

MegaLMM improves genomic predictions in new environments using environmental covariates

Haixiao Hu¹, Renaud Rincenc² and Daniel E. Runcie^{1,*}

¹Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA, ²Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190 Gif-sur-Yvette, France

1 ABSTRACT Multi-environment trials (METs) are crucial for identifying varieties that perform well across a target population
2 of environments (TPE). However, METs are typically too small to sufficiently represent all relevant environment-types, and
3 face challenges from changing environment-types due to climate change. Statistical methods that enable prediction of variety
4 performance for new environments beyond the METs are needed. We recently developed MegaLMM, a statistical model
5 that can leverage hundreds of trials to significantly improve genetic value prediction accuracy within METs. Here, we extend
6 MegaLMM to enable genomic prediction in new environments by learning regressions of latent factor loadings on Environmental
7 Covariates (ECs) across trials. We evaluated the extended MegaLMM using the maize Genome-To-Fields dataset, consisting of
8 4402 varieties cultivated in 195 trials with 87.1% of phenotypic values missing, and demonstrated its high accuracy in genomic
9 prediction under various breeding scenarios. Furthermore, we showcased MegaLMM's superiority over univariate GBLUP in
10 predicting trait performance of experimental genotypes in new environments. Finally, we explored the use of higher-dimensional
11 quantitative ECs and discussed when and how detailed environmental data can be leveraged for genomic prediction from METs.
12 We propose that MegaLMM can be applied to plant breeding of diverse crops and different fields of genetics where large-scale
13 linear mixed models are utilized.

14 KEYWORDS genotype-by-environment interaction, multivariate linear mixed model, factor analytic model, multi-environment trials, environmental covariates

15 INTRODUCTION

16 Genotype-by-environment interactions are one of the most difficult challenges faced by plant breeders.
17 Good varieties must maintain performance across a wide range of environments. However, testing
18 every candidate variety in every possible condition within the target population of environments
19 (TPE) is not feasible. Instead, breeders evaluate candidate genotypes in multi-environment trials
20 (METs) covering a moderate number of locations over multiple years. METs can consume a large
21 fraction of a breeding program's budget. Therefore, making optimal use of data from METs for
22 breeding decisions is critical to the success of plant breeding programs.

¹ Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA E-mail: deruncie@ucdavis.edu;

23 Many statistical approaches for modeling data from METs have been developed (as reviewed by
24 [Crossa *et al.* \(2022\)](#)). Historically, most models have taken one of two major approaches: reaction
25 norm models represent the change in the performance across trials as a function of measurable
26 characteristics of those trials, called Environmental Covariates (ECs), while correlated trait models
27 represent the correlation in performances across genotypes between pairs of trials. Examples of
28 reaction norm models include factorial regression ([Denis 1988](#); [Piepho *et al.* 1998](#)), the GBLUP-
29 based reaction norm model ([Jarquín *et al.* 2014](#); [Ly *et al.* 2018](#)), the Critical Environmental Regressor
30 through Informed Search-Joint Genomic Regression Analysis (CERIS-JGRA) model ([Li *et al.* 2021](#)),
31 and models based on Crop Growth Models (e.g. [Technow *et al.* 2015](#)). Examples of correlated trait
32 models include the Additive Main Effect and Multiplicative Interaction (AMMI) approach ([Gollob
33 1968](#); [Zobel *et al.* 1988](#)) and latent factor models ([Smith *et al.* 2001](#); [Cullis *et al.* 2014](#)). In their most
34 general forms, reaction norm models and correlated traits models can be mathematically equivalent,
35 and several of these models combine aspects of both approaches. However, each approach has its
36 own computational and statistical advantages. One advantage of the correlated traits approach is
37 that it has the potential to completely characterize the correlation between any pair of trials, while
38 reaction norm models can only learn the components of the correlation that are captured by the
39 ECs utilized to parameterize the reaction norm. Therefore, correlated traits models are expected to
40 be more accurate for the specific trials in the METs. On the other hand, reaction norm models can
41 be used to make predictions in un-measured environments while correlated traits models cannot.
42 Historically, correlated traits models have been less computationally tractable because the number
43 of correlations that must be learned grows quadratically with the number of trials. We recently
44 developed MegaLMM, a computationally and statistically efficient implementation of a multivariate
45 linear mixed model, and demonstrated that it could accurately perform genomic prediction in METs
46 with more than 100 trials, improving predictive ability in nearly every trial relative to univariate
47 approaches ([Runcie *et al.* 2021](#)). MegaLMM is a correlated traits model built on a factor analytic
48 (FA) structure, however it lacks of a prediction mechanism to extrapolate genomic values to new
49 environments with unobserved environmental conditions. Extending MegaLMM to make use of ECs
50 would allow it to encompass the benefits of both the correlated traits and reaction norm approaches
51 to modeling data from METs.

52 The quality of environmental covariates limits the potential of any model to predict genetic values in
53 new environments. Several challenges in developing environmental covariates include: i) there are

54 many environmental variables that impact plant growth and development, including temperature,
55 water availability, soil properties, disease pressure, etc, ii) many of these variables are dynamic,
56 meaning that they change during a growing season on both short and long time scales, and interact
57 with plants differently depending on the growth stages of each plant, iii) environmental factors
58 are collinear and may interact with one another, making statistically identifying causal drivers
59 challenging, iv) some important variables are challenging to measure or are unknown, and v)
60 environmental variables from the growing season are unknown at the time of planting or for future
61 unobserved locations. Because of the high dimensionality of potential ECs, statistical models that
62 use ECs must operate robustly in high-dimensional spaces. There are three common strategies for
63 dealing with high-dimensional ECs: 1) Variable selection. As an example, CERIS-JGRA ([Li et al. 2021](#))
64 searches a large set of candidate ECs for the single most useful one and then uses only that one for
65 prediction. 2) Non-linear machine learning such as kernel regression or Deep Learning. The models
66 of [Jarquín et al. \(2014\)](#) and [Costa-Neto et al. \(2021\)](#) use kernel methods to represent the covariance of
67 environments based on EC distances and performing regressions using these distances. [Washburn](#)
68 [et al. \(2021\)](#) and [Kick et al. \(2023\)](#) utilized deep learning techniques to prioritize ECs with potential
69 agricultural importance. 3) Crop growth models. [Heslot et al. \(2014\)](#) and [Technow et al. \(2015\)](#) use
70 biophysical-based models to predict the impact of EC time-series's across multiple ECs on crop
71 physiology and development. [Heslot et al. \(2014\)](#) and [Rincent et al. \(2019\)](#) used crop growth models
72 as a form of non-linear dimension reduction to extract a more physiologically relevant set of ECs to
73 use in MET models.

74 Measuring the success of genotype-environment interaction models from METs is complicated
75 because such models can be used for multiple different tasks in a breeding program. Breeders
76 evaluate samples of genotypes from a reference population of genotypes (RPG) in samples of
77 environments from a TPE ([Cooper et al. 2021](#)). Genotypes observed in at least one trial of a MET
78 are commonly called "old genotypes" while the remaining genotypes in the RPG are called "new
79 genotypes". The trials that compose a MET are called "old environments", while other possible
80 growing environments in the TPE are called "new environments". Four distinct applications are
81 commonly distinguished: 1) Imputing performances of genotypes in the MET in trials where some
82 genotypes were not grown, for example if a MET is sparse ([Burgueño et al. 2012](#)); 2) Predicting the
83 relative performances of new genotypes in each of the environmental conditions represented by trials
84 in the MET; 3) Predicting the relative performances of a set of genotypes in new environments, based

85 on their performances in a MET; and 4) Predicting the relative performance of the new genotypes
86 in new environments. The first two applications are statistically easier than the last two, while the
87 fourth is the most difficult because it relies on predicting characteristics of previously unobserved
88 genotypes and environments. MET models should be evaluated in each of these contexts because
89 performance in one context does not guarantee adequate performance in another. The most common
90 computational strategy for evaluating model accuracy is cross validation. Cross validation strategies
91 that simulate each of these applications are termed CV2, CV1, CV3, and CV0, respectively (Burgueño
92 *et al.* 2012; Costa-Neto *et al.* 2021).

93 Here, we describe an extension to MegaLMM that facilitates the use of ECs to extend genomic
94 predictions to new environments. Our primary objective is to describe the statistical framework
95 of the extended MegaLMM model and evaluate its efficacy in various breeding scenarios. We
96 use a maize hybrid dataset from the Genomes-To-Field (G2F) Initiative (AlKhalifah *et al.* 2018)
97 to demonstrate that MegaLMM can achieve high accuracy in genomic prediction under various
98 breeding conditions. We show that MegaLMM surpassed univariate GBLUP in predicting hybrid
99 performance in new environments partly through its effective use of ECs. Finally, we explore the use
100 of higher-dimensional quantitative ECs and discuss when and how detailed environmental data can
101 be leveraged for genomic prediction from METs.

102 RESULTS

103 *Method Overview*

104 We developed the original MegaLMM model to provide a robust framework for modeling the corre-
105 lations of genetic values of experimental genotypes across multiple environments. MegaLMM links
106 genetic predictors to phenotypic data using a hierarchical latent factor model that is computationally
107 efficient, yet highly flexible to accommodate different genetic architectures across traits (Runcie *et al.*
108 2021). MegaLMM decomposes a high-dimensional, but potentially sparsely populated phenotypic
109 matrix (\mathbf{Y}) into a low-rank factor score matrix (\mathbf{F}), a low-rank loading matrix ($\mathbf{\Lambda}$), and a residual matrix
110 (\mathbf{E}) (Figure 1A). Together, the factor matrix and the loading matrix explain the genetic covariation
111 among environments, while the residual matrix accounts for unexplained residual genetic variation,
112 microenvironmental variation, and measurement error unique to each environment. Learning latent
113 factor scores for each individual in the training set allows MegaLMM to predict genetic values of

114 each observed genotype in environments where that genotype was not grown (but other genotypes
115 were, *i.e.* the CV2 context) (Figure 1B). Latent regressions of each vector of factors scores (columns
116 of \mathbf{F}), and each residual vector (columns of \mathbf{E}) on genetic data from each observed genotype allows
117 MegaLMM to predict genetic values of new genotypes (without any phenotype data in \mathbf{Y} , *i.e.* the
118 CV1 context) in each environment by predicting factor scores \mathbf{F}_n and residual values \mathbf{E}_n for each
119 new genotype based on inputs of genetic data (Figure 1B). However, the original MegaLMM had
120 no mechanism to link values in Λ to external data representing properties of each environment.
121 Therefore, MegaLMM had no mechanism to predict genetic or phenotype values of either observed
122 or unobserved genotypes in new environments.

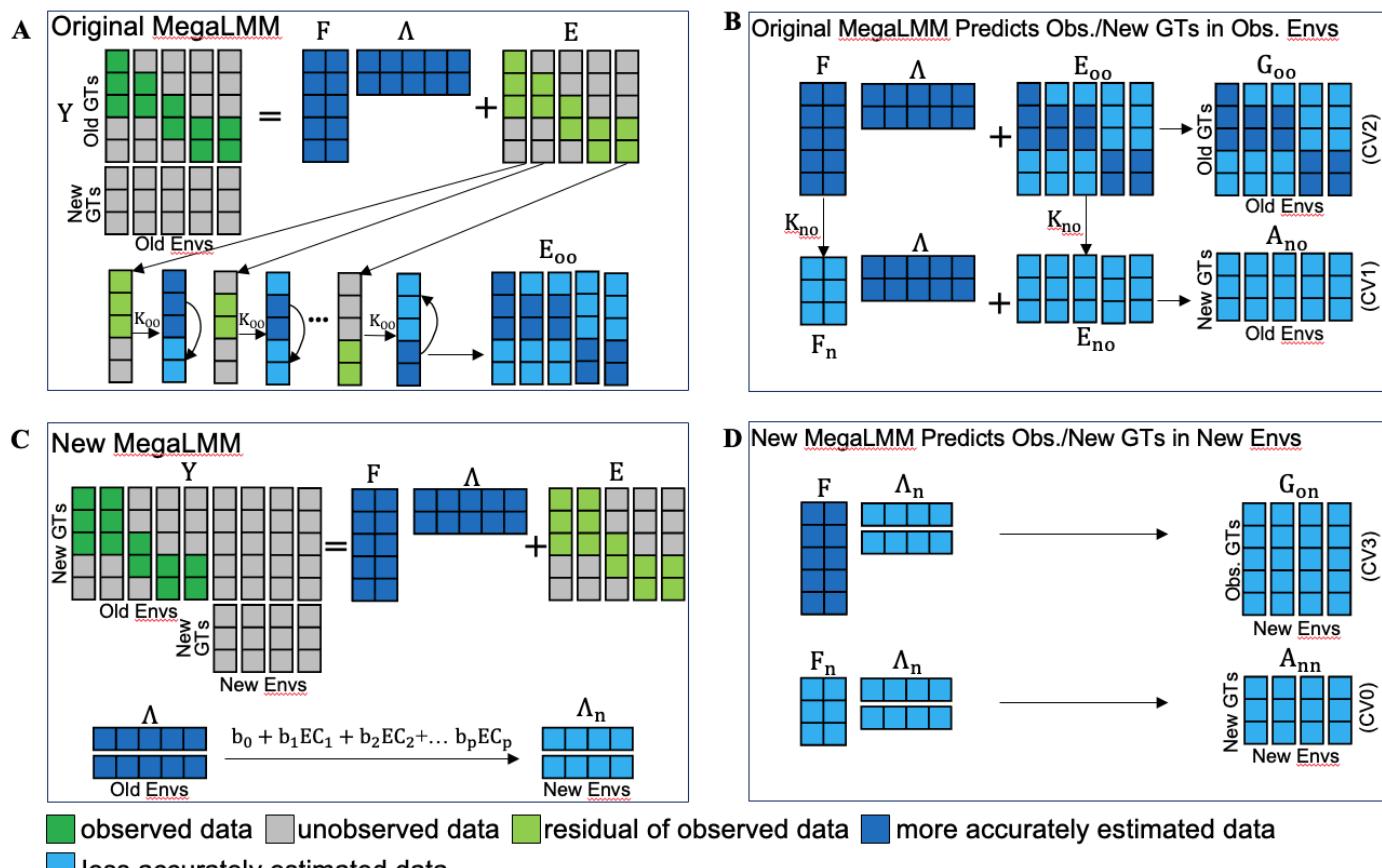


Figure 1. MegaLMM statistical models and their applications for predicting trait performance in experimental genotypes across observed and new environments.

(A) Original MegaLMM model architecture. (B) Approach for predicting genetic values of old or new genotypes in old environments using the original MegaLMM. (C) Model architecture of the new MegaLMM model. (D) Approach for predicting genetic values of old or new genotypes in new environments using the new MegaLMM. Y : phenotypic matrix consisting of phenotypic values measured on n genotypes (rows) in t environments (columns). F : factor matrix of old genotypes. F_n : predicted factor matrix of new genotypes. Λ : factor loading matrix for the old environments. Λ_n : predicted factor loading matrix for new environments. K : additive genomic relationship among old genotypes. E : residual trait matrix for observed genotypes in observed environments after accounting for the latent factors. A_{on} : predicted additive genetic values of old genotypes in new environments; G_{on} : predicted total genetic values of old genotypes in new environments. A_{no} : predicted additive genetic values of new genotypes in old environments. A_{nn} : predicted additive genetic values of new genotypes in new environments. G_{00} : predicted genetic values of old genotypes in old environments. GTs= Genotypes, Envs=Environments, EC=Environment Covariates.

123 Here, we extend MegaLMM to accept environmental data as predictors of the covariances of genetic
 124 values across environments. The extended model keeps all features of the original model, but adds
 125 functionality to express the rows of Λ as regressions on sets of ECs (Figure 1C). We can then predict
 126 genetic values of either old or new genotypes in any new environment that can be characterized by
 127 these ECs (Figure 1D). As an intuitive justification for this approach, we consider the variation in

128 trait values in a single environment y_j to be caused by a set of latent characteristics $f_1 \dots f_k$ (such as
129 flowering time, growth rate, and drought tolerance). In a different environment, many of these same
130 latent characteristics will still be important but their relative effects on overall performance may vary.
131 Each row of Λ represents the relative importance of a single latent characteristic across environments.
132 For example, if growth rate is similarly important in all environments, values in the corresponding
133 row of Λ will be similar. If earlier flowering is beneficial in some environments but detrimental in
134 others, the corresponding row of Λ will have some positive and some negative values. Our overall
135 hypothesis is that the variation in these importance weights across environments will be predictable
136 by known characteristics of those environments, including geography, climate, and management.
137 Details of this latent regressions approach are provided in the Methods.

138 ***MegaLMM greatly improves genomic predictions of agronomic traits within experimental trials***

139 We used the G2F maize hybrid dataset ([Lima et al. 2023](#)), covering the years 2014 to 2021, to evaluate
140 the genomic predictive ability of MegaLMM in its original form and with the enhancements described
141 above. The G2F maize hybrids are crosses between a large set of inbred lines (referred to as P1) and a
142 small set of tester lines (referred to as Tester). We formatted a trait matrix \mathbf{Y} with P1s as rows and
143 combinations of Tester, location, and year as columns, and filled each value with a least-squares mean
144 estimate of the corresponding hybrid trait values. We subsetted the data to include columns with
145 at least 50 observed trait values, which resulted in data from a total of 12 Testers. The replacement
146 of P1s every two years resulted in a very sparse trait matrix with 87.1% missing values for Grain
147 Yield (Figure 2A). Below, we refer to individual columns of this trait matrix as an “experiment”,
148 signifying trait values from a set of P1s crossed to a single tester and evaluated in a specific location-
149 year combination. In total, our dataset was composed of 1702 P1s, 12 testers, 4402 hybrids, 302
150 experiments, and 195 trials for Grain Yield (Figure 2A).

151 We used 5-fold cross-validation to measure the genomic predictive ability of the original MegaLMM
152 model for each of the three agronomic traits separately (Silk Days, Plant Height, and Grain Yield)
153 when trained on data from all 302 experiments and evaluated using the 20% of trait values withheld
154 as validation data in each individual experiment. For sparse testing applications (predicting trait
155 values for hybrids observed in some experiments but not others (CV2), estimated predictive abilities
156 averaged $r = 0.40 - 0.57$ across the three traits based on a meta-analysis accounting for measurement
157 error (Figure 2B), an average improvement of $r = 0.12 - 0.19$ across traits relative to predictions

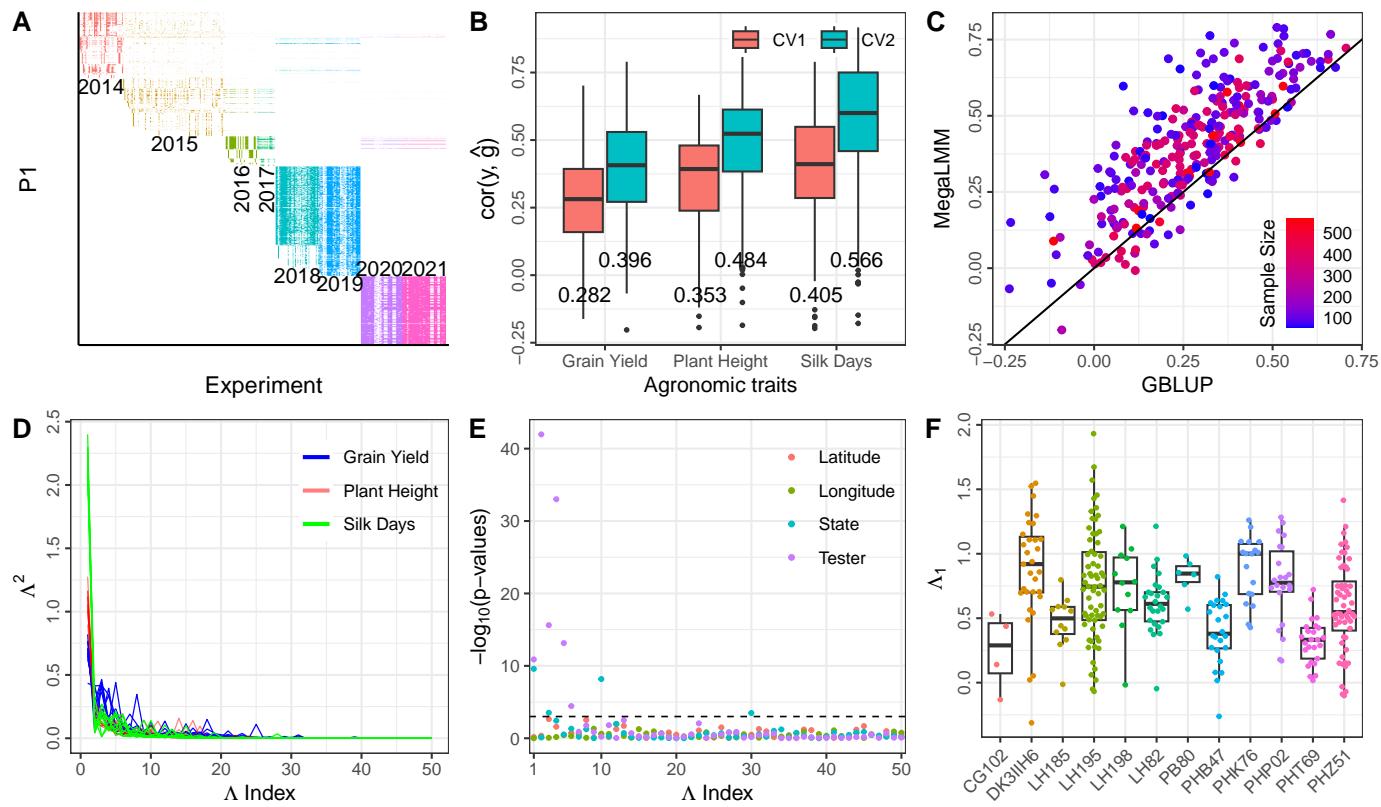


Figure 2. Data structure and predictive ability of the original MegaLMM model applied to the Genomes to Fields (G2F) maize hybrid dataset.

(A) The data structure of the reshaped Genomes to Fields (G2F) phenotypic matrix, with inbred parent 1 (P1) in rows and experiments (combinations of location, year, and tester) in columns. Each cell in the matrix is filled with the least squares mean estimate of yield for a single hybrid genotype in a single experiment, with different colors indicating yield estimates from different years. (B) Boxplots of genomic prediction for CV1 and CV2 using the original MegaLMM model. Each point within a boxplot represents predictive ability for a specific experiment. The mean predictive ability for each trait within each scenario is shown below the corresponding boxplot. (C) Scatterplot of MegaLMM versus GBLUP predictive abilities for CV2 using the original MegaLMM model for Grain Yield. Each point represents a specific experiment. (D) Line plots showing magnitudes of squared factor loadings (Λ^2). Each line represents the Λ^2 per factor distribution in one MegaLMM chain for a specific agronomic trait. Different colors indicate distinct traits. We specified that MegaLMM should estimate 50 factors per dataset and ran 10 replicate MCMC chains per dataset. (E) Distribution of ($-\log_{10}(p - \text{values})$) (y-axis) of regressions of factor loadings (x-axis) on latitude, longitude, state, and tester. (F) Boxplots of factor loadings for the first factor grouped by tester.

158 based on univariate GBLUP models trained on each experiment individually (Supplemental Figure
159 S1). For trait value predictions of new hybrids with no observations in the training data (CV1),
160 estimated average predictive abilities ranged from $r = 0.28 - 0.41$ for the three traits (Figure 2B), an
161 average improvement of $r = 0.01 - 0.03$ over the univariate GBLUP models (Supplemental Figure
162 S1). In almost every trial, estimated accuracies were higher for sparse testing applications (CV2)
163 (Figure 2C). These results parallel our earlier results applied to the first four years of the G2F dataset
164 (Runcie *et al.* 2021).

165 To investigate why MegaLMM improved over univariate approaches despite using the same genetic
166 predictors, we extracted posterior means of the latent factor score ($\hat{\mathbf{F}}$) and factor loadings ($\hat{\Lambda}$) matrices.
167 While these parameters are not always robustly identified in factor models like MegaLMM, the
168 priors we use for elements of Λ tend to make specific factor orientations more reproducible. We
169 allowed MegaLMM to learn 50 factors per dataset, but specified through our prior that the relative
170 importance of factors should decrease rapidly across factor ranks. This effectively “turns off” many
171 factors that are not needed when all loadings are shrunk close to zero. Applied to these three datasets,
172 MegaLMM learned $\sim 13 - 20$ factors per trait, each with at least one posterior mean importance
173 weight (value of Λ) that explained $> 1\%$ of the trait variance. Distributions of weights across factors
174 from 10 randomly chosen MegaLMM chains are shown in Figure 2D.

175 To explore whether candidate ECs such as the identity of the Tester or the geographic location, could
176 serve as predictors of the importance weights for these factors, we regressed the posterior mean
177 values of each row of Λ on latitude, longitude, state, or Tester. Among the 50 factors derived from the
178 Grain Yield data in a single MegaLMM chain, four weight vectors were significantly associated with
179 state and six were significantly associated with testers, based on Bonferroni-adjusted P-values < 0.05
180 (Figure 2E). Some factors displayed moderate correlations with either latitude or longitude; however,
181 these correlations were not deemed statistically significant based on Bonferroni-adjusted P-values
182 < 0.05 (Figure 2E-F). Therefore, factor loading weights are somewhat predictable based on known
183 features of each trial and a hierarchical model including these ECs as features may be successful.

184 **Environmental Covariates enable MegaLMM to make accurate Genomic Prediction in new environments**

185

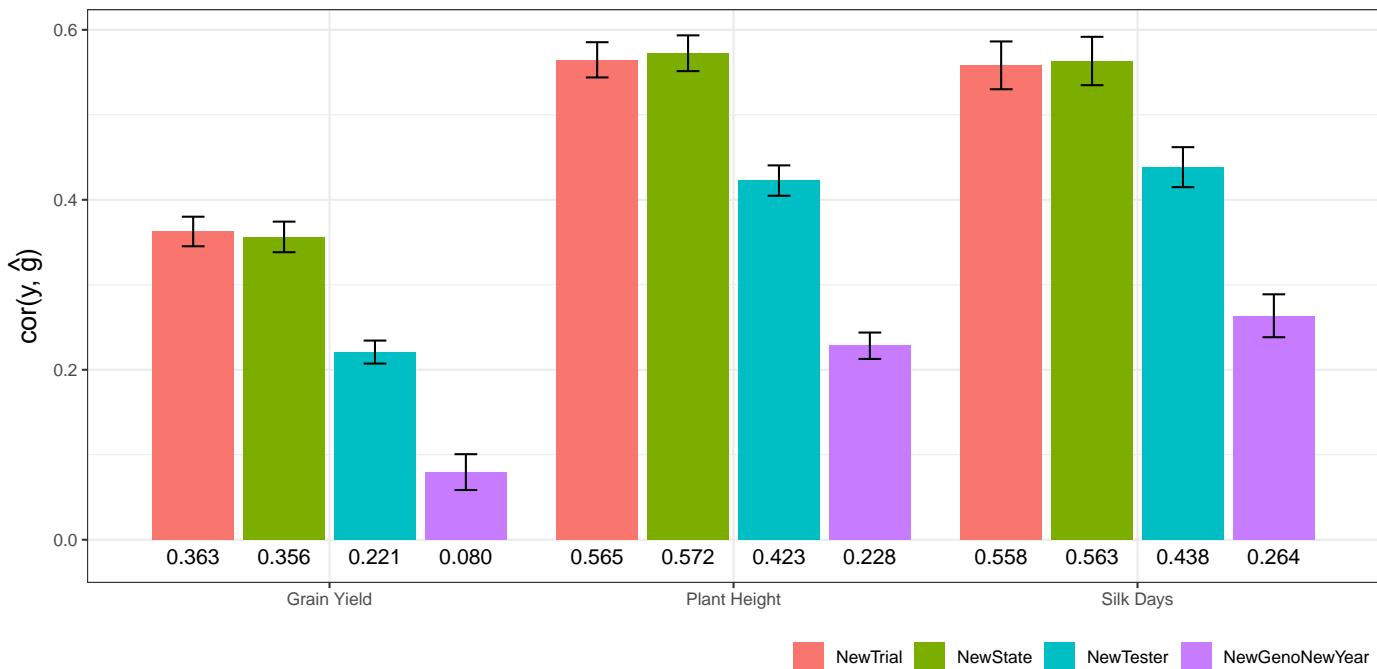


Figure 3. The extended MegaLMM model using ECs has moderate predictive abilities in new environments across four prediction scenarios for three agronomic traits (Silk Days, Plant Height, and Grain Yield).

Each bar represents the estimated mean predictive ability of the extended MegaLMM model using State ("S") and Tester ("T") IDs as predictors (*i.e* "S+T::S+T" model) across individual experiments in a specific prediction scenario. The mean prediction accuracies for each trait within each scenario are shown below the corresponding barplot. Colors indicate prediction scenario. Error bars represent 95% confidence intervals of the mean, estimated by meta-analysis accounting for the size of each individual experiment. Note that EC "S" has no impact on factor loading predictions in the NewState scenario, and "T" has no impact on loading predictions in either NewTester or NewGenoNewYear scenarios.

186 We extended MegaLMM to additionally take as inputs ECs for any number of environmental features
187 and use these as priors for factor loadings. We designed four Cross-Validation experiments to evaluate
188 whether ECs could enable accurate genetic values predictions in new experiments in increasingly
189 challenging prediction scenarios: 1) *NewTrial*: Can we predict genetic values in new trials, *e.g.* future
190 trials that re-use previously observed testing locations and hybrids? 2) *NewState*: Can we predict
191 genetic values in trials (of previously observed hybrids) grown in new geographic locations not near
192 any existing trials *e.g.* in a new state? 3) *NewTester*: Can we predict genetic values of new hybrids
193 (created with previously used P1s), *e.g.* new experiments in the same trials? 4) *NewGenoNewYear*: Can

194 we predict the genetic values of previously unobserved hybrids (derived from neither same P1 nor
195 same Tester) in new years. This scenario is motivated by the introduction of new inbred lines every
196 two years, as depicted in Figure 2A.

197 Since in each case, the target experiments shared either geographic proximity (same state), or
198 genetic similarity (same Tester) with trials in the training data, we first tested whether the extended
199 MegaLMM model could improve genetic value predictions in these contexts using simple categorical
200 ECs – the identity of the state and the identity of the Tester used in each experiment. We call this
201 model S+T::S+T, signifying that the predictors S (State) and T (Tester) were used both in training
202 (before the “::”) and as feature values for prediction (after the “::”).

203 As expected, genomic predictive abilities of MegaLMM declined across the four prediction scenarios
204 for Grain Yield (Figure 3). Surprisingly, for Plant Height and Silk Days, the genomic predictive
205 abilities of *NewTrial* were slightly lower than those of *NewState*, although the differences were not
206 significant. Across the three agronomic traits, average genomic predictive abilities using the ECs
207 ranged from 0.363 to 0.565 for *NewTrial*, 0.356 to 0.572 for *NewState*, and 0.221 to 0.438 for *NewTester*
208 (Figure 3). The *NewGenoNewYear* scenario exhibited the lowest predictive ability, ranging from 0.080
209 to 0.264. We note that direct comparisons among the four scenarios are not entirely equitable due
210 to subtle differences in the composition of training and testing sets associated with each scenario.
211 Nevertheless, these comparisons offer an initial insight into the levels of predictive ability in each
212 prediction scenarios.

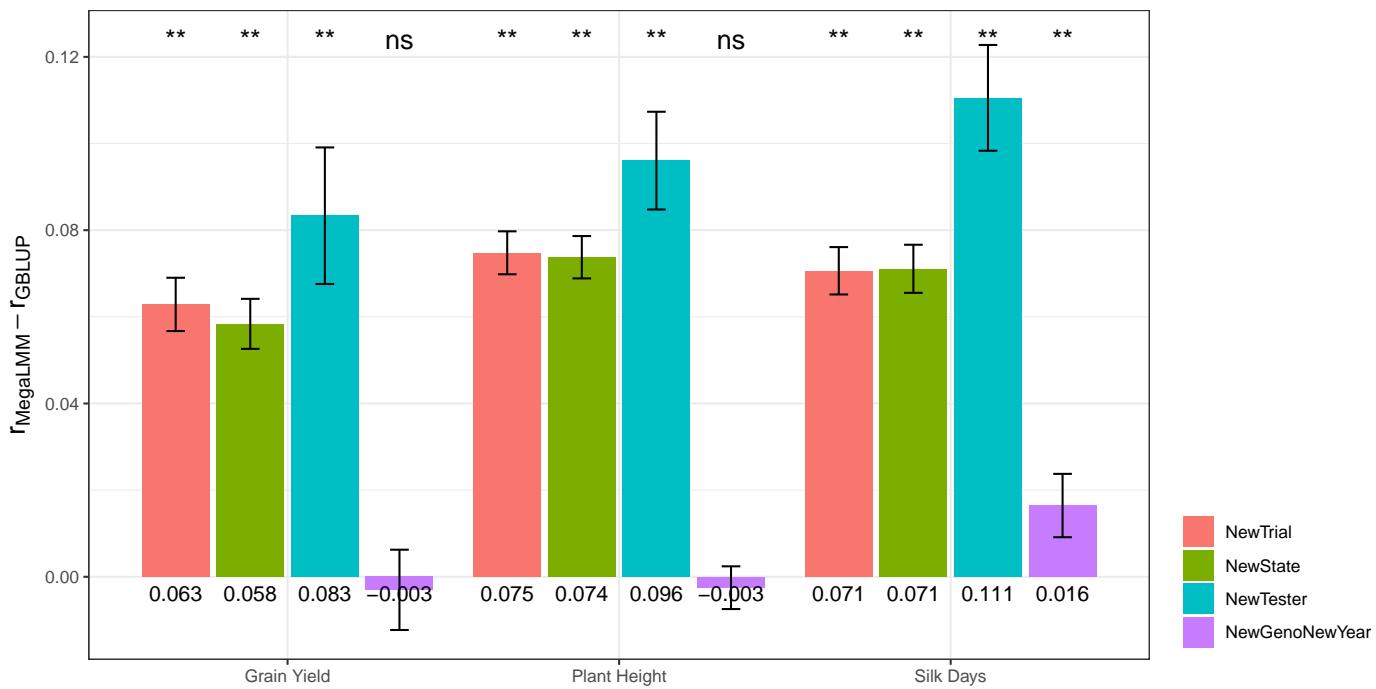


Figure 4. Predictive abilities of the extended MegaLMM model improve relative to univariate GBLUP prediction across most scenarios for three agronomic traits (Silk Days, Plant Height, and Grain Yield).

Each bar represents the mean difference in predictive ability between MegaLMM and GBLUP in specific scenarios. Colors indicate prediction scenario. Error bars represent 95% confidence intervals of the difference in mean predictive ability between MegaLMM and GBLUP, estimated by meta-analysis accounting for the size of each individual experiment. Significance levels from a meta-analysis, are indicated above each barplot and mean differences in predictive ability for each trait within each scenarios are presented below the respective barplot.

213 To test if these predictive abilities were higher than could have been achieved using univariate GBLUP,
 214 we considered two univariate prediction strategies for the new environments: i) forming predictions
 215 of all candidate hybrids individually in each training experiment and then averaging predictions
 216 across all experiments into a single constant prediction to be applied to each new experiment, or ii)
 217 repeating this procedure but only for “similar” experiments, where we defined similarity as either
 218 experiments from the same state, or experiments using the same Tester. We ran both strategies and
 219 identified which produced more accurate predictions on average across all test experiments in a
 220 particular scenario. We used a similar procedure to select the most accurate extended MegaLMM
 221 model (i.e. experiment-specific or experiment-average predictions). We then compared the accuracies
 222 of the best MegaLMM model with the best GBLUP model for each experiment for each trait within
 223 each prediction scenario. Consistently, across all traits and nearly all scenarios, estimated mean
 224 prediction accuracies of MegaLMM were significantly higher than those of GBLUP ($p\text{-value} < 0.01$)

225 (Figure 4). The exceptions were for the scenario of *NewGenoNewYear* for Grain Yield and Plant Height,
226 where there was no significant difference between MegaLMM and GBLUP.

227 These results confirm that MegaLMM's predictions remain better than univariate predictions, even
228 in new environments. However, it could be that this improvement is due to MegaLMM's ability
229 to empirically learn covariances among experiments, not the additional information provided by
230 the ECs. In fact, even if we run MegaLMM without ECs and use the univariate strategy of simply
231 averaging predictions across all training experiments, MegaLMM's predictions in new experiments
232 are considerably more accurate than the univariate ones (O::O vs GBLUP_O::O, Figure 5). To measure
233 the additional benefit of the ECs, we ran prediction models using the ECs only as a prior but
234 predicting based on the experiment-average as above (S+T::O), and using the ECs both as prior
235 and for prediction (S+T::S+T). Note that in some scenarios, either the S or the T predictors were
236 uninformative because the test values were not present in the training experiments, and so these
237 predictors were dropped.

238 Across all three prediction scenarios, the S+T::O model significantly improved genomic predictive
239 ability for all three agronomic traits, except for Plant Height in *NewTrial* and *NewTester*, where
240 the S+T::O model's accuracy was either identical or slightly lower than that of the O::O model
241 (Figure 5A,C). These results suggest that the inclusion of S+T as a factor loading prior contributes to
242 enhanced genomic prediction in new environments.

243 In the prediction scenarios of *NewTrial* and *NewState*, the S+T::T model significantly improved
244 genomic predictive ability compared to the S+T::O model for all three traits (Figure 5A,B), indicating
245 that incorporating the tester as a predictor enhances genomic predictive ability in new environments
246 in cases where the same tester was used in training experiments. However, in the *NewTester* scenario,
247 the S+T::S model outperformed the S+T::O model for Grain Yield but not for Plant Height and Silk
248 Days (Figure 5C). These findings suggest that averaging similar experiments from the same Tester can
249 enhance genomic predictive ability. However, when averaging similar experiments from the same
250 State, the impact on genomic predictive ability varied, with sometimes showing slight improvements,
251 but other times showing slightly decreased accuracy when predicting hybrid performance in new
252 environments.

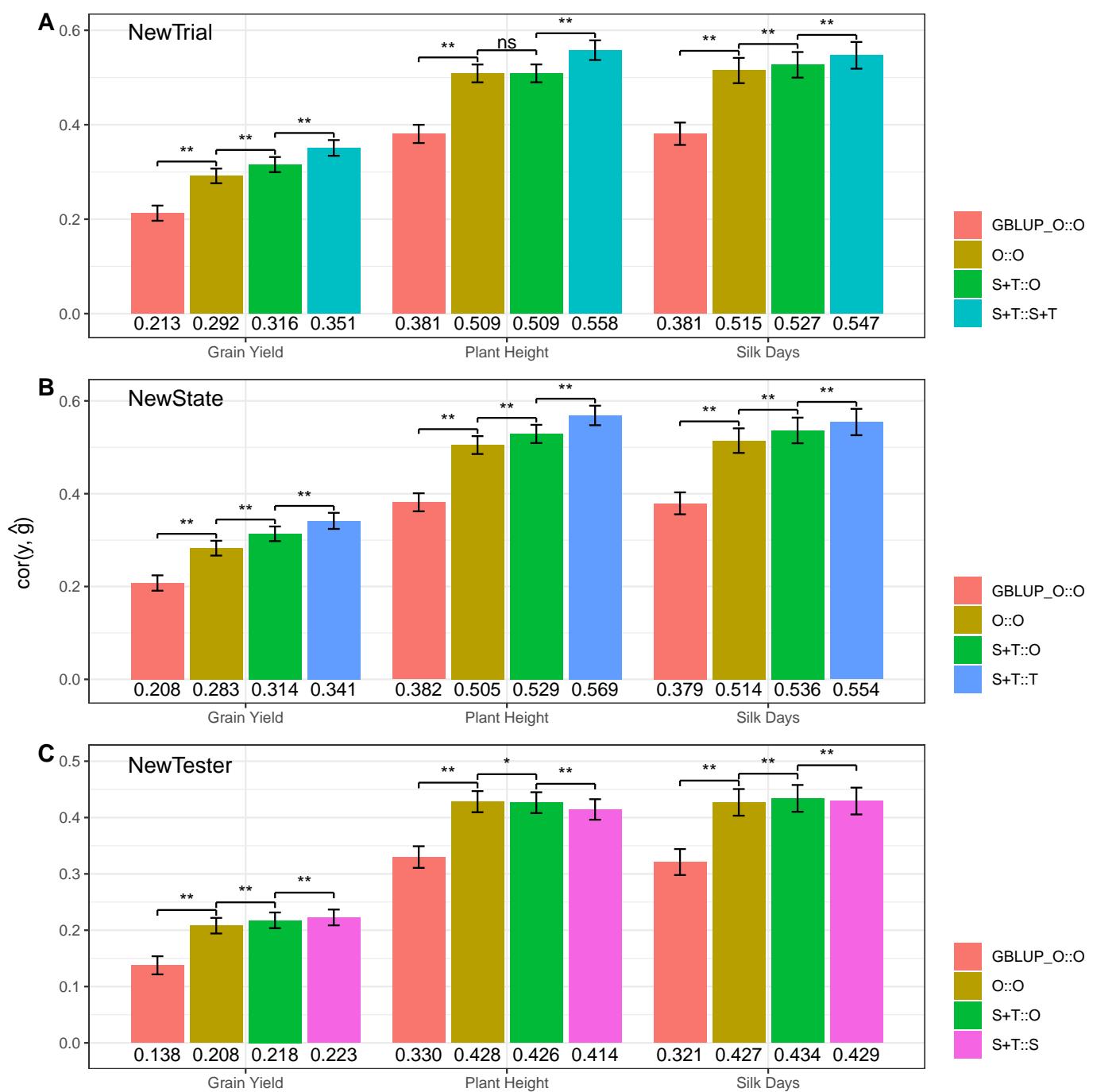


Figure 5. Environmental Covariates improve MegaLMM's predictions in new environments relative to model that only use historical data, across three agronomic traits (Silk Days, Plant Height, and Grain Yield) and in three distinct prediction scenarios: (A) NewTrial, (B) NewState, and (C) NewTester. Each bar represents the estimated mean predictive ability of a specific model across individual trials. The mean prediction accuracies for each trait within each scenario are shown below the corresponding barplot. Colors indicate the prediction model. Error bars represent 95% confidence intervals of the mean, estimated by meta-analysis accounting for the size of each individual experiment. We show results from models with increasing complexity, starting with a univariate model, denoted GBLUP_O::O, based on GBLUP predictions obtained from averaging prediction made in individual experiments across all training experiments without using ECs, the original MegaLMM model that does not use ECs (O::O), a version of the extended MegaLMM model that uses ECs as priors but bases predictions on the average of predictions from each training trial without further using the ECs (S+T::O), and the full extended MegaLMM model that used ECs both as priors and as predictors (S+T::S+T). EC variables are denoted "S" for State, "T" for Tester, and "O" for empty ECs.

253 **Quantitative ECs can substitute of Qualitative ECs in Genomic Prediction for new environments**

254 The above results demonstrate that MegaLMM can successfully use ECs to improve genomic predictive ability for new environments (Figure 5). However, these models used only categorical predictors
 255 (state or Tester labels), which can only be used to make predictions in environments that share the
 256 same levels of these labels. In contrast, quantitative ECs, like temperature or precipitation, could be
 257 used to make predictions in any geographic location.
 258

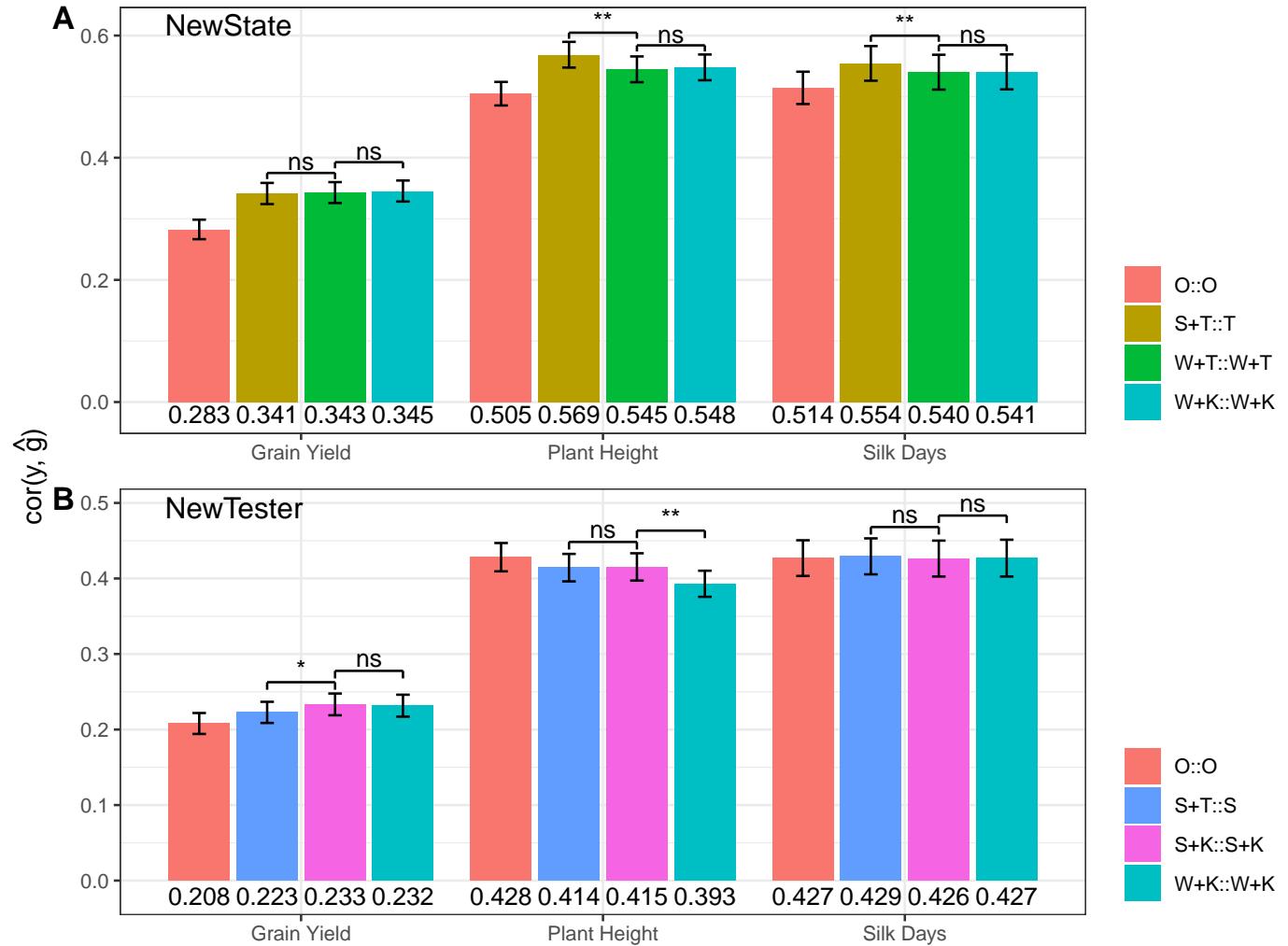


Figure 6. MegaLMM Model Comparison across three agronomic traits (Silk Days, Plant Height, and Grain Yield) using high-dimensional Environmental Covariates: (A) NewState and (B) NewTester. Each bar represents the estimated mean predictive ability of a specific MegaLMM model across individual trials. The mean prediction accuracies for each trait within each scenario are shown below the corresponding barplot. Colors indicate the prediction model. Error bars represent 95% confidence intervals of the mean, estimated by meta-analysis accounting for the size of each individual experiment. MegaLMM models are denoted by a combination of a factor loading prior and a factor loading predictor, separated by “::”, where “S” denotes State, “T” denotes Tester, “W” denotes Weather data, “K” denotes genomic relationship among Testers.

259 To test whether MegaLMM can effectively use quantitative ECs, we repeated the above cross-
260 validation experiments but substituted the categorical ECs with quantitative ones. We replaced
261 the "S" ECs with scaled eigenvectors from a set of 278 weather variables ("W"), and the "T" ECs
262 with the scaled eigenvectors of a genomic relationship matrix ("K") of the Testers computed from
263 the same genotypic data used for the P1s. Specifically, we compared a W+T::W+T model with the
264 S+T::T model in the *NewState* scenario and a S+K::S+K model with S+T::S model in the *NewTester*
265 scenario. Since "S" ECs cannot contribute to predictions in the *NewState* scenario but "W" can, and
266 since "T" cannot contribute to predictions in the *NewTester* scenario but "K" can, we hypothesized that
267 the use of quantitative ECs ("W" and "K") would improve genomic prediction. However, only the
268 S+K::S+K model significantly improved genomic predictive abilities compared to the S+T::S model in
269 the *NewTester* scenario (Figure 6B). Other MegaLMM models with quantitative ECs showed either
270 similar or slightly lower genomic predictive ability compared to their counterparts with qualitative
271 ECs (Figure 6).

272 Subsequently, we replaced categorical ECs with quantitative ECs in MegaLMM models for the three
273 traits in both scenarios. Specifically, we substituted "K" for "T" in the W+T::W+T model to obtain the
274 W+K::W+K model in the *NewState* scenario and substituted "W" for "S" in the S+K::S+K model to
275 get the W+K::W+K model in the *NewTester* scenario. We found that W+K::W+K model (with only
276 quantitative ECs) performed just as well as W+T::W+T (with the "T" categorical EC) in the *NewState*
277 scenario, and the W+K::W+K model (with only quantitative ECs) was only slightly inferior to the
278 S+K::S+K model (with the "S" categorical EC) for Plant Height in the *NewTester* scenario (Figure 6).
279 These results suggest that kinship and weather data can effectively substitute for categorical labels
280 when the states or testers have been observed in the training data. This shows that MegaLMM can
281 effectively use quantitative ECs, but suggests that the quality of the quantitative ECs we used in our
282 analysis may have been too low to be useful in this analysis.

283 DISCUSSION

284 ***Insights into the use of Environmental Covariates for genomic prediction for new environments***

285 We developed an extended MegaLMM model with EC-based priors to predict genetic values in new
286 environments. MegaLMM is based on a factor-analytic model, and allows users to model a large
287 number of latent factors underlying variation in genetic values in each environment. The ECs help

288 the model learn the importance weights for each factor in each environment, and provide coefficients
289 necessary to predict importance weights - and therefore genetic values - in new environments.
290 Overall, we found the ECs significantly improved MegaLMM predictive ability in most scenarios
291 relative to the performance of the MegaLMM base model (O::O, Figure 5). However, compared to
292 the improvement of the MegaLMM base model over a univariate GBLUP approach (Figure 4), the
293 improvement due to the incorporation of ECs was less dramatic. These results highlight several
294 important points.

295 First, even though neither the MegaLMM base model nor univariate GBLUP models can directly
296 produce predictions of genetic values in new environments, we found that a simple post-processing
297 of their predictions across the MET experiments (*i.e.* old environments) could result in reasonably
298 accurate genetic value predictions on average in new environments. Specifically, the average pre-
299 dicted genetic values across the MET experiments were correlated with observed values in most
300 new environments. In some cases, but not always, we could improve predictions by clustering
301 the MET experiments either by geography (State) or Tester and only averaging the genetic value
302 estimates within a cluster when predicting genetic values in new experiments in the same cluster.
303 This latter approach can be thought of as a non-parametric approach for using the ECs, and is
304 equivalent to factorial regression (Denis 1988; Piepho *et al.* 1998) approaches using categorical ECs as
305 dummy variables. One reason that such constant (*i.e.* not environment-specific) predictions can be
306 successful in this dataset is that trait values are positively correlated between most environments
307 (Supplemental Figure S2), diminishing the potential benefit of forming unique predictions in each
308 new environment. Thus, while models do detect significant $G \times E$ in this dataset (Rogers *et al.* 2021;
309 Lopez-Cruz *et al.* 2023), the magnitude of the $G \times E$ variance is not large relative to genetic main effect
310 variance. $G \times E$ models necessarily have larger prediction variances because they try to make more
311 specific predictions, and unless the actual $G \times E$ variance is large enough to counteract the reduced
312 precision, "main effect" models will be more accurate (Weine *et al.* 2023). One possible reason for
313 the relatively low importance of $G \times E$ in this dataset is the wide diversity among hybrids, including
314 some relatively low-performing hybrids with poor trait values in most environments. If only elite
315 hybrids had been used, the relative importance of $G \times E$ prediction might have been higher.

316 Second, ECs are useful for learning the model's parameters even if not used for prediction. We
317 found that when we used ECs as priors during model training, the correlation between the averages
318 of predicted genetic values across the MET experiments and the observed phenotypes in new

environments was typically higher than with the MegaLMM base model which did not use the ECs (Figure 5). In this case, we did not use the ECs to make predictions tailored to each new environment, yet still found the ECs useful. Here, the ECs may help the model learn correlations between pairs of trials that do not share many hybrids in common, so there is little data to learn correlations empirically, but which do share values of ECs. This suggests that ECs may be especially useful when METs are very sparse and perhaps even unconnected – containing trials without *any* overlapping hybrids. This improvement was not apparent within the MET experiments themselves (in terms of accuracy measured by CV2), probably because the residual genetic terms (U_R) were able to make sufficiently accurate predictions.

Third, successfully predicting genetic values in new environments may require both higher-quality ECs and many more MET experiments. While this data set is large, composing 302 experiments, it contains only 195 trials in different site-years to learn regressions on ECs like weather, only 37 locations to learn regressions on ECs like geography, climate, and soil, and only 12 testers to learn regressions on genetic markers of each tester. Genomic prediction models (in a single environment) generally require hundreds of genotypes to effectively learn allele-phenotype correlations (Jannink *et al.* 2010) because genotypes are the unit of replication of alleles in these models. Since experiments are replicates of environmental variables in $G \times E$ models, and because the environmental drivers of performance are likely similarly complex to genetic drivers, hundreds of experiments are probably needed to adequately model $G \times E$ in new environments. Nevertheless, we showed that MegaLMM could successfully use high-dimensional ECs (from weather or tester genotypes) to make accurate predictions, at least when the new environments were closely related to existing environments (same states or same testers). However, more informative ECs, such as ECs derived from crop growth models (Heslot *et al.* 2014; Rincent *et al.* 2019) may help reduce the dimensionality burden, making $G \times E$ modeling more efficient.

343 **Comparison with other approaches for predicting genotype-environment interactions**

344 Compared with previous statistical models that use ECs for predictions in new environments, the
345 extended MegaLMM model offers several statistical and practical advantages, including the ability
346 to use high-dimensional ECs, regularization through a moderate number of latent factors, and the
347 ability to fit phenotypic data from very large and very sparse METs.

348 The ability to simultaneously use high-dimensional ECs for prediction should be useful when

349 multiple environmental variables simultaneously impact the variation in genetic values across a TPE.
350 In the extended MegaLMM model, we use regularized regression to provide robust inference across
351 high-dimensional ECs. This contrasts with the CERIS-JGRA method of [Li *et al.* \(2021\)](#) which searches
352 among candidate ECs for a single EC that is best, and then bases predictions on this single EC. Also,
353 while the CERIS-JGRA method selects an EC based on the ability to predict phenotype means across
354 trials, the extended MegaLMM prioritizes ECs based on their usefulness for distinguishing patterns
355 of covariance among trials, which is more directly applicable to breeding.

356 The ability to robustly use high-dimensional ECs is not unique to the extended MegaLMM model.
357 The GBLUP-based reaction norm model, as demonstrated by [Jarquín *et al.* \(2014\)](#), can also use high-
358 dimensional ECs, using kernel functions to turn the EC matrices into distance matrices. [Costa-Neto
359 *et al.* \(2021\)](#) also uses kernel methods for model $G \times E$ from METs. A limitation of this approach is
360 that training the kernel functions themselves is computationally expensive, so these methods use
361 fixed kernel functions which prevents learning weights among the ECs. Tuning parameters of the
362 kernel functions is possible in these methods, but the same tuned kernels would apply to all trials.
363 In contrast, the extended MegaLMM model can learn different EC weights for each latent factor,
364 providing an additional level of flexibility and opportunity for statistical learning of $G \times E$ patterns.

365 Much of MegaLMM's statistical and computational efficiency comes from its latent factor model
366 architecture. Many other models also use factor-analytic models for $G \times E$ prediction. For example,
367 the AMMI model is a factor model (but with fixed factors, [Rincent *et al.* \(2019\)](#)), and [Cullis *et al.*
368 \(2014\)](#) and [Heslot *et al.* \(2014\)](#) also proposed factor-analytic models for METs. The advantage of
369 factor-analytic models is that they model correlated traits with a small number of parameters relative
370 to the number of covariances among pairs of trials, providing statistical robustness, and remove the
371 need to invert large covariance matrices, alleviating computational limitations. However, MegaLMM
372 is unique in its ability to fit relatively large numbers of latent factors. Most prior applications of
373 factor-analytic models have handled only 1-3 factors and can fail to converge if run with more factors.
374 For example, [Schulz-Streeck *et al.* \(2013\)](#) found that the factor analytic structure failed to converge
375 when fitting a marker-by-environment interaction model, and [Rogers *et al.* \(2021\)](#) found that models
376 with more than one FA factor for environments, in combination with either additive or dominance
377 relationships, failed to converge when fitting a subset of G2F data. Our analysis of the maize G2F
378 dataset used 50 factors and found that 13-20 factors significantly contributed to trait performance
379 prediction across experiments for three agronomic traits (Figure 2D). This suggests that more factors

380 can be beneficial for accounting for varying sources of $G \times E$ variation in large METs.

381 Finally, our case study was a MET with 302 experiments and $\sim 87\%$ missing values, yet MegaLMM
382 was able to return predictions in ~ 3 hours (with 20 CPU cores). The ability to fit such sparse data is
383 an advantage over the AMMI models and other matrix-based (i.e. \mathbf{Y} is treated as a matrix) models
384 that require complete data. Also, the efficiency in fitting data with large numbers of traits makes
385 MegaLMM flexible for modeling complex experimental features like management characteristics
386 which can be important contributors to $G \times E$ ([Cooper et al. 2021](#)). Modeling management in addition
387 to environmental drivers complicates reaction norm models because of the need to specify many
388 interaction terms, making models unwieldy. In contrast, as a correlated traits model, MegaLMM
389 does not explicitly require an interaction term to model $G \times E \times M$ effects. Integrating management
390 characteristics into the MegaLMM model involves simply expanding the columns in the multivariate
391 response matrix, with columns representing combinations of environmental types and management.
392 Mathematically, the process of solving the linear mixed model equations and estimating parameters
393 remains unchanged.

394 ***Insights into modeling $G \times E$ in the maize hybrid breeding system***

395 Contrasting with most other analyses of the G2F maize hybrid dataset ([Rogers et al. 2021](#); [Lopez-Cruz
396 et al. 2023](#)), we divided each trial into multiple separate experiments based on the identity of different
397 testers used to create each hybrid, and then modeled the covariances among these experiments.
398 There are both practical and statistical benefits to doing this. On the practical side, focusing on
399 within-tester-family predictive ability aligns our approach with maize hybrid breeding strategies. In
400 maize hybrid breeding, germplasm is organized into two major heterotic pools, and inbred lines are
401 developed within these pools. The newly created inbred lines are initially evaluated and selected
402 by crossing them with suitable testers from complementary heterotic pools. Subsequently, they
403 are further crossed with a larger number of newly created lines from the opposite heterotic pool
404 for evaluation for potential commercial use ([Cooper et al. 2014](#)). In our analysis, we placed inbred
405 lines, rather than hybrids, as rows of our data matrix \mathbf{Y} , with columns representing combinations of
406 Tester and environment. Thus, our genomic predictions are best considered genetic values of inbreds
407 conditional on specific Testers and environments.

408 On the statistical side, modeling the covariance among hybrids from different testers allows modeling
409 of Tester-inbred genotype interactions, and therefore produces more accurate within-tester-family

410 predictions when these interactions are important. Since MegaLMM scales very efficiently with
411 numbers of experiments, there is little downside to breaking trials into multiple experiments, par-
412 ticularly when we can include prior information through ECs to partially pool information across
413 experiments when they are closely related. We found that Tester identity was the most useful EC
414 among experiments (comparing results from the *NewState* scenario where Tester ID could be used
415 for prediction in new environments, to results from the *NewTest* scenario where Tester ID was not
416 available for prediction, Figure 3), suggesting that the ranking of inbreds did change considerably
417 when crossed to different Tester. However, this result should be interpreted with caution because the
418 importance of Tester ID in this dataset is partially confounded with both geographic structure among
419 trials and population structure within the populations of inbreds (P1s), as discussed by [Lopez-Cruz](#)
420 *et al.* (2023).

421 In summary, we present an extended version of MegaLMM that can predict the genetic architecture
422 of new traits based on trait-specific prior data. This is a significant advancement of the MegaLMM
423 method, opening the possibility of many types of novel applications. We focus here on the application
424 of modeling genotype-environment interactions in multi-environmental trials in plant breeding,
425 where we consider each trial a new trait, and use environmental data as prior predictors of the
426 patterns of genotype-environment interactions. We expect that many other applications of this
427 extended MegaLMM model are possible both in plant breeding and in other fields where large linear
428 mixed models can be applied.

429 METHODS

430 *Original MegaLMM Model*

431 The original MegaLMM “correlated-trait” model of a MET is specified as:

$$\mathbf{Y} = \mathbf{XB} + \mathbf{ZU} + \mathbf{E} \quad (1)$$

432 where:

433 \mathbf{Y} is an $n \times t$ phenotypic matrix for a trait of interest measured on n experimental genotypes
434 grown in t trials, potentially with a large percentage of missing values,
435 \mathbf{X} is an $n \times p$ incidence matrix for fixed effects such as an intercept,

436 \mathbf{B} is a corresponding $p \times t$ matrix of fixed effects for each trial,

437 \mathbf{Z} is an $n \times q$ incidence matrix for random effects, in this case the identities of each inbred
438 parent,

439 \mathbf{U} is a corresponding $q \times t$ matrix of random effects, in this case additive genetic values, for
440 each trial,

441 \mathbf{E} is an $n \times t$ matrix of residuals for each genotype in each trial.

442 Fitting Eq. (1) is challenging because the columns of \mathbf{U} and \mathbf{E} are correlated. To address this issue,
443 [Runcie *et al.* \(2021\)](#) developed a new statistical framework, MegaLMM, based on a factor analytic
444 model, which decomposes the correlated traits model into a two-level hierarchical model.

445 In level 1, the phenotypic matrix \mathbf{Y} is decomposed into two components:

$$\mathbf{Y} = \mathbf{F}\Lambda + \mathbf{E} \quad (2)$$

446 where:

447 \mathbf{F} is an $n \times k$ latent factor matrix,

448 Λ is a $k \times t$ loading matrix,

449 \mathbf{E} is an $n \times t$ residual matrix of residuals for each trial.

450 Intuitively, k latent factors can be interpreted as k unobserved traits across each individual that are
451 constant across experiments, and the factor loadings represent the relative importances of each of
452 these k unobserved traits on the focal trait value in each experiments.

453 In level 2, each of the k latent factors in the \mathbf{F} matrix and each of the t residual traits in the \mathbf{E} matrix
454 are independently fitted with standard univariate linear mixed models:

$$\begin{aligned} \mathbf{f}_k &= \mathbf{X}\mathbf{b}_{F_k} + \mathbf{Z}\mathbf{u}_{F_k} + \mathbf{e}_{F_k} \\ \mathbf{e}_j &= \mathbf{X}\mathbf{b}_{R_j} + \mathbf{Z}\mathbf{u}_{R_j} + \mathbf{e}_{R_j} \end{aligned} \quad (3)$$

455 where:

456 \mathbf{f}_k and \mathbf{e}_j are $n \times 1$ vectors for the k th latent factor trait and the j th residual trait, respectively.

457 \mathbf{X} is an $n \times p$ incidence matrix for fixed effects,

458 \mathbf{Z} is an $n \times q$ incidence matrix for random effects,

459 \mathbf{b}_{F_k} and \mathbf{b}_{R_j} are $p \times 1$ vectors of fixed effects for the k th factor and j th residual trait, respectively,

460 \mathbf{u}_{F_k} and \mathbf{u}_{R_j} are $n \times 1$ vectors of random effects for the k th factor and j th residual trait, respectively,

461 \mathbf{e}_{F_k} and \mathbf{e}_{R_j} are $n \times 1$ vectors for residuals.

463 The distributions of random effects are specified as:

$$\mathbf{u}_{F_k} \sim \mathcal{N}(0, \sigma_{gF_k}^2 \mathbf{K}), \quad \mathbf{u}_{R_j} \sim \mathcal{N}(0, \sigma_{gR_j}^2 \mathbf{K})$$

$$\mathbf{e}_{F_k} \sim \mathcal{N}(0, \sigma_{eF_k}^2 \mathbf{I}), \quad \mathbf{e}_{R_j} \sim \mathcal{N}(0, \sigma_{eR_j}^2 \mathbf{I}),$$

464 where:

465 \mathbf{K} is the pairwise genomic relationship matrix between old genotypes that is estimated with
466 genetic molecular markers,

467 \mathbf{I} is the identity matrix,

468 $\sigma_{gF_k}^2$ is the genetic variance components associated with the k th latent factor,

469 $\sigma_{gR_j}^2$ is the genetic variance components associated with the j th residual trait,

470 $\sigma_{eF_k}^2$ is the residual variance components associated with the k th latent factor, and

471 $\sigma_{eR_j}^2$ is the residual variance components associated with the j th residual trait.

472 All parameters of MegaLMM are estimated using a Gibbs sampler as described in (Runcie *et al.* 2021).

473 **Extensions to Predict Trait Performance in New Environments**

474 The original MegaLMM model lacked the capability for making predictions in new environments
475 because elements of the environment-specific weights matrix Λ were independent in the prior and
476 thus could only be learned based on correlations between records in different observed environments.

477 Our extended MegaLMM model replaces the original prior on Λ with a prior of the following form:

$$\begin{aligned}
 \lambda_{k\cdot} &= \sum_{l=1}^L \mathbf{W}_l \mathbf{a}_{lk} + \epsilon_k \\
 \mathbf{a}_{lk} &\sim N(0, \sigma_{lk}^2 \tau_k^{-1} \mathbf{I}) \\
 \sigma_l^2 &\sim \text{invGamma}(a, b) \\
 \epsilon_{kj} &\sim N(0, \psi_{jk}^{-1} \tau_k^{-1}) \\
 \psi_{jk} &\sim \text{Ga}(\nu/2, \nu/2), \quad \tau_k = \prod_{h=1}^k \delta_h \\
 \delta_1 &\sim \text{Ga}(\alpha_1, \beta_1), \quad \delta_j \sim \text{Ga}(\alpha_2, \beta_2) \quad j \in 2, \dots, K.
 \end{aligned} \tag{4}$$

478 where $\lambda_{k\cdot}$ is a row of Λ representing the relative importance weights of latent factor k across environments.
 479 We model this vector as a regression on ECs, represented as L design matrices \mathbf{W}_l , $l \in 1 \dots L$,
 480 for example \mathbf{W}_1 is usually a single column of 1's representing an intercept, and in the MegaLMM_S+T
 481 model, \mathbf{W}_2 would be an incidence matrix of state identities, and \mathbf{W}_3 would be an incidence matrix of
 482 Tester identities. The regression coefficients are assigned independent normal priors with a variance
 483 that shrinks for higher order factors based on the precision parameter τ_k^{-1} . The residuals of this
 484 regression are assigned heavy-tailed t-distributed priors as in our earlier BSFG model (Runcie and
 485 Mukherjee 2013), which maintains the shrinkage of higher order factors towards zero. Parameters of
 486 this model for Λ are learned using the same Gibbs sampler steps as in the BSFG model (Runcie and
 487 Mukherjee 2013).

488 Using posterior samples of the regression coefficients \mathbf{a}_{lk} , posterior predictions of genetic values in
 489 new environments can be formed as:

$$\mathbf{G}_{on} = \mathbf{F} \left(\sum_{l=1}^L \mathbf{W}_l^n \mathbf{a}_{lk} \right)^\top \tag{5}$$

490 where:

491 \mathbf{G}_{on} are posterior samples of the genetic value for old genotypes in new environments,
 492 \mathbf{F} are posterior samples of the latent factor matrix estimated from old grown in old environments,
 493 \mathbf{W}_l^n are values for ECs in the \mathbf{W}_l matrix measured in new environments.

494 To form posterior predictions of genetic values for new genotypes, \mathbf{F} in 5 is replaced with $\mathbf{F}_n =$

496 $\mathbf{K}_{no}\mathbf{K}^{-1}\mathbf{F}$, where \mathbf{K}_{no} is the pairwise genomic relationship matrix between new and old
497 genotypes.

498 ***Cross-validation scenarios for predicting experimental genotypes in old and new environments***

499 **CV1:** We randomly divided experimental genotypes into five equal-sized folds within each environment.
500 The partition of genotypes was consistent across all environments. During cross-validation, four
501 folds were used for model training, and the fifth fold served as the validation set. This process
502 was repeated five times until each of the five folds in each environment was used as the validation
503 set.

504 **CV2:** Within each environment, we used the same genotype partition as CV1. However, we randomized
505 the order of the five folds independently across environments. During cross-validation, four
506 folds were used for training, and the fifth fold was used for validation. This procedure was repeated
507 five times until each of the five folds within each environment served as the validation set.

508 **NewTrial:** Building on the CV2 training sets, we randomly divided all trials (i.e., location-year
509 combinations) into five folds. Four folds were used for training, and the fifth fold was used for
510 cross-validation. For each of the five distinct CV2 training sets, this process was repeated five times
511 until each of the five folds of trials had been used as a validation set.

512 **NewState:** Following the CV2 training sets, we split all experiments by their respective States. We
513 selected States with at least 9 experiments as testing sets, resulting in 14, 13, and 12 testing sets for
514 Grain Yield, Plant Height, and Silk Days, respectively, for the G2F dataset. For each State in the
515 testing set, all other States were used for training. For each of the five distinct CV2 training sets, this
516 process was repeated 14, 13, and 12 times for Grain Yield, Plant Height, and Silk Days, respectively,
517 until each set of testing experiments had been used as a validation set.

518 **NewTester:** Based on the CV2 training sets, we split all experiments by their testers, resulting in a
519 total of 12 sets of testing experiments for the G2F data. Each set of testing experiments served as a
520 testing set, and the remaining experiments were used for model training. For each of the five distinct
521 CV2 training sets, this process was repeated 12 times until each set of testing experiments had been
522 used for validation.

523 **NewGenoNewYear:** Using each of the CV2 training sets, we divided all experiments into four
524 folds based on two-year intervals (2014-2015, 2016-2017, 2018-2019, and 2020-2021). Since hybrid

525 compositions changed dramatically every two years, each fold contained almost entirely different
526 sets of hybrids. To ensure no overlap between training and testing sets, we further excluded common
527 hybrids from the testing set. Thus, each fold represented new genotypes tested in new environments.
528 For each of the five distinct CV2 training sets, this process was repeated four times until each of the
529 four folds of experiments had been used as a validation set.

530 ***Estimating genomic prediction accuracies, their means and standard deviations***

531 Within each experiment, predictive ability was estimated using the following equation:

$$r = \text{cor}(\mathbf{y}, \hat{\mathbf{g}}) \quad (6)$$

532 where:

533 \mathbf{y} is a vector of adjusted phenotypic values, and
534 $\hat{\mathbf{g}}$ is a vector of predicted genotypic values.

535 For CV1 and CV2, within each experiment, we defined predictive ability as the mean correlation
536 obtained from five validation sets. Similarly, for prediction scenarios of *NewTrial*, *NewState*, *NewTester*
537 and *NewGenoNewYear*, within each experiment, we defined predictive ability as the mean of prediction
538 accuracies obtained from five distinct validation sets, which originated from five distinct CV2 training
539 sets.

540 Within each prediction scenario we estimated means and standard deviations of prediction accuracies
541 over all experiments using a meta-analysis to different sample size with the Hunter and Schmidt-type
542 approach ([Schmidt and Hunter 2014](#)) using the *escalc* and *rma* functions of the *metafor* R package
543 ([Viechtbauer 2010](#)). This implements a random-effect meta-analysis with estimated standard errors
544 of each individual correlation based on its own sample size. To test if one method produces higher
545 correlations on average than another, we compared the two vectors of correlations using the *r.test*
546 function of the *psych* R package ([Revelle 2023](#)), and extracted the estimated difference between
547 the two methods for each trial as well as the standard error of this difference. We then used the
548 *rma* function of the *metafor* package to compute a random effects meta-analysis of these differences
549 weighted by the sample size of each trial. Finally, we estimated 95% confidence intervals (CI) of
550 mean predictive ability within each prediction scenario with the following equation:

$$CI = \bar{x} \pm z \frac{s}{\sqrt{n}} \quad (7)$$

551 Where:

552 \bar{x} is the mean predictive ability,
553 z is the Z-score corresponding to the desired confidence level (for a 95% confidence level, $z=$
554 1.96),
555 s is the standard deviation of the prediction accuracies across experiments,
556 n is the total number of experiments within a prediction scenario.

557 ***Phenotypic and genotypic analyses of G2F maize hybrid dataset***

558 **Plant Materials**

559 The Genomes to Fields Initiative (G2F) is a multi-institutional, collaborative initiative to catalyze and
560 coordinate research linking genomics and phenomics in maize to achieve advances that generate
561 societal and environmental benefits ([AlKhalifah *et al.* 2018](#)). Since 2014, this project has evaluated
562 approximately 180,000 field plots involving more than 5,000 corn hybrid varieties across more than
563 200 unique environments in North America. Our analyses used the G2F maize hybrid data collected
564 between 2014 and 2021 and focused on three representative agronomic traits: Grain Yield: Measured
565 in Mg per ha at 15.5% grain moisture (unit: Mg/ha), utilizing plot area without an alley; Plant
566 Height: Quantified as the distance from the base of the plant to the ligule of the flag leaf, expressed
567 in centimeters; Silk Days: Defined as the number of days elapsed after planting when 50% of the
568 plants within a plot displayed visible silks.

569 **Phenotypic Data Analysis**

570 The initial 2014-2021 G2F phenotypic dataset comprises 217 unique trials with diverse field exper-
571 iment designs. As more than 71.4% of the G2F data points were linked to 12 major hybrid testers
572 ([Lopez-Cruz *et al.* 2023](#)), our analysis concentrated on these key tester families. Consequently, within
573 each trial (i.e., a location::year combination), we split the trait data by Tester and refer to each partition
574 as an experiment. We selected experiments composing a minimum of 50 hybrid genotypes for further
575 analysis. Therefore, in our analysis we consider the Tester as a component of an environment.

576 Our pre-processesing of the raw phenotypic data from each trial included the following steps. First,

577 we excluded tester families with fewer than 50 hybrid genotypes. Subsequently, we employed a
578 two-step procedure to filter outliers. Initially, within each individual trial, outlier data points were
579 eliminated based on the joint distribution of observed trait values across trials. Data points with
580 an expected occurrence of less than 1, assuming a normal distribution, were flagged as outliers.
581 Subsequently, outlier trials were identified based on the distribution of mean trait values across all
582 trials. Trials with a population mean expected to occur less than 1 time, given a normal distribution,
583 were classified as outliers. Following outlier removal, we retained 302, 278, and 231 experiments (i.e.,
584 tester families) for Grain Yield, Plant Height, and Silk Days, respectively, for downstream analysis.

585 To account for field design factors and obtain the best linear unbiased estimation (BLUE) of each
586 hybrid genotype, we employed linear or linear mixed models, depending on available experimental
587 design factors within each experiment. Experiments were categorized into four groups, each fitted
588 with a different model:

- 589 • For experiments with $>=2$ replicates and $>=2$ blocks each, we used a linear mixed model:
590 $y \sim \text{Hybrid} + \text{Replicate} + (1|\text{Replicate}:\text{Block})$, where y represents observed phenotypic values,
591 Hybrid and Replicate are fixed effects of hybrid genotypes and replicates, respectively, and
592 $(1|\text{Replicate}:\text{Block})$ is the random effect of block nested within replicate.
- 593
- 594 • For experiments with $>=2$ replicates and only one block in each replicate, we employed a linear
595 model: $y \sim \text{Replicate} + \text{Hybrid}$.
- 596
- 597 • In cases with only one replicate but multiple blocks in the replicate, we used a linear mixed
598 model: $y \sim \text{Hybrid} + (1|\text{Block})$, where $(1|\text{Block})$ represents the random effect of block.
- 599
- 600 • For a few experiments with only one replicate and one block in the replicate, a linear model
601 $y \sim \text{Hybrid}$ was applied.

602 Linear mixed models were fitted using the *lmer* function in the R library *lme4* (Bates *et al.* 2015). Linear
603 models were fitted with the *lm* function in the base R library (R Core Team 2023). The *predict* function
604 from the base R library was employed to extract marginal BLUEs for each hybrid genotype in each
605 environment.

606 Finally, we re-shaped all BLUEs for each hybrid genotype in each environment into a matrix with

607 rows corresponding to each inbred Parent 1's of the hybrid, and columns corresponding to the
608 experiment IDs (i.e. location-year-tester combinations).

609 **Genotypic Data Analysis**

610 We received G2F genotypic data from the committee of The Genomes to Fields 2022 Maize Genotype
611 by Environment Prediction Competition ([Lima et al. 2023](#)), who only provided genotypic data of
612 hybrid genotypes. The 2014-2021 G2F inbred lines (Hybrid Parent 1s and testers) were sequenced
613 with different technologies. The Maize Practical Haplotype Graph (PHG) database 2.1 was used
614 for variant calling, which generated a genotypic dataset with 4,928 unique hybrid genotypes and
615 437,214 SNP sites. We first filtered the SNPs using the following criteria: (i) minor allele frequency
616 (MAF) > 5%; (ii) maximum site missing rate < 20%, resulting in a dataset with 4928 unique hybrid
617 genotypes and 324,323 SNP sites. We used a custom script to infer the P1 and Tester genotypes of
618 each hybrid. Briefly, for each SNP in each hybrid, if the genotype was 0 or 2, we assigned this value
619 to both parents. If the genotype was 1, either the P1 or the Tester must have the 1 allele. To decide,
620 we compared the same locus to all other hybrids from the same tester. If any other hybrid had a 0
621 genotype at this locus, the Tester's genotype must be 0, otherwise its genotype must be 1. For this
622 analysis, we filtered out any hybrids where the tester was not replicated in at least one other hybrid.
623 Using the separate SNP genotype matrices of the P1s and the Testers, we computed additive genomic
624 relationship matrices for each following VanRaden's equation ([VanRaden 2008](#)) using the dogrm
625 software package ([Bellot et al. 2018](#)).

626 **Weather Data Analysis**

627 The original weather environmental variable record was captured on a daily basis. Given the high
628 correlation among these daily environmental variables, we conducted the following analyses to
629 address redundancy in environmental covariates: (i) We computed the Daily Corn Growing Degree
630 Days (GDD) between the planting and harvest dates for each trial using the formula: Daily Corn
631 GDD (°F) = (Daily Maximum Temperature °F + Daily Minimum temperature °F) - 50 °F. If the
632 daily maximum and/or minimum temperature was less than 50 °F (10 °C), it was adjusted to 50 °F.
633 Similarly, if the daily maximum temperature exceeded 86 °F, it was capped at 86 °F. (ii) We computed
634 the Accumulated Growing Degree Days (AGDD) and determined maize growth stages for each trial
635 based on methodologies described by [Widhalm \(2014\)](#) and [Nielsen \(2019\)](#). This analysis identified
636 23 stages of maize growth, including 20 vegetative growth phases from emergence (VE), V1-V18,

637 up to tassel formation (VT). For the reproductive phase, we consolidated R1, R2, and merged R3 to
638 R6 into a single growth stage. (iii) We averaged 11 weather environmental variables (Supplemental
639 Table S1) and GDD within the duration of each of the 23 growth stages. Moreover, AGDD and Accu-
640 mulated Precipitation (APRE) of each trial were included as environmental covariates, recognizing
641 temperature stress and water deficit as the two most important factors limiting crop growth and
642 yield (Langridge *et al.* 2021). Ultimately, this process yielded 278 ECs.

643 DATA AVAILABILITY

644 We obtained the G2F dataset from the committee of The Genomes to Fields 2022 Maize Genotype by
645 Environment Prediction Competition, accessible on CyVerse under <https://doi.org/10.25739/tq5e-ak26>.
646 The scripts used in this study are documented in the following GitHub repository: https://github.com/hh622/MegaLMM_New_Environments_Prediction_GenomesToFields. Additionally, the R package for
647 extended MegaLMM can be found here: <https://github.com/deruncie/MegaLMM/tree/restructure> and
648 will be moved to the ‘master’ branch and archived at Zenodo at time of publication.
649

650 FUNDING

651 This research was funded by the National Institute of Food and Agriculture (NIFA)’s Agriculture
652 and Food Research Initiative (AFRI) competitive grant, grant number 2020-67013-30904.

653 AUTHOR CONTRIBUTIONS

654 D.E.R. and H.H. conceived the research and analyzed the data; H.H., D.E.R. and R.R. wrote the
655 manuscript.

656 ACKNOWLEDGMENTS

657 The authors acknowledge the committee of The Genomes to Fields 2022 Maize Genotype by Environ-
658 ment Prediction Competition for providing the maize hybrid datasets. Additionally, the authors thank
659 Alencar Xavier from Corteva Agrisciences for his valuable advice on data analysis and manuscript
660 editing.

661 DECLARATION OF INTERESTS

662 No conflict of interest declared.

663 REFERENCES

664 AlKhalifah, N., D. A. Campbell, C. M. Falcon, J. M. Gardiner, N. D. Miller, *et al.*, 2018 Maize Genomes
665 to Fields: 2014 and 2015 field season genotype, phenotype, environment, and inbred ear image
666 datasets. *BMC Research Notes* **11**: 452.

667 Bates, D., M. Mächler, B. Bolker, and S. Walker, 2015 Fitting Linear Mixed-Effects Models Using **lme4**.
668 *Journal of Statistical Software* **67**.

669 Bellot, P., G. De Los Campos, and M. Pérez-Enciso, 2018 Can Deep Learning Improve Genomic
670 Prediction of Complex Human Traits? *Genetics* **210**: 809–819.

671 Burgueño, J., G. De Los Campos, K. Weigel, and J. Crossa, 2012 Genomic Prediction of Breeding
672 Values when Modeling Genotype \times Environment Interaction using Pedigree and Dense Molecular
673 Markers. *Crop Science* **52**: 707–719.

674 Cooper, M., C. D. Messina, D. Podlich, L. R. Totir, A. Baumgarten, *et al.*, 2014 Predicting the future of
675 plant breeding: complementing empirical evaluation with genetic prediction. *Crop and Pasture
676 Science* **65**: 311.

677 Cooper, M., K. P. Voss-Fels, C. D. Messina, T. Tang, and G. L. Hammer, 2021 Tackling $G \times E \times$
678 M interactions to close on-farm yield-gaps: creating novel pathways for crop improvement by
679 predicting contributions of genetics and management to crop productivity. *Theoretical and Applied
680 Genetics* **134**: 1625–1644.

681 Costa-Neto, G., R. Fritsche-Neto, and J. Crossa, 2021 Nonlinear kernels, dominance, and envirotyping
682 data increase the accuracy of genome-based prediction in multi-environment trials. *Heredity* **126**:
683 92–106.

684 Crossa, J., O. A. Montesinos-López, P. Pérez-Rodríguez, G. Costa-Neto, R. Fritsche-Neto, *et al.*, 2022
685 Genome and Environment Based Prediction Models and Methods of Complex Traits Incorporating
686 Genotype \times Environment Interaction. In *Genomic Prediction of Complex Traits*, edited by N. Ahmadi
687 and J. Bartholomé, volume 2467, pp. 245–283, Springer US, New York, NY, Series Title: Methods in
688 Molecular Biology.

689 Cullis, B. R., P. Jefferson, R. Thompson, and A. B. Smith, 2014 Factor analytic and reduced animal

690 models for the investigation of additive genotype-by-environment interaction in outcrossing plant
691 species with application to a *Pinus radiata* breeding programme. *Theoretical and Applied Genetics*
692 **127**: 2193–2210.

693 Denis, J. B., 1988 Two way analysis using covarites1. *Statistics* **19**: 123–132.

694 Gollob, H. F., 1968 A statistical model which combines features of factor analytic and analysis of
695 variance techniques. *Psychometrika* **33**: 73–115.

696 Heslot, N., D. Akdemir, M. E. Sorrells, and J.-L. Jannink, 2014 Integrating environmental covariates
697 and crop modeling into the genomic selection framework to predict genotype by environment
698 interactions. *Theoretical and Applied Genetics* **127**: 463–480.

699 Jannink, J.-L., A. J. Lorenz, and H. Iwata, 2010 Genomic selection in plant breeding: from theory to
700 practice. *Briefings in Functional Genomics* **9**: 166–177.

701 Jarquín, D., J. Crossa, X. Lacaze, P. Du Cheyron, J. Daucourt, *et al.*, 2014 A reaction norm model
702 for genomic selection using high-dimensional genomic and environmental data. *Theoretical and*
703 *Applied Genetics* **127**: 595–607.

704 Kick, D. R., J. G. Wallace, J. C. Schnable, J. M. Kolkman, B. Alaca, *et al.*, 2023 Yield prediction
705 through integration of genetic, environment, and management data through deep learning. *G3*
706 *Genes | Genomes | Genetics* **13**: jkad006.

707 Langridge, P., H. Braun, B. Hulke, E. Ober, and B. M. Prasanna, 2021 Breeding crops for climate
708 resilience. *Theoretical and Applied Genetics* **134**: 1607–1611.

709 Li, X., T. Guo, J. Wang, W. A. Bekele, S. Sukumaran, *et al.*, 2021 An integrated framework reinstating
710 the environmental dimension for GWAS and genomic selection in crops. *Molecular Plant* **14**:
711 874–887.

712 Lima, D. C., J. D. Washburn, J. I. Varela, Q. Chen, J. L. Gage, *et al.*, 2023 Genomes to Fields 2022 Maize
713 genotype by Environment Prediction Competition. *BMC Research Notes* **16**: 148.

714 Lopez-Cruz, M., F. M. Aguate, J. D. Washburn, N. De Leon, S. M. Kaepller, *et al.*, 2023 Leveraging
715 data from the Genomes-to-Fields Initiative to investigate genotype-by-environment interactions in
716 maize in North America. *Nature Communications* **14**: 6904.

717 Ly, D., S. Huet, A. Gauffreteau, R. Rincent, G. Touzy, *et al.*, 2018 Whole-genome prediction of
718 reaction norms to environmental stress in bread wheat (*Triticum aestivum* L.) by genomic random
719 regression. *Field Crops Research* **216**: 32–41.

720 Nielsen, B., 2019 Predict Leaf Stage Development in Corn Using Thermal Time.

721 Piepho, H.-P., J.-B. Denis, and F. A. Van Eeuwijk, 1998 Predicting Cultivar Differences Using Covari-

ates. *Journal of Agricultural, Biological, and Environmental Statistics* **3**: 151.

R Core Team, 2023 R: A Language and Environment for Statistical Computing.

Revelle, W., 2023 psych: Procedures for Psychological, Psychometric, and Personality Research. R package version 2.1.9.

Rincent, R., M. Malosetti, B. Ababaei, G. Touzy, A. Mini, *et al.*, 2019 Using crop growth model stress covariates and AMMI decomposition to better predict genotype-by-environment interactions. *Theoretical and Applied Genetics* **132**: 3399–3411.

Rogers, A. R., J. C. Dunne, C. Romay, M. Bohn, E. S. Buckler, *et al.*, 2021 The importance of dominance and genotype-by-environment interactions on grain yield variation in a large-scale public cooperative maize experiment. *G3 Genes | Genomes | Genetics* **11**: jkaa050.

Runcie, D. E. and S. Mukherjee, 2013 Dissecting High-Dimensional Phenotypes with Bayesian Sparse Factor Analysis of Genetic Covariance Matrices. *Genetics* **194**: 753–767.

Runcie, D. E., J. Qu, H. Cheng, and L. Crawford, 2021 MegaLMM: Mega-scale linear mixed models for genomic predictions with thousands of traits. *Genome Biology* **22**: 213.

Schmidt, F. L. and J. E. Hunter, 2014 *Methods of Meta-Analysis: Correcting Error and Bias in Research Findings*. Sage Publications, Inc., Thousand Oaks, CA.

Schulz-Streeck, T., J. O. Ongutu, A. Gordillo, Z. Karaman, C. Knaak, *et al.*, 2013 Genomic selection allowing for marker-by-environment interaction. *Plant Breeding* **132**: 532–538.

Smith, A., B. Cullis, and R. Thompson, 2001 Analyzing Variety by Environment Data Using Multiplicative Mixed Models and Adjustments for Spatial Field Trend. *Biometrics* **57**: 1138–1147.

Technow, F., C. D. Messina, L. R. Totir, and M. Cooper, 2015 Integrating Crop Growth Models with Whole Genome Prediction through Approximate Bayesian Computation. *PLOS ONE* **10**: e0130855.

VanRaden, P., 2008 Efficient Methods to Compute Genomic Predictions. *Journal of Dairy Science* **91**: 4414–4423.

Viechtbauer, W., 2010 Conducting Meta-Analyses in R with the **metafor** Package. *Journal of Statistical Software* **36**.

Washburn, J. D., E. Cimen, G. Ramstein, T. Reeves, P. O'Briant, *et al.*, 2021 Predicting phenotypes from genetic, environment, management, and historical data using CNNs. *Theoretical and Applied Genetics* **134**: 3997–4011.

Weine, E., S. P. Smith, R. K. Knowlton, and A. Harpak, 2023 Tradeoffs in Modeling Context Dependency in Complex Trait Genetics. preprint, Genomics.

Widhalm, M., 2014 "Corn growth stages with estimated calendar days and growing-degree units" by

754 R.G. Hall (SDSU).

755 Zobel, R. W., M. J. Wright, and H. G. Gauch, 1988 Statistical Analysis of a Yield Trial. *Agronomy*

756 *Journal* **80**: 388–393.

757

SUPPLEMENTAL INFORMATION

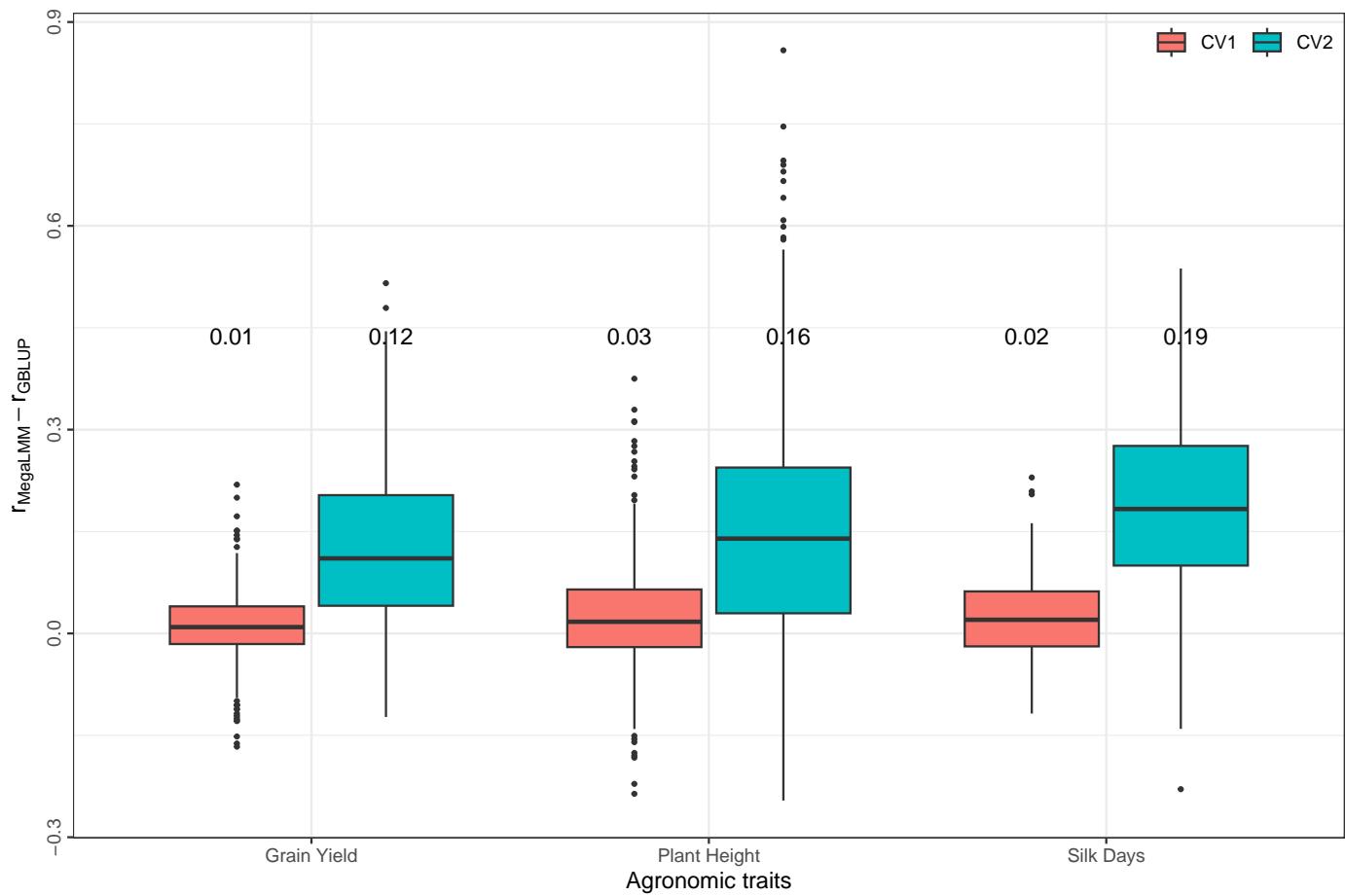


Figure S1. Predictive ability difference between MegaLMM and GBLUP for three agronomic traits (Silk Days, Plant Height, and Grain Yield). Each point within a boxplot represents the predictive ability difference between MegaLMM and GBLUP for a specific experiment. The mean predictive ability difference for each trait within each scenario is shown above the corresponding boxplot.

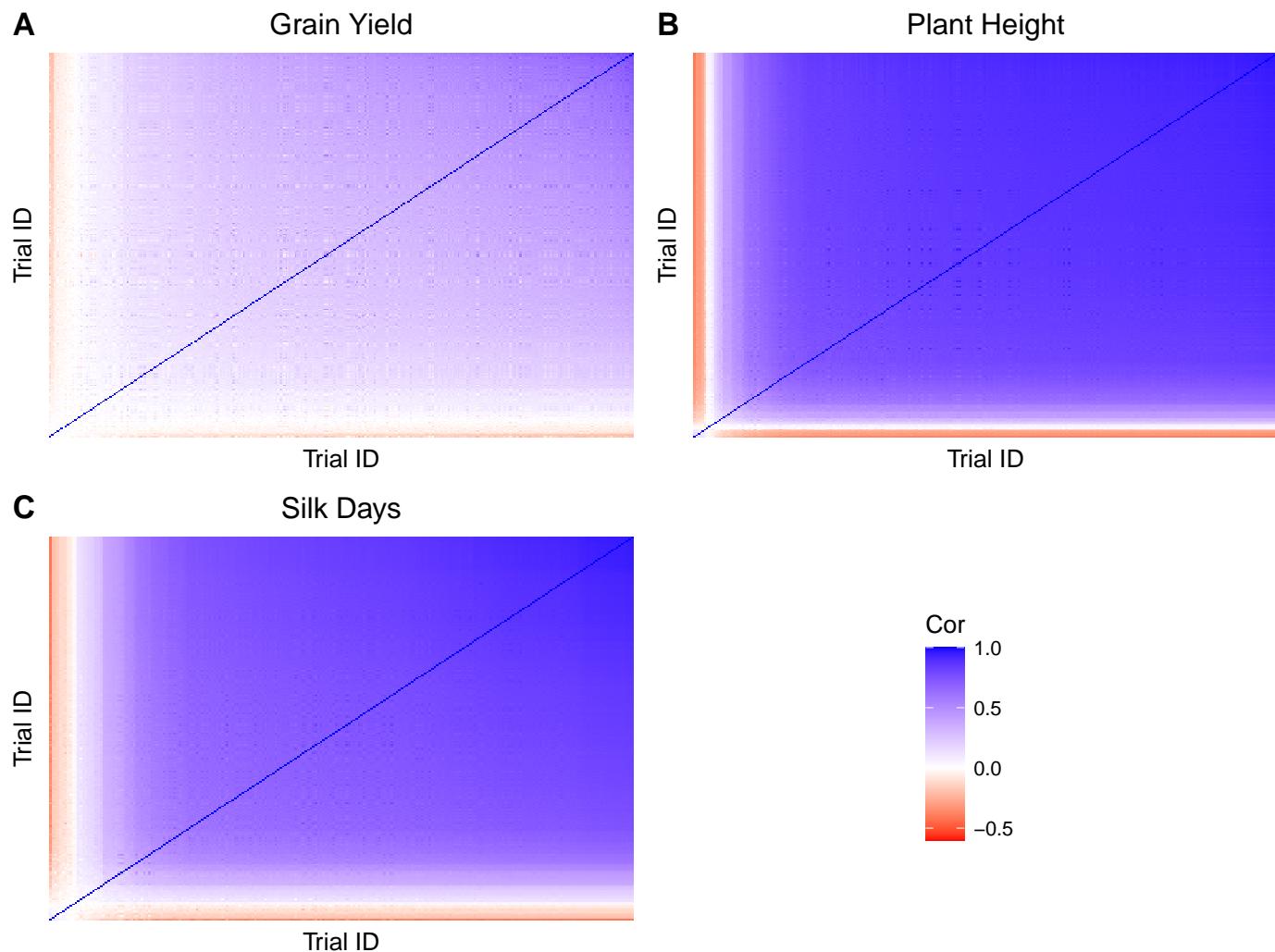


Figure S2. Pairwise phenotypic correlation between experiments estimated by MegaLMM for three agronomic traits (Silk Days, Plant Height, and Grain Yield)

Table S1 Description of the 11 weather environmental variables used in our study

Parameter	Units	Long Name/Description
T2MWET	°C	Wet Bulb Temperature at 2 Meters
QV2M	g/kg	Specific Humidity at 2 Meters
RH2M	%	Relative Humidity at 2 Meters
T2M_MAX	°C	Temperature at 2 Meters Maximum
ALLSKY_SFC_SW_DWN	MJ/m ² /day	All Sky Surface Shortwave Downward Irradiance
PS	kPa	Surface Pressure
T2MDEW	°C	Dew/Frost Point at 2 Meters
WS2M	m/s	Wind Speed at 2 Meters
T2M_MIN	°C	Temperature at 2 Meters Minimum
T2M	°C	Temperature at 2 Meters
PRECTOTCORR	mm/day	Precipitation Corrected