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Abstract

In cancer, genetic and transcriptomic variations generate clonal heterogeneity, leading to

treatment resistance. Long-read single-cell RNA sequencing (LR scRNA-seq) has the

potential to detect genetic and transcriptomic variations simultaneously. Here, we present

LongSom, a computational workflow leveraging high-quality LR scRNA-seq data to call de

novo somatic single-nucleotide variants (SNVs), including in mitochondria (mtSNVs),

copy-number alterations (CNAs), and gene fusions, to reconstruct the tumor clonal

heterogeneity. Before somatic variants calling, LongSom re-annotates marker gene based

cell types using cell mutational profiles. LongSom distinguishes somatic SNVs from noise

and germline polymorphisms by applying an extensive set of hard filters and statistical tests.

Applying LongSom to human ovarian cancer samples, we detected clinically relevant

somatic SNVs that were validated against matched DNA samples. Leveraging somatic SNVs

and fusions, LongSom found subclones with different predicted treatment outcomes. In

summary, LongSom enables de novo variants detection without the need for normal

samples, facilitating the study of cancer evolution, clonal heterogeneity, and treatment

resistance.
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Introduction

Cancer cells accumulate somatic genomic variations, such as single-nucleotide variants

(SNVs), copy number alterations (CNAs), and gene fusions during their lifetime, leading to

intratumor heterogeneity, i.e., the existence of cancer subpopulations with distinct genotypes

and phenotypes. This is presumed to be a leading cause of therapy resistance and one of

the main reasons for poor overall survival in cancer patients with metastatic disease

(Jamal-Hanjani et al. 2015; Vasan et al. 2019; Ramón Y Cajal et al. 2020). While genetic

mechanisms are often evoked as the primary cause of therapeutic resistance in those

subpopulations, the adaptive mechanisms underlying therapy resistance are both of genetic

(SNVs, CNAs, gene fusions, etc.) and non-genetic (epigenetic, transcriptomic,

microenvironment, etc.) origin (Mansoori et al. 2017; Marine et al. 2020). The first step in

identifying therapy-resistant subclones is, therefore, to examine these interlinked features

jointly (Foord et al. 2023) by capturing genetic and transcriptomic variants at the single-cell

level (Mansoori et al. 2017; Dagogo-Jack and Shaw 2018; Marine et al. 2020).

Droplet-based scRNA-seq (e.g. 10X Genomics Chromium) can detect same-cell genetic and

transcriptomic variants. However, those protocols can only capture RNA molecules via their

3' or 5’ ends, and short-read (SR) scRNA-seq coverage is heavily biased towards the 3'/5

end of genes. Recently, methods to call SNVs (Zhang et al. 2023; Muyas et al. 2024) and

CNAs (Serin Harmanci et al. 2020), (Gao et al. 2021, 2023) in SR scRNA-seq were

developed, compensating the 3’ capture bias by pooling large amounts of cells or

sequencing at very high read depths. However, SR scRNA-seq is unsuited to detect

isoforms or gene fusions. Long-read (LR) scRNA-seq, in contrast, sequences full-length

RNA molecules, and we have shown in recent work that high-quality LR scRNA-seq can

simultaneously detect clinically relevant SNVs, CNAs, fusions, and isoform-level expression

in the same cells (Joglekar et al. 2021; Dondi et al. 2023; Shiau et al. 2023; Al’Khafaji et al.

2024; Qin et al. 2024).
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Somatic variants are typically identified by comparing variants from tumor biopsies with

those from matched normal biopsies derived from respective healthy tissue. However, as

matched normals are rarely available, methods to detect somatic variants de novo were

developed for bulk sequencing, mainly relying on germline VAF profiles and tumor purity

estimates combined with extensive filtering against public databases (Teer et al. 2017; Sun

et al. 2018; Shiau et al. 2023). As sensitivity/recall is similar to variant detection with a

matched normal, but precision is lower, tumor-only detection in bulk sequencing is usually

deemed more appropriate for detecting known mutations than detecting variants de novo

(Teer et al. 2017). For scRNA-seq, SComatic (Muyas et al. 2024) was developed to call

variants de novo without matched DNA-seq normal, leveraging non-cancer

microenvironment cells in the tumor biopsy to differentiate somatic from germline variants.

This approach relies on initial cell type annotation based on gene expression patterns, an

open challenge due to overlapping, poorly expressed, or incomplete marker gene sets, and

even a low percentage of cancer cells misannotated as non-cancer will lead to

false-negative variants filtered out as germline (Muyas et al. 2024). Consequently, as

somatic variant calling depends intrinsically on the quality of cell type annotations, methods

ensuring the correctness of the annotations are needed.

Cell types and clonal substructures are traditionally identified in scRNA-seq using gene

expression profiles. However, identifying different cancer clones requires sufficient

transcriptional divergence between them. Instead, clonal substructures can also be

reconstructed using somatic variants (Zhou et al. 2020; Gao et al. 2021, 2023; Kannan et al.

2022; Muyas et al. 2024). For this, mitochondrial SNVs (mtSNVs) serve as an excellent

complement to nuclear SNVs and fusions (Kwok et al. 2022; Miller et al. 2022), as

mitochondrial RNA (mtRNA) is highly available (Osorio and Cai 2021) and mutated

(>10-fold higher than in the nuclear genome (Wallace 1994)) in scRNA-seq. mtSNVs can

also be pathogenic in cancer (Koshikawa et al. 2017), yet, few variant calling methods

properly integrate mtSNVs detection (Mukherjee et al. 2023).
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This study aims to provide a computational workflow for detecting variants (SNVs, mtSNVs,

fusions, and CNAs) in LR scRNA-seq of tumor tissue samples without requiring

matched-normal sample, subsequently integrating them to reconstruct the samples’ clonal

heterogeneity, and identifying subclones with different predicted treatment outcomes.
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Results

Overview of LongSom, a computational workflow for LR scRNA-seq

variants detection and clonal reconstruction

We developed LongSom, a workflow for detecting genetic variants and finding cancer

subclones in LR scRNA-seq data without requiring matched normal. Briefly, LongSom takes

BAM files and cell type annotations as input, reassesses the cell type annotations,

subsequently calls SNVs, mtSNVs, fusions, and CNAs in single-cells based on the

re-annotated cell types, and finally reconstructs the clonal heterogeneity (Figure 1a).

To avoid false-negative calls due to cell type misannotation or cells containing high levels of

ambient cancer RNA, LongSom re-annotates the marker-based cell types. For this,

LongSom calls a set of ‘high-confidence cancer variants’ (SNVs, mtSNVs, and fusions)

following eight filtering steps, and reannotates cells based on their mutational burden

(Methods). LongSom then re-calls variants using reannotated cell types. Somatic SNVs are

identified in ten filtering steps including hard filters and statistical testing (Figure 1b,

Methods). Calling mtSNVs remains challenging, as high levels of ambient mtRNA, released

by dead or dying cells (Young and Behjati 2020), can cause false negative calls on the bulk

level (loci wrongly excluded as germline) and false positive calls on the single-cell level

(contaminated non-cancer cells called as mutated). Therefore, LongSom treats mtSNVs

differently from nuclear SNVs and calls them in five filtering steps (Figure 1c, Methods).

Finally, LongSom infers the clonal structure of the samples using two different approaches.

One approach leverages the detected SNVs, mtSNVs and fusions as input for the Bayesian

non-parametric clustering method BnpC (Borgsmüller et al. 2020). The other approach

predicts CNAs based on gene expression in cancer cells and defines subclusters using

inferCNV (https://github.com/broadinstitute/infercnv) (Methods).
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Figure 1: Overview of LongSom.

a. LongSom’s methodology for detecting somatic SNVs, fusions, and CNAs and subsequently

inferring cancer subclones in LR scRNA-seq individual patients data. (1) SNV and (2) fusion

candidates are detected from pseudo-bulk samples. (3) High-confidence cancer variants (SNVs and

fusions) are selected based on mutated cell fraction in cancer and non-cancer cells. (4) Cells are

re-annotated based on high-confidence cancer variants. (5) A new set of candidate variants is called

based on re-annotated barcodes. (6) Candidate SNVs are filtered through a set of 10 filters. (7) cells

are clustered based on somatic fusions and SNVs. In parallel, (8) gene expression per cell is
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computed, (9) CNAs are detected, (10) cells are clustered based on CNAs, and (11) CNA clones are

incorporated to the fusions and SNVs clustered matrix. b. Candidate nuclear SNV successive filtering

steps. Candidates passing all 10 steps are called as somatic SNVs (Methods). c. Candidate mtSNVs

filtering steps. ΔMCF represents the difference of mutated cells fraction between cancer and

non-cancer cells. Candidates passing all 5 steps are called as somatic mtSNVs (Methods).

LongSom reannotates cell types based on mutational profiles

We applied LongSom to previously published high-quality (PacBio) LR scRNA-seq data of

omentum metastasis samples obtained from three chemo-naive HGSOC patients: P1, P2,

and P3 (Dondi et al. 2023). Those samples were composed of 337 cancer cells (41,959

median UMI per cell) and 1225 micro-environment cells (11,716 median UMI per cell),

referred as “non-cancer cells” in the following. After cell-type reannotation, we found that

cells reannotated as cancer were mostly clustering with cells previously annotated as cancer

cells based on expression data, but some clustered with non-cancer cells (Figure 2a). We

found that 8, 2, and 27% of the cells that LongSom annotated as cancer were previously

annotated as non-cancer cells in the tumor biopsy samples of patients P1, P2, and P3,

respectively (Figure 2b). The tumor biopsy of patient P3 had only 10% cancer cells (Dondi

et al. 2023), which could explain the high level of cell misannotation. Cells reannotated from

cancer to non-cancer cells had a similar mutational burden than cells previously annotated

as non-cancer in all patients. In patients P1 and P2, cells reannotated from non-cancer to

cancer cells had a similar mutational burden and mean fraction of mutated loci as cells

previously annotated as cancer (P>0.05, Tukey-Krammer’s test (Kramer 1956)), while being

significantly different from cells previously annotated a non-cancer (P<0.001) (Figure 2c,d).

In P3, cells reannotated from non-cancer to cancer cells were significantly different from

cells previously annotated as both cancer and non-cancer. Those cells were likely

misannotated due to low expression in the first place, leading to a lower mutational burden.

Furthermore, cells with the lowest mutational burden are also cells not clustering with cancer

cells (Figure 2a, Supplementary Figure S1a). Those are likely cells with high levels of

8

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 5, 2024. ; https://doi.org/10.1101/2024.03.06.583775doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=15714400&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15714400&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15714400&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5243659&pre=&suf=&sa=0
https://doi.org/10.1101/2024.03.06.583775
http://creativecommons.org/licenses/by-nc-nd/4.0/


ambient RNA, and while likely not cancer cells, they would still cause false negatives if they

were not reannotated. In summary, cell type reannotation reduced the cell-variants noise

(Figure 2e, Supplementary Figure S1b-c), and in the following, cancer or non-cancer cells

refer to the reannotated cell types.
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Figure 2: Validation of the cell type re-annotation based on mutational profiles

a. UMAP embeddings of LR scRNA-seq expression per patient. Cells are colored by annotation

status; light-red cells were previously predicted as non-cancer using marker gene expression-based

annotation and were reannotated as cancer by LongSom based on high-confidence cancer variants.

b. Confusion matrices of cells predicted as cancer or non-cancer using marker genes, and cells

reannotated as cancer or non-cancer by LongSom, colored and annotated by the percentage of the

total number of cells in each category. E.g. the bottom left square represents cells previously

annotated as non-cancer that were reannotated as cancer (false negative cancer cells). c,d Boxplots

of c. the fraction of SNV loci that were found mutated in each cell, considering only loci with minimum

coverage of 1 read at the locus in a cell, and d. the total number of SNVs mutated in each cell, per

patient, colored by their annotation status. Points represent individual cells, and boxes display the first

to third quartile with median as horizontal line, whiskers encompass 1.5 times the interquartile range.

P values were calculated using Tukey-Krammer’s test and are described with the following symbols:

n.s : P > 0.05, *: P ≤ 0.05, **: P ≤ 0.01, ***: P ≤ 0.001. e. Cell-variant matrixes of patient P3 before

(left) and after (right) re-annotation. Red indicates that a locus is mutated in a cell (bet-binomial test P

value < 0.05), and white that it is not (either P > 0.05 or no coverage).

Validation of LongSom somatic calls using scRNA-seq and scWGS data

After reannotation, we processed 4,271,449 candidate loci with at least one mutated read

and five reads coverage in aggregated cancer cells (Figure 3a). LongSom called 822

somatic SNVs passing all filters, which mapped to intronic regions (75%), exonic regions

(10.9%), 3’UTR regions (6.2%), intergenic regions (4.8%), splicing sites (1.7%), and 5’UTR

regions (1.4%) (Figure 3a,b). In this dataset, we previously identified that 32% of the reads

resulted from contaminating DNA internally primed on their intronic polyA-rich regions (Dondi

et al. 2023), a common phenomenon in scRNA-seq known as “intra-priming” (Verwilt et al.

2023). While those reads are removed from transcript counts, they are valuable to call SNVs

in scRNA-seq (as they come from same-cell DNA) and they can explain the large fraction of

intronic variants we observed. A WGS study of a cohort of 962 individuals (Morrison et al.

2013) found 58% of intergenic variants, 36% of intronic variants, and 6% of “functional”
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(exonic, splicing, 3’UTR, and 5’UTR and splicing) variants. This study observed a 1 to 17

ratio of functional to intronic and intergenic variants, while we observed a 1 to 5 ratio,

indicating that droplet-based scRNA-seq still selects functional variants despite intra-priming.

To validate those calls, we used single-cell whole-genome sequencing (scWGS) data from

matched omental metastases for each patient. In addition to diploid clones (likely

non-cancer), we found two aneuploid clones (likely cancer) in patient P1 scWGS data, one in

P2, and two in P3 (Methods, Supplementary Figure S2). In the 211 loci called as somatic

by LongSom with sufficient scWGS depth, we called SNVs in scWGS clones, and loci called

in at least one aneuploid clone and in none of the diploid clones were defined as somatic,

while loci called in diploid clones were defined as germline. We found that 80% of the calls

were supported as somatic in scWGS, while 11% were supported as germline calls and

therefore likely to be false positive (Figure 3c). We also found that 9% of the loci were not

called in any clone, possibly due to tumor heterogeneity between the scWGS and

scRNA-seq samples. We also investigated the scWGS support of exonic, 3’UTR, 5’UTR and

splice-site variants versus intronic and intergenic variants, and found the similar results,

confirming the the intronic and intergenic variants identified are not false positives

(Supplementary Figure S3). For patients P1 and P3, we had access to matched normal

scRNA-seq data from matching distal tumor-free omental tissues (Dondi et al. 2023). As a

supplementary validation, we called SNVs in those samples, and found that 13% (P1) and

4% (P3) of LongSom somatic calls were mutated in the matched normal, i.e. germline false

positives (Supplementary Figure S4). Altogether, the high support for somatic mutations in

scWGS data, as well as the low amount of false positive germline calls found in both scWGS

and matched normal scRNA data show LongSom ability to call somatic variants without

matched normal.

We investigated the correlation between the distance separating somatic SNVs and their

support in scWGS. When taking all 2,519 loci passing filter 9 (Figure 3a), we found that the
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lower the mapping distance between two somatic SNVs, the lower the support in scWGS

data, with high rates of germline and low rates of somatic variants (Figure 3d). Even SNVs

within a 1,000-10,000bp distance had low scWGS support, suggesting gene-wise allelic

expression differences between cancer and non-cancer cells (Figure 3d). Therefore,

LongSom filters loci within a 10,000bp mapping distance from each other.

Figure 3: Validation of LongSom somatic calls using scRNA and scWGS data

a. LongSom SNV filtering workflow, indicating the number of loci passing each of the 10 filtering steps

(top, green) or being filtered (bottom, red), starting from all loci with at least one mutated read and 5

reads coverage in cancer cells. b. Waffle plot representing each of the 822 somatic SNVs detected by

LongSom, colored by their RefSeq functional annotation. c. Waffle plot of all loci called by LongSom

with sufficient power in scWGS for validation (Methods), colored by their status in scWGS. d. Boxplot

of the fraction of all loci called after filtering step 9 that is supported by scWGS data as either somatic

or germline, colored by the distance from the closest mapping SNV also detected. LongSom calls
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represent all 822 calls after filtering step 10 (SNVs not within 10,000bp or less from each other). Each

point is a patient.

Somatic mitochondrial reads contaminate tumor microenvironment cells

in scRNA-seq and scWGS data

LongSom detected five mtSNVs in patient P1 at positions 2815, 3092, 5179, 13635 and

16192, two in P2 at positions 2573 and 16065, and none in P3. In patient P1, cancer cells

had a mean VAF per cell ranging from 10 to 98% for all identified loci, while non-cancer cells

had a mean VAF per cell ranging from 0.1 to 3% (Figure 4a). Cells from a matched normal

biopsy had mean VAF per cell < 0.001% at all loci, discarding germline heteroplasmies and

suggesting a contamination of non-cancer cells by cancer-derived mtRNA. In Patient P2, we

also observed a similar VAF profile in non-cancer cells at locus 2573 (Figure 4b). To assess

the levels of ambient mtRNA derived from cancer cells, we computed the VAF of each

mtSNV loci in all empty droplets containing no cell and only ambient RNA (Methods). We

found that empty droplets had cancer-like VAF profiles, with mean VAFs 3.4 (+/-1) times

higher than the mean VAF of the biopsy (Figure 4c). We also found a strong correlation

(R=0.93) between aggregated mutated reads in empty droplets and non-cancer cells (Figure

4d). In contrast, the correlation between the total coverage and the number of mutated reads

was weaker (R=0.84). This supports that mutated reads observed in non-cancer cells come

from cancer ambient mtRNA. We investigated the mtSNVs in a matched scWGS sample and

found similar contamination profiles in cells from non-cancer clones at all loci (Figure 3e,f).

This suggests the presence of ambient cancer mtDNA, too, and possibly of entire

mitochondria. In comparison, the seven mtSNVs detected by LongSom were all filtered by

SComatic (Muyas et al. 2024) due to the mitochondrial noise levels described above.
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Figure 4: Mitochondrial reads harboring somatic mutations are detected in

non-cancer cells

a,b, Violin plots of the VAF of each cell for a. patient P1 and b. P2 mtSNV loci in scRNA-seq data,

categorized by reannotated cell types and empty droplets in tumor and normal biopsies. Individual

points are cells or droplets. The blue dashed line represents the mean VAF in cells from the tumor

biopsy. The red dashed line represents the mean VAF in each category. n refers to the number of cells
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with at least one read covering the locus. c,d, Log aggregated mutated reads in non-cancer cells, as a

function of c. log aggregated mutated reads in empty droplets and d. log aggregated total reads in

non-cancer cells, for all loci from P1 and P2 except locus 16065 in P2 which was discarded due to low

expression. e,f, Violin plots of the VAF of each cell for e. patient P1 and f. P2 mtSNV loci in scWGS

data, categorized by clones in the tumor biopsy. Individual points are cells. The red dashed line

represents the mean VAF in each clone. n refers to the number of cells with at least one read covering

the locus.

LongSom outperforms SComatic for somatic variants calling

We compared somatic SNV calls from LongSom and SComatic. The main differences

between the two algorithms is that LongSom corrects cell type annotations, uses a stricter

beta-binomial threshold when filtering out germline variants, and filters the final calls within

10,000bp of each other. To ensure that LongSom performance was not only driven by the

10,000bp filter, we also applied this filter to SComatic calls. LongSom found 342, 145, and

340 somatic SNVs in patients P1, P2, and P3, respectively, while SComatic found 319, 155

and 260 (Figure 5a, Supplementary Tables S1, S2). The calls overlapped by only 63, 40,

and 72% between the two methods in each patient, while 21, 10, and 33% of the calls were

unique to LongSom, versus 16, 18, 13% for SComatic. The largest difference was observed

in P3, which is concordantly the patient with the largest proportion of cells reannotated,

followed by P1 (Figure 2, 5c). Calls unique to LongSom had 0.82-0.83 somatic support in

scWGS, similar to calls common to both methods (0.72-0.86), while calls unique to

SComatic had a lower somatic support (0.38-0.50) (Figure 5c). Calls unique to LongSom

(0-0.17) and common (0.11-0.14) to both methods also had a lower proportion of germline

support in scWGS data (0.11-0.5) than calls unique to SComatic or common to both

methods (Figure 5c).

Next, we compared the performances of LongSom versus SComatic. To this end we

considered a set of 323 mutations detected in scWGS data with sufficient coverage in

scRNA-seq data for benchmarking (Methods). LongSom call set had more overlap with
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scWGS callset than SComatic in all patients, especially in patient P3 (Figure 5b). In scWGS

calls supported by at least one read in scRNA-seq data, LongSom achieved a score of

0.44-0.5 precision across the three samples, similar to SComatic (0.41-0.46) (Figure 5d).

However, LongSom achieved a superior sensitivity (0.19-0.55) than SComatic (0-0.13), and

a higher F1 score. The higher sensitivity is largely due to LongSom cell reannotation that

prevents false negative germline calls, whereas SComatic filters out SNVs that are

supported as somatic by scWGS data.

Figure 5: Comparison of Longsom versus SComatic performance using scWGS data
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a. Venn diagrams of the intersection between Longsom and SComatic somatic calls in LR scRNA-seq

data from patients P1, P2 and P3. b. Venn diagrams of the intersections between scWGS SNV calls.

LongSom LR scRNA-seq calls and SComatic LR scRNA-seq calls. c. Boxplot of all loci called after

filtering step 9, colored by the distance from the closest mapping SNV also detected, and classified by

somatic or germline scWGS support. Each point is a patient. d. Performance of LongSom and

SComatic for detecting somatic mutations in LR scRNA-seq data. Each point is a patient, the bars

represent the mean value, and the error bars are the standard deviation for each statistic computed.

LongSom detects panel-validated variants

The three patients also underwent bulk panel DNA sequencing (Methods), where 29 SNVs

were found (Supplementary Table S3). All three patients had at least one somatic SNV

called in TP53 (including a variant introducing a stop codon in patient P3) with a VAF >30%,

and LongSom detected all of those. The SNVs detected in other genes of the panel were not

retained with our method for the following reasons: they were either identified as germline

variants (n=5), detected in cancer but with insufficient coverage in non-cancer cells (n=3),

detected but not in enough cancer cells (n=7), not detected despite sufficient coverage

(n=3), or not covered (n=8) (Supplementary Table S3). Overall, 62% of the SNVs detected

in the panel also found support in scRNA data. Since the scRNA-seq and panel-seq samples

originated from different regions of the biopsy, the false negatives could be due to tumor

heterogeneity or to the low VAF (<0.1) of some variants (n=4, Supplementary Table S3). In

comparison, SComatic only detected one TP53 variant (P1) in LR scRNA-seq data. Of note,

two deletions were found in panel sequencing, and they were detected manually in the LR

scRNA-seq data (Supplementary Table S3).

LongSom identifies subclones in LR scRNA-seq data matching

subclones in scWGS data

LongSom detected 4 fusions in patient P1, 16 in P2, and 2 in P3, using CTAT-LR-fusion as

described in (Qin et al. 2024) (Supplementary Table S4). Next, LongSom inferred the clonal
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structure of the tumors based on the SNVs and fusions it detected using BnpC. LongSom

also inferred the clonal structure from CNA profiles in the same cells, using inferCNV

(Supplementary Figure S5, Methods). We also clustered the cells based on their gene

expression, manually annotated the cancer clusters, and used those clusters as

transcriptomic validation. Finally, we used the subclones inferred from scWGS as external

validation (Figure 3).

In patient P1, LongSom found two cancer subclones based on SNVs and fusions, referred to

as A and B (Figure 6a). The larger subclone A (n = 50 cells) was predominantly defined by a

set of seven SNVs, including mtSNVs chrM:5179 and chrM:13635, and the smaller subclone

B (n = 30 cells) was mainly defined by a set of seven SNVs, including mtSNV chrM:2815, as

well as two fusions SMG7--CH507-513H4.1 and GS1-279B7.2--GNG4. In expression-based

UMAP embedding, cancer cells formed two distinct expression clusters that near perfectly

overlapped the genotypic cancer subclones found based on SNVs and fusions (Figure 6

a-d). Clonal assignments based on SNVs and fusions and on CNA data were also very

similar (Figure 6a,e, Supplementary Figure S5). In patient P1’s matched scWGS data, we

also found two aneuploid (cancer) subclones, CC1 and CC3, based on CNA profiles

(Supplementary Figure S2). We found that 3 loci exclusively mutated in subclone A

(chr7:25123800, chrM:5179,chrM:13635) were also exclusively mutated in subclone CC3,

and one locus exclusively mutated in subclone B (chrM:2815) was exclusively mutated in

subclone CC1 (Figure 4e, 6a). All subclone-specific loci had less than 5 reads coverage in

scWGS clones, except for chrM loci, which had 186-861 reads coverage and were strictly

subclone exclusive (Figure 4e). Therefore, using mtSNVs, we could confidently match

scRNA-seq subclones to scWGS subclones.

In patient P2, LongSom found one cancer clone using mutations and fusions, coinciding well

with the aneuploid CNA scRNA clone and the gene-expression-based cancer cluster,

similarly, in scWGS data we only saw one aneuploid CNA clone (Supplementary Figure
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S2b, S5b, S6). Therefore, all available data modalities point toward a monoclonal cancer

population in this patient.

In patient P3, LongSom found one clone, coinciding with the gene expression-based cancer

cluster, however, two aneuploid subclones were detected in both scWGS and scRNA-seq

data using CNA analysis (Supplementary Figures S2c, S5c, S7). This difference could be

due to the low number of cancer cells or inter-sample heterogeneity.
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Figure 6: Analysis of intra-tumor heterogeneity using somatic variants detected in LR

scRNA-seq in Patient P1.
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a. BnpC clustering of single cells from the tumor biopsy of patient P1 (columns) by somatic SNVs and

fusions called by LongSom in LR scRNA-seq data (rows). Red indicates that a loci is mutated in a cell

(beta-binomial P value < 0.05), white that it is not, and grey indicates no coverage in the cell at a

given locus. Rows are colored according to the mutation status of aggregated scWGS diploid

(Non-Cancer Clones) or aneuploid (Cancer Clone 1 and 3) cells. Fusions appear in blue. Columns are

colored from top to bottom by cell types reannotated by LongSom, inferCNV CNAs subclones,

expression clusters, and BnpC subclones inferred from somatic SNVs and fusions. b,c. UMAP

embedding of patient P1 gene expression data, colored by (b) Seurat clusters and (c) BnpC

subclones. d,e. Confusion matrix of cells in each expression-derived cancer cluster (rows) and (d)

cells in the subclones inferred from BnpC, and (e) cells in the subclones inferred from inferCNV

(columns), colored by the percentage of the total number of cells in each subclone and annotated by

absolute numbers. f. Volcano plot of differentially expressed genes identified between subclones B

and A. Keratin genes downregulated in subclone B are annotated. g. ScisorWiz representation of

CHPF isoforms in subclones A and B. Colored areas are exons, whitespace areas are intronic space,

not drawn to scale, and each horizontal line represents a single read colored according to subclones.

Subclones identified in patient P1 have differing predicted treatment

outcomes

To explore the potential therapeutic resistance of subclones A and B identified in patient P1,

we investigated the genomic and transcriptomic variations between them. In subclone A, we

identified a missense variant in the ferroptosis regulator ALDH3A2 (Val321Leu,

Supplementary Table S5) indicating a lower cisplatin resistance (Dong et al. 2023). In

subclone B, we identified a missense in CCAR2 (Arg722Trp, Supplementary Table S5), a

suppressor of homologous recombination, indicating a potential resistance against PARP

inhibitors (Iyer et al. 2022)). Therefore, based on SNVs, subclone A is more likely to be

treatment-sensitive, while subclone B is more likely to be treatment-resistant. On the

transcriptomic level, Subclone B had notably downregulated expression of keratin genes

KRT8 and KRT18, two epithelial markers used to differentiate HGSOC cells from non-cancer

cells (Figure 6f, Supplementary Figure S8a,b). It has been shown in vitro that KRT8 and

21

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 5, 2024. ; https://doi.org/10.1101/2024.03.06.583775doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=15894664&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15915994&pre=&suf=&sa=0
https://doi.org/10.1101/2024.03.06.583775
http://creativecommons.org/licenses/by-nc-nd/4.0/


KRT18 have a protective effect against cell death (Bozza et al. 2018), and their losseads to

increased invasiveness but also cisplatin sensitivity (Fortier et al. 2013). Subclone B is

therefore more likely to be chemosensitive than subclone A. We additionally investigated

differential isoform usage, and while both subclones were mostly similar, we found a

significant difference in CHPF (Figure 6g), MYL6, the tumor suppressor BTG2, and

NUTM2B-AS1 (Supplementary Figure S8c-e), however, we could not predict their

pathogenicity.

LR greatly outperforms SR scRNA-seq for variants detection and clonal

reconstruction

Finally, we aimed to compare LR to SR scRNA-seq ability to call somatic SNVs. The

HGSOC study had LR and SR scRNA-seq data from the same cells available. When we

applied SComatic to SR scRNA-seq, we found only 114 loci (7.3 times less than LongSom

calls in LR data), with only 9 SNVs common to both technologies (Figure 7a). The lower

amount of loci identified could be related to the fact that, while the SR dataset had 4.3 times

more sequenced reads compared to LR (mean 117.4k vs. 26.9k reads per cell), it had 3.5

times fewer mapped bases (mean 11.4Gb mapped vs. 3.3Gb mapped) due to shorter read

length (Supplementary Figure S9a,b). Notably, somatic SNVs identified in SR data

contained 26% of 3’UTR variants, against 6% in LR data (Figure 3b, 7a). As reads are

captured by their 3’ end poly(A), a large fraction of the SR coverage is located in 3’UTR as

reads are too short to exceed it. This explains the over-representation of 3’UTR variants in

SR data, and previous studies reported up to 40% of them (Muyas et al. 2024). To validate in

scWGS data the somatic SNV loci identified in SR data, we pooled samples together due to

the low number of calls in patients P1 and P3 (Supplementary Figure S9c-e). Out of the 18

loci called in SR scRNA-seq data with sufficient coverage in scWGS, 50% were supported

as somatic in scWGS, a lower support than LR data, and no SNV supported as germline

was found. Furthermore, SR data identified none of the panel-supported TP53 variants nor
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over clinically relevant variants. Therefore, we found fewer calls in SR data, and those had

lower scWGS and bulk panel data support. Using those calls, we identified no clonal

structure in either patient P1 or P3, and only identified a partial clonal reconstruction in P2,

the patient in which we detected most SR calls (Figure 7d, Supplementary Figure S9f-g).

Figure 7: Analysis of SR scRNA-seq data and comparison with LR data.

a. Venn diagram of the intersection between SR (SComatic) and LR (LongSom) somatic calls in LR

scRNA-seq data from all patients aggregated. b. Waffle plot representing each of the 114 somatic

SNVs detected by SComatic in SR scRNA-seq data, colored by their RefSeq functional annotation.

c. Barplot of the fraction of all loci that is supported by scWGS data as either somatic or germline,

colored by whether they were called in LR data, SR data, or both. d. BnpC clustering of single cells

from the tumor biopsy of patient P1 (columns) by somatic SNVs and fusions (rows) called in SR

scRNA-seq data. Red indicates that a loci is mutated in a cell (bet-binomial P value < 0.05), white that
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it is not, and grey indicates no coverage in the cell at a given locus. Rows are colored according to the

mutation status of aggregated scWGS diploid (Non-Cancer Clones) or aneuploid (Cancer Clones)

cells. Fusions appear in blue. Columns are colored from top to bottom by marker-based annotation

and BnpC subclones inferred from somatic SNVs and fusions.
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Discussion

SNVs, mtSNVs, CNAs, fusions, gene expression, isoforms expression, and the

micro-environment composition can all affect cancer treatment outcomes (Marine et al.

2020). Assessing all of these variations simultaneously from a single patient sample is

particularly relevant in a clinical setting, where biological material is limited. Here, we show

for the first time that this is possible using LR scRNA-seq data and we introduce LongSom, a

workflow for detecting de novo somatic SNVs, fusions, and CNAs in LR scRNA-seq without

matched normal. When applied to data from three HGSOC patients, we showed the

Longsom outperformed SComatic for SNV detection and detected scWGS- and

panel-validated SNVs, including clinically relevant ones. By integrating SNVs and fusions,

LongSom successfully reconstructed the clonal heterogeneity and identified

scWGS-matched subclones. Finally, in each subclone, we identified differentially expressed

genes and subclone-specific SNVs with different implications for treatment resistance. Thus,

we demonstrated that LR scRNA-seq is suitable for predicting treatment outcomes.

The performance of somatic SNV calling using non-cancer cells from the tumor biopsy as a

“pseudo-normal” is contingent on reliable cell type annotations (Muyas et al. 2024). The

cell-type reannotation step implemented in LongSom, based on the somatic variation profile

of cells, led to the detection of up to 31% more somatic SNVs (patient P3) and significantly

increased sensitivity without sacrificing precision.

LongSom is the first method combining de novo detection of SNVs, mtSNVs, and fusions

from the same cell to reconstruct clonal heterogeneity. In the HGSOC dataset, the

mitochondrial SNVs were called in most cancer and non-cancer cells, and some fusion calls

were expressed in most clones or subclones (P2: IGF2BP2::TESPA1, P1:

SMG7::CH507-513H4.1, etc.), making them ideal variations for cell-type reannotation and

clustering. However, we demonstrated that mitochondrial SNVs require special filtering

thresholds, as non-cancer cells frequently contained cancer mitochondrial reads. We
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showed that those reads were likely ambient mtRNA from dead or dying cancer cells

encapsulated jointly with non-cancer cells during single-cell preparation. A conclusive

answer to whether those are only technical artifacts or also originate from a biological

mechanism, e.g. microenvironment revitalization (Liu et al. 2021; Zampieri et al. 2021), will

require further investigation.

Despite the popularity of droplet-based scRNA-seq, multiple technical limitations remain

unsolved, limiting the potential of downstream analysis. First, variant detection remains

challenging due to the sparsity and low coverage of scRNA-seq assays, especially in LR

assays despite rapid progress in the field (Dondi et al. 2023; Joglekar et al. 2023; Marx

2023; Al’Khafaji et al. 2024). To ensure that somatic calls are not germline polymorphisms,

LongSom excludes sites with coverage <5 in non-cancer cells (39%), leading to potential

false negatives. Second, read coverage is also uneven within a transcript, as transcripts

produced by droplet-based scRNA-seq remain incomplete on the 5’ end due to intra-priming

from intronic polyA-rich regions and on the 3’ end due to incomplete cDNA production (Nam

et al. 2002; Hsu et al. 2022; Dondi et al. 2023; Verwilt et al. 2023). Third, RNA-seq is

inherently limited to detecting only expressed SNVs and fusions. Nevertheless, as described

above, LongSom detected a large fraction of variants in intronic or even intergenic regions.

Last, similar to the mitochondrial reads contamination we observed, droplet-based

scRNA-seq is sensitive to the encapsulation and subsequent sequencing of ambient RNA.

This is especially true in cancer, where RNA from dead cancer cells is encapsulated with

non-cancer cells, leading to false negative calls.

The performance of LongSom is dependent on a high sequencing quality (>Q20) and it has

only been tested with PacBio data so far. Nanopore recently greatly improved its read quality

and reached the Q20 threshold with chemistry R.10.4 (Ni et al. 2023), and LongSom will

need to be tested on cancer biopsy scRNA-seq datasets generated with this technology.
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In summary, LR scRNA-seq provides a unique snapshot of the cellular mechanisms by

capturing multiple genomic and transcriptomic readouts from the same cell. With decreasing

costs and increasing data size, we envision that LR scRNA-seq will become more common,

potentially facilitating a better understanding of the processes underlying cancer treatment

resistance. LongSom can be a valuable first step in guiding these analyses.

Methods

scRNA expression analysis

The raw sequencing data from HGSOC samples was retrieved from the European

Genome-phenome Archive (EGA) with the accession number EGAS00001006807.

Marker gene expression-based annotation

Cell annotation was retrieved from

https://github.com/cbg-ethz/scIsoPrep/tree/master/bc_to_celltype (Dondi et al. 2023). We

used “HGSOC” labels as cancer cells, and “Mesothelial.cells”, “Fibroblast”, “T.NK.cells”,

“B.cells”, “Myeloid.cells”, “Endothelial.cells” labels as non-cancer cells.

Clustering and visualization

Similar cells were grouped using Seurat FindClusters (Hao et al. 2024), and clusters with a

majority (>90%) of non-cancer cells were grouped together as “non-cancer”. The results of

the clustering and cell typing are visualized in a low-dimensional representation using

Uniform Manifold Approximation and Projection (UMAP).

Differential gene expression analysis

Differential expression was computed using Seurat FindMarkers (Hao et al. 2024), which

uses a Wilcoxon test, corrected for multiple testing using the Bonferroni correction. A
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threshold of corrected P-value <0.01 and abs(log2(fold change))>1 was used for

significance.

Differential isoform usage analysis

Isoform classification and quantification were performed using scIsoPrep. Differential isoform

testing was performed using a χ2 test as previously described in Scisorseqr (Joglekar et al.

2021). Differentially used isoforms were visualized using ScisorWiz (Stein et al. 2022).

Somatic variants calling in LR scRNA-seq data with LongSom

To call somatic variants in LR scRNA-seq, we developed LongSom, a workflow implemented

in python3 using Snakemake (Köster and Rahmann 2012) and available at

https://github.com/cbg-ethz/LongSom. LongSom is designed to be run on a

high-performance cluster. The HGSOC dataset was analyzed using 16 CPUs for a total of

64Gb memory for 3 hours.

Preprocessing

PacBio long reads with minimal quality Q20 were de-concatenated, adapters were trimmed,

demultiplexed, polyA tails were trimmed and finally, UMIs were deduplicated using scIsoPrep

(https://github.com/cbg-ethz/scIsoPrep/tree/master) as described in (Dondi et al. 2023).

Reads were mapped to the hg38 genome using minimap2 (Li 2018) with options -t 30 -ax

splice -uf --secondary=no -C5.

Error rates modeling

To distinguish true somatic SNVs from technical artifacts such as sequencing errors,

mapping errors, or ambient RNA captured during cell encapsulation, LongSom models the

background error rate using a beta-binomial distribution as described in (Muyas et al. 2024).

Specifically, non-reference allele counts at homozygous reference sites are modeled using a

binomial distribution with parameter P (error rate), which is a random variable that follows a
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beta distribution with parameters α and β, inferred using base count information from

500,000 sites in the genome randomly selected from patient P1 and P3 normal samples.

Next, for each candidate loci, the beta-binomial distribution is used to test whether the

non-reference allele counts are significantly higher than expected based on the error rate

computed.

Panel of normals

To discard positions affected by recurrent droplet-based scRNA-seq technical artifacts,

LongSom uses a short-read PoN derived from (Muyas et al. 2024)). To also remove

technical artifacts specific to LR-seq, we built an LR PoN using the two normal samples

available from P1 and P3. The long-read PoN includes all sites with non-reference allele

counts significantly higher than the background error rate modeled with the beta-binomial

distribution in any of the normal samples provided. Matched samples were not included in

the LR PoN during analysis: for P1, we only used the P3 normal sample and vice-versa.

Cell-type re-annotation

To re-annotate cells, LongSom first identifies high-confidence cancer variants (HCCVs:,

SNVs, mtSNVs and fusions). Candidate SNVs are identified using SComatic with default

parameters except --min_mq 60. Then LongSom performes a series of eight filters: (1) loci

with less than 20 reads coverage in aggregated cancer cells or aggregated non-cancer cells

are filtered. (2) Longsom tests if, when ignoring the reads harboring candidate allele

mutation reads, other non-reference allele counts at the locus are significantly higher than

expected given the background error rate (beta-binomial test, significance threshold 0.05)..

Loci (3) within homopolymers, (4) present in the gnomAD database (Chen et al. 2024) with a

frequency of at least 1% of the total population, (5) present in RNA-editing databases (Tan et

al. 2017, Kiran et al. 2012, Picardi et al. 2017), and (6) present in LR or SR PoN were

filtered. (7) The SNVs where , and (8) are filtered, with𝑉𝐴𝐹
𝑁𝑜𝑛𝐶𝑎𝑛𝑐𝑒𝑟

 <  0. 2  ∆𝑀𝐶𝐹 >  0. 4

defined as follows: where is the∆𝑀𝐶𝐹 ∆𝑀𝐶𝐹 =  𝑀𝐶𝐹
𝐶𝑎𝑛𝑐𝑒𝑟

 −  𝑀𝐶𝐹
𝑁𝑜𝑛𝐶𝑎𝑛𝑐𝑒𝑟

 𝑀𝐶𝐹
(𝑁𝑜𝑛)𝐶𝑎𝑛𝑐𝑒𝑟
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fraction of mutated (non-)cancer cells, including only cells with minimum coverage of 1 at the

position. Finally, (9) adjacent SNVs mapping within a 10,000 bp distance are filtered. SNVs

passing all 8 filters are considered HCCVs. Forcing low ensures that the𝑉𝐴𝐹
𝑁𝑜𝑛𝐶𝑎𝑛𝑐𝑒𝑟

candidate mutation is not a germline polymorphism or resulting from a loss of heterozygosity,

while allowing enables us to detect misannotated non-cancer cells. For𝑉𝐴𝐹
𝑁𝑜𝑛𝐶𝑎𝑛𝑐𝑒𝑟

> 0

samples with high levels of cross-contamination between cancer and non-cancer cells,

higher threshold can be used.𝑉𝐴𝐹
𝑁𝑜𝑛𝐶𝑎𝑛𝑐𝑒𝑟

mtSNVs are considered HCCVs if they pass all SNV filters except (9) and (6). Instead, only

the LR PoN is used. Fusions with a and were𝑀𝐶𝐹
𝐶𝑎𝑛𝑐𝑒𝑟

> 0. 05 𝑀𝐶𝐹
𝑁𝑜𝑛𝐶𝑎𝑛𝑐𝑒𝑟

< 0. 01

selected as HCCVs.

Cells with less than 3 HCCV covered were filtered. Cells with at least 25% of covered

HCCVs mutated were reannotated as cancer, while the others were reannotated as

non-cancer.

Somatic nuclear SNV identification

Candidate SNVs are identified using a modified version of SComatic (available at

https://github.com/cbg-ethz/LongSom/tree/main/SComatic) with default parameters except

--min_mq 60. LongSom then applies a set of 10 filters to identify somatic mutations, divided

in three categories: coverage, noise, and germline filters. (1) loci with less than 5 reads

coverage in aggregated cancer cells or aggregated non-cancer cells are filtered. (2) Loci

with less than 3 alternative allele reads in at least 2 cancer cells are filtered. Then, LongSom

applies filters intended to remove noise: (3) candidate somatic SNVs are distinguished from

background noise and artifacts using a beta-binomial test parameterized using normal

samples (Muyas et al. 2024), and loci with a non-significant test (threshold 0.001) in cancer

cells were filtered as noise. (4) Longsom tests if, when ignoring the reads harboring

candidate allele mutation reads, other non-reference allele counts at the locus are
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significantly higher than expected given the background error rate (beta-binomial test,

significance threshold 0.05). (5) Mutations mapping within 4 bp or more of mononucleotide

tracts (homopolymers) are filtered. (6) SNV loci present in RNA-editing databases (Tan et al.

2017, Kiran et al. 2012, Picardi et al. 2017) are filtered. (7) SNV loci present in either SR or

LR panels of normals (PoN) are filtered. Finally, LongSom applies filters targeting germline

variants: (8) Loci with a significant beta-binomial test in non-cancer cells (threshold 0.05)

were filtered. Here, LongSom uses a stricter threshold than the original SComatic (0.001), in

order to filter germline variants more efficiently. (9) SNV loci present in the gnomAD

database (Chen et al. 2024) with a frequency of at least 1% of the total population were

filtered. (10) Finally, adjacent SNV loci within a 10,000 bp distance are filtered, as these are

likely misalignment artifacts in low-complexity regions or caused by allele-specific expression

in cancer cells. This last filter was not part of the original SComatic.

Somatic mtSNV calling

Due to the observed levels of cancer mitochondrial reads in non-cancer, we use specific

rules to call somatic mtSNVs: (1) Loci with less than 100 reads coverage in aggregated

cancer cells or aggregated non-cancer cells are filtered. (2) Loci present in the gnomAD

database (Chen et al. 2024) with a frequency of at least 1% of the total population are

filtered. (3) Loci where < 0.35 are filtered, with defined above. (4) Loci where∆𝑀𝐶𝐹 ∆𝑀𝐶𝐹

< 0.1 are filtered.𝑉𝐴𝐹
𝐶𝑎𝑛𝑐𝑒𝑟

Those and parameters were determined based on the contamination level𝑉𝐴𝐹 ∆𝑀𝐶𝐹

observed in the HGSOC dataset, and can be adjusted depending on the level of

mitochondrial contamination.

Somatic fusions identification

LongSom detects fusions on the single cell level using CTAT-LR-fusion v0.13.0

(​​https://github.com/TrinityCTAT/CTAT-LR-fusion/releases/tag/ctat-LR-fusion-v0.13.0) with
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standard options: -T fastq –vis (Qin et al. 2024). Fusions present in more than 5% of the

cancer cells and less than 1% of the non-cancer cells were considered as somatic.

LongSom allows fusions to appear in a low proportion of non-cancer cells as they can still

harbor fusion reads due to ambient cancer RNA contamination.

SNV annotation

SNVs were annotated using ANNOVAR (v2019Oct24) (Wang et al. 2010). An SNV was

considered clinically relevant if it completed one of these conditions: it was flagged as

pathogenic by ClinVar (Landrum et al. 2014), P-value was <0.05, the VEST (Carter et al.

2013) P-value was <0.05, the DANN (Quang et al. 2015) rankscore was <0.05, or FATHMM

(Rogers et al. 2018) flagged it as deleterious.

Single-cell genotyping

LongSom computes the alleles observed in each unique cell for each somatic SNV called. A

cell is considered mutated at a position if the beta-binomial test is significant (with a

significance threshold of 0.01) when applied to reads supporting the alternative allele

compared to reads supporting the reference allele. For mtSNVs, to avoid false positives due

to contamination, a cell is considered mutated if , as determined from the𝑉𝐴𝐹
𝐶𝑒𝑙𝑙

> 0. 3

HGSOC data (Figure 4a,b).

Clonal detection based on SNVs and fusions

To detect subclones in cancer samples, LongSom only uses somatic SNVs covered in at

least five cells, and fusions present in at least 3 cells, and then filters cells with less than

three SNVs or fusions. Cells are then clustered using Bayesian non-parametric clustering

(BnpC) (Borgsmüller et al. 2020), with arguments: cores (-n) 16, MCMC steps (--steps)

1000, alpha value of the Beta function used as prior for the concentration parameter of the

Chinese Restaurant Process (--DPa_prior) [1,1], probability of updating the Chinese
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Restaurant Process concentration parameter (--conc_update_prob) 0, Beta(a, b) values of

the Beta function used as parameter prior (--param_prior) [1,1].

Clonal detection based on CNAs

LongSom first computes cell-gene matrices using featureCounts from Subread v2.0.6

(https://subread.sourceforge.net/) with parameters -L, using hg38 and gencode v36 as

reference. It then uses those matrices as input for inferCNV to detect CNA subclones

(https://github.com/broadinstitute/infercnv). For running CreateInfercnvObject, re-annotated

non-cancer cells are used as a reference, and the parameter

min_max_counts_per_cell=c(1e3,1e7) is used. For running inferCNV, the parameters

cutoff=0.1 and leiden_resolution=0.01 are used. The CNA profiles displayed in this study are

the ones obtained from the Hidden Markov Model learned by inferCNV.

SNV calling using SComatic

As a comparison for LongSom, we called somatic SNVs in LR scRNA-seq using SComatic

(Muyas et al. 2024). For this we used the marker-based cell types, and default parameters

except the mapping quality (--min_mq) of 60 (maximum value for minimap2), the alpha and

beta parameters computed for LR data (--alpha1 0.21, --beta1 104.95, --alpha2 0.25, --beta2

162.04), and a minimum distance (--min_distance) between loci of 0. We instead applied the

same 10,000bp distance within “PASS” loci, as we did for LongSom.

Empty droplets analysis

To estimate the mtSNV VAF in empty droplets, we first retrieved the empty droplets barcodes

in each samples from the 10X Genomics CellRanger analysis. Then, we extracted the reads

attached to those barcodes from the original bam file, and computed the VAF of chrM loci in

each empty droplet barcode using pysam (version 0.21.0) pileup.
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scWGS
Cell suspensions were loaded and processed using the 10x Genomics Chromium platform

with the single-cell CNV kit on the 10x Genomics Chromium Single Cell Controller (10x

Genomics, cat. no. PN-120263) according to the manufacturer’s instructions. Paired-end

sequencing was performed on the Illumina NovaSeq platform (100 cycles, 380 pm loading

concentration with 1% addition of PhiX) at 0.1x depth per cell.

Preprocessing and clonal reconstruction

Our scDNA-seq data analysis pipeline relied on CellRanger

(https://www.10xgenomics.com/products/single-cell-cnv) for read mapping, quantification,

binning, and GC and mappability correction. After filtering, we found 282 (P1), 182 (P2) and

290 (P3) cells per sample. The bin size used was 20kb, leading to very low coverage per

bin. We further processed the resulting counts per bin to remove outlier bins with more than

3 times the median counts, and also outlier cells with highly imbalanced read count

distribution as assessed by the Gini index. We used SCICoNE (Kuipers et al. 2020) to

further segment the data into regions of at least 100 bins, resulting in CNAs that spanned at

least 2Mb. We obtained subclonal copy number trees and assigned cells to the resulting

CNA profiles. Subclones were considered as cancer subclones if they had an aneuploid

CNA profile, and as non-cancer subclones if they had a fully diploid CNA profile.

Variant allele calling in scWGS subclones

Cancer subclones were pooled together as well as non-cancer subclones due to low

coverage (<10x per subclone). To determine if a loci was mutated in scWGS clones, we

performed a beta binomial test parametrized on 500,000 sites randomly selected from

aneuploid cells from all samples (significance threshold 0.01). We only considered loci called

in scRNA-seq data for scWGS analysis if they fulfilled one of those two conditions: there was

at least one mutated read in the locus or a least 17 reads coverage. Loci called in
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scRNA-seq data were considered as somatic if they were called in cancer clones only, and

as germline if they were called in non-cancer clones.

SNV validation in scWGS subclones

Cancer subclones were pooled together as well as non-cancer subclones due to low

coverage (<10x coverage per subclone). To determine if a loci was mutated in scWGS

clones, we performed a beta binomial test parametrized on 500,000 sites randomly selected

from aneuploid cells from all samples (significance threshold 0.01). We only considered loci

called in scRNA-seq data for scWGS analysis if they fulfilled one of two conditions: there

was at least one mutated read in the locus or at least 17 reads coverage. Mutations called in

scRNA-seq data were considered as somatic if they were called in cancer clones only, and

as germline if they were called in non-cancer clones.

De novo scWGS SNV calling

To call SNVs de novo in scWGS, we considered sites with at least 5 reads in both cancer

and non-cancer cells in scRNA-seq, and with at least 5 reads in both aneuploid and diploid

scWGS pooled clones (8-33M sites). Loci with at least 3 mutated reads in 2 aneuploid cells

were considered. Loci with a beta-binomial test P < 0.001 in aneuploid clones and P>0.05 in

diploid clones are considered somatic in scWGS. Sensitivity, precision and F1 performance

statistics were computed as described in Muyas et al. 2024.

Panel DNA sequencing

Panel sequencing was performed using the FoundationOne®CDx assay (FMI, Roche,

Switzerland) (Milbury et al. 2022). DNA was extracted from FFPE tissue blocks with at least

20% tumor content with the Maxwell 16 FFPE Plus LEV DNA Purification Kit (AS1135,

Promega, Dübendorf, Switzerland). Samples were assayed by adaptor ligation hybrid
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capture, performed for all coding exons of the FoundationOne panel. Sequencing was

performed using the Illumina HiSeq instrument to a median exon coverage ≥500x.

Data availability

All raw and processed sequencing data generated in this study have been submitted to the

European Genome-phenome Archive (EGA, https://ega-archive.org/) under accession

number EGASXXXXXXXXX.

Software availability

LongSom is available at https://github.com/cbg-ethz/LongSom. All scripts necessary to

reproduce this study are available at

https://github.com/cbg-ethz/LongSom/tree/paper_version.
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