

1 **A cryopreservation strategy for myoblast storage in paper-based scaffolds for**
2 **inter-laboratory studies of skeletal muscle health**

3
4 Saifedine T. Rjaibi¹⁻³, Erik Jacques^{2,3}, Jiaru Ni⁴, Bin Xu^{2,3}, Sonya Kouthouridis⁵, Julie Sitolle⁷,
5 Heta Lad^{2,3}, Nitya Gulati^{1,2}, Nancy T. Li¹, Henry Ahn^{8,9}, Howard J. Ginsberg⁸⁻¹⁰, Boyang
6 Zhang^{5,6}, Fabien Le Grand⁷, Penney M. Gilbert^{2,3,11*}, Alison P. McGuigan^{1,3*}

7
8 ¹ Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto,
9 ON, M5S3E4, Canada

10 ² Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON
11 M5S3E1, Canada

12 ³ Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S3G9, Canada

13 ⁴ Division of Engineering Science, University of Toronto, Toronto, ON, M5S2E4, Canada

14 ⁵ Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S4L7, Canada

15 ⁶ School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S4L7, Canada

16 ⁷ Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Institut

17 NeuroMyoGène, Pathophysiology and Genetics of Neuron and Muscle (PGNM) Unit, 69008
18 Lyon, France

19 ⁸ Department of Surgery, University of Toronto, Toronto, ON, Canada

20 ⁹ Li Ka Shing Knowledge Institute, Saint Michael's Hospital, Toronto, ON, Canada

21 ¹⁰ Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON,
22 Canada

23 ¹¹ Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3G5, Canada

24
25 * Corresponding author e-mails: alison.mcguigan@utoronto.ca and penney.gilbert@utoronto.ca

26

27 **Keywords**

28 Cryopreservation, Skeletal Muscle, Myoblasts, Regeneration, In Vitro, Tissue Engineering

29

30

31 **Abstract**

32 Three-dimensional tissue-engineered models are poised to facilitate understanding of skeletal
33 muscle pathophysiology and identify novel therapeutic agents to improve muscle health. Adopting
34 these culture models within the broader biology community is a challenge as many models involve
35 complex methodologies and significant investments of time and resources to optimize
36 manufacturing protocols. To alleviate this barrier, we developed a protocol with commercially
37 available reagents to cryopreserve myoblasts in a 96-well compatible format that allows tissues to
38 be transferred to users without expertise in 2D or 3D skeletal muscle cell culture. We validate that
39 myoblasts encapsulated in a hydrogel and cryopreserved in paper-based scaffolds maintain cell
40 viability, differentiation, and function via acetylcholine-induced transient calcium responses.
41 Furthermore, we demonstrate successful shipping of myoblasts cryopreserved in paper-based
42 scaffolds to intra-provincial and international collaborators who successfully thawed, cultured, and
43 used the 3D muscle tissues. Finally, we confirm the application of our method to study muscle
44 endogenous repair by seeding freshly isolated skeletal muscle stem cells to cryopreserved then
45 differentiated and injured tissues, demonstrating expected responses to a known stimulator of
46 muscle stem cell self-renewal, p38 α/β MAPKi. Altogether, our 3D myoblast cryopreservation
47 protocol offers broadened access of a complex skeletal muscle tissue model to the research
48 community.

49

50 Introduction

51 Skeletal muscle powers everyday functions of the human body from locomotion, metabolism, and
52 thermogenesis.^[1] However, numerous conditions can disrupt normal skeletal muscle homeostasis,
53 ranging from muscular dystrophies, aging, obesity, and pharmacological toxicity.^[2-5] For many of
54 these diseases, underlying pathological mechanisms continue to be poorly understood, and as a
55 result, gold-standard treatments have remained elusive.

56 Animal models provide an important tool to understand skeletal muscle disease pathology and
57 drug responses *in vivo*, in particular the intramuscular transplantation assay.^[6-7] Advantages of
58 animal models include their capacity for long-term studies and ability to model complex skeletal
59 muscle biology due to the presence of the many cell types and the complex spatiotemporal
60 gradients present in native muscle tissues. However, animal studies are often expensive, time-
61 consuming, and require a high level of expertise. Further, interspecies differences between mice
62 and humans combined with the low-throughput possible with such animal models make them an
63 inefficient tool in the process of drug discovery.^[8-9]

64 In vitro culture models derived from human myoblasts offer an alternative higher-throughput tool
65 for studying human skeletal muscle biology. For example, two-dimensional (2D) models, such as
66 myoblast monolayers on tissue culture plates, provide a simple platform that is relatively
67 inexpensive, easy-to-use, and amenable to high-throughput drug screens. However, myotubes in
68 2D cultures lack alignment and the intrinsic three-dimensional architecture of *in vivo* tissues,
69 making them infeasible for evaluating functional metrics such as contractile force or fatigue
70 resistance. Furthermore, the stiff surfaces of standard plastic tissue culture plates cannot support
71 concentric muscle contractions, which eventually leads to myotube detachment.^[10-12] These
72 constraints limit the skeletal muscle biology that can be explored using 2D culture platforms.^[12-15]

73 To expand the biology that can be studied *in vitro*, a variety of three-dimensional (3D) skeletal
74 muscle models have been developed.^[16-23] Importantly, 3D models are engineered to provide the
75 structural integrity necessary to support longer term myotube culture and to permit quantification
76 of phenotypic metrics such as myotube morphology, contractile force, and calcium release
77 kinetics. While lower throughput than 2D cultures, these models still offer an order of magnitude
78 higher throughput relative to animal models while allowing researchers precise control over the
79 culture conditions for probing specific molecules, mechanisms, and dynamics involved in muscle

80 repair.^[24-26] Our group previously reported a 3D culture model for studying Muscle Endogenous
81 Repair (MEndR) that enabled the prediction of skeletal muscle endogenous repair modulators in a
82 24-well platform.^[27] The MEndR assay involves the formation of a 3D myotube template followed
83 by engraftment of muscle stem cells into the template. This skeletal muscle/stem cells co-culture
84 tissue is then chemically injured, and the capacity of the muscle stem cells to mediate repair of the
85 template is assessed by analyzing phenotypic readouts. Manufacturing of the MEndR assay
86 myotube template involves re-suspending primary myoblasts in a fibrin/reconstituted basement
87 membrane ECM, infiltrating this suspension into a thin cellulose scaffold and then culturing for 7
88 days under conditions that favour myoblast differentiation. This produces a thin, 3D sheet of
89 multinucleated myotubes that we refer to as the “myotube template”. Freshly isolated muscle stem
90 cells can then be engrafted within this template simply by pipetting them in solution onto the
91 template surface and culturing for 24-48h to enable stem cell engraftment throughout the myotube
92 template. This provides an engineered muscle tissue for the study of endogenous repair. Our
93 previous work demonstrated pheno-copying of in vivo outcomes following treatment with small
94 molecules such as p38 α/β mitogen-activated protein kinase inhibitor (MAPKi) and epidermal
95 growth factor receptor inhibitor (EGFRi), both known modulators of muscle stem cell-mediated
96 repair.^[7, 28-31]

97 Beyond endogenous repair, MEndR is a potentially useful platform for studying a variety of
98 questions related to skeletal muscle biology. Specifically, the geometry of the platform facilitates
99 live or end-point imaging and characterization of both the myotubes and engrafted stem cell
100 populations, which is challenging in many of the other typically thicker 3D models available. This
101 makes the MEndR myotube template highly useful for probing questions related to muscle
102 regeneration, toxicity screens, or template self-repair. While our initial model was low throughput,
103 our group recently miniaturized MEndR into a 96-well footprint (“mini-MEndR”),^[32] making it a
104 potentially useful secondary screening tool for stratifying a greater number of “hits” from 2D high-
105 throughput screens. Still, the capacity to robustly manufacture myotube templates has remained a
106 major barrier limiting the broader adoption of this model. For example, we previously noted that
107 3-5 seeding attempts were required to master the manufacturing of mini-MEndR myotube
108 templates by new users already proficient in myoblast 2D cell culture.^[32] Therefore, we set out to
109 establish a protocol to cryopreserve myotube templates after manufacturing to enable their
110 distribution to the research community with a view to improving platform adoption. Specifically,

111 we built upon previous work from Bashir and colleagues, who demonstrated that myoblasts
112 encapsulated in a hydrogel mixture seeded onto 3D-printed polyethylene glycol dimethacrylate
113 (PEGDMA) molds could be cryopreserved and successfully maintain structure and function upon
114 thawing.^[33] By adapting their approach, here we develop a standard operating procedure (SOP)
115 for the cryopreservation of myoblasts in paper-based scaffolds. We show that myoblasts
116 encapsulated in a fibrin/reconstituted basement membrane and cryopreserved in cellulose scaffolds
117 maintain cell viability, differentiation, and function via a transient calcium response to
118 acetylcholine stimulus. Further, we demonstrate that muscle stem cells engraft into myotube
119 templates derived from frozen myoblasts and that treatment with a known stimulator of muscle
120 stem cell-mediated skeletal muscle repair recapitulates the expected effects on the engineered
121 tissue. Finally, we demonstrate proof-of-concept that cryopreserved myotube template pre-cursors
122 can be shipped, thawed, cultured, and analyzed by new users in both domestic and international
123 locations. We anticipate our cryopreservation protocol will facilitate broader adoption of the mini-
124 MEndR platform to the research community by offering an easy-to-learn, off-the-shelf model for
125 inter-laboratory studies of skeletal muscle health.

126

127 **Materials and Methods**

128 **Ethics**

129 Exactly as detailed in,^[34] the collection and use of human skeletal muscle tissue was reviewed
130 and approved by the Providence St. Joseph's and St. Michael's Healthcare Research Ethics
131 Board (REB# 13-370) and the University of Toronto Office of Research Ethics reviewed the
132 approved study and further assigned administrative approval (Protocol# 30754). All procedures
133 in this study were performed in accordance with the guidelines and regulations of the respective
134 Research Ethics Boards. Written consent was obtained from donors prior to the scheduled
135 surgical procedure. Human skeletal muscle tissues removed from the multifidus muscle of
136 patients undergoing lumbar spine surgery and designated for disposal were utilized in this study.
137 Recruitment began August 18, 2014 and ended Aug 18, 2020. All collection and use of mouse
138 skeletal muscle tissue in this study was conducted as described in the approved animal use
139 protocols (#20012838), which was reviewed and approved by the local Animal Care Committee
140 (ACC) within the Division of Comparative Medicine (DCM) at the University of Toronto. More

141 broadly, all animal use was conducted in accordance with the guidelines and regulations of the
142 Canadian Council on Animal Care.

143 **Primary human myoblast maintenance**

144 The STEM21 human primary myoblast culture was established as previously described.^[22] For
145 primary myoblast maintenance, plastic tissue culture dishes (Sarstedt, 100 x 20mm, 83.3902) were
146 coated with collagen (Gibco, #A10483-01) and stored at 4 °C. Immediately before thawing cells,
147 the collagen solution was aspirated, and the plate was washed once with PBS and allowed to dry
148 in the biosafety cabinet. Next, a cryovial of primary human myoblasts (STEM21, passage 7-8) was
149 quickly thawed in a 37 °C water bath and the contents of the vial diluted 10X in wash media (Table
150 1). The diluted cells were centrifuged, the supernatant aspirated, and the cell pellet re-suspended
151 in wash media. 8 mL growth media (GM; Table 1) was dispensed into each 10 cm plate, to which
152 the cells were then distributed evenly at a density of 5000-7000 cells/cm² (manufacturer's
153 recommendation). Culture dishes were maintained in a cell culture incubator at 37 °C and 5 %
154 CO₂. Cells were maintained in GM until reaching 70-80 % confluence. Culture media was replaced
155 every two days.

156 **Primary human induced pluripotent stem cell (iPSC)-derived myogenic progenitor
157 maintenance**

158 Human iPSC-derived myogenic progenitors cultures were obtained using the protocol published
159 by Xi et al.^[35] with minor modifications. Specifically, the iPSC-derived myogenic progenitors
160 were maintained in SK Max medium (Wisent Bioproducts, 301-061-CL) supplemented with
161 10% FBS, 20 ng/mL FGF2, 0.5% P/S as we previously described.^[36-37] Cells were seeded at
162 about 5x10⁴ cells/cm² onto GelTrexTM coated tissue culture plates for 3-4 days prior to use in
163 experiments.

164 **Primary mouse myoblast maintenance**

165 Primary mouse myoblasts were derived and maintained as described in our previous work.^[38]
166 Briefly, primary mouse myoblasts were derived from enzymatically digested skeletal muscle
167 tissue. After filtering and red blood cell lysis, the remaining mononucleated cell population was
168 enriched via MACS for myogenic cells using the satellite cell isolation kit and subsequent integrin
169 α-7 selection. The cells were then cultured on collagen-coated tissue culture plates in SAT-10

170 media (Table 1). Cells were passaged at 70% confluence and used from passage 5–9 for
171 experiments.

172 **Paper scaffold candidate selection**

173 Four paper scaffold candidates were selected from a larger pool of candidate cellulose-based
174 papers based on thickness and similarity of the material to the original paper scaffold used in for
175 the MEndR^[27] and mini-MEndR^[32] protocols (Mini-Minit Products, R10, Scarborough, Canada).
176 The four candidates were (1) Finum (Tea Filters XL, Riensch & Held GmbH & Co.KG, Germany),
177 (2) Teeli (Teeli Bag Filter Large Square, Riensch & Held GmbH & Co.KG, Germany), (3) Twin
178 Rivers (TR Coffee FIL WS 17.0 CR NAT, Twin Rivers Paper Company, USA), and (4) Ahlstrom-
179 Munksjo (Qualitative Filter Paper Grade 601, Ahlstrom-Munksjo Filtration LLC, Mount Holly
180 Springs, PA, USA).

181 Each of the four paper candidates were characterized using scanning electron microscopy (SEM)
182 to assess their microstructural properties and for their ability to support myoblast differentiation,
183 and compared to the original paper scaffold.

184 **Scanning electron microscopy (SEM)**

185 SEM images were obtained using a Hitachi SEM SU3500 (Hitachi High-Technologies Canada
186 Inc., Toronto, Canada). Samples were mounted onto carbon-tape coated stubs and gold–palladium
187 sputter coated for 55 s using a Bal-Tec SCD050 Sample Sputter Coater (Leica Biosystems, USA)
188 and then imaged at 10 kV.

189 To characterize the microstructure of candidate papers, SEM images were manually thresholded
190 in FIJI to distinguish between the pores and paper fibers. A list of all pores and their areas was
191 generated using FIJI’s Analyze Particles and aggregated into a histogram of the number of pores
192 within a certain size range, the overall porosity (% area of the image occupied by the pores), and
193 the coefficient of variation (CV) of the area occupied by pores of a certain size using code
194 developed in Python 3.

195 **Mini-myotube template fabrication and culture**

196 For the cellulose paper selection experiments, circular paper scaffolds with a diameter of 5 mm
197 (20 mm²) were cut out using a biopsy punch (Miltex 5 mm biopsy punch, Integra, 400-4450910).

198 For all other experiments, rectangular paper scaffolds of dimensions 5mm x 4mm (20 mm²) were

199 cut out from tea bag papers using scissors. Once cut, paper scaffolds were autoclaved under a
200 vacuum cycle to ensure sterility (sterilization time = 20 minutes, dry time = 10 minutes). 96-well
201 footprint myotube templates were generated according to the previously described method.^[32, 38]
202 Briefly, 48-well or 96-well tissue culture plates (Sarstedt, 83.3924) were coated with 200 µL or
203 100 µL pluronic acid, respectively, and stored at 4 °C for at least one hour. The pluronic acid was
204 aspirated and the plate allowed to dry in the biosafety cabinet. Paper scaffolds were pre-adsorbed
205 with 4-5 µL of 0.8 U/mL thrombin (Sigma-Aldrich, #T6884) in the 96/48-well plate, and once
206 again allowed to dry in the biosafety cabinet with the plate lid removed. In the meantime,
207 myoblasts were trypsinized from their 2D culture dishes, centrifuged, and re-suspended in the
208 Extracellular Matrix (ECM) Master Mix (Table 1). Once the paper scaffolds were dry, the cell-
209 ECM solution was pipetted into the scaffolds at a concentration of 10^5 cells (human) or 2.5×10^4
210 cells (mouse) per 4-5 µL ECM Master Mix (Table 2). Both the plate and ECM solution were kept
211 on ice during the seeding process to delay ECM hydrogel gelation. Once seeding was completed,
212 the well plate was transferred to the cell culture incubator (37 °C, 5 % CO₂) for 5-10 minutes to
213 initiate hydrogel gelation. Next, 500 µL or 200 µL of Seeding Media (SM; Table 1) was added to
214 each well of the 48-well or 96-well plate, respectively, and the plate was then returned to the
215 incubator. For standard (unfrozen) conditions, tissues were incubated for 2 days in SM, at which
216 point the media was switched to Differentiation Media (DM; Table 1) and half- media changes
217 with fresh DM were performed every other day thereafter.

218 **Cryopreservation of hydrogel encapsulated myoblasts seeded in paper-based scaffolds**

219 The cryopreservation strategy aimed to closely mimic our previously established mini-MEndR
220 workflow.^[32] In mini-MEndR, scaffolds are immersed in SM immediately after seeding for 48h
221 before changing the media to DM. Here, we strategized to “interrupt” the 48h equilibration period
222 by freezing mini-MEndR scaffolds 24h after seeding. After thawing, cells are then cultured for the
223 remaining 24h in SM, upon which the media is switched to DM, with half-media changes every
224 other day thereafter.

225 To freeze mini-MEndR tissues, 1 mL of freezing media per tissue (90 % FBS + 10 % DMSO;
226 Table 1) was prepared and pipetted into each cryovial (Sarstedt, #72.379.004). Using tweezers
227 (ESD-12, anti-static stainless steel, Kaverme), scaffolds were gently picked up from their wells in
228 the 96-well plate and deposited at the top rim of their corresponding cryovial. Once all scaffolds

229 had been placed on the rims of cryovials, they were all successively dropped into the freezing
230 media in the same order as they were initially picked up. This ensured that each scaffold was
231 immersed in freezing media for a similar duration, as opposed to immediately immersing each
232 scaffold one at a time, which would lead to greater variability between the first and last scaffolds.
233 Cryovials were transferred to a Nalgene® Mr. Frosty (ThermoFisher, #5100-0001), and moved to
234 a -80°C freezer where they were stored 24-48h before being transitioned to liquid nitrogen for the
235 remainder of time (5-6 days) to complete one week of freezing.

236 **Thawing myoblasts cryopreserved in paper scaffolds**

237 Prior to thawing, an empty Nalgene® Mr. Frosty was pre-chilled in a -80 °C freezer for a minimum
238 of one hour and then moved to a Magic Ice Bucket (Grainger, Cat# WWG39C553) with the lid
239 closed to keep the samples cool. Next, 200 µL of SM per tissue (Table 1) was prepared in a 15 mL
240 Falcon Tube, while 225 µL pre-chilled wash media was loaded into a number of empty wells of
241 the 96-well plate equal to the number of scaffolds that were to be thawed. A drop of wash media
242 was added to the centre of each well that would later contain a scaffold to overcome the
243 electrostatic forces between the tweezers and scaffold and facilitate placement of the scaffold into
244 the well. Finally, all materials, pipettes, and reagents were calibrated and oriented in the biosafety
245 cabinet to maximize speed during the thawing process.

246 Depending on user proficiency, between 4 (new handlers) to 8 (expert handlers) cryovials were
247 removed from the liquid nitrogen tank and placed directly into the pre-chilled Nalgene® Mr.
248 Frosty on ice. This aimed to mitigate the conflicting risks of prolonged cryovial exposure to
249 ambient temperature and the need to repeatedly open the liquid nitrogen tank. Thawing proceeded
250 one vial at a time, swirling the cryovial in a 37 °C water bath to dissipate excess heat and speed up
251 thawing. Just before being fully thawed (to minimize contact time with cryoprotective agent), the
252 vial was brought inside the biosafety cabinet and the freezing media pipetted out into a waste
253 container. The scaffold was gently transferred to its corresponding well in the 96-well plate using
254 tweezers, where the drop of wash media deposited earlier facilitated its placement. Next, 3 x 75
255 µL washes with pre-chilled SM were performed, pipetting from the 225 µL pre-set-up wells to
256 maximize speed, and culminating with the addition of 200 µL SM. The process was repeated for
257 each cryovial in the batch, and for each batch in the experiment (if > 8 vials). The plate was then
258 moved to a 37 °C cell culture incubator and standard 3D culture ensued.

259 **Cell viability assay**

260 Scaffolds were transferred to wells in a new plate and washed once with PBS. Staining solution
261 was prepared by diluting Calcein AM (1:2000) and DRAQ5 (1:800) dyes in PBS as described in
262 Table 3. 50 μ L of dye solution was dispensed into each scaffold-containing well. The plate was
263 incubated for 20 minutes in a 37 °C cell culture incubator and then imaged using confocal
264 microscopy.

265 **Immunohistochemistry**

266 Scaffolds were gently transferred to a new well using tweezers and washed once with PBS. Tissues
267 were fixed with 4 % paraformaldehyde (Fisher Scientific, 50980494) for 12 min, followed by 3 x
268 10 min washes with PBS. For immunostaining, tissues were first blocked with 100 μ L of blocking
269 solution (Table 1) for 30 min. Then, primary antibodies were diluted in blocking solution or PBS
270 according to Table 3, and 50 μ L of the staining solution was added to each tissue. The plate was
271 incubated overnight at 4 °C, followed by 3 x 10 min washes with PBS to wash out unbound
272 antibody. In similar fashion, secondary antibodies were also diluted in blocking solution according
273 to Table 3, and 50 μ L of the staining solution was added to each tissue. After a 45-60 min
274 incubation period at room temperature, the tissues were washed 3 x 10 min with PBS, and either
275 imaged thereafter or stored in PBS at 4 °C until image acquisition.

276 **Image acquisition**

277 Fixed and stained tissues were imaged using confocal microscopy (Olympus FV-1000, Olympus
278 FluoView V4.3b imaging software) with an air objective, laser power kept less than or equal to 50
279 %, exposure (dwell) time 4 μ s/pixel, a 1:1 aspect ratio, 640x640 box size, sequential line capture,
280 and HV \leq 750. HV was optimized on an image-by-image basis to maximize signal while avoiding
281 oversaturation (red pixels on software). Scaffolds were maintained in PBS while in queue for
282 imaging to prevent them from drying.

283 To evaluate tissue homogeneity, tissues were imaged at either 4X or 10X magnification, with the
284 settings described in Table 4. SAA⁺ coverage was quantified as previously described;^[27, 32] briefly,
285 confocal image stacks were maximum Z-projected and thresholded either manually or using FIJI's
286 triangle algorithm, where the percentage of pixels brighter than the threshold was taken as a metric
287 of image coverage by SAA⁺ myotubes. To assess myofiber morphology, tissues were imaged at

288 40X magnification, with the objective correction collar being adjusted to optimize focus (Table 4).
289 Nuclear fusion indices were defined as the ratio between the number of nuclei present in SAA⁺
290 structures and the total number of nuclei in the maximum Z-projected confocal images acquired at
291 40X magnification. Finally, for cell viability staining, scaffolds were imaged at 20X magnification
292 and no Kalman filtering to increase imaging speed given that the cells were not fixed (Table 4).
293 Three to four sites were imaged from each scaffold. Cell viability was quantified as the ratio of
294 live cells (Calcein⁺) to total cells (DRAQ5⁺) using a custom image analysis workflow (Figures S7-
295 S9).

296 **Calcium handling**

297 On Day 8 of differentiation, differentiation media was removed from frozen or unfrozen mini-
298 MEndR myotube templates. The tissues were washed 2 times with warmed PBS, and then
299 incubated for 1 hour in the 37 °C incubator with Calbryte™ 520 AM at 10 µM in Hanks buffered
300 saline with 20 mM Hepes and 0.04 % pluronic acid. After incubation, the calcium indicator was
301 removed, and tissues were washed twice with PBS to remove any indicator present in the well.
302 Tissues were then returned into differentiation media and allowed to warm for 15 min in the 37 °C
303 incubator. Calcium transients were captured in response to chemical stimulation using 2 mM
304 acetylcholine using an inverted microscope (Olympus IX83) with a 4X magnification lens.
305 Consecutive time-lapse epi-fluorescent images were captured at a frame speed ~135 ms with a
306 DP80 CCD camera (Olympus) outfitted with a fluorescein isothiocyanate filter and Olympus
307 cellSens™ imaging software. Subsequently, the fluorescent signal in the series of time-lapse
308 images was measured using the FIJI software (ImageJ, NIH) and relative fluctuations in the
309 fluorescence were calculated and presented as $\Delta F/F_0 = (F_{\text{immediate}} - F_{\text{baseline}})/(F_{\text{baseline}})$. To obtain an
310 average $\Delta F/F_0$ transient, the transients from all technical replicates were shifted so that the time at
311 which the $\Delta F/F_0$ first began to increase from baseline was synchronized (since the captured videos
312 may be recording for a varying time before manually adding acetylcholine to initiate stimulation).

313 **Shipping myoblasts cryopreserved in cellulose scaffolds**

314 On the day of shipping, a Styrofoam box was liberally filled with dry ice according to the expected
315 shipping duration (4kg dry ice/day; Toronto, ON, Canada to Hamilton, ON, Canada = 4kg;
316 Toronto, ON, Canada to Lyon, France = 12kg). Materials and reagents for cell culture and
317 immunostaining belonging in temperatures below zero (Table 5) were parafilmmed and placed in

318 plastic bags (Falcon tubes) or an old DRAQ5 supplier container (antibodies) and placed
319 approximately half-deep in the dry ice box. Cryovials from the liquid nitrogen were collected last
320 (to minimize their exposure to ambient temperature) and placed in Styrofoam tube holders and a
321 plastic bag before being placed into the dry ice box. Three cryovials containing cell-free scaffolds
322 (paper in freezing media) were also shipped so that collaborators could practice the thawing and
323 handling SOP without risking compromising the tissues. A temperature sensor (TempTale Dry Ice,
324 Sensitech) was activated and placed on top of the dry ice in each box. The lid was closed and the
325 box taped tightly. The styrofoam box was placed in a cardboard box where any extra gaps were
326 filled with bubble wrap, a materials list (for recipients), and the materials or reagents that could be
327 kept at room or 4 °C temperature (Table 5). Finally, the cardboard box was closed, taped, and
328 marked with the appropriate shipping labels. Collaborators were provided our in-house protocols
329 and all steps were performed as described in this Methods section.

330 **Image acquisition details for collaborative experiments**

331 For the intra-provincial collaborator study, mini-myotube template tissues were mounted on a glass
332 slide and imaged using confocal microscopy (Nikon A1R inverted confocal with a Ti2-E stand,
333 NIS-Elements V5.4 imaging software). To evaluate tissue homogeneity, images were acquired
334 with a 10X air objective, NA=0.45, and pixel size 0.34µm/px. To assess myotube morphology,
335 images were acquired with a 40X water objective, NA=1.25, 0.25µm/slice, and pixel size
336 0.13µm/px. All images were acquired using a sequential line scan, laser power ≤ 2%, ≤ 2µs/pixel,
337 1:1 aspect ratio, 1024x1024 box size, and HV ≤ 100.

338 For the international collaborator study, mini-myotube template tissues were imaged using
339 confocal microscopy (Zeiss LSM 880 confocal microscope, available at the CIQLE platform (SFR
340 Santé Lyon-Est, UAR3453 CNRS, US7 Inserm, UCBL), and ZEISS ZEN 3.3 (blue edition)
341 imaging software. To evaluate tissue homogeneity, images were acquired with a 10X air objective,
342 NA=0.45, 15µm/slice, and HV ≤ 600. To assess myofiber morphology, images were acquired with
343 a 40X oil objective, NA=1.4, 6µm/slice, and HV ≤ 850. All images were acquired using a
344 unidirectional scan, averaging of 4 images, 1.64µs/pixel, 1:1 aspect ratio, and 640x640 box size.

345 Across all experiments, HV was optimized on an image-by-image basis to maximize signal while
346 avoiding oversaturation (red pixels on software). Scaffolds were maintained in PBS while not
347 being imaged to prevent them from drying. Images were provided to the Toronto-based team where

348 they were adjusted in brightness and cropped to the same scale to account for differences in image
349 acquisition.

350 **Mini-MEndR assay**

351 Mini-myotube templates were first generated from myoblasts freshly seeded into the paper-based
352 scaffolds, or by using myoblasts cryopreserved in paper scaffolds. All subsequent steps were
353 performed as described in our previously optimized protocol.^[32] Briefly, on Day 5 of
354 differentiation, integrin α -7⁺ GFP⁺ muscle stem cells MACS-enriched from enzymatically
355 digested Tg:Pax7-nEGFP (i.e. Pax7-nGFP) transgenic mouse^[39] hindlimb skeletal muscle tissue
356 were re-suspended in SAT10 media replete of FGF2. On Day 6 of differentiation, 4 μ L of the re-
357 suspended GFP⁺ muscle stem cell solution (850 cells per tissue) was dispensed onto the tissue
358 surface, and spread evenly using a sterile cell spreader. The following day, tissues were injured
359 with 0.5 μ M cardiotoxin (CTX) diluted in differentiation medium for 4h. Tissues were then
360 cultured for 5 days post-injury in DM supplemented with 5 ng/mL FGF2 and an inhibitor of p38
361 α/β MAP kinase (p38i) or DMSO carrier control. Media was completely replaced every other
362 day. Tissues were cultured for an additional 2 days in standard DM without added compounds
363 until fixation at 7 days post-injury (DPI).

364 Confocal imaging was performed using the Perkin-Elmer Operetta CLS High-Content Analysis
365 System and the associated Harmony software as described in.^[38] Images were collected using the
366 10X air objective (Two Peak autofocus, NA 1.0 and Binning of 1) to assess donor-derived GFP⁺
367 myotube coverage, and the 20X water immersion objective (Two Peak autofocus, NA 1.0 and
368 1.1, and Binning of 1) to enumerate muscle stem cells. Images were exported in their raw form
369 and Max-projected and stitched using the FIJI BIOP Operetta Import Plugin ([ijs-Perkin Elmer](#)
370 [Operetta CLS, Stitching And Export, 2022](#)).

371 Donor-derived cell tissue coverage (i.e. GFP⁺ signal) was quantified manually using FIJI. First,
372 the area for analysis was demarcated using the polygon tool to crop the tissue from the entire
373 stitched image. This permitted the exclusion of regions that appeared as empty squares in the
374 stitched image due to focus failures encumbered during imaging. The resulting analysis area was
375 thresholded manually and the GFP coverage recorded.

376 **Statistical analysis**

377 A minimum of 2-3 independent experiments (N) each with multiple technical replicates (n) were
378 conducted for most experiments and is detailed in Table S2. Statistical analysis was performed
379 using GraphPad Prism 6.0 software. For comparison of two variables, statistical differences were
380 determined by unpaired Student's t-test or unpaired t-test with Welch's correction. For data with
381 more than two variables compared, a one-way ANOVA followed by Tukey's multiple comparison
382 test was utilized (Table S2). All values are expressed as mean \pm standard deviation (SD).
383 Significance was defined as $p \leq 0.05$.

384

385 **Results**

386 **Selection of a cellulose scaffold material for mini-myotube templates**

387 For the mini-MEndR assay, human myoblasts are encapsulated in a fibrin/reconstituted basement
388 membrane hydrogel mixture and seeded into rectangle-shaped cellulose-based paper scaffolds pre-
389 adsorbed with thrombin. The myoblasts are then differentiated to form thin skeletal muscle
390 microtissues (termed "myotube templates") that are compatible with the footprint of 96-well
391 culture plates (Figure 1A).^[32] We first set out to identify viable paper products from readily
392 accessible suppliers to robustly manufacture myotube templates. To this end, four paper scaffold
393 candidates (Candidates 1-4) were preliminarily filtered from a larger pool of candidate papers
394 based on thickness and material (cellulose) similarity to the original paper scaffold used to produce
395 mini-myotube templates that was no longer commercially available. Scanning electron microscopy
396 (SEM) images indicated that Candidate 1 and Candidate 3 shared a similar porosity and
397 morphology of paper fibers to the original cellulose paper, while Candidate 2 and Candidate 4
398 exhibited a much more compact microstructure (Figure S1). Indeed, quantification of the image
399 porosity confirmed that Candidate 1 and Candidate 3 had the highest pore area coverage and a
400 pore area closest to the original cellulose paper (Figure S2). However, further analyses revealed
401 that Candidate 1 had a much higher number of smaller sized pores as compared to the original
402 candidate (Figure S2). Candidate 4 was omitted from testing at this stage given its greatest disparity
403 from the original candidate across all metrics (Figures S1-S2).

404 We next evaluated the ability of each paper candidate to support the generation of myotube
405 templates that were comparable to those generated in the original paper scaffold. To do this, we

406 seeded primary human myoblasts (Figure S3), primary mouse myoblasts (Figure S4), and human
407 iPSC-derived myogenic progenitors (Figure S5) within the candidate papers and differentiated
408 them for up to 2-weeks. In all candidate papers, the myoblasts differentiated to form elongated,
409 multinucleated myotubes that were locally aligned but globally disorganized, as observed in the
410 original cellulose scaffold (Figures S3-S5). However, only Candidate 1 supported a total myotube
411 area coverage that was comparable to the original paper-based scaffold across all timepoints and
412 cell types tested (Figures S3-S5). Therefore, Candidate 1 was selected as the paper scaffold
413 material for all subsequent studies (Figure 1B-C).

414 **Development of a protocol for cryopreserving myoblasts in paper-scaffolds**

415 We next set out to develop a protocol to cryopreserve myoblasts encapsulated in hydrogel and
416 seeded into paper-based scaffolds with a view to enabling broad uptake of the mini-MEndR
417 platform within the scientific community. We based our protocol on previous work performed by
418 Grant and colleagues^[33] in which myoblasts were encapsulated in a hydrogel mixture of 30 %
419 MatrigelTM, 4 mg/mL fibrinogen, and 0.5 U/mg-fibrinogen thrombin, and seeded into polyethylene
420 glycol dimethacrylate (PEGDMA) ring-shaped molds. The rings were cryopreserved either before
421 myoblast differentiation (ECM containing mononucleated myoblasts) or after 7 days of
422 differentiation (ECM containing multinucleated myotubes). Importantly, only the cryopreserved
423 undifferentiated myoblasts, had the capacity to acquire expression of mature myogenic markers
424 (e.g. MHC-1, MYF6) and produce aligned myotubes alignment upon thawing and differentiating.
425 ^[33] We therefore decided to cryopreserve myoblasts in the paper-based scaffold in the
426 undifferentiated state.

427 For our cryopreservation method, myoblasts were encapsulated in a fibrin-based hydrogel and
428 seeded into the cellulose paper exactly as described in the original mini-MEndR assay (Figure 1A).
429 Based on iterative research and pilot work (see Table S1 and Figure S6), we established a cell
430 seeding density and cryopreservation regimen that maximized cell viability. In brief, myoblasts
431 are seeded and cultured in Seeding Medium (SM) for 48h before transitioning to Differentiation
432 Medium (DM) in the original protocol used to generate mini-myotube templates. We converged
433 on cryopreserving myoblasts 24h post-seeding, a timepoint halfway through this SM equilibration
434 step. Thus, after 24h in SM, cell-laden scaffolds were transferred to commercial cryovials
435 containing freezing medium (90 % FBS + 10 % DMSO) and slow cooled for 24-48h in a Nalgene®

436 Mr. Frosty in a -80 °C freezer (Figure S6). Cryovials were then transferred to a Dewar filled with
437 liquid nitrogen for the remaining time (5-6 days) to complete one week total of freezing. After
438 storage, cryovials were quickly warmed in a water bath and the scaffolds were transferred to wells
439 of a 96-well plate for continued culture (Figure 2A).

440 To assess the effectiveness of our cryopreservation workflow we quantified cell viability 24h and
441 48h post-thawing by analyzing staining for Calcein and DRAQ5 using confocal imaging. Cell
442 viability was quantified as the ratio of live cells (Calcein⁺) to total cells (DRAQ5⁺) using a custom
443 image analysis workflow (Figures S7-S9). Representative confocal images revealed that myoblasts
444 remained viable at all timepoints post-thaw and that they maintained a homogenous distribution
445 across the scaffold (Figure 2B). We observed that cell viability in unfrozen (tissues that were never
446 frozen) tissues was $87.8\% \pm 8.1\%$, while the viability of the frozen myoblasts was slightly lower
447 at $81.6\% \pm 11.7\%$ (Figure 2C). We also observed that cells in the frozen tissues had a slightly more
448 rounded morphology relative to their unfrozen counterparts (Figure 2B). We therefore concluded
449 that while the cells were viable after thawing it was important to determine whether the observed
450 morphological differences would influence myoblast maturation or function at later timepoints in
451 culture.

452 **Myoblasts cryopreserved in paper-scaffolds form myotube templates with unperturbed
453 morphology and calcium release kinetics**

454 We next evaluated whether myoblasts cryopreserved in the cellulose scaffolds would retain the
455 ability to differentiate into myotube templates comparable to unfrozen controls. In this experiment,
456 after 1-week of cryopreservation, frozen tissues were thawed into SM for 24h, and then switched
457 to DM for 7 days (Figure 3A).

458 Using fluorescent confocal microscopy, we found that cryopreserved myoblasts differentiated into
459 elongated myotubes with homogenous coverage of the tissue (Figure 3B). When we quantified
460 myotube area coverage, we observed comparable coverage between the frozen and unfrozen
461 control; with a slight but non-significant reduction in the mean sarcomeric-alpha-actinin (SAA)
462 coverage among frozen tissues ($33.4\% \pm 3.0\%$ to $31.8\% \pm 3.9\%$ respectively) (Figure 3C). Higher
463 magnification images showed that cryopreserved myoblasts formed myotubes that were elongated,
464 striated, and locally aligned (Figure 3B), and quantification affirmed similar nuclear fusion indices
465 between unfrozen and frozen tissues ($59.3\% \pm 5.5\%$ and $60.0\% \pm 8.2\%$ respectively; Figure 3D).

466 Together, this data suggested that cryopreservation did not significantly impact the differentiation
467 potential of myoblasts in the paper-based scaffolds.

468 Given the encouraging morphological results, we next performed functional analysis of the
469 myotubes by assessing their capacity to mobilize calcium in response to an acetylcholine (ACh)
470 stimulus. Briefly, myotube template tissues on Day 8 of differentiation were incubated with
471 CalbryteTM 520 AM calcium indicator dye and subsequently stimulated with 2 mM ACh. Time-
472 lapse calcium transients were captured at 4X magnification (Supplementary Videos S1 and S2).
473 Both unfrozen and frozen tissues demonstrated the expected increase in fluorescence intensity
474 upon stimulation, affirming that the myotubes in both conditions release calcium upon ACh
475 stimulation (Figure 3E). Tissues derived from myoblasts cryopreserved in cellulose scaffolds also
476 displayed similar transients to unfrozen tissues, including a peak $\Delta F/F_0$ of 0.33, a non-statistically
477 significant drop from the 0.36 average produced by unfrozen controls (Figure 3F). To more closely
478 analyze the transients, we computed the metrics of full-width at half-maximum (FWHM), time to
479 peak (TTP), and rate of calcium release (slope of $\Delta F/F_0$ immediately after stimulation), explained
480 in Figure S10A. Only TTP was statistically significant different between frozen and unfrozen
481 tissues (Figure S10E). However, a trend of slightly delayed calcium responses by frozen tissues
482 was observed across both other metrics (Figure S10B-D). Taken together, our data suggest that
483 myoblasts cryopreserved in the paper-based scaffold differentiate into morphologically
484 comparable and ACh-responsive myotube templates, positioning the assay well for facilitating
485 inter-laboratory studies of skeletal muscle health.

486 **Cryopreservation in paper-based scaffolds is amenable to different myoblast sources**

487 We next assessed whether our cryopreservation SOP was compatible with myotube templates
488 derived from another muscle cell type used by our group. Specifically, human induced-pluripotent
489 stem cell (iPSC)-derived myogenic progenitors were encapsulated in hydrogel, seeded into the
490 paper-based scaffold and subjected to the previously described cryopreservation protocol (Figure
491 3A). The thawed and differentiated cellulose scaffolds seeded with iPSC-derived myogenic
492 progenitors generated homogeneous myotube templates that were locally aligned and globally
493 disorganized (similar to unfrozen controls) (Figure 4A). Quantification of SAA coverage
494 demonstrated no significant differences between unfrozen and frozen tissues ($37.5\% \pm 2.7\%$ and
495 $37.4\% \pm 4.3\%$ respectively; Figure 4B). Furthermore, higher magnification images revealed that

496 myotubes were elongated, striated, and multinucleated and qualitatively thicker in diameter when
497 compared to the myotubes in the unfrozen control (Figure 4A). This data suggested that our
498 protocol to cryopreserve mini-MEndR tissues can be extended to other sources of skeletal muscle
499 myoblasts, making it a versatile system for 3D myotube studies.

500 **Cryopreservation in paper-based scaffolds facilitates inter-laboratory collaborative studies**
501 **of skeletal muscle biology**

502 To demonstrate proof of concept that our cryopreservation protocol enables the adoption of 3D
503 muscle biology by non-experts in the scientific community, we assessed the impact of shipping
504 myoblasts cryopreserved in paper-based scaffolds. We shipped cryopreserved myoblast template
505 tissues to domestic and international collaborators and then compared the quality of muscle tissues
506 they produced upon thawing and then differentiating the tissues in culture. For this, a batch of
507 primary human myoblasts was used to seed numerous cellulose scaffolds, which were transferred
508 to cryovials, stored in liquid nitrogen for 2 months and then distributed (Figure 5A) for parallel
509 studies in-house, and at a domestic (McMaster University (Hamilton, ON, Canada)) and an
510 international site (Institut Neuromyogène (Lyon, France)).

511 Temperature monitoring devices (TempTale Dry Ice, Sensitech) were packed into each shipping
512 container to record the temperature at 1-minute intervals throughout the shipping process.
513 Temperature predominantly held steady between -65°C to -75°C during shipping (Figure 5B). By
514 assessing in-house controls (unfrozen and cryopreserved), we confirmed that the selected cell
515 batch formed differentiated myotube templates with homogenous coverage and that myotubes
516 were also locally aligned, striated, and multinucleated (Figure 5C). Through this 2-month
517 cryopreservation study (Figure 5) and a subsequent 3-month cryopreservation study (Figure S11),
518 we validate the fidelity of myoblast tissues following long-term cryopreservation.

519 The cryopreserved samples processed by the domestic and international collaborators also
520 generated differentiated myotubes that were elongated and multinucleated, with nuclear fusion
521 indices comparable to in-house controls and within the range we previously reported for myotube
522 templates (in-house: $67.1\% \pm 7.0\%$, domestic: $55.1\% \pm 6.6\%$, international: $57.1\% \pm 6.3\%$) (Figure
523 5E).^[27] However, quantification of SAA coverage suggested that myotube templates derived from
524 both domestic and international shipping were lower than in-house controls, with the former
525 having slightly higher coverage than the latter (in-house: $30.0\% \pm 3.1\%$, domestic: $22.9\% \pm 5.6\%$,

526 international: $20.6\% \pm 0.3\%$) (Figure 5D). This was consistent with our observations in-house that
527 some user experience with the thawing and handling steps may be required to attain full
528 proficiency with the platform (Figure S12). Nevertheless, this data show that our cryopreservation
529 technique permits long-term (multi-month) storage, which in turn allows for flexible assay
530 provision and inter-laboratory collaborations.

531 **Myoblasts cryopreserved in cellulose-paper can be used to conduct studies of muscle**
532 **endogenous repair (MEndR)**

533 We next assessed whether cryopreservation had any impact on the capacity of the myotube
534 template to enable muscle stem cell engraftment and subsequent injury and repair of the muscle
535 template (the MEndR repair assay). To do this, we performed a complete MEndR repair assay.^{[27,}
536 ^{32]} Briefly, we generated myotube templates derived from myoblasts either unfrozen or
537 cryopreserved in mini-MEndR (Figure 3A) and engrafted GFP⁺ murine muscle stem cells on Day
538 6 (Figure 6A). The following day, we injured the myotube template with cardiotoxin (CTX), a
539 snake venom toxin, leading to a reduction in myotube template fiber area coverage by ~50%
540 relative to uninjured (CTX-) controls as optimized by our previous protocol^[32] (Figure 6A-B). We
541 then treated a subset of the injured tissues with either a vehicle control or an inhibitor of p38 α/β
542 MAP kinase (p38i), a known stimulator of murine muscle stem cell self-renewal division in
543 culture^[7, 27-30] (Figure 6A). Tissues were then cultured for 7 days to allow for stem cell mediated
544 repair of the injured muscle tissue. After 7 days of culture post-injury, we observed no statistically
545 significant differences in the stem-cell mediated repair of unfrozen versus cryopreserved tissues
546 (Figure 6C). Further, as expected p38i-treated tissues exhibited significantly higher donor (GFP⁺)
547 myotube coverage area relative to DMSO carrier control in both unfrozen and frozen myoblast-
548 derived myotube templates (unfrozen: DMSO CTX+ $10.2\% \pm 1.3\%$, CTX+ p38i $14.9\% \pm 4.0\%$;
549 frozen: DMSO CTX+ $10.9\% \pm 2.6\%$, CTX+ p38i $14.1\% \pm 2.3\%$) (Figure 6C-D). This data
550 suggests that cryopreserving myoblasts in a paper-based scaffold for eventual use to produce the
551 myotube templates that form the basis of the mini-MEndR assay is a feasible strategy to facilitate
552 adoption of the MEndR assay by the broader scientific community.

553

554 **Discussion**

555 In vitro 3D culture models provide an exciting opportunity for studying human skeletal muscle
556 biology at a throughput higher than is possible in animal models. Adoption of these culture models
557 however is hindered by the requirement of in-house manufacturing expertise and specialized
558 instruments. To increase the potential of model adoption of a culture model established by our
559 team (the mini-MEndR platform), we established a cryopreservation protocol to enable storage
560 and transportation of 3D myoblast tissues following in-house manufacturing. Our approach
561 increases the accessibility of our culture platform, in particular for groups with less myoblast
562 culture or seeding expertise, or those seeking an off-the-shelf, validated assay to study skeletal
563 muscle biology.

564 The two most common methods for cell and tissue freezing are slow cooling and vitrification.
565 Vitrification requires extremely rapid cooling rates to bypass ice nucleation and crystallization,
566 and is typically restricted to samples with very small volumes (microliters) that can tolerate high
567 concentrations of cryoprotective agent.^[40] Thus, we employed the slow cooling method (-
568 1°C/min), which is less technically challenging, subject to less variability, and has been previously
569 employed with myoblasts.^[33] Initial pilot work, building on Grant et al.,^[33] used a
570 cryopreservation freezing medium widely used in the field^[41-43] of 10% DMSO and 90% FBS, the
571 latter which is believed to support cryopreservation by stabilizing the cell membrane, decreasing
572 extracellular ice formation, preventing excessive concentration of solutes inside the cell, and
573 minimizing cell dehydration.^[44-45] Our pilot experiments also highlighted the importance of certain
574 specific steps in our methods that were critical to protocol success summarized in Figure S6.
575 Specifically we realized it was important to (i) keep the freezing medium cool given the
576 temperature-dependent cytotoxicity of DMSO,^[46-49] (ii) immerse all tissues into freezing medium
577 as quickly in succession as possible to minimize replicate-to-replicate variation, (iii) begin the
578 slow cooling process immediately after scaffolds had been immersed in freezing medium, (iv)
579 thaw cryovials as quickly as possible, and remove scaffolds from the freezing medium instantly
580 thereafter, (v) perform washes with wash media to scaffolds once removed from the freezing
581 medium, and (vi) keep cryovials frozen until immediately before starting the thaw process. For
582 example, this meant positioning all scaffolds along the rim of cryovials to subsequently immerse
583 them into freezing medium simultaneously (for (ii)), and keeping the cryovials in a pre-frozen
584 Nalgene® Mr. Frosty and ice bucket until right before thawing (for (vi)). We also limited freezing
585 to a single scaffold per cryovial to enable downstream correlation between tissue viability and/or

586 morphology to the freezing/thawing order. This allowed any issues with the protocol to be easily
587 identified.

588 A significant difference between the MEndR template and the format used to cryopreserve
589 myoblast tissues in previous work^[33] is the presence of the cellulose scaffold. We rationalized that
590 the thin geometry of the scaffold sheet, and resulting thin myotube template was likely beneficial
591 to the cryopreservation process to facilitate the rapid temperature changes necessary during the
592 thaw step to avoid ice crystal formation and compromised cell viability. We did have concerns
593 however, that the cryoprotective agent (DMSO) might absorb into the paper fibres and negatively
594 impact long-term cell viability. Our analysis of post-thaw cell viability suggested however, that
595 cell viability was not dramatically different between unfrozen (never frozen) ($87.8\% \pm 8.1\%$) and
596 thawed samples ($81.6\% \pm 11.7\%$). Further, some cell death due to cryopreservation was
597 expected^[50] and was also observed by Grant et al. who achieved $93\% \pm 8.4\%$ myoblast viability
598 for thawed samples relative to never frozen samples.^[33] In comparison the viability achieved after
599 thawing using our protocol with the cellulose scaffold present was similar ($93\% \pm 14.7\%$ relative
600 to the unfrozen samples). This suggests that the cellulose scaffold did not appear to interact with
601 the DMSO solvent in any obviously detrimental ways. Interestingly, we did observe slight
602 morphological differences between unfrozen and post-thawed myoblasts. Specifically, never
603 frozen myoblasts took on an elongated morphology while post-thawed myoblasts were more
604 spherical. This is consistent with previous reports in which cryopreserved primary human
605 myoblasts exhibited a spherical morphology after thawing,^[51] suggesting that this effect was likely
606 not due to the format of the mini-MEndR scaffold specifically.

607 Despite the varying morphologies at early timepoints, we observed that cryopreserved myoblasts
608 differentiated to form homogeneous myotube templates with comparable SAA coverage to
609 unfrozen controls (31.8% to 33.4% respectively). Given that we also observed a slight decrease in
610 cell viability among frozen tissues, the slight decrease in SAA coverage could potentially be
611 attributed to this slight reduction in viable cell density. SAA coverage was also much less variable
612 between tissues compared to the viability data, suggesting that differentiating myoblasts perhaps
613 reach a plateau in SAA coverage. Morphologically, both unfrozen and post-thawed myoblasts
614 formed elongated, multi-nucleated and striated myotubes. These myotubes were also locally
615 aligned and globally disorganized, as observed by Davoudi et al. in the original MEndR
616 platform.^[27] Calcium responses were similar in myotube templates produced from myoblasts

617 immediately after seeding into the paper-based scaffold or after a period of cryopreservation.
618 Further, muscle stem cells were capable of engrafting into the myotube templates produced from
619 cryopreserved myoblast tissues, and upon injury produced stem-cell mediated muscle template
620 repair similar to unfrozen templates. Both morphologically and functionally therefore, the
621 cryopreservation protocol, and any interactions between the DMSO solvent and cellulose fibres
622 did not appear to significantly impact the properties of differentiated myotube MEndR templates.
623 As proof-of-concept that cryopreserved myoblast template tissues could logically be shipped,
624 thawed and used by collaborators in another institution, we shipped cryopreserved myoblast
625 templates to local and international collaborators. We packed cell-free scaffolds (papers in freezing
626 media only) to provide collaborators a low-risk opportunity to practice thawing and handling.
627 Further, we included temperature monitoring devices to enable us to validate that samples
628 remained frozen throughout the shipping process. Samples were shipped via truck (domestically)
629 or via air (internationally) by FedEx. We observed slightly reduced SAA coverage in differentiated
630 myoblast templates that were thawed, differentiated, and analyzed by collaborators. We speculate
631 that these slight differences were most likely due to collaborators having limited experience with
632 3D myoblast tissue cultures and sample processing for analysis. Alternatively, while temperature
633 profiles indicated suitable temperature control during the shipping process, it is possible that
634 exposure to ambient conditions for an unlogged duration could have occurred during the unpacking
635 or transferring of cryovials. We note that collaborators did not use thawed myoblast template
636 tissues to conduct a complete stem-cell mediated repair assay as isolation of the muscle stem cells
637 required for engraftment is technically challenging and requires significant optimization. We
638 recognize this is a limitation of our proposed cryopreservation approach. Nonetheless, the results
639 from our in-house endogenous repair assay with thawed myoblasts coupled with the successful
640 generation of elongated, multi-nucleated myotube templates after shipping will make the full
641 MEndR assay more feasible for users. Furthermore, for researchers with technical or experimental
642 design barriers for stem cell engraftment, the generation of easy-to-manufacture and easy-to-
643 analyze myotube templates alone facilitates the study of many important questions from myotube
644 biology, toxicity screens on myotube health, and the study of mono-nucleated Pax7⁺ “reserve”
645 cells that are present in the myotube template.^[32]

646 Conclusion

647 We have developed a protocol for the cryopreservation of myoblasts in a mini-cellulose format
648 that enables storage of the encapsulated myoblasts and subsequent thawing to produce mini-
649 myotube templates with viable cells that can be differentiated into elongated, striated, and multi-
650 nucleated myotubes. Myotube templates derived from cryopreserved myoblast tissues exhibited
651 comparable nuclei fusion indices, SAA coverage, and calcium transients to never frozen controls
652 and enabled muscle stem cell engraftment to conduct a MEndR muscle injury and regeneration
653 assay. We also performed a proof-of-concept demonstration that cryopreserved myoblast tissues
654 could be shipped to domestic and international collaborators for subsequent use. Our novel
655 cryopreservation strategy reduces the barrier for adoption of the mini-MEndR culture platform by
656 circumventing the need for users to optimize the technically challenging steps of muscle template
657 manufacturing, thus providing an easy-to-use, off-the-shelf platform for studying skeletal muscle
658 health. More broadly, our cryopreservation approach offers a potential strategy to enable adoption
659 of complex tissue engineered culture models beyond those for skeletal muscle.

660

661 Acknowledgements

662 The authors would like to thank Kristyna Gorospe, Ting Yin, and Ruonan Cao for technical
663 assistance. J.S and F.L.G acknowledge the CIQLE microscopy facility of SFR Santé Lyon-Est
664 (UAR3453 CNRS, US7 Inserm, UCBL). Biorender was used to produce schematic elements.

665 Author Contributions

666 S.R., E.J., B.X., S.K., J.S., H.L., N.G., and N.T.L. designed and performed experiments. S.R. and
667 J.N. analyzed data and prepared figures. P.M.G., A.P.M., and S.R. conceived of the project.
668 P.M.G., A.P.M., F.L.G., and B.Z. supervised the research. P.M.G., A.P.M., S.R., J.N., and H.L.
669 wrote the manuscript. All authors reviewed and approved the manuscript.

670 Disclosure Statement

671 The authors have no competing interests, or other interests that might be perceived to influence
672 the results and/or discussion reported in this paper.

673 Data and Materials Availability Statement

674 The datasets generated during and analyzed in this study are available from the corresponding
675 author on reasonable request.

676 **Funding Information**

677 This project was funded by a Canada First Research Excellence Fund “Medicine by Design
678 (MbD)” grant to P.M.G. and A.P.M. (MbDC2-2019-02), a Natural Sciences and Engineering
679 Research Council of Canada (NSERC) Idea to Innovation grant awarded to A.P.M. and P.M.G.
680 (I2IPJ 549768-20), a University of Toronto Connaught Fund awarded to A.P.M. and P.M.G., a
681 Canada Research Chair in Endogenous Repair award to P.M.G. (#950-231201), a NSERC
682 Discovery Grant (RGPIN-05500-2018) to B.Z., funding from Inserm, CNRS, and the Association
683 Française contre les Myopathies/AFM-Téléthon to F.L.G., CGS-D Awards to B.X. and E.J., a
684 CGS-M Award to S.R., Ontario Graduate Scholarships to S.R., E.J., B.X., and H.L., a Norman F.
685 Moody Award to B.X., a NSERC TOeP Award to N.T.L, and an NRC CRAFT Fellowship to
686 N.T.L.

687

688

689 **References**

690

691 [1] W. R. Frontera and J. Ochala, “Skeletal muscle: a brief review of structure and function,”
692 *Calcif Tissue Int*, vol. 96, no. 3, pp. 183–195, Mar. 2015, doi: 10.1007/s00223-014-9915-y.

693 [2] T. C. Roberts, M. J. A. Wood, and K. E. Davies, “Therapeutic approaches for Duchenne
694 muscular dystrophy,” *Nat Rev Drug Discov*, vol. 22, no. 11, pp. 917–934, Nov. 2023, doi:
695 10.1038/s41573-023-00775-6.

696 [3] S. C. Bodine, I. Sinha, and H. L. Sweeney, “Mechanisms of Skeletal Muscle Atrophy and
697 Molecular Circuitry of Stem Cell Fate in Skeletal Muscle Regeneration and Aging,” *The
698 Journals of Gerontology: Series A*, vol. 78, no. Supplement_1, pp. 14–18, Jun. 2023, doi:
699 10.1093/gerona/glad023.

700 [4] D. Akhmedov and R. Berdeaux, “The effects of obesity on skeletal muscle regeneration,”
701 *Front Physiol*, vol. 4, p. 371, Dec. 2013, doi: 10.3389/fphys.2013.00371.

702 [5] L. Janssen, N. A. E. Allard, C. G. J. Saris, J. Keijer, M. T. E. Hopman, and S. Timmers,
703 “Muscle Toxicity of Drugs: When Drugs Turn Physiology into Pathophysiology,” *Physiol
704 Rev*, vol. 100, no. 2, pp. 633–672, Apr. 2020, doi: 10.1152/physrev.00002.2019.

705 [6] A. Sacco, R. Doyonnas, P. Kraft, S. Vitorovic, and H. M. Blau, “Self-renewal and
706 expansion of single transplanted muscle stem cells,” *Nature*, vol. 456, no. 7221, pp. 502–
707 506, Nov. 2008, doi: 10.1038/nature07384.

708 [7] B. D. Cosgrove *et al.*, “Rejuvenation of the muscle stem cell population restores strength to
709 injured aged muscles,” *Nat Med*, vol. 20, no. 3, pp. 255–264, Mar. 2014, doi:
710 10.1038/nm.3464.

711 [8] F. P. Gaschen *et al.*, “Dystrophin deficiency causes lethal muscle hypertrophy in cats,” *J
712 Neurol Sci*, vol. 110, no. 1–2, pp. 149–159, Jul. 1992, doi: 10.1016/0022-510x(92)90022-d.

713 [9] J. W. McGreevy, C. H. Hakim, M. A. McIntosh, and D. Duan, “Animal models of
714 Duchenne muscular dystrophy: from basic mechanisms to gene therapy,” *Dis Model Mech*,
715 vol. 8, no. 3, pp. 195–213, Mar. 2015, doi: 10.1242/dmm.018424.

716 [10] J. Wang, A. Khodabukus, L. Rao, K. Vandusen, N. Abutaleb, and N. Bursac, “Engineered
717 skeletal muscles for disease modeling and drug discovery,” *Biomaterials*, vol. 221, p.
718 119416, Nov. 2019, doi: 10.1016/j.biomaterials.2019.119416.

719 [11] J. Brunetti, S. Koenig, A. Monnier, and M. Frieden, “Nanopattern surface improves
720 cultured human myotube maturation,” *Skeletal Muscle*, vol. 11, no. 1, p. 12, Dec. 2021, doi:
721 10.1186/s13395-021-00268-3.

722 [12] M. Afshar Bakoooshli *et al.*, “A 3D culture model of innervated human skeletal muscle
723 enables studies of the adult neuromuscular junction,” *eLife*, vol. 8, p. e44530, May 2019,
724 doi: 10.7554/eLife.44530.

725 [13] S. Bersini *et al.*, “Engineering an Environment for the Study of Fibrosis: A 3D Human
726 Muscle Model with Endothelium Specificity and Endomysium,” *Cell Rep*, vol. 25, no. 13,
727 pp. 3858-3868.e4, Dec. 2018, doi: 10.1016/j.celrep.2018.11.092.

728 [14] E. G. Z. Centeno, H. Cimarosti, and A. Bithell, “2D versus 3D human induced pluripotent
729 stem cell-derived cultures for neurodegenerative disease modelling,” *Mol Neurodegener*,
730 vol. 13, no. 1, p. 27, May 2018, doi: 10.1186/s13024-018-0258-4.

731 [15] D. Antoni, H. Burckel, E. Josset, and G. Noel, “Three-dimensional cell culture: a
732 breakthrough *in vivo*,” *Int J Mol Sci*, vol. 16, no. 3, pp. 5517–5527, Mar. 2015, doi:
733 10.3390/ijms16035517.

734 [16] L. A. Moyle, E. Jacques, and P. M. Gilbert, “Engineering the next generation of human
735 skeletal muscle models: From cellular complexity to disease modeling,” *Current Opinion in
736 Biomedical Engineering*, vol. 16, pp. 9–18, Dec. 2020, doi: 10.1016/j.cobme.2020.05.006.

737 [17] H. Vandenburg *et al.*, “Drug-screening platform based on the contractility of tissue-
738 engineered muscle,” *Muscle Nerve*, vol. 37, no. 4, pp. 438–447, Apr. 2008, doi:
739 10.1002/mus.20931.

740 [18] H. Vandenburg *et al.*, “Automated drug screening with contractile muscle tissue
741 engineered from dystrophic myoblasts,” *FASEB J*, vol. 23, no. 10, pp. 3325–3334, Oct.
742 2009, doi: 10.1096/fj.09-134411.

743 [19] L. Madden, M. Juhas, W. E. Kraus, G. A. Truskey, and N. Bursac, “Bioengineered human
744 myobundles mimic clinical responses of skeletal muscle to drugs,” *eLife*, vol. 4, p. e04885,
745 Jan. 2015, doi: 10.7554/eLife.04885.

746 [20] J. Young *et al.*, “MyoScreen, a High-Throughput Phenotypic Screening Platform Enabling
747 Muscle Drug Discovery,” *SLAS Discov*, vol. 23, no. 8, pp. 790–806, Sep. 2018, doi:
748 10.1177/2472555218761102.

749 [21] T. Osaki, S. G. M. Uzel, and R. D. Kamm, “Microphysiological 3D model of amyotrophic
750 lateral sclerosis (ALS) from human iPS-derived muscle cells and optogenetic motor
751 neurons,” *Sci Adv*, vol. 4, no. 10, p. eaat5847, Oct. 2018, doi: 10.1126/sciadv.aat5847.

752 [22] M. E. Afshar *et al.*, “A 96-well culture platform enables longitudinal analyses of engineered
753 human skeletal muscle microtissue strength,” *Sci Rep*, vol. 10, no. 1, p. 6918, Apr. 2020,
754 doi: 10.1038/s41598-020-62837-8.

755 [23] A. S. T. Smith *et al.*, “High-throughput, real-time monitoring of engineered skeletal muscle
756 function using magnetic sensing,” *J Tissue Eng*, vol. 13, p. 20417314221122130, 2022, doi:
757 10.1177/20417314221122127.

758 [24] P. M. Gilbert and H. M. Blau, “Engineering a stem cell house into a home,” *Stem Cell Res
759 Ther*, vol. 2, no. 1, p. 3, Feb. 2011, doi: 10.1186/scrt44.

760 [25] A. S. T. Smith, J. Davis, G. Lee, D. L. Mack, and D.-H. Kim, “Muscular dystrophy in a
761 dish: engineered human skeletal muscle mimetics for disease modeling and drug
762 discovery,” *Drug Discovery Today*, vol. 21, no. 9, pp. 1387–1398, Sep. 2016, doi:
763 10.1016/j.drudis.2016.04.013.

764 [26] A. Khodabukus, N. Prabhu, J. Wang, and N. Bursac, “In Vitro Tissue-Engineered Skeletal
765 Muscle Models for Studying Muscle Physiology and Disease,” *Adv Healthc Mater*, vol. 7,
766 no. 15, p. e1701498, Aug. 2018, doi: 10.1002/adhm.201701498.

767 [27] S. Davoudi *et al.*, “MEndR: An In Vitro Functional Assay to Predict In Vivo Muscle Stem
768 Cell-Mediated Repair,” *Adv Funct Materials*, vol. 32, no. 2, p. 2106548, Jan. 2022, doi:
769 10.1002/adfm.202106548.

770 [28] J. D. Bernet, J. D. Doles, J. K. Hall, K. Kelly Tanaka, T. A. Carter, and B. B. Olwin, “p38
771 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal
772 muscle of aged mice,” *Nat Med*, vol. 20, no. 3, pp. 265–271, Mar. 2014, doi:
773 10.1038/nm.3465.

774 [29] J. V. Chakkalakal, K. M. Jones, M. A. Basson, and A. S. Brack, “The aged niche disrupts
775 muscle stem cell quiescence,” *Nature*, vol. 490, no. 7420, pp. 355–360, Oct. 2012, doi:
776 10.1038/nature11438.

777 [30] D. Palacios *et al.*, “TNF/p38 α /polycomb signaling to Pax7 locus in satellite cells links
778 inflammation to the epigenetic control of muscle regeneration,” *Cell Stem Cell*, vol. 7, no.
779 4, pp. 455–469, Oct. 2010, doi: 10.1016/j.stem.2010.08.013.

780 [31] Y. X. Wang *et al.*, “EGFR-Aurka Signaling Rescues Polarity and Regeneration Defects in
781 Dystrophin-Deficient Muscle Stem Cells by Increasing Asymmetric Divisions,” *Cell Stem
782 Cell*, vol. 24, no. 3, pp. 419–432.e6, Mar. 2019, doi: 10.1016/j.stem.2019.01.002.

783 [32] N. Gulati *et al.*, “mini-MEndR: A 96-well mixed species culture assay to co-evaluate
784 human and mouse Pax7+ cell-mediated skeletal muscle repair,” *Bioengineering*, preprint,
785 Jan. 2024. doi: 10.1101/2023.01.20.524941v2.

786 [33] L. Grant *et al.*, “Long-Term Cryopreservation and Revival of Tissue-Engineered Skeletal
787 Muscle,” *Tissue Engineering Part A*, vol. 25, no. 13–14, pp. 1023–1036, Jul. 2019, doi:
788 10.1089/ten.tea.2018.0202.

789 [34] J. Nguyen *et al.*, “Culture substrate stiffness impacts human myoblast contractility-
790 dependent proliferation and nuclear envelope wrinkling,” *Bioengineering*, preprint, Aug.
791 2023. doi: 10.1101/2023.08.08.552533.

792 [35] H. Xi *et al.*, “In Vivo Human Somitogenesis Guides Somite Development from hPSCs,”
793 *Cell Rep*, vol. 18, no. 6, pp. 1573–1585, Feb. 2017, doi: 10.1016/j.celrep.2017.01.040.

794 [36] A. H. Rosenstein *et al.*, “A Flexible Transgene Integration ‘Landing-Pad’ Toolkit in Human
795 Induced Pluripotent Stem Cells Enables Facile Cellular Engineering, Gene Zygosity
796 Control, and Parallel Transgene Integration,” *Synthetic Biology*, preprint, Mar. 2023. doi:
797 10.1101/2023.03.03.531057.

798 [37] C. T. Nguyen *et al.*, “Electron microscopic analysis of the influence of iPSC-derived motor
799 neurons on bioengineered human skeletal muscle tissues,” *Cell Biology*, preprint, Mar.
800 2023. doi: 10.1101/2023.03.03.530083.

801 [38] E. Jacques, Y. Kuang, A. P. Kann, F. Le Grand, R. S. Krauss, and P. M. Gilbert, “The mini-
802 IDLE 3D biomimetic culture assay enables interrogation of mechanisms governing muscle
803 stem cell quiescence and niche repopulation,” *eLife*, vol. 11, p. e81738, Dec. 2022, doi:
804 10.7554/eLife.81738.

805 [39] R. Sambasivan *et al.*, “Distinct regulatory cascades govern extraocular and pharyngeal arch
806 muscle progenitor cell fates,” *Dev Cell*, vol. 16, no. 6, pp. 810–821, Jun. 2009, doi:
807 10.1016/j.devcel.2009.05.008.

808 [40] I. Arutyunyan, A. Elchaninov, G. Sukhikh, and T. Fatkhudinov, “Cryopreservation of
809 Tissue-Engineered Scaffold-Based Constructs: from Concept to Reality,” *Stem Cell Rev
810 and Rep*, vol. 18, no. 4, pp. 1234–1252, Apr. 2022, doi: 10.1007/s12015-021-10299-4.

811 [41] A. De Rosa *et al.*, “A new method for cryopreserving adipose-derived stem cells: an
812 attractive and suitable large-scale and long-term cell banking technology,” *Tissue Eng Part
813 C Methods*, vol. 15, no. 4, pp. 659–667, Dec. 2009, doi: 10.1089/ten.TEC.2008.0674.

814 [42] S. Kamalifar *et al.*, “ROCK Y-27632 Inhibitor, Ascorbic Acid, and Trehalose Increase
815 Survival of Human Wharton Jelly Mesenchymal Stem Cells After Cryopreservation,” *Exp
816 Clin Transplant*, vol. 18, no. 4, pp. 505–511, Aug. 2020, doi: 10.6002/ect.2017.0101.

817 [43] J. Zhao, H. Hao, R. L. Thomas, and W. D. Lyman, “An Efficient Method for the
818 Cryopreservation of Fetal Human Liver Hematopoietic Progenitor Cells,” *STEM CELLS*,
819 vol. 19, no. 3, pp. 212–218, May 2001, doi: 10.1634/stemcells.19-3-212.

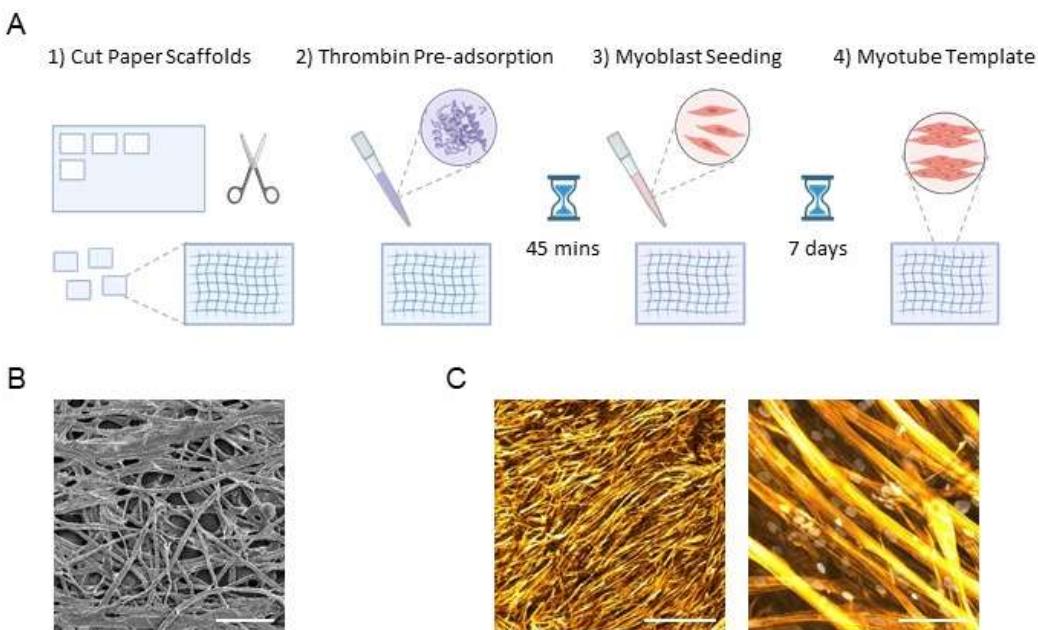
820 [44] G. Grilli, A. Porcellini, and G. Lucarelli, “Role of serum on cryopreservation and
821 subsequent viability of mouse bone marrow hemopoietic stem cells,” *Cryobiology*, vol. 17,
822 no. 5, pp. 516–520, Oct. 1980, doi: 10.1016/0011-2240(80)90063-2.

823 [45] H. Gurruchaga *et al.*, “Advances in the slow freezing cryopreservation of
824 microencapsulated cells,” *Journal of Controlled Release*, vol. 281, pp. 119–138, Jul. 2018,
825 doi: 10.1016/j.jconrel.2018.05.016.

826 [46] D. E. Pegg, “The history and principles of cryopreservation,” *Semin Reprod Med*, vol. 20,
827 no. 1, pp. 5–13, Feb. 2002, doi: 10.1055/s-2002-23515.

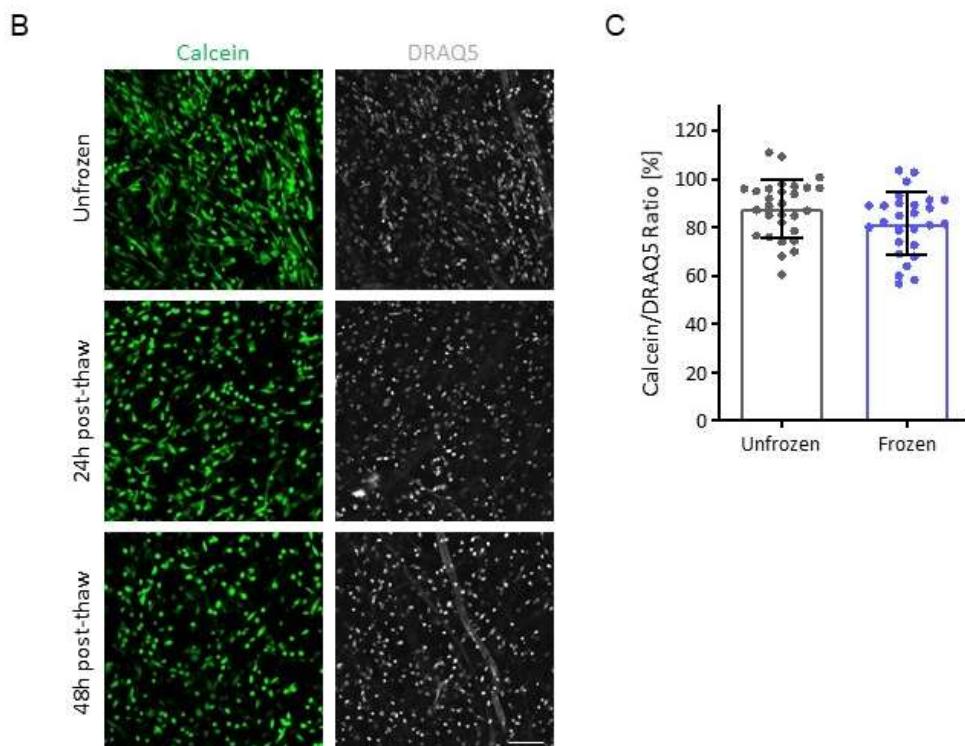
828 [47] H. Y. Elmoazzen, A. Poovadan, G. K. Law, J. A. W. Elliott, L. E. McGann, and N. M.
829 Jomha, “Dimethyl sulfoxide toxicity kinetics in intact articular cartilage,” *Cell Tissue
830 Banking*, vol. 8, no. 2, pp. 125–133, Jun. 2007, doi: 10.1007/s10561-006-9023-y.

831 [48] X. Wang, T.-C. Hua, D.-W. Sun, B. Liu, G. Yang, and Y. Cao, “Cryopreservation of tissue-
832 engineered dermal replacement in Me2SO: Toxicity study and effects of concentration and
833 cooling rates on cell viability,” *Cryobiology*, vol. 55, no. 1, pp. 60–65, Aug. 2007, doi:
834 10.1016/j.cryobiol.2007.05.006.


835 [49] B. P. Best, “Cryoprotectant Toxicity: Facts, Issues, and Questions,” *Rejuvenation Res*, vol.
836 18, no. 5, pp. 422–436, Oct. 2015, doi: 10.1089/rej.2014.1656.

837 [50] D. Whaley, K. Damyar, R. P. Witek, A. Mendoza, M. Alexander, and J. R. Lakey,
838 “Cryopreservation: An Overview of Principles and Cell-Specific Considerations,” *Cell
839 Transplant*, vol. 30, p. 963689721999617, 2021, doi: 10.1177/0963689721999617.

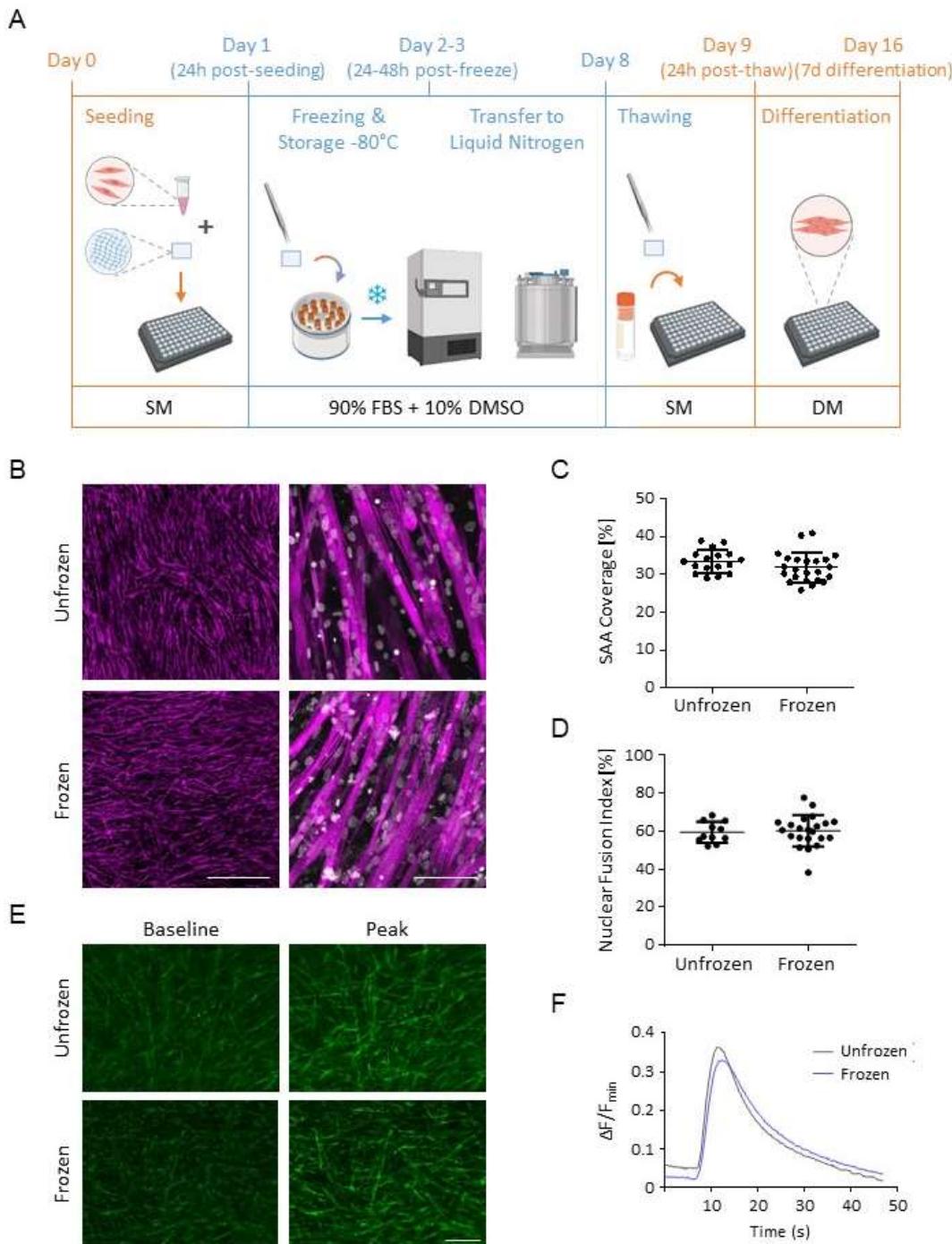
840 [51] B. Zheng *et al.*, “Isolation of myogenic stem cells from cultures of cryopreserved human
841 skeletal muscle,” *Cell Transplant*, vol. 21, no. 6, pp. 1087–1093, 2012, doi:
842 10.3727/096368912X636876.
843


844 **Figures**

845

847 **Figure 1.** Formation of skeletal muscle miniaturized myotube templates in cellulose scaffolds. **(A)**
848 Workflow to produce miniaturized skeletal muscle myotube templates. On Day 0, primary human
849 myoblasts were seeded onto rectangular cellulose-based paper scaffolds pre-adsorbed with
850 thrombin and cultured in SM in a 96-well plate. On Day 2, the culture medium was switched to
851 differentiation medium and myoblasts are differentiated over 7 days, generating a thin layer of 3D
852 scaffold-supported human muscle microtissues (“myotube template”). **(B)** Cropped 800 μ m x
853 800 μ m section from a representative 50X scanning electron microscopy (SEM) image of the paper
854 material selected to serve as the scaffold for myotube templates (Candidate 1). Scale bar = 200 μ m.
855 **(C)** Representative 4X and 40X confocal images of primary human myoblasts differentiated in
856 mini-MEndR over 7 days. Actin is shown in orange (Phalloidin), and nuclei are shown in grey
857 (DRAQ5). 4X scale bar = 1000 μ m; 40X scale bar = 100 μ m.

858

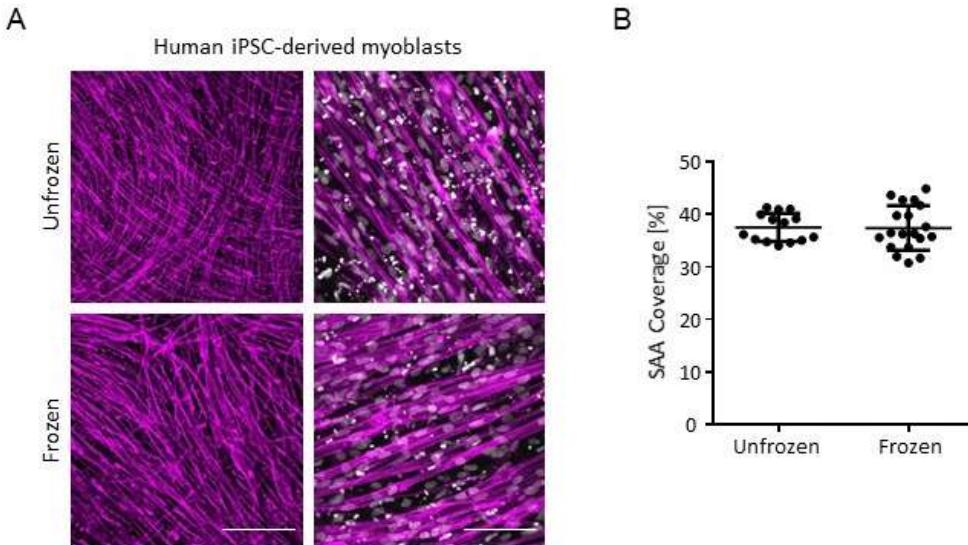


859

860 **Figure 2.** Cell viability of primary human myoblasts after cryopreservation in cellulose paper
861 scaffolds. **(A)** Schematic of experimental procedure and culture medium timeline for assessing the
862 viability of myoblasts cryopreserved in cellulose scaffolds. After reaching confluence in 2D
863 culture, myoblasts are seeded in paper scaffolds in a 96-well plate. After 24h, scaffolds are
864 transferred to cryovials containing freezing medium (90% FBS, 10% DMSO) and placed in a
865 Nalgene® Mr. Frosty in a -80°C freezer for slow cooling. Between 24-48h later, cryovials are
866 transferred to a liquid nitrogen dewar and stored there for the remainder of the 7 days of total

867 freezing. Scaffolds are then extracted from the cryovials during thawing and cultured in 96-well
868 plates. Cell viability is assessed by a live/total assay at both 24h and 48h post-thawing. GM (–)
869 FGF2 = growth media without fibroblast growth factor 2 (Table 1). **(B)** Representative 20X
870 live/total confocal images of primary human myoblasts in cellulose scaffolds either unfrozen, 24h
871 post-thaw, or 48h post-thaw. Scale bar = 100 μ m. Live cells are shown in green (Calcein) and cell
872 nuclei are show in grey (DRAQ5). The dead channel (propidium iodide) was omitted due to it
873 staining the paper fibers. **(C)** Quantification of cell viability (live cells / total cells). Cells were
874 counted using a custom developed algorithm in FIJI (Figures S7-S9). Each plotted point represents
875 an image site. Statistics performed using unpaired two-tailed t-test, ns – no significance. N=4
876 biological replicates, n=2-3 technical replicates (scaffolds), with s=3-4 sites each.

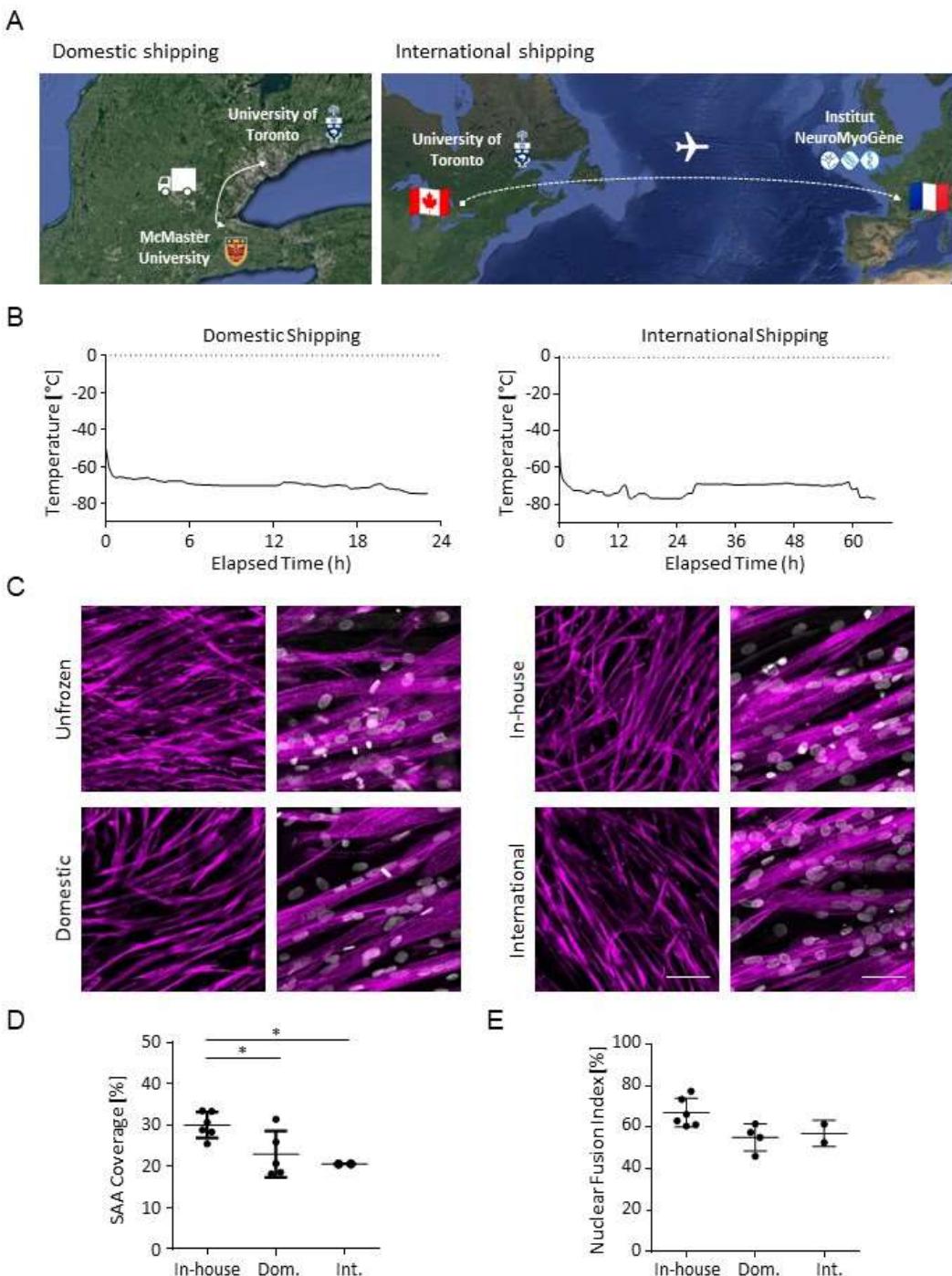
877



878

879 **Figure 3.** Evaluation of differentiation of primary human myoblasts after cryopreservation in
 880 cellulose scaffolds. **(A)** Schematic of experimental procedure and culture medium timeline for
 881 assessing the differentiation of myoblasts cryopreserved in paper scaffolds. After reaching
 882 confluence in 2D culture, myoblasts were seeded in paper scaffolds in a 96-well plate. After 24h,
 883 scaffolds were transferred to cryovials containing freezing medium (90% FBS, 10% DMSO) and

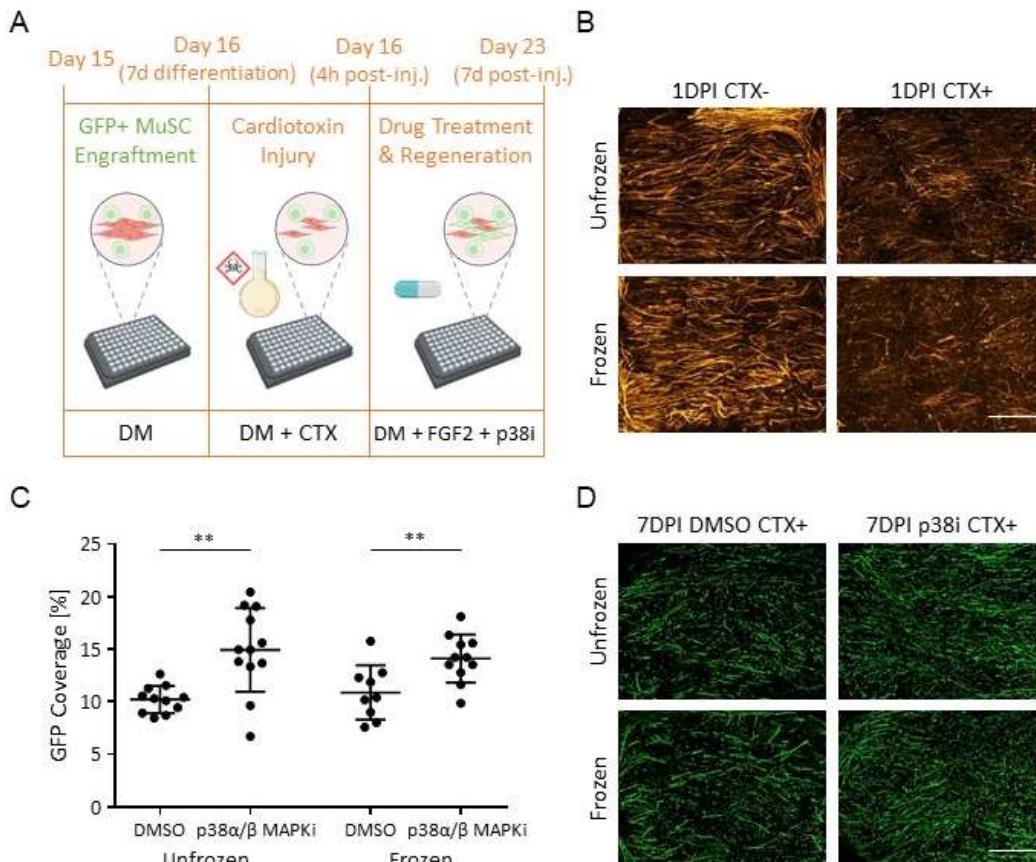
884 placed in a Nalgene® Mr. Frosty in a -80°C freezer for slow cooling. Between 24-48h later,
885 cryovials were transferred to a liquid nitrogen dewar and stored there for the remainder of the 7
886 days or three months of total freezing. Scaffolds were then extracted from the cryovials during
887 thawing and cultured in 96-well plates. After a 24h equilibration period and 7 days of
888 differentiation, tissues were fixed and immunostained to assess myotube coverage and morphology
889 or stimulated with Acetylcholine to assess calcium transients. SM = Seeding Medium (Table 1).
890 **(B)** Representative 4X and 40X confocal images of tissues after 7 days of differentiation. Staining
891 of sarcomeric-alpha-actinin (SAA) is shown in magenta, and nuclei are shown in grey (DRAQ5).
892 4X scale bar = 1000 μ m; 40X scale bar = 100 μ m. **(C)** Quantification of sarcomeric-alpha-actinin
893 (SAA) fiber area coverage between frozen and unfrozen (never frozen) tissues. Statistics
894 performed using unpaired two-tailed t-test, ns – no significance. N=5 biological replicates, n=2-5
895 technical replicates (scaffolds). **(D)** Quantification of nuclear fusion index between frozen and
896 unfrozen tissues. Statistics performed using unpaired two-tailed t-test, ns – no significance. N=3
897 biological replicates, n=3-6 technical replicates (scaffolds), with s=1-2 sites each. **(E)**
898 Representative 4X fluorescence images at baseline and peak fluorescence and **(F)** calcium
899 transients of unfrozen and frozen tissues. Primary human myoblasts differentiated over 8 days
900 were incubated with Calbryte™ 520 calcium indicator dye and stimulated with 2mM
901 Acetylcholine. Fluorescence intensity over time was normalized by taking the difference between
902 the immediate and baseline fluorescence intensities and dividing by the baseline intensity
903 ((F_{immediate} – F_{baseline})/F_{baseline}). Scale bar = 200 μ m. Curve represents average of N=1
904 experimental replicate, n=5-6 technical replicates (scaffolds). See Figure S10 for additional
905 characterizations and explanation of metrics.


906

907

908 **Figure 4.** Cryopreservation protocol is amenable to human iPSC-derived myogenic progenitors.
909 **(A)** Representative 10X and 40X confocal images of human iPSC-derived myogenic progenitors
910 either unfrozen (never frozen) or frozen in cellulose scaffolds and cultured over 7 days of
911 differentiation. 10X scale bar = 400 μ m; 40X scale bar = 100 μ m. Sarcomeric-alpha-actinin (SAA)
912 is shown in magenta, and nuclei are shown in grey (DRAQ5). **(B)** Quantification of SAA coverage
913 from 10X images of human iPSC-derived myogenic progenitors either unfrozen or frozen in
914 cellulose scaffolds and cultured over 7 days of differentiation. Statistics performed using unpaired
915 two-tailed t-test, ns – no significance. N=2 biological replicates, n=4-6 technical replicates
916 (scaffolds).

917



918

919 **Figure 5.** Cryopreservation in cellulose scaffolds enables inter-laboratory collaborative studies of
920 skeletal muscle biology. **(A)** Satellite map of institutions involved in collaborative study.
921 Myoblasts cryopreserved in cellulose scaffolds were shipped domestically via ground between the
922 University of Toronto (Toronto, ON, Canada) and McMaster University (Hamilton, ON, Canada)
923 and internationally via air between the University of Toronto (Toronto, ON, Canada) and the

924 Institut NeuroMyogène (Lyon, France). **(B)** Temperature profiles during shipment. Temperature
925 was recorded at 1-minute intervals using the Sensitech TempTale Dry Ice temperature sensor.
926 Customized graphs were created by manually interpolating datapoints from the sensor's
927 automatically generated temperature graphs and inputting them into the PRISM graphing software.
928 **(C)** Sample 10X and 40X confocal images of primary human myoblasts either (i) unfrozen or (ii-
929 iv) frozen for 2 months and shipped either (ii) in-house, (iii) domestically, or (iv) internationally,
930 and subsequently differentiated for 7 days. Sarcomeric-alpha-actinin (SAA) is shown in magenta,
931 and nuclei are shown in grey (DRAQ5). 10X scale bar = 200 μ m; 40X scale bar = 50 μ m. **(D)**
932 Quantification of SAA coverage from 10X images of in-house, domestic, and internationally
933 shipped tissues. Statistics performed using one-way ANOVA with Tukey post-test, *p<0.05. N=1
934 biological replicates, n=2-6 technical replicates (scaffolds), averaged from s=1-3 sites each. **(E)**
935 Quantification of nuclear fusion index from 40X images of in-house, domestic, and internationally
936 shipped tissues. Statistics performed using one-way ANOVA with Tukey post-test, ns – no
937 significance. N=1 biological replicates, n=2-6 technical replicates (scaffolds), averaged from s=2-
938 4 sites each.

939

940

941 **Figure 6.** Muscle stem cells engrafted onto myotube templates derived from primary human
942 myoblasts cryopreserved in cellulose scaffolds recapitulate expected responses to a known
943 stimulator of muscle stem cell-mediated muscle tissue repair. **(A)** Schematic of experimental
944 procedure and culture medium timeline for MEndR injury and regeneration assay, consisting of
945 first the generation of myotube templates derived from myoblasts cryopreserved in cellulose
946 scaffolds (Figure 3A), then engraftment of GFP⁺ murine muscle stem cells followed by cardiotoxin
947 injury and muscle stem cell-mediated regeneration with either p38i or DMSO carrier control. **(B)**
948 Representative 10X stitched confocal images of unfrozen or frozen-derived myotube templates 1-
949 day post-injury (DPI). Actin is shown in orange (Phalloidin). 10X scale bar = 1000 μ m. **(C)**
950 Quantification of GFP coverage and **(D)** representative 10X stitched confocal images of muscle
951 stem cell-mediated repair of unfrozen or frozen-derived myotube templates with either p38i or
952 DMSO carrier control at 7DPI. Donor-derived myotubes are shown in green (GFP). 10X scale bar
953 = 1000 μ m. Statistics performed using two-tailed t-test between p38i-treated and control for each
954 of unfrozen and frozen datasets, **p<0.01. N=3 biological replicates, n=3-5 technical replicates
955 (scaffolds) each.

956 **List of Tables**

957 Table 1. Culture media formulations and solutions.

Wash Medium	<ul style="list-style-type: none">● 89% DMEM (Gibco, #11995-065)● 10% Fetal bovine serum (FBS) (Gibco, 12483-020)● 1% Penicillin-Streptomycin (Gibco, #15140-122)
2D Primary Human Myoblast Growth Medium (GM)	<ul style="list-style-type: none">● Ham's F-10 nutrient mix (Wisent 318-050-CL)● 20% Fetal bovine serum (FBS)● 1% Pen-strep (P/S)● 5 ng/mL rh-FGF2 (ImmunoTools, 11343625)
2D Primary Mouse Myoblast Growth Medium (SAT-10)	<ul style="list-style-type: none">● DMEM/F12 (Gibco, #11320-033)● 1% Pen-strep (P/S)● 20% Fetal bovine serum (FBS)● 10% Horse serum (Gibco, #16050-122)● 1% Glutamax (Gibco, #35050-061)● 1% Insulin-transferrin-selenium (Gibco, #41400-045)● 1% Non-essential amino acids (Gibco, #11140-050)● 1% Sodium pyruvate (Gibco, #11360-070)● 50 μM β-mercaptoethanol (Gibco, #21985-023)● 5 ng/mL rh-FGF2
Primary Human Myoblast Seeding Medium (SM)	<ul style="list-style-type: none">● GM without added FGF2● 1.5 mg/mL Aminocaproic acid (ACA) (Sigma, A2504)
Primary Mouse Myoblast Seeding Medium (SAT-10 (-)FGF)	<ul style="list-style-type: none">● SAT-10 without added FGF2● 1.5 mg/mL Aminocaproic acid (ACA)
Differentiation Medium (DM)	<ul style="list-style-type: none">● DMEM● 1% Pen-strep (P/S)● 2% Horse serum● 10 μg/mL Insulin (Sigma, #I6634)● 2 mg/mL Aminocaproic acid (ACA)
Myotube Template Injury Medium	<ul style="list-style-type: none">● Differentiation Medium● 0.5 μM Cardiotoxin
MEndR Assay Regeneration Medium	<ul style="list-style-type: none">● Differentiation Medium● 5 ng/mL rh-FGF2● 10 μM p38α/β MAPKi (Drug Name: SB203580) (New England biolabs, #5633)
Freezing Medium	<ul style="list-style-type: none">● 90% FBS● 10% Dimethyl sulfoxide (DMSO) (Sigma, D8418)
Fibrinogen Solution	<ul style="list-style-type: none">● 10 mg/mL Fibrinogen (Sigma, #F8630) in NaCl solution (0.9 % wt/vol in ddH₂O)
Extracellular Matrix (ECM) Master Mix	<ul style="list-style-type: none">● 40% DMEM● 40% Fibrinogen● 20% GeltrexTM (Thermofisher, A1413202)
Blocking Solution	<ul style="list-style-type: none">● Phosphate-buffered saline (PBS)● 10% goat serum (Gibco, #16210072)● 0.3% Triton X-100 (BioShop, #TRX777)

959 **Table 2.** Cell densities and volumes for seeding different muscle cell lines in mini-MEndR.

Cell type	Seeding plate	Volume of 0.8 U/ml thrombin	Seeding density	Volume of ECM	Volume of SM
Primary human myoblasts	96-well	4µL	10 ⁵ cells	4µL	200µL
Human iPSC-derived myogenic progenitors	48-well	5µL	10 ⁵ cells	5µL	500µL
Primary mouse myoblasts	48-well	4µL	2.5x10 ⁴ cells	4µL	500µL

960

961

962 **Table 3.** Fluorescent dyes and antibodies used for immunostaining. BS=blocking solution.

Name	Type	Dilution	Reference
Mouse anti-sarcomeric-alpha-actinin	Primary Antibody	1:800 in BS	Sigma, #7811
Mouse anti-Pax7	Primary Antibody	1.5:1 in PBS	Derived from DSHB cell line (Iscove)
Rabbit anti-Ki67	Primary Antibody	1:300 in BS	Abcam, #ab16667
Chicken anti-GFP	Primary Antibody	1:500 in BS	Abcam, #ab13970
Goat anti-mouse AlexaFluor-488	Secondary Antibody	1:500 in BS	Invitrogen, #A11001
Goat anti-rabbit AlexaFluor-647	Secondary Antibody	1:500 in BS	Life Technologies, #A21245
Goat anti-chicken AlexaFluor-488	Secondary Antibody	1:500 in BS	Invitrogen, #A11039
Phalloidin AlexaFluor-568	F-actin probe	1:500 in BS	Invitrogen, #A12380
DAPI	Nuclear probe	1:800 in BS	Roche, #10236276001
DRAQ5	Nuclear dye	1:800 in BS or PBS	Cell Signalling Technology, #4084L
Calcein AM	Viability Dye	1:2000 in PBS	Invitrogen, L3224

963

964

965

966 **Table 4.** List of imaging settings used for confocal imaging of mini-MEndR tissues with the
967 Olympus FV-1000 confocal microscope and Olympus FluorView V4.2b imaging software.

Imaging Parameter	4X Images	10X Images	20X Images	40X Images
Purpose	Homogeneity	Homogeneity	Live/Dead	Morphology
Objective	4X	10X	20X	40X
Numerical Aperture	0.13	0.3	0.45	0.6
Scan Mode	Unidirectional	Unidirectional	Unidirectional	Unidirectional
Laser Channels	AF-488 / AF-568 / DRAQ5 (647)	AF-488 / AF-568 / DRAQ5 (647)	AF-488 / DRAQ5 (647)	AF-488 / AF-568 / DRAQ5 (647)
Laser Power	< 50%	< 50%	< 50%	< 50%
PMT Voltage (HV)	<750	<750	<750	<750
Amplifier Gain	1%	1%	1%	1%
Sequential	Line	Line	Line	Line
Dwell Time	4 μ s/pixel	4 μ s/pixel	4 μ s/pixel	4 μ s/pixel
Slice Thickness	15-20 μ m/slice	15 μ m/slice	7-10 μ m/slice	5-8 μ m/slice
Kalman Averaging	Line, 3	Line, 3	N/A	Line, 3
Box Size	640 x 640	640 x 640	640 x 640	640 x 640
Scan Zoom	1.0	1.0	1.0	1.0

968

969

970 **Table 5.** List of materials and reagents shipped to each collaborator.

Category	Material/Reagent	Container	Storage	Quantity (per collaborator)
General	mini-MEndR tissues	Cryovial	Liquid N2	6
	Cell-free mini-MEndR tissues	Cryovial	Liquid N2	3
	96-well plate	Supplier packaging	Ambient	1
	Tweezers	N/A	Ambient	2
	Temperature Sensor	N/A	Ambient	1
Cell culture	DMEM	15mL Falcon Tube	4°C	15mL
	FBS	15mL Falcon Tube	-20°C	10mL
	F-10	15mL Falcon Tube	4°C	10mL
	Penstrep	1.5mL Epitube	4°C	1mL
	Horse serum	1.5mL Epitube	-20°C	1mL
	ACA	1.5mL Epitube	4°C	1mL
	Insulin	1.5mL Epitube	-20°C	1 aliquot
Immunostaining	Blocking Solution	15mL Falcon Tube	4°C	5mL
	Mouse anti-sarcomeric-alpha-actinin primary antibody	0.5mL Epitube	-20°C	1 aliquot / ~1µL
	Goat anti-mouse AlexaFluor-488 secondary antibody	0.5mL Epitube	-20°C	1 aliquot / ~2µL
	Phalloidin AlexaFluor-568 probe	0.5mL Epitube	-20°C	1 aliquot / ~2µL
	DRAQ5 nuclear dye	0.5mL Epitube	4°C	1 aliquot / ~2µL

971

972

973