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MegaLMM improves genomic predictions in new
environments using environmental covariates
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ABSTRACT Multi-environment trials (METs) are crucial for identifying varieties that perform well across a target population
of environments (TPE). However, METs are typically too small to sufficiently represent all relevant environment-types, and
face challenges from changing environment-types due to climate change. Statistical methods that enable prediction of variety
performance for new environments beyond the METs are needed. We recently developed MegalLMM, a statistical model
that can leverage hundreds of trials to significantly improve genetic value prediction accuracy within METs. Here, we extend
MegalLMM to enable genomic prediction in new environments by learning regressions of latent factor loadings on Environmental
Covariates (ECs) across trials. We evaluated the extended MegaLMM using the maize Genome-To-Fields dataset, consisting of
4402 varieties cultivated in 195 trials with 87.1% of phenotypic values missing, and demonstrated its high accuracy in genomic
prediction under various breeding scenarios. Furthermore, we showcased MegalLMM'’s superiority over univariate GBLUP in
predicting trait performance of experimental genotypes in new environments. Finally, we explored the use of higher-dimensional
quantitative ECs and discussed when and how detailed environmental data can be leveraged for genomic prediction from METSs.
We propose that MegaLMM can be applied to plant breeding of diverse crops and different fields of genetics where large-scale
linear mixed models are utilized.

KEYWORDS genotype-by-environment interaction, multivariate linear mixed model, factor analytic model, multi-environment trials, environmental covariates

INTRODUCTION

Genotype-by-environment interactions are one of the most difficult challenges faced by plant breeders.
Good varieties must maintain performance across a wide range of environments. However, testing
every candidate variety in every possible condition within the target population of environments
(TPE) is not feasible. Instead, breeders evaluate candidate genotypes in multi-environment trials
(METs) covering a moderate number of locations over multiple years. METs can consume a large
fraction of a breeding program’s budget. Therefore, making optimal use of data from METs for

breeding decisions is critical to the success of plant breeding programs.
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Many statistical approaches for modeling data from METs have been developed (as reviewed by
Crossa et al. (2022)). Historically, most models have taken one of two major approaches: reaction
norm models represent the change in the performance across trials as a function of measurable
characteristics of those trials, called Environmental Covariates (ECs), while correlated trait models
represent the correlation in performances across genotypes between pairs of trials. Examples of
reaction norm models include factorial regression (Denis 1988; Piepho et al. 1998), the GBLUP-
based reaction norm model (Jarquin et al. 2014; Ly et al. 2018), the Critical Environmental Regressor
through Informed Search-Joint Genomic Regression Analysis (CERIS-JGRA) model (Li ef al. 2021),
and models based on Crop Growth Models (e.g. Technow et al. 2015). Examples of correlated trait
models include the Additive Main Effect and Multiplicative Interaction (AMMI) approach (Gollob
1968; Zobel et al. 1988) and latent factor models (Smith et al. 2001; Cullis et al. 2014). In their most
general forms, reaction norm models and correlated traits models can be mathematically equivalent,
and several of these models combine aspects of both approaches. However, each approach has its
own computational and statistical advantages. One advantage of the correlated traits approach is
that it has the potential to completely characterize the correlation between any pair of trials, while
reaction norm models can only learn the components of the correlation that are captured by the
ECs utilized to parameterize the reaction norm. Therefore, correlated traits models are expected to
be more accurate for the specific trials in the METs. On the other hand, reaction norm models can
be used to make predictions in un-measured environments while correlated traits models cannot.
Historically, correlated traits models have been less computationally tractable because the number
of correlations that must be learned grows quadratically with the number of trials. We recently
developed MegaLMM, a computationally and statistically efficient implementation of a multivariate
linear mixed model, and demonstrated that it could accurately perform genomic prediction in METs
with more than 100 trials, improving predictive ability in nearly every trial relative to univariate
approaches (Runcie et al. 2021). MegalLMM is a correlated traits model built on a factor analytic
(FA) structure, however it lacks of a prediction mechanism to extrapolate genomic values to new
environments with unobserved environmental conditions. Extending MegaLMM to make use of ECs
would allow it to encompass the benefits of both the correlated traits and reaction norm approaches

to modeling data from METs.

The quality of environmental covariates limits the potential of any model to predict genetic values in

new environments. Several challenges in developing environmental covariates include: i) there are
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many environmental variables that impact plant growth and development, including temperature,
water availability, soil properties, disease pressure, etc, ii) many of these variables are dynamic,
meaning that they change during a growing season on both short and long time scales, and interact
with plants differently depending on the growth stages of each plant, iii) environmental factors
are collinear and may interact with one another, making statistically identifying causal drivers
challenging, iv) some important variables are challenging to measure or are unknown, and v)
environmental variables from the growing season are unknown at the time of planting or for future
unobserved locations. Because of the high dimensionality of potential ECs, statistical models that
use ECs must operate robustly in high-dimensional spaces. There are three common strategies for
dealing with high-dimensional ECs: 1) Variable selection. As an example, CERIS-JGRA (Li et al. 2021)
searches a large set of candidate ECs for the single most useful one and then uses only that one for
prediction. 2) Non-linear machine learning such as kernel regression or Deep Learning. The models
of Jarquin et al. (2014) and Costa-Neto et al. (2021) use kernel methods to represent the covariance of
environments based on EC distances and performing regressions using these distances. Washburn
et al. (2021) and Kick et al. (2023) utilized deep learning techniques to prioritize ECs with poential
agricultural importantce. 3) Crop growth models. Heslot et al. (2014) and Technow et al. (2015) use
biophysical-based models to predict the impact of EC time-series’s across multiple ECs on crop
physiology and development. Heslot et al. (2014) and Rincent ef al. (2019) used crop growth models
as a form of non-linear dimension reduction to extract a more physiologically relevant set of ECs to

use in MET models.

Measuring the success of genotype-environment interaction models from METs is complicated
because such models can be used for multiple different tasks in a breeding program. Breeders
evaluate samples of genotypes from a reference population of genotypes (RPG) in samples of
environments from a TPE (Cooper et al. 2021). Genotypes observed in at least one trial of a MET
are commonly called "old genotypes" while the remaining genotypes in the RPG are called "new
genotypes". The trials that compose a MET are called "old environments", while other possible
growing environments in the TPE are called "new environments". Four distinct applications are
commonly distinguished: 1) Imputing performances of genotypes in the MET in trials where some
genotypes were not grown, for example if a MET is sparse (Burguerio et al. 2012); 2) Predicting the
relative performances of new genotypes in each of the environmental conditions represented by trials

in the MET; 3) Predicting the relative performances of a set of genotypes in new environments, based
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on their performances in a MET; and 4) Predicting the relative performance of the new genotypes
in new environments. The first two applications are statistically easier than the last two, while the
fourth is the most difficult because it relies on predicting characteristics of previously unobserved
genotypes and environments. MET models should be evaluated in each of these contexts because
performance in one context does not guarantee adequate performance in another. The most common
computational strategy for evaluating model accuracy is cross validation. Cross validation strategies
that simulate each of these applications are termed CV2, CV1, CV3, and CV0, respectively (Burguefio
et al. 2012; Costa-Neto et al. 2021).

Here, we describe an extension to MegaLMM that facilitates the use of ECs to extend genomic
predictions to new environments. Our primary objective is to describe the statistical framework
of the extended MegaLMM model and evaluate its efficacy in various breeding scenarios. We
use a maize hybrid dataset from the Genomes-To-Field (G2F) Initiative (AlKhalifah et al. 2018)
to demonstrate that MegaLMM can achieve high accuracy in genomic prediction under various
breeding conditions. We show that MegaL MM surpassed univariate GBLUP in predicting hybrid
performance in new environments partly through its effective use of ECs. Finally, we explore the use
of higher-dimensional quantitative ECs and discuss when and how detailed environmental data can

be leveraged for genomic prediction from METs.

RESULTS

Method Overview

We developed the original MegaLMM model to provide a robust framework for modeling the corre-
lations of genetic values of experimental genotypes across multiple environments. MegaLMM links
genetic predictors to phenotypic data using a hierarchical latent factor model that is computationally
efficient, yet highly flexible to accommodate different genetic architectures across traits (Runcie et al.
2021). MegaLMM decomposes a high-dimensional, but potentially sparsely populated phenotypic
matrix (Y) into a low-rank factor score matrix (F), a low-rank loading matrix (A), and a residual matrix
(E) (Figure 1A). Together, the factor matrix and the loading matrix explain the genetic covariation
among environments, while the residual matrix accounts for unexplained residual genetic variation,
microenvironmental variation, and measurement error unique to each environment. Learning latent

factor scores for each individual in the training set allows MegaLMM to predict genetic values of
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each observed genotype in environments where that genotype was not grown (but other genotypes
were, i.e. the CV2 context ) (Figure 1B). Latent regressions of each vector of factors scores (columns
of F), and each residual vector (columns of E) on genetic data from each observed genotype allows
MegalL MM to predict genetic values of new genotypes (without any phenotype datain Y, i.e. the
CV1 context) in each environment by predicting factor scores F, and residual values E, for each
new genotype based on inputs of genetic data (Figure 1B). However, the original MegaLMM had
no mechanism to link values in A to external data representing properties of each environment.
Therefore, MegaLMM had no mechanism to predict genetic or phenotype values of either observed

or unobserved genotypes in new environments.
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Figure 1. MegaLMM statistical models and their applications for predicting trait performance in
experimental genotypes across observed and new environments.

(A) Original MegaLMM model architecture. (B) Approach for predicting genetic values of old or
new genotypes in old environments using the original MegaLMM. (C) Model architecture of the
new MegaLMM model. (D) Approach for predicting genetic values of old or new genotypes in
new environments using the new MegaLMM. Y: phenotypic matrix consisting of phenotypic values
measured on 1 genotypes (rows) in t environments (columns). F: factor matrix of old genotypes. F,:
predicted factor matrix of new genotypes. A: factor loading matrix for the old environments. Aj:
predicted factor loading matrix for new environments. K: additive genomic relationship among old
genotypes. E: residual trait matrix for observed genotypes in observed environments after accounting
for the latent factors. A,,: predicted additive genetic values of old genotypes in new environments;
Gon: predicted total genetic values of old genotypes in new environments. A;,: predicted additive
genetic values of new genotypes in old environments. A;;;: predicted additive genetic values of new
genotypes in new environments. G,,: predicted genetic values of old genotypes in old environments.
GTs= Genotypes, Envs=Environments, EC=Environment Covariates.

Here, we extend MegaLMM to accept environmental data as predictors of the covariances of genetic
values across environments. The extended model keeps all features of the original model, but adds
functionality to express the rows of A as regressions on sets of ECs (Figure 1C). We can then predict
genetic values of either old or new genotypes in any new environment that can be characterized by

these ECs (Figure 1D). As an intuitive justification for this approach, we consider the variation in
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trait values in a single environment y; to be caused by a set of latent characteristics f; . . . fic (such as
flowering time, growth rate, and drought tolerance). In a different environment, many of these same
latent characteristics will still be important but their relative effects on overall performance may vary.
Each row of A represents the relative importance of a single latent characteristic across environments.
For example, if growth rate is similarly important in all environments, values in the corresponding
row of A will be similar. If earlier flowering is beneficial in some environments but detrimental in
others, the corresponding row of A will have some positive and some negative values. Our overall
hypothesis is that the variation in these importance weights across environments will be predictable
by known characteristics of those environments, including geography, climate, and management.

Details of this latent regressions approach are provided in the Methods.

MegaLMM greatly improves genomic predictions of agronomic traits within experimental trials

We used the G2F maize hybrid dataset (Lima et al. 2023), covering the years 2014 to 2021, to evaluate
the genomic predictive ability of MegaLMM in its original form and with the enhancements described
above. The G2F maize hybrids are crosses between a large set of inbred lines (referred to as P1) and a
small set of tester lines (referred to as Tester). We formatted a trait matrix Y with P1s as rows and
combinations of Tester, location, and year as columns, and filled each value with a least-squares mean
estimate of the corresponding hybrid trait values. We subsetted the data to include columns with
at least 50 observed trait values, which resulted in data from a total of 12 Testers. The replacement
of P1s every two years resulted in a very sparse trait matrix with 87.1% missing values for Grain
Yield (Figure 2A). Below, we refer to individual columns of this trait matrix as an “experiment”,
signifying trait values from a set of P1s crossed to a single tester and evaluated in a specific location-
year combination. In total, our dataset was composed of 1702 P1s, 12 testers, 4402 hybrids, 302
experiments, and 195 trials for Grain Yield (Figure 2A).

We used 5-fold cross-validation to measure the genomic predictive ability of the original MegaLMM
model for each of the three agronomic traits separately (Silk Days, Plant Height, and Grain Yield)
when trained on data from all 302 experiments and evaluated using the 20% of trait values withheld
as validation data in each individual experiment. For sparse testing applications (predicting trait
values for hybrids observed in some experiments but not others (CV2), estimated predictive abilities
averaged r = 0.40 — 0.57 across the three traits based on a meta-analysis accounting for measurement

error (Figure 2B), an average improvement of r = 0.12 — 0.19 across traits relative to predictions

7
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Figure 2. Data structure and predictive ability of the original MegaLMM model applied to the
Genomes to Fields (G2F) maize hybrid dataset.

(A) The data structure of the reshaped Genomes to Fields (G2F) phenotypic matrix, with inbred
parent 1 (P1) in rows and experiments (combinations of location, year, and tester) in columns. Each
cell in the matrix is filled with the least squares mean estimate of yield for a single hybrid genotype
in a single experiment, with different colors indicating yield estimates from different years. (B)
Boxplots of genomic prediction for CV1 and CV2 using the original MegaLMM model. Each point
within a boxplot represents predictive ability for a specific experiment. The mean predictive ability
for each trait within each scenario is shown below the corresponding boxplot. (C) Scatterplot of
MegalLMM versus GBLUP predictive abilities for CV2 using the original MegaLMM model for Grain
Yield. Each point represents a specific experiment. (D) Line plots showing magnitudes of squared
factor loadings (A?). Each line represents the A? per factor distribution in one MegaLMM chain for a
specific agronomic trait. Different colors indicate distinct traits. We specified that MegaLMM should
estimate 50 factors per dataset and ran 10 replicate MCMC chains per dataset. (E) Distribution of
(—log,,(p — values)) (y-axis) of regressions of factor loadings (x-axis) on latitude, longitude, state,
and tester. (F) Boxplots of factor loadings for the first factor grouped by tester.
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based on univariate GBLUP models trained on each experiment individually (Supplemental Figure
S1). For trait value predictions of new hybrids with no observations in the training data (CV1),
estimated average predictive abilities ranged from r = 0.28 — 0.41 for the three traits (Figure 2B), an
average improvement of r = 0.01 — 0.03 over the univariate GBLUP models (Supplemental Figure
S1). In almost every trial, estimated accuracies were higher for sparse testing applications (CV2)
(Figure 2C). These results parallel our earlier results applied to the first four years of the G2F dataset
(Runcie et al. 2021).

To investigate why MegaLMM improved over univariate approaches despite using the same genetic
predictors, we extracted posterior means of the latent factor score (F) and factor loadings (A) matrices.
While these parameters are not always robustly identified in factor models like MegaLMM, the
priors we use for elements of A tend to make specific factor orientations more reproducible. We
allowed MegalLMM to learn 50 factors per dataset, but specified through our prior that the relative
importance of factors should decrease rapidly across factor ranks. This effectively “turns off” many
factors that are not needed when all loadings are shrunk close to zero. Applied to these three datasets,
MegalLMM learned ~ 13 — 20 factors per trait, each with at least one posterior mean importance
weight (value of A) that explained > 1% of the trait variance. Distributions of weights across factors

from 10 randomly chosen MegaLMM chains are shown in Figure 2D.

To explore whether candidate ECs such as the identity of the Tester or the geographic location, could
serve as predictors of the importance weights for these factors, we regressed the posterior mean
values of each row of A on latitude, longitude, state, or Tester. Among the 50 factors derived from the
Grain Yield data in a single MegaLMM chain, four weight vectors were significantly associated with
state and six were significantly associated with testers, based on Bonferroni-adjusted P-values < 0.05
(Figure 2E). Some factors displayed moderate correlations with either latitude or longitude; however,
these correlations were not deemed statistically significant based on Bonferroni-adjusted P-values
< 0.05 (Figure 2E-F). Therefore, factor loading weights are somewhat predictable based on known

features of each trial and a hierarchical model including these ECs as features may be successful.


https://doi.org/10.1101/2024.03.06.583749
http://creativecommons.org/licenses/by-nc-nd/4.0/

184

185

186

187

188

1

@

9

1

)

0

1

o

1

1

9]

2

1

0

3

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.06.583749; this version posted March 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Environmental Covariates enable MegaLMM to make accurate Genomic Prediction in new environ-

ments
0.64
0.4
o
S
S}
(@]
0.2- ' ' I
0.0 -
0.363 0.356 0.221 0.080 0.565 0.572 0.423 0.228 0.558 0.563 0.438 0.264
GrainI Yield Plant ;—ieight Silk i)ays

. NewTrial . NewState . NewTester . NewGenoNewYear

Figure 3. The extended MegaLMM model using ECs has moderate predictive abilities in new
environments across four prediction scenarios for three agronomic traits (Silk Days, Plant Height,
and Grain Yield).

Each bar represents the estimated mean predictive ability of the extended MegaLMM model using
State (“S") and Tester (“T") IDs as predictors (i.e “S+T::5+T" model) across individual experiments in
a specific prediction scenario. The mean prediction accuracies for each trait within each scenario are
shown below the corresponding barplot. Colors indicate prediction scenario. Error bars represent
95% confidence intervals of the mean, estimated by meta-analysis accounting for the size of each
individual experiment. Note that EC “S" has no impact on factor loading predictions in the NewState
scenario, and “T" has no impact on loading predictions in either NewTester or NewGenoNew Year
scenarios.

We extended MegalLMM to additionally take as inputs ECs for any number of environmental features
and use these as priors for factor loadings. We designed four Cross-Validation experiments to evaluate
whether ECs could enable accurate genetic values predictions in new experiments in increasingly
challenging prediction scenarios: 1) NewTrial: Can we predict genetic values in new trials, e.g. future
trials that re-use previously observed testing locations and hybrids? 2) NewState: Can we predict
genetic values in trials (of previously observed hybrids) grown in new geographic locations not near
any existing trials e.g. in a new state? 3) NewTester: Can we predict genetic values of new hybrids

(created with previously used Pls), e.g. new experiments in the same trials? 4) NewGenoNewYear: Can
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we predict the genetic values of previously unobserved hybrids (derived from neither same P1 nor
same Tester) in new years. This scenario is motivated by the introduction of new inbred lines every

two years, as depicted in Figure 2A.

Since in each case, the target experiments shared either geographic proximity (same state), or
genetic similarity (same Tester) with trials in the training data, we first tested whether the extended
MegalLMM model could improve genetic value predictions in these contexts using simple categorical
ECs — the identity of the state and the identity of the Tester used in each experiment. We call this
model S+T::5+T, signifying that the predictors S (State) and T (Tester) were used both in training

(before the “::”) and as feature values for prediction (after the “::”).

As expected, genomic predictive abilities of MegaLMM declined across the four prediction scenarios
for Grain Yield (Figure 3). Surprisingly, for Plant Height and Silk Days, the genomic predictive
abilities of NewTrial were slightly lower than those of NewState, although the differences were not
significant. Across the three agronomic traits, average genomic predictive abilities using the ECs
ranged from 0.363 to 0.565 for NewTrial, 0.356 to 0.572 for NewState, and 0.221 to 0.438 for NewTester
(Figure 3). The NewGenoNew Year scenario exhibited the lowest predictive ability, ranging from 0.080
to 0.264. We note that direct comparisons among the four scenarios are not entirely equitable due
to subtle differences in the composition of training and testing sets associated with each scenario.
Nevertheless, these comparisons offer an initial insight into the levels of predictive ability in each

prediction scenarios.

11


https://doi.org/10.1101/2024.03.06.583749
http://creativecommons.org/licenses/by-nc-nd/4.0/

213

214

215

216

217

218

219

220

221

222

223

224

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.06.583749; this version posted March 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

*% *% *% ns *% *% *% ns
0.12

o 0.08

o]

-

o

V]
S

|

=

=

)

S

O 0.044

=
S

NewTrial
0.00 4 NewState
' 0.063 0.058 0. 083 - 0.075 0.074 0.096 0.071 0.071 0.111 0.016 NewTester
NewGenoNewYear
GrainlYieId Plant ;-Ieight Silk bays

Figure 4. Predictive abilities of the extended MegaLMM model improve relative to univariate
GBLUP prediction across most scenarios for three agronomic traits (Silk Days, Plant Height, and
Grain Yield).

Each bar represents the mean difference in predictive ability between MegaLMM and GBLUP
in specific scenarios. Colors indicate prediction scenario. Error bars represent 95% confidence
intervals of the difference in mean predictive ability between MegaLMM and GBLUP, estimated
by meta-analysis accounting for the size of each individual experiment. Significance levels from a
meta-analysis, are indicated above each barplot and mean differences in predictive ability for each
trait within each scenarios are presented below the respective barplot.

To test if these predictive abilities were higher than could have been achieved using univariate GBLUP,
we considered two univariate prediction strategies for the new environments: i) forming predictions
of all candidate hybrids individually in each training experiment and then averaging predictions
across all experiments into a single constant prediction to be applied to each new experiment, or ii)
repeating this procedure but only for “similar” experiments, where we defined similarity as either
experiments from the same state, or experiments using the same Tester. We ran both strategies and
identified which produced more accurate predictions on average across all test experiments in a
particular scenario. We used a similar procedure to select the most accurate extended MegaLMM
model (i.e. experiment-specific or experiment-average predictions). We then compared the accuracies
of the best MegaLMM model with the best GBLUP model for each experiment for each trait within
each prediction scenario. Consistently, across all traits and nearly all scenarios, estimated mean

prediction accuracies of MegaLMM were significantly higher than those of GBLUP (p-value < 0.01)
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(Figure 4). The exceptions were for the scenario of NewGenoNewYear for Grain Yield and Plant Height,

where there was no significant difference between MegaLMM and GBLUP.

These results confirm that MegaLMM'’s predictions remain better than univariate predictions, even
in new environments. However, it could be that this improvement is due to MegaLMM'’s ability
to empirically learn covariances among experiments, not the additional information provided by
the ECs. In fact, even if we run MegaLMM without ECs and use the univariate strategy of simply
averaging predictions across all training experiments, MegaLMM'’s predictions in new experiments
are considerably more accurate than the univariate ones (O::0 vs GBLUP_O::O, Figure 5). To measure
the additional benefit of the ECs, we ran prediction models using the ECs only as a prior but
predicting based on the experiment-average as above (5+T::0), and using the ECs both as prior
and for prediction (5+T:5+T). Note that in some scenarios, either the S or the T predictors were
uninformative because the test values were not present in the training experiments, and so these

predictors were dropped.

Across all three prediction scenarios, the S+T::0 model significantly improved genomic predictive
ability for all three agronomic traits, except for Plant Height in NewTrial and NewTester, where
the S+T::0 model’s accuracy was either identical or slightly lower than that of the O::O model
(Figure 5A,C). These results suggest that the inclusion of S+T as a factor loading prior contributes to

enhanced genomic prediction in new environments.

In the prediction scenarios of NewTrial and NewState, the S+T::T model significantly improved
genomic predictive ability compared to the S+T::0 model for all three traits (Figure 5A,B), indicating
that incorporating the tester as a predictor enhances genomic predictive ability in new environments
in cases where the same tester was used in training experiments. However, in the NewTester scenario,
the S+T::S model outperformed the S+T::O model for Grain Yield but not for Plant Height and Silk
Days (Figure 5C). These findings suggest that averaging similar experiments from the same Tester can
enhance genomic predictive ability. However, when averaging similar experiments from the same
State, the impact on genomic predictive ability varied, with sometimes showing slight improvements,
but other times showing slightly decreased accuracy when predicting hybrid performance in new

environments.
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Figure 5. Environmental Covariates improve MegaLMM’s predictions in new environments relative to
model that only use historical data, across three agronomic traits (Silk Days, Plant Height, and Grain
Yield) and in three distinct prediction scenarios: (A) NewTrial, (B) NewState, and (C) NewTester. Each
bar represents the estimated mean predictive ability of a specific model across individual trials. The mean
prediction accuracies for each trait within each scenario are shown below the corresponding barplot. Colors
indicate the prediction model. Error bars represent 95% confidence intervals of the mean, estimated by meta-
analysis accounting for the size of each individual experiment. We show results from models with increasing
complexity, starting with a univariate model, denoted GBLUP_O::O, based on GBLUP predictions obtained
from averaging prediction made in individual experiments across all training experiments without using ECs,
the original MegaLMM model that does not use ECs (O::0), a version of the extended MegaLMM model that
uses ECs as priors but bases predictions on the average of predictions from each training trial without further
using the ECs (S+T::0), and the full extended MegaLMM model that used ECs both as priors and as predictors
(S+T::5+T). EC variables are denoted “S" for State, “T" for Tester, and “O" for empty ECs. 14
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Quantitative ECs can substitute of Qualitative ECs in Genomic Prediction for new environments

The above results demonstrate that MegaLMM can successfully use ECs to improve genomic predic-
tive ability for new environments (Figure 5). However, these models used only categorical predictors
(state or Tester labels), which can only be used to make predictions in environments that share the
same levels of these labels. In contrast, quantitative ECs, like temperature or precipitation, could be

used to make predictions in any geographic location.

*%
A 0.6 NewState — NS l_l** ns

0.4 ns
0-2- III
0.0 0.283 0.341 0.343 0.345 0.514 0.554 0.540 0.541
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Figure 6. MegaLMM Model Comparison across three agronomic traits (Silk Days, Plant Height,
and Grain Yield) using high-dimensional Environmental Covariates: (A) NewState and (B)
NewTester. Each bar represents the estimated mean predictive ability of a specific MegaLMM
model across individual trials. The mean prediction accuracies for each trait within each scenario are
shown below the corresponding barplot. Colors indicate the prediction model. Error bars represent
95% confidence intervals of the mean, estimated by meta-analysis accounting for the size of each
individual experiment. MegaLMM models are denoted by a combination of a factor loading prior
and a factor loading predictor, separated by “::", where “S" denotes State, “T" denotes Tester, “W"
denotes Weather data, “K" denotes genomic relationship among Testers.
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To test whether MegaLMM can effectively use quantitative ECs, we repeated the above cross-
validation experiments but substituted the categorical ECs with quantitative ones. We replaced
the “S" ECs with scaled eigenvectors from a set of 278 weather variables (“W"), and the “T" ECs
with the scaled eigenvectors of a genomic relationship matrix (“K") of the Testers computed from
the same genotypic data used for the P1s. Specifically, we compared a W+T::W+T model with the
S+T::T model in the NewState scenario and a S+K::5+K model with S+T::S model in the NewTester
scenario. Since “S" ECs cannot contribute to predictions in the NewState scenario but “W" can, and
since “T" cannot contribute to predictions in the NewTester scenario but “K" can, we hypothesized that
the use of quantitative ECs (“W" and “K") would improve genomic prediction. However, only the
S+K::5+K model significantly improved genomic predictive abilities compared to the S+T::S model in
the NewTester scenario (Figure 6B). Other MegaLMM models with quantitative ECs showed either
similar or slightly lower genomic predictive ability compared to their counterparts with qualitative

ECs (Figure 6).

Subsequently, we replaced categorical ECs with quantitative ECs in MegaLMM models for the three
traits in both scenarios. Specifically, we substituted “K" for “T" in the W+T::W+T model to obtain the
W+K::W+K model in the NewState scenario and substituted “W" for “S" in the S+K::5+K model to
get the W+K::W+K model in the NewTester scenario. We found that W+K::W+K model (with only
quantitative ECs) performed just as well as W+T::W+T (with the “T*” categorical EC) in the NewState
scenario, and the W+K::W+K model (with only quantitative ECs) was only slightly inferior to the
S+K::S+K model (with the “S" categorical EC) for Plant Height in the NewTester scenario (Figure 6).
These results suggest that kinship and weather data can effectively substitute for categorical labels
when the states or testers have been observed in the training data. This shows that MegaLMM can
effectively use quantitative ECs, but suggests that the quality of the quantitative ECs we used in our

analysis may have been too low to be useful in this analysis.

DISCUSSION

Insights into the use of Environmental Covariates for genomic prediction for new environments

We developed an extended MegaLMM model with EC-based priors to predict genetic values in new
environments. MegaLMM is based on a factor-analytic model, and allows users to model a large

number of latent factors underlying variation in genetic values in each environment. The ECs help
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the model learn the importance weights for each factor in each environment, and provide coefficients
necessary to predict importance weights - and therefore genetic values - in new environments.
Overall, we found the ECs significantly improved MegalLMM predictive ability in most scenarios
relative to the performance of the MegaLMM base model (O::O, Figure 5). However, compared to
the improvement of the MegaLMM base model over a univariate GBLUP approach (Figure 4), the
improvement due to the incorporation of ECs was less dramatic. These results highlight several

important points.

First, even though neither the MegaLMM base model nor univariate GBLUP models can directly
produce predictions of genetic values in new environments, we found that a simple post-processing
of their predictions across the MET experiments (i.e. old environments) could result in reasonably
accurate genetic value predictions on average in new environments. Specifically, the average pre-
dicted genetic values across the MET experiments were correlated with observed values in most
new environments. In some cases, but not always, we could improve predictions by clustering
the MET experiments either by geography (State) or Tester and only averaging the genetic value
estimates within a cluster when predicting genetic values in new experiments in the same cluster.
This latter approach can be thought of as a non-parametric approach for using the ECs, and is
equivalent to factorial regression (Denis 1988; Piepho et al. 1998) approaches using categorical ECs as
dummy variables. One reason that such constant (i.e. not environment-specific) predictions can be
successful in this dataset is that trait values are positively correlated between most environments
(Supplemental Figure S2), diminishing the potential benefit of forming unique predictions in each
new environment. Thus, while models do detect significant GxE in this dataset (Rogers et al. 2021;
Lopez-Cruz et al. 2023), the magnitude of the G xE variance is not large relative to genetic main effect
variance. G xE models necessarily have larger prediction variances because they try to make more
specific predictions, and unless the actual G X E variance is large enough to counteract the reduced
precision, “main effect" models will be more accurate (Weine et al. 2023). One possible reason for
the relatively low importance of G XE in this dataset is the wide diversity among hybrids, including
some relatively low-performing hybrids with poor trait values in most environments. If only elite

hybrids had been used, the relative importance of G xE prediction might have been higher.

Second, ECs are useful for learning the model’s parameters even if not used for prediction. We
found that when we used ECs as priors during model training, the correlation between the averages

of predicted genetic values across the MET experiments and the observed phenotypes in new
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environments was typically higher than with the MegaLMM base model which did not use the ECs
(Figure 5). In this case, we did not use the ECs to make predictions tailored to each new environment,
yet still found the ECs useful. Here, the ECs may help the model learn correlations between pairs
of trials that do not share many hybrids in common, so there is little data to learn correlations
empirically, but which do share values of ECs. This suggests that ECs may be especially useful when
METs are very sparse and perhaps even unconnected — containing trials without any overlapping
hybrids. This improvement was not apparent within the MET experiments themselves (in terms of
accuracy measured by CV2), probably because the residual genetic terms (Ug) were able to make

sufficiently accurate predictions.

Third, successfully predicting genetic values in new environments may require both higher-quality
ECs and many more MET experiments. While this data set is large, composing 302 experiments,
it contains only 195 trials in different site-years to learn regressions on ECs like weather, only 37
locations to learn regressions on ECs like geography, climate, and soil, and only 12 testers to learn
regressions on genetic markers of each tester. Genomic prediction models (in a single environment)
generally require hundreds of genotypes to effectively learn allele-phenotype correlations (Jannink
et al. 2010) because genotypes are the unit of replication of alleles in these models. Since experiments
are replicates of environmental variables in GXE models, and because the environmental drivers of
performance are likely similarly complex to genetic drivers, hundreds of experiments are probably
needed to adequately model G xE in new environments. Nevertheless, we showed that MegaLMM
could successfully use high-dimensional ECs (from weather or tester genotypes) to make accurate
predictions, at least when the new environments were closely related to existing environments (same
states or same testers). However, more informative ECs, such as ECs derived from crop growth
models (Heslot et al. 2014; Rincent et al. 2019) may help reduce the dimensionality burden, making

G xE modeling more efficient.

Comparison with other approaches for predicting genotype-environment interactions

Compared with previous statistical models that use ECs for predictions in new environments, the
extended MegaLMM model offers several statistical and practical advantages, including the ability
to use high-dimensional ECs, regularization through a moderate number of latent factors, and the

ability to fit phenotypic data from very large and very sparse METs.
The ability to simultaneously use high-dimensional ECs for prediction should be useful when
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multiple environmental variables simultaneously impact the variation in genetic values across a TPE.
In the extended MegaLMM model, we use regularized regression to provide robust inference across
high-dimensional ECs. This contrasts with the CERIS-JGRA method of Li et al. (2021) which searches
among candidate ECs for a single EC that is best, and then bases predictions on this single EC. Also,
while the CERIS-JGRA method selects an EC based on the ability to predict phenotype means across
trials, the extended MegaLMM prioritizes ECs based on their usefulness for distinguishing patterns

of covariance among trials, which is more directly applicable to breeding.

The ability to robustly use high-dimensional ECs is not unique to the extended MegaLMM model.
The GBLUP-based reaction norm model, as demonstrated by Jarquin et al. (2014), can also use high-
dimensional ECs, using kernel functions to turn the EC matrices into distance matrices. Costa-Neto
et al. (2021) also uses kernel methods for model G xE from METs. A limitation of this approach is
that training the kernel functions themselves is computationally expensive, so these methods use
fixed kernel functions which prevents learning weights among the ECs. Tuning parameters of the
kernel functions is possible in these methods, but the same tuned kernels would apply to all trials.
In contrast, the extended MegaLMM model can learn different EC weights for each latent factor,

providing an additional level of flexibility and opportunity for statistical learning of GxE patterns.

Much of MegalLMM'’s statistical and computational efficiency comes from its latent factor model
architecture. Many other models also use factor-analytic models for GxE prediction. For example,
the AMMI model is a factor model (but with fixed factors, Rincent et al. (2019)), and Cullis et al.
(2014) and Heslot et al. (2014) also proposed factor-analytic models for METs. The advantage of
factor-analytic models is that they model correlated traits with a small number of parameters relative
to the number of covariances among pairs of trials, providing statistical robustness, and remove the
need to invert large covariance matrices, alleviating computational limitations. However, MegaLMM
is unique in its ability to fit relatively large numbers of latent factors. Most prior applications of
factor-analytic models have handled only 1-3 factors and can fail to converge if run with more factors.
For example, Schulz-Streeck et al. (2013) found that the factor analytic structure failed to converge
when fitting a marker-by-environment interaction model, and Rogers et al. (2021) found that models
with more than one FA factor for environments, in combination with either additive or dominance
relationships, failed to converge when fitting a subset of G2F data. Our analysis of the maize G2F
dataset used 50 factors and found that 13-20 factors significantly contributed to trait performance

prediction across experiments for three agronomic traits (Figure 2D). This suggests that more factors
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can be beneficial for accounting for varying sources of GxE variation in large METs.

Finally, our case study was a MET with 302 experiments and ~87% missing values, yet MegaLMM
was able to return predictions in ~3 hours (with 20 CPU cores). The ability to fit such sparse data is
an advantage over the AMMI models and other matrix-based (i.e. Y is treated as a matrix) models
that require complete data. Also, the efficiency in fitting data with large numbers of traits makes
MegalL MM flexible for modeling complex experimental features like management characteristics
which can be important contributors to GxE (Cooper et al. 2021). Modeling management in addition
to environmental drivers complicates reaction norm models because of the need to specify many
interaction terms, making models unwieldy. In contrast, as a correlated traits model, MegaLMM
does not explicitly require an interaction term to model G xE xM effects. Integrating management
characteristics into the MegaLMM model involves simply expanding the columns in the multivariate
response matrix, with columns representing combinations of environmental types and management.
Mathematically, the process of solving the linear mixed model equations and estimating parameters

remains unchanged.

Insights into modeling Gx E in the maize hybrid breeding system

Contrasting with most other analyses of the G2F maize hybrid dataset (Rogers et al. 2021; Lopez-Cruz
et al. 2023), we divided each trial into multiple separate experiments based on the identity of different
testers used to create each hybrid, and then modeled the covariances among these experiments.
There are both practical and statistical benefits to doing this. On the practical side, focusing on
within-tester-family predictive ability aligns our approach with maize hybrid breeding strategies. In
maize hybrid breeding, germplasm is organized into two major heterotic pools, and inbred lines are
developed within these pools. The newly created inbred lines are initially evaluated and selected
by crossing them with suitable testers from complementary heterotic pools. Subsequently, they
are further crossed with a larger number of newly created lines from the opposite heterotic pool
for evaluation for potential commercial use (Cooper et al. 2014). In our analysis, we placed inbred
lines, rather than hybrids, as rows of our data matrix Y, with columns representing combinations of
Tester and environment. Thus, our genomic predictions are best considered genetic values of inbreds

conditional on specific Testers and environments.

On the statistical side, modeling the covariance among hybrids from different testers allows modeling

of Tester-inbred genotype interactions, and therefore produces more accurate within-tester-family
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predictions when these interactions are important. Since MegaLMM scales very efficiently with
numbers of experiments, there is little downside to breaking trials into multiple experiments, par-
ticularly when we can include prior information through ECs to partially pool information across
experiments when they are closely related. We found that Tester identity was the most useful EC
among experiments (comparing results from the NewState scenario where Tester ID could be used
for prediction in new environments, to results from the NewTest scenario where Tester ID was not
available for prediction, Figure 3), suggesting that the ranking of inbreds did change considerably
when crossed to different Tester. However, this result should be interpreted with caution because the
importance of Tester ID in this dataset is partially confounded with both geographic structure among
trials and population structure within the populations of inbreds (P1s), as discussed by Lopez-Cruz

et al. (2023).

In summary, we present an extended version of MegaLMM that can predict the genetic architecture
of new traits based on trait-specific prior data. This is a significant advancement of the MegaLMM
method, opening the possibility of many types of novel applications. We focus here on the application
of modeling genotype-environment interactions in multi-environmental trials in plant breeding,
where we consider each trial a new trait, and use environmental data as prior predictors of the
patterns of genotype-environment interactions. We expect that many other applications of this
extended MegaLMM model are possible both in plant breeding and in other fields where large linear

mixed models can be applied.

METHODS

Original MegaL MM Model

The original MegaLMM “correlated-traits” model of a MET is specified as:

Y=XB+ZU+E (1)

where:

Y is an n x t phenotypic matrix for a trait of interest measured on n experimental genotypes
grown in t trials, potentially with a large percentage of missing values,

Xis an n x p incidence matrix for fixed effects such as an intercept,
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B is a corresponding p x t matrix of fixed effects for each trial,

Z is an n X g incidence matrix for random effects, in this case the identities of each inbred
parent,

U is a corresponding g x t matrix of random effects, in this case additive genetic values, for
each trial,

E is an n x t matrix of residuals for each genotype in each trial.

Fitting Eq. (1) is challenging because the columns of U and E are correlated. To address this issue,
Runcie et al. (2021) developed a new statistical framework, MegaLMM, based on a factor analytic

model, which decomposes the correlated traits model into a two-level hierarchical model.

In level 1, the phenotypic matrix Y is decomposed into two components:
Y=FA+E (2)
where:

F is an n x k latent factor matrix,
Ais a k x t loading matrix,

E is an n x t residual matrix of residuals for each trial.

Intuitively, k latent factors can be interpreted as k unobserved traits across each individual that are
constant across experiments, and the factor loadings represent the relative importances of each of

these k unobserved traits on the focal trait value in each experiments.
In level 2, each of the k latent factors in the F matrix and each of the t residual traits in the E matrix

are independently fitted with standard univariate linear mixed models:

f, = Xbpk + Zqu + er,

e = Xij + ZuR], + eg;

where:

fi and e; are nn X 1 vectors for the kth latent factor trait and the jth residual trait, respectively.

Xis an n x p incidence matrix for fixed effects,
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Z is an n x g incidence matrix for random effects,

br, and bg; are p x 1 vectors of fixed effects for the kth factor and jth residual trait, respectively,
ur, and ug, are n X 1 vectors of random effects for the kth factor and jth residual trait, respec-
tively,

er, and eg; are 11 X 1 vectors for residuals.

The distributions of random effects are specified as:

eFk ~ N(O, (TeszI), ERj ~ N(O, O'eZR]I),

where:

K is the pairwise genomic relationship matrix between old genotypes that is estimated with
genetic molecular markers,

I is the identity matrix,

o2

8
‘ngR]- is the genetic variance components associated with the jth residual trait,

r, is the genetic variance components associated with the kth latent factor,

Uesz is the residual variance components associated with the kth latent factor, and

‘TeZRj is the residual variance components associated with the jth residual trait.

All parameters of MegaLMM are estimated using a Gibbs sampler as described in (Runcie et al. 2021).

Extensions to Predict Trait Performance in New Environments

The original MegaLMM model lacked the capability for making predictions in new environments
because elements of the environment-specific weights matrix A were independent in the prior and
thus could only be learned based on correlations between records in different observed environments.

Our extended MegalLMM model replaces the original prior on A with a prior of the following form:
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L

Ak, = Zwlalk + €k
I=1

aye ~ N(0, 07,7, ')
0? ~ invGamma(a, b)

11 (4)
€kj ~ N(O, l[)]k T )

k
1pjk~Ga(1//2,1//2), T — H(Sh
h=1
0 ~ Ga(le,ﬁl), 5] ~ Ga(az,ﬁz) ] €2,...K.

where Ay. is a row of A representing the relative importance weights of latent factor k across environ-
ments. We model this vector as a regression on ECs, represented as L design matricesW;, [€1...L,
for example W is usually a single column of 1’s representing an intercept, and in the MegaLMM_S+T
model, W> would be an incidence matrix of state identities, and W3 would be an incidence matrix of
Tester identities. The regression coefficients are assigned independent normal priors with a variance
that shrinks for higher order factors based on the precision parameter 7, 1. The residuals of this
regression are assigned heavy-tailed t-distributed priors as in our earlier BSFG model (Runcie and
Mukherjee 2013), which maintains the shrinkage of higher order factors towards zero. Parameters of
this model for A are learned using the same Gibbs sampler steps as in the BSFG model (Runcie and

Mukherjee 2013).

Using posterior samples of the regression coefficients a; , posterior predictions of genetic values in

new environments can be formed as:

L
Gon = F()_Wja,)T (5)
1=1

where:

Gy are posterior samples of the genetic value for old genotypes in new environments,
F are posterior samples of the latent factor matrix estimated from old grown in old environ-
ments,

W7 are values for ECs in the W; matrix measured in new environments.

To form posterior predictions of genetic values for new genotypes, F in 5 is replaced with F, =
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K., K 'F, where K,, is the is the pairwise genomic relationship matrix between new and old

genotypes.

Cross-validation scenarios for predicting experimental genotypes in old and new environments

CV1: We randomly divided experimental genotypes into five equal-sized folds within each environ-
ment. The partition of genotypes was consistent across all environments. During cross-validation,
four folds were used for model training, and the fifth fold served as the validation set. This process
was repeated five times until each of the five folds in each environment was used as the validation

set.

CV2: Within each environment, we used the same genotype partition as CV1. However, we random-
ized the order of the five folds independently across environments. During cross-validation, four
folds were used for training, and the fifth fold was used for validation. This procedure was repeated

five times until each of the five folds within each environment served as the validation set.

NewTrial: Building on the CV2 training sets, we randomly divided all trials (i.e., location-year
combinations) into five folds. Four folds were used for training, and the fifth fold was used for
cross-validation. For each of the five distinct CV2 training sets, this process was repeated five times

until each of the five folds of trials had been used as a validation set.

NewsState: Following the CV2 training sets, we split all experiments by their respective States. We
selected States with at least 9 experiments as testing sets, resulting in 14, 13, and 12 testing sets for
Grain Yield, Plant Height, and Silk Days, respectively, for the G2F dataset. For each State in the
testing set, all other States were used for training. For each of the five distinct CV2 training sets, this
process was repeated 14, 13, and 12 times for Grain Yield, Plant Height, and Silk Days, respectively,

until each set of testing experiments had been used as a validation set.

NewTester: Based on the CV2 training sets, we split all experiments by their testers, resulting in a
total of 12 sets of testing experiments for the G2F data. Each set of testing experiments served as a
testing set, and the remaining experiments were used for model training. For each of the five distinct
CV2 training sets, this process was repeated 12 times until each set of testing experiments had been

used for validation.

NewGenoNewYear: Using each of the CV2 training sets, we divided all experiments into four

folds based on two-year intervals (2014-2015, 2016-2017, 2018-2019, and 2020-2021). Since hybrid
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compositions changed dramatically every two years, each fold contained almost entirely different
sets of hybrids. To ensure no overlap between training and testing sets, we further excluded common
hybrids from the testing set. Thus, each fold represented new genotypes tested in new environments.
For each of the five distinct CV2 training sets, this process was repeated four times until each of the

four folds of experiments had been used as a validation set.

Estimating genomic prediction accuracies, their means and standard deviations

Within each experiment, predictive ability was estimated using the following equation:

r=cor(y,§) (6)
where:

y is a vector of adjusted phenotypic values, and

g is a vector of predicted genotypic values.

For CV1 and CV2, within each experiment, we defined predictive ability as the mean correlation
obtained from five validation sets. Similarly, for prediction scenarios of NewTrial, NewState, NewTester
and NewGenoNewYear, within each experiment, we defined predictive ability as the mean of prediction
accuracies obtained from five distinct validation sets, which originated from five distinct CV2 training

sets.

Within each prediction scenario we estimated means and standard deviations of prediction accuracies
over all experiments using a meta-analysis to different sample size with the Hunter and Schmidt-type
approach (Schmidt and Hunter 2014) using the escalc and rma functions of the metafor R package
(Viechtbauer 2010). This implements a random-effect meta-analysis with estimated standard errors
of each individual correlation based on its own sample size. To test if one method produces higher
correlations on average than another, we compared the two vectors of correlations using the r.test
function of the psych R package (Revelle 2023), and extracted the estimated difference between
the two methods for each trial as well as the standard error of this difference. We then used the
rma function of the metafor package to compute a random effects meta-analysis of these differences
weighted by the sample size of each trial. Finally, we estimated 95% confidence intervals (CI) of

mean predictive ability within each prediction scenario with the following equation:

26


https://doi.org/10.1101/2024.03.06.583749
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.06.583749; this version posted March 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

s

Cl=x+tz— (7)
N

551 Where:

552 ¥ is the mean predictive ability,

55 z is the Z-score corresponding to the desired confidence level (for a 95% confidence level, z=

554 1.96),

555 s is the standard deviation of the prediction accuracies across experiments,

556 n is the total number of experiments within a prediction scenario.

57 Phenotypic and genotypic analyses of G2F maize hybrid dataset

ss Plant Materials

s The Genomes to Fields Initiative (G2F) is a multi-institutional, collaborative initiative to catalyze and
s0 coordinate research linking genomics and phenomics in maize to achieve advances that generate
st societal and environmental benefits (AlKhalifah et al. 2018). Since 2014, this project has evaluated
52 approximately 180,000 field plots involving more than 5,000 corn hybrid varieties across more than
s 200 unique environments in North America. Our analyses used the G2F maize hybrid data collected
s« between 2014 and 2021 and focused on three representative agronomic traits: Grain Yield: Measured
s in Mg per ha at 15.5% grain moisture (unit: Mg/ha), utilizing plot area without an alley; Plant
s« Height: Quantified as the distance from the base of the plant to the ligule of the flag leaf, expressed
s7 in centimeters; Silk Days: Defined as the number of days elapsed after planting when 50% of the

s plants within a plot displayed visible silks.

o Phenotypic Data Analysis

51

[

s The initial 2014-2021 G2F phenotypic dataset comprises 217 unique trials with diverse field exper-
sn iment designs. As more than 71.4% of the G2F data points were linked to 12 major hybrid testers

s (Lopez-Cruz et al. 2023), our analysis concentrated on these key tester families. Consequently, within

N

s each trial (i.e., a location::year combination), we split the trait data by Tester and refer to each partition

N

s as an experiment. We selected experiments composing a minimum of 50 hybrid genotypes for further

s analysis. Therefore, in our analysis we consider the Tester as a component of an environment.

5!

N
o)

Our pre-processesing of the raw phenotypic data from each trial included the following steps. First,
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we excluded tester families with fewer than 50 hybrid genotypes. Subsequently, we employed a
two-step procedure to filter outliers. Initially, within each individual trial, outlier data points were
eliminated based on the joint distribution of observed trait values across trials. Data points with
an expected occurrence of less than 1, assuming a normal distribution, were flagged as outliers.
Subsequently, outlier trials were identified based on the distribution of mean trait values across all
trials. Trials with a population mean expected to occur less than 1 time, given a normal distribution,
were classified as outliers. Following outlier removal, we retained 302, 278, and 231 experiments (i.e.,

tester families) for Grain Yield, Plant Height, and Silk Days, respectively, for downstream analysis.

To account for field design factors and obtain the best linear unbiased estimation (BLUE) of each
hybrid genotype, we employed linear or linear mixed models, depending on available experimental
design factors within each experiment. Experiments were categorized into four groups, each fitted

with a different model:

¢ For experiments with >=2 replicates and >=2 blocks each, we used a linear mixed model:
y ~ Hybrid + Replicate + (1|Replicate:Block), where y represents observed phenotypic values,
Hybrid and Replicate are fixed effects of hybrid genotypes and replicates, respectively, and
(1 Replicate:Block) is the random effect of block nested within replicate.

¢ For experiments with >=2 replicates and only one block in each replicate, we employed a linear

model: y ~ Replicate + Hybrid.

¢ In cases with only one replicate but multiple blocks in the replicate, we used a linear mixed

model: y ~ Hybrid + (1|Block), where (1|Block) represents the random effect of block.

¢ For a few experiments with only one replicate and one block in the replicate, a linear model

y ~ Hybrid was applied.

Linear mixed models were fitted using the Imer function in the R library Ime4 (Bates et al. 2015). Linear
models were fitted with the Im function in the base R library (R Core Team 2023). The predict function
from the base R library was employed to extract marginal BLUEs for each hybrid genotype in each

environment.
Finally, we re-shaped all BLUESs for each hybrid genotype in each environment into a matrix with
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rows corresponding to each inbred Parent 1’s of the hybrid, and columns corresponding to the

experiment IDs (i.e. location-year-tester combinations).
Genotypic Data Analysis

We received G2F genotypic data from the committee of The Genomes to Fields 2022 Maize Genotype
by Environment Prediction Competition (Lima et al. 2023), who only provided genotypic data of
hybrid genotypes. The 2014-2021 G2F inbred lines (Hybrid Parent 1s and testers) were sequenced
with different technologies. The Maize Practical Haplotype Graph (PHG) database 2.1 was used
for variant calling, which generated a genotypic dataset with 4,928 unique hybrid genotypes and
437,214 SNP sites. We first filtered the SNPs using the following criteria: (i) minor allele frequency
(MAF) > 5%; (ii) maximum site missing rate < 20%, resulting in a dataset with 4928 unique hybrid
genotypes and 324,323 SNP sites. We used a custom script to infer the P1 and Tester genotypes of
each hybrid. Briefly, for each SNP in each hybrid, if the genotype was 0 or 2, we assigned this value
to both parents. If the genotype was 1, either the P1 or the Tester must have the 1 allele. To decide,
we compared the same locus to all other hybrids from the same tester. If any other hybrid had a 0
genotype at this locus, the Tester’s genotype must be 0, otherwise its genotype must be 1. For this

analysis, we filtered out any hybrids where the tester was not replicated in at least one other hybrid.

Using the separate SNP genotype matrices of the P1s and the Testers, we computed additive genomic
relationship matrices for each following VanRaden's equation (VanRaden 2008) using the dogrm

software package (Bellot et al. 2018).
Weather Data Analysis

The original weather environmental variable record was captured on a daily basis. Given the high
correlation among these daily environmental variables, we conducted the following analyses to
address redundancy in environmental covariates: (i) We computed the Daily Corn Growing Degree
Days (GDD) between the planting and harvest dates for each trial using the formula: Daily Corn
GDD (°F) = (Daily Maximum Temperature °F + Daily Minimum temperature °F) - 50 °F. If the
daily maximum and/or minimum temperature was less than 50 °F (10 °C), it was adjusted to 50 °E.
Similarly, if the daily maximum temperature exceeded 86 °F, it was capped at 86 °F. (ii) We computed
the Accumulated Growing Degree Days (AGDD) and determined maize growth stages for each trial
based on methodologies described by Widhalm (2014) and Nielsen (2019). This analysis identified
23 stages of maize growth, including 20 vegetative growth phases from emergence (VE), V1-V18,
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up to tassel formation (VT). For the reproductive phase, we consolidated R1, R2, and merged R3 to
R6 into a single growth stage. (iii) We averaged 11 weather environmental variables (Supplemental
Table S1) and GDD within the duration of each of the 23 growth stages. Moreover, AGDD and Accu-
mulated Precipitation (APRE) of each trial were included as environmental covariates, recognizing
temperature stress and water deficit as the two most important factors limiting crop growth and

yield (Langridge et al. 2021). Ultimately, this process yielded 278 ECs.

DATA AVAILABILITY

We obtained the G2F dataset from the committee of The Genomes to Fields 2022 Maize Genotype by
Environment Prediction Competition, accessible on CyVerse under https://doi.org/10.25739/tq5e-ak26.
The scripts used in this study are documented in the following GitHub repository: https://github.com/
hh622/MegalLMM_New_Environments_Prediction_GenomesToFields. Additionally, the R package for
extended MegalLMM can be found here: https://github.com/deruncie/MegalLMM/tree/restructure and

will be moved to the ‘master’ branch and archived at Zenodo at time of publication.
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Figure S1. Predictive ability difference between MegaLMM and GBLUP for three agronomic traits
(Silk Days, Plant Height, and Grain Yield). Each point within a boxplot represents the predictive
ability difference between MegaLMM and GBLUP for a specific experiment. The mean predictive
ability difference for each trait within each scenario is shown above the corresponding boxplot.
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Figure S2. Pairwise phenotypic correlation between experiments estimated by MegaLMM for
three agronomic traits (Silk Days, Plant Height, and Grain Yield)
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Table S1 Description of the 11 weather environmental variables used in our study

Parameter Units Long Name/Description
T2MWET C Wet Bulb Temperature at 2 Meters
QvV2M g/kg Specific Humidity at 2 Meters
RH2M % Relative Humidity at 2 Meters
T2M_MAX C Temperature at 2 Meters Maximum
ALLSKY_SFC_SW_DWN M]J/m?/day All Sky Surface Shortwave Downward Irradiance
PS kPa Surface Pressure
T2MDEW C Dew /Frost Point at 2 Meters
WS2M m/s Wind Speed at 2 Meters
T2M_MIN C Temperature at 2 Meters Minimum
2M C Temperature at 2 Meters
PRECTOTCORR mm/day Precipitation Corrected
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