereo-seq for mid and late-gestation mouse 
embryos were downloaded from CNGBdb (https://db.cngb.org/search/project/CNP0001543/). 
Apart from the sequencing data, a barcode-to-position mapping file was also obtained from the 
Mouse Organogenesis Spatiotemporal Transcriptomic Atlas (MOSTA : 
https://db.cngb.org/stomics/mosta/download/) for each of the embryonic sections. The 
sequencing data was then processed using the Stereo-seq Analysis Workflow - SAW_v5.1.3. A 
STAR genome index was built using the GRCm38 assembly. A transcriptome reference file 
(Mus_musculus.GRCm38.100.gtf) was downloaded from Ensembl and provided as an input to 
the SAW pipeline along with the STAR genome index and the barcode-to-position file for 
Stereo-seq reads alignment. 
 
A position-sorted and deduplicated Binary Alignment Map (BAM) file was obtained as a result 
of the SAW workflow for each of the Stereo-seq samples. The BAM file was used to quantify the 
spliced and unspliced counts using a custom Perl script provided by BGI which utilizes the BAM 
read tags to extract the spatial coordinates and the exonic/intronic counts for each spatial 
position. To get count matrices at cellular level, we used custom python codes to bin the data 
using the same bin size as the original analysis. 
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Supplementary Figures 
 

 
Supplementary Fig. 1 Benchmarking the physical distances between significant signal-sending and 
signal-receiving locations inferred by CytoSignal and previous methods. a, Probability density of 
significant signaling location pairs as a function of physical distance identified by CytoSignal. The x-axis is 
the physical distance in µm and the y-axis is the density of pairs of signal-sending and signal-receiving 
locations counts at each distance. Note that the x-axis is truncated between 750 µm to 8000 µm 
because the density is 0 within this range. b, Probability density of signaling location pairs identified by 
CellChat Spatial as a function of their physical distances. c, Probability density of signaling location pairs 
identified by CellChat as a function of their physical distances. d, Probability density of signaling location 
pairs identified by CellPhoneDB as a function of their physical distances. 
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Supplementary Fig. 2 Benchmarking time and memory usage of CytoSignal and previous methods. 
Each method is tested on a total of 8 stereo-seq datasets. The x-axis is the number of cells in each 
dataset. The left panel’s y-axis is the time used and the right panel’s y-axis is the memory used. Each 
method is shown as a different line. 
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Supplementary Fig. 3 CytoSignal identifies significant interactions closely related to adult 
neurogenesis in MERFISH data. From left to right: Ligand (Sdf1) and receptor (Cxcr4) expression data, 
LRscore, inferred locations with significant signaling activity, and brain region annotations for each 
location. LV: lateral ventricle, V3: third ventricle. 
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Supplementary Fig. 4 CytoSignal identifies signaling interactions related to amyloid from STARmap 
PLUS data. a, Ligand (Sema3e) and receptor (Plxnd1) expression data, LRscores, inferred locations with 
significant signaling activity, and inferred signal-sending and signal-receiving cells. b, Ligand (App) and 
receptor (Cd74) expression data, LRscores, inferred locations with significant signaling activity, and 
inferred signal-sending and signal-receiving cells. 
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