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Abstract 

Spatial transcriptomics allows for the analysis of a cell’s gene expression in the context 

of its physical location. With spatial transcriptomics data, investigators often want to find genes 

of interest whose spatial patterns are biologically relevant in multiple samples. However, due to 

confounding factors in spatial data that produce noise across samples, datasets, and 

technologies, it is challenging to visualize genes and their spatial patterns across samples. We 

present Crescendo, an integration algorithm that performs correction directly on gene 

expression counts to reduce variation from technical confounders. We first apply Crescendo to a 

3-sample spatial transcriptomics mouse brain dataset to show how Crescendo enables accurate 

visualization of gene expression across these spatial transcriptomic samples. We then 

demonstrate Crescendo’s scalability by integrating a 16-sample immuno-oncology dataset of 7 

million cells. Finally, we show that Crescendo can perform cross-technology integration by 

merging a colorectal cancer (CRC) scRNA-seq dataset with two CRC spatial transcriptomics 

samples. By transferring information between technologies, Crescendo can impute poorly 

expressed genes to improve detection of gene-gene colocalization, such as ligand-receptor 

interactions.  
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Background 

High dimensional single-cell technologies1–3 enable the discovery and characterization of 

cellular heterogeneity and potential function of important cell states4–8. Data from single-cell 

RNA sequencing (scRNA-seq) and recently emerging spatial transcriptomics platforms that 

enable spatially resolved single-cell transcriptional profiling9–13 can be used to examine 

expression patterns of individual genes. Identifying key genes is an essential part of defining 

cellular functions, building regulatory networks, and understanding cell-cell interactions14–18. In 

non-spatial scRNA-seq, we often visualize clusters of cells in a uniform manifold approximation 

and projection (UMAP)19, upon which we can overlay gene expression to identify cell-type-

specific patterns. However, in spatial transcriptomics, we can go a step further and observe the 

expression of key genes in individual cells in the context of their real physical location. 

Furthermore, spatial gene expression can be used to identify potential cell-cell communication 

via consistent colocalization of two genes with ligand-receptor analysis16–18,20–23. However, 

understanding true spatial gene expression patterns is difficult because the measurements of 

many genes are sparse or not captured well24,25, confounded by technical factors26–28, or 

expressed in a cell type that does not group together in physical space which makes effective 

visualization challenging29–31.  

We and others previously showed that for datasets affected by confounding factors such 

as differences in batches, samples, and datasets, it is extremely important to integrate cells 

across those batches or samples. However, most single-cell integration algorithms such as 

Harmony32, Seurat anchor integration33, and mutual nearest-neighbors (MNN)34 modify a lower-

dimensional representation of gene expression, rather than directly correcting the genes 

themselves. To facilitate the visualization of gene expression and identification of spatial gene 

patterns spatial tissue slices, it is crucial to remove the effect of confounding factors and provide 
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a way to impute sparse or poorly captured gene expression across slices for individual genes. 

To our knowledge, only the bulk RNA-seq algorithm ComBat-Seq35 is explicitly designed to 

correct individual gene counts, and no existing method performs both correction and imputation. 

Here, we present Crescendo, a novel solution to single-cell integration of gene counts. 

Crescendo is designed to simultaneously correct systematic variation across datasets and 

impute low-expressed gene counts that result from technical confounders. Crescendo was 

designed to work directly on count data. In this manuscript, we focused on gene correction in 

the context of spatial transcriptomics, where it is critical to observe the expression of key genes 

in spatially defined individual cells, rather than in clusters of cells. First, we showed that 

Crescendo correction facilitated the tracking of 3-dimensional gene expression in spatial 

transcriptomics data containing three serial sections of a mouse brain36. To showcase 

Crescendo’s scalability, we then performed temporal computational benchmarks on a 16-

sample, 7-million-cell immuno-oncology spatial transcriptomics dataset37. Then, in a more 

challenging scenario, we used Crescendo to integrate a scRNA-seq colorectal cancer (CRC) 

dataset38 with CRC spatial transcriptomics samples. Finally, in proof-of-principle analyses, we 

illustrated that Crescendo-corrected gene expression enabled the detection of spatial ligand-

receptor interactions that were obscured by technical effects. 

 

Results 

Crescendo corrects technical variation in gene expression across spatial 

datasets  

Here, we showcase Crescendo in the context of spatial transcriptomics data. Crescendo 

is an extension of the Harmony algorithm, which removes technical effects in a lower-

dimensional representation of data (Figure 1A), such as principal components from principal 

components analysis (PCA). After Harmony fits linear models to PCA embeddings, Crescendo 
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fits generalized linear models to gene expression counts (Figure 1B, Methods). Both Harmony 

and Crescendo assume that technical effects are cell-type-specific. The result of Crescendo is 

corrected gene counts that can facilitate visualization of a gene across tissue slices (denoted 

here as batch); in some cases, this may improve the ability to visualize and detect gene spatial 

patterns in a slice (Figure 1C). Importantly, Crescendo preserves counts in the output 

expression matrix, making the final output amenable to count-based downstream analyses, 

such as visualization, differential expression, and spatial pattern analyses.  

The inputs for Crescendo are a gene by counts matrix, cell-type information, and batch 

(or slice) information; the output is a corrected gene by counts matrix. To facilitate scalability, we 

allow users to first perform a biased downsampling to reduce the number of cells while 

accounting for rare cell states and batches; this is used for model fitting, but we still perform 

correction on all cells (Supplementary Figure 1A, Methods). After downsampling, we perform 

an estimation step in which we model how much variation in a gene’s expression derives from 

intrinsic biological sources (such as cell-type identity) and confounding technical sources (such 

as batch, sample, or technology). We then perform a marginalization step, in which we use the 

model from the estimation step to infer a model of gene expression without explicitly modeled 

confounding factors. Finally, we perform a matching step by using the original estimated model 

and the marginalized model to sample corrected counts (Methods). For lowly-expressed genes 

or those assayed with lower sensitivity, Crescendo can model gene expression assuming higher 

total read counts to perform imputation (Methods).  

 

Benchmarking gene-level correction with batch and cell-type variation metrics 

Effective correction of gene expression must meet two objectives: (1) remove 

differences between cells that are driven by technical factors such as batch, sample, or 

technology and (2) preserve the biologically meaningful differences in gene expression, 

especially among cell types. To evaluate Crescendo, we developed two metrics to quantify the 
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performance of gene expression correction: the batch-variance ratio (BVR) and cell-type-

variance ratio (CVR). The first metric quantifies the removal of confounding factors (batch) as 

the ratio of batch-related variance in gene expression before correction versus after correction. 

Similarly, the second metric quantifies the preservation of cell-type-related differences as the 

ratio of cell-type-related variance in gene expression before versus after correction.  

We calculate BVR and CVR by fitting generalized linear models in which we fit a gene’s 

counts with random effects for batch and user-defined cell-type identity (Methods). For each 

gene, we fit this model on both the uncorrected and corrected data. To obtain the BVR, we 

calculate the ratio of the batch-related variances between these fitted models; similarly, we 

calculate the CVR from the cell-type-related variances from these models. Ideally, correction will 

decrease variance associated with batch, which lowers the post-correction batch variance to 

give a BVR < 1. Furthermore, we ideally want to maintain or increase cell-type variance after 

correction, which would give a CVR >= 1; empirical observations from real data suggest that a 

CVR >= 0.5 is generally good preservation of cell-type variability. We also note that if batch 

variance is initially low, signaling that a gene is not significantly affected by confounding factors, 

correction may not be necessary.  

To demonstrate these metrics, we show example genes that exhibit high or low 

BVRs/CVRs after we performed gene expression correction on 3 samples from the Vizgen 

mouse brain receptor map dataset36 with both Crescendo (Supplementary Figure 1B-C) and 

Seurat anchor integration33 (Supplementary Figure D-E). We then applied Crescendo on 

simulated gene expression data. To simulate a gene count distribution, we first simulated cells 

from different batches and cell types. We then simulated batch-specific and cell-type-specific 

gene expression rates to parameterize a Poisson distribution from which we sampled gene 

counts for each cell (Figure 1D-E, Methods). For this representative gene, we performed 

Crescendo integration and calculated the BVR and CVR metrics (Figure 1F-H). Over 10,000 

gene simulations, we observed that Crescendo dramatically decreased technical noise in 100% 
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of the simulated genes (BVR < 1), with 98.64% of those genes also exhibiting CVR >= 0.5 

(Supplementary Figure 1F).  

 

Crescendo corrects technical effects across serial sections in whole mouse brain 

We then designed an analysis to demonstrate the practical utility of Crescendo to correct 

gene expression, and by doing so, improve visualization of gene expression in physical space. 

We used a public spatial transcriptomics dataset of the mouse brain profiled by the Vizgen 

MERSCOPE platform36. We performed a standard scRNA-seq analysis pipeline39 to analyze 

and cluster three serial coronal slices (S3R1, S3R2, S3R3) from the same mouse brain that 

represent batches; in aggregate, this data contains in situ expression for 483 genes in 179,385 

segmented cells (Figure 2A). This dataset features inhibitory and excitatory neuronal subtypes, 

along with astrocytes, microglia, oligodendrocyte progenitor cells (OPCs), and endothelial cells 

(Figure 2B). Technical effects were variable, with certain cell types (e.g., inhibitory and 

excitatory neuronal subtypes) exhibiting greater levels of technical effects than others 

(Supplementary Figure 2A). In physical space, neurons tended to be well-organized, while cell 

types such as astrocytes and microglia were dispersed across the sections (Figure 2C, 

Supplementary Figure 2B).  

Because these slices represent a z-stack of serial sections in a similar area of the brain, 

we expected genes to be expressed at consistent levels across the slices (denoted as batch). 

However, we observed that several genes exhibited noticeable batch-related variance, though it 

tended to be smaller in magnitude compared to cell-type variance (Supplementary Figure 3A). 

To begin, we analyzed the effect of Crescendo on three genes that were cell-type specific: 

Gpr34 in microglia cells40,41, Rxfp142,43 in cortical excitatory neurons, and Epha844 in striatal 

inhibitory neurons. Each of these genes were subject to technical effects (Figure 2D, 2G, 

Supplementary Figure 4A-E). For each gene, we show that correction improves visualization 

for a gene by making expression more consistent across the slices. 
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We first looked at the gene Gpr34, which is predominantly expressed by microglia, a cell 

type that clustered together tightly in the UMAP (Figure 2B, Supplementary Figure 4A). 

However, in physical space, both microglia (Figure 2E) and the expression of Gpr34 (Figure 

2F) are spread out across the slices, making visualization challenging even when plotting 

Gpr34-expressing cells on top. This visualization is even worse in slice S3R1, which has overall 

lower expression (Figure 2D,2F). After using Crescendo to correct Gpr34 expression, we 

observed noticeably higher expression of Gpr34 in S3R1 at levels relative to the other two 

slices, and more even expression across all slices (Figure 2D, 2F).  

We next looked at the gene Rxfp1, which is predominantly expressed by Sstr2+ Sstr4+ 

excitatory neurons (Figure 2B, Supplementary Figure 4B). Here, we observed Rxfp1 

expression at similar maximal levels across all slices but noticed that many Sstr2+ Sstr4+ 

excitatory neurons in S3R1 had noticeably lower levels of Rxfp1 expression (Figure 2G-I). In 

physical space, we observed that Sstr2+ Sstr4+ excitatory neurons tended to cluster in specific 

layers of the cortex (Figure 2H), but visualization of Rxfp1 expression showed that expression 

was not consistent across these neurons in the same tissue (Figure 2I). Again, after using 

Crescendo to correct Rxfp1 expression, we observed more even expression across all slices 

while importantly not increasing expression in other cell types such as excitatory neurons in the 

other cortical layers (Figure 2G, 2I, Supplementary Figure 5A-B).  

Finally, we looked at the gene Epha8, which is predominantly expressed by some 

inhibitory neuron states (Figure 2B, Supplementary Figure 4C). Epha8 expression was also 

subject to technical effects, with low expression in slice S3R3 (Supplementary Figure 4C-E). 

After correction with Crescendo, we were again able to observe relatively even Epha8 

expression across all slices (Supplementary Figure 4D-E). 

Our analyses so far demonstrate the utility of Crescendo to improve gene visualization 

by ameliorating technical effects in three genes. We next quantified how well Crescendo 

removes technical effects while retaining biological variation in all 483 genes in the MERFISH 
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panel. We applied Crescendo to each gene and calculated the BVR and CVR metrics (Figure 

2J). Of the 483 genes, Crescendo produced a BVR < 1, CVR >= 0.5 in 408 genes. We next 

compared Crescendo’s ability to correct individual genes in this mouse brain spatial dataset to 

four representative state-of-the-art algorithms: ComBat-Seq, Seurat anchor integration, MNN, 

and limma (Methods). With the caveat that these methods were not explicitly intended to be 

used for this purpose, we observed that Seurat, MNN, and limma struggled to remove batch-

associated variation from gene expression (sometimes even increasing batch variation) or 

resulted in a dramatic decrease in biological cell-type variation (Figure 2J). Their poor 

performance is likely due to their assumptions of Gaussian structure in data rather than the 

count-based structure of gene expression. Of the 483 genes, ComBat-Seq, Seurat, MNN, and 

limma produced a BVR < 1, CVR >= 0.5 in 364, 142, 160, and 104 genes, respectively, 

compared to Crescendo’s 408 genes.  

 

Crescendo scales efficiently to millions of cells  

Single-cell datasets are increasing in size, with experiments regularly profiling 100,000+ 

cells per experiment, the creation of large single-cell atlases on the order of millions of cells, and 

spatial transcriptomics experiments potentially profiling 100,000+ cells per slice45,46. This leap in 

data size makes computational efficiency critical for gene-level correction. We tested the ability 

of Crescendo and other methods to scale to both many cells and many tissues by using an 

Immuno-oncology FFPE dataset produced by the Vizgen MERSCOPE platform37. The Immuno-

oncology dataset features a custom 500-gene panel designed to profile immune, stromal, and 

malignant cells across 9 different tissue types. This collection contains 7,020,548 post-QC cells 

across 16 individual slices spanning 8 tissue types (Methods).  

We first attempted to correct all 500 genes with each method (Supplementary Figure 

6A). ComBat-Seq, Seurat, and MNN failed to complete due to memory requirements while 

limma took 6.6 hours. Unlike alternative methods, Crescendo fits and corrects a gene 
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independent of others, which allows users to fit genes individually and reduces the risk of 

running into memory complications. Overall, Crescendo performed best by correcting all 500 

genes in 3.3 hours. For the sake of comparison, we also summed processing time across genes 

to simulate downsampling each gene individually (though this is unnecessary, Methods), which 

took 6.1 hours.  

In contrast with the alternative methods that use the information from all genes 

(removing a gene changes results), Crescendo allows users to correct genes independently and 

prioritize specific genes of interest. To better understand the scaling behavior of Crescendo 

based on the number of genes and cells corrected, we repeatedly corrected random samples of 

genes in increasingly larger subsamples of the 7 million cells. In each run, we corrected 1, 2, 5, 

10, or 50 random genes 100 different times for each subsample of 10K, 25K, 100K, 250K, 

500K, 750K, 1M, 2M, 3M, 4M, 5M, 6M, or all 7M cells (Methods). Impressively, Crescendo was 

able to consistently correct 50 genes across 7 million cells in less than 7 minutes 

(Supplementary Figure 6B. For each run, we also isolated the amount of time Crescendo 

takes to perform the downsampling, estimation, marginalization, and matching steps 

(Supplementary Figure 6C). Computational runtime for the downsampling step was dependent 

on the number of cells while runtime for the estimation step scaled relatively linearly based on 

the number of genes being corrected. The marginalization and matching steps also depended 

on the number of genes but scaled slightly better than linearly.  

We also performed singular runs of correcting all 500 genes at once for each dataset 

size. For all 500 genes at once, Crescendo was able to process a 3 million-cell dataset in ~22 

minutes (Supplementary Figure 6D); the estimation step ran into memory issues when fitting 

GLMs on dataset sizes of greater than 4 million. 
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Crescendo corrects technology effects by integrating paired colorectal cancer 

scRNA-seq and spatial transcriptomics datasets 

We hypothesized that Crescendo could be used to integrate and impute gene 

expression between non-spatial technologies, which captures the full transcriptome, and spatial 

technologies, which gives physical locations of transcripts. To demonstrate this, we used 

Crescendo to correct technology effects by integrating two human colorectal cancer (CRC) 

spatial transcriptomics slices with a CRC 10X scRNA-seq dataset38. The scRNA-seq dataset 

contains 69,153 cells from 29 CRC tissue samples while the two spatial transcriptomics slices 

(PFA_A6 and PFA_A11) were both generated from the same CRC tissue sample taken from a 

donor in the scRNA-seq dataset (Figure 3A, Methods). The two technologies share 477 

common genes, reflecting the small gene panels currently available to spatial transcriptomics 

datasets. Integrating these two technologies represents a more challenging scenario because 

the technology effects are noticeably larger than the batch effects between the spatial 

transcriptomics slices (Figure 3B, Methods). Human CRC tissue also contains much less 

organization than the highly structured quality of the brain, further complicating gene 

visualization. Moreover, cells in primary human tissue tend to be packed close to each other, 

making overplotting even more problematic. To address this, we plotted gene expression similar 

to the mouse brain section by plotting gene-expressing cells over non-expressing cells to 

represent a best-case scenario of visualizing gene expression across slices. 

Similar to the author-defined cell types in the scRNA-seq data, we identified epithelial 

cancer cells, fibroblasts, endothelial cells, T cells, B cells, plasma cells, and myeloid cells in the 

spatial transcriptomics slices (Figure 3C; Methods). In physical space, all cell types were 

relatively spread out, though some cell types such as epithelial cells and fibroblasts occasionally 

formed small aggregates. 
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After integrating the scRNA-seq data and spatial slices together with Harmony (Figure 

3B, Methods), we compared gene expression between the spatial slices and the scRNA-seq 

data; we observed several genes that were expressed in most cells of a cell type in the scRNA-

seq data but not well-expressed in that same cell type in the spatial transcriptomics slices. For 

instance, the gene MS4A1 (CD20) is a marker for B cells and was well-expressed in the scRNA-

seq data but was not expressed well in the spatial slices (Figure 3D). After Crescendo 

correction, we observed increased expression of MS4A1 in the spatial slices on a level more 

similar to the scRNA-seq data; this also provided easier visualization of MS4A1 expression in 

the spatial slices that was consistent with the locations of B cells (Figure 3D-F). We observed 

similar trends for the T-cell-specific gene CD3D. Unlike MS4A1, expression of CD3D was visible 

in physical space, but the level of expression is still lower than scRNA-seq (Figure 3I). After 

correction, we observed more even CD3D expression across all three datasets and 

strengthened CD3D expression, particularly in PFA_A6, in the spatial slices that was consistent 

with the locations of T cells (Figure 3G-I).  

Subsequently, we performed correction and calculated the BVR and CVR metrics on all 

477 genes in the CRC scRNA-seq and spatial datasets with Crescendo and the other 4 

benchmarking methods (Methods). We observed that of the 477 genes, 439 exhibited a batch 

variance greater than 0.001 (Supplementary Figure 3B, Methods). Of these 439 genes, 

Crescendo, ComBat-Seq, Seurat, MNN, and limma provided a BVR < 1, CVR >= 0.5 in 423, 

372, 78, 2, and 89 genes, respectively (Figure 3J). We had to plot on different scales since the 

ranges of BVR and CVR varied widely by method, with Seurat having the notably extreme 

maximum BVR of 30.  
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Integrating spatial transcriptomics gene expression facilitates the identification of 

spatial ligand-receptor interactions via gene-gene correlations 

We next looked at the spatial patterns of gene expression in physical space. A powerful 

aspect of single-cell spatial transcriptomics is the ability to simultaneously look at gene 

expression of a cell in the context of its physical neighbors. This view lets us hypothesize about 

potential interactions between neighboring cells through gene-gene interactions, particularly 

ligand-receptor interactions. To evaluate the ability of Crescendo to inform and improve the 

power to detect gene-gene interactions, we analyzed the correlation between a cell’s gene 

expression with that of its spatially neighboring cells.  

Many investigators want to find spatial patterns between genes in specific cell types of 

interest. Thus, in these analyses, we calculated a spatial cross-correlation index (SCI) between 

genes in a cell-type-aware manner (Methods). Briefly, we subsetted cells within a slice to two 

cell types; for cell-type 1, we identified its nearest neighbors within a 30m Euclidean distance 

that were from cell-type 2 and calculated their average gene expression to obtain a nearest-

neighbor expression matrix. We then correlated the cell-type 1 gene expression matrix with the 

nearest-neighbor expression matrix (that encodes their cell-type 2 neighbors). We repeated this 

procedure for all combinations of cell types in each slice independently. Two genes in two 

different cell types that share similar spatial expression patterns exhibit a positive SCI, dissimilar 

patterns exhibit a negative SCI, and an SCI of zero indicates no consistent spatial pattern 

between the genes (Figure 4A).  

Overall, we observed that for a majority of gene-gene pairs in a cell-type pair, the SCI 

did not noticeably change after correction; however, we did observe several pairs that had a low 

uncorrected SCI change to a higher corrected SCI (Figure 4B). We chose two such examples 

that are well-studied ligand-receptor pairs to observe how Crescendo correction affects both 

visualization and SCI.  
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First, we looked at how JAG2 expression in endothelial cells and NOTCH3 expression in 

fibroblasts formed spatial coherent patterns. Previous studies47 show that NOTCH3 signaling 

can drive transcriptional and spatial gradients in fibroblasts after interacting with Notch ligands, 

like Jagged-2, from vascular endothelial cells. In physical space, we observed areas of 

colocalization between endothelial cells and fibroblasts, and that the SCI for JAG2 in endothelial 

cells and NOTCH3 in fibroblasts was initially 0.276 in PFA_A6 and 0.361 in PFA_A11 (Figure 

4C). However, JAG2 expression in some cells was difficult to visualize due to technical effects. 

After correction with Crescendo, we observed more visible expression of JAG2 in endothelial 

cells in both slices, which made identification of colocalizing JAG2-expressing endothelial cells 

and NOTCH3-expressing fibroblasts easier (Figure 4C). Statistically, the SCI increased to 

0.324 in PFA_A6 and 0.379 in PFA_A11. 

Next, we looked at CCR3 expression in myeloid cells and expression of its ligand CCL11 

in fibroblasts, involved in the chemotaxis of leukocytes48,49 (Figure 4D). Notably, we observed 

that CCR3 was mainly expressed by a subset of myeloid cells, with much better expression in 

the spatial transcriptomics slices. Conversely, CCL11 expression was much higher in the 

scRNA-seq dataset. With technology-specific low expression of both genes, it was perhaps 

unsurprising that we saw low SCIs of 0.036 in PFA_A6 and 0.018 in PFA_A11, suggesting 

almost non-existent colocalization of these genes (Figure 4D). However, after correction with 

Crescendo, visualization of this gene-gene pair showed a modest increase in CCR3 expression 

in some myeloid cells and a dramatic increase in CCL11 expression such that areas where 

these genes colocalize are now visible (Figure 4D). Statistically, SCI noticeably increased to 

0.106 in PFA_A6 and to 0.080 in PFA_A11. We note that the lower SCI values for this gene-

gene pair is due to colocalization of these genes’ expression being limited to certain areas of the 

tissue while the JAG2-NOTCH3 pair was more ubiquitously expressed within the specified cell 

types. Overall, these results suggest that Crescendo can help recover spatial patterns that were 

previously obscured by technical effects. 
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We then looked at COL1A2 expression in fibroblasts and CXCL14 in myeloid cells, 

which have no previously known interactions. CXCL14 expression was noticeably low in both 

the spatial datasets and the scRNA-seq while COL1A2 was well-expressed primarily in the 

scRNA-seq dataset. With such low expression in both genes in the spatial datasets, the SCI 

was notably low in both slices: -0.009 for PFA_A6 and -0.004 for PFA_A11 (Supplementary 

Figure 7A-B). After correction, we observed that COL1A2 expression was noticeably increased 

in the spatial datasets but CXCL14 was still low; this resulted in a dramatically decreased SCI in 

both slices to -0.455 in PFA_A6 and -0.506 in PFA_A11 (Supplementary Figure 7B). 

Finally, we reasoned that if two cell types colocalize, then the SCI between their markers 

should be relatively high. Fibroblasts and T cells are abundant cell types in the spatial slices and 

visually appear close to each other in many areas (Supplementary Figure 7C). However, the 

SCI between a pair of their markers, FN1 in fibroblasts and CD3E in T cells, was relatively low 

at 0.024 in the first slice and 0.016 in the second (Supplementary Figure 7D). Visualization of 

these marker genes showed that the low spatial cross-correlation is explained by the low 

expression of these genes. After correction with Crescendo, we observed much more visible 

expression of both FN1 and CD3E in both slices (Supplementary Figure 7D) with an 

accompanying increase in SCI to 0.248 in the first slice and to 0.290 in the second slice.  

 

Discussion 

Identifying genes or features of interest is an important aspect of generating hypotheses 

from single-cell data. In spatial transcriptomics data, visualizing a gene’s spatial patterns can 

help infer the role of a gene in the function of a cell type and the localization of cell types to 

specific niches. Thus, it is important to correct and impute gene expression in order to 

accurately visualize it. Here, we introduced Crescendo, which accepts Harmony outputs and 

gene counts as input and returns corrected counts as output. We showed that Crescendo can 
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remove technical effects from a vast majority of genes in spatial transcriptomics data, which 

facilitated better visualization of the gene’s expression across tissue slices and overall gene 

spatial patterns. We also developed statistics, BVR and CVR, to quantify the performance of 

correcting genes and demonstrated that Crescendo outperforms alternative methods.  

Crescendo is scalable to millions of cells, which enables it to accommodate the large 

number of cells featured in modern single-cell spatial transcriptomic datasets50–53 and single-cell 

atlases7,54,55. We showcased Crescendo’s scalability by correcting genes in 7 million cells 

across 16 batches. We predict that spatial datasets will continually grow to incorporate more 

individuals and multiple samples from the same individual, thus making scalability even more 

important.   

We observed that identifying gene-gene interactions can be difficult if expression of one 

or both genes is too low. In many examples we showed, gene expression was good in at least 

one dataset, which helped rescue expression in the other datasets. However, if a gene is lowly 

expressed across all datasets, then correction and/or imputation will not rescue its expression. 

Poor expression of certain genes like cytokines can be observed in many technologies24,25,56–59, 

so investigators should consider how well a gene is expressed before attempting to use 

Crescendo correction to impute gene expression. 

Accurately correcting technical effects in fluorescence in situ hybridization (FISH)-based 

spatial datasets is challenging because cell segmentation is a significant challenge31,60–62. 

Inaccurate segmentation can erroneously assign certain transcripts to the wrong cell. Since the 

number of unique genes expressed and the transcripts per cell in spatial data tends to be 

significantly lower than scRNA-seq25,61, erroneous assignment of transcripts to a cell makes the 

data considerably noisier and accurate correction of genes more difficult. Indeed, in all spatial 

datasets we showcased, we observed several instances of a cell type containing transcripts of 

markers for other cell types (e.g., a B cell marker in T cells). Theoretically, segmentation could 

cause systematic errors in transcript assignments; for example, if B cells and T cells tend to 
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colocalize, there is a higher chance for their transcripts to be erroneously assigned amongst 

each other. If transcripts are systematically erroneously assigned, it is possible that correction 

and imputation may increase expression of an erroneous gene. We speculate that as 

segmentation performance increases, the effectiveness and accuracy of Crescendo correction 

should increase as well. 

The Crescendo framework has other potential applications because it models counts, 

which are present in data generated from other technologies. For example, Crescendo could 

theoretically correct counts for single-cell ATAC-seq data63–65 and genomic data. Integrating 

genomic counts may also be useful for quantitative trait loci (QTL) analyses66–68 if they are 

confounded by technical noise. Due to the visual benefits of correcting gene counts to be more 

even across datasets (or tissue slices), we envision that investigators will utilize Crescendo to 

aid in gene visualization and hypothesis generation in scRNA-seq or spatial transcriptomics 

datasets. 
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Main Figures 
 

 
Figure 1: Crescendo directly corrects gene expression. A, Harmony integrates on lower-

dimensional embeddings like principal components that are visualized with a 2-dimensional 

UMAP. B, Crescendo extends Harmony to correct gene expression, which can similarly be 

visualized in a UMAP. C, Spatial transcriptomics allows for visualization of gene expression in 

the context of cellular locations. Due to technical effects, gene expression can be poorly 

expressed and spatial patterns can be obscured. Crescendo infers the gene expression of a 

cell, which facilitates the visualization and spatial patten recognition of gene expression. D,E, 

Representative distributions of simulated gene expression before (D) and after (E) Crescendo 

correction. F,G, Batch-associated and cell-type-associated variance metrics before (F) 

correction and after (G) correction. H, Calculated batch-variance ratio and cell-type-variance 

ratio metrics based on F-G. 
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Figure 2: Crescendo facilitates visualization of genes across spatial transcriptomics 
datasets of serial sections from whole mouse brain tissue. A, The Vizgen MERSCOPE 
platform was used to assay three coronal mouse brain tissue slices36. B, Cell state 
classifications of cells based on marker genes. C, Spatial locations of broad cell types. D,G, 
Gene expression distributions across slices for Gpr34 (D) and Rxfp1 (G). E,H, Spatial locations 
of cell types with the highest expression Gpr34 (E) and Rxfp1 (H). F, I Gene expression 
visualizations in physical space before and after Crescendo correction for Gpr34 (F) and Rxfp1 
(I). J, Scatter plots of batch-variance ratio (BVR) and cell-type-variance ratio (CVR) metrics 
calculated for all 483 genes across 5 different integration algorithms. Purple dashed vertical line 
is at CVR = 0.5 and the purple dashed horizontal line is at BVR = 1. Red at BVR < 1 and CVR 
>= 0.5 is the target zone for genes that were corrected well. 
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Figure 3: Crescendo corrects technology effects between a colorectal cancer (CRC) 
scRNA-seq dataset and two CRC spatial transcriptomics samples. A, Colorectal cancer 
samples were assayed with scRNA-seq and spatial transcriptomics. These datasets shared 477 
genes B, UMAP embedding of cells from scRNA-seq and spatial transcriptomics before and 
after batch integration with Harmony (integration performed on a dataset variable where the 
scRNA-seq dataset and each spatial slice was considered a dataset). C, Broad cell type 
classification of cells and spatial locations of cell types in spatial slices (middle, right). D,G, 
Gene expression distributions across slices for MS4A1 (D) and CD3D (G). E,H, In these and 
following plots, scRNA-seq is plotted in UMAP space, while spatial slices are plotted in physical 
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space. Spatial locations of cell types with the highest expression of MS4A1 (E) and CD3D (H). 
F, I Gene expression visualizations in physical space before and after Crescendo correction for 
MS4A1 (F) and CD3D (I). J, Scatter plots of batch-variance ratio (BVR) and cell-type-variance 
ratio (CVR) metrics calculated for all 477 genes across 5 different integration algorithms. Purple 
dashed vertical line is at CVR = 0.5 and the purple dashed horizontal line is at BVR = 1. Red at 
BVR < 1 and CVR >= 0.5 is the target zone for genes that were corrected well. 
 
 
 

 

Figure 4: Crescendo correction increases ability to visualize and detect spatial gene-
gene correlations. A, Example schematics of gene-gene pairs that have a high spatial cross-
correlation index (SCI) and a low SCI. B, Comparison of SCIs for all fibroblast and myeloid cell 
gene-gene pairs before correction vs. after correction. C, In these and following plots, scRNA-
seq is plotted in UMAP space, while spatial slices are plotted in physical space. Spatial 
locations of fibroblasts and endothelial cells (top). Gene expression visualization of JAG2 in 
endothelial cells and NOTCH3 in fibroblasts (bottom). SCIs are listed for each spatial sample 
before and after correction. D, Spatial locations of myeloid cells and fibroblasts (top). Gene 
expression visualization of CCR3 in myeloid cells and CCL11 in fibroblasts (bottom). SCIs are 
listed for each spatial sample before and after correction.  
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Supplementary Figure Legends 

Supplementary Figure 1: Downsampling and simulation results from Crescendo. A, 
Comparison between model estimates for a gene when fit on full or downsampled data – outlier 
is the intercept, while other values are variable coefficients. B, Example gene distribution for a 
gene that exhibits a low (good) BVR after correction. C, Example gene distribution for a gene 
that exhibits a high CVR (good) after correction, where only the proper cell type (microglia) is 
corrected, and no other cell types gain expression. D, Example gene distribution for a gene that 
exhibits a high (bad) BVR after correction, where batch effect actually increases. E, Example 
gene distribution for a gene that exhibits a low CVR (bad) after correction, where other cell 
types erroneously gain expression of a gene and reduces the marker potential of a gene. EF, X-
Y plots of BVR and CVR metrics calculated for all 10,000 simulated genes when correcting with 
Crescendo. Purple dashed vertical line is at 0.5 and the purple dashed horizontal line is at 1. 
Red shaded box encompasses all points with BVR < 1 and CVR >= 0.5, the target zone for 
genes that were corrected well. 

Supplementary Figure 2: Technical effects in the mouse brain coronal sections and cell 
type spatial locations. A, UMAP of cells from all three sections before and after Harmony 
integration. B, Spatial locations of cell types in the S3R1 slice; because the other slices are 
serial sections, the locations of most cell types are similar in the other slices.  

Supplementary Figure 3: Cell-type variance and batch variance contributions for each 
gene. A, Each dot depicts a gene. This plot compares the batch variance and cell-type variance 
for each gene from the mouse brain dataset. Purple dashed line has a slope of 1. B, Each dot 
depicts a gene. This plot compares the batch variance and cell-type variance for each gene 
from the integrated colorectal cancer (CRC) scRNA-seq dataset and the two CRC spatial 
transcriptomic slices. Purple dashed line has a slope of 1.  

Supplementary Figure 4: Mouse brain dataset gene expression in UMAP space and 
relevant visualizations of the gene Epha8 and Rxfp1. A-C, Gene expression visualizations of 
Gpr34, Rxfp1, or Epha8 in UMAP space before and after gene expression correction with 
Crescendo. D, Gene expression distributions of Epha8 across slices. E, Spatial locations of 
Epha8-expressing cells and gene expression visualizations in physical space before and after 
Crescendo correction. 
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Supplementary Figure 5: Crescendo scales to millions of cells. A, Total runtime for 
correcting 500 genes in 7 million cells across 5 integration algorithms. Crescendo was run on 
genes individually, either downsampling once (Crescendo_Down1) or for downsampling 
independently for each gene (Crescendo_DownAll). Methods labeled "Failed to finish" failed 
due to computational memory restraints. B, Total runtime for Crescendo across a range of 
dataset sizes and number of genes. Genes were randomly selected for correction; each pair of 
dataset size and gene number was run 100 times to estimate the average time it takes to 
correct. Points denote the average runtime and error bars denote standard deviation. C, 
Runtimes for the downsampling, estimation, marginalization, and matching steps for the runs 
described in panel B. D, Runtimes for running Crescendo on all 500 genes at once. 

Supplementary Figure 6: Visualizations of the gene TRAC in the integrated CRC scRNA-
seq and spatial datasets. A, Gene expression distributions of TRAC across the scRNA-seq 
dataset and the two spatial transcriptomic slices. B, Spatial locations of T cells. C, gene 
expression visualization of TRAC in physical space before and after Crescendo correction. 

Supplementary Figure 7: Crescendo correction improves gene expression visualization 
and uncovers gene spatial patterns. A, In these and following plots, scRNA-seq is plotted in 
UMAP space, while spatial slices are plotted in physical space. Spatial locations of myeloid cells 
and fibroblasts. B, Gene expression visualization of COL1A2 in fibroblasts and CXCL14 in 
myeloid cells. SCIs are listed for each spatial sample before and after correction. C, Spatial 
locations of fibroblasts and T cells. D, Gene expression visualization of FN1 in fibroblasts and 
CD3E in T cells. SCIs are listed for each spatial sample before and after correction.  
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Methods 

1. Crescendo 

1.1 Overview 

The Crescendo algorithm extends the Harmony algorithm to perform integration on gene 

count distributions. Harmony performs integration on a lower-dimensional latent space such as 

principal components and assumes the input data is Gaussian. In brief, Harmony performs 

iterative soft clustering to group similar cells across batches/samples/datasets and calculates 

cell-type-specific correction factors. Crescendo is applied to genes individually. It takes as input 

the count of that gene (xi) and their batch assignments (ɸi) for each cell i. Crescendo also 

utilizes Harmony cluster soft-cluster assignments (Ri,j) which is a number between 0 and 1 

representing the probabilistic membership of cell i in cluster j (though any cluster assignment is 

theoretically compatible with the Crescendo framework). The output of Crescendo is a corrected 

gene count (xi*) for each cell i. After integrating cells from multiple batches into a shared low 

dimensional embedding with the Harmony algorithm, Crescendo builds an 'observed' Poisson 

generalized linear mixture model (GLMM) of a gene that includes both latent biological (cell-

type) and batch variation. To infer a batch-free model, Crescendo analytically integrates this 

GLMM. The observed and batch-free models are each used to parameterize Poisson 

distributions that represent probability distributions for observing a specific count. Finally, we 

utilize inverse cumulative distribution function (CDF) mapping to sample a new batch-free count 

for each cell under the batch-free model that has an equal likelihood to the observed count 

under the observed model. Implementations of Crescendo are available as part of an R 

package at https://github.cmo/immunogenomics/crescendo. 

We chose to use the Poisson distribution instead of a Gaussian linear model, as linear 

models tend to produce inflated corrected counts; this is because many observed gene counts 

are 0. Count-based distributions such as Poisson and Negative Binomial more accurately fit the 
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count-based nature of single-cell data. For most genes, we observe that gene expression within 

a cell-type and within a batch tends to be poisson distributed, even if the overall gene 

expression distribution is more complex. As a result, we fit Poisson GLMMs. 

1.2 Fitting Poisson gene count models 

To build an intuition for Crescendo, we first start with modeling and removing batch 

effects for one gene in one cell type. 

To fit a Poisson generalized linear model for a gene, we fit the counts for cell i as the 

dependent variable in order to obtain a rate (𝝻i). By default, we fit latent biological (cell-type) and 

batch terms, in addition to fitting the total number of unique molecular identifiers per cell (nUMI) 

as an offset. We interpret latent biological variation as wanted variation (X i), while we interpret 

batch variation as unwanted variation (Yi). For simplicity, we assume that X and Y are 

independent. We explicitly fit unwanted variation variables (Yi) as random effects, which model 

coefficients as a normal distribution centered at 0 with an empirically derived variance. Potential 

candidate variables for unwanted variation include different batches, samples, datasets, 

technologies, and fields-of-view (spatial). We note that investigators may want to keep certain 

the variation that derives from intended experimental categories, such as the variation from 

stimulations or time points; such variables would be included as wanted variation (Xi) instead. 

Overall for a gene, we fit the following observed model: 

 

𝝻i = nUMIi * exp(Xi𝛽 + Yi𝛄) + 𝟄i        (1) 

 

Where 𝛽 and 𝛄 represent fitted coefficients for the wanted and unwanted variation terms 

respectively, and 𝟄 represents additive residuals. Since unwanted variation terms are fitted as a 

random effect, it follows that for M unwanted variation terms their distribution is: 
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𝛄 ~ N(0, 𝞂2)          (2) 

 

Where sigma is an empirically-derived variance from fitting the GLMM. 

 

Equation (1) is equivalent to: 

 

𝝻i = nUMIi * exp(Xi𝛽) *exp(Yi𝛄) + 𝟄i       (3) 

 

Fitting equation (3) gives the observed model. For each cell, the left-hand-side (LHS) of 

equation (3) is based on their batch and cell-type identity, which is then used in the 

marginalization and matching steps. To fit equation (3), we used the "glmnet" function from the 

R package "glmnet" with parameters alpha = 0, lambda = NULL, family = "poisson". We take the 

first column of coefficients from the results as the estimated gene expression coefficients (right-

hand-side of equation 3). 

1.3 Correcting for batch effects with marginalization 

We frame "correcting" for a categorical batch variable as marginalizing over that 

variable. Since we want to marginalize the effect of unwanted variation (Yi), we take the 

expectation over Y. Taking the expectation of equation 3 gives: 

 

EY[𝝻i] = EY[nUMIi * exp(Xi𝛽) * exp(Yi𝛄)] + EY[𝟄i]     (4) 

 

Since nUMI is a constant and we assumed that X and Y are independent, equation (4) simplifies 

to: 

 

EY[𝝻i] = EY[nUMIi] * EY[exp(Xi𝛽)] * EY[exp(Yi𝛄)] + EY[𝟄i]    (5) 
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Only the third term depends on Y, so the expectations of the other terms are the terms 

themselves: 

 

EY[𝝻i] = nUMIi * exp(Xi𝛽) * EY[exp(Yi𝛄)]+ 𝟄i      (6) 

 

From equation 2, we see that exp(𝛄) yields a lognormal distribution with a known expectation, 

which allows us to analytically calculate the expectation: 

 

EY[exp(𝛄)] = exp(𝝻𝛄 + 𝞂2
𝛄 / 2)        (7) 

 

Furthermore, since we fit modeled 𝛄 as a random effect, 𝝻𝛄 = 0. With this and substituting 

equation (7) into equation (6), we obtain a final marginalized model: 

 

EY[𝝻i] = nUMIi * exp(Xi𝛽) * exp(𝞂2
𝛄 / 2) + 𝟄i      (8) 

 

Which simplifies into the following linear transformation: 

 

EY[𝝻i] = nUMI * exp(Xi𝛽 + (𝞂2
𝛄 / 2)) + 𝟄i      (9) 

 

Let 𝝻i* represent the fitted rate of a gene (left-hand side) under the batch-free model described 

in equation 9; that is, let 𝝻i* = EY[𝝻i]. We finally obtain 

  

 𝝻i* = nUMI * exp(Xi𝛽 + (𝞂2
𝛄 / 2)) + 𝟄i       (10) 
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1.4 Sampling corrected counts with inverse cumulative distribution function (iCDF) 

mapping 

After obtaining an observed model and a batch-free model for a gene, we use these 

models to calculate a corrected count for each cell. Let xi be the observed gene count and xi* be 

the corrected count for a cell i. Using the fitted GLMMs from the observed model and the batch-

free model, we calculate fitted rates for each cell i: 𝝻i from the observed model (equation 3), and 

𝝻i
* from the batch-free model (equation 10). We use 𝝻i and 𝝻i* each to parameterize Poisson 

distributions for each cell i, which represent the probabilities of specific counts. We want to find 

a corrected count x* under the batch-free model (batch-free Poisson distribution) that has an 

equal probability of obtaining the observed count x under the observed model (observed 

Poisson distribution): 

 

Pr(X ≥ xi | 𝝻i) = Pr(X ≥ xi* | 𝝻i*)       (11) 

 

To calculate these probabilities, we calculate each distribution’s cumulative distribution function 

(CDF). With the CDFs of each distribution, fitted values for 𝝻i and 𝝻i*, and the observed count xi 

in a cell i, we want to find an xi* that satisfies equation 11. Let  

 

F(x) = Pr(X ≥ xi* | 𝝻i*)          (12) 

 

be the cumulative distribution function of the batch-free model. We use the inverse cumulative 

distribution function, or the quantile function, F-1(x*) to sample a corrected count xi* for each cell 

i. The quantile function returns a specific value that would have F(x) return a corresponding 

specific probability. We use this function to find a corrected count such that: 
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 xi* = F-1(Pr(X ≥ xi | 𝝻i))         (13) 

 

where xi* is the corrected count, xi is the observed count, and 𝝻i is the fitted rate in the observed 

model from equation 3. 

1.5 Formalizing the Poisson framework as a mixture model  

Crescendo corrects for cell-type specific batch effects. If all cell types were known a 

priori, we would simply apply the model above separately to each cell type. Importantly, we 

don’t assume perfect cell-type knowledge a priori and instead estimate latent variables that 

represent biological variation. These estimates are derived from the iterative soft clustering 

steps performed in Harmony. Because each cell is assigned probabilistically to each latent 

variable (i.e. soft clustering), we must model the effect of all cell types together. This is naturally 

formalized with a mixture model framework, similar to Harmony.  

In this manuscript, we fit genes as mixture models that utilize the Harmony soft-cluster 

assignments (though we note that this framework is fully compatible with discrete cluster 

assignments). Fitting mixture models allows us to incorporate latent biological (cell-type) 

variation by fitting term coefficients for each cluster at the same time. Given K soft clusters, the 

GLMM in equation 3 is modified to have K beta (𝛽) and K gamma (𝛄) terms. Conceptually, this 

is similar to fitting the wanted variation variables (Xi) and the unwanted variation variables (Yi) 

for each cluster (though as previously stated, all of these terms are being fitted together due to 

soft cluster probabilities). The equation is modified to the following:  

 

𝝻i = nUMIi * exp(Xi𝛽K) * exp(Yi𝛄K) + 𝟄i       

 (14) 
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For the batch-free model in equation 10, we similarly incorporate the mixture model framework 

to give the following: 

 

𝝻i* = nUMI * exp(Xi𝛽K + (𝝨𝞂2
𝛄|K / 2)) + 𝟄i      (15) 

 

1.6 Incorporating gene imputation with offsets 

For imputation, the Poisson framework includes an offset representing exposure time, 

which is represented as the number of unique molecular identifiers (nUMIs) measured in a cell. 

This provides a natural framework to impute counts for a cell by fitting models in a context with 

higher-than-observed counts (e.g. sampling a cell’s corrected gene counts in a context of 

10,000 UMIs). 

The Poisson framework allows for the use of an offset term that represents exposure 

time, and is essentially fit as a fixed effect with a coefficient of 1. To fit the observed model in 

equation (3), we use the observed number of unique molecular identifiers (nUMI) of each cell for 

the offset. If users do not want to perform imputation in addition to correction, we also fit 

equation (10) with the observed nUMI.  

Intuitively, we believe that it can be helpful to infer corrected counts for all cells in an 

equal UMI context, which allows for cell’s corrected counts to be inferred under equal exposure. 

That is, for calculating the final rates 𝝻i and 𝝻i*, we use a constant nUMI instead of the observed 

nUMI. Note that for fitting the original GLMM, we still use the observed nUMI. Let cnUMI be a 

constant vector of length i. Then for imputation, equations 14 and 15 are modified as follows:  

 

𝝻i = cnUMIi * exp(Xi𝛽K) * exp(Yi𝛄K) + 𝟄i       (16) 

𝝻i* = cnUMI * exp(Xi𝛽K + (𝝨𝞂2
𝛄|K / 2)) + 𝟄i      (17) 
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If users wish to impute at higher nUMI depths, then the constant value in cnUMI can be 

increased. For the results in this manuscript, we perform imputation under a constant nUMI 

context. The constant used is dataset-dependent, and is generally the median nUMI across all 

of the cells in the dataset. 

1.7 Batch and cell-type aware downsampling 

Single-cell studies now often include more than 100,000 cells, while spatial 

transcriptomics datasets that include multiple slices may include millions of cells. While fitting 

count-based models for gene expression is more accurate than Gaussian models, they can take 

substantially longer to fit, especially as the dataset size increases. Furthermore, users may 

desire to fit more than one gene, which can mean fitting multiple models across millions of cells. 

To reduce the required computational resources and time for fitting, we allow users the option to 

downsample their data in a batch and cell-type aware manner. This downsampling is only for 

the purposes of fitting the GLMM for a gene, which constitutes the bulk of the computational 

runtime in Crescendo - all cells will be sampled corrected counts regardless of whether 

downsampling was utilized. 

For downsampling in a batch and cell-type aware manner, we designate a minimum 

number of cells m so that we do not downsample too few cells. In this manuscript, we 

downsample the input dataset such that there are at least m cells within each cell-type within 

each batch in the downsampled dataset. If there are fewer than m cells within a cell-type within 

a batch, all cells of that type are kept. For more complicated data structures such as nested 

batch structures, we suggest downsampling such that the lowest-level groups have at least m 

cells; these would require a custom downsampling function depending on the data structure. By 

default, we utilize Harmony soft-cluster assignments, which means that a cell may have 

membership in multiple clusters. For the purposes of downsampling, we assign each cell a 
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discrete cell-type label by creating a probability distribution from its soft-cluster membership 

probabilities, and then we sample a cluster label from this distribution.  

We allow users to specify a proportion, which proportionally downsamples the number of 

cells within a cell-type within a batch (e.g. a proportion of 0.25 will try to sample 25% of cells in a 

cell-type in a batch, unless there are fewer than m such cells). In general, we tended to fit on 

around 20,000 cells total for each dataset. By default, we set m = 100, but it is likely that fewer 

cells are required to obtain relatively similar coefficients to the full dataset. 

 

2. Calculating batch-variance ratios and cell-type variance ratios for performance 

metrics 

In scRNA-seq, the performance of an integration algorithm is often evaluated by how 

they change the structure of the data in a low-dimensional latent space. Typically, integration 

algorithms increase the diversity of batches in a local area of the latent space, which is 

quantified with a metric. Because these latent spaces are summarizations of many genes, we 

cannot directly apply previously created metrics to quantifying integration performance in a 

single gene. Thus, we now describe two metrics which can be used to evaluate the performance 

of integration in genes. 

Effective batch effect correction of gene expression must meet two objectives: (1) 

remove differences (variation) between cells of the same cell type that are driven by technical 

factors such as batch and (2) preserve the biologically meaningful differences in gene 

expression among cell types. With these objectives in mind, we developed two metrics that 

each address one of these objectives. The first metric, which we call the batch-variance ratio 

(BVR), quantifies how much batch effect was removed from a gene count distribution after 

correction, while the second metric, cell-type-variance ratio (CVR) quantifies the preservation of 

cell-type variation after correction.  
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To calculate the BVR and CVR metrics, we fit Poisson generalized linear models (GLMs) 

that estimate the batch variance and the cell-type variance present in a given count distribution. 

We calculate these variances by fitting batch and cell-type as independent random effects, as 

well as an independent interaction term between batch and cell-type to estimate cell-type-

specific batch variance. In practice, we utilize user-defined discrete clusters (e.g. T cell, B cell). 

To fit Poisson GLMs, we used the R package "presto", which utilizes the "glmer" function from 

the R package "lme4". For the the observed counts X, we fit the following formula: 

 

 X ~ 1 +  (1|cell_type) + (1|batch) + (1|cell_type:batch)    (18) 

 

For the corrected counts X*, we similarly fit: 

 

 X* ~ 1 +  (1|cell_type) + (1|batch) + (1|cell_type:batch)    (19) 

 

For fitting the Poisson GLMs  in equation 18 and 19, we use the observed nUMI for cells 

as the offset.  

To calculate the BVR, we obtain the variance estimates for the batch, and cell-type-

specific batch terms. For simplicity, we calculate the overall batch variance estimate as the sum 

of the cell-type-specific batch and batch estimates. We obtain an overall batch-variance 

estimate from the corrected counts based on equation 19 in the same way. Let Bpre be the pre-

correction batch-variance estimate obtained from equation 18 and let Bpost be the post-

correction batch-variance estimate obtained from equation 19. We calculate BVR as: 

 

 BVR = (Bpost / Bpre)         (20) 
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In a similar manner, we obtain cell-type variance estimates from both equation 18 and 19. Let 

Cpre be the pre-correction cell-type-variance estimate from equation 18 and let Cpost be the post-

correction cell-type-variance estimate from equation 19. We calculate CVR as: 

 

 CVR = (Cpost / Cpre)         (21) 

 

The BVR metric quantifies how much batch-related variance was removed after correction, 

while the CVR metric quantifies how much cell-type-related variance was preserved after 

correction. Based on the two objectives we outlined at the beginning of this section, ideal 

correction will decrease batch variance resulting in a BVR < 1, while preserving or increasing 

cell-type variance resulting in a CVR >= 1. In practice, integration  usually features a trade-off - 

the more aggressively batch effects are removed, the more cell-type variance tends to be 

removed (although sometimes cell-type variance is also increased if a gene becomes more 

specific to a cell-type after correction). Empirically, a CVR >= 0.5 was a reasonable trade-off if 

the BVR was lowered. 

We also note that the batch-related variance value before correction may be a useful 

value for users, as it can help determine which genes have higher levels of batch effects and 

might need correction. 

 

3. Gene count simulations 

We simulated gene count distributions by sampling from Poisson distributions 

parameterized by different rates based on the cell-type or batch a cell is from. To simulate a 

single gene, we designate the number of batches, as well as the number of cells we will 

simulate for each cell type per batch. Each cell belongs to one cell type and one batch. We then 

arbitrarily set a base rate for each cell type (e.g. a rate of 1 for cell-type 1 and a rate of 3 for cell-

type 2). To simulate batches, we sampled a batch-specific rate for each batch from a standard 
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normal distribution, and then centered all batch-specific rates around 0. For simplicity and 

visualization, we simulated from two cell types in two batches, though this framework is 

compatible with an arbitrary number of cell types and batches. After sampling batch-specific 

rates, we add them to the base rate for each cell type. for example, batch 1 will add a batch-

specific rate of 0.405 to cell-type 1's rate of 1 to result in a unique rate of 1.405, while batch 2 

will add a batch-specific rate of -0.405 to cell-type 1's rate of 1 to result in a unique rate of 

0.595. Thus, each cell type within each batch has its own unique rate that represents a batch 

effect. 

We then assign each cell membership a probability membership for each cell type, 

which represents soft-cluster membership. For two cell types, we sampled from a beta 

distribution parameterized with ɑ = 0.5, β = 0.5 to get the probability p of a cell belonging to one 

cell-type; to calculate the probability q or  a cell belonging to the other cell-type, we simply take 

1-p. We also set each cell to have the same constant number of unique molecular identifiers 

(nUMI), though this framework is compatible with variable nUMIs (recommend sampling from a 

lognormal distribution). 

We then created a design matrix that contains the cell-type probabilities and the batch 

identities of each cell, and then matrix-multiplied the design matrix with a matrix containing the 

batch-specific rates for each cell type. After, we multiplied the resulting product with a matrix 

containing the cell-type probabilities to recover a rate for each cell based on its batch and cell-

type identity. To represent read depth, we add a log-transformed nUMI constant to each cell’s 

rate (in our simulations, we set the constant for each cell to be equal at 10,000). Finally, we use 

the resulting rates to parameterize a Poisson distribution for each cell, which we then sample a 

count from. 

For Supplementary Figure 1F, we simulated 10,000 genes, with the base cell-type 

rates set at 1 for cell-type 1 and 3 for cell-type 2. 
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4. Plotting gene expression visualizations 

To plot gene expression across batches, we utilize the "facet_wrap" function from the R 

package "ggplot2". This function allows us to visualize the same gene's expression across all 

batches together on the same scale. For visualization purposes, we plot cells that express a 

gene on top of other cells that don't express the gene. This represents a best-case scenario in 

which we should be able to see every instance of gene expression, and is extremely forgiving if 

the gene is poorly expressed. In practice, most visualization of data is performed with cells 

being randomly mixed such that gene-expressing cells are not always on top. In such scenarios, 

we observed that Crescendo dramatically improves visualization even more than the best-case 

scenario, which is already a significant improvement. 

 

5. Benchmarking and comparison to other algorithms 

To perform benchmarking in Figure 2 and Figure 3, we compared Crescendo with the 

following algorithms: ComBat-Seq, Seurat anchor integration, limma, and mutual nearest-

neighbors (MNN) correction. 

To perform integration with ComBat-Seq, we used the "ComBat_seq" function from the 

R Bioconductor package "sva" with default parameters. ComBat-Seq is designed to fit and 

output counts, so we calculated BVR and CVR metrics based on fitting Poisson models of the 

raw gene expression counts and the ComBat-Seq corrected gene expression counts (Section 

2). 

For integration with Seurat, we used Seurat version 4.3.0 in R. For each batch, we 

created a Seurat object and normalized them with the "NormalizeData" function. We then 

integrated the datasets with the "FindIntegrationAnchors" and "IntegrateData" functions with 

default parameters and dims = 1:20. To access corrected counts from the integration, we 

accessed the object's "@assays$integrated@data" slot. Seurat's integration works on 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2024. ; https://doi.org/10.1101/2024.03.07.583997doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.07.583997
http://creativecommons.org/licenses/by-nc-nd/4.0/


 38 

normalized gene expression and returns gene expression in a similar normalized space, so we 

calculated BVR and CVR metrics based on fitting Gaussian models of the normalized gene 

expression counts and the Seurat-corrected counts (Section 2). 

For limma, we used the "removeBatchEffect" function from the R package "limma" with 

default parameters. Limma's integration works on normalized gene expression and returns gene 

expression in a similar normalized space, so we calculated BVR and CVR metrics based on 

fitting Gaussian models of the normalized gene expression counts and the limma-corrected 

counts (Section 2). 

For MNN, we used the "fastMNN" function from the R package "batchelor" with default 

parameters. MNN's integration works on cosine-normalized gene expression and returns gene 

expression in a similar normalized space, so we calculated BVR and CVR metrics based on 

fitting Gaussian models of the cosine-normalized gene expression counts and the MNN-

corrected counts (Section 2). 

 

5. Vizgen Mouse Brain Receptor analysis details 

We downloaded the Vizgen Mouse Brain Receptor metadata and count matrices from 

the Vizgen Data Release Program. This dataset contains a panel of 483 genes. For Figure 2, 

we subsetted the data to only include cells from slice 3 (S3R1, S3R2, S3R3), which represent 

serial sections from the same mouse brain (186,910 total cells). Following Vizgen 

recommendations, we filtered out cells with fewer than 50 total expressed transcripts or fewer 

than 50 uniquely expressed genes, resulting in 179,385 remaining cells: 53,269 from S3R1, 

64,476 from S3R2, and 61,640 from S3R3. For the following steps, we used all 483 genes. We 

library-normalized cells with standard llog-normalization with the median read counts as the 

scale factor, and scaled genes with z-score scaling. We then utilized PCA to reduce the 

dimensionality of the data to the top 20 PCs, and performed integration with the Harmony 

algorithm. To cluster cells, we utilized Leiden clustering with resolution = 0.2. Finally, we used 
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Crescendo to correct all genes using S3R1, S3R2, and S3R3 as batches. We used the 

observed nUMI as the initial offset, and then used the median nUMI as the final offset for 

imputation. For visualization in physical space, we rotated each slice's coordinates such that 

they are in the same orientation. 

 

6. Scalability analysis 

For the scalability analyses, we utilized the public Vizgen FFPE Immuno-oncology 

dataset. We downloaded the metadata and count matrices from the Vizgen Data Release 

Program. This dataset contains a panel of 500 genes measured on 16 human cancer samples 

across 9 different tissue types (~8.7M total cells). Following Vizgen recommendations, we 

filtered out cells with fewer than 50 total expressed transcripts or fewer than 50 uniquely 

expressed genes, resulting in 7,020,548 remaining cells. We library-normalized cells with 

standard log-normalization with the median read counts as the scale factor, and scaled genes 

with z-score scaling. We then utilized PCA to reduce the dimensionality of the data to the top 20 

PCs and performed integration the Harmony algorithm. To correct with Crescendo, we used 

sample identity (Lung Sample 1, Lung Sample 2, Liver Sample 1, etc.) as batches. We used the 

observed nUMI as the initial offset, and then used the median nUMI as the final offset for 

imputation.  

To accommodate the large memory required to load this dataset, integration and 

scalability analyses on this dataset were run on a server containing 24 cores and 128GB of 

RAM for all algorithms. 
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7. Integrated colorectal cancer (CRC) scRNA-seq and spatial transcriptomics 

analysis 

For the CRC scRNA-seq dataset, we downloaded the metadata and count matrices from 

GEO: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE178341. We first filtered for only 

cells from SPECIMEN_TYPE = T (cells taken from tumor samples) and SINGLECELL_TYPE = 

SC3Pv3 (only cells assayed with 10X v3), which resulted in 90,312 remaining cells. We further 

QCed to keep only cells that featured a total nUMI from 30-2000 counts and expression in at 

least 10 unique genes, resulting in 86,627 cells. Spatial samples were taken from one of the 

donors in this dataset – we kept all donors in this datatet as the spatial donor only had ~1,600 

scRNA-seq cells. 

The spatial transcriptomics tissues were produced in collaboration with Vizgen. These 

tissues derive from the same patient sample, which is also represented in the scRNA-seq data. 

Segmentation was performed with Baysor.  

After combining scRNA-seq and spatial data, we library-normalized cells with standard 

log-normalization with the median read counts as the scale factor, and scaled genes with z-

score scaling. We then utilized PCA to reduce the dimensionality of the data to the top 20 PCs 

and performed integration with the Harmony algorithm. To cluster cells, we utilized Leiden 

clustering with resolution = 0.1. To perform correction with Crescendo, we represented scRNA-

seq as its own batch and the two spatial transcriptomics slices as their own individual batch 

(scRNA-seq, PFA_A6, and PFA_A11 were the batches). We used the observed nUMI as the 

initial offset, and then used the median nUMI as the final offset for imputation.  

 

8. Spatial cross-correlation index (SCI) calculations  

To calculate an SCI in a cell-type-aware manner, we first subsetted a spatial 

transcriptomic dataset's count matrix to two (user-specified) cell types. We then calculated the 
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30 nearest-neighbors for each cell (excluding itself) with the "nn2" function from the R package 

"RANN" and retrieved a sparse distance matrix from the nn2 output with the "getDistMat" 

function provided by Crescendo. We next removed a cell's neighbors if they are the same cell-

type (by setting its value to 0 in the distance matrix). We then removed neighbors with a 

distance > 30m from the cell. Finally, we binarized the matrix by setting all non-zero values to 

1. This binarized matrix (K) contains information on whether another cell is a nearest-neighbor, 

a different cell type, and within a distance of 30. Thus, for a cell-type 1, we have its nearest-

neighbors from cell-type 2 and vice-versa.  

We then take the subsetted raw gene count matrix and log-normalize the counts with the 

median nUMI as the scale factor to produce a normalized gene counts matrix X. Then, we 

matrix-multiplied the raw gene count matrix with the binarized matrix (K) to produce a 

normalized gene nearest-neighbors gene counts matrix (XK). Thus, X contains the gene 

expression of cells while XK contains the gene expression of that cell's nearest neighbors from 

the other cell type. Finally, we use the "cor" function from base R with X and XK as input and 

with default parameters to obtain the correlations for each gene-gene pair. SCI calculations 

were performed in each slice independently. 

Two genes that share similar spatial expression patterns will exhibit a higher SCI, while 

two genes whose spatial patterns are not correlated with exhibit a low SCI. 
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Data availability 

All datasets except for the colorectal cancer (CRC) spatial transcriptomics tissues are publicly 

available through online sources. CRC spatial tissue data will be made publicly available in a 

future publication. 

 

Code availability 

Crescendo will be made available as an R package on 

https://github.com/immunogenomics/crescendo, along with a vignette to correct gene 

expression. 
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