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Abstract

Neural processes in the hippocampus and entorhinal cortex are thought to be crucial for spatial
cognition. A growing variety of theoretical models have been proposed to capture the rich neural
and behavioral phenomena associated with these circuits. However, systematic comparison of these
theories, both against each other and against empirical data, remains challenging. To address this
gap, we present NeuralPlayground, an open-source standardised software framework for comparisons
between theory and experiment in the domain of spatial cognition. This Python software package
offers a reproducible way to compare models against a centralised library of published experimental
results, including neural recordings and animal behavior. The framework implements three Agents
embodying different computational models; three Experiments comprising publicly available neu-
ral and behavioral datasets; a customisable 2-dimensional Arena (continuous and discrete) able
to generate common and novel spatial layouts; and a Comparison tool that facilitates systematic
comparisons between models and data. Each module can also be used separately, allowing standard-
ised and flexible access to influential models and data sets. We hope NeuralPlayground, available on
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GitHub?, provides a starting point for a shared, standardized, open, and reproducible computational
understanding of the role of the hippocampus and entorhinal cortex in spatial cognition.

1 Introduction

Upon acquiring a novel experimental dataset, the route into data modeling, integrating the data with existing theories
and performing comparative analyses is intricate. Beginning with data organization and visualization, the process
progresses to creating a simulation environment for agent modeling and training. This might be followed by an
in-depth hyperparameter tuning, then visualizing and quantifying results for robust comparisons. This iterative
method is essential to compare new findings with the vast body of literature on the hippocampus and entorhinal
cortex [1-3]. Indeed, an ideal approach might involve scrutinizing each experiment against every relevant theory.
However, each new dataset or agent, with its unique format and challenges, adds to the workload significantly. The
increasing volume of data and the breadth of phenomena under study further complicate this task [4—7].

To address the considerable challenges posed by this task, we introduce NeuralPlayground, an open-source,
standardized framework designed to streamline the process of comparing entorhinal and hippocampal circuit (EHC)
models and experimental data. The present version of the framework comprises three agents, including a successor
representation model [8], an excitatory/inhibitory plasticity model [9], and the Tolman-Eichenbaum machine (TEM)
[10]. It implements a customizable 2D arena (both continuous and discrete) that can replicate common experimental
settings, such as T-maze, circular, and dynamic arenas. Finally, it facilitates simulations of the agents’ interactions in
these environments, and contrasts these with experimental results. Presently, NeuralPlayground provides three such
publicly available neural and behavioral datasets which have been cleaned and standardized to ensure accessibility
[4—6]. Crucially, the framework provides a Comparison tool that seamlessly allows users to compare the results
of artificial agents and experimental measurements from this array of Agents, Arenas, Experiments, and
Metrics. For instance, upon introducing a new experiment, NeuralPlayground automates the comparison process
with all implemented theories, expediting the critical task of theory-data integration (schematized in Fig. 1).
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Figure 1: NeuralPlayground: An open-source standardized framework to compare hippocampus and entorhinal
cortex models, aiding the loop between experiments and theoretical research in the field. Upon incorporating a
new experiment, NeuralPlayground automates the comparison process with all implemented theories (rightward red
arrow). Conversely, upon implementing a new theory embodied as a software agent, NeuralPlayground automates
the comparison to all experiments (leftward red arrow) and places these comparisons alongside other theories.

2 Motivation

2.1 The Hippocampus and Entorhinal Cortex

NeuralPlayground focuses on the role of hippocampus and entorhinal cortex in spatial cognition. The selection of
these particular brain structures and function reflects the substantial amount of empirical and theoretical research as-
sociated with them [1]. Moreover, these circuits contain diverse functional cell types characterised by firing properties,
including place cells [11], grid cells [12], and head direction cells [13]. Consequently, these regions provide a clear link
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between neural phenomena and cognitive or behavioural outcomes which can be modelled theoretically. Specifically,
at the population or circuit level, the hippocampus and entorhinal cortex has been proposed to encode a “cognitive

map” [11, 14, 15]. This enables mammals to efficiently and flexibly navigate the environment. The representations of
space encoded by this cognitive map have been extensively studied, both experimentally [8-10, 12, 13, 16-20] and the-
oretically [3—-10, 21-23]; see [L-3] for a review. A variety of models drawing on different principles such as attractor net-
works [14, 23, 24], spiking neuron models [25], and reinforcement learning [3, 26] have similarly been discovered. This

affords extensive comparison with experiments and has sparked new research questions and a better understanding
of navigation and learning mechanisms. Thus, in sum, hippocampus and entorhinal cortex when employed in spatial
cognition have distinct measurable neural mechanisms that are observable in behavior (both organic and artificial).
The resulting abundance of experimental and theoretical data covers various task settings. However, this abundance
necessitates software for data management and comparison, to fully harness the potential insights. NeuralPlayground
is designed to meet this need, offering a solution for navigating and maximizing the value of this extensive data.

2.2 Standardised Framework

While the importance of interaction between experiments and theory is clear, the available tools facilitating com-
parison are limited. The first challenge for the field in building a reliable comparison comes from 1) the availability
and accessibility of the data in a standard, labeled format. Even though the field is pushing forward in the direction
of more open source collaboration, it remains difficult to parse many task details and access behavioral and neural
data. Furthermore, users are confronted by a variety of data formats and pre-processing steps performed by each
study, with disparate documentation of these methods. As a result, new modelling work typically only compares
to a fraction of the available evidence and paradigms. A second challenge comes from the fact that 2) models and
experiments are not described with the same focus, detail or levels of abstraction. For example, not all models are
able to generate neural data/behavior or interact with a task. Identifying which regimes each model is valid for,
and which phenomena are relevant to compare against is not always straightforward. On the experimental end, the
lack of descriptors of experimental environments that can be used in models could prevent accurate computational
task modeling. Another prevalent issue is 3) the lack of standard or easy ways for models to interact with the
task. To test models, researchers often generate bespoke simulations of animal behavior and interactions with an
environment, hence duplicating work, introducing variability, and increasing chances of errors in re-implementations.
Finally, 4) there is no consensus on standard ways to compare model predictions with empirical data. Altogether,
this ultimately leads to a lack of standardisation and makes the aim of general accessibility challenging.

A better understanding of the ways models behave in different situations, beyond those reported in their respective
publications, will lead to novel experimental research and illuminate the pathologies and shortcomings of each model.
We aim to facilitate this by providing a tool for a simple inclusion of new models, experiments, and comparison
methods. In many other areas, achieving scale has been critical to advances in the field. We aim to facilitate the
scaling of model comparison which we hope will further aid cooperation and collaboration in the field.

3 Previous Work

Within hippocampus and entorhinal cortex, previous work such as RatInABox [27] and Neuro-Nav [28] have
successfully paved the way in building reproducible frameworks for neuroscience. Neuro-Nav and RatInABox share a
similar overarching goal but emphasize distinct aspects of this endeavor. RatInABox complements our approach by
allowing a wider variety of realistic animal trajectories and associated neural data, for cells that are spatially and/or
velocity selective in complex, continuous surroundings. Neuro-Nav is an open-source platform for reinforcement
learning (RL) that is based on the principles of neuroscience. It provides a collection of standard environments and
a large library of RL algorithms inspired by classical studies in rodents and humans, and focuses on behaviour. In
contrast to both, NeuralPlayground implements a broad class of models which span RL, cognitive connectionist/deep
learning models, and systems neuroscience circuit models. Furthermore, we allow for both continuous and discrete
action policies and environments with a particular focus on comparisons between experimental and model neural
responses in these environments.

The idea of a benchmark has been successfully implemented for models of the visual system [29] and computational
cognitive neuroscience models [30]. These benchmarks are now widely used by the community as a baseline for testing
models and have prompted novel research. Our benchmark methodology differs from the standard approach because of
the wide variation in environmental conditions reported in the EHC literature — across both experiments and models —
makes defining a single conclusive performance metric challenging. Instead, we have adopted an automated approach
that generates a range of metrics and visual representations. This strategy enables a comprehensive comparative
analysis, both quantitative and qualitative, of outcomes from model simulations and experimental results.
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4 NeuralPlayground library

4.1 NeuralPlayground Modules

The NeuralPlayground software package, built in Python, is composed of four main components organised in four
modules. Each module is built in a similar fashion: A core class defines a shared set of methods. Each instantiation
of a new agent, environment, experimental dataset or metric can be easily implemented as a child class, inheriting
these methods. We now describe each of these modules in turn.

Agent: The Agent class includes a set of functions that control the way intelligent systems interact with their
environment. An Agent receives observations from the environment (reward, visual cues, etc.) and uses these
to select an action, which in turn will update both its state and the state of the environment, generating new
observations. More generally, the Agent can be thought of as an animal performing the task in the simulated
Experiment. We have de novo implementations of three influential models of the hippocampus and entorhinal
cortex, namely the successor representation approach of Stachenfeld et al., (2017) [38], the excitatory/inhibitory
plasticity model of Weber & Sprekeler, (2018) [9], and the Tolman-Eichenbaum Machine (TEM) of Whittington et
al., (2020) [10]. These models are summarized in Fig. 2 and span a broad class of models including RL, systems
neuroscience circuit models, and cognitive connectionist/deep learning models.
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Figure 2: Simplified schematics of the Agents implemented. (Left) The successor representation (SR) model which
represents the likelihood of moving into a state s; from a previous state s; in the SR matrix M(s;,s;) [8]. This
model has been used to show that place fields skew backward toward previous states when the value function is
flexibly learned independently from the SR matrix M(s;,s;). (Middle) The Oscillatory-Interference model [9] on
a linear track. A threshold-linear model (r4,¢) builds a grid-like spatial receptive field from inputs received from
spatially tuned excitatory (orange) and inhibitory (pink) neurons (r; and r; respectively). (Right) Depiction of the
Tolman-Eichenbaum Machine (TEM) at one time point: The model takes inspiration from Tolman’s theory of an
internal cognitive map (pink) [14], and combines it with sensory data (yellow) via the relational memory (orange)
of Eichenbaum [10,

Arena: The Arena module creates a space within which an Agent can navigate, learn, and interact, mirroring
the physical configurations of experimental setups used in behavioral and neural data collection. It enables the
construction of any two-dimensional layout, both discrete and continuous, using walls as building elements. This
flexibility allows for the creation of intricate experimental designs, such as interconnected rooms, T-mazes, or
circular tracks, as depicted in Fig.3. Additionally, dynamic Arenas that change over time, like the merging room
experiment from Wernle et al. (2018), can be accommodated (Fig.3), offering a versatile platform for a wide range
of experimental replications and explorations.

Experiments: The Experiments module facilitates access to a curated collection of open-source experimental
data, including neural recordings and behavioral observations, and a suite of plotting functions and visualization
tools (Fig. 4). The primary objective of this module within our package is to establish a centralized and standardized
portal for accessing pertinent experimental data in the field. This data is pre-processed and annotated for ease of
use, streamlining the exploration and analysis process. Each data set is organised into recording sessions with an
attributed recording number (rec index), given as a list at the initialisation of the class. Our package allows for
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Arena ()

Circular Merging Room

Figure 3: Illustration of various Arena layouts commonly used in hippocampus and entorhinal cortex experiments,
showcasing an Agent employing a random walk strategy in distinct environments: Circular, T-Maze, and Merging
Room. In the Merging Room scenario, the arena initially features a dividing wall which is subsequently removed,
demonstrating the dynamic adaptability of the environment.

Experiment ()

Sargolini et al, 2006 Hafting et al, 2008 Wernle et al.(2018)[6]

G>

Figure 4: Sample data from the Experiment modules. Grid like rate map and position of the rat in the environment
from the Sargolini et al. [6], Hafting et al. [5] and Wernle et al. [1] experimental results respectively.

versatile visualizations and data access for experimental results. One can plot the activity of a specific tetrode using
.plot_recording_tetr (index) (see red-blue heatmaps in Fig. 4), visualize the movement trajectory within the
Arena with .plot_trajectory (index) (shown in Fig. 4 with the pink-yellow line plots), and retrieve detailed
experimental information using .show_keys (). We have implemented three data sets: (1) Sargolini et al. (2006)
[6], in which tetrode recordings were made as rats freely explored a flat square environment and found that, while
Layer II of MEC was predominantly composed of grid cells, deeper layers of MEC have both grid, head direction
and conjunctive grid x head direction cells. (2) Hafting et al. (2008) [5], which examines a linear environment and
found that the phase precession of firing patterns (cells fire out of phase with the ambient theta wave pattern in the
surrounding areas) primarily in Layer II of MEC drives phase precession of place cells in hippocampus. (3) Wernle
et al. (2018) [1], which considers a dynamic environment of two partitioned rooms which have individual grid-cell
representations. Partway through a session the environment changes and the partition is remove - merging the rooms,
resulting in the rapid reorganisation of the grid cells such that the periodicity of previously connected spaces remains
but now with new consistent periodicity also established where the partition used to be.

Comparison: Finally, the Comparison toolis a versatile feature designed to enhance user experience and research
efficiency. It grants users the flexibility to select from a range of Agents, Arenas, and Experiments, and
to determine specific plots they wish to generate. This functionality not only simplifies the process of creating
visual representations but also enables a comprehensive and systematic comparison across all integrated Agents
and Experiments. By offering customizable comparison parameters, this tool facilitates a deeper analysis and
understanding of the interactions and outcomes between various agents and experimental settings.

4.2 Module Use

The framework allows for flexible access to theoretical and experimental paradigms. Each module can be used sepa-
rately, to easily explore and analyze experimental data and better understand, test or modify any of the implemented
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models. Additionally, different Arenas can be initialised with custom wall structures, or following the spatial design
of real-life experiments. We provide examples of module instantiation in detailed jupyter notebook examples.*

The Agents and Arenas within the framework interact similarly to those found in the OpenAI Gym environment
[32]. Each Agent within this framework receives a stream of observations from the surrounding environment,
including rewards, visual cues, and other relevant information. These observations inform the Agent’s decision-
making process, culminating in the execution of an action. The execution of actions, in turn, leads to updates in
the Agent’s internal state and simultaneously updates the state of the environment. Consequently, this dynamic
interaction generates new observations (Fig. 5).

Furthermore, the data extracted from the Experiment class can be effectively leveraged to construct Arena config-
urations that resemble key elements of the experimental setups. For example, the user can set the Agent to follow
the behavioral trajectory of the animal recorded during the experiment, or use a built in policy to move around if
available.

obs,state = Arena.step (act)

( )

Gr— 0

Experiment () Arena () Agent ()

L J

act = Agent.act (obs,state)

obs,state = Arena.step (act)

\ Weber 2018.update ()
; [

Inhibition

Sargolini_ 2006 _data() K Weber 2018.get_rate map ()
J

act = Agent.act(obs,state)

Figure 5: Illustration depicting a practical application of the NeuralPlayground framework. Top: Schematic of
the modules’ interactions: The greyed boxes specify the lines of code performing the interaction represented by
black arrows. The Agent obtains feedback from the environment, such as rewards and visual information, and
utilizes this information to make decisions that result in changes to its own state and the state of the environment,
leading to the generation of fresh observations. Moreover, the data extracted from the Experiment class can be
employed to construct Arenas that replicate elements of the experimental setup.. Bottom: For a concrete setting,
we select the Weber_2018 Agent, the Sargolini_2006_data Experiment, and the Weber_2018 Arena
class generated by the Sargolini_2006_data Experiment class. As the model walks through the experimental
environment following the animal’s path, continually updating its neural representation, it ultimately generates grid-
like representations, as visualised with the function .get_rate_map ().

The Agent example jupyter notebooks® provide examples where one can create this interaction with minimal code.
These begin by initializing an Agent and Arena of choice, which are built with additional specific methods, such
as .get_neural_response () and .get_rate_map () for Agents, and .plot_experimental_results ()
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for Arenas (Fig. 5). The interaction between agent and environment can then be instantiated as a for loop, as
shown in Code List. 1 which is used with the agent .get_rate_map () function:

The output of this Agent and Arena interac-
tion is summarised in Fig. 5. The initialisation
of the Arenas and Agents are automated in
the background and the results are displayed for
qualitative comparison (Fig. 6). Because of the
range of phenomena and levels of detail that have
been addressed by prior experiments and models,
NeuralPlayground does not implement one global
leaderboard metric. Instead, we provide a tool for
systematic comparison to the evidence in the field
using the metrics of interest to the user.  Thus,
Code Listing 1: Example interaction between an agent, NeuralPlayground will support diverse qualitative
namely the excitatory/inhibitory plasticity model of Weber and quantitative comparisons as the field progresses.
& Sprekeler (2018) [ ], and an enVirOnment, the Standard We ShOW an example use case in the compa/ri_
square room from Sargolini et al. (2006) [6]. son_ezamplesS.

env = BasicSargolini2006()
agent = Weber2018()
obs, state = env.reset()
for i in tqdm(range(n_episode)):
for j in range(t_episode):
action = agent.act(obs)
agent .update ()
obs, state, reward = env.step(action)
agent.get_rate_map()

To demonstrate the available analyses from this tool we provide example outputs in Figs. 6 and 7. We assess the
performance of the Agent against a set of selected experimental observations, roughly categorized as qualitative
and quantitative evidence available within the Comparison module.

Qualitative analysis: NeuralPlayground can generate response rate maps for model neurons, averaged over periods
of interaction with the environment (Fig. 6. These can be used to identify the presence of different types of cells
including Place Cells [11], Grid Cells [12], Boundary Vector Cells [33], Border Cells [34], and Object Vector Cells
[35]. Another example of qualitative evidence comes from the merging rooms experiment [4, 9], which examines how
representations change when a wall is removed from an environment, as exemplified in Fig. 7.

Quantitative analysis: In accordance with the methodology established by Sargolini et al. [6], NeuralPlayground
can calculate a quantitative metric known as the “gridness score”, ranging from -2 to 2, with large magnitude scores
indicating grid-like responses (Fig. 6). Additional scoring metrics can be easily and systematically generated by
writing a new metric class that may be relevant to the research context.

5 Open-source collaborative framework

The NeuralPlayground open-source software was built to be a collaborative and lasting project. The code is freely
available online under an MIT license”. All contributions to the repository are acknowledged through the all-
contributors bot®. To contribute, refer to the “Documents” section in the repository. Contributions to a module can

be made in two main ways: by creating a new class or by adding methods to an existing one.

Long term software support and maintenance is provided by the Gatsby/SWC neuroinformatics team. This includes
library maintenance, test implementation, and the introduction of bots to streamline workflows, among other respon-
sibilities. Additionally, we adhere to reproducible, inclusive, and collaborative project design guidelines, as outlined
in [36]. We also encourage users to follow our community’s recommended guidelines and code of conduct®.

Collectively, we hope this framework will aid and build the community of researchers who seek to advance our
understanding of computational mechanisms within the hippocampus, entorhinal cortex, and other brain regions.
We suggest several ways to begin building upon the NeuralPlayground Framework:

e Arena: Primarily, the expansion of the Arena module will include a new sub-class for 3D Arenas and
sensory stimuli inspired by OpenAIGym [32] or Deepmind lab [37].

Sgithub.com /NeuralPlayground /comparisons_examples/
"github.com /NeuralPlayground /documents
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9github.com /NeuralPlayground /documents
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Figure 6: The Comparison Board automatically generates and displays results from various experimental runs.
In this organizational layout, each row corresponds to a distinct experimental Arena, while each column represents
a specific Agent. This example displays the output from using two Agents, namely the SR model developed by
Stachenfeld and the Weber model, and two Environments, namely the Sargolini and Hafting experiments. The
comparison board deploys each agent in both the Sargolini and Hafting environments, enabling a comparative analysis
of their performance in relation to the neural representations observed in the experimental data from mice. As a
qualitative comparison, here the rate map of one neuron is visualised. As a quantitative comparison, we calculate
the gridness score, as defined by Sargolini et al. in 2006.

- Before merge After merge
o

'g ~
. [, SR E =
X! o ST
| $3
S8
f s>
WA 7 x ‘S §
Inhibition 3 ‘g’
o2
Weber et al, 2018 S Q

Wernle et
al.(2018)[6]

G>

Figure 7: Example qualitative comparison in the merging rooms experiment. The merging room experiment involves
allowing the agent to navigate an initially partitioned environment, with subsequent removal of the barrier. As
documented experimentally in [4], neural responses merge at the boundary. This qualitative behaviour is successfully
reproduced by the Weber model [9]

width width

e Experiments: Broaden the repository of implemented experimental datasets pertinent to the hippocampus
and entorhinal cortex research, focusing on publicly available sources ([38—40]). The true potential of
the software will be realized as it incorporates an increasingly diverse array of experimental datasets and
comparison metrics. This expansion will not only enrich the software’s capabilities but also foster a more
comprehensive and nuanced understanding within the field.

e Agent: Omne can also contribute by adding a new Agent [41, 42] or extending one that is already
implemented. The package was designed to allow versatile classes of Agents, and the addition of behavior
and replay models [43].

e Comparison: One way to contribute to the Comparison is by adding new metrics of comparison such as
grid score.
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6 Discussion

In the era of large datasets and increasingly capable computational models, it is critical to facilitate diverse com-
parisons between theory and experiment. In the hippocampus and entorhinal cortex, prior research, exemplified by
RatInABox [27] and Neuro-Nav [28], has effectively laid the groundwork for constructing replication-centric frame-
works in neuroscience. Another key ingredient in managing the thorough comparison of datasets and models has
proven to be open collaborative community efforts such as BrainScore [14] and the CCNlab benchmark [30] which
have fostered rapid progress in other areas of neuroscience such as visual perception.

Here we release a beta version of the NeuralPlayground framework, with three Agent s implemented from established
computational models; three data sets from previous Experiments; and with a customizable 2-Dimensional Arena.
The software allows for a diversity of use cases, including aiding data analyses, and allowing evaluation of models
beyond their initial scope in environment, metric or comparison to relevant experimental observations. Because of
the range of computations that the hippocampus and entorhinal cortex have been proposed to support, and the
correspondingly diverse set of models used to account for aspects of this data, NeuralPlayground does not implement
one summary benchmark metric but provides an expandable suit of benchmarks through the Comparison module.
Primarily, the NeuralPlayground open-source software package centralizes and facilitates access and testing of models
against experimental data. The outcomes we hope will arise from this effort are threefold. Firstly, NeuralPlayground
will lead to a standardization of models and experimental methods for charaterizing neural responses in the EHC.
Secondly, it will facilitate the creation of many quantitative and qualitative comparisons of value to the community.
And lastly, a long-lasting community that guides, contributes to and nurtures this software will grow and help build
a virtuous loop between experimentalists and theorists.
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