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ABSTRACT Multi-environment trials (METs) are crucial for identifying varieties that perform well across a target population
of environments (TPE). However, METs are typically too small to sufficiently represent all relevant environment-types, and
face challenges from changing environment-types due to climate change. Statistical methods that enable prediction of variety
performance for new environments beyond the METs are needed. We recently developed MegaLMM, a statistical model
that can leverage hundreds of trials to significantly improve genetic value prediction accuracy within METs. Here, we extend
MegaLMM to enable genomic prediction in new environments by learning regressions of latent factor loadings on Environmental
Covariates (ECs) across trials. We evaluated the extended MegaLMM using the maize Genome-To-Fields dataset, consisting of
4402 varieties cultivated in 195 trials with 87.1% of phenotypic values missing, and demonstrated its high accuracy in genomic
prediction under various breeding scenarios. Furthermore, we showcased MegaLMM’s superiority over univariate GBLUP in
predicting trait performance of experimental genotypes in new environments. Finally, we explored the use of higher-dimensional
quantitative ECs and discussed when and how detailed environmental data can be leveraged for genomic prediction from METs.
We propose that MegaLMM can be applied to plant breeding of diverse crops and different fields of genetics where large-scale
linear mixed models are utilized.

1

2

3

4

5

6

7

8

9

10

11

12

13

KEYWORDS genotype-by-environment interaction, multivariate linear mixed model, factor analytic model, multi-environment trials, environmental covariates14

INTRODUCTION15

Genotype-by-environment interactions are one of the most difficult challenges faced by plant breeders.16

Good varieties must maintain performance across a wide range of environments. However, testing17

every candidate variety in every possible condition within the target population of environments18

(TPE) is not feasible. Instead, breeders evaluate candidate genotypes in multi-environment trials19

(METs) covering a moderate number of locations over multiple years. METs can consume a large20

fraction of a breeding program’s budget. Therefore, making optimal use of data from METs for21

breeding decisions is critical to the success of plant breeding programs.22
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Many statistical approaches for modeling data from METs have been developed (as reviewed by23

Crossa et al. (2022)). Historically, most models have taken one of two major approaches: reaction24

norm models represent the change in the performance across trials as a function of measurable25

characteristics of those trials, called Environmental Covariates (ECs), while correlated trait models26

represent the correlation in performances across genotypes between pairs of trials. Examples of27

reaction norm models include factorial regression (Denis 1988; Piepho et al. 1998), the GBLUP-28

based reaction norm model (Jarquín et al. 2014; Ly et al. 2018), the Critical Environmental Regressor29

through Informed Search-Joint Genomic Regression Analysis (CERIS-JGRA) model (Li et al. 2021),30

and models based on Crop Growth Models (e.g. Technow et al. 2015). Examples of correlated trait31

models include the Additive Main Effect and Multiplicative Interaction (AMMI) approach (Gollob32

1968; Zobel et al. 1988) and latent factor models (Smith et al. 2001; Cullis et al. 2014). In their most33

general forms, reaction norm models and correlated traits models can be mathematically equivalent,34

and several of these models combine aspects of both approaches. However, each approach has its35

own computational and statistical advantages. One advantage of the correlated traits approach is36

that it has the potential to completely characterize the correlation between any pair of trials, while37

reaction norm models can only learn the components of the correlation that are captured by the38

ECs utilized to parameterize the reaction norm. Therefore, correlated traits models are expected to39

be more accurate for the specific trials in the METs. On the other hand, reaction norm models can40

be used to make predictions in un-measured environments while correlated traits models cannot.41

Historically, correlated traits models have been less computationally tractable because the number42

of correlations that must be learned grows quadratically with the number of trials. We recently43

developed MegaLMM, a computationally and statistically efficient implementation of a multivariate44

linear mixed model, and demonstrated that it could accurately perform genomic prediction in METs45

with more than 100 trials, improving predictive ability in nearly every trial relative to univariate46

approaches (Runcie et al. 2021). MegaLMM is a correlated traits model built on a factor analytic47

(FA) structure, however it lacks of a prediction mechanism to extrapolate genomic values to new48

environments with unobserved environmental conditions. Extending MegaLMM to make use of ECs49

would allow it to encompass the benefits of both the correlated traits and reaction norm approaches50

to modeling data from METs.51

The quality of environmental covariates limits the potential of any model to predict genetic values in52

new environments. Several challenges in developing environmental covariates include: i) there are53
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many environmental variables that impact plant growth and development, including temperature,54

water availability, soil properties, disease pressure, etc, ii) many of these variables are dynamic,55

meaning that they change during a growing season on both short and long time scales, and interact56

with plants differently depending on the growth stages of each plant, iii) environmental factors57

are collinear and may interact with one another, making statistically identifying causal drivers58

challenging, iv) some important variables are challenging to measure or are unknown, and v)59

environmental variables from the growing season are unknown at the time of planting or for future60

unobserved locations. Because of the high dimensionality of potential ECs, statistical models that61

use ECs must operate robustly in high-dimensional spaces. There are three common strategies for62

dealing with high-dimensional ECs: 1) Variable selection. As an example, CERIS-JGRA (Li et al. 2021)63

searches a large set of candidate ECs for the single most useful one and then uses only that one for64

prediction. 2) Non-linear machine learning such as kernel regression or Deep Learning. The models65

of Jarquín et al. (2014) and Costa-Neto et al. (2021) use kernel methods to represent the covariance of66

environments based on EC distances and performing regressions using these distances. Washburn67

et al. (2021) and Kick et al. (2023) utilized deep learning techniques to prioritize ECs with poential68

agricultural importantce. 3) Crop growth models. Heslot et al. (2014) and Technow et al. (2015) use69

biophysical-based models to predict the impact of EC time-series’s across multiple ECs on crop70

physiology and development. Heslot et al. (2014) and Rincent et al. (2019) used crop growth models71

as a form of non-linear dimension reduction to extract a more physiologically relevant set of ECs to72

use in MET models.73

Measuring the success of genotype-environment interaction models from METs is complicated74

because such models can be used for multiple different tasks in a breeding program. Breeders75

evaluate samples of genotypes from a reference population of genotypes (RPG) in samples of76

environments from a TPE (Cooper et al. 2021). Genotypes observed in at least one trial of a MET77

are commonly called "old genotypes" while the remaining genotypes in the RPG are called "new78

genotypes". The trials that compose a MET are called "old environments", while other possible79

growing environments in the TPE are called "new environments". Four distinct applications are80

commonly distinguished: 1) Imputing performances of genotypes in the MET in trials where some81

genotypes were not grown, for example if a MET is sparse (Burgueño et al. 2012); 2) Predicting the82

relative performances of new genotypes in each of the environmental conditions represented by trials83

in the MET; 3) Predicting the relative performances of a set of genotypes in new environments, based84
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on their performances in a MET; and 4) Predicting the relative performance of the new genotypes85

in new environments. The first two applications are statistically easier than the last two, while the86

fourth is the most difficult because it relies on predicting characteristics of previously unobserved87

genotypes and environments. MET models should be evaluated in each of these contexts because88

performance in one context does not guarantee adequate performance in another. The most common89

computational strategy for evaluating model accuracy is cross validation. Cross validation strategies90

that simulate each of these applications are termed CV2, CV1, CV3, and CV0, respectively (Burgueño91

et al. 2012; Costa-Neto et al. 2021).92

Here, we describe an extension to MegaLMM that facilitates the use of ECs to extend genomic93

predictions to new environments. Our primary objective is to describe the statistical framework94

of the extended MegaLMM model and evaluate its efficacy in various breeding scenarios. We95

use a maize hybrid dataset from the Genomes-To-Field (G2F) Initiative (AlKhalifah et al. 2018)96

to demonstrate that MegaLMM can achieve high accuracy in genomic prediction under various97

breeding conditions. We show that MegaLMM surpassed univariate GBLUP in predicting hybrid98

performance in new environments partly through its effective use of ECs. Finally, we explore the use99

of higher-dimensional quantitative ECs and discuss when and how detailed environmental data can100

be leveraged for genomic prediction from METs.101

RESULTS102

Method Overview103

We developed the original MegaLMM model to provide a robust framework for modeling the corre-104

lations of genetic values of experimental genotypes across multiple environments. MegaLMM links105

genetic predictors to phenotypic data using a hierarchical latent factor model that is computationally106

efficient, yet highly flexible to accommodate different genetic architectures across traits (Runcie et al.107

2021). MegaLMM decomposes a high-dimensional, but potentially sparsely populated phenotypic108

matrix (Y) into a low-rank factor score matrix (F), a low-rank loading matrix (Λ), and a residual matrix109

(E) (Figure 1A). Together, the factor matrix and the loading matrix explain the genetic covariation110

among environments, while the residual matrix accounts for unexplained residual genetic variation,111

microenvironmental variation, and measurement error unique to each environment. Learning latent112

factor scores for each individual in the training set allows MegaLMM to predict genetic values of113
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each observed genotype in environments where that genotype was not grown (but other genotypes114

were, i.e. the CV2 context ) (Figure 1B). Latent regressions of each vector of factors scores (columns115

of F), and each residual vector (columns of E) on genetic data from each observed genotype allows116

MegaLMM to predict genetic values of new genotypes (without any phenotype data in Y, i.e. the117

CV1 context) in each environment by predicting factor scores Fn and residual values En for each118

new genotype based on inputs of genetic data (Figure 1B). However, the original MegaLMM had119

no mechanism to link values in Λ to external data representing properties of each environment.120

Therefore, MegaLMM had no mechanism to predict genetic or phenotype values of either observed121

or unobserved genotypes in new environments.122
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Figure 1. MegaLMM statistical models and their applications for predicting trait performance in
experimental genotypes across observed and new environments.
(A) Original MegaLMM model architecture. (B) Approach for predicting genetic values of old or
new genotypes in old environments using the original MegaLMM. (C) Model architecture of the
new MegaLMM model. (D) Approach for predicting genetic values of old or new genotypes in
new environments using the new MegaLMM. Y: phenotypic matrix consisting of phenotypic values
measured on n genotypes (rows) in t environments (columns). F: factor matrix of old genotypes. Fn:
predicted factor matrix of new genotypes. Λ: factor loading matrix for the old environments. Λn:
predicted factor loading matrix for new environments. K: additive genomic relationship among old
genotypes. E: residual trait matrix for observed genotypes in observed environments after accounting
for the latent factors. Aon: predicted additive genetic values of old genotypes in new environments;
Gon: predicted total genetic values of old genotypes in new environments. Ano: predicted additive
genetic values of new genotypes in old environments. Ann: predicted additive genetic values of new
genotypes in new environments. Goo: predicted genetic values of old genotypes in old environments.
GTs= Genotypes, Envs=Environments, EC=Environment Covariates.

Here, we extend MegaLMM to accept environmental data as predictors of the covariances of genetic123

values across environments. The extended model keeps all features of the original model, but adds124

functionality to express the rows of Λ as regressions on sets of ECs (Figure 1C). We can then predict125

genetic values of either old or new genotypes in any new environment that can be characterized by126

these ECs (Figure 1D). As an intuitive justification for this approach, we consider the variation in127
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trait values in a single environment yj to be caused by a set of latent characteristics f1 . . . fk (such as128

flowering time, growth rate, and drought tolerance). In a different environment, many of these same129

latent characteristics will still be important but their relative effects on overall performance may vary.130

Each row of Λ represents the relative importance of a single latent characteristic across environments.131

For example, if growth rate is similarly important in all environments, values in the corresponding132

row of Λ will be similar. If earlier flowering is beneficial in some environments but detrimental in133

others, the corresponding row of Λ will have some positive and some negative values. Our overall134

hypothesis is that the variation in these importance weights across environments will be predictable135

by known characteristics of those environments, including geography, climate, and management.136

Details of this latent regressions approach are provided in the Methods.137

MegaLMM greatly improves genomic predictions of agronomic traits within experimental trials138

We used the G2F maize hybrid dataset (Lima et al. 2023), covering the years 2014 to 2021, to evaluate139

the genomic predictive ability of MegaLMM in its original form and with the enhancements described140

above. The G2F maize hybrids are crosses between a large set of inbred lines (referred to as P1) and a141

small set of tester lines (referred to as Tester). We formatted a trait matrix Y with P1s as rows and142

combinations of Tester, location, and year as columns, and filled each value with a least-squares mean143

estimate of the corresponding hybrid trait values. We subsetted the data to include columns with144

at least 50 observed trait values, which resulted in data from a total of 12 Testers. The replacement145

of P1s every two years resulted in a very sparse trait matrix with 87.1% missing values for Grain146

Yield (Figure 2A). Below, we refer to individual columns of this trait matrix as an “experiment”,147

signifying trait values from a set of P1s crossed to a single tester and evaluated in a specific location-148

year combination. In total, our dataset was composed of 1702 P1s, 12 testers, 4402 hybrids, 302149

experiments, and 195 trials for Grain Yield (Figure 2A).150

We used 5-fold cross-validation to measure the genomic predictive ability of the original MegaLMM151

model for each of the three agronomic traits separately (Silk Days, Plant Height, and Grain Yield)152

when trained on data from all 302 experiments and evaluated using the 20% of trait values withheld153

as validation data in each individual experiment. For sparse testing applications (predicting trait154

values for hybrids observed in some experiments but not others (CV2), estimated predictive abilities155

averaged r = 0.40 − 0.57 across the three traits based on a meta-analysis accounting for measurement156

error (Figure 2B), an average improvement of r = 0.12 − 0.19 across traits relative to predictions157
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Figure 2. Data structure and predictive ability of the original MegaLMM model applied to the
Genomes to Fields (G2F) maize hybrid dataset.
(A) The data structure of the reshaped Genomes to Fields (G2F) phenotypic matrix, with inbred
parent 1 (P1) in rows and experiments (combinations of location, year, and tester) in columns. Each
cell in the matrix is filled with the least squares mean estimate of yield for a single hybrid genotype
in a single experiment, with different colors indicating yield estimates from different years. (B)
Boxplots of genomic prediction for CV1 and CV2 using the original MegaLMM model. Each point
within a boxplot represents predictive ability for a specific experiment. The mean predictive ability
for each trait within each scenario is shown below the corresponding boxplot. (C) Scatterplot of
MegaLMM versus GBLUP predictive abilities for CV2 using the original MegaLMM model for Grain
Yield. Each point represents a specific experiment. (D) Line plots showing magnitudes of squared
factor loadings (Λ2). Each line represents the Λ2 per factor distribution in one MegaLMM chain for a
specific agronomic trait. Different colors indicate distinct traits. We specified that MegaLMM should
estimate 50 factors per dataset and ran 10 replicate MCMC chains per dataset. (E) Distribution of
(−log10(p − values)) (y-axis) of regressions of factor loadings (x-axis) on latitude, longitude, state,
and tester. (F) Boxplots of factor loadings for the first factor grouped by tester.
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based on univariate GBLUP models trained on each experiment individually (Supplemental Figure158

S1). For trait value predictions of new hybrids with no observations in the training data (CV1),159

estimated average predictive abilities ranged from r = 0.28 − 0.41 for the three traits (Figure 2B), an160

average improvement of r = 0.01 − 0.03 over the univariate GBLUP models (Supplemental Figure161

S1). In almost every trial, estimated accuracies were higher for sparse testing applications (CV2)162

(Figure 2C). These results parallel our earlier results applied to the first four years of the G2F dataset163

(Runcie et al. 2021).164

To investigate why MegaLMM improved over univariate approaches despite using the same genetic165

predictors, we extracted posterior means of the latent factor score (F̂) and factor loadings (Λ̂) matrices.166

While these parameters are not always robustly identified in factor models like MegaLMM, the167

priors we use for elements of Λ tend to make specific factor orientations more reproducible. We168

allowed MegaLMM to learn 50 factors per dataset, but specified through our prior that the relative169

importance of factors should decrease rapidly across factor ranks. This effectively “turns off” many170

factors that are not needed when all loadings are shrunk close to zero. Applied to these three datasets,171

MegaLMM learned ∼ 13 − 20 factors per trait, each with at least one posterior mean importance172

weight (value of Λ) that explained > 1% of the trait variance. Distributions of weights across factors173

from 10 randomly chosen MegaLMM chains are shown in Figure 2D.174

To explore whether candidate ECs such as the identity of the Tester or the geographic location, could175

serve as predictors of the importance weights for these factors, we regressed the posterior mean176

values of each row of Λ on latitude, longitude, state, or Tester. Among the 50 factors derived from the177

Grain Yield data in a single MegaLMM chain, four weight vectors were significantly associated with178

state and six were significantly associated with testers, based on Bonferroni-adjusted P-values < 0.05179

(Figure 2E). Some factors displayed moderate correlations with either latitude or longitude; however,180

these correlations were not deemed statistically significant based on Bonferroni-adjusted P-values181

< 0.05 (Figure 2E-F). Therefore, factor loading weights are somewhat predictable based on known182

features of each trial and a hierarchical model including these ECs as features may be successful.183
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Environmental Covariates enable MegaLMM to make accurate Genomic Prediction in new environ-184

ments185

0.221 0.423 0.4380.5580.5650.080 0.228 0.2640.363 0.5630.5720.356
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0.4

0.6
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NewTrial NewState NewTester NewGenoNewYear

Figure 3. The extended MegaLMM model using ECs has moderate predictive abilities in new
environments across four prediction scenarios for three agronomic traits (Silk Days, Plant Height,
and Grain Yield).
Each bar represents the estimated mean predictive ability of the extended MegaLMM model using
State (“S") and Tester (“T") IDs as predictors (i.e “S+T::S+T" model) across individual experiments in
a specific prediction scenario. The mean prediction accuracies for each trait within each scenario are
shown below the corresponding barplot. Colors indicate prediction scenario. Error bars represent
95% confidence intervals of the mean, estimated by meta-analysis accounting for the size of each
individual experiment. Note that EC “S" has no impact on factor loading predictions in the NewState
scenario, and “T" has no impact on loading predictions in either NewTester or NewGenoNewYear
scenarios.

We extended MegaLMM to additionally take as inputs ECs for any number of environmental features186

and use these as priors for factor loadings. We designed four Cross-Validation experiments to evaluate187

whether ECs could enable accurate genetic values predictions in new experiments in increasingly188

challenging prediction scenarios: 1) NewTrial: Can we predict genetic values in new trials, e.g. future189

trials that re-use previously observed testing locations and hybrids? 2) NewState: Can we predict190

genetic values in trials (of previously observed hybrids) grown in new geographic locations not near191

any existing trials e.g. in a new state? 3) NewTester: Can we predict genetic values of new hybrids192

(created with previously used P1s), e.g. new experiments in the same trials? 4) NewGenoNewYear: Can193
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we predict the genetic values of previously unobserved hybrids (derived from neither same P1 nor194

same Tester) in new years. This scenario is motivated by the introduction of new inbred lines every195

two years, as depicted in Figure 2A.196

Since in each case, the target experiments shared either geographic proximity (same state), or197

genetic similarity (same Tester) with trials in the training data, we first tested whether the extended198

MegaLMM model could improve genetic value predictions in these contexts using simple categorical199

ECs – the identity of the state and the identity of the Tester used in each experiment. We call this200

model S+T::S+T, signifying that the predictors S (State) and T (Tester) were used both in training201

(before the “::”) and as feature values for prediction (after the “::”).202

As expected, genomic predictive abilities of MegaLMM declined across the four prediction scenarios203

for Grain Yield (Figure 3). Surprisingly, for Plant Height and Silk Days, the genomic predictive204

abilities of NewTrial were slightly lower than those of NewState, although the differences were not205

significant. Across the three agronomic traits, average genomic predictive abilities using the ECs206

ranged from 0.363 to 0.565 for NewTrial, 0.356 to 0.572 for NewState, and 0.221 to 0.438 for NewTester207

(Figure 3). The NewGenoNewYear scenario exhibited the lowest predictive ability, ranging from 0.080208

to 0.264. We note that direct comparisons among the four scenarios are not entirely equitable due209

to subtle differences in the composition of training and testing sets associated with each scenario.210

Nevertheless, these comparisons offer an initial insight into the levels of predictive ability in each211

prediction scenarios.212

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2024.03.06.583749doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.06.583749
http://creativecommons.org/licenses/by-nc-nd/4.0/


** ns** ** ** ns** ** ** **** **

0.083 −0.0030.063 0.058 0.096 −0.0030.075 0.074 0.111 0.0160.071 0.071
0.00

0.04

0.08

0.12

Grain Yield Plant Height Silk Days

r M
eg

aL
M

M
−

r G
B

LU
P

NewTrial

NewState

NewTester

NewGenoNewYear

Figure 4. Predictive abilities of the extended MegaLMM model improve relative to univariate
GBLUP prediction across most scenarios for three agronomic traits (Silk Days, Plant Height, and
Grain Yield).
Each bar represents the mean difference in predictive ability between MegaLMM and GBLUP
in specific scenarios. Colors indicate prediction scenario. Error bars represent 95% confidence
intervals of the difference in mean predictive ability between MegaLMM and GBLUP, estimated
by meta-analysis accounting for the size of each individual experiment. Significance levels from a
meta-analysis, are indicated above each barplot and mean differences in predictive ability for each
trait within each scenarios are presented below the respective barplot.

To test if these predictive abilities were higher than could have been achieved using univariate GBLUP,213

we considered two univariate prediction strategies for the new environments: i) forming predictions214

of all candidate hybrids individually in each training experiment and then averaging predictions215

across all experiments into a single constant prediction to be applied to each new experiment, or ii)216

repeating this procedure but only for “similar” experiments, where we defined similarity as either217

experiments from the same state, or experiments using the same Tester. We ran both strategies and218

identified which produced more accurate predictions on average across all test experiments in a219

particular scenario. We used a similar procedure to select the most accurate extended MegaLMM220

model (i.e. experiment-specific or experiment-average predictions). We then compared the accuracies221

of the best MegaLMM model with the best GBLUP model for each experiment for each trait within222

each prediction scenario. Consistently, across all traits and nearly all scenarios, estimated mean223

prediction accuracies of MegaLMM were significantly higher than those of GBLUP (p-value < 0.01)224
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(Figure 4). The exceptions were for the scenario of NewGenoNewYear for Grain Yield and Plant Height,225

where there was no significant difference between MegaLMM and GBLUP.226

These results confirm that MegaLMM’s predictions remain better than univariate predictions, even227

in new environments. However, it could be that this improvement is due to MegaLMM’s ability228

to empirically learn covariances among experiments, not the additional information provided by229

the ECs. In fact, even if we run MegaLMM without ECs and use the univariate strategy of simply230

averaging predictions across all training experiments, MegaLMM’s predictions in new experiments231

are considerably more accurate than the univariate ones (O::O vs GBLUP_O::O, Figure 5). To measure232

the additional benefit of the ECs, we ran prediction models using the ECs only as a prior but233

predicting based on the experiment-average as above (S+T::O), and using the ECs both as prior234

and for prediction (S+T::S+T). Note that in some scenarios, either the S or the T predictors were235

uninformative because the test values were not present in the training experiments, and so these236

predictors were dropped.237

Across all three prediction scenarios, the S+T::O model significantly improved genomic predictive238

ability for all three agronomic traits, except for Plant Height in NewTrial and NewTester, where239

the S+T::O model’s accuracy was either identical or slightly lower than that of the O::O model240

(Figure 5A,C). These results suggest that the inclusion of S+T as a factor loading prior contributes to241

enhanced genomic prediction in new environments.242

In the prediction scenarios of NewTrial and NewState, the S+T::T model significantly improved243

genomic predictive ability compared to the S+T::O model for all three traits (Figure 5A,B), indicating244

that incorporating the tester as a predictor enhances genomic predictive ability in new environments245

in cases where the same tester was used in training experiments. However, in the NewTester scenario,246

the S+T::S model outperformed the S+T::O model for Grain Yield but not for Plant Height and Silk247

Days (Figure 5C). These findings suggest that averaging similar experiments from the same Tester can248

enhance genomic predictive ability. However, when averaging similar experiments from the same249

State, the impact on genomic predictive ability varied, with sometimes showing slight improvements,250

but other times showing slightly decreased accuracy when predicting hybrid performance in new251

environments.252
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Figure 5. Environmental Covariates improve MegaLMM’s predictions in new environments relative to
model that only use historical data, across three agronomic traits (Silk Days, Plant Height, and Grain
Yield) and in three distinct prediction scenarios: (A) NewTrial, (B) NewState, and (C) NewTester. Each
bar represents the estimated mean predictive ability of a specific model across individual trials. The mean
prediction accuracies for each trait within each scenario are shown below the corresponding barplot. Colors
indicate the prediction model. Error bars represent 95% confidence intervals of the mean, estimated by meta-
analysis accounting for the size of each individual experiment. We show results from models with increasing
complexity, starting with a univariate model, denoted GBLUP_O::O, based on GBLUP predictions obtained
from averaging prediction made in individual experiments across all training experiments without using ECs,
the original MegaLMM model that does not use ECs (O::O), a version of the extended MegaLMM model that
uses ECs as priors but bases predictions on the average of predictions from each training trial without further
using the ECs (S+T::O), and the full extended MegaLMM model that used ECs both as priors and as predictors
(S+T::S+T). EC variables are denoted “S" for State, “T" for Tester, and “O" for empty ECs. 14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2024.03.06.583749doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.06.583749
http://creativecommons.org/licenses/by-nc-nd/4.0/


Quantitative ECs can substitute of Qualitative ECs in Genomic Prediction for new environments253

The above results demonstrate that MegaLMM can successfully use ECs to improve genomic predic-254

tive ability for new environments (Figure 5). However, these models used only categorical predictors255

(state or Tester labels), which can only be used to make predictions in environments that share the256

same levels of these labels. In contrast, quantitative ECs, like temperature or precipitation, could be257

used to make predictions in any geographic location.258
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Figure 6. MegaLMM Model Comparison across three agronomic traits (Silk Days, Plant Height,
and Grain Yield) using high-dimensional Environmental Covariates: (A) NewState and (B)
NewTester. Each bar represents the estimated mean predictive ability of a specific MegaLMM
model across individual trials. The mean prediction accuracies for each trait within each scenario are
shown below the corresponding barplot. Colors indicate the prediction model. Error bars represent
95% confidence intervals of the mean, estimated by meta-analysis accounting for the size of each
individual experiment. MegaLMM models are denoted by a combination of a factor loading prior
and a factor loading predictor, separated by “::", where “S" denotes State, “T" denotes Tester, “W"
denotes Weather data, “K" denotes genomic relationship among Testers.
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To test whether MegaLMM can effectively use quantitative ECs, we repeated the above cross-259

validation experiments but substituted the categorical ECs with quantitative ones. We replaced260

the “S" ECs with scaled eigenvectors from a set of 278 weather variables (“W"), and the “T" ECs261

with the scaled eigenvectors of a genomic relationship matrix (“K") of the Testers computed from262

the same genotypic data used for the P1s. Specifically, we compared a W+T::W+T model with the263

S+T::T model in the NewState scenario and a S+K::S+K model with S+T::S model in the NewTester264

scenario. Since “S" ECs cannot contribute to predictions in the NewState scenario but “W" can, and265

since “T" cannot contribute to predictions in the NewTester scenario but “K" can, we hypothesized that266

the use of quantitative ECs (“W" and “K") would improve genomic prediction. However, only the267

S+K::S+K model significantly improved genomic predictive abilities compared to the S+T::S model in268

the NewTester scenario (Figure 6B). Other MegaLMM models with quantitative ECs showed either269

similar or slightly lower genomic predictive ability compared to their counterparts with qualitative270

ECs (Figure 6).271

Subsequently, we replaced categorical ECs with quantitative ECs in MegaLMM models for the three272

traits in both scenarios. Specifically, we substituted “K" for “T" in the W+T::W+T model to obtain the273

W+K::W+K model in the NewState scenario and substituted “W" for “S" in the S+K::S+K model to274

get the W+K::W+K model in the NewTester scenario. We found that W+K::W+K model (with only275

quantitative ECs) performed just as well as W+T::W+T (with the “T“ categorical EC) in the NewState276

scenario, and the W+K::W+K model (with only quantitative ECs) was only slightly inferior to the277

S+K::S+K model (with the “S" categorical EC) for Plant Height in the NewTester scenario (Figure 6).278

These results suggest that kinship and weather data can effectively substitute for categorical labels279

when the states or testers have been observed in the training data. This shows that MegaLMM can280

effectively use quantitative ECs, but suggests that the quality of the quantitative ECs we used in our281

analysis may have been too low to be useful in this analysis.282

DISCUSSION283

Insights into the use of Environmental Covariates for genomic prediction for new environments284

We developed an extended MegaLMM model with EC-based priors to predict genetic values in new285

environments. MegaLMM is based on a factor-analytic model, and allows users to model a large286

number of latent factors underlying variation in genetic values in each environment. The ECs help287
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the model learn the importance weights for each factor in each environment, and provide coefficients288

necessary to predict importance weights - and therefore genetic values - in new environments.289

Overall, we found the ECs significantly improved MegaLMM predictive ability in most scenarios290

relative to the performance of the MegaLMM base model (O::O, Figure 5). However, compared to291

the improvement of the MegaLMM base model over a univariate GBLUP approach (Figure 4), the292

improvement due to the incorporation of ECs was less dramatic. These results highlight several293

important points.294

First, even though neither the MegaLMM base model nor univariate GBLUP models can directly295

produce predictions of genetic values in new environments, we found that a simple post-processing296

of their predictions across the MET experiments (i.e. old environments) could result in reasonably297

accurate genetic value predictions on average in new environments. Specifically, the average pre-298

dicted genetic values across the MET experiments were correlated with observed values in most299

new environments. In some cases, but not always, we could improve predictions by clustering300

the MET experiments either by geography (State) or Tester and only averaging the genetic value301

estimates within a cluster when predicting genetic values in new experiments in the same cluster.302

This latter approach can be thought of as a non-parametric approach for using the ECs, and is303

equivalent to factorial regression (Denis 1988; Piepho et al. 1998) approaches using categorical ECs as304

dummy variables. One reason that such constant (i.e. not environment-specific) predictions can be305

successful in this dataset is that trait values are positively correlated between most environments306

(Supplemental Figure S2), diminishing the potential benefit of forming unique predictions in each307

new environment. Thus, while models do detect significant G×E in this dataset (Rogers et al. 2021;308

Lopez-Cruz et al. 2023), the magnitude of the G×E variance is not large relative to genetic main effect309

variance. G×E models necessarily have larger prediction variances because they try to make more310

specific predictions, and unless the actual G×E variance is large enough to counteract the reduced311

precision, “main effect" models will be more accurate (Weine et al. 2023). One possible reason for312

the relatively low importance of G×E in this dataset is the wide diversity among hybrids, including313

some relatively low-performing hybrids with poor trait values in most environments. If only elite314

hybrids had been used, the relative importance of G×E prediction might have been higher.315

Second, ECs are useful for learning the model’s parameters even if not used for prediction. We316

found that when we used ECs as priors during model training, the correlation between the averages317

of predicted genetic values across the MET experiments and the observed phenotypes in new318
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environments was typically higher than with the MegaLMM base model which did not use the ECs319

(Figure 5). In this case, we did not use the ECs to make predictions tailored to each new environment,320

yet still found the ECs useful. Here, the ECs may help the model learn correlations between pairs321

of trials that do not share many hybrids in common, so there is little data to learn correlations322

empirically, but which do share values of ECs. This suggests that ECs may be especially useful when323

METs are very sparse and perhaps even unconnected – containing trials without any overlapping324

hybrids. This improvement was not apparent within the MET experiments themselves (in terms of325

accuracy measured by CV2), probably because the residual genetic terms (UR) were able to make326

sufficiently accurate predictions.327

Third, successfully predicting genetic values in new environments may require both higher-quality328

ECs and many more MET experiments. While this data set is large, composing 302 experiments,329

it contains only 195 trials in different site-years to learn regressions on ECs like weather, only 37330

locations to learn regressions on ECs like geography, climate, and soil, and only 12 testers to learn331

regressions on genetic markers of each tester. Genomic prediction models (in a single environment)332

generally require hundreds of genotypes to effectively learn allele-phenotype correlations (Jannink333

et al. 2010) because genotypes are the unit of replication of alleles in these models. Since experiments334

are replicates of environmental variables in G×E models, and because the environmental drivers of335

performance are likely similarly complex to genetic drivers, hundreds of experiments are probably336

needed to adequately model G×E in new environments. Nevertheless, we showed that MegaLMM337

could successfully use high-dimensional ECs (from weather or tester genotypes) to make accurate338

predictions, at least when the new environments were closely related to existing environments (same339

states or same testers). However, more informative ECs, such as ECs derived from crop growth340

models (Heslot et al. 2014; Rincent et al. 2019) may help reduce the dimensionality burden, making341

G×E modeling more efficient.342

Comparison with other approaches for predicting genotype-environment interactions343

Compared with previous statistical models that use ECs for predictions in new environments, the344

extended MegaLMM model offers several statistical and practical advantages, including the ability345

to use high-dimensional ECs, regularization through a moderate number of latent factors, and the346

ability to fit phenotypic data from very large and very sparse METs.347

The ability to simultaneously use high-dimensional ECs for prediction should be useful when348
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multiple environmental variables simultaneously impact the variation in genetic values across a TPE.349

In the extended MegaLMM model, we use regularized regression to provide robust inference across350

high-dimensional ECs. This contrasts with the CERIS-JGRA method of Li et al. (2021) which searches351

among candidate ECs for a single EC that is best, and then bases predictions on this single EC. Also,352

while the CERIS-JGRA method selects an EC based on the ability to predict phenotype means across353

trials, the extended MegaLMM prioritizes ECs based on their usefulness for distinguishing patterns354

of covariance among trials, which is more directly applicable to breeding.355

The ability to robustly use high-dimensional ECs is not unique to the extended MegaLMM model.356

The GBLUP-based reaction norm model, as demonstrated by Jarquín et al. (2014), can also use high-357

dimensional ECs, using kernel functions to turn the EC matrices into distance matrices. Costa-Neto358

et al. (2021) also uses kernel methods for model G×E from METs. A limitation of this approach is359

that training the kernel functions themselves is computationally expensive, so these methods use360

fixed kernel functions which prevents learning weights among the ECs. Tuning parameters of the361

kernel functions is possible in these methods, but the same tuned kernels would apply to all trials.362

In contrast, the extended MegaLMM model can learn different EC weights for each latent factor,363

providing an additional level of flexibility and opportunity for statistical learning of G×E patterns.364

Much of MegaLMM’s statistical and computational efficiency comes from its latent factor model365

architecture. Many other models also use factor-analytic models for G×E prediction. For example,366

the AMMI model is a factor model (but with fixed factors, Rincent et al. (2019)), and Cullis et al.367

(2014) and Heslot et al. (2014) also proposed factor-analytic models for METs. The advantage of368

factor-analytic models is that they model correlated traits with a small number of parameters relative369

to the number of covariances among pairs of trials, providing statistical robustness, and remove the370

need to invert large covariance matrices, alleviating computational limitations. However, MegaLMM371

is unique in its ability to fit relatively large numbers of latent factors. Most prior applications of372

factor-analytic models have handled only 1-3 factors and can fail to converge if run with more factors.373

For example, Schulz-Streeck et al. (2013) found that the factor analytic structure failed to converge374

when fitting a marker-by-environment interaction model, and Rogers et al. (2021) found that models375

with more than one FA factor for environments, in combination with either additive or dominance376

relationships, failed to converge when fitting a subset of G2F data. Our analysis of the maize G2F377

dataset used 50 factors and found that 13-20 factors significantly contributed to trait performance378

prediction across experiments for three agronomic traits (Figure 2D). This suggests that more factors379
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can be beneficial for accounting for varying sources of G×E variation in large METs.380

Finally, our case study was a MET with 302 experiments and ∼87% missing values, yet MegaLMM381

was able to return predictions in ∼3 hours (with 20 CPU cores). The ability to fit such sparse data is382

an advantage over the AMMI models and other matrix-based (i.e. Y is treated as a matrix) models383

that require complete data. Also, the efficiency in fitting data with large numbers of traits makes384

MegaLMM flexible for modeling complex experimental features like management characteristics385

which can be important contributors to G×E (Cooper et al. 2021). Modeling management in addition386

to environmental drivers complicates reaction norm models because of the need to specify many387

interaction terms, making models unwieldy. In contrast, as a correlated traits model, MegaLMM388

does not explicitly require an interaction term to model G×E×M effects. Integrating management389

characteristics into the MegaLMM model involves simply expanding the columns in the multivariate390

response matrix, with columns representing combinations of environmental types and management.391

Mathematically, the process of solving the linear mixed model equations and estimating parameters392

remains unchanged.393

Insights into modeling G×E in the maize hybrid breeding system394

Contrasting with most other analyses of the G2F maize hybrid dataset (Rogers et al. 2021; Lopez-Cruz395

et al. 2023), we divided each trial into multiple separate experiments based on the identity of different396

testers used to create each hybrid, and then modeled the covariances among these experiments.397

There are both practical and statistical benefits to doing this. On the practical side, focusing on398

within-tester-family predictive ability aligns our approach with maize hybrid breeding strategies. In399

maize hybrid breeding, germplasm is organized into two major heterotic pools, and inbred lines are400

developed within these pools. The newly created inbred lines are initially evaluated and selected401

by crossing them with suitable testers from complementary heterotic pools. Subsequently, they402

are further crossed with a larger number of newly created lines from the opposite heterotic pool403

for evaluation for potential commercial use (Cooper et al. 2014). In our analysis, we placed inbred404

lines, rather than hybrids, as rows of our data matrix Y, with columns representing combinations of405

Tester and environment. Thus, our genomic predictions are best considered genetic values of inbreds406

conditional on specific Testers and environments.407

On the statistical side, modeling the covariance among hybrids from different testers allows modeling408

of Tester-inbred genotype interactions, and therefore produces more accurate within-tester-family409
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predictions when these interactions are important. Since MegaLMM scales very efficiently with410

numbers of experiments, there is little downside to breaking trials into multiple experiments, par-411

ticularly when we can include prior information through ECs to partially pool information across412

experiments when they are closely related. We found that Tester identity was the most useful EC413

among experiments (comparing results from the NewState scenario where Tester ID could be used414

for prediction in new environments, to results from the NewTest scenario where Tester ID was not415

available for prediction, Figure 3), suggesting that the ranking of inbreds did change considerably416

when crossed to different Tester. However, this result should be interpreted with caution because the417

importance of Tester ID in this dataset is partially confounded with both geographic structure among418

trials and population structure within the populations of inbreds (P1s), as discussed by Lopez-Cruz419

et al. (2023).420

In summary, we present an extended version of MegaLMM that can predict the genetic architecture421

of new traits based on trait-specific prior data. This is a significant advancement of the MegaLMM422

method, opening the possibility of many types of novel applications. We focus here on the application423

of modeling genotype-environment interactions in multi-environmental trials in plant breeding,424

where we consider each trial a new trait, and use environmental data as prior predictors of the425

patterns of genotype-environment interactions. We expect that many other applications of this426

extended MegaLMM model are possible both in plant breeding and in other fields where large linear427

mixed models can be applied.428

METHODS429

Original MegaLMM Model430

The original MegaLMM “correlated-traits" model of a MET is specified as:431

Y = XB + ZU + E (1)

where:432

Y is an n × t phenotypic matrix for a trait of interest measured on n experimental genotypes433

grown in t trials, potentially with a large percentage of missing values,434

X is an n × p incidence matrix for fixed effects such as an intercept,435
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B is a corresponding p × t matrix of fixed effects for each trial,436

Z is an n × q incidence matrix for random effects, in this case the identities of each inbred437

parent,438

U is a corresponding q × t matrix of random effects, in this case additive genetic values, for439

each trial,440

E is an n × t matrix of residuals for each genotype in each trial.441

Fitting Eq. (1) is challenging because the columns of U and E are correlated. To address this issue,442

Runcie et al. (2021) developed a new statistical framework, MegaLMM, based on a factor analytic443

model, which decomposes the correlated traits model into a two-level hierarchical model.444

In level 1, the phenotypic matrix Y is decomposed into two components:445

Y = FΛ + E (2)

where:446

F is an n × k latent factor matrix,447

Λ is a k × t loading matrix,448

E is an n × t residual matrix of residuals for each trial.449

Intuitively, k latent factors can be interpreted as k unobserved traits across each individual that are450

constant across experiments, and the factor loadings represent the relative importances of each of451

these k unobserved traits on the focal trait value in each experiments.452

In level 2, each of the k latent factors in the F matrix and each of the t residual traits in the E matrix453

are independently fitted with standard univariate linear mixed models:454

fk = XbFk + ZuFk + eFk

ej = XbRj + ZuRj + eRj

(3)

where:455

fk and ej are n × 1 vectors for the kth latent factor trait and the jth residual trait, respectively.456

X is an n × p incidence matrix for fixed effects,457
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Z is an n × q incidence matrix for random effects,458

bFk and bRj are p × 1 vectors of fixed effects for the kth factor and jth residual trait, respectively,459

uFk and uRj are n × 1 vectors of random effects for the kth factor and jth residual trait, respec-460

tively,461

eFk and eRj are n × 1 vectors for residuals.462

The distributions of random effects are specified as:463

uFk ∼ N (0, σ2
gFk

K), uRj ∼ N (0, σ2
gFj

K)

eFk ∼ N (0, σ2
eFk

I), eRj ∼ N (0, σ2
eRj

I),

where:464

K is the pairwise genomic relationship matrix between old genotypes that is estimated with465

genetic molecular markers,466

I is the identity matrix,467

σ2
gFk

is the genetic variance components associated with the kth latent factor,468

σ2
gRj

is the genetic variance components associated with the jth residual trait,469

σ2
eFk

is the residual variance components associated with the kth latent factor, and470

σ2
eRj

is the residual variance components associated with the jth residual trait.471

All parameters of MegaLMM are estimated using a Gibbs sampler as described in (Runcie et al. 2021).472

Extensions to Predict Trait Performance in New Environments473

The original MegaLMM model lacked the capability for making predictions in new environments474

because elements of the environment-specific weights matrix Λ were independent in the prior and475

thus could only be learned based on correlations between records in different observed environments.476

Our extended MegaLMM model replaces the original prior on Λ with a prior of the following form:477
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λk· =
L

∑
l=1

Wlalk + ϵk

alk ∼ N(0, σ2
lkτ−1

k I)

σ2
l ∼ invGamma(a, b)

ϵkj ∼ N(0, ψ−1
jk τ−1

k )

ψjk ∼ Ga(ν/2, ν/2), τk =
k

∏
h=1

δh

δ1 ∼ Ga(α1, β1), δj ∼ Ga(α2, β2) j ∈ 2, . . . K.

(4)

where λk· is a row of Λ representing the relative importance weights of latent factor k across environ-478

ments. We model this vector as a regression on ECs, represented as L design matrices Wl , l ∈ 1 . . . L,479

for example W1 is usually a single column of 1’s representing an intercept, and in the MegaLMM_S+T480

model, W2 would be an incidence matrix of state identities, and W3 would be an incidence matrix of481

Tester identities. The regression coefficients are assigned independent normal priors with a variance482

that shrinks for higher order factors based on the precision parameter τ−1
k . The residuals of this483

regression are assigned heavy-tailed t-distributed priors as in our earlier BSFG model (Runcie and484

Mukherjee 2013), which maintains the shrinkage of higher order factors towards zero. Parameters of485

this model for Λ are learned using the same Gibbs sampler steps as in the BSFG model (Runcie and486

Mukherjee 2013).487

Using posterior samples of the regression coefficients alk , posterior predictions of genetic values in488

new environments can be formed as:489

Gon = F(
L

∑
l=1

Wn
l alk)

⊺ (5)

where:490

Gon are posterior samples of the genetic value for old genotypes in new environments,491

F are posterior samples of the latent factor matrix estimated from old grown in old environ-492

ments,493

Wn
l are values for ECs in the Wl matrix measured in new environments.494

To form posterior predictions of genetic values for new genotypes, F in 5 is replaced with Fn =495
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KnoK−1F, where Kno is the is the pairwise genomic relationship matrix between new and old496

genotypes.497

Cross-validation scenarios for predicting experimental genotypes in old and new environments498

CV1: We randomly divided experimental genotypes into five equal-sized folds within each environ-499

ment. The partition of genotypes was consistent across all environments. During cross-validation,500

four folds were used for model training, and the fifth fold served as the validation set. This process501

was repeated five times until each of the five folds in each environment was used as the validation502

set.503

CV2: Within each environment, we used the same genotype partition as CV1. However, we random-504

ized the order of the five folds independently across environments. During cross-validation, four505

folds were used for training, and the fifth fold was used for validation. This procedure was repeated506

five times until each of the five folds within each environment served as the validation set.507

NewTrial: Building on the CV2 training sets, we randomly divided all trials (i.e., location-year508

combinations) into five folds. Four folds were used for training, and the fifth fold was used for509

cross-validation. For each of the five distinct CV2 training sets, this process was repeated five times510

until each of the five folds of trials had been used as a validation set.511

NewState: Following the CV2 training sets, we split all experiments by their respective States. We512

selected States with at least 9 experiments as testing sets, resulting in 14, 13, and 12 testing sets for513

Grain Yield, Plant Height, and Silk Days, respectively, for the G2F dataset. For each State in the514

testing set, all other States were used for training. For each of the five distinct CV2 training sets, this515

process was repeated 14, 13, and 12 times for Grain Yield, Plant Height, and Silk Days, respectively,516

until each set of testing experiments had been used as a validation set.517

NewTester: Based on the CV2 training sets, we split all experiments by their testers, resulting in a518

total of 12 sets of testing experiments for the G2F data. Each set of testing experiments served as a519

testing set, and the remaining experiments were used for model training. For each of the five distinct520

CV2 training sets, this process was repeated 12 times until each set of testing experiments had been521

used for validation.522

NewGenoNewYear: Using each of the CV2 training sets, we divided all experiments into four523

folds based on two-year intervals (2014-2015, 2016-2017, 2018-2019, and 2020-2021). Since hybrid524
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compositions changed dramatically every two years, each fold contained almost entirely different525

sets of hybrids. To ensure no overlap between training and testing sets, we further excluded common526

hybrids from the testing set. Thus, each fold represented new genotypes tested in new environments.527

For each of the five distinct CV2 training sets, this process was repeated four times until each of the528

four folds of experiments had been used as a validation set.529

Estimating genomic prediction accuracies, their means and standard deviations530

Within each experiment, predictive ability was estimated using the following equation:531

r = cor(y, ĝ) (6)

where:532

y is a vector of adjusted phenotypic values, and533

ĝ is a vector of predicted genotypic values.534

For CV1 and CV2, within each experiment, we defined predictive ability as the mean correlation535

obtained from five validation sets. Similarly, for prediction scenarios of NewTrial, NewState, NewTester536

and NewGenoNewYear, within each experiment, we defined predictive ability as the mean of prediction537

accuracies obtained from five distinct validation sets, which originated from five distinct CV2 training538

sets.539

Within each prediction scenario we estimated means and standard deviations of prediction accuracies540

over all experiments using a meta-analysis to different sample size with the Hunter and Schmidt-type541

approach (Schmidt and Hunter 2014) using the escalc and rma functions of the metafor R package542

(Viechtbauer 2010). This implements a random-effect meta-analysis with estimated standard errors543

of each individual correlation based on its own sample size. To test if one method produces higher544

correlations on average than another, we compared the two vectors of correlations using the r.test545

function of the psych R package (Revelle 2023), and extracted the estimated difference between546

the two methods for each trial as well as the standard error of this difference. We then used the547

rma function of the metafor package to compute a random effects meta-analysis of these differences548

weighted by the sample size of each trial. Finally, we estimated 95% confidence intervals (CI) of549

mean predictive ability within each prediction scenario with the following equation:550
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CI = x̄ ± z
s√
n

(7)

Where:551

x̄ is the mean predictive ability,552

z is the Z-score corresponding to the desired confidence level (for a 95% confidence level, z=553

1.96),554

s is the standard deviation of the prediction accuracies across experiments,555

n is the total number of experiments within a prediction scenario.556

Phenotypic and genotypic analyses of G2F maize hybrid dataset557

Plant Materials558

The Genomes to Fields Initiative (G2F) is a multi-institutional, collaborative initiative to catalyze and559

coordinate research linking genomics and phenomics in maize to achieve advances that generate560

societal and environmental benefits (AlKhalifah et al. 2018). Since 2014, this project has evaluated561

approximately 180,000 field plots involving more than 5,000 corn hybrid varieties across more than562

200 unique environments in North America. Our analyses used the G2F maize hybrid data collected563

between 2014 and 2021 and focused on three representative agronomic traits: Grain Yield: Measured564

in Mg per ha at 15.5% grain moisture (unit: Mg/ha), utilizing plot area without an alley; Plant565

Height: Quantified as the distance from the base of the plant to the ligule of the flag leaf, expressed566

in centimeters; Silk Days: Defined as the number of days elapsed after planting when 50% of the567

plants within a plot displayed visible silks.568

Phenotypic Data Analysis569

The initial 2014-2021 G2F phenotypic dataset comprises 217 unique trials with diverse field exper-570

iment designs. As more than 71.4% of the G2F data points were linked to 12 major hybrid testers571

(Lopez-Cruz et al. 2023), our analysis concentrated on these key tester families. Consequently, within572

each trial (i.e., a location::year combination), we split the trait data by Tester and refer to each partition573

as an experiment. We selected experiments composing a minimum of 50 hybrid genotypes for further574

analysis. Therefore, in our analysis we consider the Tester as a component of an environment.575

Our pre-processesing of the raw phenotypic data from each trial included the following steps. First,576
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we excluded tester families with fewer than 50 hybrid genotypes. Subsequently, we employed a577

two-step procedure to filter outliers. Initially, within each individual trial, outlier data points were578

eliminated based on the joint distribution of observed trait values across trials. Data points with579

an expected occurrence of less than 1, assuming a normal distribution, were flagged as outliers.580

Subsequently, outlier trials were identified based on the distribution of mean trait values across all581

trials. Trials with a population mean expected to occur less than 1 time, given a normal distribution,582

were classified as outliers. Following outlier removal, we retained 302, 278, and 231 experiments (i.e.,583

tester families) for Grain Yield, Plant Height, and Silk Days, respectively, for downstream analysis.584

To account for field design factors and obtain the best linear unbiased estimation (BLUE) of each585

hybrid genotype, we employed linear or linear mixed models, depending on available experimental586

design factors within each experiment. Experiments were categorized into four groups, each fitted587

with a different model:588

• For experiments with >=2 replicates and >=2 blocks each, we used a linear mixed model:589

y ∼ Hybrid + Replicate + (1|Replicate:Block), where y represents observed phenotypic values,590

Hybrid and Replicate are fixed effects of hybrid genotypes and replicates, respectively, and591

(1|Replicate:Block) is the random effect of block nested within replicate.592

593

• For experiments with >=2 replicates and only one block in each replicate, we employed a linear594

model: y ∼ Replicate + Hybrid.595

596

• In cases with only one replicate but multiple blocks in the replicate, we used a linear mixed597

model: y ∼ Hybrid + (1|Block), where (1|Block) represents the random effect of block.598

599

• For a few experiments with only one replicate and one block in the replicate, a linear model600

y ∼ Hybrid was applied.601

Linear mixed models were fitted using the lmer function in the R library lme4 (Bates et al. 2015). Linear602

models were fitted with the lm function in the base R library (R Core Team 2023). The predict function603

from the base R library was employed to extract marginal BLUEs for each hybrid genotype in each604

environment.605

Finally, we re-shaped all BLUEs for each hybrid genotype in each environment into a matrix with606
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rows corresponding to each inbred Parent 1’s of the hybrid, and columns corresponding to the607

experiment IDs (i.e. location-year-tester combinations).608

Genotypic Data Analysis609

We received G2F genotypic data from the committee of The Genomes to Fields 2022 Maize Genotype610

by Environment Prediction Competition (Lima et al. 2023), who only provided genotypic data of611

hybrid genotypes. The 2014-2021 G2F inbred lines (Hybrid Parent 1s and testers) were sequenced612

with different technologies. The Maize Practical Haplotype Graph (PHG) database 2.1 was used613

for variant calling, which generated a genotypic dataset with 4,928 unique hybrid genotypes and614

437,214 SNP sites. We first filtered the SNPs using the following criteria: (i) minor allele frequency615

(MAF) > 5%; (ii) maximum site missing rate < 20%, resulting in a dataset with 4928 unique hybrid616

genotypes and 324,323 SNP sites. We used a custom script to infer the P1 and Tester genotypes of617

each hybrid. Briefly, for each SNP in each hybrid, if the genotype was 0 or 2, we assigned this value618

to both parents. If the genotype was 1, either the P1 or the Tester must have the 1 allele. To decide,619

we compared the same locus to all other hybrids from the same tester. If any other hybrid had a 0620

genotype at this locus, the Tester’s genotype must be 0, otherwise its genotype must be 1. For this621

analysis, we filtered out any hybrids where the tester was not replicated in at least one other hybrid.622

Using the separate SNP genotype matrices of the P1s and the Testers, we computed additive genomic623

relationship matrices for each following VanRaden’s equation (VanRaden 2008) using the dogrm624

software package (Bellot et al. 2018).625

Weather Data Analysis626

The original weather environmental variable record was captured on a daily basis. Given the high627

correlation among these daily environmental variables, we conducted the following analyses to628

address redundancy in environmental covariates: (i) We computed the Daily Corn Growing Degree629

Days (GDD) between the planting and harvest dates for each trial using the formula: Daily Corn630

GDD (°F) = (Daily Maximum Temperature °F + Daily Minimum temperature °F) - 50 °F. If the631

daily maximum and/or minimum temperature was less than 50 °F (10 °C), it was adjusted to 50 °F.632

Similarly, if the daily maximum temperature exceeded 86 °F, it was capped at 86 °F. (ii) We computed633

the Accumulated Growing Degree Days (AGDD) and determined maize growth stages for each trial634

based on methodologies described by Widhalm (2014) and Nielsen (2019). This analysis identified635

23 stages of maize growth, including 20 vegetative growth phases from emergence (VE), V1-V18,636
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up to tassel formation (VT). For the reproductive phase, we consolidated R1, R2, and merged R3 to637

R6 into a single growth stage. (iii) We averaged 11 weather environmental variables (Supplemental638

Table S1) and GDD within the duration of each of the 23 growth stages. Moreover, AGDD and Accu-639

mulated Precipitation (APRE) of each trial were included as environmental covariates, recognizing640

temperature stress and water deficit as the two most important factors limiting crop growth and641

yield (Langridge et al. 2021). Ultimately, this process yielded 278 ECs.642
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Figure S1. Predictive ability difference between MegaLMM and GBLUP for three agronomic traits
(Silk Days, Plant Height, and Grain Yield). Each point within a boxplot represents the predictive
ability difference between MegaLMM and GBLUP for a specific experiment. The mean predictive
ability difference for each trait within each scenario is shown above the corresponding boxplot.
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Figure S2. Pairwise phenotypic correlation between experiments estimated by MegaLMM for
three agronomic traits (Silk Days, Plant Height, and Grain Yield)
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Table S1 Description of the 11 weather environmental variables used in our study

Parameter Units Long Name/Description

T2MWET C Wet Bulb Temperature at 2 Meters

QV2M g/kg Specific Humidity at 2 Meters

RH2M % Relative Humidity at 2 Meters

T2M_MAX C Temperature at 2 Meters Maximum

ALLSKY_SFC_SW_DWN MJ/m2/day All Sky Surface Shortwave Downward Irradiance

PS kPa Surface Pressure

T2MDEW C Dew/Frost Point at 2 Meters

WS2M m/s Wind Speed at 2 Meters

T2M_MIN C Temperature at 2 Meters Minimum

T2M C Temperature at 2 Meters

PRECTOTCORR mm/day Precipitation Corrected
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