

1 **Nucleotidyltransferase toxin MenT targets and extends the aminoacyl acceptor**
2 **ends of serine tRNAs *in vivo* to control *Mycobacterium tuberculosis* growth**

3
4
5 Xibing XU^a*, Roland BARRIOT^a, Bertille VOISIN^b, Tom J. ARROWSMITH^c, Ben USHER^c,
6 Claude GUTIERREZ^b, Xue HAN^a, Peter REDDER^a, Tim R. BLOWER^c, Olivier NEYROLLES^b,
7 Pierre GENEVAUX^a*

8
9

10 ^aLaboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative,
11 Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31400 Toulouse, France

12 ^bInstitut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS,
13 205 route de Narbonne, 31400 Toulouse, France

14 ^cDepartment of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK

15
16 *Correspondence: pierre.genevaux@univ-tlse3.fr; xibing.xu@univ-tlse3.fr

17
18
19 **Keywords:** MenT, toxin-antitoxin, nucleotidyltransferase, tRNA, RNase PH, *Mycobacterium*
20 *tuberculosis*

21

22 **ABSTRACT**

23 Toxins of toxin-antitoxin systems use diverse mechanisms to control bacterial growth and represent
24 attractive therapeutic targets to fight pathogens. In this study, we characterized the translation
25 inhibitor toxin MenT3 of *Mycobacterium tuberculosis*, the bacterium responsible for human
26 tuberculosis in humans. We show that MenT3 is a robust cytidine specific tRNA
27 nucleotidyltransferase *in vitro*, capable of modifying the aminoacyl acceptor ends of most tRNA
28 but with a marked preference for tRNA^{Ser}, to which long stretches of cytidines were added.
29 Furthermore, transcriptomic-wide analysis of MenT3 targets in *M. tuberculosis* identified tRNA^{Ser}
30 as the sole target of MenT3 *in vivo* and revealed significant detoxification attempts by ribonuclease
31 PH in response to MenT3 overexpression. Finally, under physiological conditions, only in the
32 presence the native *menAT3* operon, we found the unexpected presence of an active pool of
33 endogenous MenT3 targeting tRNA^{Ser} in *M. tuberculosis*, likely reflecting the importance of
34 MenT3 during infection.

35

36

37

38

39 **INTRODUCTION**

40 Toxin-antitoxin (TA) systems are stress responsive genetic elements encoding for a deleterious
41 toxin and its antagonistic antitoxin. They are widespread in bacterial genomes and mobile genetic
42 elements (LeRoux *et al*, 2020; Harms *et al*, 2018; Jurénas *et al*, 2022). They have roles in defending
43 bacteria against phage infection and in the maintenance of genomic regions and plasmids, and in
44 some cases they have been shown to contribute to bacterial virulence and antibiotic persistence
45 (Pecota & Wood, 1996; Guegler & Laub, 2021; Helaine *et al*, 2014; Dedrick *et al*, 2017; De Bast
46 *et al*, 2008; Fineran *et al*, 2009). In the absence of stress, toxin activity is blocked by its antagonistic
47 antitoxin and bacterial growth is not detectably impacted. Yet, under specific conditions, including
48 phage infection or the loss of plasmids, the toxin and antitoxin equilibrium can be significantly
49 unbalanced in favor of the more stable toxin. As a consequence, the free active toxin can target
50 essential cellular processes or structures, mainly translation, DNA replication, metabolism or the
51 cell envelope, causing growth inhibition or cell death (Jurénas *et al*, 2022; Harms *et al*, 2018).

52 Tuberculosis is the second cause of death due to an infectious agent, after COVID-19.
53 According to the most recent WHO report (2023), over 10 million people fell ill with tuberculosis
54 in 2022 and 1.3 million died from the disease. The increasing occurrence of multi and extensively
55 drug-resistant strains of the causative *Mycobacterium tuberculosis* bacterium has greatly
56 heightened the need for the development of new drugs and new treatment strategies. *M.*
57 *tuberculosis* encodes an unusually high number of TA systems, over 86, representing close to 4%
58 of its genome (Akarsu *et al*, 2019; Sala *et al*, 2014). This includes multiple homologs from
59 conserved TA families that have been shown to be induced under relevant stress conditions,
60 including hypoxia, macrophage engulfment, or drug exposure (Ramage *et al*, 2009; Keren *et al*,
61 2011; Ariyachaokun *et al*, 2020). Although their contribution to *M. tuberculosis* physiology and

62 virulence is currently unknown, it has been proposed that activated toxins could modulate *M.*
63 *tuberculosis* growth under certain conditions, thereby contributing to survival in the human host
64 (Keren *et al*, 2011; Barth *et al*, 2021; Sala *et al*, 2014). To date, only a few TA systems have been
65 tested and shown to contribute to host infection (Deep *et al*, 2018; Tiwari *et al*, 2015; Agarwal *et*
66 *al*, 2018). The deleterious nature of many *M. tuberculosis* toxins has raised the possibility that new
67 antibacterial properties demonstrated by toxins might be exploited to identify new drug targets or
68 applied directly as antimicrobials, alone or in combination with standard antibacterial therapy
69 (Freire *et al*, 2019; Kang *et al*, 2018; Catara *et al*, 2023).

70 *M. tuberculosis* encodes four MenAT TA systems, comprised of a nucleotidyltransferase
71 (NTase) toxin and a cognate antitoxin belonging to one of three different families (Dy *et al*, 2014;
72 Xu *et al*, 2023; Cai *et al*, 2020). Although, *in vivo*, *menAT2* was recently shown to be required for
73 *M. tuberculosis* pathogenesis in guinea pigs (Gosain *et al*, 2022), only *menAT1* and *menAT3* were
74 shown to act as *bona fide* TA systems in their native host *M. tuberculosis* (Xu *et al*, 2023; Cai *et*
75 *al*, 2020). The MenA3 antitoxin inhibits MenT3 through phosphorylation of a serine residue in the
76 catalytic site (Yu *et al*, 2020), whilst MenA1 forms an asymmetric heterotrimeric complex with
77 two MenT1 protomers, suggesting a different mode of inhibition (Xu *et al*, 2023). *In vitro*, the
78 MenT1, MenT3 and MenT4 toxins were shown to inhibit translation by acting as tRNA NTases
79 (Xu *et al*, 2023; Cai *et al*, 2020). Yet, biochemical characterization revealed significant differences
80 in MenT toxin specificity for tRNA targets and nucleotide substrates. Though both MenT1 and
81 MenT3 inhibit aminoacylation by transferring pyrimidines (preferentially cytidines) to the 3' CCA
82 acceptor stems of tRNAs, MenT3 displays a strong preference for serine tRNAs and MenT1
83 showed no apparent preference (Xu *et al*, 2023; Cai *et al*, 2020). MenT4 also modifies the 3' CCA
84 motif of tRNA acceptor stems but with a preference for GTP as substrate (Xu *et al*, 2023). We have
85 previously demonstrated that MenT3 is by far the most toxic of the four MenT toxins of *M.*

86 *tuberculosis*, inducing a rapid and efficient self-poisoning *in vivo* (Cai *et al*, 2020). Despite the
87 accumulated knowledge concerning MenT3 *in vitro* activity and structure, nothing is currently
88 known about MenT3 activity and cellular targets *in vivo* within *M. tuberculosis*.

89 In this work, we have investigated the impact of MenT3 on *M. tuberculosis*, focusing on
90 the identification of tRNA targets on a transcriptomic scale, on the molecular determinants
91 necessary for tRNA recognition, and on the mechanisms by which *M. tuberculosis* counteracts
92 noxious tRNA modification, both *in vivo* and *in vitro*. Using a combination of tRNA-seq *in vivo*
93 and *in vitro*, and several biochemical approaches, we show that MenT3 is an effective NTase
94 capable of efficiently modifying all the tRNA of *M. tuberculosis* *in vitro*, by adding 3 to 4 cytidines
95 at the 3' CCA end of the acceptor stem. Cytidine elongation was much more efficient for tRNA^{Ser},
96 reaching up to 17 cytidines added. Grafting the long variable loop present in all tRNA^{Ser} to
97 unrelated tRNAs promoted the addition of similarly longer stretches of cytidines, indicating that
98 the variable loop is a determinant for optimal MenT3 activity. Remarkably, when expressed *in vivo*
99 in *M. tuberculosis*, MenT3 specifically and efficiently added cytidines to all tRNA^{Ser}, without any
100 modification detected for other tRNAs. In sharp contrast with results *in vitro*, we found that
101 different tRNA^{Ser} 3' end species were accumulating *in vivo*, mostly deleted for the third position
102 adenosine, resulting in CCΔA, CΔCA and CCΔA+Cn extensions instead of CCA+Cn. Such a
103 phenomenon was fully recapitulated *in vitro* in the presence of *M. tuberculosis* exoribonuclease
104 RNase PH, which appears to be a key factor in the cellular response to MenT3 activity. Importantly,
105 we could also identify a steady state level of cytidine modification of tRNA^{Ser} in *M. tuberculosis*
106 wild type under standard growth conditions, and thus solely in the presence of the native
107 chromosomal *menAT3* operon copy. The role of such unexpected basal level of MenT3-dependent
108 tRNA^{Ser} modification and its possible link with *M. tuberculosis* physiology and virulence is
109 discussed.

110 **RESULTS**

111 **MenT3 is a promiscuous tRNA NTase with robust poly-C activity *in vitro***

112 We previously showed that MenT3 can add two to three cytidines or uridines to *in vitro* transcribed
113 tRNAs (Cai *et al*, 2020). In addition, individual screening of each of the 45 *in vitro* purified tRNA
114 of *M. tuberculosis* showed that MenT3 could modify the four tRNA^{Ser} and to a lesser extent
115 tRNA^{Leu-5}, while all the other tRNAs were not detectably modified. Yet, our recent observation
116 that mature tRNA were more efficiently modified *in vitro* by the related MenT1 toxin (Xu *et al*,
117 2023) led us to reinvestigate the nucleotide and tRNA specificities of MenT3. Incubation of *M.*
118 *smegmatis* tRNA extract with MenT3 in the presence of each individual labeled nucleotide
119 indicates that although UTP (and to a much lesser extent ATP) can be used by MenT3, CTP is by
120 far the preferred nucleotide substrate of MenT3 *in vitro* (Fig. 1A). In addition, we found that
121 MenT3 is capable of efficiently modifying *M. tuberculosis*, *E. coli* and human tRNAs purified from
122 cell extracts, indicating that MenT3 is a promiscuous tRNA NTase *in vitro* (Fig. 1B). Furthermore,
123 the NTase activity of MenT3 towards tRNA extracts *in vitro* is significantly more robust than those
124 of MenT1 or MenT4 (Fig. 1C), which is in agreement with the strong toxicity of MenT3 *in vivo*,
125 when compared to the other MenT toxins tested so far (Cai *et al*, 2020; Xu *et al*, 2023).

126 We next applied 3'-OH tRNA-seq to the *M. smegmatis* RNA extracts following incubation
127 in the presence or absence of MenT3 and found that over 95% of the pool of detected tRNA was
128 modified with an average of two to five cytidines added to 3'CCA tRNA ends (CCA+C_n; Fig. 1D).
129 Remarkably, while most of the tRNAs had these two to five cytidine extensions, the detected
130 tRNA^{Ser2} and tRNA^{Ser3} showed a completely different behavior, with significantly longer poly-
131 cytidine (poly-C) extensions of up to $n=12$ under such conditions (Fig. 1E, Supplementary
132 **Datasheet**). Note that tRNA^{Ser-1} and tRNA^{Ser-4} could not be sufficiently detected in *M. smegmatis*
133 extracts. In addition, the *M. smegmatis* selenocysteine tRNA^{Sec}, which is not present in *M.*

134 *tuberculosis* (Behra *et al*, 2022) and is very similar to tRNA^{Ser} was also highly modified by MenT3.
135 Together these *in vitro* data show that MenT3 is a very robust CTP-dependent tRNA NTase toxin,
136 which can modify most tRNAs with 3'CCA+C₍₂₋₅₎ extensions, but with a preference for tRNA^{Ser}
137 (or tRNA^{Sec} in *M. smegmatis*) with respect to the length of the cytidine extension.

138

139 **Serine tRNA variable loop is critical for poly-C extensions *in vitro***

140 We further investigated the marked difference in cytidine extension observed between tRNA^{Ser} and
141 other tRNAs *in vitro*, using purified *M. tuberculosis* tRNA^{Ser-4} and tRNA^{Met-2} as representative
142 tRNAs. In this case, the tRNAs were independently labelled with [α -³²P]-CTP and purified using
143 a ribozyme-based cleavage method that generated more homogeneous 3'-OH ends, to avoid the
144 higher heterogeneity generated in transcripts made with T7 RNA polymerase transcription (Xu *et*
145 *al*, 2023). Labeled tRNAs were individually incubated with MenT3 in the presence of CTP and
146 samples were analyzed at different time points (**Fig. 2A**). The data show the addition of cytidines
147 in both cases, with a more rapid accumulation of longer species of modified tRNA^{Ser-4} when
148 compared to tRNA^{Met-2}. Analysis of tRNA^{His} and tRNA^{Leu-3} confirmed the accumulation of shorter
149 extensions as observed for tRNA^{Met-2} (**Supplementary Figure S1**). Furthermore, 3'-OH tRNA-seq
150 analysis of the 10 min incubation samples of tRNA^{Ser-4} and tRNA^{Met-2} revealed that the majority of
151 the tRNA^{Ser-4} have indeed acquired 11 to 12 cytidines (with a maximum n=17), while tRNA^{Met-2}
152 only two to five (with a majority at n=3) (**Fig. 2B**). Together these *in vitro* data demonstrate that
153 although MenT3 is capable of modifying most tRNA *in vitro*, it shows a strong preference for
154 tRNA^{Ser}.

155 We next investigated the sequence and structural elements within a tRNA that are required
156 for modification by MenT3 *in vitro*. Several variants of tRNA^{Ser-4} with sequential deletion or
157 mutation of the 3'end nucleotides were labelled, purified using the ribozyme-based cleavage

158 method and incubated with MenT3 in the presence of CTP. Under such conditions, we found that
159 the adenosine amino acceptor of the CCA motif could be deleted or mutated to U, C, or G without
160 detectably affecting MenT3 activity (**Fig. 2C and Supplementary Figure S1**). In sharp contrast,
161 both 3'ΔCA and 3'ΔCCA end deletions within tRNA^{Ser-4} fully prevented modification by MenT3
162 (**Fig. 2C**). The 3'-OH tRNA-seq data confirmed that 3'ΔA, but not 3'ΔCA or 3'ΔCCA tRNA^{Ser-4},
163 can be modified by MenT3 (**Fig. 2D**). Yet, we noticed that cytidine extensions on 3'ΔA were on
164 average slightly shorter than for the wild type 3'CCA tRNA^{Ser-4} (*i.e.*, 9 to 10 cytidines compared
165 11 to 12), suggesting that the last nucleotide could still have some weak impact on MenT3 activity
166 (**Fig. 2D**). Together these data demonstrate that 3'CCA and CCΔA ends are *bona fide* targets for
167 MenT3.

168 The main structural feature that differentiates serine tRNAs from the other tRNAs in *M.*
169 *tuberculosis* is the presence of a longer variable loop (Cai *et al*, 2020), which we believe could play
170 a role in MenT3 specificity. To answer this, we first deleted the variable loop in tRNA^{Ser-4} and
171 tested the resulting construct *in vitro* in the presence of MenT3. Remarkably, deletion of the
172 variable loop of tRNA^{Ser-4} abolished the formation of long poly-C extensions, leaving the deleted
173 form of the tRNA^{Ser-4} to be extended as per non-serine tRNAs of *M. tuberculosis* (**Fig. 2E**). We
174 next asked whether grafting the variable loop of tRNA^{Ser-4} to an unrelated tRNA would induce the
175 formation of long poly-C extensions by MenT3. We constructed a tRNA^{Met-2} chimera in which the
176 native short variable loop was replace by the extended variable loop of tRNA^{Ser-4}, and tested for
177 extension in our *in vitro* assay. The data presented in **Fig. 2E** indeed show that the engineered
178 tRNA^{Met-2} chimera with the tRNA^{Ser-4} variable loop is efficiently modified by MenT3 and
179 accumulates long poly-C extensions, in a manner comparable to that of tRNA^{Ser-4} wild type.
180 Analysis by 3'-OH tRNA seq confirmed that the tRNA^{Met-2} chimera contained long poly-C

181 extensions (up to n=23) with a majority of 16 to 17 cytidines (**Fig. 2F**). Together these data
182 demonstrate the importance of the variable loop of tRNA^{Ser} for MenT3 activity.

183

184 **tRNA^{Ser} is the target of MenT3 *in vivo* in *M. tuberculosis***

185 We next investigated the cellular tRNA targets of MenT3 *in vivo* in its native host *M. tuberculosis*.
186 MenT3 was expressed in *M. tuberculosis* H37Rv Δ menT3 mutant strain for 0, 3 and 24 h at 37
187 °C, total RNAs were extracted and 3'-OH tRNA-seq was performed and compared to *M.*
188 *tuberculosis* H37Rv wild type (**Fig. 3A**). Using this recently developed method (Xu *et al*, 2023),
189 we were able to identify all of the 45 tRNAs of *M. tuberculosis* within the extracts (**Fig. 3B and**
190 **Supplementary datasheet**). Strikingly, the analysis shows that MenT3 only targets tRNA^{Ser}
191 isoacceptors *in vivo*. Modification of tRNA^{Ser} by 3' addition of cytidines was very robust *in vivo*
192 (approximately 65% of tRNA^{Ser-2, 3, 4} and 20% of tRNA^{Ser-1} as judged from three independent
193 replicates) after 24 h of expression (**Supplementary Figure S2**). None of the other tRNAs were
194 detectably modified by MenT3. Similar results were observed in *M. smegmatis* (**Supplementary**
195 **Figure S3**). These data demonstrate that serine tRNAs are the targets of MenT3 in *M. tuberculosis*.

196 Unexpectedly, analysis of the seq data revealed that different tRNA^{Ser} 3'-end species were
197 accumulating *in vivo* than *in vitro* (**Fig. 3C**). First, we found that cytidine extensions were
198 significantly shorter *in vivo*, with the majority of tRNA^{Ser} having only a single added cytidine and
199 a small fraction reaching a maximum of n=5. In addition, while cytidine extensions occur after the
200 adenine nucleotide of the 3'CCA end (CCA+C_n) *in vitro*, the vast majority, if not all, of the 3'
201 ends detected *in vivo* were deleted for A or CA, leading mainly to the accumulation of 3'CC Δ A+C₍₁₋
202 5) extensions but also to 3'C Δ CA without added cytidine (on average 7% tRNA^{Ser-4}, 27% tRNA^{Ser-}
203 3, 10% tRNA^{Ser-2} and 4% tRNA^{Ser-1} as judged from three independent replicates) after 24 h of
204 expression, which corresponds to only one doubling time for *M. tuberculosis*. Note that the

205 appearance of such species of tRNA^{Ser} *in vivo* was confirmed by northern blot using a probe against
206 tRNA^{Ser-3} in *M. smegmatis* (**Supplementary Figure S3**). In addition, although not present in *M.*
207 *tuberculosis*, the *in vivo* data confirm that tRNA^{Sec} can also be targeted by MenT3 in *M. smegmatis*
208 (**Supplementary Figure S3 and Fig. 1E**). Remarkably, the fact that 3' C Δ CA ends are not modified
209 by MenT3 *in vitro* (**Fig. 2C**) strongly suggests that such tRNA species could accumulate *in vivo*
210 following the processing of MenT3-modified tRNAs by endogenous RNases counteracting a
211 primary CCA+C_n elongation of tRNA^{Ser} by MenT3 (see below). Accordingly, such RNases could
212 also be responsible for generating 3' CC Δ A ends that are efficiently processed by MenT3 *in vitro*
213 (**Fig. 2C**) and which accumulate as the major 3' CC Δ A+C₍₁₋₅₎ species *in vivo* (**Fig. 3C**).

214

215 ***M. tuberculosis* RpH counteracts MenT3-mediated elongation of tRNA 3'-ends**

216 In order to investigate the possible role of tRNA repair enzymes of *M. tuberculosis* that could
217 generate 3' CC Δ A or C Δ CA templates in response to MenT3, we tested the effect of the three main
218 candidates present in *M. tuberculosis*, namely RpH, Orn and PNPase (Taverniti *et al*, 2011). The
219 three ribonucleases were purified and individually incubated for 1 h with samples of labelled
220 tRNA^{Ser-4} that have been previously modified by MenT3 and in which CTP has been removed to
221 prevent possible residual NTase activity of MenT3 (**Fig. 4A**). Under such conditions, we found
222 that the 3' exonuclease RpH of *M. tuberculosis*, but not PNPase or Orn (**Fig. 4A**), was able to
223 efficiently trim the poly-C modified tRNA^{Ser-4} to generate 3' CCA, CC Δ A and C Δ CA ends (**Fig.**
224 **4B and 4C**). Indeed, while MenT3 alone could modify over 85% of the tRNA^{Ser-4} with CCA+C_n
225 ends, the addition of RpH led to the processing of most the MenT3-modified tRNA^{Ser-4} to generate
226 wild type 3'- CCA (~37%), CC Δ A (~36%) and C Δ CA (~11%,) ends (**Fig. 4B and 4C**).
227 Furthermore, when the assay was performed with MenT3-modified tRNA^{Ser-4} 3'CC Δ A mutant

228 instead of the wild type tRNA^{Ser-4}, the MenT3 generated 3'CCΔA+Cn extensions could also
229 efficiently be trimmed by RpH to produce 3'- CCΔA (60%) and CΔCA (30%) after RpH treatment
230 (**Fig. 5 D and E**). This shows that RpH can generate both 3'CCΔA ends that can be efficiently re-
231 processed as substrate by MenT3 and 3'CΔCA ends, which are not further modified by MenT3 and
232 thus would accumulate *in vivo* (**Fig. 3B**). Together these data suggest that RpH might be responding
233 to the effect of the toxin by trimming the primary MenT3-modified 3'CCA+Cn ends of tRNA^{Ser} in
234 order to regenerate either 3'CCA or compatible ends for repair by CCA adding enzymes. Yet, the
235 fact that 3'CCΔA is a *bona fide* MenT3 substrate would make such response ineffective in *M.*
236 *tuberculosis* (see discussion).

237

238 **Steady state tRNA^{Ser} modification in *M. tuberculosis***

239 The 3'-OH tRNA-seq analysis of the *M. tuberculosis* H37Rv wild type control under normal growth
240 conditions (**Supplementary Figure S2**) revealed a significant steady state level of tRNA^{Ser} 3'-ends
241 with MenT3-like modifications (about 8% of the total tRNA^{Ser}). In this case, the only possible
242 source of MenT3 would come from the native chromosomal *menAT3* operon (**Supplementary**
243 **Figure S2**). In order to investigate whether endogenous *menAT3* from wild type *M. tuberculosis*
244 could indeed control the active pool of tRNA^{Ser} *in vivo*, we performed similar *in vivo* 3'-OH tRNA-
245 seq experiments using the *M. tuberculosis* H37Rv wild type, its isogenic Δ *menAT3* mutant and the
246 Δ *menAT3* mutant carrying MenT3 on the pGMC integrative plasmid in the absence of inducer, in
247 order to obtain low level leaky expression of MenT3 and avoid toxicity. The data presented in **Fig.**
248 **5A** and **Supplementary Figure S4** show that indeed, the MenT3-like modifications of tRNA^{Ser}
249 that are present in *M. tuberculosis* wild type decrease significantly in the Δ *menAT3* mutant. Note
250 that MenT3 expression without inducer was sufficient to partly restore tRNA^{Ser} modifications in a

251 $\Delta menAT3$ mutant background, yet less efficiently than in the presence of inducer (**Fig 5A**
252 **compared to Fig 3B and 3C**). When comparing each of the tRNA^{Ser} isoacceptors (**Supplementary**
253 **Figure S4**), the MenT3-like modifications in the $\Delta menAT3$ mutant dropped from 9.5 to 1.8% for
254 tRNA^{Ser-2}, from 10.5 to 3% for tRNA^{Ser-3}, from 9.2 to 4.1% for tRNA^{Ser-4} and from 6.7 to 3.8% for
255 tRNA^{Ser-1}, which was also less efficiently modified *in vivo* following MenT3 overexpression (see
256 **Fig. 3C**). Among these, the 3'CC Δ A+C_n ends of tRNA^{Ser} were barely detected in the $\Delta menAT3$
257 mutant (**Supplementary Figure S4**). Together these *in vivo* data indicate that there is a fraction of
258 MenT3 toxin that is active under standard laboratory growth conditions that can modulate the pool
259 of mature tRNA^{Ser} available for translation in wild type *M. tuberculosis*.

260 **DISCUSSION**

261 This work demonstrates that the MenT3 toxin has a robust NTase activity *in vitro* and identifies its
262 native tRNA targets *in vivo* in *M. tuberculosis*. It shows that MenT3 can modify all the tRNA tested
263 *in vitro* by specifically adding cytidines to their 3' end, although with a preference for tRNA^{Ser}, to
264 which significantly longer stretches of cytidines were added. Transcriptomic identification of
265 MenT3 tRNA targets in *M. tuberculosis* revealed that tRNA^{Ser} isoacceptors are the sole targets of
266 the toxin *in vivo* and that significantly different tRNA 3'ends accumulate *in vivo* and *in vitro*, most
267 likely due to detoxification attempts by *M. tuberculosis* RpH in response to MenT3. Finally, this
268 work identifies a basal level of MenT3-dependent tRNA^{Ser} 3'end modifications in *M. tuberculosis*
269 under standard growth conditions, when MenT3 levels are physiological and produced from the
270 native chromosomal *menAT3* operon.

271 The observation that MenT3 only targets tRNA^{Ser} isoacceptors *in vivo* and that cytidine
272 elongations are significantly shorter *in vivo* (1 to 5) than *in vitro* (up to 17) suggests more stringent
273 conditions *in vivo* or/and that other factors would contribute to such a strong preference *in vivo*.
274 Remarkably, as observed in *E. coli* (Avciilar-Kucukgoze *et al*, 2016) and in humans (Evans *et al*,
275 2017), tRNA^{Ser} are significantly less aminoacylated than other tRNAs in *M. tuberculosis*, with less
276 than 20% of tRNA^{Ser} being charged when at steady state (Tomasi *et al*, 2023). Such a low charging
277 of tRNA^{Ser} was proposed to be due to a competition between aminoacylation of tRNA^{Ser} for
278 translation and the need for serine amino acids for pyruvate and acetate production and glycine
279 synthesis in *E. coli* (Avciilar-Kucukgoze *et al*, 2016). Therefore, the low availability of endogenous
280 charged tRNA^{Ser} in *M. tuberculosis* would exacerbate the deleterious effect of MenT3 and
281 contribute to the evolution of a strong preference for tRNA^{Ser} *in vivo*. The targeting of specific
282 tRNAs is a characteristic of many toxin families (Songailiene *et al*, 2020; Yashiro *et al*, 2021;

283 Tomasi *et al*, 2023; Cheverton *et al*, 2016; Wilcox *et al*, 2018; Zhang *et al*, 2020; Kurata *et al*,
284 2021; Li *et al*, 2021; Vang Nielsen *et al*, 2019). In *M. tuberculosis*, the acetyltransferase toxin TacT
285 (Rv0919) was shown to specifically acetylate the primary amine group of charged tRNA^{Gly} glycyl-
286 tRNAs (Tomasi *et al*, 2023), and the PIN domain RNase toxin VapC-*mt*4 was shown to cleave a
287 single site within the anticodon sequence of tRNA^{Cys} (Barth *et al*, 2021). Collectively, these
288 observations indicates that the selective targeting of a single tRNA or a small subset of tRNAs may
289 be a hallmark of successful toxins of TA systems.

290 This work also revealed the importance of the long variable loop characteristic of tRNA^{Ser}
291 for MenT3 activity (Throll *et al*, 2023). Noticeably, this region was shown to be important for
292 binding to the Seryl-tRNA synthetase (SerRS) both in *E. coli* and in humans (Throll *et al*, 2023;
293 Lenhard *et al*, 1999), suggesting that it could also contribute to the specific binding of MenT3.

294 We observed striking differences in the nature of the tRNA^{Ser} 3'end species that
295 accumulated *in vivo* when compared to *in vitro*, *i.e.*, mainly CC Δ A+C n and C Δ CA *in vivo* (with a
296 small fraction of CC Δ A, Δ CCA and CCA+C n), and exclusively CCA+C n *in vitro*. This strongly
297 suggests that *in vivo* cytidine elongations are recognized and trimmed by *M. tuberculosis* tRNA
298 repair enzymes, although not enough to restore a sufficient pool of mature tRNA. Accordingly, we
299 have identified the 3'exoribonuclease RpH of *M. tuberculosis* as the main response to MenT3
300 activity. Although its role in tRNA maturation or repair in *M. tuberculosis* is unknown, RpH was
301 shown to play an important role for the removal of nucleotides downstream of the 3'CCA end motif
302 from tRNA precursors in other bacteria (Wen *et al*, 2005). In this case, processing by RpH not only
303 led to the formation of compatible tRNA 3'CCA ends but also to a significant fraction of 3'C Δ CA
304 truncated tRNA ends (Wen *et al*, 2005), which is in line with the species accumulating *in vivo* and
305 *in vitro* in the presence of *M. tuberculosis* RpH and MenT3. Therefore, together these data suggest

306 a model (**Fig. 5B**) in which MenT3 first attacks uncharged, mature tRNA^{Ser} 3'CCA ends, adding
307 cytidine extensions (CCA+C_n) to block amino acylation. Such MenT3-modified elongated tRNAs
308 represent *bona fide* clients for RpH, which can efficiently trim 3'ends to regenerate CCA, but also
309 CCAΔA and CΔCA ends. Since we showed that CΔCA is not a substrate of MenT3, such species
310 may thus increasingly accumulate *in vivo* as a product of RpH attempts to repair elongated tRNA
311 ends. Both CCA and CCAΔA 3' ends resulting from RpH activity will in turn be targeted by MenT3
312 to generate CCA+C_n and CCAΔA+C_n, which can then be targeted again by RpH and enter a new
313 cycle, progressively leading to a decrease in CCA+C_n species and the accumulation of CCAΔA+C_n
314 and CΔCA species (**Fig. 5B**).

315 Previous data showed that *E. coli* is significantly less sensitive to *M. tuberculosis* MenT
316 toxins (*i.e.*, MenT1, 3, and 4) and that RpH overexpression can partially counteract MenT3 toxicity
317 in *E. coli*, but not in *M. smegmatis* (Cai *et al*, 2020). Although we cannot exclude that *E. coli* and
318 *M. tuberculosis* RpH respond differently to cytidine addition, a reasonable hypothesis for such
319 differences might be that most of the tRNA genes of *M. tuberculosis* (30/45) do not contain a CCA
320 motif in their sequences and need to be further processed by the essential CCA-adding enzyme
321 (Błaszczyk *et al*, 2023). This is in sharp contrast with *E. coli*, in which the CCA-adding enzyme is
322 not essential and all the tRNA genes have the CCA in their sequence (Zhu & Deutscher, 1987). As
323 a result, upon expression of MenT3 the CCA-adding enzyme of *M. tuberculosis* might be
324 overwhelmed by the new pool of accumulating tRNA^{Ser} CCAΔA+C_n and CΔCA 3'-ends.

325 Our data highlight the existence of a fraction of tRNA^{Ser} that is modified by MenT3 *in vivo*
326 in *M. tuberculosis* wild type under standard growth conditions. This unexpected discovery suggests
327 the existence of a population of endogenous MenT3 that is active and that could modulate
328 translation, as part of a significant contribution to the control of pathogen growth during infection.

329 In agreement with this hypothesis, a screen for transposon mutants that failed to grow in murine
330 macrophages identified *menT3*, and not *menA3*, as one of the 126 genes important for *M.*
331 *tuberculosis* intracellular survival under such conditions (Rengarajan *et al*, 2005). More recently,
332 *menT3* was also identified as a persistence gene in *M. tuberculosis*, which contributes to the long
333 term survival in mouse lungs (Dutta *et al*, 2014), thus further supporting the requirement of
334 endogenous MenT3 activity under relevant physiological conditions for this pathogen.

335 The fact that MenT3 can be active and target tRNA^{Ser} despite the presence of the MenA3
336 antitoxin is intriguing and might be related to its peculiar mode of inhibition. Indeed, previous work
337 showed that MenA3 acts as a type VII antitoxin kinase, which transiently interacts with, and
338 inhibits, MenT3 by phosphorylating the MenT3 S78 catalytic site residue (Yu *et al*, 2020; Cai *et*
339 *al*, 2020). Accordingly, this inhibitory mechanism was recently supported by phospho-proteome
340 analysis of *M. tuberculosis*, which indeed identified the presence of phosphorylated MenT3 at S78
341 (Frando *et al*, 2023). Therefore, one attractive possibility is that a fraction of inactive
342 phosphorylated MenT3 could be dephosphorylated in response to certain growth conditions or
343 aggression by the host immune system. In support of this, the housekeeping phosphatase PstP of
344 *M. tuberculosis* could dephosphorylate MenT3 *in vitro* (Yu *et al*, 2020). Reversibly, a fraction of
345 free active MenT3 could also be affected by endogenous Ser/Thr protein kinases (STPKs) like
346 PknD and PknF (Frando *et al*, 2023), suggesting that the level of active endogenous MenT3 toxin
347 might not solely be controlled by the antitoxin, but also by responsive endogenous
348 kinase/phosphatase networks to ensure translational control is attuned to physiological need during
349 growth and infection.

350 **MATERIALS AND METHODS**

351 **Bacterial strains**

352 *E. coli* strains DH5 α (Invitrogen), BL21(λ DE3) and BL21 (λ DE3) AI (Novagen), *M. tuberculosis*
353 H37Rv (WT; ATCC 27294) and its mutant derivative H37Rv Δ menAT3::*disf6/pGMCZ* and *M.*
354 *smegmatis* mc²155 (ATCC 700084) have been described (Cai *et al*, 2020). *E. coli* were grown at
355 37 °C in LB, when necessary, with kanamycin (Km, 50 μ g.ml⁻¹), ampicillin (Ap, 50 μ g.ml⁻¹),
356 isopropyl- β -D-thiogalactopyranoside (IPTG, 1 mM), L-arabinose (L-ara, 0.1 % w/v) or D-glucose
357 (glu, 0.2 % w/v). *M. smegmatis* mc²155 was grown at 37 °C in LB, when necessary, with Km
358 (10 μ g.ml⁻¹) or streptomycin (Sm, 25 μ g.ml⁻¹). *M. tuberculosis* strains were grown at 37 °C in 7H9
359 medium (Middlebrook 7H9 medium, Difco) supplemented with 10 % albumin-dextrose-catalase
360 (ADC, Difco) and 0.05 % Tween 80 (Sigma-Aldrich), or on complete 7H11 solid medium
361 (Middlebrook 7H11 agar, Difco) supplemented with 10 % oleic acid-albumin-dextrose-catalase
362 (OADC, Difco). When necessary, media were supplemented with, hygromycin (Hy, 50 μ g.ml⁻¹),
363 Sm (25 μ g.ml⁻¹), zeocin (Zeo, 25 μ g.ml⁻¹), or anhydrotetracycline (Atc, 100 or 200 ng.ml⁻¹) (Xu *et*
364 *al*, 2023).

365 **Plasmid constructs**

366 Plasmids pET15b (Novagen), pET20b and pETDuet-1 have been described. All the primers used
367 to construct the plasmids are described in **Supplementary Table S1**.

368 To construct pET15b-menT3, *rv1045* was PCR amplified from the *M. tuberculosis*
369 H37Rv genome using primers Rv1045 NdeI-For and Rv1045 BamHI-Rev and cloned into pET15b
370 after digestion with NdeI and BamHI enzymes. For pET20b-*mtbrpH* or pET20b-*mtborn*
371 construction, *rv1340* or *rv2511* was PCR amplified from the *M. tuberculosis* H37Rv genome using

372 primers Rv1340 NdeI-For and Rv1340 XhoI-Rev or Rv2511 NdeI-For and Rv2511 XhoI-Rev,
373 respectively. Amplified fragments were then inserted into pET20b following digestion with NdeI
374 and XhoI enzymes. To construct pETDuet-1-mtbpnpase, *rv2783c* was PCR amplified from the *M.*
375 *tuberculosis* H37Rv genome using primers Rv2783c MfeI-For and Rv2783c HindIII-Rev, and
376 cloned as MfeI/ HindIII fragments into EcoRI/HindIII digested pETDuet-1.

377 The pUC57-T7-Met-2-HDV and pUC57-T7-Ser-4-HDV plasmids containing tRNA-HDV fusion
378 under the control of a T7 promoter were synthesized by Genewiz (Azenta Life Sciences). The
379 pUC57-T7-Met-2+variable loop of Ser-4-HDV, pUC57-T7-Ser-4ΔA-HDV, pUC57-T7-Ser-
380 4ΔCA-HDV, pUC57-T7-Ser-4ΔCCA-HDV and pUC57-T7-Ser-4Δvariable loop-HDV plasmids
381 were constructed by PCR using the primers listed in **Supplementary Table S1**. The sequences of
382 the T7-Met-2-HDV, T7-Met-2+variable loop of Ser-4-HDV, T7-Ser-4-HDV and T7-Ser-
383 4Δvariable loop-HDV fragments are given in **Supplementary Table S1**. To prepare DNA template
384 for transcription with T7 polymerase, T7-tRNA-HDV fragments were PCR amplified using
385 primers T7-For and HDV-Rev for T7-Met-2-HDV or HDV short-Rev for T7-Met-2+variable loop
386 of Ser-4-HDV, T7-Ser-4-HDV and T7-Ser-4Δvariable loop-HDV. T7-Ser-4ΔA-HDV, T7-Ser-
387 4ΔCA-HDV and T7-Ser-4ΔCCA-HDV was constructed by In-fusion PCR and the primers were
388 listed in **Supplementary Table S1**.

389 **Protein expression and purification**

390 Purified MenT3 was produced as described previously (Cai *et al*, 2020). Purified proteins were
391 also obtained as follows; to purify MenT3, mtbRpH, mtbPNPase and mtbOrn, strain BL21(λDE3)
392 AI transformed with pET15b-MenT3, pET20b-RpH, pETDuet-1-RV2783c or pET20b-Orn was
393 grown to an OD₆₀₀ of approximately 0.4 at 37 °C, 0.2 % L-ara was added and the culture
394 immediately incubated overnight at 22 °C, respectively. Cultures were centrifuged at 5000 x g for

395 10 min at 4 °C, pellets were resuspended in lysis buffer (50 mM Tris-HCl, pH8.0, 200 mM NaCl,
396 10 mM MgCl₂, 20 mM imidazole; 20 ml for 1 liter of cell culture) and incubated for 30 min on ice.
397 Lysis was performed using the One-shot cell disrupter at 1.5 Kbar (One shot model, Constant
398 Systems Ltd). Lysates were centrifuged for 30 min at 30000 x g in 4 °C and the resulting
399 supernatants were gently mixed with Ni-NTA Agarose beads (Qiagen) pre-equilibrated with lysis
400 buffer, at 4 °C for 30 min in a 10 ml poly-prep column (Bio-Rad). The column was then stabilized
401 for 10 min at 4 °C, washed five times with 10 ml of lysis buffer, and proteins were eluted with
402 elution buffer (50 mM Tris-HCl, pH8.0, 200 mM NaCl, 10 mM MgCl₂, 250 mM imidazole). 500
403 µl elution were collected and PD MiniTrap G-25 columns (GE Healthcare) were used to exchange
404 buffer (50 mM Tris-HCl, pH8.0, 200 mM NaCl, 10 mM MgCl₂, 10 % glycerol) and proteins were
405 concentrated using vivaspin 6 columns with a 5000 Da cut off (Sartorius). To remove the His-tag,
406 thrombin was incubated with the protein at 4 °C overnight. Following NTA and streptavidin
407 addition, the cleaved His-tag and thrombin were washed out. Proteins were stored at -80 °C until
408 further use.

409 ***In vitro* transcription of tRNAs**

410 tRNAs were synthesized via *in vitro* transcription using PCR templates that incorporated an
411 integrated T7 RNA polymerase promoter sequence. Primers for *M. tuberculosis* tRNAs are given
412 in **Supplementary Table S1**. The T7 RNA polymerase *in vitro* transcription reactions were carried
413 out in a total volume of 25 µl, which included a 5 µl nucleotide mix containing 2.5 mM NTPs
414 (Promega). For each reaction, 50 ng to 100 ng of template DNA were used, along with 1.5 µl of
415 rRNasin (40 U.ml⁻¹, Promega), 5 µl of 5x optimized transcription buffer (Promega), 2 µl of T7
416 RNA polymerase (20 U.ml⁻¹), and 2.5 µl of 100 mM DTT. The reactions were incubated at 37 °C
417 for 2 hours (Cai *et al*, 2020). The resulting tRNA products were extracted using Trizol reagent(Yip

418 *et al*, 2020) and stored at a final concentration of 100 to 200 ng. μ l⁻¹, as determined by NanoDrop
419 analysis. To obtain high-concentration tRNA for EMSA, the TranscriptAid T7 High Yield
420 Transcription Kit from Thermo Fisher was employed. In this protocol, 1 μ g of tRNA DNA template
421 was included in the transcription assay and incubated at 37 °C for 4 hours. Subsequently, DNase I
422 treatment was performed, followed by RNA isolation using Trizol.

423 ***In vitro* transcription of tRNAs with homogeneous 3' ends**

424 An optimized version of the hepatitis delta virus (HDV) ribozyme was used to generate
425 homogeneous tRNA 3' ends as described (Schürer *et al*, 2002; Xu *et al*, 2023). Briefly, the DNA
426 template T7-tRNA-HDV was amplified from plasmid pUC-57Kan-T7-tRNA-HDV
427 (Supplementary Table S1). Labelled or unlabelled tRNAs were prepared by *in vitro* transcription
428 of PCR templates using T7 RNA polymerase. The T7 RNA polymerase *in vitro* transcription
429 reactions were performed in 25 μ l total volume, with a 5 μ l nucleotide mix of 2.5 mM ATP, 2.5
430 mM UTP, 2.5 mM GTP, 60 μ M CTP (Promega, 10 mM stock) and 2-4 μ l 10 mCi.ml⁻¹ of
431 radiolabelled CTP [α -32P], or with 5 μ l nucleotide mix of 2.5 mM ATP, 2.5 mM UTP, 2.5 mM
432 GTP, 2.5 mM CTP for unlabelled tRNA transcription. 50 to 100 ng of template were used per
433 reaction with 1.5 μ l rRNasin 40 U.ml⁻¹ (Promega), 5 μ l 5x optimized transcription buffer
434 (Promega), 2 μ l T7 RNA polymerase (20 U.ml⁻¹) and 2.5 μ l 100 mM DTT. Unincorporated
435 nucleotides were removed by Micro Bio-Spin 6 columns (Bio-Rad) according to manufacturer's
436 instructions. The transcripts were gel-purified on a denaturing 6 % acrylamide gel and eluted in 0.3
437 M sodium acetate overnight at 20 °C. The supernatant was removed, ethanol precipitated and
438 resuspended in 14 μ l nuclease-free water. Radioactively labelled tRNAs carrying a 2',3' cyclic
439 phosphate at the 3' end was dephosphorylated using T4 polynucleotide kinase (NEB) in 100 mM

440 Tris-HCl pH 6.5, 100 mM magnesium acetate and 5 mM β -ME in a final volume of 20 μ l for 6 h
441 at 37 °C. All assays were desalted by Micro Bio-Spin 6 columns (Bio-Rad).

442 ***Electrophoretic mobility shift assay (EMSA)***

443 The concentrations of proteins are indicated in the figures and figure legends, and tRNA was
444 consistently maintained at a concentration of 50 ng. μ l⁻¹ in all experimental setups. The tRNA–
445 MenT3 complexes were assembled in a buffer solution comprising 20 mM Tris-HCl (pH 8.0), 10
446 mM NaCl, 5% glycerol, and 10 mM MgCl₂. The reactions underwent incubation at room
447 temperature for a duration of 30 min and were subsequently subjected to resolution through Tris-
448 Borate-EDTA (TBE) native Polyacrylamide Gel Electrophoresis (PAGE).

449 **Nucleotide transfer assay**

450 MenT3 NTase activity was assayed in 10 μ l reaction volumes containing 20 mM Tris-HCl pH 8.0,
451 10 mM NaCl, 10 mM MgCl₂ and 1 μ Ci. μ l⁻¹ of radiolabelled rNTPs [α -³²P] (Hartmann Analytic)
452 and incubated for 5 min at 37 °C. 100 ng *in vitro* transcribed tRNA product, 1 μ g total RNA or 100
453 ng of *E. coli* or *M. smegmatis* tRNA was used per assay with 0.2 μ M of protein. The 10 μ l reactions
454 were purified with Bio-Spin® 6 Columns (Bio-Rad), and mixed with 10 μ l of RNA loading dye
455 (95% formamide, 1 mM EDTA, 0.025 % SDS, xylene cyanol and bromophenol blue), denatured
456 at 90 °C and separated on 6 % polyacrylamide-urea gels. The gel was vacuum dried at 80 °C,
457 exposed to a phosphorimager screen and revealed by autoradiography using a Typhoon
458 phosphorimager (GE Healthcare).

459 For the single tRNA modification by MenT3 *in vitro*, the radiolabeled tRNA was incubated
460 with 0.2 μ M MenT3 in the presence of 1 mM CTP for 5 min at 37 °C, the reaction was halted by

461 adding 10 μ l of RNA loading dye, denatured at 90 °C. Subsequently, the modified RNA samples
462 were separated on a 10% polyacrylamide-urea gel.

463 **tRNA repair *in vitro***

464 The tRNA modified product from MenT3 *in vitro* reactions underwent the following steps: it was
465 initially purified using Bio-Spin® 6 Columns (Bio-Rad), followed by incubation with a putative
466 exoribonuclease (10 μ M) in a reaction buffer (For Orn: 10 mM Tris-HCl, pH 8.0, 100 mM NaCl,
467 5 mM MgCl₂, For RpH and PNPase: 50 mM Tris-HCl, pH 8.0, 10 mM NaCl, 2.5 mM MgCl₂, 10
468 mM K₂HPO₄, 1 mM DTT) at 37 °C for an indicative time. Subsequently, it was mixed with 10 μ l
469 of RNA loading dye, subjected to denaturation at 90 °C, and then separated using 10%
470 polyacrylamide-urea gels. Alternatively, the RNA samples were analyzed through RNA-seq.

471 **Northern blot**

472 Total RNA was isolated from *M. smegmatis* transformed with either pGMC-MenT3 or an empty
473 vector. Subsequently, 5 μ g of RNA was separated using 10 % polyacrylamide-urea gels. Following
474 gel electrophoresis, the RNA was transferred onto nylon membranes (Amersham Hybond N+, GE
475 Healthcare) and subjected to hybridization as previously described(Fricker *et al*, 2019). The
476 sequences of the oligonucleotides used are described in **Supplementary Table S1**.

477 **tRNA libraries and sequencing**

478 Primers used for the construction of tRNA libraries are described in **Supplementary Table S1**. To
479 obtain the MenT3 library from *in vitro* reactions, 5 μ g of *M. smegmatis* total RNA supplemented
480 with 1 mM CTP was incubated with water and 0.8 μ g MenT3, then incubated for 20 min at 37 °C.
481 For the *in vitro* transcribed tRNA-seq, 20 ng. μ L⁻¹ of specific tRNAs were incubated with 1 μ M
482 MenT3 at 37 °C for 10 min. Total RNA samples and single tRNA samples were isolated using

483 trizol and ethanol precipitation, respectively. Construction of tRNA-seq libraries from *M.*
484 *smegmatis* and *M. tuberculosis* were performed as follows: *M. smegmatis* transformed with pGMC
485 or pGMC-menT3 weak RBS were grown at 37 °C for 3 days, then the culture was transferred to
486 fresh LB, until OD₆₀₀ reached 0.1, Atc (100 ng.ml⁻¹) was added, and the cells were collected after
487 3 hours at 37 °C for preparation of total RNA, as previously described (Xu *et al*, 2023). *M.*
488 *tuberculosis* wild-type H37Rv, H37Rv *ΔmenAT3* mutant or the same strains transformed with
489 pGMC-menT3 weak RBS were grown at 37 °C until OD₆₀₀ reached 0.5, Atc (200 ng.ml⁻¹) was
490 added and the cells were collected at 0, 3 or 24 h. Cell pellets were resuspended in 1ml of Trizol
491 and cells were disrupted in a bead-beater disrupter, after addition of glass beads. Samples were
492 centrifuged for 2 min. at 20,000 g and the trizol extract was collected and conserved for at least 48
493 hours at -80°C before transfer out of the BSL3 laboratory for total RNA isolation. All of the RNA
494 was dissolved in DEPC-H₂O (pH 7.0) by heat at 65 °C for 10 min, which conditions known to be
495 able to discharge the tRNA *in vitro*(Walker & Fredrick*, 2008). To remove m1A, m3C and m1G
496 modifications in the tRNAs, the total RNA samples were pretreated using the demethylase kit
497 (Arraystar, cat#: AS-FS-004, Rockville, MD, USA), followed by trizol isolation. Notably, during
498 the demethylation reaction (pH 7.5-8)(Toh *et al*, 2020), tRNA was deacylated sufficiently by this
499 near-neutral pH. The 3p-v4 oligo was 5' adenylated using 5' DNA Adenylation Kit (E2610S, NEB)
500 according to the manufacturer's protocol. To construct the library, RNA samples were ligated to
501 the adenylated 3p-v4 adaptors, and reverse transcription was performed with ProtoScript II RT
502 enzyme (NEB) using barcode primers (**Supplementary Table S1**). Finally, PCR amplification was
503 performed with tRNAs oligoFor mix and A-PE-PCR10 (after 5 cycles, the program was paused
504 and B_i7RPI1_CGTGAT or i7RPI7_ GATCTG was added) using Q5 Polymerase Hot-Start
505 (NEB). The library was sequenced by DNBSEQ -G400RS High-throughput Sequencing Set
506 (PE150) in BGI Genomics (Hong Kong).

507 **RNA-Seq data processing**

508 After a quality check, reads were demultiplexed to obtain a fastq file per experimental condition.
509 For each experimental condition, the same procedure was applied: (i) mapping to a reference, (ii)
510 PCR duplicates removal, (iii) quantification of read counts. Raw reads quality was checked with
511 FastQC (<http://www.bioinformatics.babraham.ac.uk/projects/fastqc>). Further reads processing was
512 performed with R software version 4.3.1 and BioConductor libraries for processing sequencing
513 data obtained. R library ShortRead 1.58.0(Morgan *et al*, 2009) was used to process fastq files.
514 Rsubread 2.14.2(Liao *et al*, 2019) was used to map reads on the reference genome. Further filtering
515 was performed to ensure reads contained the structure resulting from library preparation
516 (**Supplementary Table S1** for RNA-Seq read structure): reads start with a random nucleotide at
517 position 1, a valid barcode at position 2-5, a recognition sequence resulting from ligation at position
518 6-24 with one mismatch allowed, random UMI sequence at position 25-39, agacat control sequence
519 at position 40-45, and a random nucleotides sequence at position 46-150, which corresponds to the
520 reverse complement of the ligated 3'-end of tRNAs in the experiment. Reads corresponding to the
521 different experimental conditions identified by the barcode were demultiplexed into fastq files for
522 independent further analyses (mapping and quantification).

523 All the *M. smegmatis* mc²155 (NC_008596.1) and *M. tuberculosis* H37Rv (NC_000962.3)
524 chromosomal tRNA gene sequences were extracted in a multifasta file. The sequence of genes *rrfA*,
525 *cspA* and for tmRNA were also added. The nucleotides CCA were concatenated at the end of each
526 sequence. Mapping on reference sequences was performed by using the library Rsubread 2.14.2
527 with parameters ensuring that the read maps without any indel to a unique region: unique=TRUE,
528 type='dna', maxMismatches=2, indels=0, ouput_format='BAM'.

529 For quantification, SAM files were processed with Rsamtools 2.16.0
530 (<https://bioconductor.org/packages/Rsamtools>) to count the number of reads mapping to the same
531 region in reference sequences with the same 3' unmapped sequences due to RNA 3' end
532 modifications. Reads were kept if the aligned region nearest the 3' end of the reference sequence
533 was at least 20 nucleotides long and allowing 3' end soft clipping (unaligned region after the
534 minimum 20 nucleotides aligned nearest the 3' end of the reference sequence), which corresponds
535 to nucleotides added by the toxin. In the alignments in the SAM file, this translates to a CIGAR
536 code ending with only 'M' characters (indicating a match) possibly followed by 'S' characters
537 (indicating no alignment to the reference sequence). PCR duplicates were removed using the UMI
538 introduced in the library preparation for reads mapping exactly the same region (same beginning
539 and end of the alignment) and having exactly the same unmapped 3'-end sequence. After these
540 preprocessing steps, reads were regrouped by their 3'-end mapping position and unmapped 3'-end
541 region sequence to quantify their abundance in terms of same tRNA 3'-end followed by the same
542 nucleotides *i.e.* same post-transcriptional modifications. To remove noise, a tRNA with its post-
543 transcriptional modifications was kept only if it was found at least 10 times in at least one of the
544 experimental conditions.

545 Primers and specific sequences used in this work are shown in **Supplementary Table S1**

546

547 **DATA AVAILABILITY**

548 All the data needed to evaluate the conclusions in the paper are present in the paper and/or in the
549 Supplementary Datasheet.

550 **ACKNOWLEDGEMENTS**

551 We thank Ciarán Condon for useful discussion. This work was supported by the Centre National
552 de la Recherche Scientifique, Université Paul Sabatier, the Programme d'Investissements d'Avenir
553 (ANR-20-PAMR-0005) to ON and PG; the Swiss National Science Foundation (CRSII3_160703)
554 to PG; the National Natural Science Foundation of China, (32000021) to XX; a scholarship from the
555 China Scholarship Council (CSC) as part of a joint international PhD program with -Toulouse University
556 Paul Sabatier and a Fondation pour la Recherche Médicale (FDT202304016729) to X.H.; a
557 Springboard Award (SBF002\1104) from the Academy of Medical Sciences to BU and TRB; an
558 Engineering and Physical Sciences Research Council Molecular Sciences for Medicine Centre for
559 Doctoral Training studentship (EP/S022791/1) to T.J.A.

560 **COMPETING INTEREST**

561 The authors declare no competing interests.

562 **AUTHOR CONTRIBUTIONS**

563 -Analyzed data: X.X, R.B, B.V, T.J.A, B.U, C.G, X.H, P.R, T.R.B, O.N., P.G.

564 -Designed research: X.X, R.B, B.V, T.J.A, B.U, C.G, X.H, P.R, T.R.B, O.N., P.G.

565 -Performed research: X.X., R.B, B.V, T.J.A, B.U, C.G, X.H

566 -Wrote the paper: X.X and P.G. with contributions from all the authors.

567 -Funding acquisition: X.X, O.N., T.R.B. and P.G.

568 -Supervised the study: P.G.

569 **REFERENCES**

570 Agarwal S, Tiwari P, Deep A, Kidwai S, Gupta S, Thakur KG & Singh R (2018) System-Wide Analysis
571 Unravels the Differential Regulation and In Vivo Essentiality of Virulence-Associated Proteins B
572 and C Toxin-Antitoxin Systems of *Mycobacterium tuberculosis*. *The Journal of Infectious Diseases*
573 217: 1809–1820

574 Akarsu H, Bordes P, Mansour M, Bigot D-J, Genevaux P & Falquet L (2019) TASmania: A bacterial Toxin-
575 Antitoxin Systems database. *PLoS Comput Biol* 15: e1006946

576 Ariyachaokun K, Grabowska AD, Gutierrez C & Neyrolles O (2020) Multi-Stress Induction of the
577 *Mycobacterium tuberculosis* MbCTA Bactericidal Toxin-Antitoxin System. *Toxins* 12: 329

578 Avcilar-Kucukgoze I, Bartholomäus A, Cordero Varela JA, Kaml RF-X, Neubauer P, Budisa N & Ignatova Z
579 (2016) Discharging tRNAs: a tug of war between translation and detoxification in *Escherichia coli*.
580 *Nucleic Acids Res* 44: 8324–8334

581 Barth VC, Chauhan U, Zeng J, Su X, Zheng H, Husson RN & Woychik NA (2021) *Mycobacterium*
582 tuberculosis VapC4 toxin engages small ORFs to initiate an integrated oxidative and copper stress
583 response. *Proc Natl Acad Sci U S A* 118: e2022136118

584 Behra PRK, Pettersson BMF, Ramesh M, Das S, Dasgupta S & Kirsebom LA (2022) Comparative genome
585 analysis of mycobacteria focusing on tRNA and non-coding RNA. *BMC Genomics* 23: 704

586 Błaszczyk E, Płociński P, Lechowicz E, Brzostek A, Dziadek B, Korycka-Machała M, Słomka M & Dziadek J
587 (2023) Depletion of tRNA CCA-adding enzyme in *Mycobacterium tuberculosis* leads to
588 polyadenylation of transcripts and precursor tRNAs. *Sci Rep* 13: 20717

589 Cai Y, Usher B, Gutierrez C, Tolcan A, Mansour M, Fineran PC, Condon C, Neyrolles O, Genevaux P &
590 Blower TR (2020) A nucleotidyltransferase toxin inhibits growth of *Mycobacterium tuberculosis*
591 through inactivation of tRNA acceptor stems. *Sci Adv* 6: eabb6651

592 Catara G, Caggiano R & Palazzo L (2023) The DarT/DarG Toxin–Antitoxin ADP-Ribosylation System as a
593 Novel Target for a Rational Design of Innovative Antimicrobial Strategies. *Pathogens* 12: 240

594 Cheverton AM, Gollan B, Przydacz M, Wong CT, Mylona A, Hare SA & Helaine S (2016) A *Salmonella* Toxin
595 Promotes Persister Formation through Acetylation of tRNA. *Mol Cell* 63: 86–96

596 De Bast MS, Mine N & Van Melderen L (2008) Chromosomal toxin-antitoxin systems may act as
597 antiaddiction modules. *Journal of bacteriology* 190: 4603–4609

598 Dedrick RM, Jacobs-Sera D, Bustamante CAG, Garlena RA, Mavrich TN, Pope WH, Reyes JCC, Russell DA,
599 Adair T, Alvey R, et al (2017) Prophage-mediated defence against viral attack and viral counter-
600 defence. *Nat Microbiol* 2: 16251

601 Deep A, Tiwari P, Agarwal S, Kaundal S, Kidwai S, Singh R & Thakur KG (2018) Structural, functional and
602 biological insights into the role of *Mycobacterium tuberculosis* VapBC11 toxin-antitoxin system:
603 targeting a tRNase to tackle mycobacterial adaptation. *Nucleic Acids Res* 46: 11639–11655

604 Dutta NK, Bandyopadhyay N, Veeramani B, Lamichhane G, Karakousis PC & Bader JS (2014) Systems
605 Biology-Based Identification of *Mycobacterium tuberculosis* Persistence Genes in Mouse Lungs.
606 *mBio* 5: 10.1128/mbio.01066-13

607 Dy RL, Przybilski R, Semeijn K, Salmon GPC & Fineran PC (2014) A widespread bacteriophage abortive
608 infection system functions through a Type IV toxin-antitoxin mechanism. *Nucleic Acids Res* 42:
609 4590–4605

610 Evans ME, Clark WC, Zheng G & Pan T (2017) Determination of tRNA aminoacylation levels by high-
611 throughput sequencing. *Nucleic Acids Res* 45: e133

612 Fineran PC, Blower TR, Foulds IJ, Humphreys DP, Lilley KS & Salmon GPC (2009) The phage abortive
613 infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. *Proc Natl Acad Sci U S A*
614 106: 894–899

615 Frando A, Boradia V, Gritsenko M, Beltejar C, Day L, Sherman DR, Ma S, Jacobs JM & Grundner C (2023)
616 The *Mycobacterium tuberculosis* protein O-phosphorylation landscape. *Nat Microbiol* 8: 548–
617 561

618 Freire DM, Gutierrez C, Garza-Garcia A, Grabowska AD, Sala AJ, Ariyachaokun K, Panikova T, Beckham
619 KSH, Colom A, Pogenberg V, *et al* (2019) An NAD+ Phosphorylase Toxin Triggers *Mycobacterium*
620 *tuberculosis* Cell Death. *Mol Cell*

621 Fricker R, Brogli R, Luidalepp H, Wyss L, Fasnacht M, Joss O, Zywicki M, Helm M, Schneider A, Cristodero
622 M, *et al* (2019) A tRNA half modulates translation as stress response in *Trypanosoma brucei*. *Nat*
623 *Commun* 10: 118

624 Gosain TP, Singh M, Singh C, Thakur KG & Singh R (2022) Disruption of MenT2 toxin impairs the growth
625 of *Mycobacterium tuberculosis* in guinea pigs. *Microbiology (Reading)* 168

626 Guegler CK & Laub MT (2021) Shutoff of host transcription triggers a toxin-antitoxin system to cleave
627 phage RNA and abort infection. *Mol Cell*

628 Harms A, Brodersen DE, Mitarai N & Gerdes K (2018) Toxins, Targets, and Triggers: An Overview of Toxin-
629 Antitoxin Biology. *Mol Cell* 70: 768–784

630 Helaine S, Cheverton AM, Watson KG, Faure LM, Matthews SA & Holden DW (2014) Internalization of
631 *Salmonella* by macrophages induces formation of nonreplicating persisters. *Science* 343: 204–
632 208

633 Jurénas D, Fraikin N, Goormaghtigh F & Van Melderen L (2022) Biology and evolution of bacterial toxin-
634 antitoxin systems. *Nat Rev Microbiol*

635 Kang S-M, Kim D-H, Jin C & Lee B-J (2018) A Systematic Overview of Type II and III Toxin-Antitoxin
636 Systems with a Focus on Druggability. *Toxins (Basel)* 10: 515

637 Keren I, Minami S, Rubin E & Lewis K (2011) Characterization and Transcriptome Analysis of
638 *Mycobacterium tuberculosis* Persisters. *mBio* 2: e00100-11

639 Kurata T, Brodiazhenko T, Alves Oliveira SR, Roghanian M, Sakaguchi Y, Turnbull KJ, Bulvas O, Takada H,
640 Tamman H, Ainelo A, *et al* (2021) RelA-SpoT Homolog toxins pyrophosphorylate the CCA end of
641 tRNA to inhibit protein synthesis. *Mol Cell* 81: 3160-3170.e9

642 Lenhard B, Orellana O, Ibba M & Weygand-Durasevic I (1999) tRNA recognition and evolution of
643 determinants in seryl-tRNA synthesis. *Nucleic Acids Res* 27: 721–729

644 LeRoux M, Culviner PH, Liu YJ, Littlehale ML & Laub MT (2020) Stress Can Induce Transcription of Toxin-
645 Antitoxin Systems without Activating Toxin. *Mol Cell* 79: 280-292.e8

646 Li M, Gong L, Cheng F, Yu H, Zhao D, Wang R, Wang T, Zhang S, Zhou J, Shmakov SA, *et al* (2021) Toxin-
647 antitoxin RNA pairs safeguard CRISPR-Cas systems. *Science* 372

648 Liao Y, Smyth GK & Shi W (2019) The R package Rsubread is easier, faster, cheaper and better for
649 alignment and quantification of RNA sequencing reads. *Nucleic Acids Res* 47: e47

650 Morgan M, Anders S, Lawrence M, Aboyoun P, Pagès H & Gentleman R (2009) ShortRead: a bioconductor
651 package for input, quality assessment and exploration of high-throughput sequence data.
652 *Bioinformatics* 25: 2607–2608

653 Pecota DC & Wood TK (1996) Exclusion of T4 phage by the hok/sok killer locus from plasmid R1. *J*
654 *Bacteriol* 178: 2044–2050

655 Ramage HR, Connolly LE & Cox JS (2009) Comprehensive Functional Analysis of *Mycobacterium*
656 *tuberculosis* Toxin-Antitoxin Systems: Implications for Pathogenesis, Stress Responses, and
657 Evolution. *PLoS genetics* 5

658 Rengarajan J, Bloom BR & Rubin EJ (2005) Genome-wide requirements for *Mycobacterium tuberculosis*
659 adaptation and survival in macrophages. *Proceedings of the National Academy of Sciences* 102:
660 8327–8332

661 Sala A, Bordes P & Genevaux P (2014) Multiple toxin-antitoxin systems in *Mycobacterium tuberculosis*.
662 *Toxins (Basel)* 6: 1002–1020

663 Schürer H, Lang K, Schuster J & Mörl M (2002) A universal method to produce in vitro transcripts with
664 homogeneous 3' ends. *Nucleic Acids Res* 30: e56

665 Songailiene I, Juozapaitis J, Tamulaitiene G, Ruksenaite A, Šulčius S, Sasnauskas G, Venclovas Č & Siksnys
666 V (2020) HEPN-MNT Toxin-Antitoxin System: The HEPN Ribonuclease Is Neutralized by
667 OligoAMPylation. *Mol Cell* 80: 955-970.e7

668 Taverniti V, Forti F, Ghisotti D & Putzer H (2011) *Mycobacterium smegmatis* RNase J is a 5'-3' exo-
669 /endoribonuclease and both RNase J and RNase E are involved in ribosomal RNA maturation.
670 *Mol Microbiol* 82: 1260-1276

671 Throll P, Dolce LG, Lastres PR, Arnold K, Tengo L, Basu S, Kaiser S, Schneider R & Kowalinski E (2023)
672 Structural basis of tRNA recognition by the m3C-RNA-methyltransferase METTL6 in complex with
673 SerRS seryl-tRNA synthetase. 2023.12.05.570192 doi:10.1101/2023.12.05.570192 [PREPRINT]

674 Tiwari P, Arora G, Singh M, Kidwai S, Narayan OP & Singh R (2015) MazF ribonucleases promote
675 *Mycobacterium tuberculosis* drug tolerance and virulence in guinea pigs. *Nat Commun* 6: 6059

676 Toh JDW, Crossley SWM, Bruemmer KJ, Ge EJ, He D, Iovan DA & Chang CJ (2020) Distinct RNA N-
677 demethylation pathways catalyzed by nonheme iron ALKBH5 and FTO enzymes enable regulation
678 of formaldehyde release rates. *Proceedings of the National Academy of Sciences* 117: 25284-
679 25292

680 Tomasi FG, Schweber JTP, Kimura S, Zhu J, Cleghorn LAT, Davis SH, Green SR, Waldor MK & Rubin EJ
681 (2023) Peptidyl tRNA Hydrolase Is Required for Robust Prolyl-tRNA Turnover in *Mycobacterium*
682 tuberculosis. *mBio* 0: e03469-22

683 Vang Nielsen S, Turnbull KJ, Roghanian M, Bærentsen R, Semanjski M, Brodersen DE, Macek B & Gerdes
684 K (2019) Serine-Threonine Kinases Encoded by Split hipA Homologs Inhibit Tryptophanyl-tRNA
685 Synthetase. *mBio* 10: e01138-19

686 Walker SE & Fredrick* K (2008) Preparation and evaluation of acylated tRNAs. *Methods* 44: 81-86

687 Wen T, Oussenko IA, Pellegrini O, Bechhofer DH & Condon C (2005) Ribonuclease PH plays a major role in
688 the exonucleolytic maturation of CCA-containing tRNA precursors in *Bacillus subtilis*. *Nucleic
689 Acids Res* 33: 3636-3643

690 Wilcox B, Osterman I, Serebryakova M, Lukyanov D, Komarova E, Gollan B, Morozova N, Wolf YI,
691 Makarova KS, Helaine S, et al (2018) *Escherichia coli* ItaT is a type II toxin that inhibits translation
692 by acetylating isoleucyl-tRNAlle. *Nucleic Acids Res* 46: 7873-7885

693 Xu X, Usher B, Gutierrez C, Barriot R, Arrowsmith TJ, Han X, Redder P, Neyrolles O, Blower TR &
694 Genevaux P (2023) Ment nucleotidyltransferase toxins extend tRNA acceptor stems and can be
695 inhibited by asymmetrical antitoxin binding. *Nat Commun* 14: 4644

696 Yashiro Y, Zhang C, Sakaguchi Y, Suzuki T & Tomita K (2021) Molecular basis of glycyl-tRNAGly acetylation
697 by TacT from *Salmonella Typhimurium*. *Cell Rep* 37: 110130

698 Yip MCJ, Savickas S, Gygi SP & Shao S (2020) ELAC1 Repairs tRNAs Cleaved during Ribosome-Associated
699 Quality Control. *Cell Rep* 30: 2106-2114.e5

700 Yu X, Gao X, Zhu K, Yin H, Mao X, Wojdyla JA, Qin B, Huang H, Wang M, Sun Y-C, et al (2020)
701 Characterization of a toxin-antitoxin system in *Mycobacterium tuberculosis* suggests
702 neutralization by phosphorylation as the antitoxicity mechanism. *Commun Biol* 3: 1-15

703 Zhang C, Yashiro Y, Sakaguchi Y, Suzuki T & Tomita K (2020) Substrate specificities of *Escherichia coli* ItaT
704 that acetylates aminoacyl-tRNAs. *Nucleic Acids Res* 48: 7532-7544

705 Zhu L & Deutscher MP (1987) tRNA nucleotidyltransferase is not essential for *Escherichia coli* viability.
706 *EMBO J* 6: 2473-2477

707

708

709 **FIGURE LEGENDS**

710 **Fig. 1: MenT3 NTase activity *in vitro*.** (A) MenT3 preferentially adds CTP to tRNA
711 (100 ng) of *M. smegmatis* (*Msm*) were incubated at 37 °C for 5 min with MenT3 (0.2 μ M) and α -
712 P32 labeled nucleoside triphosphates (NTPs). (B) Promiscuous tRNA modification by MenT3. 1
713 μ g of total RNA from *M. tuberculosis* (*Mtb*) or human cells, or 100 ng of tRNA extracts from *E.*
714 *coli* were incubated with 0.2 μ M MenT3 in the presence of α -P32 labeled CTPs for 5 min at 37 °C.
715 (C) Comparison of tRNA NTase activity among MenT toxins. MenT3 (0.2 μ M) or MenT1 (5 μ M),
716 or MenT4 (5 μ M) were incubated with 1 μ g of total RNA of *Msm* for 20 min at 37 °C. Given the
717 robust activity of MenT3, the sample was serial diluted 1/10, 1/100 or 1/1000 to facilitate
718 visualization of MenT1 and MenT4 activity through phosphor exposure. Reactions were conducted
719 in the presence of α -P32 labeled CTP for MenT1 and MenT3, and α -P32 labeled GTP for MenT4.
720 Representative results of triplicate experiments are shown in panels A, B and C. (D) and (E) tRNA
721 3'-end mapping. Five μ g total RNA from *Msm* were incubated with MenT3 (2.5 μ M) and 1 mM
722 CTP for 20 minutes at 37 °C, and the tRNA-seq library was prepared and sequenced. Modified
723 tRNA reads were quantified in samples with or without MenT3 and the modifications are given as
724 a percentage of the total tRNA 3'-ends. Note that tRNA^{Sec} is not present in *M. tuberculosis*. The
725 tRNA detected from two independent experiments are shown on the bottom of panel E and the
726 number of cytidines added is shown in the inset at the right of the same panel. (Duplicate is shown
727 in datasheet file).

728

729 **Fig. 2: tRNA structural and sequence determinants for MenT3 modifications *in vitro*.** (A)
730 MenT3 tRNA preference *in vitro*. Purified α -P32 labeled tRNA^{Ser-4} and tRNA^{Met-2} were incubated
731 in the presence of 1 mM CTP with MenT3 (0.2 μ M) at 37 °C for different time points, separated

732 on a 10% urea gel and revealed by autoradiography. **(B)** tRNA-Seq mapping of purified tRNA^{Ser-4}
733 and tRNA^{Met-2}. Purified tRNA^{Ser-4} and tRNA^{Met-2} (20 ng/μl) were incubated with MenT3 (1 μM)
734 and 1 mM CTP for 10 min at 37 °C and subjected to tRNA-seq. **(C)** MenT3 modification of
735 tRNA^{Ser-4} 3'-end length variants. Purified α-P32 labeled 3'ΔCCA, ΔCA, and ΔA truncated tRNA^{Ser-}
736⁴ were incubated with MenT3 (0.2 μM) for 5 min at 37 °C, separated as in panel (A). **(D)** tRNA-
737 seq mapping of truncated tRNA^{Ser-4} ΔCCA, ΔCA and ΔA variants from (B). **(E)** Impact of tRNA^{Ser}
738 variable loop on MenT3 activity. Purified labeled tRNA^{Ser-4} deleted for its long variable loop (ΔVL)
739 and the tRNA^{Met-2} (VLSer-4) chimera with the long variable loop of tRNA^{Ser-4} (+VL^{Ser-4}) were
740 incubated with MenT3 (0.2 μM) for 5 min at 37 °C, separated as in (A). **(F)** tRNA-Seq mapping
741 of purified tRNA^{Met-2} and tRNA^{Met-2(VLSer-4)} chimera from panel (E) Purified tRNA (20 ng/μl) were
742 incubated with MenT3 (1 μM) and 1 mM CTP for 10 min at 37 °C and subjected to tRNA-seq.
743 Representative results of triplicate experiments are shown in in panel A, C and D, and sequencing
744 data from two independent experiments are shown in panels in B, D and F (Duplicate is shown in
745 datasheet file).

746

747 **Fig. 3: MenT3 specifically targets tRNA^{Ser} in *M. tuberculosis*.** **(A)** Experimental conditions for
748 tRNA-seq in *M. tuberculosis*. *M. tuberculosis* (*Mtb*) wild type H37Rv strain and its isogenic mutant
749 ΔmenAT3 expressing MenT3 from the integrative pGMC vector were individually grown at 37 °C
750 in 7H9 medium supplemented with 10% albumin-dextrose-catalase (ADC, Difco) and 0.05%
751 Tween 80. When the OD₆₀₀ reached to about 0.5, the anhydrotetracycline inducer (Atc, 200 ng/ml)
752 was added and cells were collected after 0, 3 or 24 h incubation at 37 °C. Total RNA was extracted
753 and tRNA-seq was performed. The percentage of modified tRNA per tRNA species identified for
754 the mutant overexpressing MenT3 **(B)** and the wild type strain **(C)** is shown. The names of the

755 identified tRNA for both strains are shown on the left of panel B. The data are presented as the
756 mean value obtained from three independent experiments. A detailed view of the different
757 modification obtained for tRNA^{Ser} is shown in **Supplementary Figure S2**.

758

759 **Fig. 4: RpH-mediated response to MenT3 modifications *in vitro*.** (A) tRNA repair assay used
760 to test RpH, PNPase, and Orn of *M. tuberculosis*. Left panel was shown the developed tRNA repair
761 assay; α -P32 labelled tRNA^{Ser-4} was incubated with MenT3 (0.2 μ M) for 5 min at 37 °C and the
762 modified tRNA was subjected to repair by RpH, PNPase, or Orn (10 μ M) for 15 min at 37 °C, the
763 samples were separated on a 10% urea gel and revealed by autoradiography. (B) and (C) Repair of
764 modified tRNA^{Ser} by RpH. The tRNA repair assay was performed as in (A), except that incubation
765 was performed for 15 and 60 min at 37 °C in the presence and in the absence of MenT3. (C), tRNA-
766 seq mapping of tRNA repaired by RpH. 20 ng/ μ l tRNA was incubated with MenT3 (1 μ M) in the
767 presence of 1 mM CTP for 10 min at 37 °C. Following removal of CTP, the modified tRNA was
768 then incubated with RpH (10 μ M) for 1 h at 37 °C and tRNA-seq was performed. Similar *in vitro*
769 reaction (D) and tRNA-seq experiment (E) were performed for tRNA^{Ser-4-CCΔA} as substrate.
770 Representative results of triplicate experiments are shown in panel A, B and D, and sequencing
771 data from two independent experiments are shown in panels C and E (Duplicate are shown in
772 datasheet file).

773

774 **Fig. 5: Steady state tRNA^{ser} modification in *M. tuberculosis* by endogenous MenT3.**

775 (A) *M. tuberculosis* wild-type H37Rv, the isogenic Δ menAT3 mutant and Δ menAT3-menT3
776 complementation strain were individually grown at 37 °C in 7H9 medium supplemented with 10

777 % albumin-dextrose-catalase (ADC, Difco) and 0.05% Tween 80. When the OD₆₀₀ reached to 0.5,
778 the cells were collected. Total RNA was extracted to perform tRNA-seq. The percentage of
779 modified tRNA per tRNA species identified is shown. The data are presented as the mean value
780 obtained from three independent experiments. A detailed view of the different modification
781 obtained for tRNA^{Ser} is shown in **Supplementary Figure S4.** (B) The model for MenT3 activity
782 and its interplay with RpH in *M. tuberculosis* is described in the discussion section. The asterisks
783 indicate tRNA products accumulating *in vivo* (orange) and *in vitro* (grey).

784

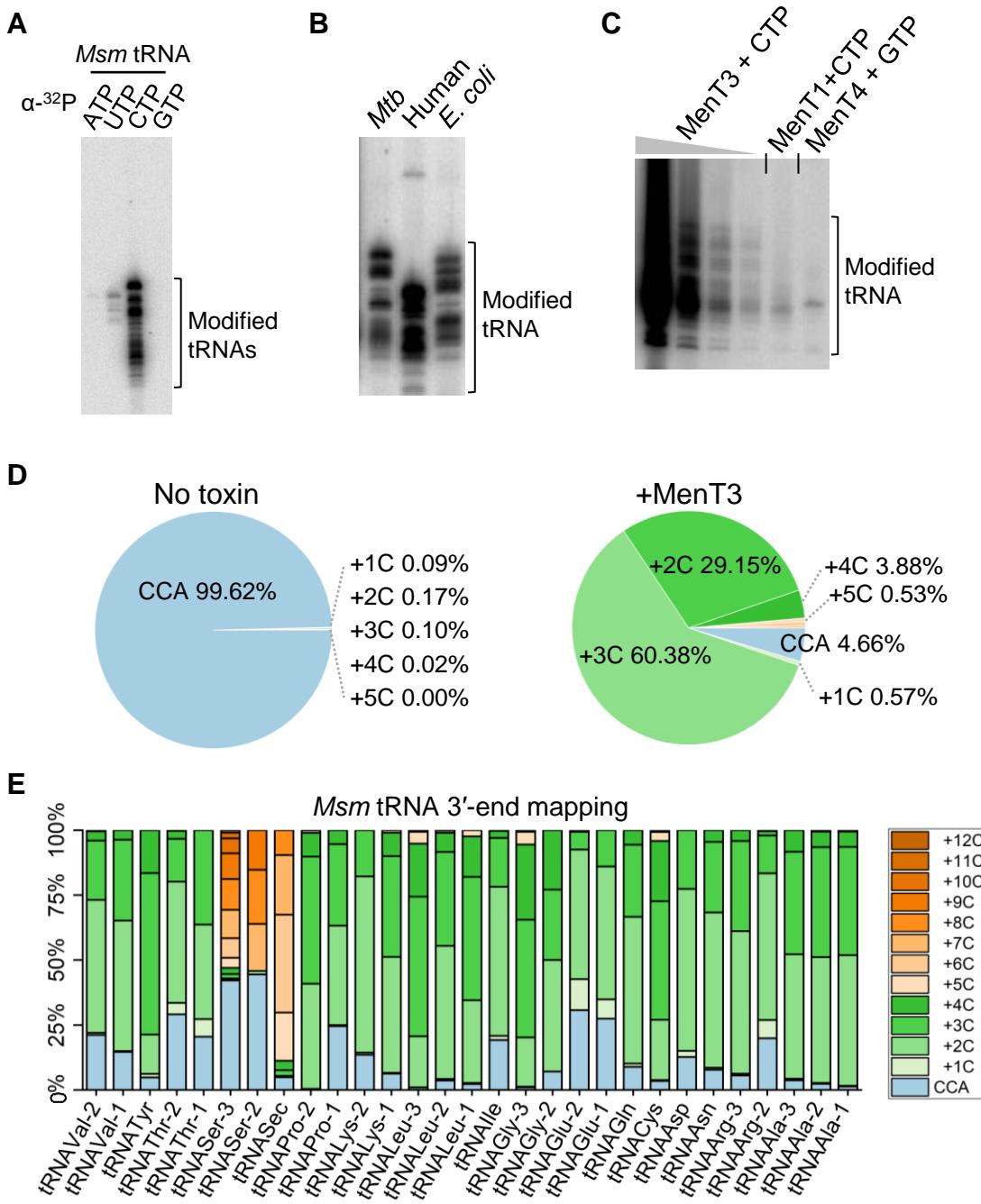


Fig. 1

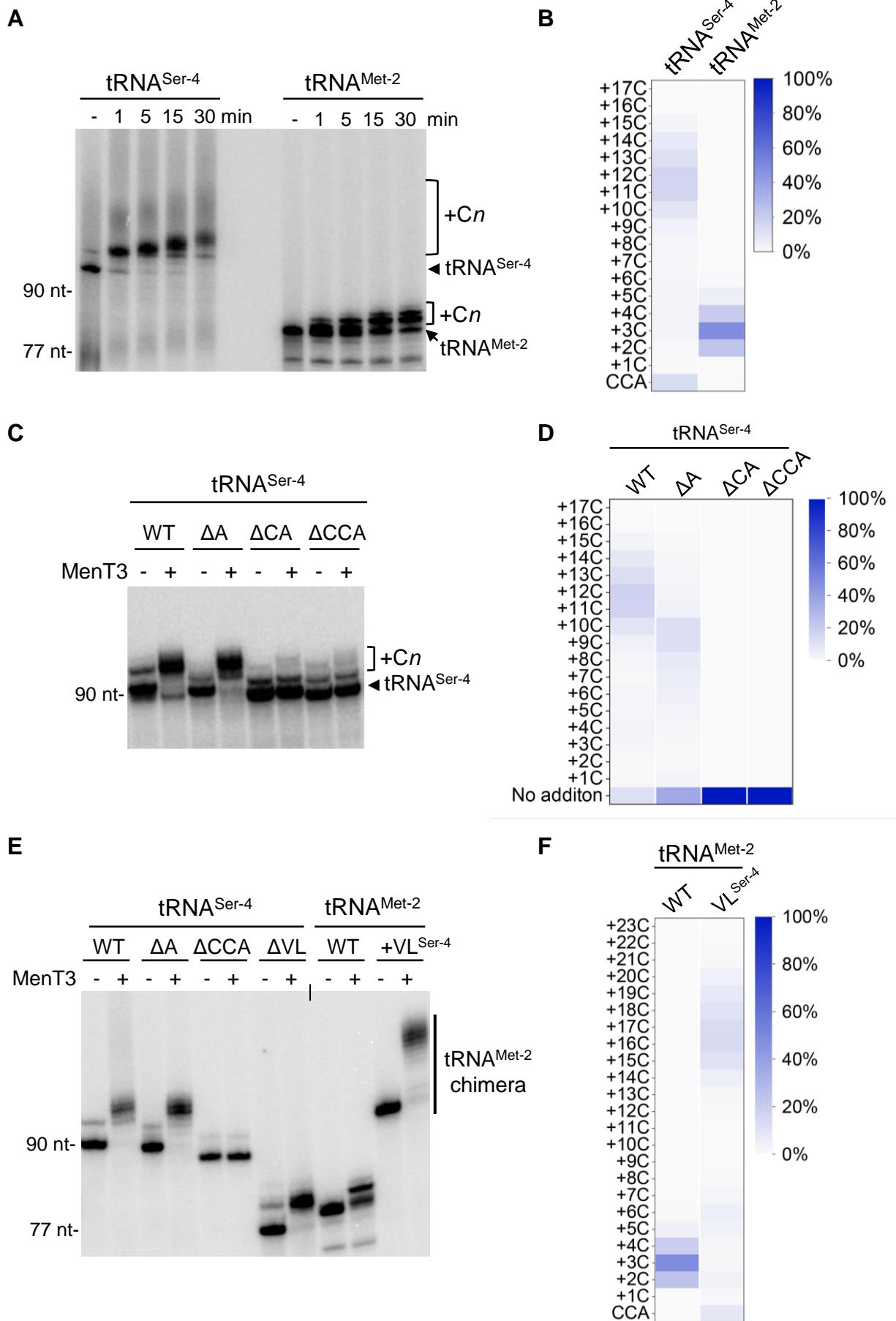
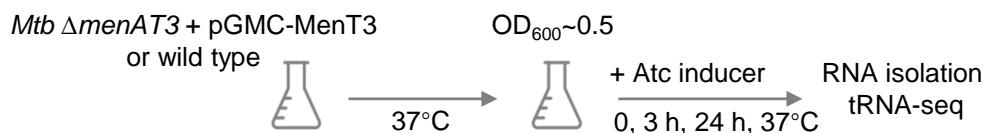


Fig. 2



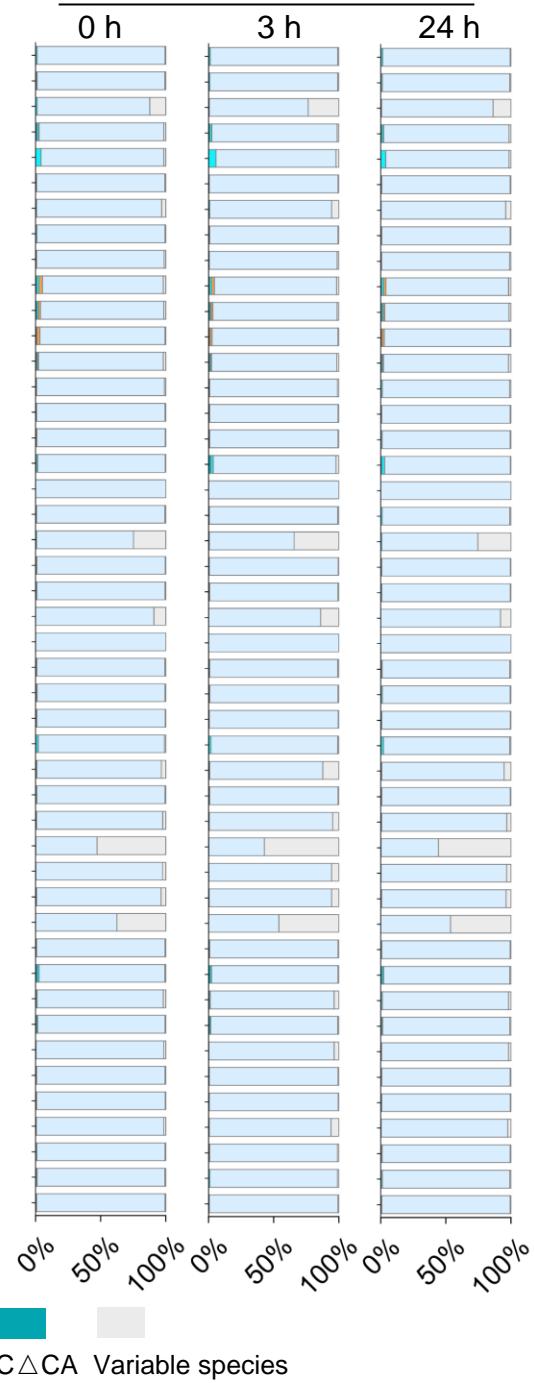

A**B***Mtb* Δ *menAT3* + overexpressed MenT3**C***Mtb* wild type

Fig. 3

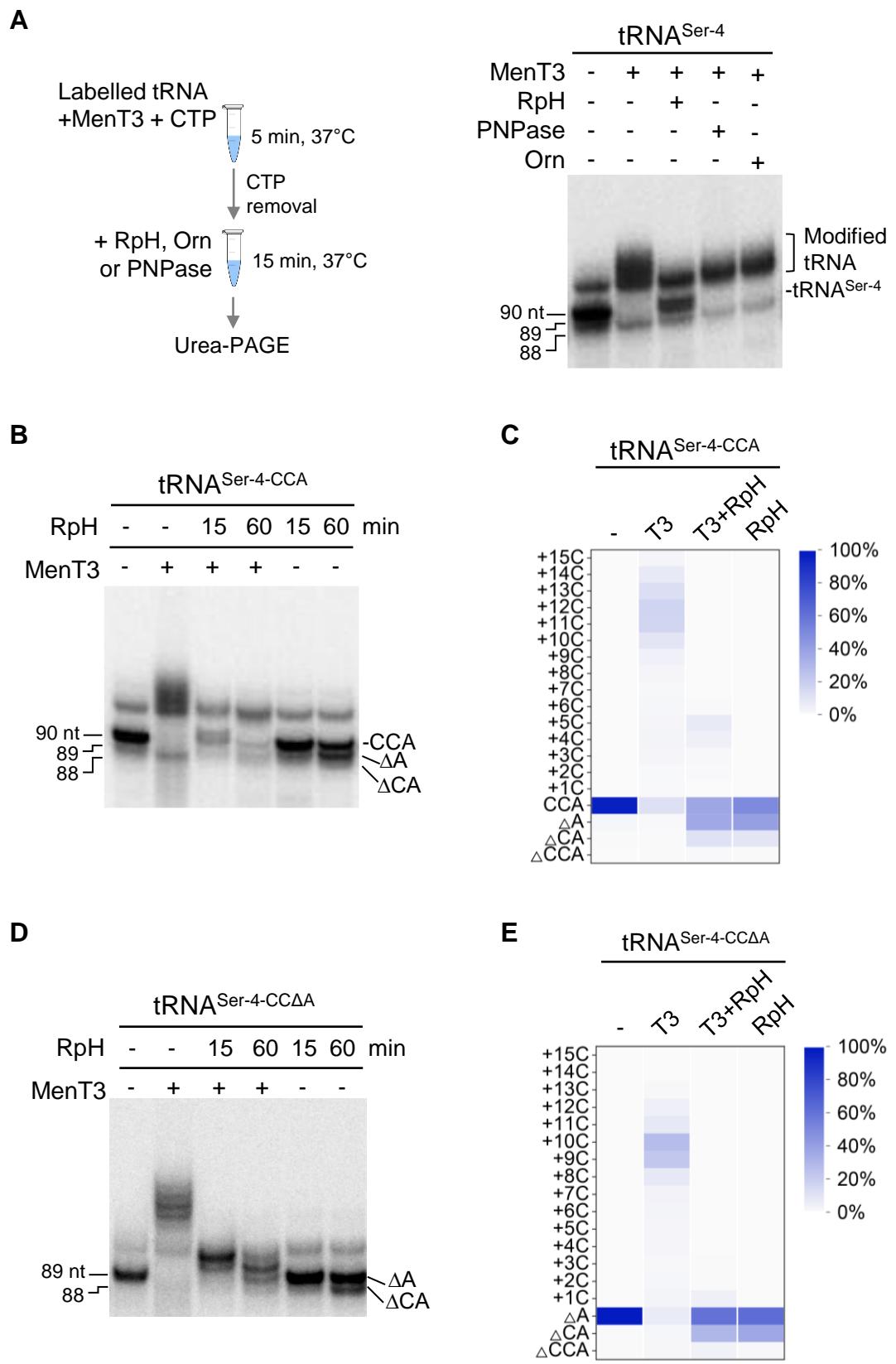


Fig. 4

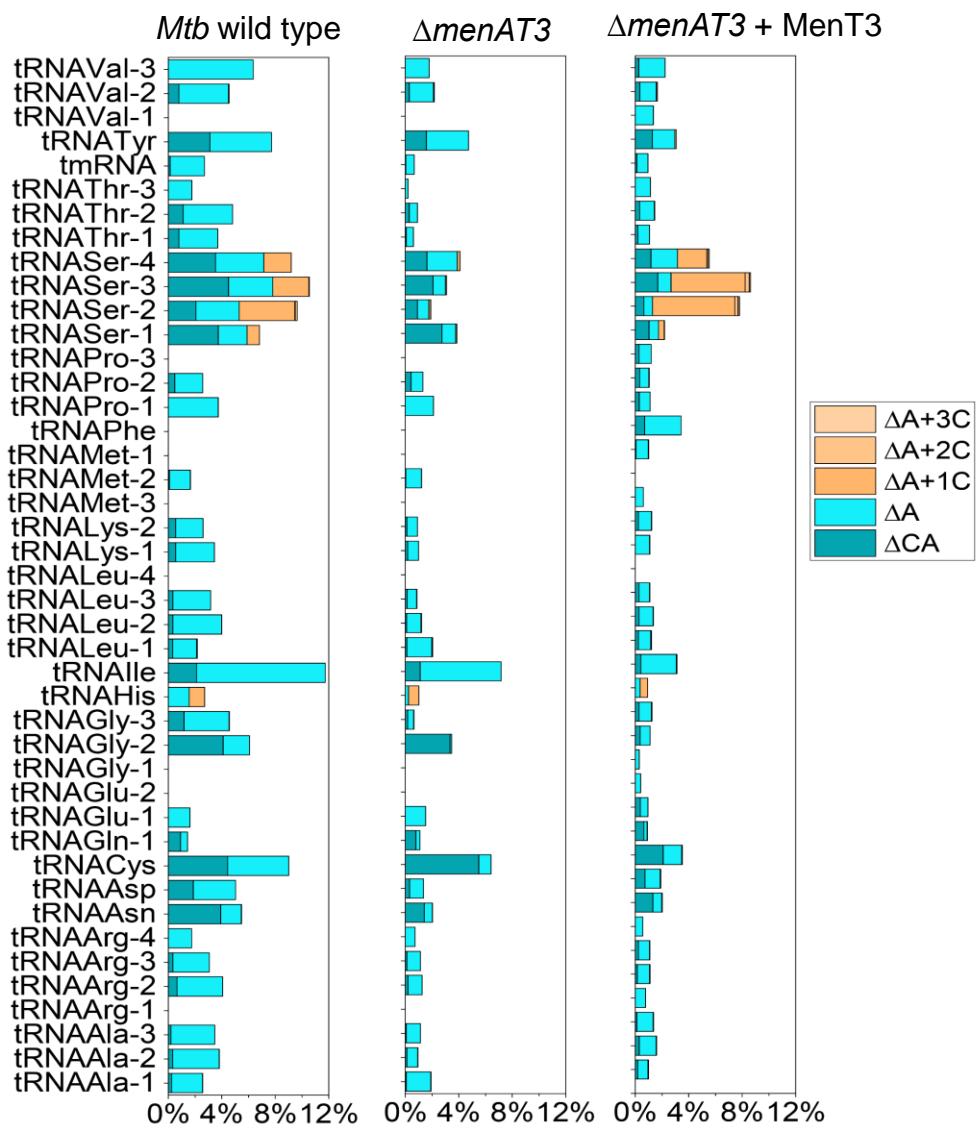
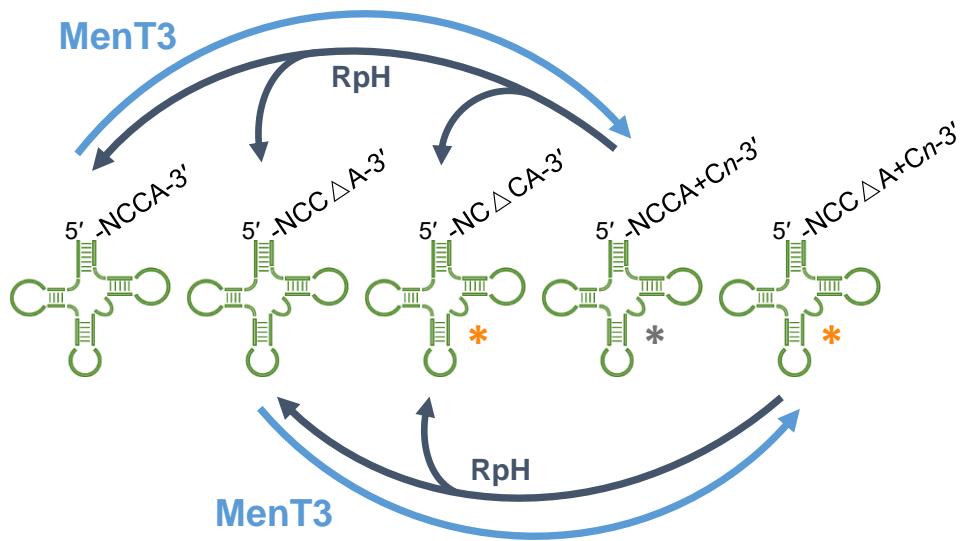


A**B**

Fig. 5