

***In silico* genomic surveillance by CoVerage predicts and characterizes SARS-CoV-2 Variants of Interest**

K. Norwood^{*,1,2}, Z.-L. Deng^{*,1}, S. Reimering^{*1}, G. Robertson¹, M.-H. Foroughmand-Araabi^{1,2}, S. Goliae^{1,2}, M. Hölzer³ and A. C. McHardy^{1,2,4}

¹Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany

²Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany

³Genome Competence Center (MF1), Robert Koch Institute, Berlin, Germany

⁴Deutsches Zentrum für Infektionsforschung (DZIF), Braunschweig, Germany

^{*}These authors contributed equally to this work

Correspondence to A.C. McHardy: amc14@helmholtz-hzi.de

15 Abstract

16 Rapidly evolving viral pathogens such as SARS-CoV-2 continuously accumulate amino acid changes,
17 some of which affect transmissibility, virulence or improve the virus' ability to escape host immunity. Since
18 the beginning of the pandemic and establishment of SARS-CoV-2 as a human pathogen, multiple lineages
19 with concerning phenotypic alterations, so called Variants of Concern (VOCs), have emerged and risen to
20 predominance. To optimize public health management and to ensure the continued efficacy of vaccines,
21 the early detection of such variants of interest is essential. Therefore, large-scale viral genomic surveillance
22 programs have been initiated worldwide, with data being deposited in public repositories in a timely manner.
23 However, technologies for their continuous interpretation are currently lacking. Here, we describe the
24 CoVerage system (www.sarscoverage.org) for viral genomic surveillance, which continuously predicts and
25 characterizes novel and emerging potential Variants of Interest (pVOIs) from country-wise lineage
26 frequency dynamics together with their antigenic and evolutionary alterations utilizing the GISAID viral
27 genome resource. In a comprehensive assessment of VOIs, VOCs and VUMs identified, we demonstrate
28 how CoVerage can be used to swiftly identify and characterize such variants, with a lead time of almost
29 three months relative to them reaching their maximal abundances. CoVerage can facilitate the timely
30 identification and assessment of future SARS-CoV-2 variants relevant for public health.

31 Introduction

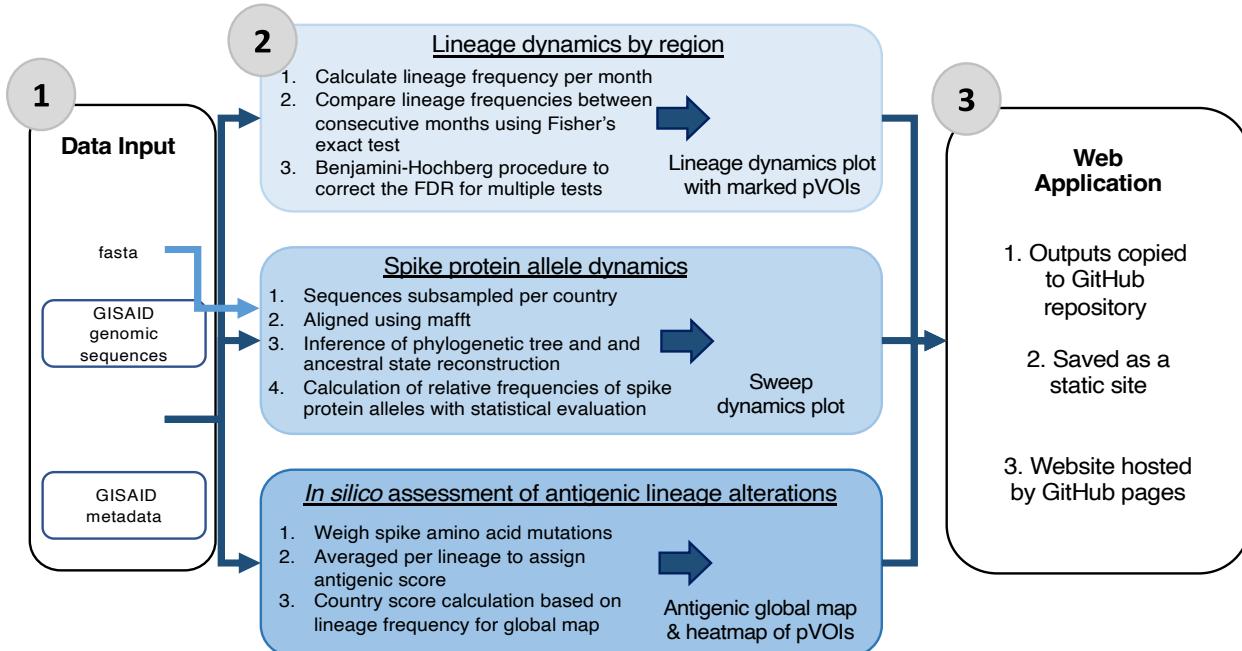
32 In early 2020, infections with a previously unknown coronavirus of probable zoonotic origin in Wuhan, China
33 were first reported¹. The virus, named SARS-CoV-2, rapidly spread across the globe, causing over 675
34 million infections and 6.8 million deaths as of March 2023². SARS-CoV-2 has a single-stranded, positive-
35 sense RNA genome with substantial capacity to mutate, reflected in its strain-level diversity of circulating
36 viral lineages and rapid evolution^{3,4}. This led to the emergence of several Variants of Concern (VOCs), as
37 designated by the World Health Organization (WHO), with altered phenotypes in transmissibility, virulence,
38 or antigenicity, causing large waves of new infections or reinfections⁵⁻⁸.

39

40 Generally, viral pathogens such as human influenza and severe acute respiratory syndrome coronavirus 2
41 (SARS-CoV-2) viruses evolve rapidly, adapting to the human host for efficient replication and spread.
42 Continuous changes on the surface antigens of these viruses allow them to evade host immunity developed
43 through either prior infection from previous strains or from vaccination. This capacity of a virus, known as
44 immune escape, allows the virus to reinfect individuals and, consequently, vaccines protecting against such
45 viruses need to be frequently updated to maintain their effectiveness against currently circulating variants⁹.
46 SARS-CoV-2 in particular demonstrates an increased capacity for immune escape with more recent
47 circulating variants evading vaccine-derived antibodies and convalescent sera¹⁰. The Omicron variant
48 designated a Variant of Concern (VOC) by the World Health Organization (WHO) in November 2021, and
49 its sublineages BA.2, BA.4 and BA.5 have reduced susceptibility to monoclonal antibodies (mAbs) in clinical
50 use^{11,12}. The latest Omicron subvariant, JN.1, which has rapidly risen to predominance in January 2024
51 with a global prevalence of 72.89%, has over 30 amino acid mutations occurring on the spike protein with
52 an additional mutation L455S and significantly enhanced immune escape compared to its parent lineage
53 BA.2.86^{13,14}. This increasing capacity for immune evasion is driven by key mutations throughout the spike
54 protein where they reduce neutralization by antibodies or T-cell based responses¹⁰.

55

56 To monitor SARS-CoV-2 evolution and adaptation as well as enable the timely identification of new VOCs,
57 many countries implemented large-scale viral genomic surveillance programs, leading to the generation of
58 unprecedented amounts of sequence data. As of March 2024, more than 16.5 million sequences were
59 available in the GISAID database¹⁵. Though web-based platforms offer various analyses based on publicly
60 available sequencing data that support scientists, public health officials, and the general public in making
61 sense of these highly complex data, there remains a need for methods that identify antigenically altered
62 lineages among the numerous circulating lineages, particularly among lineages rapidly rising in frequency,
63 to support public health related decision making in a timely manner. The early identification of such variants
64 is particularly relevant for vaccine updates to ensure continued vaccine efficacy, such as in the case of
65 Omicron, XBB.1.5 and JN.1¹⁶.


66

67 Here, we describe CoVerage (<https://sarscoverage.org>), an analytics platform that monitors the genetic and
68 antigenic evolution of human SARS-CoV-2 viruses. The platform implements methods that continuously
69 search for pVOIs from global, country-wise viral variant frequency dynamics and predicts relevant
70 evolutionary changes and their antigenic alterations relative to the original Wuhan strain, using publicly
71 available viral surveillance and genome data in a fully automated, timely fashion. The term pVOI, adapted
72 from the WHO defined Variant of Interest (VOI), defines potential Variants of Interest (pVOI) as predicted
73 by CoVerage, which identifies pVOIs as those that increase significantly in frequency over time and rise
74 above a predominance threshold for the first time in a fully automated fashion¹⁷. We demonstrate the
75 application of the framework for the early detection of circulating Variants of Interest (VOIs), Variants Under
76 Monitoring (VUMs) and VOCs.

77 Results

78 CoVerage implementation

79
80 The CoVerage analytical workflow comprises several stages: (1) input data acquisition and filtration, (2)
81 computational sequence data analyses, (3) creation of template pages based on a bootstrap framework,
82 and (4) visualization in the browser using GitHub Pages (Fig. 1). First, both genomic sequences and the
83 corresponding metadata file are used as inputs for the CoVerage computational analytics pipeline. For this
84 purpose, genomic sequences and the sequence metadata file are downloaded with daily updates from
85 GISAID¹⁸. Optionally, German sequence data is downloaded from Zenodo, where it is made available by
86 the Robert Koch Institute (RKI) (<https://zenodo.org/record/8334829>), prior to its submission to GISAID.
87 Case numbers are obtained from the WHO Coronavirus (COVID-19) data repository¹⁹. The computational
88 workflow performs the analysis of SARS-CoV-2 lineage dynamics by country to identify emerging lineages
89 that may possess a selective advantage, analysis of allele dynamics of the SARS-CoV-2 major surface
90 protein to identify alleles with amino acid changes that may provide a selective advantage, and the *in silico*
91 assessment of antigenic lineage alterations. Antigenic alteration and the lineage dynamics analysis require
92 the GISAID metadata as input, while the spike protein allele dynamics requires both the genomic sequences
93 and associated metadata to infer the coding sequences. Each of these analyses and data downloads are
94 run independently once per week, and the results are updated on the web-server accordingly.

95

96 **Fig. 1: Continuous viral genome analytics provided by the CoVerage platform (sarscoverage.org).**

97 Data input includes GISAID genomic sequences and metadata for SARS-CoV-2 isolates from GISAID.
98 These inputs are then fed through three computational workflows, whose outputs are saved to individual
99 GitHub repositories for each analysis. The results are then copied to the main CoVerage GitHub repository,
100 where the individual pages are saved as static sites, which are hosted by GitHub pages. Workflows are run
101 once a week and result pages are updated accordingly.

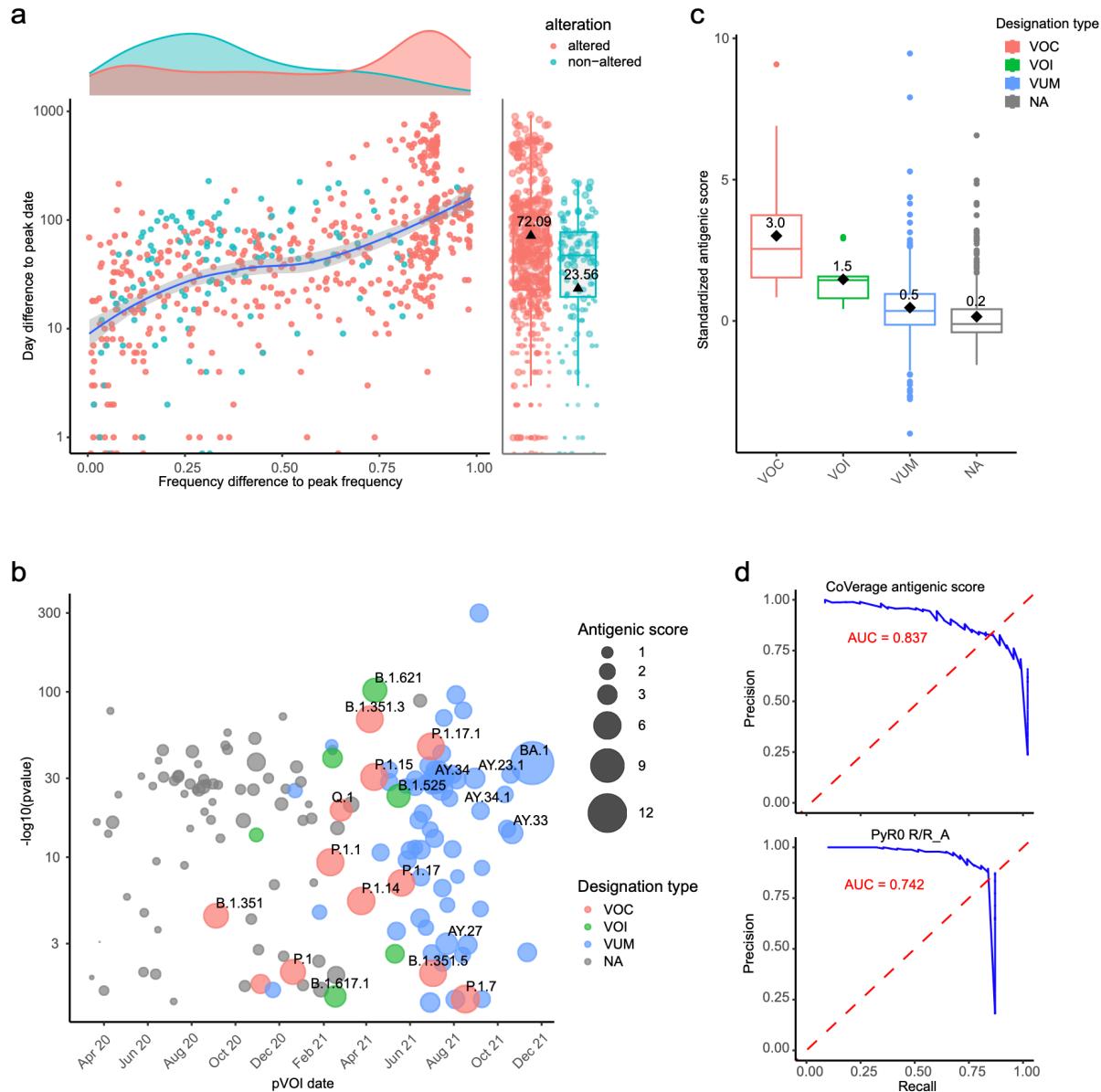
102 **Lineage and spike protein dynamics analyses provided by CoVerage**

103 CoVerage provides lineage and spike protein dynamics analyses updated once a week for all countries
104 with sufficient data available (set to more than 2000 sequences) to which one can navigate to via the
105 interactive world map (**Supplementary Fig. 1**). The lineage dynamics analysis suggests potential Variants
106 of Interest for individual countries (**Fig. 1**), as lineages rising in prevalence more rapidly than expected by
107 chance (Methods), which may be due to a selective advantage and increased fitness to spread relative to
108 other circulating viral lineages. Furthermore, CoVerage provides an analysis of spike protein allele
109 dynamics, which identifies “lineage alleles”, corresponding to branches in a viral spike protein genealogy
110 and associated amino acid changes increasing significantly in frequency over time, which can indicate that
111 these confer a selective advantage to the respective lineages²⁰ (Methods). For the analysis of lineage
112 dynamics and to identify pVOIs, i.e. lineages that may have a selective advantage to spread in the host
113 population, as well as for identifying sets of amino acid changes on the spike protein rapidly increasing in
114 frequency, we adapted a technique that we developed for recommending vaccine strain updates for the
115 seasonal influenza vaccine²⁰ (<https://github.com/hzi-bifo/SDplots>). There are three methodologies for

116 identifying pVOI lineages: the 'standard' method identifies lineages increasing significantly in frequency
117 over time with monthly intervals using Fisher's exact test. The sub-lineage corrected method for pVOI
118 identification includes genome sequence assignments belonging to sublineages in the pVOI assessment.
119 Finally, the sliding window method uses a windowed time period for the analysis to achieve a more fine-
120 grained analysis of shorter time intervals (Methods).

121
122 For the lineage dynamics analyses, Pango lineages were used as nomenclature, which define
123 epidemiologically relevant phylogenetic clusters, in which new lineages are only designated if the lineage
124 has high coverage and contains a sufficient number of sequences²¹. All methods utilize Fisher's exact test
125 to identify lineages that are significantly increasing in frequency over two consecutive time intervals and
126 correct for multiple testing using the false discovery rate (FDR, $\alpha = 0.05$)²². This identifies pVOIs as lineages
127 that are both significantly on the rise and increase above a predominance threshold of 0.1 within the same
128 time frame. Notably, lineages may also be falsely identified as pVOIs due to unrepresentative sampling,
129 e.g., data biases towards certain areas, large clonal outbreaks, or population bottlenecks. Therefore,
130 identified pVOIs should be evaluated carefully, e.g. in combination with epidemiological data and
131 experimental evidence showing that amino acid changes and altered positions observed in a pVOI lineage
132 are likely to confer a selective advantage.

133 ***In silico* assessment of antigenic lineage alterations**


134 CoVerage identifies antigenically altered lineages using a novel method which scores evolutionary changes
135 based on an antigenic alteration matrix (Methods). This matrix is based on genotype-to-antigenic phenotype
136 associations observed in the long-term evolution of seasonal influenza A (H3N2) viruses (Fig. 1). Amino
137 acid changes in the spike protein are weighed as the spike protein plays a critical role in SARS-CoV-2's
138 binding to host receptor cells and is a key target for vaccines and antibody treatments²³. These can be
139 visualized in a monthly map of the global depicting antigenically altered circulating lineages or as a heatmap
140 with antigenically altered lineages and their corresponding frequency. Significantly altered lineages are
141 denoted with an asterisk, otherwise altered lineages are ranked by frequency. To identify significantly
142 antigenically altered lineages, a z-score standardization is applied to the circulating lineages of the month,
143 where lineages with a z-score greater than one, or greater than one standard deviation from the mean, are
144 denoted as altered compared to the other circulating lineages for that month. These lineages are then
145 visualized in the antigenic alteration heatmap on the CoVerage platform.

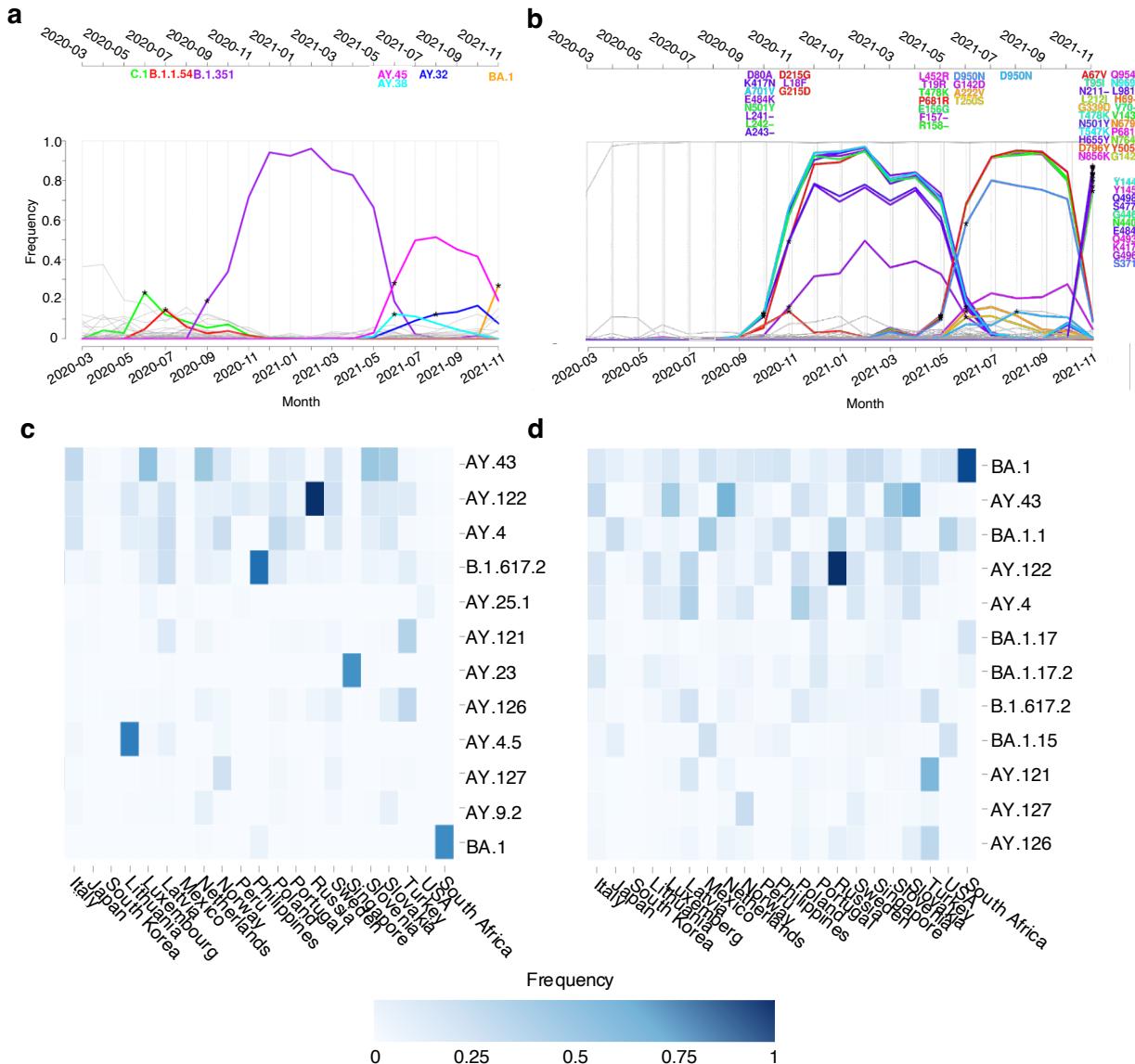
146 **Widely spreading antigenically altered SARS-CoV-2 lineages can be detected early**

147 For validation of the pVOI identification and antigenically altered scoring methodologies created by
148 CoVerage, we determined, for pVOIs and antigenically altered lineages predicted until the end of June
149 2024, the time it took for these lineages to reach their peak frequencies (Fig. 2). The frequency for each

150 lineage in each country was calculated using a one week sliding window with a step size of two days. From
151 here, the peak sequence count, the corresponding frequency, and the date of the peak were identified. To
152 ensure robustness and mitigate bias from rare lineages or inadequate sequence sampling, we included
153 only those records where the peak sequence count was at least 5 within the respective window. In our
154 comprehensive evaluation, a total of 404 detected pVOIs from 91 countries were analyzed, corresponding
155 to 1360 pVOI predictions for individual countries. On average, CoVerage identified the pVOI using data
156 from 49 days earlier than the date when it reached its peak frequency. For the countries with more data
157 available (peak sequence count ≥ 100 for the respective lineage), this lead time extended to 78 days (**Fig.**
158 **2**). The antigenically altered pVOIs have a day difference of 72 compared to 24 for non-altered pVOIs and
159 reached a much higher peak frequency than the non-altered ones (**Fig. 2a**), indicating the relevance of
160 antigenic alterations for providing a selective advantage to variant lineages.

161
162 Overall, 320 pVOI lineages identified by CoVerage belong to the 45 officially designated VOCs, VOIs, and
163 VUMs, covering 33 of these designated lineages, resulting in a precision of 79% (320/404) and a recall of
164 73% (33/45). Among the 12 lineages not captured by pVOIs, 10 are VUMs, thus the lowest category of
165 relevance from public health monitoring. No VOCs were missed. On average, these pVOIs were first
166 identified using data collected 84 days before their official WHO designation. The pVOIs not designated by
167 WHO were primarily identified in 2020, during the early stages of the pandemic, when available sequence
168 data was oftentimes limited and less from systematic representative surveillance efforts, as in the following
169 years (**Fig. 2b**). Notably, the antigenic scores and standardized scores of pVOIs that were also WHO
170 designated lineages were much higher than those of the non-designated pVOIs, and increasing in order of
171 VUMs, VOIs and VOCs, in line with their proven relevance for public health decision making (**Fig. 2c**). To
172 evaluate the benefits of our method relative to a sequence analysis-based method, we compared PyR0²⁴
173 relative to the antigenic scoring method (**Fig. 2d**), which showed that the antigenic alteration score of
174 variants of CoVerage predicted VOCs, VOIs, and VUMs more accurately than the R/R_A score used by
175 PyR0, with an Area Under the Precision-Recall Curve (PRAUC) of 0.84 vs 0.74, respectively. Overall, these
176 findings underscore our method's capability to effectively predict the ascent of lineages relevant for public
177 health decision making with a growth advantage well ahead of their peak frequency, providing critical lead
178 time for public health interventions.

179


180 **Fig. 2: Performance evaluation of CoVerage.** **a** The difference in days and frequency of pVOI
 181 identification of lineages relative to their peak frequencies. The dots in red indicate predicted
 182 antigenically altered pVOIs, while the turquoise dots represent predicted non-altered pVOIs. **b**
 183 Antigenic scores of pVOIs identified using data before December 2021. Colors represent different
 184 WHO designations. The x-axis shows the month of identification, with "Apr. 20" indicating April 2020.
 185 The y-axis displays the $-\log_{10}$ transformed p-value of pVOI detection. The size of the points
 186 represents the antigenic score of the pVOI. **c** Standardized (z-score) antigenic scores for variants
 187 and their sublineages for different WHO variant categories designations until June 2024. Here the
 188 horizontal bar within the box indicates the median, while the black diamond and the number above
 189 it represents the mean. "NA" indicates pVOIs not designated by WHO. **d** PRAUC of CoVerage
 190 antigenic score and PyR0 R/R_A in classifying/predicting lineages as WHO-designated or non-WHO-

191 designated VUMs, VOIs and VOCs. Data for both methods were collected before December 2021,
192 with the ground truth including WHO-designated lineages up to May 2022 to demonstrate early
193 detection capabilities. In **b** and **c**, "NA" indicates pVOIs not designated by WHO.

194 **Case study 1a: CoVerage lineage dynamics allow for timely identification of Omicron as**
195 **pVOI**

196 We retrospectively analyzed data from the time of emergence of the Omicron lineage or Pango lineage
197 BA.1 as the Omicron lineage, to assess the detection of pVOIs, prediction of antigenic alterations (Case
198 study 1b), and of relevant amino acid changes (Case study 1c). This was after finalizing all methodological
199 settings of pVOI detection in first year of the pandemic, and utilizing an antigenic alteration scoring method,
200 which scores all amino acid changes in the spike protein relative to the original Wuhan strain, thus not
201 including knowledge about relevant sites for Omicron or other variants. Using viral genome information
202 provided until November 23rd of 2021, the day when the first Omicron sequences from South Africa
203 identified under viral genomic surveillance²⁵ were submitted, the CoVerage lineage dynamic analysis
204 suggested BA.1 as a pVOI, which then occurred with relative frequency of 0.27 among South African
205 isolates (**Fig. 3a**). The detection of BA.1 as a pVOI was only three days prior to the swift designation of
206 Omicron as a VOC by the WHO²⁶, owing to the highly efficient work and data release of South-African
207 scientists. The isolates used in the analysis were sampled between November 14th and November 16th,
208 demonstrating how the methodology can rapidly identify novel lineages of concern when data is submitted
209 to the GISAID database in a timely manner (**Fig. 3**). The global heatmap visualizing the relative frequencies
210 of all pVOIs detected by CoVerage lineage dynamics analysis in countries worldwide, Omicron (BA.1) was
211 identified in November 2021 in South Africa (**Fig. 3c**), and then rose rapidly in frequency together with
212 multiple sublineages such as BA.1.1, BA.1.15 and BA.1.17 to the most prevalent lineage worldwide by
213 December 2021 (**Fig. 3d**).

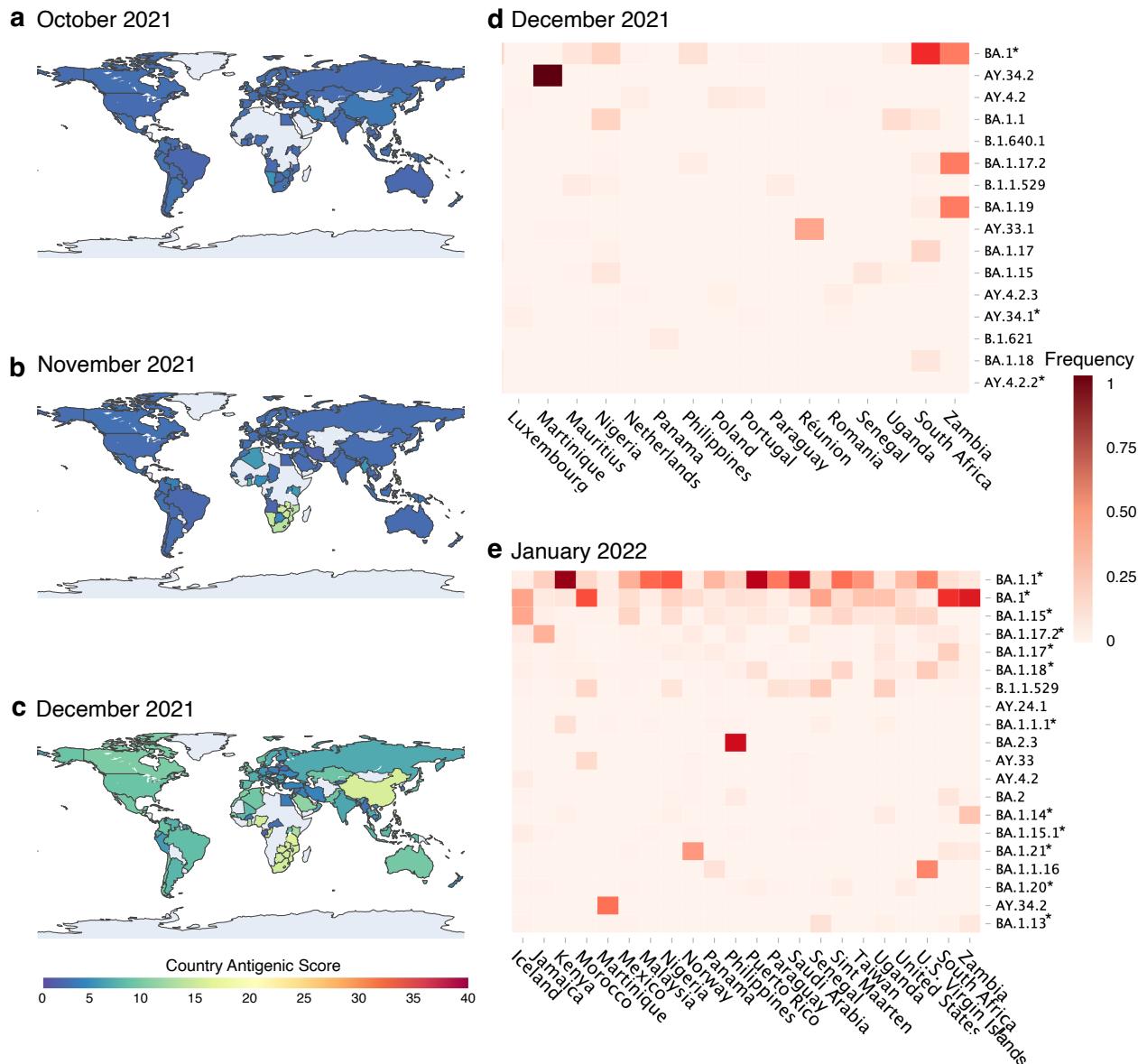
214
215 Earlier, CoVerage identified Beta (B.1.351) in September of 2020 and several Delta sublineages (AY.45,
216 AY.38 and AY.32) throughout June and August of 2021 in South Africa as pVOIs (**Fig. 3a**), which were later
217 designated VOCs by the WHO²⁷. Furthermore, lineages C.1 and B.1.1.54 were identified in June and July
218 of 2020 in the standard and sublineage-corrected analyses, which rapidly increased in frequency among
219 sequenced isolates from South Africa in the month of their designation and by August 2020, the C.1 lineage
220 was the most geographically widespread lineage in South Africa²⁵.

221

222 **Fig. 3: a Lineage dynamics plot for Pango lineages of SARS-CoV-2 genomes from South Africa**
 223 **submitted to GISAID by November 23rd, 2021.** Colored lines represent identified pVOIs with their Pango
 224 lineage names given above. Asterisks indicate the month in which they were identified as being significantly
 225 on the rise and increasing in predominance above a predefined threshold of 0.1. All other lineages are
 226 shown in gray. **b** SD plot for South Africa on spike protein sequences available until the end of November
 227 2021. Similar to the lineage dynamics plot, the asterisks represent when a spike protein allele with certain
 228 amino acid changes significantly rises in frequency and the color of the curve corresponds to the associated
 229 amino acid change. Amino acid changes are specified at the top of the plot, based on the time point when
 230 they were identified as significant. The asterisks in November 2021 indicate the detection of the emerging
 231 Omicron lineage (officially announced as a VOC on November 26th, 2021)²⁸, in May 2021 of Delta (Pango

232 lineage B.1.617.2, detected with CoVerage first as a pVOI for India in March of 2021 and announced as a
233 VOC on May 11th, 2021)⁹, and Beta (B.1.351, announced as a VOC on November 29th in 2020) in
234 September of 2020²⁹. Asterisks in November 2020 indicate within lineage variation of Beta, in June and
235 August of 2021 of sublineages AY.45, AY.38, and AY.32 of the Delta variant, respectively. Relative
236 frequencies for SARS-CoV-2 pVOIs identified in individual countries and most abundant worldwide. **c**
237 November 2021 and **d** December 2021. The color scale ranges from dark blue, which indicates a frequency
238 of one, to white, indicating a frequency of zero. The top 50 countries with the highest lineage frequencies
239 are shown.

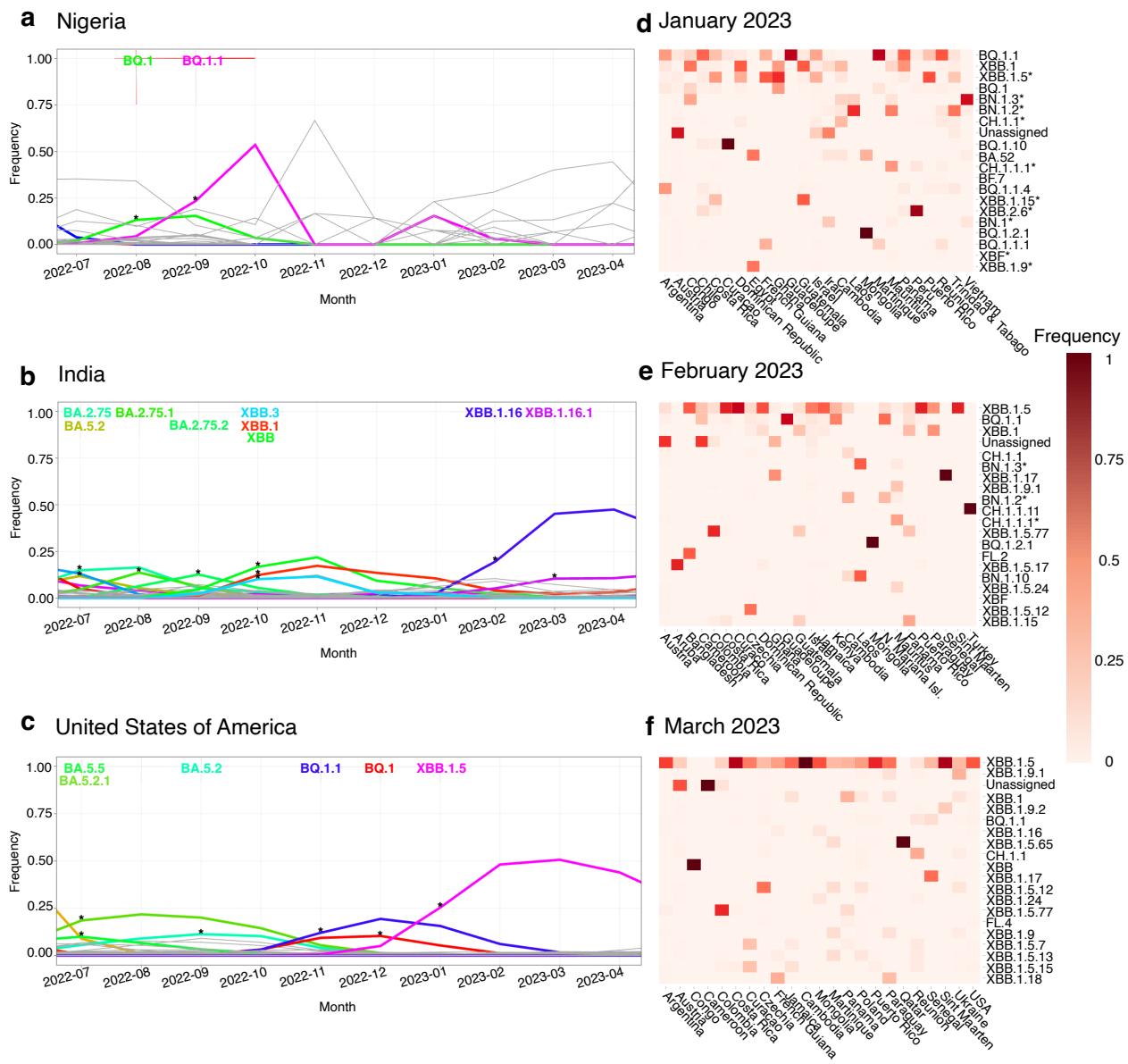
240 **Case study 1b: Spike protein allele dynamics suggest emerging lineages and their
241 associated amino acid changes in South Africa**


242 In the spike protein allele dynamics, for South Africa, CoVerage detected the Beta lineage via a set of
243 associated changes in the spike protein in October 2020, as well as Delta with its amino acid changes in
244 May 2021 (**Fig. 3b**). Key identified substitutions of the Beta lineage include the amino acid deletion at
245 position 241-243, which is associated with reduced binding of certain nAbs, and K417N, that was also
246 present in Alpha³⁰. K417N, in combination with the E484K change in Beta, has demonstrated a reduced
247 mAb neutralization, but does not display this capacity alone¹¹. Key amino acid changes known to affect the
248 phenotype of the Delta lineage identified in allele dynamics include L452R, which has previously been
249 shown to be an important driver of adaptive evolution; T478K, which facilitates improved immune escape;
250 and P681R, which enhances furin cleavage^{30,31}. At the time of the emergence of BA.1, a lineage allele
251 including all 35 amino acid changes representative of BA.1 in November 2021 (**Fig. 3b**). Among the
252 changes known to alter the phenotype and provide a selective advantage are N501Y, which increases the
253 binding affinity to the host angiotensin converting enzyme 2 (ACE2) receptor cells, E484A, which is a site
254 relevant for immune escape, and P681H, which enhances spike cleavage^{30,31}. Due to the extensive
255 divergence of Omicron from other circulating variants, further sampling of more related lineages would have
256 been needed to resolve changes to the ones most likely to providing selective advantages only³². Taken
257 together, the results demonstrate how the CoVerage allele dynamics analysis can be used to identify
258 emerging VOCs and their distinctive amino acid alterations based on the ecological dynamics of the spike
259 protein allele in the viral epidemic, without their formal classification as novel lineages.

260 **Case study 1c: CoVerage predicts antigenic alterations for emerging Omicron variant**

261 CoVerage provides an antigenic scoring analysis that identifies antigenically altered variants based on
262 changes in the SARS-CoV-2 spike protein. Lineages above the selected standardized score threshold and
263 their relative frequencies are shown as a monthly updated heatmap online (**Fig. 4**). In November 2021,
264 Omicron (BA.1) was assigned an antigenic alteration score of 14.47 (z-score of 7.91), more than three
265 times that of Delta (B.1.617.2; 2.11 with a z-score of -0.28) and one and a half times the antigenic score of

266 Gamma (P.1; 5.22 for November 2021, no z-score was assigned as it did not meet the frequency threshold
267 that month), in line with its more pronounced antigenic change³³. Since December 2021 and continuing into
268 January 2022, Omicron sublineages circulated globally at higher frequencies (**Fig. 3**). Some of these
269 lineages, BA.1.2 and BA.1.21 had even higher antigenic scores than BA.1 in December (15.05 with a z-
270 score of 1.68 and 15.93 with a z-score of 1.84, respectively). The rapid spread of Omicron and its
271 sublineages can also be observed from the global antigenic change maps for October, November, and
272 December 2021 (**Fig. 4**, Methods), which reflect the antigenic alteration scores weighted by their
273 corresponding frequencies per country. For South Africa, in November 2021 the country's antigenic score
274 rose to 12.86 from 2.40 in the previous month (**Fig. 4b**). Subsequently in December, country antigenic
275 scores increased globally as Omicron and its sublineages rose in frequency, replacing previously circulating
276 lineages (**Fig. 4c**).


277

278
279 **Fig. 4: Global map depicting the assigned antigenic alteration score per country over the course of**
280 **three months when Omicron became a predominant circulating VOC: a October 2021, b November**
281 **2021, and c December 2021. A higher score (warmer colors) means that antigenically altered lineages**
282 **circulate with higher frequency in that country. Dark blue represents an antigenic score per country of 0,**
283 **while red depicts an antigenic country antigenic score of 40. Heatmap with lineages predicted to have**
284 **substantial antigenic alteration relative to Wuhan-HU-1 and their frequencies per country as of d December**
285 **2021 and e January 2022. The countries with the highest frequencies are shown and the antigenically**
286 **altered lineages are ordered from highest to lowest frequency. The dark red color indicates a frequency of**
287 **1, while the lighter color red represents a lower frequency closer to 0.**

288 **Case study 2: Screening with CoVerage for antigenically altered pVOIs in 2023**

289 When analyzing available data until March 31, 2023 with CoVerage (Supplementary Tables 3-5), 48
290 lineages were identified as pVOIs for January, 46 lineages in February, and 37 lineages in March. Most of
291 these are sublineages of BQ.1 and XBB, denoted as BQ.1* and XBB* as per WHO specification²⁷. Using
292 CoVerage, the BQ.1 lineage, which was first identified in Nigeria³⁴, was detected as a pVOI also in Nigeria
293 in August 2022 (**Fig. 5a**) and designated as a Variant of Interest by the WHO on September 21st, 2022³⁵.
294 In the final quarter of 2022 and in the beginning of 2023, BQ.1* was one of the major circulating lineages
295 globally, with BQ.1 and the sublineage BQ.1.1 together covering over 50 percent of submitted sequences
296 in January 2023³⁶. Of the XBB sublineages, XBB.1.16 was identified by CoVerage as a pVOI in India in
297 February 2023, two months prior to its VOI designation on April 17, 2023 (**Fig. 5b**)²⁷. XBB.1.5 was also
298 identified as significantly antigenically altered in November 2022, with an alteration score of 19.34 (z-score
299 of 1.78)³⁷, prior to its VOI and pVOI designations in January 2023 (**Fig. 5c**). BQ.1 and sublineages were
300 quickly overtaken by the XBB.1.5 lineage, which in March 2023 represented over 50% of global
301 sequences³⁸. In the antigenic alteration maps, the change from BQ.1.1 to XBB.1.5 as one of the major
302 circulating lineages is evident from January, February, and March 2023 (**Fig. 5d,e,f**). Finally, the WHO
303 recommended an update of COVID-19 vaccine formulations to include the XBB.1.5 lineage in May 2023³⁹.

304
305 **Fig. 5: Country-wise lineage dynamics plots for a Nigeria, including results from July 2022 to April**
306 **b. India, including results from July 2022 to April 2023, and c the United States, including**
307 **results from July 2022 to April 2023. a The BQ.1 lineage is shown in green and the BQ.1.1 lineage in**
308 **pink. The asterisks represent a significant rise in frequency, which is seen in August 2022 for BQ.1. b The**
309 **XBB lineage is shown in bright green (October 2022) and the XBB.1.16 lineage is shown in dark blue,**
310 **XBB.1 in red, XBB.3 in light blue, and BA lineages are shown in shades of green (BA.2.75 and BA.5.2 in**
311 **July 2022, BA.2.75.1 in August 2022, BA.2.72.3 in September 2022). c BA lineages are shown in shades**
312 **of green and light blue (BA.5.5 and BA.5.2.1 in July 2022, BA.5.2 in September 2022), BQ.1.1 in purple,**
313 **BQ.1 in red, and XBB.1.5 in pink. The asterisk represents a significant rise in frequency for that lineage.**
314 **Heatmaps with antigenically altered lineages and their relative frequencies per country in d January 2023**
315 **e February 2023, and f March 2023. The lineages are ordered from highest to lowest frequency and the**

316 dark red color indicates a frequency of 1, while the lighter color red represents a lower frequency closer to
317 0.

318

319 The increased antigenic alteration scores of the Omicron BQ* and XBB* lineages align with their
320 demonstrated capacity for immune evasion, with their reduced neutralization by select mAbs³⁶. Key amino
321 acid changes on the spike protein facilitate immune escape, most notably F486P on the receptor binding
322 domain of XBB.1.5⁴⁰ (**Supplementary Fig. 2**), which also increases infectivity by improving the binding of
323 the spike protein to host ACE2 receptor cells⁴¹, e.g. in the United States. Furthermore, the N460K mutation
324 of BQ.1.1 has been associated with the loss of neutralizing activity of NTD-SD2 and class I mAbs, while
325 the K444T and R346T changes in BQ.1.1 may also impair the potency of class III mAbs³⁶.

326

327 Towards the end of 2023, the JN.1 lineage, a BA.2.86 descendant, was designated a Variant of Interest by
328 the WHO on December 18, 2023⁴², two months after its demarcation as a pVOI in Portugal via the lineage
329 dynamics analysis. One of the key amino acid changes is L455S⁴³, which was identified e.g. [via the allele](#)
330 [dynamics analysis](#) in December 2023 in Germany, along with the L157S, N450D, L452W, and N481K
331 changes. Both the N450D and the L452W amino acid changes on the receptor binding domain (RBD) of
332 the spike protein improve viral evasion from multiple mAbs⁴⁴. In experiments, JN.1 showed more extensive
333 resistance to RBD class 1, 2, and 3 antibodies as well as to monovalent XBB.1.5 vaccine sera compared
334 to BA.2.86, which is also reflected in its increased antigenic score for December 2023 of 23.65 (z-score of
335 0.59) versus 21.33 (z-score of -0.48), respectively^{43,4543}. In late April, the WHO advised that future
336 formulations of the COVID-19 vaccines should focus on the JN.1 strain¹⁶. Subsequently, due to the
337 continued evolution of SARS-CoV-2, the recommendation for the preferred strain was changed to the KP.2
338 sublineage, if feasible⁴⁶.

339

340 Discussion

341 Due to the ongoing and rapid genetic and antigenic evolution of circulating SARS-CoV-2 viruses, detecting
342 emerging Variants of Concern that are on the rise to predominance as early as possible is crucial for public
343 health decision making. This included nonpharmaceutical interventions in the early stages of the pandemic
344 and more recently, updating the vaccine composition to ensure continued effectiveness^{16,39}. Here, we
345 describe CoVerage, a genomic surveillance platform that continuously monitors globally provided SARS-
346 CoV-2 genomics data, to identify and characterize potential Variants of Interest from the circulating SARS-
347 CoV-2 lineage diversity. CoVerage implements three types of innovative methods for this purpose: (a) a
348 method for the *de novo* detection of potential Variants of Interest that may spread more efficiently than
349 others, (b) a method to identify amino acid changes in the major surface spike protein that may confer a
350 selective advantage, and (c) a method for scoring the degree of antigenic alteration of individual sequences,

351 lineages and the circulating viral diversity per country. To ensure maximal relevance for viral surveillance,
352 CoVerage provides up-to-date predictions of current pVOIs and their antigenic alterations for all countries
353 around the globe with sufficient data available once a week.

354

355 Principally, all pVOIs identified in an individual country in one or more countries within the last month are
356 detected and reported by CoVerage in the global pVOI heatmaps. A systematic assessment of these pVOI
357 predictions in combinations with their antigenic alteration predictions showed that this accurately identified
358 89% of the VOIs and VOCs designated by the WHO since the establishment of SARS-CoV-2 in the human
359 population on average almost three months before their peak abundances were reached. If including also
360 VUMs, a precision of 79% and recall of 73% was thus reached via the pVOI predictions, and CoVerage
361 antigenic alterations scores in ROC analyses also demonstrated high predictive value. The pVOIs and
362 antigenically altered variants identified by CoVerage thus comprise a somewhat larger, but highly
363 informative set of variants with a potential selective advantage for identifying the VOIs, VOCs and VUMs
364 defined by the WHO. The latter are required to show early or confirmed signs of a growth rate advantage,
365 together with further criteria such as the presence of genetic changes that are suspected, predicted or
366 known to affect virus characteristics, along with increasing case numbers or other apparent epidemiological
367 impacts indicating an increasing public health risk, as confirmed by a panel of experts, while the latter
368 contains genetic changes suspected to affect viral characteristics with early signals of growth advantage
369 but either phenotypic or epidemiological impact remains unclear⁴⁷. CoVerage predictions are fully
370 reproducible as they are derived from a defined set of input data, with a fully deterministic, statistical
371 assessment of globally available data, to support and facilitate further expert assessments.

372

373 Notably, CoVerage's detection depends on the extent and quality of ongoing viral genomic surveillance
374 programs for individual countries, as the analysis is done in a country-wise manner and may also be
375 affected by population genetic effects⁴⁸, such as population bottlenecks, when case numbers are low, or
376 travel restrictions between countries are in place, such as in early phases of the pandemic. In terms of data,
377 CoVerage draws on the international GISAID data resource and combines it with other repositories where
378 data is available in advance, such as the genome and metadata published on GitHub/Zenodo by the
379 German Robert Koch Institute, to decrease the time to detecting new, relevant variants⁴⁹. Detection may
380 be affected if genomic surveillance would be decreased further in the future with the virus becoming
381 endemic.

382

383 In several case studies, we show how CoVerage detected relevant VOCs as pVOIs along with their
384 antigenic alterations in a timely manner and tracked their ongoing, global spread. In November 2021,
385 Omicron was identified as a pVOI and assigned a substantially increased antigenic score compared to
386 previously circulating lineages such as Delta and Gamma, which was evident also in the country-wide score
387 for South Africa. Further identified VOIs included Omicron's initial sublineages, BA.1 and BA.2, in December

388 of 2021 and January of 2022, respectively. Consistent with the rapid designation of Omicron as a VOC by
389 the WHO, which in addition to sequencing information also considers epidemiological evidence, CoVerage
390 identified this pVOI from the submitted data just three days before. In early 2023, the majority of pVOIs
391 identified by CoVerage were sublineages of BQ.1 and XBB, both of which have demonstrated improved
392 immune escape due to key mutations throughout the spike protein³⁶, many of which could also be found in
393 the spike protein allele dynamics plots of individual countries. By May of 2023 the WHO recommended
394 updating vaccines to match XBB.1.5, which had been identified as a significantly antigenically altered
395 lineage in November 2022 by CoVerage, and subsequently, updated vaccine recommendations to match
396 the circulating JN.1 in April 2024, which had also been identified as an antigenically altered pVOI in October
397 2023^{16,39}. Altogether, this shows the combination of analyses provided by CoVerage facilitates the timely
398 detection and characterization of relevant SARS-CoV-2 lineages for public health concerns.

399

400 CoVerage predicts antigenically altered lineages with a novel method that scores evolutionary changes
401 using an antigenic alteration matrix defined from genotype-to-antigenic phenotype association mappings
402 from long-term evolution of seasonal influenza A (H3N2) viruses. The method assesses all changes in the
403 spike protein, which is key immunogen and protein for the binding of SARS-CoV-2 to host receptor cells,
404 and as such is a target for vaccines and antibody therapy²³. We show that this methods in combination
405 with pVOI predictions allows to confidently identify priority variants and their sublineages over the past
406 couple of years, that were defined by the WHO of public health relevance, such as VOCs, VOIs and
407 VUMs, with on average almost three months prior of them reaching their maximum global frequencies. In
408 evaluating antigenic alteration predictions, we found that predicted antigenic alteration scores are
409 reflective of how well the evolutionary changes affect the neutralization achieved by antibodies. Studying
410 antigenic scores, acquired mutations and their positioning on the 3D structure could thus reveal further
411 insights into the mechanistic basis of varying viral variant neutralization.

412

413 Taken together, CoVerage is a unique web-based resource to identify potential Variants of Interest of
414 SARS-CoV-2 in a timely manner, along with suggesting their degree of antigenic alteration, and alleles of
415 the major surface protein with specific amino acid changes that may provide a selective advantage. Notably,
416 there are other web-based resources to track SARS-CoV-2 variants, among other viruses, and their viral
417 fitness and evolution. NextStrain, for instance, not only established a viral lineage nomenclature based on
418 phylogenetic principles for SARS-CoV-2, but continuously assesses logistic growth rates, immune escape
419 in comparison to BA.2, and mutational fitness per lineage⁵⁰. Similarly, PyR0 is a hierarchical Bayesian
420 multinomial logistic regression model that detects lineages increasing in prevalence as well as identifies
421 mutations relative to lineage fitness²⁴ and Episcore, predicts which existing amino acid mutations might
422 contribute to future SARS-CoV-2 VOC's⁵¹, though neither is run continuously nor available as a web-based
423 platform. Other web-based platforms, such as CoVariants, provide an overview of variant frequencies and
424 shared amino acid mutations⁵², and CovidCG tracks viral mutations, lineages, and clades in different

425 countries over time⁵³. CoVRadar focuses on mutation frequency by location and mutation distribution
426 among sequences for the molecular surveillance of the SARS-CoV-2 spike protein⁵⁴. Outbreak.info also
427 provides information about lineages and amino acid changes while also reporting prevalence of variants,
428 their geographical distributions and comparisons of changes between lineages³⁸.

429

430 CoVerage remains unique in its application as it continuously monitors for variants with a potential selective
431 advantage for further study. Only the EVEscape platform developed by Thadani and colleagues, similarly
432 scores emerging variants by their immune escape potential⁵⁵, however, does not directly identify variants
433 with a potential selective advantage irrespective of this. It is this that makes CoVerage unique: its ability to
434 identify variants with a potential selective advantage using lineage frequency dynamics in combination with
435 predictions of lineage antigenic alterations. This allowed it to accurately identify 31 out of 35 (89%) VOCs
436 and VOIs designated by the WHO with an average lead time of 84 days. We demonstrate the value of this
437 approach in our comprehensive assessment of the value of such predictions for the early identification of
438 past VOCs, VOIs and VUMs, with a lead time of almost three months relative to their maximal abundances
439 and a precision of 79% and recall of 73%. As such, CoVerage lineage predictions are a valuable source of
440 information for further investigations in clinical and epidemiological studies, allowing to prioritize lineages
441 regarding their potential relevance for public health decision making and vaccine updates. The identification
442 of amino acid changes throughout the spike protein that may have selective advantage can further inform
443 antibody design and help understand the molecular basis of adaptive evolution⁵⁶. Additionally, CoVerage
444 links to alternative web-based resources for additional information on these selected lineages, providing a
445 comprehensive resource for lineage surveillance. Each of the different analyses provided on CoVerage
446 offers its own benefits when used individually and more so in combination with one another.

447

448 CoVerage provides a continuously updated resource for the *in silico* detection and characterization of
449 potential VOIs, VOCs and VUMs from SARS-CoV-2 genomic surveillance data, to support researchers and
450 public health officials in assessing and interpreting such data. In the future, the framework will be extended
451 to provide relevant surveillance for other rapidly evolving viruses, such as seasonal influenza viruses, and
452 to integrate further data types, such as metagenomic sequences of wastewater samples⁵⁷.

453 Methods

454 Lineage dynamics by region

455 In the sublineage corrected analysis, the lineage frequencies are corrected by including isolates belonging
456 to sublineages in the count, and subsequently processed as before. For example, three sublineages BA.1.2,
457 BA.1.3 and BA.1.4 will be summarized into BA.1 and then analyzed with Fisher's exact test. This approach
458 leads to a better resolution of the lineage branches likely associated with more rapid spread and lineages

459 with a selective advantage split into several sublineages can be better detected. Here Pango lineages were
460 used as nomenclature as they define an epidemiologically relevant phylogenetic cluster in which new
461 lineages are only designated if the lineage has high coverage and contains a sufficient number of
462 sequences²¹.

463
464 Lastly, a sliding window approach was implemented to achieve a more sensitive detection than the monthly
465 analysis. For this analysis, sequences are sorted by date and frequencies in the w sequences in the current
466 window are compared to the w previous ones using Fisher's exact test. The window is moved over the data
467 using a step size s . Significance estimates are corrected for multiple testing through correction of p-values
468 of the multiple tests with Benjamini-Yekutieli procedure⁵⁸. For the analysis on countries, $w = 1000$ and $s =$
469 100 are used and for the analysis on more granular German state level $w = 200$ and $s = 10$ is chosen.
470 Additionally, we require a significant (FDR < 0.05) increase for a certain window and a frequency threshold
471 of 0.1 to report results. The reported date, or the date of the significant increase, is the date of the last
472 sequence in the current window.

473
474 **Spike protein allele dynamics**

475 To identify amino acid changes in the spike protein that may provide a lineage with a selective advantage,
476 the sweep dynamic (SD) plot method^{17,20} is used on spike protein sequences extracted from viral genome
477 sequences data downloaded from GISAID and Zenodo. To execute this methodology on the large SARS-
478 CoV-2 sequence collection, 500 sequences per month per country are subsampled randomly and
479 downloaded with GISAIDR⁵⁹, and subsequently, identical sequences per time period are clustered using
480 CD-HIT⁶⁰. For German state-wise analysis, we randomly downloaded 2000 sequences per month for the
481 entire country and divided them by states. Next, a multiple sequence alignment is generated using
482 MAFFT⁶¹, with the spike sequence of Wuhan/IPBCAMS-WH-01/2019 as a reference. Phylogenetic trees
483 are inferred for each country using fasttree⁶², and the Sankoff algorithm is applied for ancestral character
484 state reconstruction, and as in Steinbrueck & McHardy, 2011, we use the same cost for all amino acid
485 changes and indels²⁰. We previously showed that in ancestral sequence reconstruction for the major
486 antigen of human influenza A (H3N2) viruses, both approaches produce very similar results, due to the very
487 small evolutionary time scales being considered²⁰. The calculation of relative frequencies of specific spike
488 protein alleles and statistical evaluation are then performed as described in Steinbrück & McHardy, 2011,
489 with a frequency threshold of 0.1 for finding spike protein alleles and their amino acid changes that may
490 provide a selective advantage²⁰.

491

492 ***In silico* assessment of antigenic lineage alterations**

493 The antigenic alteration score for a lineage a_l is calculated using a method we developed to score each
494 SARS-CoV-2 spike protein sequence relative to the Wuhan-Hu-1 strain (Additional File 1). Antigenic
495 weights were applied to the amino acid changes occurring throughout the spike protein based on a viral
496 immune escape scoring matrix derived from an antigenic tree for seasonal Influenza A (H3N2) viruses
497 (IAV)⁵⁶. The weights were then summed per isolate and then averaged across all isolates of a given
498 circulating Pango Lineage to calculate the final antigenic score, a_l . To select lineages considered
499 significantly altered antigenically for a given month, a z-score was applied to each circulating Pango lineage
500 for the given month with a frequency of 0.001 or greater. To calculate the z-score, the population mean, or
501 the mean of the lineages circulating that month above the frequency threshold was subtracted from the
502 individual lineage score and then divided by the standard deviation of those lineages circulating above the
503 frequency threshold. Circulating lineages with an assigned z-score of one or greater were considered to be
504 significantly antigenically altered. The threshold of 1 was chosen to distinguish VOCs and VOIs designated
505 until June 2024 from other lineages (Fig. 5c).

506

507 In addition to the individual lineage score, a country-wide antigenic alteration score a_c is calculated by
508 summing over all antigenic lineage scores, weighted by their frequencies for a particular period in time:

509
$$(1) \quad a_c = \sum \left(a_l \times \frac{n_{ilc}}{n_{ic}} \right)$$

510 Here, n_{ilc} is the number of isolates of each Pango lineage for country c and n_{ic} is the total number of
511 isolates per country.

512 **Data Availability**

513 The viral genome sequences and metadata for conducting *in silico* assessment of antigenic lineage
514 alterations that were used to generate the heatmaps and global antigenic maps for the months of November
515 2021 through January 2022 and January 2023 to March 2023 are publicly available from GISAID
516 (<http://gisaid.org>). GISAID IDs are available at https://github.com/hzi-bifo/corona_lineage_dynamics/data/
517 and the results can be found on Zenodo (<https://zenodo.org/records/10171227>).

518 **Code Availability**

519 All the codes are publicly available at: https://github.com/hzi-bifo/corona_lineage_dynamics,
520 https://github.com/hzi-bifo/Corona_Variant_Scoring and https://github.com/hzi-bifo/corona_protein_dynamics.

522 Acknowledgements

523 We gratefully acknowledge all data contributors, i.e. the Authors and their Originating laboratories
524 responsible for obtaining the specimens, and their Submitting laboratories for generating the genetic
525 sequence and metadata and sharing via the GISAID Initiative, on which this research is based. A.C.M.
526 gratefully acknowledges funding from the German Centre for Infection Research project TI 12.002.

527 Author contributions

528 K.N., Z-L.D., G.R., S.G., M.H.F.A., M.H., and S.R. developed the methods and wrote the code. K.N., S.R.,
529 and A.C.M. analysed and interpreted the data, K.N., S.R., and A.C.M. wrote the paper and A.C.M. designed
530 the research study. M.H. suggested data visualizations and commented on the manuscript, K.N., Z-L.D.,
531 G.R., M.H.F.A., and S.G. maintain the web service. All authors read and approved the manuscript.

532 Competing interests

533 The authors declare no competing interests.

534 References

- 535 1. Wu, F. *et al.* A new coronavirus associated with human respiratory disease in China.
536 *Nature* **579**, 265–269 (2020).
- 537 2. Dong, E., Du, H. & Gardner, L. An interactive web-based dashboard to track COVID-19 in
538 real time. *The Lancet Infectious Diseases* vol. 20 533–534 Preprint at
539 [https://doi.org/10.1016/S1473-3099\(20\)30120-1](https://doi.org/10.1016/S1473-3099(20)30120-1) (2020).
- 540 3. Ortiz-Prado, E. *et al.* Clinical, molecular, and epidemiological characterization of the
541 SARS-CoV-2 virus and the Coronavirus Disease 2019 (COVID-19), a comprehensive
542 literature review. *Diagnostic Microbiology and Infectious Disease* vol. 98 Preprint at
543 <https://doi.org/10.1016/j.diagmicrobio.2020.115094> (2020).
- 544 4. Yao, H. *et al.* Molecular Architecture of the SARS-CoV-2 Virus. *Cell* **183**, 730-738.e13
545 (2020).
- 546 5. Davies, N. G. *et al.* Increased mortality in community-tested cases of SARS-CoV-2
547 lineage B.1.1.7. *Nature* **593**, 270–274 (2021).
- 548 6. Faria, N. R. *et al.* Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in
549 Manaus, Brazil. *Science* (1979) **372**, 815–821 (2021).
- 550 7. Garcia-Beltran, W. F. *et al.* Multiple SARS-CoV-2 variants escape neutralization by
551 vaccine-induced humoral immunity. *Cell* **184**, 2372-2383.e9 (2021).
- 552 8. Volz, E. *et al.* Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England.
553 *Nature* **593**, 266–269 (2021).

554 9. Dhawan, M. *et al.* Delta variant (B.1.617.2) of SARS-CoV-2: Mutations, impact,
555 challenges and possible solutions. *Human Vaccines and Immunotherapeutics* vol. 18
556 Preprint at <https://doi.org/10.1080/21645515.2022.2068883> (2022).

557 10. Harvey, W. T. *et al.* SARS-CoV-2 variants, spike mutations and immune escape. *Nature*
558 *Reviews Microbiology* vol. 19 409–424 Preprint at <https://doi.org/10.1038/s41579-021-00573-0> (2021).

560 11. Cox, M. *et al.* SARS-CoV-2 variant evasion of monoclonal antibodies based on in vitro
561 studies. *Nature Reviews Microbiology* 2022 1–13 (2022) doi:10.1038/s41579-022-00809-
562 7.

563 12. Tian, D., Sun, Y., Xu, H. & Ye, Q. The emergence and epidemic characteristics of the
564 highly mutated SARS-CoV-2 Omicron variant. *Journal of Medical Virology* vol. 94 2376–
565 2383 Preprint at <https://doi.org/10.1002/jmv.27643> (2022).

566 13. Hong, B., Li, M. & Fan, H. SARS-CoV-2 Omicron subvariants from BA.2 to BA.2.86 and
567 JN.1: strong lung infection ability and evolving immune escape capacity. *MedComm*
568 (*Beijing*) 5, (2024).

569 14. Zhang, L. *et al.* Rapid spread of the SARS-CoV-2 JN.1 lineage is associated with
570 increased neutralization evasion. *iScience* 27, (2024).

571 15. Sitharam, N. *et al.* SARS-CoV-2 Genomic Epidemiology Dashboards: A Review of
572 Functionality and Technological Frameworks for the Public Health Response. *Genes*
573 (*Basel*) 15, 876 (2024).

574 16. *Statement on the Antigen Composition of COVID-19 Vaccines*. (2024).

575 17. Klingen, T. R. *et al.* Sweep Dynamics (SD) plots: Computational identification of selective
576 sweeps to monitor the adaptation of influenza A viruses. *Scientific RepoRTS* | 8, 373
577 (2018).

578 18. Khare, S. *et al.* GISAID's role in pandemic response. *China CDC Wkly* 3, 1049 (2021).

579 19. World Health Organization. WHO Coronavirus (COVID-19) dashboard > Cases
580 [Dashboard]. (2023).

581 20. Steinbrück, L. & McHardy, A. C. Allele dynamics plots for the study of evolutionary
582 dynamics in viral populations. *Nucleic Acids Res* 39, (2011).

583 21. O'Toole, Á. *et al.* Assignment of epidemiological lineages in an emerging pandemic using
584 the pangolin tool. *Virus Evol* 7, (2021).

585 22. Benjaminit, Y. & Hochberg, Y. *Controlling the False Discovery Rate: A Practical and*
586 *Powerful Approach to Multiple Testing*. *J. R. Statist. Soc. B* vol. 57 (1995).

587 23. Almehdi, A. M. *et al.* SARS-CoV-2 spike protein: pathogenesis, vaccines, and potential
588 therapies. *Infection* vol. 49 855–876 Preprint at <https://doi.org/10.1007/s15010-021-01677-8> (2021).

589 24. Obermeyer, F. *et al.* *Analysis of 6.4 Million SARS-CoV-2 Genomes Identifies Mutations*
590 *Associated with Fitness*. <https://www.science.org>.

591 25. Viana, R. *et al.* Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in
592 southern Africa. *Nature* 603, 679–686 (2022).

593 26. *Update on Omicron*. (2021).

594 27. *Historical Working Definitions and Primary Actions for SARS-CoV-2 Variants*. (2023).

596 28. He, X., Hong, W., Pan, X., Lu, G. & Wei, X. SARS-CoV-2 Omicron variant:
597 Characteristics and prevention. *MedComm* vol. 2 838–845 Preprint at
598 <https://doi.org/10.1002/mco2.110> (2021).

599 29. *SARS-CoV-2 Variant Classifications and Definitions*. National Center for Immunization
600 and Respiratory Diseases (NCIRD). (2023).

601 30. Mittal, A., Khattri, A. & Verma, V. Structural and antigenic variations in the spike protein of
602 emerging SARS-CoV-2 variants. *PLoS Pathog* **18**, e1010260 (2022).

603 31. Kistler, K. E., Huddleston, J. & Bedford, T. Rapid and parallel adaptive mutations in spike
604 S1 drive clade success in SARS-CoV-2. *Cell Host Microbe* **30**, 545–555.e4 (2022).

605 32. Kupferschmidt, K. Where did ‘weird’ Omicron come from? *Science* (1979) **374**, 1179–
606 1179 (2021).

607 33. Telenti, A., Hodcroft, E. B. & Robertson, D. L. The Evolution and Biology of SARS-CoV-2
608 Variants. *Cold Spring Harb Perspect Med* **12**, (2022).

609 34. Akash, S., Islam, Md. R. & Dhamma, K. Emergence BQ.1 and BQ.1.1 as newly identified
610 omicron subvariants: current scenario and future outlook – an update. *Annals of Medicine*
611 & Surgery

612 35. Spread of the SARS-CoV-2 Omicron variant sub-lineage BQ.1 in the EU/EEA. *ECDC*
613 (2022).

614 36. Ao, D., He, X., Hong, W. & Wei, X. The rapid rise of SARS-CoV-2 Omicron subvariants
615 with immune evasion properties: XBB.1.5 and BQ.1.1 subvariants. *MedComm (Beijing)* **4**,
616 (2023).

617 37. *XBB.1.5 Updated Risk Assessment*, 20 June 2023. (2023).

618 38. Gangavarapu, K. *et al.* Outbreak.info genomic reports: scalable and dynamic surveillance
619 of SARS-CoV-2 variants and mutations. *Nat Methods* **20**, 512–522 (2023).

620 39. *Statement on the Antigen Composition of COVID-19 Vaccines*. (2023).

621 40. Greaney, A. J. *et al.* Mapping mutations to the SARS-CoV-2 RBD that escape binding by
622 different classes of antibodies. *Nat Commun* **12**, (2021).

623 41. Parums, D. V. Editorial: The XBB.1.5 (‘Kraken’) Subvariant of Omicron SARS-CoV-2 and
624 its Rapid Global Spread. *Medical Science Monitor* **29**, (2023).

625 42. Jeworowski, L. M. *et al.* Humoral immune escape by current SARS-CoV-2 variants
626 BA.2.86 and JN.1, December 2023. *Euro Surveill* **29**, (2024).

627 43. Kaku, Y. *et al.* Virological characteristics of the SARS-CoV-2 JN.1 variant. *Lancet Infect
628 Dis* **24**, (2024).

629 44. Lu, Y., Ao, D., He, X. & Wei, X. The rising SARS-CoV-2 JN.1 variant: evolution,
630 infectivity, immune escape, and response strategies. *MedComm (Beijing)* **5**, (2024).

631 45. Yang, S. *et al.* Fast evolution of SARS-CoV-2 BA.2.86 to JN.1 under heavy immune
632 pressure. *The Lancet Infectious Diseases* vol. 24 e70–e72 Preprint at
633 [https://doi.org/10.1016/S1473-3099\(23\)00744-2](https://doi.org/10.1016/S1473-3099(23)00744-2) (2024).

634 46. Use of COVID-19 Vaccines for Persons Aged \geq 6 Months: Recommendations of the
635 Advisory Committee on Immunization Practices — United States, 2024–2025. *CDC*
636 (2024).

637 47. *Updated Working Definitions and Primary Actions for SARS-CoV-2 Variants*. (2023).

638 48. Martin, M. A., VanInsberghe, D. & Koelle, K. Insights from SARS-CoV-2 sequences.
639 *Science* (1979) **371**, 466–467 (2021).

640 49. Kalia, K., Saberwal, G. & Sharma, G. The lag in SARS-CoV-2 genome submissions to
641 GISAID. *Nature Biotechnology* vol. 39 1058–1060 Preprint at
642 <https://doi.org/10.1038/s41587-021-01040-0> (2021).

643 50. Hadfield, J. et al. NextStrain: Real-time tracking of pathogen evolution. *Bioinformatics* **34**,
644 4121–4123 (2018).

645 51. Maher, M. C. et al. Predicting the mutational drivers of future SARS-CoV-2 variants of
646 concern. *Sci Transl Med* **14**, 3445 (2022).

647 52. Hodcroft, E. B. CoVariants: SARS-CoV-2 mutations and variants of interest. *Reference
648 Source* (2022).

649 53. Chen, A. T., Altschuler, K., Zhan, S. H., Chan, Y. A. & Deverman, B. E. Covid-19 cg
650 enables sars-cov-2 mutation and lineage tracking by locations and dates of interest. *Elife*
651 **10**, 1–15 (2021).

652 54. Wittig, A. et al. CovRadar: Continuously tracking and filtering SARS-CoV-2 mutations for
653 genomic surveillance. *Bioinformatics* **38**, 4223–4225 (2022).

654 55. Thadani, N. N. et al. Learning from prepandemic data to forecast viral escape. *Nature*
655 **622**, 818–825 (2023).

656 56. Steinbrück, L. & McHardy, A. C. Inference of Genotype–Phenotype Relationships in the
657 Antigenic Evolution of Human Influenza A (H3N2) Viruses. *PLoS Comput Biol* **8**, 1002492
658 (2012).

659 57. Fritz, A. et al. Haplflow: strain-resolved de novo assembly of viral genomes. *Genome
660 Biol* **22**, (2021).

661 58. Benjamini, Y. & Yekutieli, D. *The Control of the False Discovery Rate in Multiple Testing
662 under Dependency*. Source: *The Annals of Statistics* vol. 29 (2001).

663 59. Wirth, W. & Duchene, S. GISAIDR: Programmatically interact with the GISAID databases.
664 Zenodo. Preprint at (2022).

665 60. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: Accelerated for clustering the next-
666 generation sequencing data. *Bioinformatics* **28**, 3150–3152 (2012).

667 61. Katoh, K., Misawa, K., Kuma, K.-I. & Miyata, T. *MAFFT: A Novel Method for Rapid
668 Multiple Sequence Alignment Based on Fast Fourier Transform*. (2002).

669 62. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 - Approximately maximum-likelihood
670 trees for large alignments. *PLoS One* **5**, (2010).

671