

1

2

3 **Transcriptional plasticity of virulence genes provides malaria parasites with**
4 **greater adaptive capacity for avoiding host immunity**

5

6

7 Francesca Florini¹, Joseph E. Visone¹, Evi Hadjimichael, Shivali Malpotra, Christopher
8 Nötzel[#], Björn F.C. Kafsack, Kirk W. Deitsch^{*}

9

10

11 Department of Microbiology and Immunology, Weill Cornell Medical College, New York,
12 New York, USA

13

14 ¹These authors contributed equally.

15

16 # current address: Department of Microbiology and Immunology, University of
17 Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA

18

19

20 *To whom correspondence should be addressed. Tel: +1-212-746-4976, Email:
21 kwd2001@med.cornell.edu

22

23

24

25

26 **Abstract**

27 Chronic, asymptomatic malaria infections contribute substantially to disease
28 transmission and likely represent the most significant impediment preventing malaria
29 elimination and eradication. *Plasmodium falciparum* parasites evade antibody
30 recognition through transcriptional switching between members of the *var* gene family,
31 which encodes the major virulence factor and surface antigen on infected red blood
32 cells. This process can extend infections for up to a year; however, infections have been
33 documented to last for over a decade, constituting an unseen reservoir of parasites that
34 undermine eradication and control efforts. How parasites remain immunologically
35 “invisible” for such lengthy periods is entirely unknown. Here we show that in addition to
36 the accepted paradigm of mono-allelic *var* gene expression, individual parasites can
37 simultaneously express multiple *var* genes or enter a state in which little or no *var* gene
38 expression is detectable. This unappreciated flexibility provides parasites with greater
39 adaptive capacity than previously understood and challenges the dogma of mutually
40 exclusive *var* gene expression. It also provides an explanation for the antigenically
41 “invisible” parasites observed in chronic asymptomatic infections.

42

43 **KEY WORDS:** single cell RNAseq, antigenic variation, gene expression, *var* genes,
44 immune evasion

45

46 **Introduction**

47 Despite intensive efforts directed towards malaria eradication, it remains one of
48 the most reported infectious diseases in many tropical countries (1). It is caused by
49 parasites of the genus *Plasmodium*, with *P. falciparum* responsible for the most
50 infections and deaths. These parasites cause disease through asexual replication inside
51 red blood cells (RBCs), generating 20-30 new infectious merozoites every 48 hours.
52 Over the course of their replicative cycle, parasites extensively modify the infected RBC,
53 resulting in more rigid and spherical cells with altered membrane permeability (2).
54 These changes in shape and deformability make the infected cells vulnerable to
55 filtration and elimination by the spleen. To avoid splenic clearance, *P. falciparum*
56 produces and exports several adhesins to the surface of the infected RBCs. *P.*
57 *falciparum* Erythrocyte Membrane Protein 1 (PfEMP1), the best characterized protein of
58 these adhesins, allows infected RBCs to attach to the vascular endothelium by binding
59 tissue specific receptors, thereby enabling infected cells to sequester from the
60 peripheral circulation and avoid passage through the spleen (3-5). This cytoadhesion
61 and sequestration of infected RBCs leads to formation of RBC aggregates within
62 capillary beds and can result in the interruption of blood flow and localized inflammation
63 that underlies the severe syndromes of cerebral and placental malaria (6-8).

64 While the vast majority of parasite produced proteins are hidden within the
65 infected RBC, the exposure of PfEMP1 on the infected cell surface makes it the primary
66 target of the humoral immune response (9). Antibodies against PfEMP1 can greatly
67 reduce parasitemia, however, parasites can escape complete elimination by exchanging
68 the PfEMP1 isoform expressed, thereby enabling small populations of parasites to
69 expand and perpetuate the infection in a process called antigenic variation (10). This is
70 possible because different PfEMP1 isoforms are each encoded by individual members
71 of the *var* multicopy gene family comprised of 45-90 paralogs per haploid genome (11,
72 12). *var* gene expression is thought to be mutually exclusive, meaning that only one
73 gene is transcriptionally active at a time, and by switching expression from one gene to
74 another, parasites can change the PfEMP1 displayed on the infected cell surface,
75 leading to the waves of parasitemia that are characteristic of a *P. falciparum* infection.
76 Transcriptional control is epigenetically regulated through the deposition of specific

77 activating and silencing histone marks, leading to condensed heterochromatin formation
78 at all *var* loci except the single transcriptionally active copy (13-15). This process
79 directly links parasite virulence to the persistent nature of malaria and is critical for the
80 parasite's ability to survive, cause disease and be efficiently transmitted.

81 Antigenic variation through *var* gene switching is thought to enable an infection to
82 persist for a year or longer as the parasite population cycles through its repertoire of *var*
83 genes (16, 17). However, a puzzling aspect of *P. falciparum* infections is the occasional
84 identification of chronic, asymptomatic infections that can last for a decade or more (18).
85 In such instances, it is presumed that the *var* gene repertoire would have been
86 exhausted, leaving unexplained how the parasites have avoided complete elimination.
87 One detailed study of an asymptomatic infection that was only detected upon
88 splenectomy identified parasites that were no longer expressing *var* genes and had lost
89 any measurable cytoadhesive properties (19). Such parasites could potentially be
90 immunologically "invisible" due to a lack of surface antigen expression, thus explaining
91 their lengthy persistence as well as their resurgence upon removal of the spleen. These
92 parasites regained *var* gene expression when subsequently grown in culture, indicating
93 that this "var-null" state was a selected phenotype rather than resulting from mutation.
94 Moreover, the loss of *var* gene expression suggests the possibility of greater flexibility in
95 how this gene family is regulated. However, how common it is for parasites to
96 completely silence *var* gene expression or how this could fit into a molecular
97 mechanism that typically ensures single *var* gene expression is unknown.

98 Mutually exclusive expression is a well-conserved mechanism displayed by
99 organisms throughout the eukaryotic evolutionary tree, including a number of eukaryotic
100 pathogens for immune evasion, for example *Trypanosoma brucei* (20, 21), *Giardia*
101 *lamblia* (22) and *Babesia bovis* (23). It is also evident in the expression of the
102 immunoglobulin and olfactory receptor genes in mammals (24, 25). In the mammalian
103 examples, mutually exclusive expression is part of terminal cellular differentiation and
104 thus the choice of which gene is activated is permanent. In contrast, for parasites that
105 employ this process for antigenic variation, the choice of which gene is activated is
106 semi-stable and reversible, enabling parasites to repeatedly activate and silence
107 different genes over the course of an infection, adding another layer of complexity to an

108 already poorly understood phenomenon. Decades of research on mutually exclusive
109 gene expression has historically relied on information obtained from populations of cells.
110 Recently, advances in single-cell-based approaches have begun to reveal that cells
111 within a population can be very heterogeneous, and that these differences can be
112 revealing for understanding the molecular mechanisms behind various biological
113 processes. Only through single-cell methodologies has it been possible to begin to
114 decipher the complexity of immunoglobulin choice during lymphocyte development (26,
115 27) or the maturation of olfactory neurons that results in expression of a single olfactory
116 receptor (28-30).

117 To date, several studies have successfully applied single-cell RNA-Seq to
118 *Plasmodium falciparum* and uncovered crucial signatures necessary for processes
119 involved in replication, life-cycle progression, and transmission (31-33). However, no
120 study has yet specifically focused on *var* gene expression, despite the importance of
121 these genes for parasite survival and pathogenesis. We recently approached the
122 question of *var* gene choice through the analysis of an extensive library of closely
123 related, recently isolated clonal parasite populations (34). We observed two distinct *var*
124 expression profiles: either high level expression of a single *var* gene, as expected for a
125 population of parasites exhibiting mutually exclusive expression of a single dominant *var*
126 gene, or alternatively low-level expression of a large portion of the *var* gene family, an
127 unanticipated state that is of unknown significance. In addition, parasites were able to
128 switch between these two states, suggesting that this observation could provide clues to
129 how mutually exclusive expression and *var* gene switching might be regulated.
130 However, in the absence of single cell resolution, it was not possible to understand the
131 molecular mechanisms underlying these distinct *var* expression profiles or the possible
132 significance of this phenomenon.

133 In the present study, we focused on understanding how individual cells contribute
134 to the cumulative *var* expression profile of a parasite population. We combined different
135 single-cell RNA-Seq approaches to analyze *var* gene expression in recently cloned lines
136 at single-cell resolution. Our results demonstrate that individual parasites can exist in
137 three distinct *var* expression states. In addition to the expected parasites expressing
138 one *var* gene at a high level, we identified parasites expressing more than one *var* gene

139 simultaneously and parasites in which *var* gene expression was barely detectable and
140 very heterogenous. Manipulation of intracellular S-adenosylmethionine levels, the
141 methyl donor required for histone methylation and heterochromatin formation, enabled
142 us to skew parasites toward different *var* expression states, providing clues to the
143 molecular mechanisms underlying single *var* gene choice. The discovery that parasites
144 have much greater flexibility in *var* gene expression, including the ability to silence
145 PfEMP1 expression and become antigenically “invisible”, significantly changes our
146 understanding of how *P. falciparum* undergoes antigenic variation and has important
147 implications for elimination of chronic malaria infections.

148

149 **Results**

150 **Clonal parasite populations from different genetic backgrounds display two** 151 **states of *var* expression**

152 The well-accepted, standard paradigm regarding malaria antigenic variation
153 assumes that at any given time, individual parasites express one and only one member
154 of the *var* gene family. In recent work from our laboratory, we generated an extensive
155 collection of closely related, isogenic 3D7 and NF54 subclones through limiting dilution,
156 thereby enabling us to examine recently cloned parasite populations expressing
157 alternative *var* genes (34). To our surprise, not all the clones displayed the predicted
158 pattern of single *var* gene expression. Analysis by quantitative real-time RT-PCR (qRT-
159 PCR) and RNA-Sequencing of the different populations showed that while some lines
160 were expressing high levels of a single *var* gene, as predicted by a model of mutually
161 exclusive expression, others displayed very low-level expression of a heterogenous mix
162 of *var* genes. While previous studies similarly reported substantial differences in levels
163 of *var* gene expression in recently subcloned lines of various strains (35, 36), we
164 nonetheless wanted to verify that this was not an artifact of the prolonged in vitro
165 culturing of the 3D7 strain. We therefore generated a new collection of isogenic
166 subclones from a population of the Asian isolate IT4 (also called FCR3) (37). Using *var*
167 specific qRT-PCR, we analyzed populations obtained from two consecutive rounds of
168 subcloning and determined the *var* expression profiles. Similar to 3D7, we detected
169 parasites either expressing a single *var* gene at a high level (called the “high-single”

170 expression state) or very low levels of expression of multiple *var* genes (referred to as
171 “low-many” populations) (Supplemental Figure S1), indicating that this phenomenon is
172 not unique to 3D7.

173 Measurement of cumulative *var* expression from each of the analyzed IT4 clones
174 showed that parasites in the “low-many” state displayed significantly lower total *var*
175 expression, similar to what we previously observed for the 3D7 and NF54 strains (34).
176 These data strongly suggest that *P. falciparum* parasite populations do not always
177 express a dominant *var* gene, as previously assumed. However, this analysis as well as
178 previously published research on *var* expression were performed on populations of
179 parasites encompassing millions of individual infected cells. This poses an obvious limit
180 to our interpretation of the data as it obscures the contribution of individual parasites to
181 the cumulative profile. In the specific case of the clonal populations in the “low-many”
182 state, it is impossible to distinguish if individual parasites are expressing a normal level
183 of *var* gene transcripts but rapidly switching between *var* genes, thus resulting in the
184 lack of a detectable dominant gene, or if all the individual parasites are actually in a
185 “low-many” state.

186

187 **Analysis by single-cell RNA-Seq of “high-single” and “low-many” populations**

188 To examine *var* gene expression in individual parasites, we analyzed different
189 wildtype, recently cloned 3D7 populations by Drop-Seq, a droplet-based single-cell
190 RNA-Seq (scRNA-Seq) method previously adapted to *P. falciparum* (38). Since our
191 interest is focused on *var* genes, which are expressed between 10 and 20 hours after
192 merozoites enter the red cell, we tightly synchronized the populations and isolated
193 parasites at 16-19 hours post-invasion (hpi). We sequenced cDNA from individual
194 infected cells from two recently cloned populations in the “high-single” state, expressing
195 one *var* gene at high levels, and two populations in the “low-many” state, expressing
196 low-levels of a heterogenous mix of *var* genes. To confirm the *var* expression status of
197 the populations when individual infected cells were isolated, *var* profiles were assessed
198 by qRT-PCR on total RNA extracted from the population on the same day that the
199 scRNA-Seq procedure was performed (Figure 1A). We analyzed the transcriptomes of
200 700 individual cells per sample, preserving only cells with a minimum of 10 UMIs

201 (Unique Molecular Identifier) (Supplementary Table 1). Because of the high sequence
202 similarity between *var* genes, we applied strict mapping criteria and disallowed any
203 multimapping during alignment.

204 Initially, to determine the reliability of the single-cell technology for detecting *var*
205 gene expression, we combined the individual *var* expression profiles obtained from the
206 Drop-Seq protocol and compared the resulting cumulative expression pattern to the
207 patterns obtained by qRT-PCR from the same populations prior to single cell isolation.
208 In both “high-single” and “low-many” samples, the cumulative single-cell transcriptome
209 recapitulated a similar profile to what was observed by qRT-PCR (Figure 1B), indicating
210 that despite using very different methodologies, both techniques provide comparable
211 assessments of *var* expression patterns. When we explored the relative number of *var*
212 transcripts detected in individual cells we observed that cells obtained from the “high-
213 single” populations had significantly more *var* transcripts than the parasites from the
214 “low-many” populations (Figure 1C). More strikingly, while there was at least one
215 detectable *var* transcript in majority of the parasites from the “high-single” populations,
216 greater than 75% of transcriptomes from the “low-many” populations contained no
217 detectable *var* transcripts. This suggests that majority of the individual cells in the “low-
218 many” clones are silent, or null, from the point of view of *var* expression. In addition, in
219 both the “high-single” and “low-many” populations, we observed that approximately 3-
220 5% of individual parasites expressed a second *var* gene in addition to the dominant
221 gene (Figure 1D, E, Supplementary Table 2). We refer to these parasites as “multiple”.
222 The doublet rate (See Methods) and the possible combinations of *var* genes detected in
223 different cells make it highly improbable for the “multiples” to be explained by RBCs
224 infected with two parasites each expressing a different *var* gene or by doublets in the
225 Drop-Seq procedure. For example, all “multiple” cells displayed expression of the
226 dominant *var* gene along with a second gene, while no individual cells were detected
227 expressing the second *var* gene alone, as would be expected if “multiples” were the
228 result of two “single” parasites captured in the same droplet.

229 Overall, we could detect cells in three different *var* expression states, two of
230 which violate the paradigm of constant and mutually exclusive expression (Figure 1D).
231 In the “high-single” populations, the majority of individual cells displayed expression of a

232 single *var* gene, a result that was expected and that is consistent with the standard
233 model that each parasite expresses one and only one *var* gene at a time. In contrast,
234 both the parasites expressing more than one *var* gene (the “multiple” cells) and those
235 not expressing any detectable *var* genes (the “null” cells) were unexpected and are
236 inconsistent with current models of *var* gene expression. We hypothesize that the
237 parasites expressing more than one *var* gene might be actively undergoing a switching
238 event, something that has not been possible to observe previously. The parasites not
239 expressing any *var* genes are more puzzling but could represent the *var* non-expressing
240 parasites previously observed in chronic asymptomatic infections (19). Taken together,
241 these experiments clearly demonstrate that *var* expression is more flexible than
242 previously thought and that, at least in cultured parasites, it is not uncommon for *var*
243 gene expression to be extremely low or silent.

244

245 **Decreased S-adenosylmethionine synthetase activity disrupts mutually exclusive
246 expression in individual cells**

247 Both “multiple” cells and “null” cells were unexpected based on previous
248 assumptions regarding mutually exclusive expression, so we chose to investigate these
249 two states in more detail. In a previous study, we found that the availability of
250 intracellular S-adenosylmethionine (SAM), the principal methyl donor for methylation
251 modifications, can influence *var* expression (39). Genetic modifications to SAM
252 synthetase (SAMS), the enzyme producing SAM from methionine, led to profound
253 changes in *var* expression. In particular, reducing SAMS expression (40) produced
254 populations of parasites with a total *var* expression 100-fold higher than wildtype
255 parasites (Figure 2A). Moreover, recently cloned SAMS-KD populations displayed high
256 expression of multiple *var* genes (Figure 2B, C), unlike wildtype parasites that typically
257 display expression of a single dominant *var* gene (34). To gain further insights on how
258 methylation levels influence *var* expression at the individual cell level, we analyzed two
259 SAMS-KD clones using Drop-Seq.

260 Similar to observations at the population level, the relative amount of *var*
261 transcripts in individual cells is significantly higher in the SAMS-KD lines compared to
262 wildtype parasites in both the “low-many” and “high-single” states (Figure 2D).

263 Moreover, investigation at the single-cell level confirmed that the reduction of SAMS
264 levels causes a disruption of mutually exclusive expression, as over 80% of individual
265 parasites express several *var* genes at high levels (Figure E, Supplementary Table 2).
266 Interestingly, the pattern of expression in each cell is very similar and resembles the
267 pattern of expression in the cumulative population, with the same handful of genes
268 being expressed in each individual cell (Figure 2F, G). There is no clear correlation in
269 terms of chromosome position or sequence similarity between the active genes, but it
270 appears that these genes are more prone to activation compared to others when overall
271 methylation is reduced. These data demonstrate, for the first time, the critical role of
272 methylation in the control of mutually exclusive expression at the single-parasite level
273 and reveal a hierarchy of *var* gene activation, with some genes more readily activated
274 than others.

275

276 ***var*-enrichment probes allow deeper *var* transcript detection in scRNA-Seq**

277 As previously mentioned, another well-studied example of mutually exclusive
278 expression is the olfactory receptor gene (*OR*) family of mammals (24). scRNA-Seq
279 analysis of individual olfactory neurons during their maturation has shown that, before
280 committing to expression of a single olfactory receptor gene, each neuron undergoes a
281 developmental phase in which they express several *OR* genes at very low levels (30,
282 41). As the cells continue to mature, expression is narrowed to a single, highly
283 transcribed gene. African trypanosomes were also recently shown to undergo transition
284 from expression of many metacyclic variant surface glycoprotein (*mvsg*) genes to a
285 single gene as they differentiate into the metacyclic form in the salivary glands of the
286 tsetse fly vector (42). Given the parallels between these systems and *var* gene
287 expression in *P. falciparum*, we were curious if the individual parasites in which we
288 observed no detectable *var* transcripts might be similarly expressing a heterogenous
289 mix of *var* transcripts that are below the threshold of detection of Drop-Seq. To improve
290 our ability to detect even exceptionally low levels of *var* transcripts, we used xGen
291 Hybridization Capture (Integrated DNA Technologies) and designed enrichment probes
292 targeting all *var* genes in the 3D7 genome. As controls, we included six genes known to
293 be expressed within the 16-19 hpi window by all cells. We additionally included

294 PF3D7_0304600 (circumsporozoite protein, *csp*) to check for background transcription
295 and enrichment of nonspecific targets, as *csp* is only expressed during sporozoite
296 development in the mosquito. The design aimed to have no more than 480bp gaps
297 between the stop of one probe and the start of the subsequent probe. This resulted in a
298 total of 793 probes for 69 targeted genes, with an average of 11 probes per gene (See
299 Supplementary Table 3). These probes were used to specifically pull-down and
300 sequence only the transcripts of interest thereby greatly increasing our sensitivity for
301 detecting *var* gene transcripts. We started with the Drop-Seq libraries from a “high-
302 single” and a “low-many” population (Figure 1A) and prepared enrichment libraries for
303 sequencing using Illumina technology (Figure 3A).

304 The targeting strategy resulted in very successful enrichment for on-target
305 transcripts. While these transcripts initially represented approximately 5% of the total
306 transcriptome, after enrichment the on-target transcripts represent more than 80% of
307 the total sequenced transcriptome (Figure 3B). We observed a similar enrichment of all
308 the control genes, with the exception of the negative control *csp*, which remained
309 undetected after enrichment (Figure 3C). To confirm that the enrichment process was
310 not biased toward a subset of *var* genes, we combined the individual transcriptomes
311 obtained after enrichment of the “high-single” and “low-many” populations and
312 compared the cumulative *var* expression profiles to those obtained from the same
313 parasite populations in the absence of enrichment. The patterns identified the same
314 dominant *var* gene in the “high-single” population, but detected a greater amount of low
315 expressed genes, indicative of greater sensitivity, as expected (Figure 3D, E).

316 When analyzed at the single cell level, *var* expression profiles from the “high-
317 single” population were also very similar to what was observed before enrichment
318 (compare Figure 4A to 4C and E). After enrichment, transcripts from additional genes
319 were detectable, nonetheless a single dominant *var* gene (shown in red) was expressed
320 at high levels in each individual cell. In contrast, for parasites in the “low-many”
321 population, instead of most cells displaying no detectable *var* transcripts (Figure 4B),
322 after enrichment several *var* transcripts were often detectable, indicating that these
323 parasites are indeed expressing multiple *var* genes at very low levels (Figure 4D and F).
324 This phenomenon resembles what was shown for olfactory receptor genes as the cells

325 undergo the process of choosing a single *OR* gene for high level expression, suggesting
326 the possibility that a similar mechanism of choice might be functioning in *P. falciparum*.
327

328 **A portable well-capture system for single-cell RNA-Seq confirms the different *var*
329 expression states.**

330 To further validate the findings and address the limitations associated with Drop-
331 Seq, we employed a portable microwell system for scRNA-Seq developed by
332 Honeycomb Biotechnologies. As previously outlined for Drop-Seq, samples were
333 synchronized to 16-19 hpi and enriched for infected red blood cells through SLO
334 treatment. Infected cells were loaded and stored on HIVE devices. The procedure
335 involves loading infected cells into a HIVE device and allowing them to gently settle into
336 picowells containing barcoded mRNA-capture beads. The devices are then frozen and
337 stored at -80 °C until ready for processing. Frozen devices can then be subsequently
338 processed simultaneously for library preparation and sequencing. To enable a direct
339 comparison to the results we obtained with Drop-Seq, we analyzed the same four
340 populations shown in Figure 1A, applied the same strict mapping criteria and did not
341 allow any multimapping during alignment.

342 The number of individual transcripts captured per cell using HIVEs was greatly
343 improved compared to Drop-Seq. Despite loading an order of magnitude fewer cells per
344 sample on the HIVE ($1.85e^5$ cells for Drop-Seq, $1.5e^4$ cells for HIVE), and setting a
345 quality threshold of 25 UMI per cell, we were able to recover an average of 2986 cells
346 per sample and an average of 240 transcripts per cell (Figure 5A, B, Supplementary
347 Table 1). The improvement in transcript capture enabled us to analyze *var* gene
348 expression with substantially greater resolution and sensitivity. Samples underwent
349 integration and dimensional reduction, and transcriptomes were visualized in low-
350 dimensional space as unifold manifold approximation and projection (UMAP) plots, with
351 the cells organized based on transcriptional similarity. Utilizing Seurat for clustering, the
352 parasite transcriptomes clustered predominantly by differential *var* gene expression
353 (Figure 5C, Supplementary Table 4).

354 Cells from the two "high-single" populations distinctly clustered at opposite ends
355 of the plot, specifically clusters 1 and 4. Notably, the key gene expression driver

356 defining each cluster was the single dominant *var* gene expressed by the original
357 populations, PF3D7_0711700 and PF3D7_0421100 respectively, (Figure 5D, F). In
358 contrast, cells from the two "low-many" populations clustered in the plot's center without
359 significant differences in gene expression (Figure 5D). Individual parasites that had
360 switched expression away from the dominant *var* gene were clearly identified in the
361 smaller clusters, such as clusters 8, 9, and 10, with the alternative *var* gene
362 differentiating each cluster (Figure 5C, F). A comprehensive list of cluster-defining
363 genes is provided in Supplementary Table 4. The prominence of differential *var* gene
364 expression as the primary cluster driver becomes more evident when repeating the
365 analysis and clustering while excluding all genes known to be subject to clonally variant
366 expression (13). In this scenario, all clustering dissipated, and individual cells from
367 different samples are mixed with each other, indicating no discernible differences
368 between samples except for clonally variant genes (Figure 5E). Additionally, genes
369 known to be expressed in the 16-19 hpi window exhibited homogeneous expression
370 across cells from different samples (Figure 5G), indicating that all samples were
371 harvested at the same point in the replicative cycle.

372 These experiments confirmed the results obtained by Drop-Seq combined with
373 enrichment. Cells from the "high-single" population expressed a dominant *var* gene at
374 high levels (Figure 6A, C), whereas in cells from the "low-many" population, we detected
375 low levels of transcripts from several different *var* genes at the same time (Figure 6B,
376 D). *var* expression matrices for all cells is provided in Supplementary Table 5. This
377 shows how HIVE scRNA-Seq represents a significant improvement in detection
378 compared to Drop-Seq, as we could detect low levels of *var* expression without an
379 additional enrichment step. The portability and flexibility of these devices, and the ability
380 to easily store samples for lengthy periods of time and transport them long distances,
381 makes them potentially particularly useful for field studies.

382

383 **Greatly reduced antibody recognition of parasites in the "low-many" state.**

384 The identification of parasites expressing low levels of *var* genes raises a
385 fundamental question: do these parasites export a detectable amount of PfEMP1 to the
386 infected cell surface, and what implications does this have for recognition by the human

387 immune system? If parasites in the "low-many" state indeed correspond to parasites
388 observed in prolonged asymptomatic infections (18, 19), we anticipate their ability to
389 better evade antibody recognition, thereby facilitating the maintenance of long-term
390 infections.

391 To assess the surface expression of PfEMP1 and the corresponding
392 immunogenicity of various parasite lines, we used pooled hyperimmune IgG obtained
393 from 834 Malawian adults infected with *P. falciparum* (43). This IgG mixture was
394 obtained from people who, through a lifetime of exposure to malaria infections, are
395 largely immune to symptomatic malaria through the acquisition of antibodies capable of
396 recognizing a broad range of Plasmodium surface antigens. Given that PfEMP1 is
397 established as the primary target of humoral immunity (9), this reagent can be used to
398 detect PfEMP1 surface expression (44). We used flow cytometry to measure the
399 reactivity levels of different clonal lines using the pooled hyperimmune IgG. When
400 initially tested against the 3D7 and NF54 strains, regardless of their *var* expression
401 profile at the mRNA level, we observed either no or very limited reactivity
402 (Supplementary Figure 3). Given that long-term in vitro cultivation of parasites is known
403 to alter and reduce cytoadhesion and surface expression of PfEMP1 (45, 46), we opted
404 to examine clonal lines that we recently generated from IT4 (Supplementary Figure 1), a
405 parasite line known to maintain strong cytoadhesive properties and kindly provided by
406 Dr. Joseph Smith.

407 We selected eight IT4 clonal populations with varying levels of cumulative *var*
408 expression (Figure 7A) and assessed their reactivity to the hyperimmune IgG.
409 Remarkably, a notable shift in IgG recognition was observed by parasites in the "high-
410 single" state compared to parasites in the "low-many" state, with the latter exhibiting
411 recognition levels similar to uninfected red blood cells (uRBC) (Figure 7B). A clear
412 correlation of IgG recognition and the level of *var* expression is evident across all seven
413 clones (Figure 7C), supporting the hypothesis that parasites with a low level of *var*
414 expression remain immunologically silent. Collectively, these results support the notion
415 that individual parasites can exist with variable levels and numbers of expressed *var*
416 genes. Specifically, they can exist in a state characterized by very low expression of
417 multiple *var* genes, lacking PfEMP1 on the infected RBC surface. This expression state

418 could enable parasites to evade immune recognition and sustain long-term infections,
419 consistent with the non-*var* expressing parasites previously observed in a chronic
420 infection (19).

421

422 **Discussion**

423 Central to *P. falciparum*'s ability to sustain prolonged infections is its capacity to
424 balance evading splenic clearance with being recognized by the immune system. Over
425 the course of an untreated infection, parasites are thought to eventually exhaust their
426 repertoire of *var* genes, leading to clearance of the infection (47). While this model
427 provides an explanation for the course of a symptomatic infection, it does not fully
428 explain the nature of asymptomatic infections that can last for years. For example,
429 Ashley and White recently catalogued dozens of validated cases of asymptomatic
430 infections lasting for up to 13 years (18). These infections remained untreated and
431 unknown until revealed by splenectomy or through blood donation for transfusion. Given
432 that PfEMP1 displayed on the RBC surface appears to readily give rise to antibodies
433 that can clear infected cells, it is possible that once the *var* repertoire was exhausted,
434 the infections consisted of parasites that were no longer expressing PfEMP1, similar to
435 the IT4 parasites we examined that were not recognized by hyperimmune IgG (Figure
436 7). This hypothesis also provides an explanation for the rapid expansion of the parasite
437 population after splenectomy. Consistent with this hypothesis, a study examining
438 asymptomatic infections implicated non-PfEMP1 antigens as the primary parasite
439 proteins on the infected RBC surface when high titers of anti-PfEMP1 antibodies are
440 present (48), and a previous study of Kenyan children observed that parasites can
441 reduce *var* gene expression in response to host antibodies (49). The clearest supporting
442 evidence for this hypothesis was provided by Bachmann et al (19) who examined
443 parasites isolated from a patient in Germany who displayed no signs of infection until
444 after splenectomy, at which time parasitemia rose rapidly. Parasites isolated from this
445 individual expressed no detectable *var* transcripts and did not display any cytoadhesive
446 properties, consistent with parasites that were not expressing PfEMP1. Taken together,
447 these studies suggest a model in which parasites face two intense and opposing
448 selective pressures: 1) clearance by the spleen and 2) recognition by anti-PfEMP1

449 antibodies. In the absence of high titers of anti-PfEMP1 antibodies, PfEMP1-expressing
450 parasites rapidly expand, leading to high parasitemias, severe illness and the waves of
451 parasitemia typically observed in symptomatic *P. falciparum* infections. However, in
452 individuals who have significant anti-PfEMP1 immunity, PfEMP1 expression is selected
453 against, enabling only “PfEMP1-null” parasites to survive. Due to splenic clearance,
454 these infections remain at a low parasitemia and cause little or no symptoms, resulting
455 in chronic infections that could last indefinitely. However, it is worth noting that such
456 infections could potentially contribute to transmission of the disease. For example, one
457 study recently attributed the bulk of transmission to asymptomatic infections (50), and
458 since asymptomatic individuals seldom seek treatment, this potential parasite reservoir
459 could contribute substantially to disease transmission and complicate efforts to
460 eliminate or eradicate malaria.

461 This hypothesis predicts that “PfEMP1-null” parasites will dominate long-term
462 infections where antibodies have eliminated PfEMP1-expressing parasites. This would
463 provide an explanation for the asymptomatic nature of chronic infections and the
464 observation of elevated parasite loads within the spleens of asymptotically infected
465 individuals (51). Further, it also offers an explanation for instances of individuals who,
466 after residing outside endemic regions for several years, experienced malaria relapses
467 following splenectomy (18, 19) or during pregnancy (52-55). Unlike other *Plasmodium*
468 species that can form hypnozoites (56), *P. falciparum* does not naturally have a dormant
469 state, and therefore requires an alternative strategy to maintain prolonged infections
470 and bridge periods with low or zero transmission. It has been observed that parasites
471 present at the end of a dry season or in chronic asymptomatic infections display
472 decreased cytoadherence, with increased splenic clearance and lower parasitemias
473 (57, 58), properties consistent with the “PfEMP1-null” state. This could provide an
474 explanation for how *P. falciparum* can persist within a geographical region for prolonged
475 periods in the absence of transmission without entering a dormant state. An intriguing
476 question remains regarding whether these parasites persist solely in circulation at
477 extremely low levels or potentially sequestered in a specific location, as observed for
478 gametocytes in the bone marrow (59).

479 Our observation that individual parasites from populations in the “low-many” state
480 are actually expressing many *var* genes at a very low level is reminiscent of OR gene
481 expression in maturing olfactory neurons during the process of single gene choice (30,
482 41). For OR gene expression it has been speculated that this represents a
483 developmental state in which promoters are competing for activation, after which a
484 single gene becomes dominantly expressed. The concept of promoter competition could
485 provide an explanation for the different *var* gene expression states that we detected. For
486 example, in addition to parasites expressing very low levels of *var* transcripts, we also
487 observed parasites expressing high levels of *var* transcripts from multiple genes, a
488 phenotype that was greatly enhanced through reduced expression of PfSAMS (Figure
489 2). We hypothesize that when SAM availability is reduced, histone methylation is
490 similarly lowered, enabling more than one *var* gene to compete for activation. This has
491 implications for mechanisms that could affect *var* expression switching, for example
492 conditions that reduce SAM availability could loosen mutually exclusive expression and
493 thus enhance promoter competition, leading to expression switching. Interestingly, our
494 single cell analysis of *var* gene expression in the PfSAMS knockdown lines detected
495 activation of a specific subset of *var* genes, consistent with the hypothesis that certain
496 *var* genes are more prone to activation than others. This is similar to our previous
497 observations that *var* activation is biased toward certain subsets of *var* genes and that
498 this bias shifts overtime, potentially shaping the trajectory of *var* gene expression over
499 the course of an infection (34). What characteristics determine the likelihood of any
500 particular gene becoming activated remain unknown, although methylation appears to
501 be key to limiting the number of active genes.

502

503 **Acknowledgments**

504 The authors would like to thank Drs. Kami Kim and Alister Craig for providing access to
505 hyperimmune IgG and Dr. Joseph Smith for providing the IT4 parasite line. This work
506 was supported by the National Institutes of Health (AI 52390 and AI99327 to K.W.D.).
507 K.W.D. is a Stavros S. Niarchos Scholar and a recipient of a William Randolph Hearst
508 Endowed Faculty Fellowship. F.F. received support from the Swiss NSF (Early
509 Postdoc.Mobility grant P2BEP3_191777). J.E.V. received support from F31 Predoctoral

510 Fellowship F31AI164897 from the NIH. The Department of Microbiology and
511 Immunology at Weill Medical College of Cornell University acknowledges the support of
512 the William Randolph Hearst Foundation. The funders had no role in the study design,
513 data collection and analysis, decision to publish, or preparation of the manuscript.

514

515 **Author contributions**

516 F.F., J.E.V., E.H. and S.M. designed and performed the experiments, collected, and
517 analyzed the data. B.F.C.K. aided in designing custom scripts for data analysis. F.F.,
518 J.E.V., E.H., C.N., B.F.C.K. and K.W.D. wrote the paper.

519

520 **Declaration of Interests**

521 The authors declare no competing interests.

522

523 **Methods**

524

525 **Parasites culture**

526 Both 3D7 and IT4 parasite lines were maintained following standard procedures at 5%
527 hematocrit in RPMI 1640 medium supplemented with 0.5% Albumax II (Invitrogen) in an
528 atmosphere containing 5% oxygen, 5% carbon dioxide, and 90% nitrogen at 37°C.
529 Clonal parasites lines were obtained by limiting dilution in 96-well plates, with an
530 average of 0.5 parasites per well (60).

531

532 **RNA extraction, cDNA synthesis and RT-qPCR**

533 For RT-qPCR, RNA was extracted from ring-stage parasites 48 hours after
534 synchronization with 5% Sorbitol (61). RNA was extracted with TRiZol (Invitrogen) and
535 purified on PureLink (Invitrogen) columns following the manufacturer's protocols. To
536 eliminate genomic DNA, RNA was treated with DNase I (Invitrogen). cDNA was
537 synthesized from 1µg of RNA with Super Script II Reverse Transcriptase (Invitrogen),
538 according to manufacturer instructions. Established sets of *var* primers for either 3D7
539 (62) or IT4 (63) were employed to determine *var* transcription through RT-qPCR. All
540 reactions were performed in 10µl volumes in 384-well plates using iTaq Universal SYBR

541 Green Supermix (Bio-Rad) in a QuantStudio 6 Flex (ThermoFisher). ΔCT for each
542 primer pair was determined by subtracting the individual CT value from the CT value of
543 seryl-tRNA synthetase (PF3D7_0717700) and converting to relative copy numbers with
544 the formula $2^{\Delta CT}$. Relative copy numbers are plotted using GraphPad Prism 10 or
545 Microsoft Excel as bar graphs and pie charts.

546

547 **Preparation of parasites for single-cell RNA-Seq**

548 Ring-stage cultures were initially synchronized using 5% Sorbitol. Approximately 24
549 hours later, late-stage parasites were isolated using percoll/sorbitol gradient
550 centrifugation (64, 65) and allowed to reinvoke for 3 hours while shaking continuously to
551 minimize multiple infections of individual RBCs. 0-3 hours ring-stage parasites were
552 isolated through a second percoll/sorbitol centrifugation and allowed to progress to 16-
553 19 hpi when infected RBC were enriched by treatment with Streptolysin-O (SLO), as
554 previously described (66). Each of this process step was verified by microscopy and
555 cultures were only used for scRNA-seq if multiply-infected RBCs (RBCs) comprised less
556 than 5% of all infected cells. Following enrichment for infected cells, parasites were
557 suspended in PBS (supplemented with 0.01% BSA if preparing for Drop-Seq). Parasites
558 were adjusted to the desired target densities of 1.85×10^5 cells per mL for Drop-Seq and
559 1.5×10^4 cells per mL for HIVE.

560

561 **Drop-Seq**

562 Drop-Seq single-cell transcriptomes were generated as previously described (38).
563 Briefly, droplets were generated using customed microfluidic devices (see CAD file from
564 <http://mccarrolllab.com/dropseq/>, manufactured by FlowJEM). Droplets are composed
565 by individual cells dissolved in lysis buffer and uniquely barcoded beads (ChemGenes,
566 as designed by Macosko et al, 2015 (67)). Flow rates, beads concentration and doublet
567 rates were based on previous optimization by Poran and Nötzel, 2017 (38). Droplets
568 were disrupted and reverse transcription was performed with template switching to allow
569 for cDNA amplification by PCR. 3000 beads were used for 30 cycles of PCR
570 amplification with TSO primer (Template Switch
571 Oligo:AAGCAGTGGTATCAACGCAGAGT). cDNA libraries were purified using

572 Agencourt AMpure XP (Beckman Coulter). The quality of the libraries was assessed by
573 High Sensitivity D5000 ScreenTape (Agilent Technologies). Samples were prepared for
574 sequencing using the Nextera XT kit (Illumina), followed by two AMpure purifications at
575 0.6X ratio and 1X ratio respectively. Library pools concentrations were measured using
576 Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific) and High Sensitivity D5000
577 ScreenTape (Agilent Technologies), and subsequently sequenced on Illumina
578 NextSeq500 with custom primers according to the original protocol (38).

579

580 **Drop-Seq transcriptome analysis**

581 Raw reads were processed and aligned using STAR aligner (version 2.7.10a) using the
582 standard Drop-seq pipeline, and according to the 'Drop-seq Alignment Cookbook', both
583 found at <http://mccarrolllab.com/dropseq/>. Reads were aligned to *Plasmodium*
584 *falciparum* 3D7 transcriptome (PlasmoDB v.32)(68). Considering the sequence
585 similarity between *var* genes, for each read only a single mapping position was retained
586 and all ambiguously mapping reads were discarded. Known non-poly-adenylated
587 transcripts were discarded before analysis. Expression matrices were generated using
588 cell barcodes and unique molecular identifiers (UMI). Cells were filtered and discarded if
589 they contained genes detected in less than 3 cells or contained less than 10 UMI. Data
590 Normalization and differential expression analysis were performed using the Seurat R
591 package (version 4.1.0) (69).

592

593 **Enrichment**

594 Probes design was performed in collaboration with Integrated DNA Technologies (IDT).
595 Probes were subjected to off-target QC, where hits were counted if the match
596 represented 90% identity over 50% of the probe length, using release 57 of *P.*
597 *falciparum* 3D7 genome (PlasmoDB). Probes tiling was set to 0.2X, aiming to have no
598 more than 480bp gaps between the stop of the previous probe and the start of the
599 subsequent probe, resulting in 793 probes (See Supplementary Table 3).
600 Enrichment was done according to the manufacturer protocol (xGen hybridization
601 capture of DNA libraries, IDT). Briefly, 1 µg of Drop-Seq full-length cDNAs before
602 Illumina Tagmentation was used as template. TSO and polyT oligos were employed for

603 blocking and mixture were dried-down for 40 minutes at 45C using a SpeedVac system.
604 Hybridization incubation was performed at 65C for 16 hours. Washes and streptavidin
605 capture was done according to the manufacturer. The TSO primer was used for 12
606 cycles of post-capture PCR, followed by purification with AMpure beads. Samples were
607 prepared for sequencing using the Nextera XT kit, as described above for Drop-Seq.
608 Library pools concentrations were measured using Qubit dsDNA HS Assay Kit and the
609 quality of the libraries was assessed by High Sensitivity D5000 ScreenTape (Agilent
610 Technologies), followed by sequencing using Illumina NextSeq500.

611

612 **Hive**

613 Parasites were prepared for HIVE scRNA-Seq as described above and diluted to
614 1.5x10⁴/ml in PBS prior loading on the device. scRNA-Seq was performed using HIVE
615 scRNA-Seq v1 (Honeycomb Biotechnologies). Sample capture was performed
616 according to the manufacturer's protocol. Briefly, the HIVE device was thawed at RT for
617 one-hour prior loading, and 15,000 cells were loaded per HIVE. Parasites were
618 deposited in the wells via centrifugation and cells were stored in Cell Preservation
619 Solution. Individual HIVEs were stored at -20C and batch-processed together. HIVE
620 processing was performed according to the manufacturer's instructions (Honeycomb
621 Biotechnologies). All HIVE devices were processed to cDNA in a single batch according
622 to manufacturer's instructions (v1 revision A). Final library concentrations were
623 measured using Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific) and profiled by
624 High Sensitivity D5000 ScreenTape (Agilent Technologies). Sequencing was performed
625 on Illumina NovaSeq (Illumina) with custom primers (Honeycomb Biotechnologies).

626

627 **HIVE transcriptome analysis**

628 The HIVE BeeNet pipeline (v1.1, Honeycomb Biotechnologies) was used to process the
629 raw data into count matrices. No multimapping was allowed, using the STAR argument -
630 -star-args='--outFilterMultimapNmax 1'. The Seurat R package (69) was used for all the
631 downstream analysis on the count matrices. A Seurat object was created for each of the
632 samples and combined into a merged Seurat. Transcriptomes with less than 100 UMIs
633 were discarded from downstream analysis. Seurat objects were normalized and

634 variance stabilized using SCTransformation, and the resulting data were subjected to
635 principal component analysis. Non-linear dimensionality reduction was performed using
636 uniform manifold approximation and projection (UMAP) on the first 10 dimensions. For
637 the identification of cluster-specific gene markers and differential gene expression
638 between samples, the FindClusters (obj, resolution = 0.5) and FindAllMarkers (obj,
639 logfc.threshold = 0.25, test.use = "wilcox", min.pct = 0.25) functions in Seurat were
640 used. For the analysis of clusters in Figure 5E and Supplementary Table 4, we removed
641 all clonally-variant genes (13).

642

643 **Flow-cytometry**

644 Ring-stage cultures were synchronized using 5% Sorbitol. Approximately 24 hours later,
645 400 μ L of 2-3% late-stage parasites were twice washed with and resuspended in 400 μ L
646 of incomplete culture media and split into 4 tubes to include single-stained controls,
647 treated or untreated with 500 μ g of pooled human serum (43), and incubated for 60
648 minutes at room temperature. Cells were then washed three times, and treated with 16
649 μ M Hoechst 33342 and/or Anti-Human IgG (Fc specific)-FITC antibody (1:100 dilution,
650 Sigma-Aldrich) in iCM, and incubated for 30 minutes at 4C. After incubation, cells were
651 washed three times with PBS and analyzed on Aurora flow cytometer with SpectroFlo
652 (Cytek Biosciences). Flow-cytometry data were analyzed using FlowJo v10 software
653 and GraphPad Prism 10.

654

655 **Materials Availability**

656 All unique/stable reagents generated in this study are available from the Lead Contact
657 without restriction.

658

659 **Data and Code Availability**

660 All sequencing data produced for this study is deposited in the NCBI Sequence Read
661 Archive available at <https://www.ncbi.nlm.nih.gov/sra> under the study accession code
662 PRJNA1075333. All code utilized for analysis and figure production as well as count
663 matrices are available on GitHub at <https://github.com/DeitschLab/SingleCell>.

664

665

666 **References**

- 667 1. WHO, World Malaria Report 2021. (2021).
- 668 2. C. A. Moxon, G. E. Grau, A. G. Craig, Malaria: modification of the red blood cell and
669 consequences in the human host. *Br. J. Haematol* **154**, 670-679 (2011).
- 670 3. D. I. Baruch, J. A. Gormley, C. Ma, R. J. Howard, B. L. Pasloske, *Plasmodium falciparum*
671 erythrocyte membrane protein 1 is a parasitized erythrocyte receptor for adherence to
672 CD36, thrombospondin, and intercellular adhesion molecule 1. *Proceedings of the*
673 *National Academy of Sciences USA* **93**, 3497-3502 (1996).
- 674 4. J. D. Smith *et al.*, Switches in expression of *Plasmodium falciparum* var genes correlate
675 with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. *Cell*
676 **82**, 101-110 (1995).
- 677 5. X. Su *et al.*, A large and diverse gene family (var) encodes 200-350 kD proteins
678 implicated in the antigenic variation and cytoadherence of *Plasmodium falciparum*-
679 infected erythrocytes. *Cell* **82**, 89-100 (1995).
- 680 6. N. D. Pasternak, R. Dzikowski, PfEMP1: an antigen that plays a key role in the
681 pathogenicity and immune evasion of the malaria parasite *Plasmodium falciparum*. *Int.*
682 *J. Biochem. Cell Biol* **41**, 1463-1466 (2009).
- 683 7. L. H. Miller, M. F. Good, G. Milon, Malaria Pathogenesis. *Science* **264**, 1878-1883 (1994).
- 684 8. L. H. Miller, D. I. Baruch, K. Marsh, O. K. Doumbo, The pathogenic basis of malaria.
685 *Nature* **415**, 673-679 (2002).
- 686 9. J. A. Chan *et al.*, Targets of antibodies against *Plasmodium falciparum*-infected
687 erythrocytes in malaria immunity. *J Clin Invest* **122**, 3227-3238 (2012).
- 688 10. K. W. Deitsch, R. Dzikowski, Variant Gene Expression and Antigenic Variation by Malaria
689 Parasites. *Annu. Rev. Microbiol* **71**, 625-641 (2017).
- 690 11. T. D. Otto *et al.*, Long read assemblies of geographically dispersed *Plasmodium*
691 *falciparum* isolates reveal highly structured subtelomeres. *Wellcome. Open. Res* **3**, 52
692 (2018).
- 693 12. T. Otto *et al.*, Evolutionary analysis of the most polymorphic gene family in *falciparum*
694 malaria. *Wellcome Open Res* **4**, 193 (2019).
- 695 13. A. Cortes, K. W. Deitsch, Malaria Epigenetics. *Cold Spring Harb. Perspect. Med*
696 *cshperspect.a025528 [pii];10.1101/cshperspect.a025528 [doi]* (2017).
- 697 14. T. Chookajorn *et al.*, Epigenetic memory at malaria virulence genes. *Proc. Natl. Acad. Sci.*
698 *U. S. A* **104**, 899-902 (2007).
- 699 15. J. J. Lopez-Rubio *et al.*, 5' flanking region of var genes nucleate histone modification
700 patterns linked to phenotypic inheritance of virulence traits in malaria parasites. *Mol.*
701 *Microbiol* **66**, 1296-1305 (2007).
- 702 16. T. Staalsoe *et al.*, In vivo switching between variant surface antigens in human
703 *Plasmodium falciparum* infection. *Journal of Infectious Diseases* **186**, 719-722 (2002).
- 704 17. G. M. Warimwe *et al.*, *Plasmodium falciparum* var gene expression homogeneity as a
705 marker of the host-parasite relationship under different levels of naturally acquired
706 immunity to malaria. *PLoS One* **8**, e70467 (2013).

707 18. E. A. Ashley, N. J. White, The duration of *Plasmodium falciparum* infections. *Malar J* **13**,
708 500 (2014).

709 19. A. Bachmann *et al.*, Absence of erythrocyte sequestration and lack of multicopy gene
710 family expression in *Plasmodium falciparum* from a splenectomized malaria patient.
711 *PLoS. ONE* **4**, e7459 (2009).

712 20. D. Horn, Antigenic variation in African trypanosomes. *Mol. Biochem. Parasitol* S0166-
713 6851(14)00059-0 [pii];10.1016/j.molbiopara.2014.05.001 [doi] (2014).

714 21. E. Pays, Regulation of antigen gene expression in *Trypanosoma brucei*. *Trends Parasitol*
715 **21**, 517-520 (2005).

716 22. P. R. Gargantini, M. D. C. Serradell, D. N. Rios, A. H. Tenaglia, H. D. Lujan, Antigenic
717 variation in the intestinal parasite *Giardia lamblia*. *Curr Opin Microbiol* **32**, 52-58 (2016).

718 23. B. al Khedery, D. R. Allred, Antigenic variation in *Babesia bovis* occurs through segmental
719 gene conversion of the ves multigene family, within a bidirectional locus of active
720 transcription. *Mol. Microbiol* **59**, 402-414 (2006).

721 24. K. Monahan, S. Lomvardas, Monoallelic expression of olfactory receptors. *Annu Rev Cell
722 Dev Biol* **31**, 721-740 (2015).

723 25. S. Jaeger, B. Fernandez, P. Ferrier, Epigenetic aspects of lymphocyte antigen receptor
724 gene rearrangement or 'when stochasticity completes randomness'. *Immunology* **139**,
725 141-150 (2013).

726 26. X. Hou *et al.*, Analysis of Gene Expression and TCR/B Cell Receptor Profiling of Immune
727 Cells in Primary Sjogren's Syndrome by Single-Cell Sequencing. *J Immunol* **209**, 238-249
728 (2022).

729 27. D. Redmond, A. Poran, O. Elemento, Single-cell TCRseq: paired recovery of entire T-cell
730 alpha and beta chain transcripts in T-cell receptors from single-cell RNAseq. *Genome
731 Med* **8**, 80 (2016).

732 28. A. Pourmorady, S. Lomvardas, Olfactory receptor choice: a case study for gene
733 regulation in a multi-enhancer system. *Curr Opin Genet Dev* **72**, 101-109 (2021).

734 29. L. R. Saraiva *et al.*, Hierarchical deconstruction of mouse olfactory sensory neurons:
735 from whole mucosa to single-cell RNA-seq. *Sci Rep* **5**, 18178 (2015).

736 30. N. K. Hanchate *et al.*, Single-cell transcriptomics reveals receptor transformations during
737 olfactory neurogenesis. *Science* **350**, 1251-1255 (2015).

738 31. C. Notzel, B. F. C. Kafsack, There and back again: malaria parasite single-cell
739 transcriptomics comes full circle. *Trends Parasitol* **37**, 850-852 (2021).

740 32. E. Real, L. Mancio-Silva, Single-cell views of the *Plasmodium* life cycle. *Trends Parasitol*
741 **38**, 748-757 (2022).

742 33. A. K. Subudhi *et al.*, DNA-binding protein PfAP2-P regulates parasite pathogenesis during
743 malaria parasite blood stages. *Nat Microbiol* **8**, 2154-2169 (2023).

744 34. X. Zhang *et al.*, A coordinated transcriptional switching network mediates antigenic
745 variation of human malaria parasites. *Elife* **11** (2022).

746 35. C. J. Merrick *et al.*, Functional analysis of sirtuin genes in multiple *Plasmodium*
747 falciparum strains. *PLoS. ONE* **10**, e0118865 (2015).

748 36. J. H. Janes *et al.*, Investigating the host binding signature on the *Plasmodium falciparum*
749 PfEMP1 protein family. *PLoS Pathog* **7**, e1002032 (2011).

750 37. J. Mu *et al.*, Recombination hotspots and population structure in *Plasmodium*
751 *falciparum*. *PLoS. Biol* **3**, e335 (2005).

752 38. A. Poran *et al.*, Single-cell RNA sequencing reveals a signature of sexual commitment in
753 malaria parasites. *Nature* **551**, 95-99 (2017).

754 39. V. M. Schneider *et al.*, The human malaria parasite *Plasmodium falciparum* can sense
755 environmental changes and respond by antigenic switching. *Proc Natl Acad Sci U S A*
756 **120**, e2302152120 (2023).

757 40. P. Prommano *et al.*, Inducible knockdown of *Plasmodium* gene expression using the
758 *glmS* ribozyme. *PLoS. ONE* **8**, e73783 (2013).

759 41. L. Tan, Q. Li, X. S. Xie, Olfactory sensory neurons transiently express multiple olfactory
760 receptors during development. *Mol Syst Biol* **11**, 844 (2015).

761 42. S. Hutchinson *et al.*, The establishment of variant surface glycoprotein monoallelic
762 expression revealed by single-cell RNA-seq of *Trypanosoma brucei* in the tsetse fly
763 salivary glands. *PLoS Pathog* **17**, e1009904 (2021).

764 43. T. E. Taylor *et al.*, Intravenous immunoglobulin in the treatment of paediatric cerebral
765 malaria. *Clin Exp Immunol* **90**, 357-362 (1992).

766 44. A. Kessler *et al.*, Convalescent *Plasmodium falciparum*-specific seroreactivity does not
767 correlate with paediatric malaria severity or *Plasmodium* antigen exposure. *Malar J* **17**,
768 178 (2018).

769 45. M. Haeggstrom *et al.*, Common trafficking pathway for variant antigens destined for the
770 surface of the *Plasmodium falciparum*-infected erythrocyte. *Mol Biochem Parasitol* **133**,
771 1-14 (2004).

772 46. A. K. Tilly *et al.*, Type of in vitro cultivation influences cytoadhesion, knob structure,
773 protein localization and transcriptome profile of *Plasmodium falciparum*. *Sci Rep* **5**,
774 16766 (2015).

775 47. M. S. Roe, K. O'Flaherty, F. J. I. Fowkes, Can malaria parasites be spontaneously cleared?
776 *Trends Parasitol* 10.1016/j.pt.2022.02.005 (2022).

777 48. E. I. Bruske *et al.*, In Vitro Variant Surface Antigen Expression in *Plasmodium falciparum*
778 Parasites from a Semi-Immune Individual Is Not Correlated with Var Gene Transcription.
779 *PLoS One* **11**, e0166135 (2016).

780 49. A. I. Abdi *et al.*, Global selection of *Plasmodium falciparum* virulence antigen expression
781 by host antibodies. *Sci Rep* **6**, 19882 (2016).

782 50. C. Andolina *et al.*, Sources of persistent malaria transmission in a setting with effective
783 malaria control in eastern Uganda: a longitudinal, observational cohort study. *Lancet*
784 *Infect Dis* **21**, 1568-1578 (2021).

785 51. S. Kho *et al.*, Hidden Biomass of Intact Malaria Parasites in the Human Spleen. *N Engl J*
786 *Med* **384**, 2067-2069 (2021).

787 52. M. Giobbia *et al.*, Late recrudescence of *Plasmodium falciparum* malaria in a pregnant
788 woman: a case report. *Int J Infect Dis* **9**, 234-235 (2005).

789 53. E. D'Ortenzio *et al.*, Prolonged *Plasmodium falciparum* infection in immigrants, Paris.
790 *Emerg Infect Dis* **14**, 323-326 (2008).

791 54. D. Malvy *et al.*, *Plasmodium falciparum* Recrudescence Two Years after Treatment of an
792 Uncomplicated Infection without Return to an Area Where Malaria Is Endemic.
793 *Antimicrob Agents Chemother* **62** (2018).

794 55. A. Al Hammadi, M. Mitchell, G. M. Abraham, J. P. Wang, Recrudescence of Plasmodium
795 falciparum in a Primigravida After Nearly 3 Years of Latency. *Am J Trop Med Hyg* **96**,
796 642-644 (2017).

797 56. G. Zanghi, A. M. Vaughan, Plasmodium vivax pre-erythrocytic stages and the latent
798 hypnozoite. *Parasitol Int* **85**, 102447 (2021).

799 57. C. M. Andrade *et al.*, Increased circulation time of Plasmodium falciparum underlies
800 persistent asymptomatic infection in the dry season. *Nat Med* **26**, 1929-1940 (2020).

801 58. R. Thomson-Luque *et al.*, Plasmodium falciparum transcription in different clinical
802 presentations of malaria associates with circulation time of infected erythrocytes. *Nat
803 Commun* **12**, 4711 (2021).

804 59. R. Joice *et al.*, Plasmodium falciparum transmission stages accumulate in the human
805 bone marrow. *Sci. Transl. Med* **6**, 244re245 (2014).

806 60. L. A. Kirkman, X. Z. Su, T. E. Wellems, Plasmodium falciparum: isolation of large numbers
807 of parasite clones from infected blood samples. *Exp. Parasitol* **83**, 147-149 (1996).

808 61. C. Lambros, J. P. Vanderberg, Synchronization of Plasmodium falciparum erythrocytic
809 stages in culture. *J. Parasitol* **65**, 418-420 (1979).

810 62. A. Salanti *et al.*, Selective upregulation of a single distinctly structured var gene in
811 chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-
812 associated malaria. *Molecular Microbiology* **49**, 179-191 (2003).

813 63. A. Bachmann, T. Lavstsen, Analysis of var Gene Transcript Patterns by Quantitative Real-
814 Time PCR. *Methods Mol Biol* **2470**, 149-171 (2022).

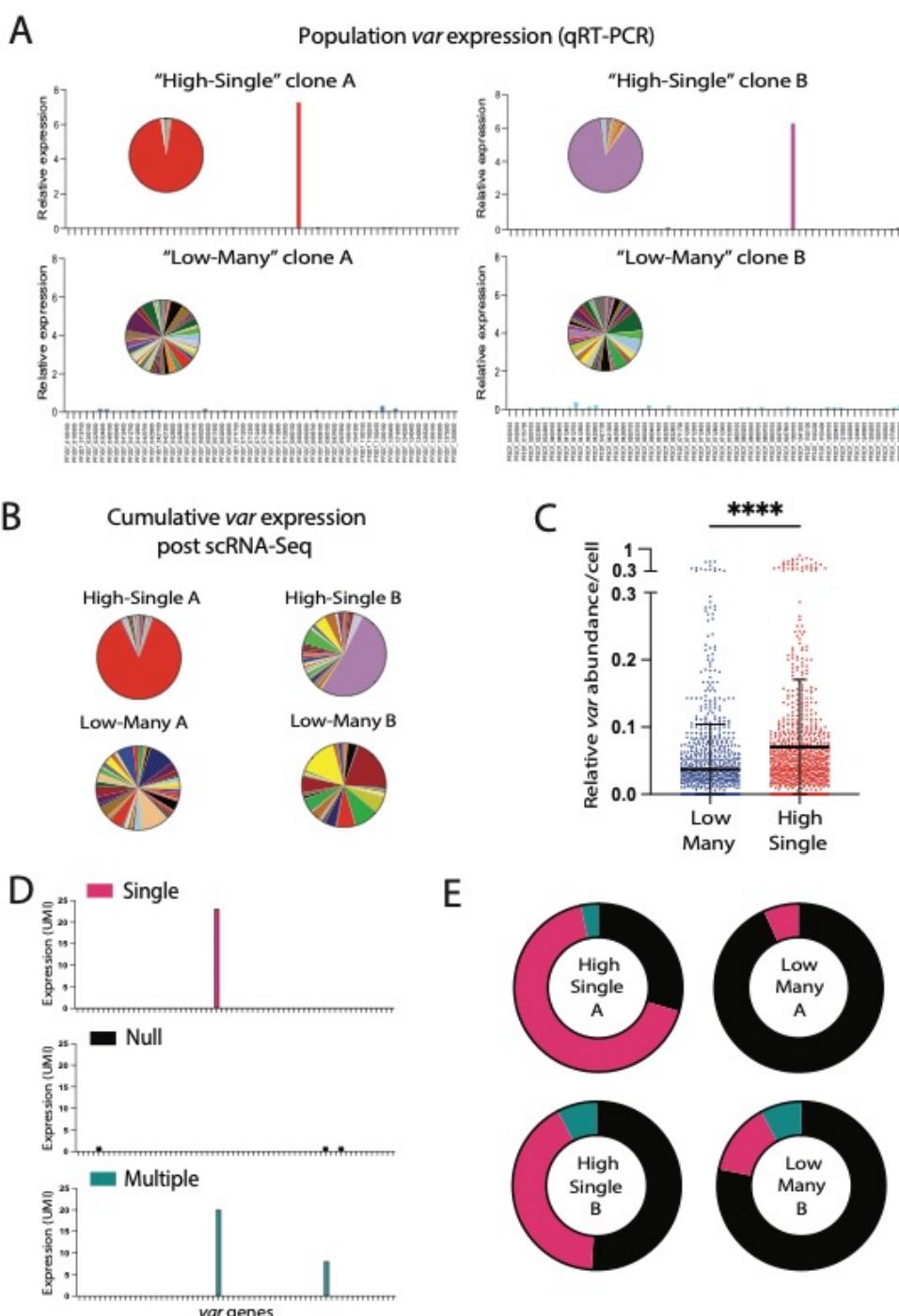
815 64. E. M. Rivadeneira, M. Wasserman, C. T. Espinal, Separation and concentration of
816 schizonts of Plasmodium falciparum by Percoll gradients. *J Protozool* **30**, 367-370 (1983).

817 65. H. Ginsburg, I. Landau, D. Baccam, D. Mazier, Fractionation of mouse malarious blood
818 according to parasite developmental stage, using a Percoll-sorbitol gradient. *Ann
819 Parasitol Hum Comp* **62**, 418-425 (1987).

820 66. A. C. Brown, C. C. Moore, J. L. Guler, Cholesterol-dependent enrichment of understudied
821 erythrocytic stages of human Plasmodium parasites. *Sci Rep* **10**, 4591 (2020).

822 67. E. Z. Macosko *et al.*, Highly Parallel Genome-wide Expression Profiling of Individual Cells
823 Using Nanoliter Droplets. *Cell* **161**, 1202-1214 (2015).

824 68. S. Warrenfeltz *et al.*, EuPathDB: The Eukaryotic Pathogen Genomics Database Resource.
825 *Methods Mol Biol* **1757**, 69-113 (2018).

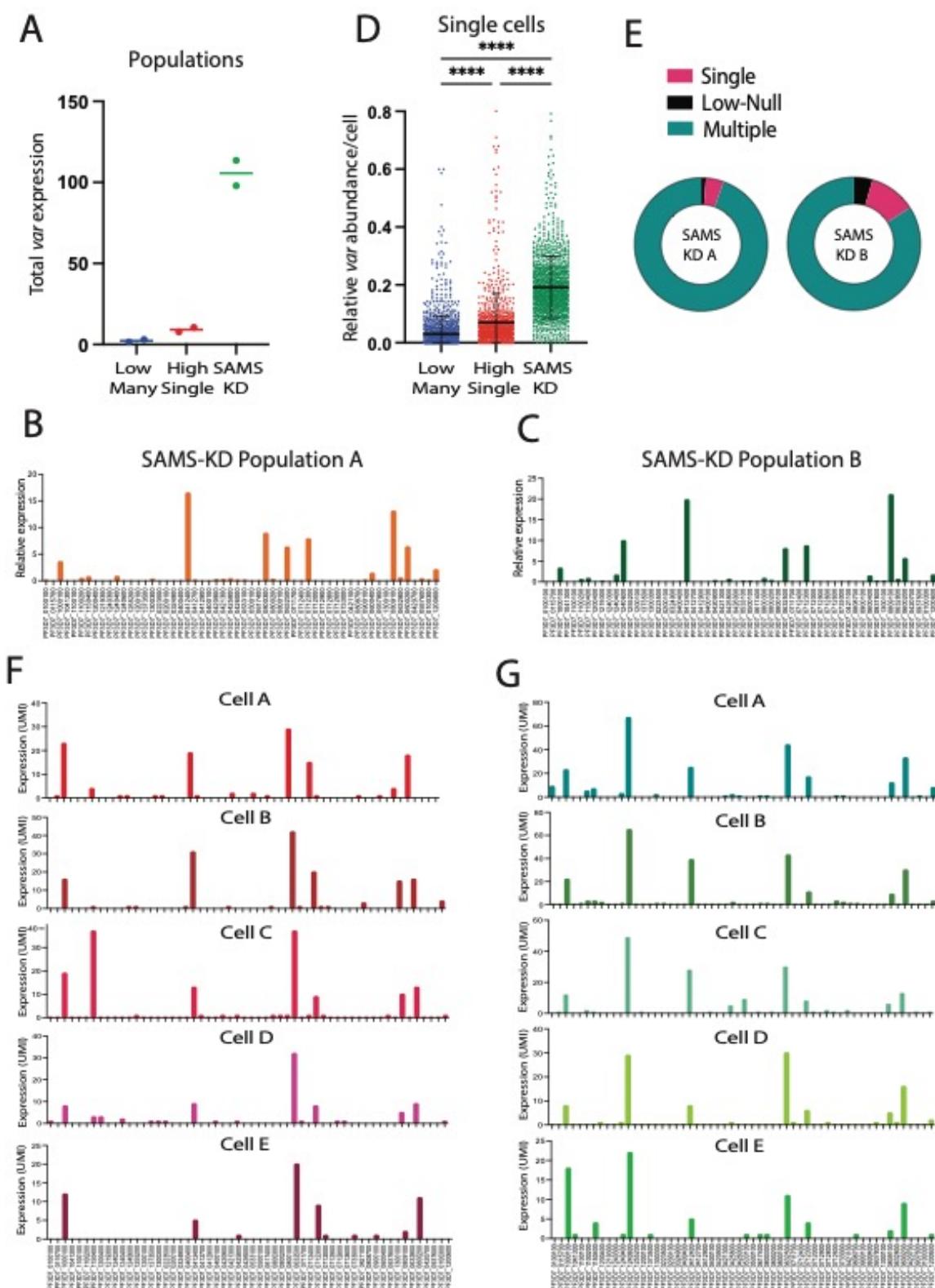

826 69. Y. Hao *et al.*, Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573-3587
827 e3529 (2021).

828

829

830

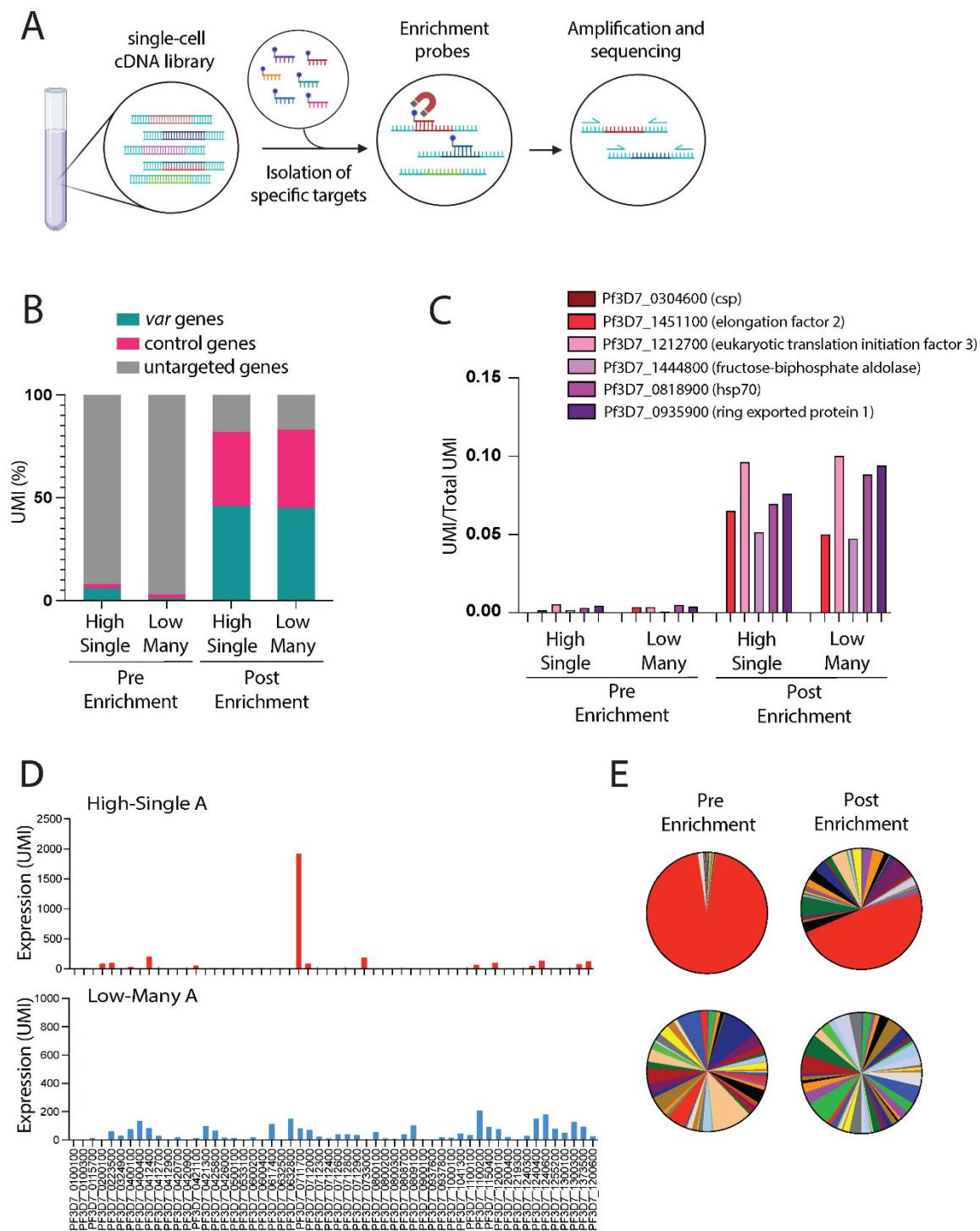
831 **Figure and legends**



832

833 **Figure 1. Single-cell analysis by Drop-Seq reveals different var expression states**

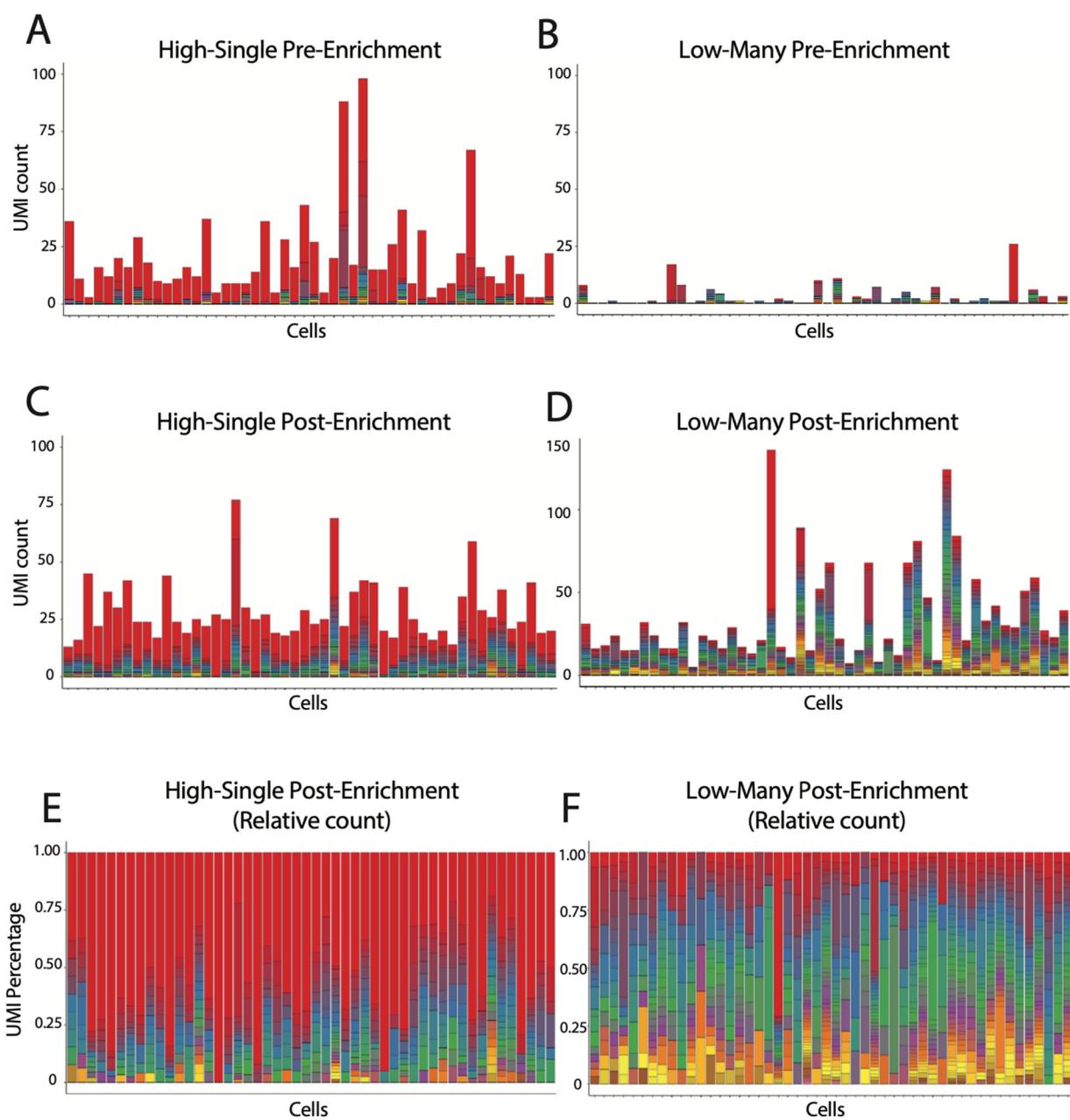
834 (A) var expression profiles of the four populations analyzed in the Drop-Seq experiments, represented as
835 histograms and pie charts. Expression of each gene is determined by quantitative RT-PCR and is
836 represented as relative to seryl-tRNA synthetase (PF3D7_0717700). (B) Cumulative var expression of the
837 four populations resulting from Drop-Seq represented as pie charts. The size of each slice of the pie is
838 proportional to the number of UMI detected per individual var gene. (C) Number of total var UMIs relative
839 to total UMI per individual cell in the two "low-many" populations (blue, N=1048) compared to the two


840 “high-single” populations (red, n=873). The mean \pm standard deviation is shown, and an unpaired t-test
841 indicates a ***p < 0.0001. (D) Representative examples of individual cells in three *var* states: Single
842 (pink), cells expressing a single *var* gene at a high-level; Null (black), cells not expressing any or a very
843 low-level of *var* transcripts; Multiple (Blue), cells expressing two or more *var* genes at the same time.
844 Expression is shown as number of UMI detected per individual gene. (E) Percentage of individual cells in
845 the Single state (pink), Null state (black) or Multiple (blue) in each of the populations. Genes were
846 considered expressed with at least 2 UMIs.

847
848
849
850

Figure 2. Decreased histone methylation disrupts mutually exclusive var gene expression in individual cells (A) Total var expression levels as determined by quantitative real-time RT-PCR (qRT-PCR) for two “low-many” populations (blue), two “high-single” populations (red) and two SAMS-KD

851 populations (green). The horizontal line shows median value. (B,C) *var* expression profiles of the SAMS-
852 KD Population A (B) and Population B (C) determined by quantitative RT-PCR and represented as
853 relative to seryl-tRNA synthetase (PF3D7_0717700). (D) Number of total *var* UMI relative to total UMI per
854 individual cell in the two “low-many” populations (blue, n=1048) compared to the two “high-single”
855 populations (red, n=873) and the two SAMS-KD populations (green, n=1199). The mean \pm standard
856 deviation is shown, and a one-way ANOVA test indicates a ***p < 0.0001. (E) Percentage of individual
857 cells in the Single state (pink), Low-Null state (black) or Multiple (blue) in each of the SAMS-KD
858 populations. Genes were considered expressed with at least 2 UMIs. (F, G) *var* expression profiles of 5
859 individual cells from Population A (F) and Population B (G) determined by Drop-Seq and represented as
860 number of UMIs.



861
862
863
864

Figure 3. var-enrichment probes allow deeper var transcript detection in scRNA-Seq
(A) Schematic representation of the enrichment procedure. (B) UMI percentage over total UMI for var genes (blue), control genes (pink) and genes not targeted in the enrichment process (grey) in "high-

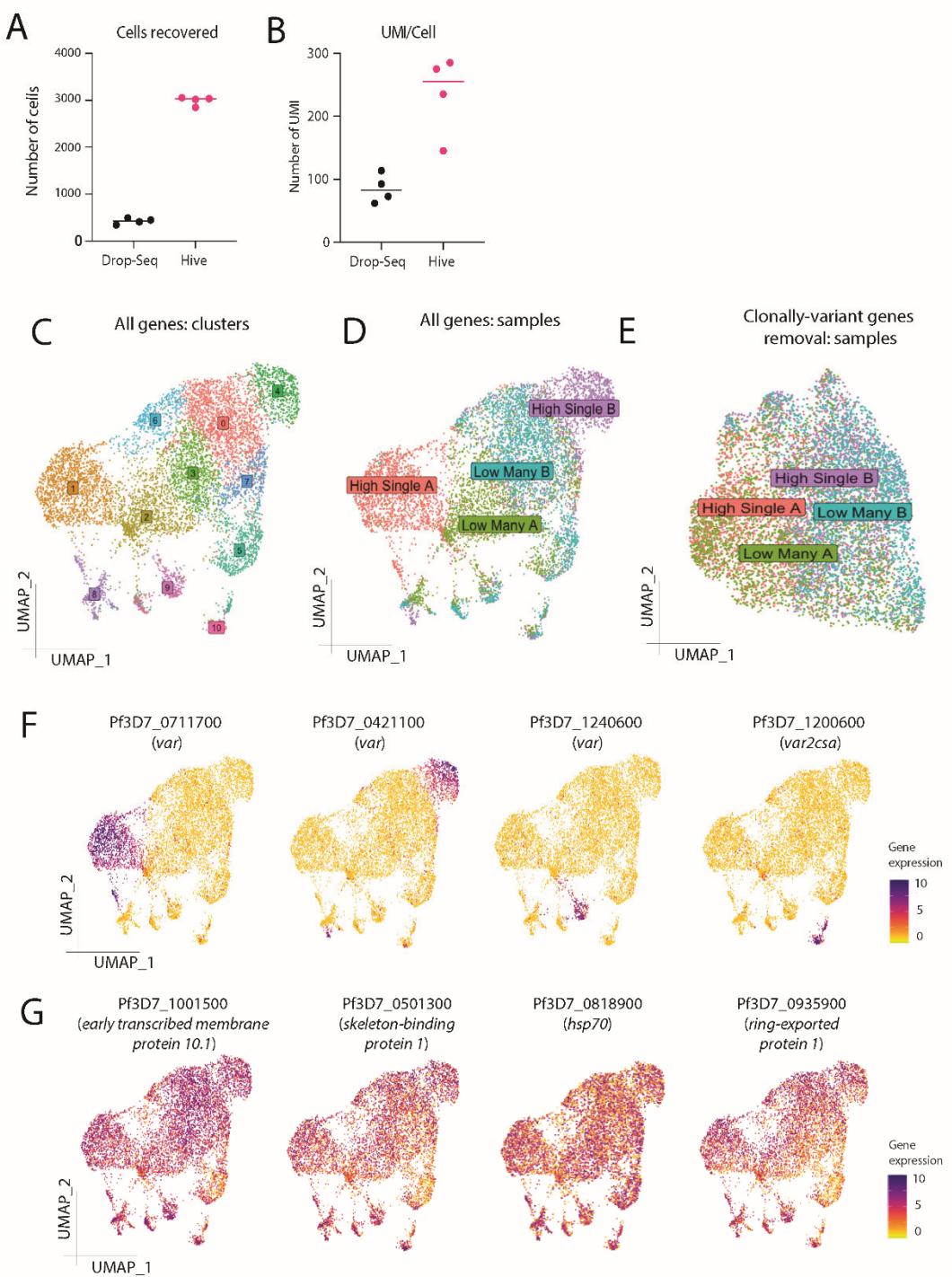
865 single" and "low-many" populations before and after enrichment. (C) Number of UMI over total UMI for
866 each control gene in "high-single" and "low-many" populations before and after enrichment. (D) *var*
867 expression profiles after Drop-Seq and enrichment of "high-single" clone A and "low-many" clone A
868 represented as number of UMIs. (E) Pie charts representing *var* expression profiles after Drop-Seq before
869 and after enrichment of "high-single" clone A and "low-many" clone A.
870

871

872

873

874


875

876

877

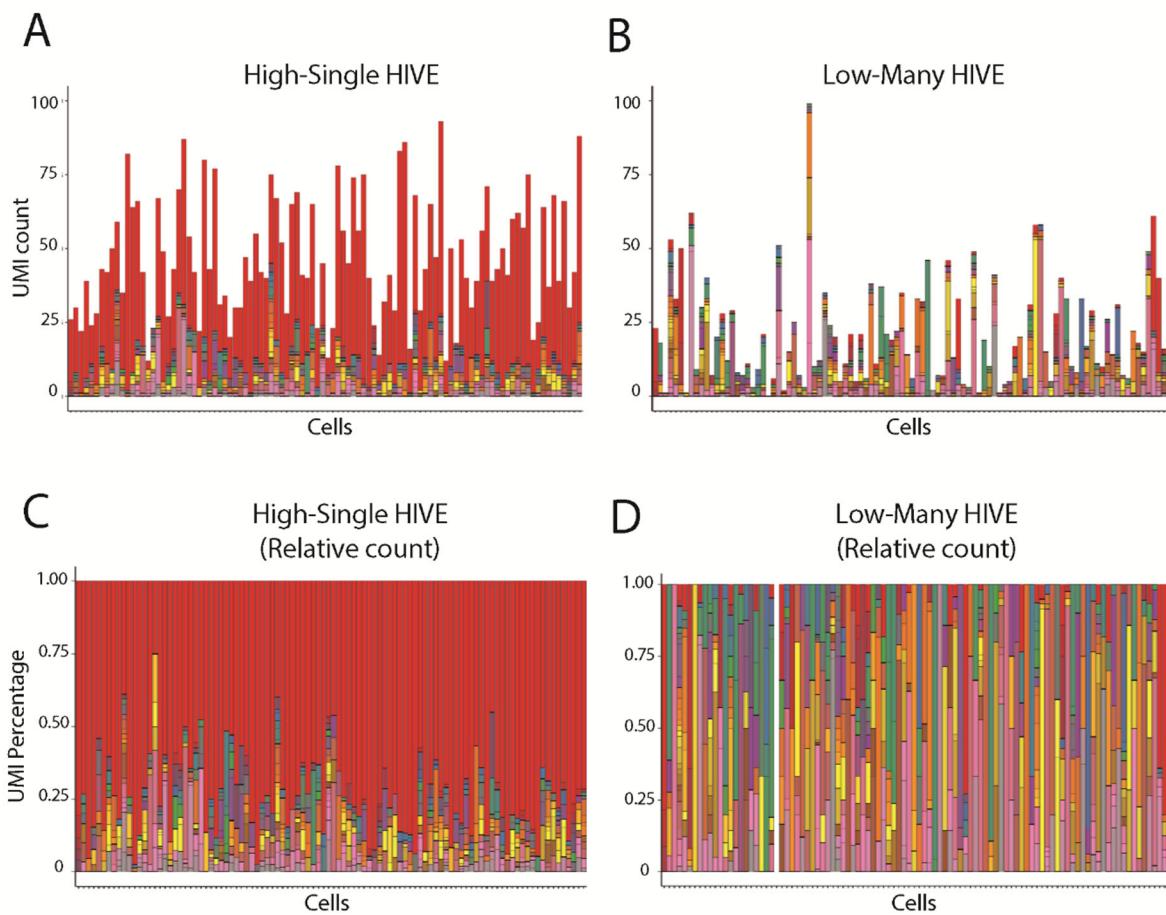
878

Figure 4. var-enrichment probes allow detection of multiple var transcripts in individual cells
var gene expression is displayed for the top-50 cells for “high-single” (A,C) or “low-many” (B,D) populations according to total UMI detected by Drop-Seq. var gene expression is shown either before (A,B) or after (C,D) enrichment. Each color in a bar represents a single var gene and each bar represents an individual cell. (E, F) Relative UMI counts are shown as the percentage of total var UMI in “high-single” (E) and “low-many” (F) from Drop-Seq after enrichment.

879

880

Figure 5. var genes are the main cluster-drivers in HIVE scRNA-Seq


881

882

(A) Number of cells recovered with a minimum of 25 UMI per cell in the Drop-Seq experiments (black) compared to HIVE experiments (pink). (B) Average number of UMI per cell in the Drop-Seq experiments

883 (black) compared to HIVE experiments (pink). (C) UMAP of the HIVE single-cell transcriptomes obtained
884 from the four parasite populations with cells colored according to their clustering (see Supplemental Table
885 4 for cluster information). (D) UMAP of the HIVE single-cell transcriptomes with cells colored according to
886 the parasite population that was sampled. (E) UMAP of the HIVE single-cell transcriptomes obtained from
887 the four parasite populations excluding clonally-variant genes from the analysis. Cells are colored
888 according to the parasite population that was sampled. (F) UMAP graphs as in (C, D) with cells colored
889 according to expression level of different *var* genes. (G) UMAP graphs as in (C, D) with cells colored
890 according to expression level of different ring-expressed genes.
891

892

893

894

895

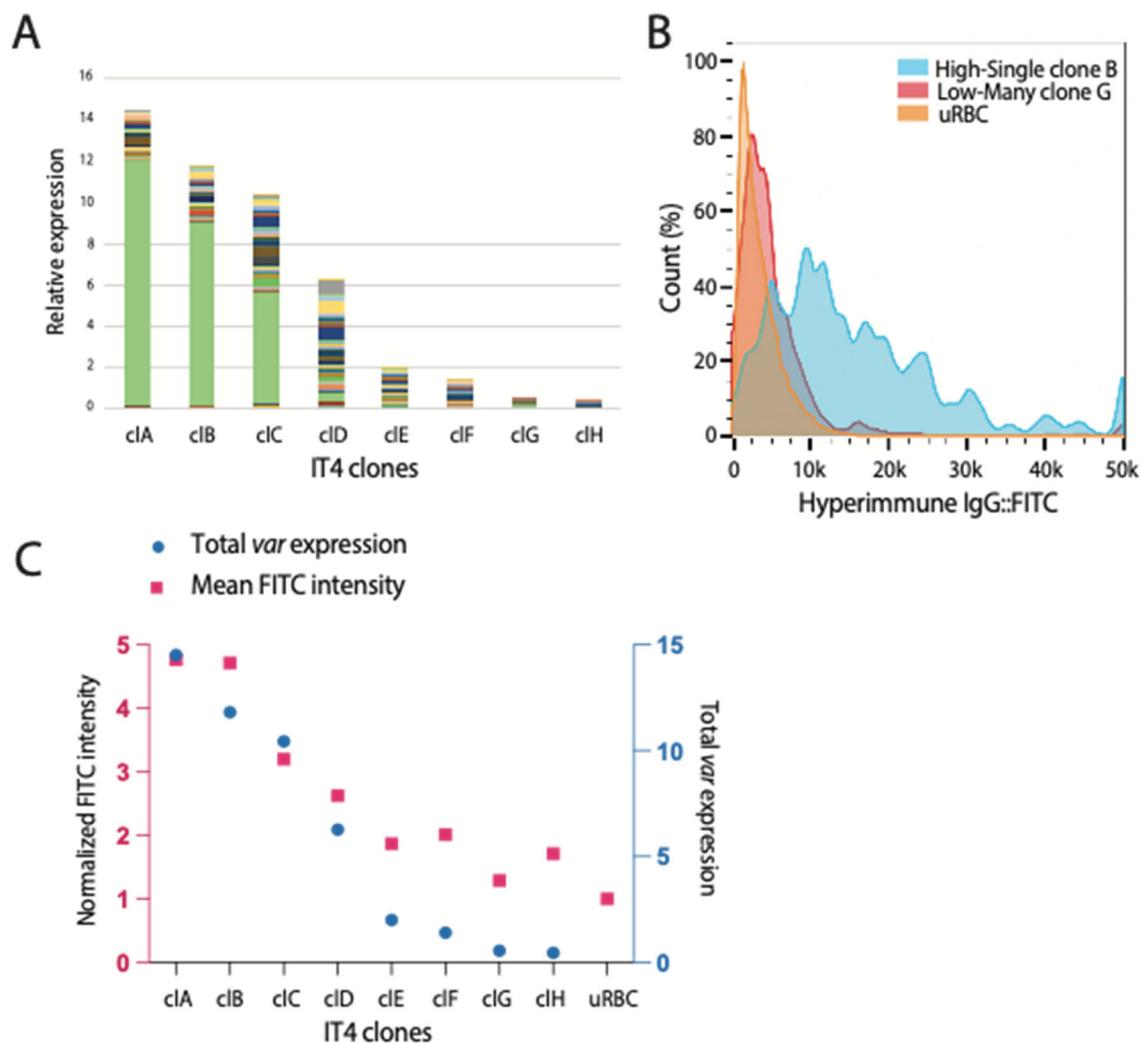
Figure 6. HIVE scRNA-Seq confirms multiple var transcripts in individual cells

var gene expression is displayed for the top-100 cells for "high-single" (A,C) or "low-many" (B,D) populations according to total UMI detected by HIVE scRNA-Seq. Each color in a bar represents a single var gene and each bar represents an individual cell. UMI counts are displayed for individual cells obtained from "high-single" (A) and "low-many" (B) populations. Relative UMI counts are shown as percentage of total var UMI in cells obtained from "high-single" (C) and "low-many" (D) populations.

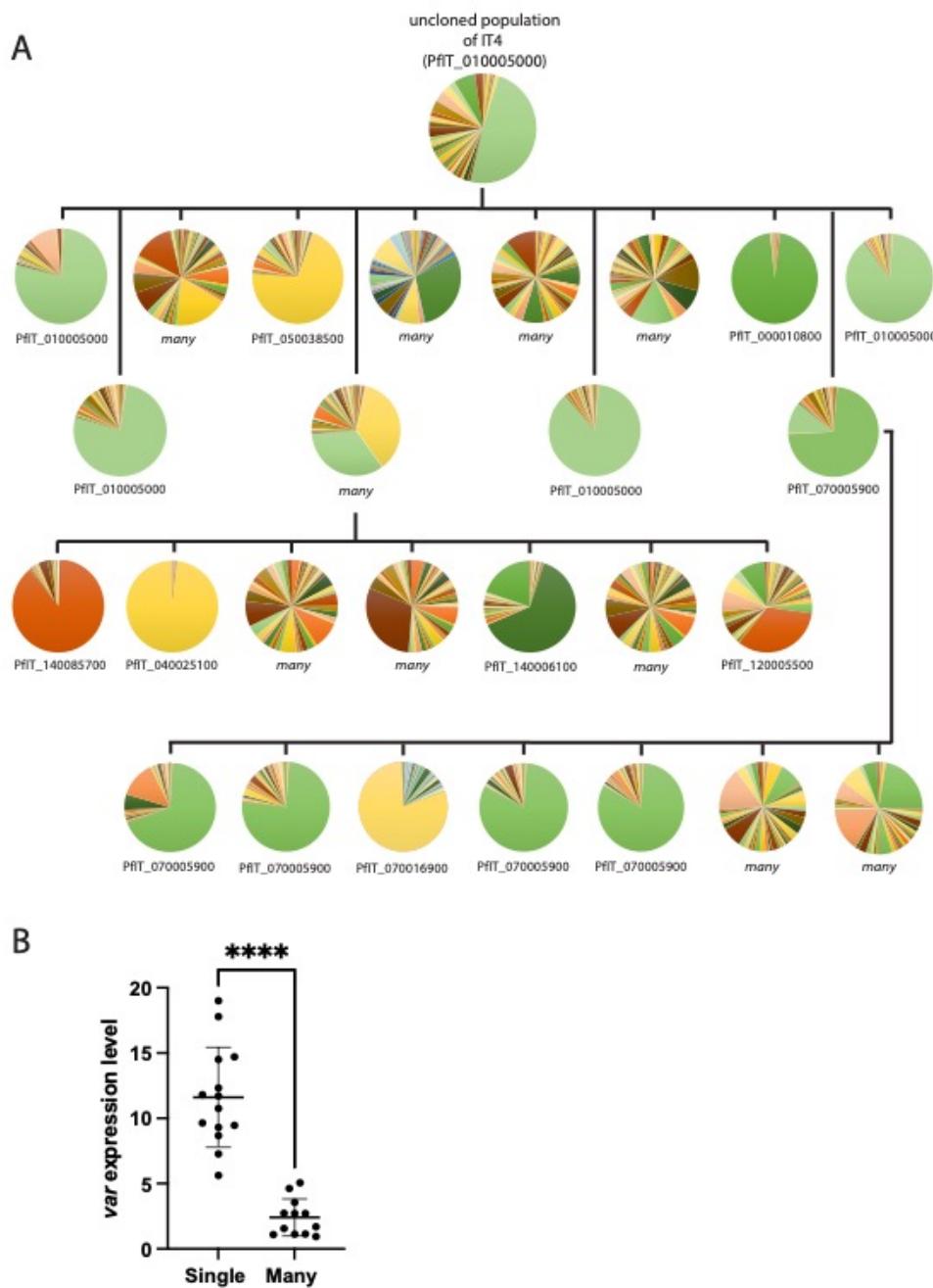
902

903

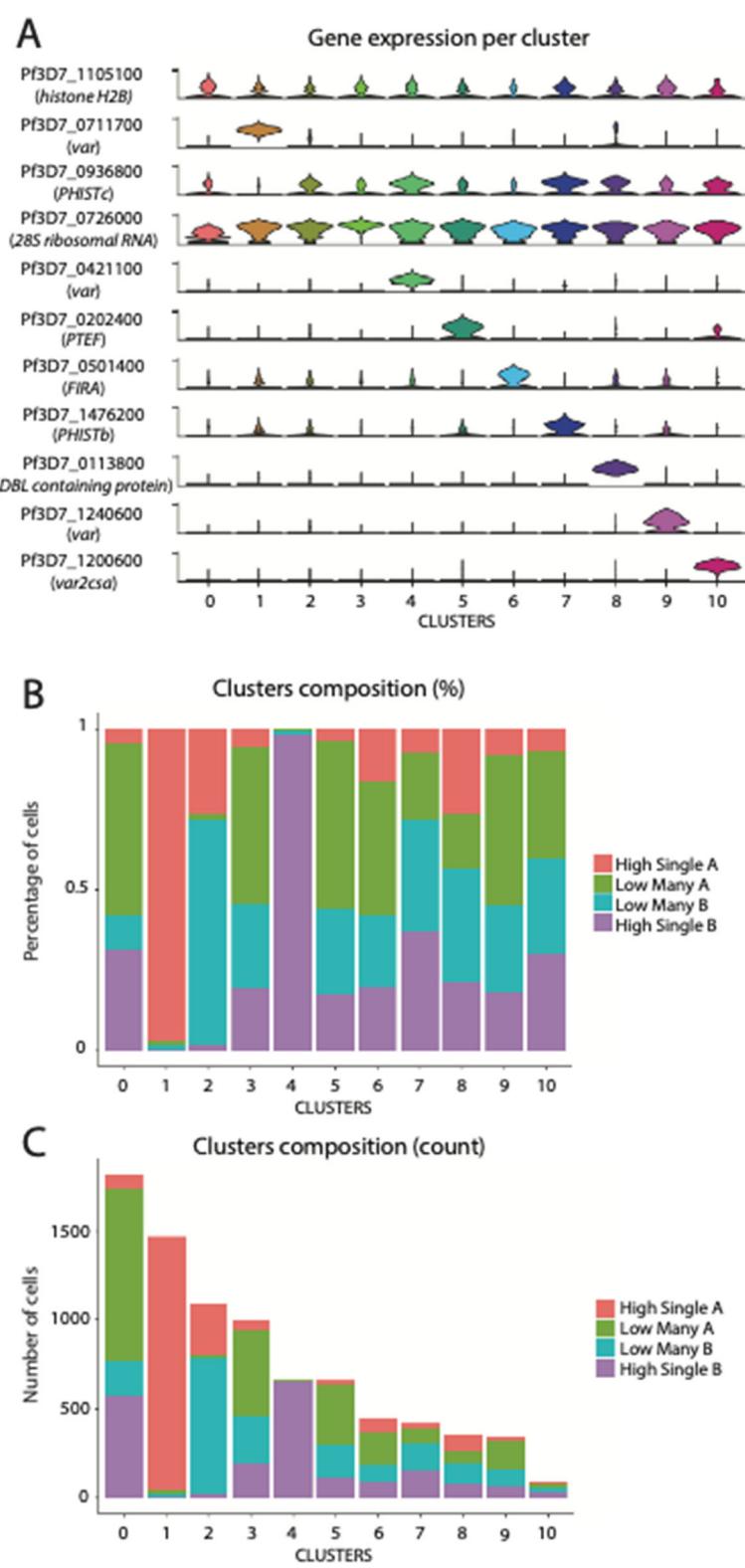
904


905

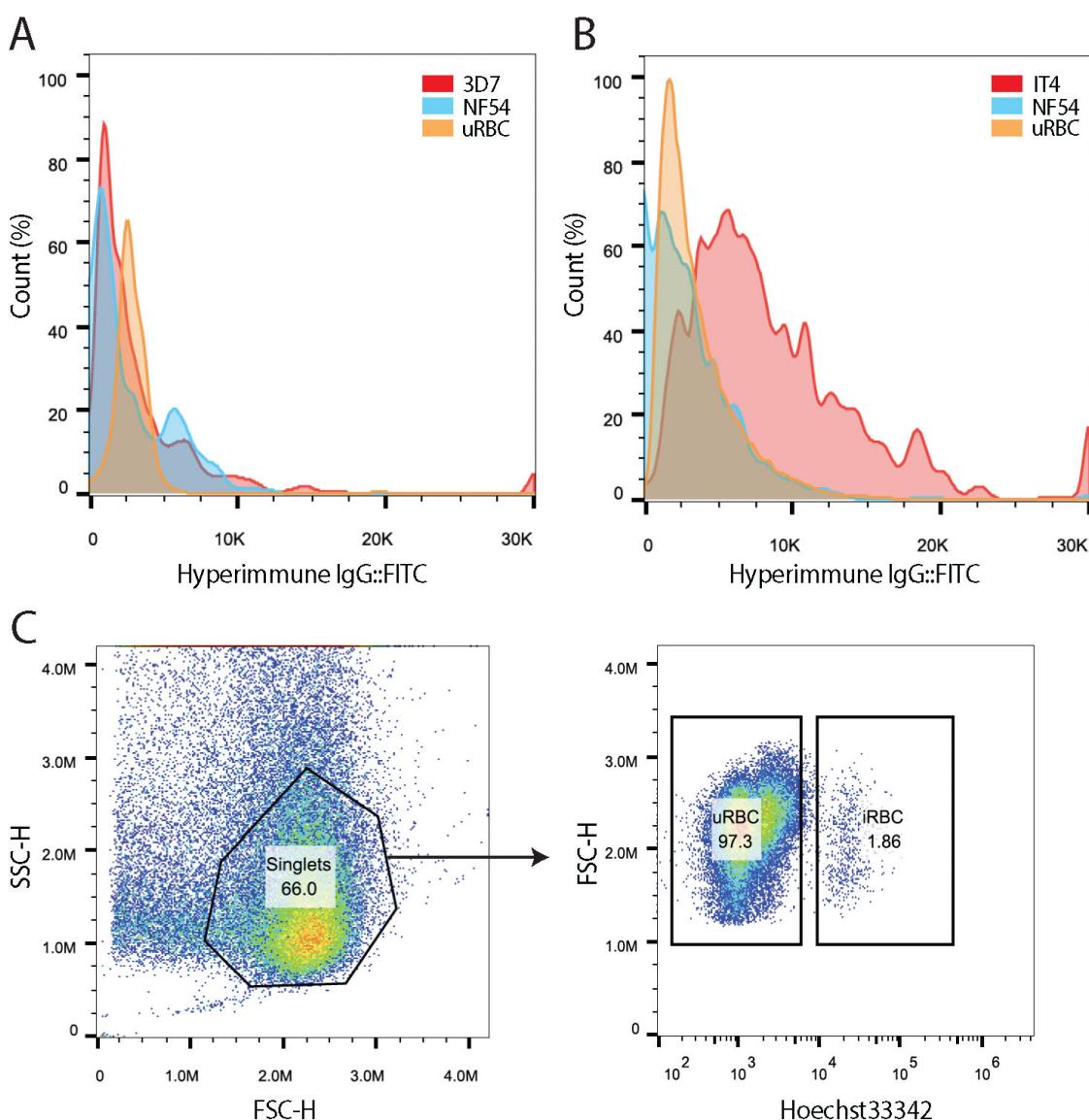
906


907

908


909

910
911 **Figure 7. Parasites in the “low-many” state exhibit reduced immunogenicity**
912 (A) Total var expression levels for IT4 clones determined by quantitative RT-PCR, with transcripts for
913 each var gene shown in a different color. Values are shown as relative to seryl-tRNA synthetase
914 (PfIT_020011400). (B) Example of flow-cytometry with hyperimmune IgG on a “high-single” IT4 clone
915 (blue, gated infected RBC), one “low-many” (red, gated infected RBCs) and uninfected RBCs (orange).
916 Histogram shows normalized cell count over FITC intensity. (C) Correlation between total var expression
917 determined by qRT-PCR (blue) and mean FITC intensity (pink) quantified by flow-cytometry for each IT4
918 clone. FITC intensity of infected RBCs is normalized to FITC intensity of uRBCs.
919
920


921 **Figure S1**
922 **Detection of “high-single” and “low-many” var expression states in IT4**
923 (A) Clone tree of wildtype IT4 parasites. Each pie chart represents the var profile of an individual
924 subcloned population determined by qRT-PCR, each slice of the pie represents the expression level of a
925 single var gene. The annotation number of the main var gene expressed is shown below for populations
926 expressing a dominant var gene. Vertical and horizontal lines delineate sequential rounds of subcloning
927 by limiting dilution. (B) Total var expression levels as determined by qRT-PCR for all the subclones in (A).
928 The mean \pm SD interval is shown, and an unpaired t-test indicates a ****p < 0.0001.
929
930

931
932
933

Figure S2
HIVE clusters composition

934 (A) Violin plots of gene expression per cell within each cluster in Figure 5C. Genes depicted are the most
935 highly expressed genes in each of the clusters. (B) Percentage of cells in each cluster from Figure 5C
936 belonging to a certain original sample. (C) Number of cells in each cluster from Figure 5C belonging to a
937 certain original sample.
938

939
940

Figure S3

3D7 and NF54 lines exhibit low immunogenicity

943 (A) Flow-cytometry with hyperimmune IgG on NF54 (blue, gated infected RBC), 3D7 (red, gated infected
944 RBCs) and uninfected RBCs (orange). (B) Flow-cytometry with hyperimmune IgG on NF54 (blue, gated
945 infected RBC), IT4 (red, gated infected RBCs) and uninfected RBCs (orange). Histograms show
946 normalized cell count over FITC intensity. (C) Example of flow-cytometry gating strategy applied to all
947 experiments shown in Figure 7 and Supplementary Figure 3A and B. FSC vs SSC is initially used to
948 identify singlets. The DNA content measured by staining with Hoechst 33342 vs FSC is used to
949 distinguish uninfected red blood cells (uRBC) from infected red blood cells (iRBC). These gating
950 parameters are then used directly to detect antibody recognition as displayed in the associated
951 histograms.