

1 **Coronavirus Nucleocapsid Protein Enhances the binding of p-PK α**
2 **to RACK1: Implications for Inhibition of Nucleocytoplasmic**
3 **Trafficking and Suppression of the Innate Immune Response**

4 Wenxiang Xue¹, Hongyan Chu¹, Jiehuang Wang¹, Yingjie Sun¹, Xusheng Qiu¹,
5 Cuiping Song¹, Lei Tan¹, Chan Ding^{1,2}, Ying Liao^{1*}

6 1. Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute,
7 Chinese Academy of Agricultural Sciences, P. R. China
8 2. Jiangsu Co-innovation Center for Prevention and Control of Important Animal
9 Infectious Diseases and Zoonoses, Yangzhou University, P. R. China

10

11 **Running title:** Coronavirus N protein perturbs nucleocytoplasmic trafficking

12

13

14

15

16 *Corresponding author

17 Ying Liao, Phone: +86-21-34680291, Fax: +86-21-54081818, Email: liaoying@shvri.ac.cn

19

20 **Abstract**

21 The hallmark of coronavirus infection lies in its ability to evade host immune defenses,
22 a process intricately linked to the nuclear entry of transcription factors crucial for
23 initiating the expression of antiviral genes. Central to this evasion strategy is the
24 manipulation of the nucleocytoplasmic trafficking system, which serves as an effective
25 target for the virus to modulate the expression of immune response-related genes. In
26 this investigation, we discovered that infection with the infectious bronchitis virus (IBV)
27 dynamically impedes the nuclear translocation of several transcription factors such as
28 IRF3, STAT1, STAT2, NF- κ B p65, and the p38 mitogen-activated protein kinase
29 (MAPK), leading to compromised transcriptional induction of key antiviral genes such
30 as IFN β , IFITM3, and IL-8. Further examination revealed that during the infection
31 process, components of the nuclear pore complex (NPC), particularly FG-Nups (such
32 as NUP62, NUP153, NUP42, and TPR), undergo cytosolic dispersion from the nuclear
33 envelope; NUP62 undergoes phosphorylation, and NUP42 exhibits a mobility shift in
34 size. These observations suggest a disruption in nucleocytoplasmic trafficking.
35 Screening efforts identified the IBV nucleocapsid protein (N) as the agent responsible
36 for the cytoplasmic distribution of FG-Nups, subsequently hindering the nuclear entry
37 of transcription factors and suppressing the expression of antiviral genes. Interactome
38 analysis further revealed that the IBV N protein interacts with the scaffold protein
39 RACK1, facilitating the recruitment of activated protein kinase C alpha (p-PK ζ) to
40 RACK1 and relocating the RACK1-PK ζ complex to the cytoplasm. These
41 observations are conserved across pan-coronaviruses N proteins. Concurrently, the
42 presence of both RACK1 and PK ζ / β proved essential for the phosphorylation and
43 cytoplasmic dispersion of NUP62, the suppression of antiviral cytokine expression, and
44 efficient virus replication. These findings unveil a novel, highly effective, and
45 evolutionarily conserved mechanism.

46 **Author summary**

47 Coronaviruses employ diverse strategies to suppress the host innate immune defense.
48 In this study, we uncovered a novel and highly effective strategy utilized by pan-

49 coronaviruses to inhibit the innate immune response. Specifically, we found that the
50 coronavirus N protein facilitates the binding of p-PKCa to RACK1, leading to the
51 phosphorylation of NUP62 and the cytoplasmic redistribution of multiple FG-Nups.
52 This phenomenon is accompanied by the disruption of nuclear translocation of several
53 innate immune response-related transcription factors and suppression of antiviral/pro-
54 inflammatory genes expression. Our research represents the first elucidation of how the
55 N protein targets and impairs NPC function through the promotion of RACK1-PKCa
56 interaction and NUP62 phosphorylation/disassembly. This discovery unveils a novel
57 mechanism employed by pan-coronaviruses to counteract the host immune response.

58 **Introduction**

59 The trafficking of proteins and RNA between the nucleus and cytoplasm through
60 nuclear pore complex (NPC) is pivotal for numerous cellular functions, such as gene
61 transcription, RNA and ribosomal subunits export, protein translation, and antiviral
62 innate immunity [1-4]. Comprising the nuclear envelope (NE), NPC, and nuclear
63 transport receptors, the nucleocytoplasmic trafficking system is intricately structured.
64 The outer nuclear membrane (ONM) is contiguous with the endoplasmic reticulum (ER)
65 and shares similarities with it, while the inner nuclear membrane (INM) faces the
66 nucleoplasm and provides anchoring sites for chromatin and the nuclear lamina [5, 6].
67 NPC, acting as the exclusive gateway controlling molecules transport into and out of
68 the nucleus, consists of approximately 30 different nucleoporins (Nups) with a total
69 molecular mass ~110 MDa [7-9]. Structurally, NPC features an eight-fold symmetric
70 central core surrounding a transport channel. Nups extending from the central core into
71 the cytoplasm form cytoplasmic filaments, while nuclear-side filaments interconnect to
72 create the nuclear basket. Within the central transport channel, Nups with repeating
73 sequences rich in phenylalanine (Phe) and glycine (Gly), known as FG-Nups, form a
74 cohesive meshwork acting as a permeable barrier to regulate cargo movement. To cross
75 the nuclear pore, proteins over 40 kDa rely on nuclear transport receptors such as
76 importin α , importin β or transportins. The small Ras-like GTPase Ran, which cycles
77 between GDP-bound and GTP-bound states, regulating the formation and disassembly

78 of nuclear transport receptors with cargo proteins or RNA [10]. The NPC dynamics is
79 directly regulated by cell cycle-dependent phosphorylation [11, 12].
80 Hyperphosphorylation of the gatekeeper NUP98 and the NUP53 by cyclin-dependent
81 kinase 1 (CDK1) and polo-like kinase 1 (PLK1) is a crucial step promoting NPC
82 disintegration [13, 14]. Several Nups, including NUP153, NUP214, and NUP358,
83 undergo phosphorylated throughout the cell cycle and become hyperphosphorylated
84 during M phase, with CDK1 or other kinases likely playing pivotal roles in this process
85 [15]. Dephosphorylation nuclear envelope proteins by the sequential activated
86 phosphatases is essential for correct NPC and nuclear envelope reassembly. Two main
87 phosphatases, protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A), are
88 involved in the dephosphorylation of Nups and lamins [16, 17]. However, detailed
89 mechanisms underlying the relationship between Nups phosphorylation and NPC
90 disassembly remain unclear.

91 The NPC governs the nuclear translocation of key signaling transcription
92 transducers crucial for activating the production of antiviral genes, including IFNs,
93 IFN-stimulated genes (ISGs), and pro-inflammatory cytokines. The type I IFN
94 signaling pathway constitutes a central component of the antiviral innate immune
95 response, with its activation dependent on the nuclear translocation of IFN regulatory
96 factor 3 (IRF3) to induce the expression of IFN α/β . These type I IFNs subsequently
97 activate the Janus kinase/signal transducer and activator of transcription (JAK/STAT)
98 pathway upon binding to cell surface receptors, facilitating the nuclear translocation of
99 STAT1/STAT2 and ultimately stimulating the expression of numerous antiviral ISGs
100 [18, 19]. In response to infection signals, the transcription factor NF- κ B (comprising
101 p50 and p65 subunits) undergoes phosphorylation and translocation into nucleus to
102 induce the expression of various pro-inflammatory cytokines [20]. The phosphorylation
103 and nuclear translocation of p38 MAPK, triggered by stress stimuli or infection,
104 contribute to inflammation by phosphorylating several nuclear transcription regulators
105 and regulating the stress related transcription processes [21, 22]. In addition to
106 importing transcription factors into the nucleus, the NPC serves as the gate for
107 exporting mRNA from the nucleus into the cytoplasm, including mRNA encoding

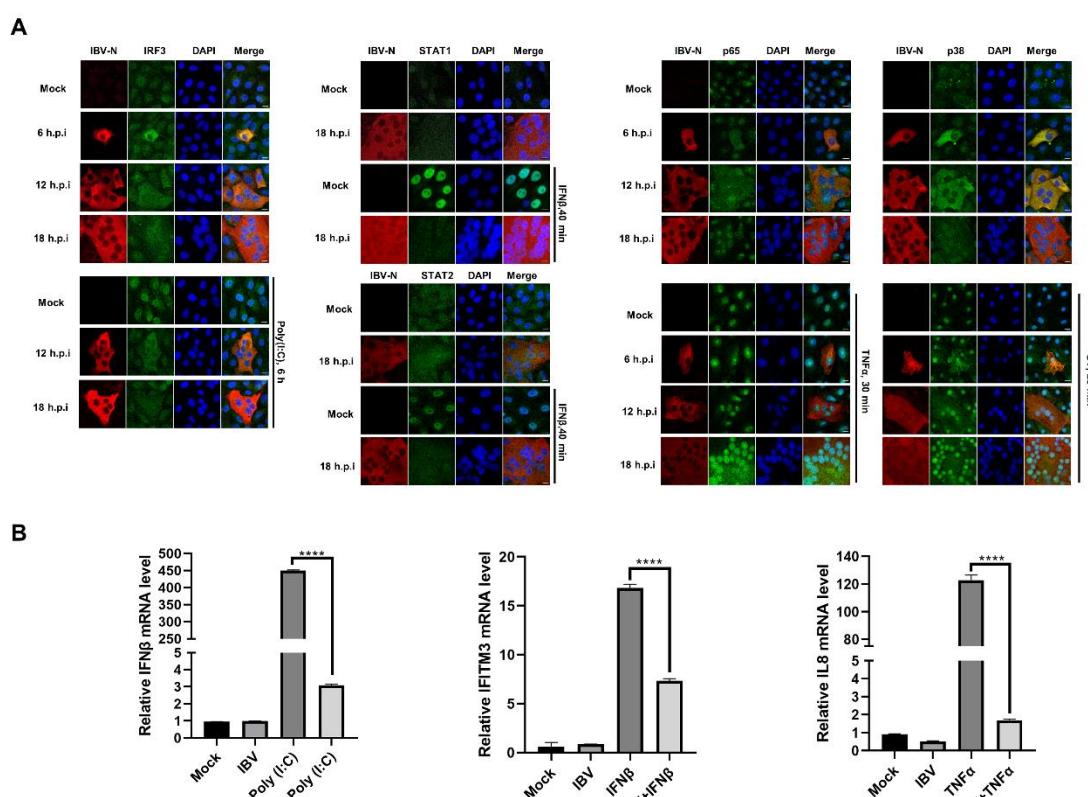
108 antiviral genes. Consequently, the host nucleocytoplasmic trafficking system represents
109 an effective target for viruses to regulate the host antiviral gene expression and suppress
110 the immune response.

111 Coronaviruses pose a significant global health threat to human beings, leading to
112 substantial economic losses. This RNA virus family possesses a positive-sense, single-
113 stranded genome ranging from 25 to 32 kb. Approximately two-thirds of the 5' genome
114 encode viral replicase polyproteins 1a and 1ab, which are subsequently cleaved into 15-
115 16 mature nonstructural proteins (nsp) crucial for viral replication by internal proteases.
116 The remaining one-third of the 3' genome encodes structural proteins, including spike
117 (S), envelope (E), membrane (M), nucleocapsid (N), and accessory proteins [23].
118 Highly pathogenic coronaviruses such as SARS-CoV, SARS-CoV-2, and MERS-CoV
119 cause severe atypical pneumonia, accompanied by coughing and high fever, often
120 resulting in high mortality rates. Conversely, mild pathogenic coronaviruses HCoV-
121 229E, HCoV-OC43, HCoV-NL63, and HKU1 typically induce common cold
122 symptoms and mild upper respiratory disease [23, 24]. Additionally, coronaviruses are
123 also responsible for various infectious diseases in economic animals. For instance,
124 *gamma-coronavirus* IBV causes highly contagious diseases in chickens, manifesting as
125 bronchitis, nephritis, and fallopian tube injury, leading to a significant decrease in
126 laying rate and chicken production. Since its discovery in the 1930s, IBV has persisted
127 as a significant pathogen, posing a continuous threat in poultry farms [25]. Despite
128 the extensive vaccination effort, controlling this disease remains challenging due to the
129 ongoing emergence of new serotypes and variants [26, 27]. Since its discovery in 1971
130 [28], porcine epidemic diarrhea virus (PEDV) has posed a substantial threat as a major
131 pathogen in the pig farming industry, causing clinical symptoms such as vomiting and
132 severe diarrhea, causing clinical symptoms such as vomiting and severe diarrhea. The
133 mortality rate among infected suckling piglet can reach 100% [29, 30].

134 Delayed IFN response is a common observation during coronavirus infection,
135 including PEDV [31], SARS-CoV [32], SARS-CoV-2 [33, 34], MERS-CoV [35], MHV
136 [36], IBV [37] and PDCoV [38]. Several excellent review articles have extensively
137 discussed how various proteins encoded by different genera of coronaviruses

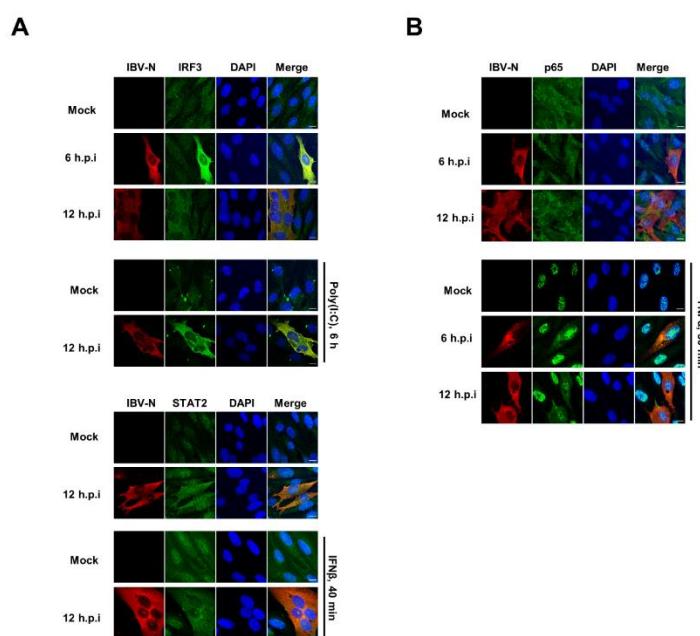
138 antagonize the innate immune system through diverse strategies [18, 39-41]. However,
139 research into targeting the nuclear transport system to suppress innate immunity has
140 been limited to SARS-CoV and SARS-CoV-2. Specifically, SARS-CoV ORF6 interacts
141 with importin α 1 (KPNA2) and competes with importin α 5 (KPNA1) for binding to
142 importin β 1 (KPNB1), sequestering importin α 1 and importin β 1 at the ER/Golgi
143 membrane and blocking the nuclear translocation of STAT1 [42]. Similarly, SARS-
144 CoV-2 ORF6 inhibits STAT1/2 nuclear translocation by obstructing the interaction of
145 importin β 1 with NUP98, a major NUP involved in nuclear transport cycle [43]. ORF6
146 is an accessory protein unique to SARS-CoV and SARS-CoV-2, absent in other
147 coronaviruses. Whether there are evolutionary conserved coronavirus proteins involved
148 in modulating the nuclear trafficking system warrants further investigation.

149 In this study, we utilized IBV as the model to explore the shared mechanisms
150 utilized by pan-coronaviruses to disrupt the host nuclear transport system. We observed
151 that IBV infection triggered cytoplasmic dispersion of several FG-Nups and hindered
152 the nuclear ingress of various transcription factors and p38 MAPK, consequently
153 impeding the transcriptional activation of antiviral and pro-inflammatory genes. Further
154 study revealed that the IBV N protein was accountable for the disturbance of
155 nucleocytoplasmic trafficking by enhancing the association of p-PKCa with scaffold
156 protein RACK1, leading to relocation of the p-PKCa-RACK1 complex to cytoplasm.
157 This promoted the phosphorylation and cytoplasmic dispersion of NUP62, ultimately
158 impeding the nuclear import of several transcription factors and dampening the
159 transcription of antiviral/pro-inflammatory genes. Importantly, this novel function was
160 conserved among N proteins from four genera of coronaviruses.


161 **Results**

162 **IBV infection disrupts the nuclear translocation of transcription factors and** 163 **antagonizes the expression of antiviral and pro-inflammatory cytokines**

164 The previous report has demonstrated that IBV inhibits IFN β -mediated nuclear
165 translocation of STAT1 at the late stages of infection [44]. In this study, we explored
166 whether IBV also impedes the nuclear translocation of additional transcription factors,


167 including IRF3, STAT1, STAT2, and p65. Initially, Vero cells, an IBV Beaudette strain
168 adapted cell line, were infected with 1 MOI of IBV, followed by poly(I:C) transfection
169 to induce IRF3 nuclear translocation. Immunofluorescence analysis depicted in **Fig 1A**
170 (**left panel**) revealed that throughout the infection process (6-18 h.p.i.), IBV infection
171 failed to induce the nuclear entry of IRF3; unlike poly(I:C) transfection which
172 effectively stimulated IRF3 nuclear translocation. Intriguingly, in IBV-infected cells,
173 IRF3 was predominantly distributed in the cytoplasm, indicating that IBV infection
174 hinders the poly(I:C) stimulated IRF3 nuclear translocation (**Fig 1A, left panel**). Since
175 Vero cells lack IFN, they are suitable for the study of JAK-STAT pathway [45, 46].
176 Immunofluorescence analysis demonstrated that IBV infection did not trigger the
177 nuclear translocation of both STAT1 and STAT2, whereas IFN β successfully induced
178 their nuclear translocation. In IBV-infected Vero cells, the nuclear translocation of
179 STAT1 and STAT2 stimulated by IFN β was impeded, indicated by the diffuse signals
180 of both transcription factors observed in both the cytoplasm and the nucleus (**Fig 1A,**
181 **middle panel**). The inhibition of nuclear translocation of aforementioned transcription
182 factors by IBV infection led us to investigate whether the virus also inhibits the nuclear
183 translocation of additional transcription factors or transcription transducers.
184 Consequently, the nuclear translocation of pro-inflammatory transcription factor NF-
185 κ B subunit p65 and p38 MAPK was examined. As illustrated in **Fig 1A (right panel)**,
186 IBV infection did not promote the nuclear translocation of p65 and p38 MAPK at 6
187 h.p.i. and 12 h.p.i.; however, along with the infection progressed, an increasing amount
188 of p65 and p38 MAPK entered the nucleus at 18 h.p.i.. These findings suggest that the
189 virus suppresses inflammatory transcription events during the early stages of infection
190 to facilitate successful infection; however, inflammation is ultimately induced at the
191 late stage of infection. Both TNF α treatment and UV irradiation effectively promoted
192 the nuclear entry of p65 and p38 MAPK, whereas IBV infection led to a proportion of
193 p65 and p38 MAPK remaining in the cytoplasm, despite the detection of intense nuclear
194 signals. The inhibition of nuclear translocation of IRF3, STAT2, and p65 by IBV
195 infection was further validated in host chicken embryo fibroblast DF-1 (**S1A-B Fig**).
196 Concurrently, the transcription of IFN β (induced by IRF3), IFITM3 (an ISG induced

197 by STAT1/2), and pro-inflammatory cytokine IL-8 (induced by NF- κ B and p38 MAPK)
198 was suppressed by IBV infection in DF-1, which possesses a complete IFN signaling
199 pathway (Fig 1B). Collectively, these results demonstrate that IBV infection suppresses
200 nuclear entry of multiple transcription factors, particularly those involved in the
201 antiviral IFN pathways.

202
203 **Fig 1. IBV infection impairs nuclear translocation of transcription factors and**
204 **suppresses transcription of antiviral genes and pro-inflammatory genes.** (A) Vero
205 cells were infected with IBV at an MOI of 1, followed by transfection with poly(I:C)
206 (20 μ g/mL) for 6 h, treatment with IFN β (1000 IU/mL) for 40 min, treatment with TNF α
207 (20 ng/mL) for 30 min, or exposure to UV irradiation (1.92 J/cm 2) for 20 min. Mock-
208 infected cells served as the control group. Cells were harvested at the indicated time
209 points and subjected to immunofluorescence analysis. Representative images from
210 three independent experiments are shown. Scale bars: 10 μ m. (B) DF-1 cells were
211 infected with IBV at an MOI of 5 for 2 h, followed by transfection with poly(I:C) (20
212 μ g/mL) or treatment with TNF α (20 ng/mL) for 6 h. Cells were harvested at 8 h post-
213 infection (h.p.i.) and subjected to qRT-PCR analysis. For detection of IFITM3

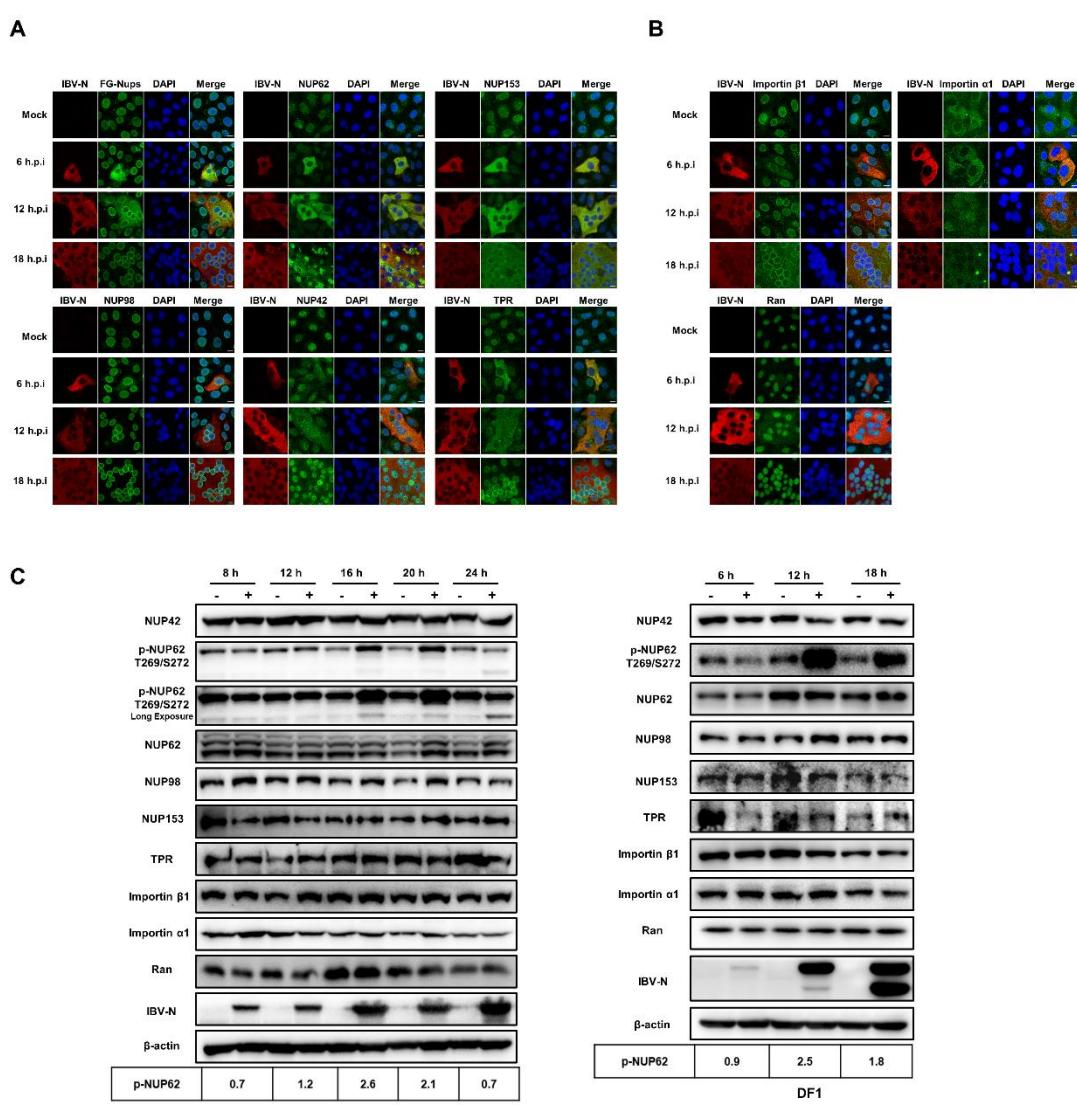
214 expression, DF-1 cells were infected with IBV at an MOI of 5, followed by treatment
215 with IFN β (1000 IU/mL) for 6 h at 6 h.p.i. Cells were harvested at 12 h.p.i. and
216 subjected to qRT-PCR analysis. Mock-infected cells served as the control group.

217
218 **S1 Fig. IBV infection suppresses nuclear translocation of transcription factor IRF3,
219 STAT2, and p65 in DF-1 cells. (A-B)** DF-1 cells were infected with IBV at an MOI of
220 1, followed by treatment with poly(I:C), IFN β , or TNF α . Cells were harvested at the
221 indicated time points and subjected to immunofluorescence analysis. Representative
222 images from three independent experiments are shown. Scale bars: 10 μ m.

223 **IBV Infection induces the phosphorylation of NUP62 and perturbs the integrity of
224 NPC**

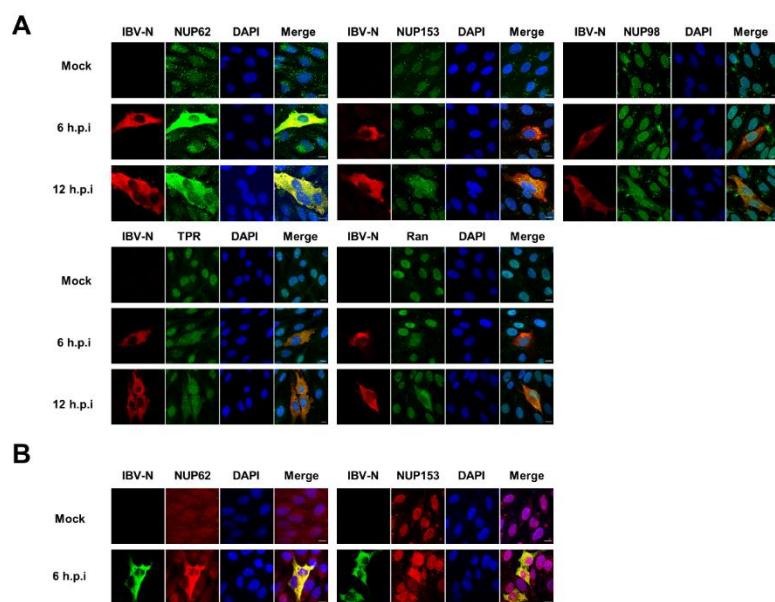
225 As IBV infection disrupts the nuclear translocation of multiple transcription factors, we
226 hypothesized that the infection likely interferes with the nucleocytoplasmic trafficking.
227 To investigate this, we analyzed the integrity of NPC in IBV-infected Vero cells by
228 examining the subcellular distribution of the FG-Nups using the monoclonal antibody
229 mAb414. This antibody recognizes a number of FG-Nups, including NUP62, NUP153,
230 NUP98, NUP35, NUP54, NUP58, NUP214, and NUP358 [47], which constitute the
231 mesh in the NPC central channel and are crucial for cargo molecules transport [48].
232 Immunofluorescence analysis revealed that FG-Nups detected by mAb414 were

233 predominantly localized to nuclear envelope as ring signals; however, in IBV-infected
234 cells, the FG-Nups were dispersed into the cytoplasm at 6 h.p.i. and 12 h.p.i.; they were
235 gradually relocated to the nuclear envelope as ring signals from 12 h.p.i. to 18 h.p.i.,
236 coinciding with the formation of large syncytia (Fig 2A, top left panel). These
237 observations suggest that IBV dynamically modulates NPC integrity during infection
238 progression. To corroborate these findings, we performed immunostaining of specific
239 Nups with antibodies against NUP62, NUP153, NUP98, NUP42, and TPR. Results
240 indicated that these specific Nups were primarily localized to the nuclear envelope or
241 inside the nucleus; however, in IBV-infected cells, NUP62, NUP153, NUP42, and TPR
242 were redistributed to the cytoplasm at 6 and 12 h.p.i.; while at 18 h.p.i., NUP42 and
243 TPR were relocated to the nucleus or NE, whereas NUP153 remained dispersed in the
244 cytoplasm and NUP62 was redistributed to one side of the cytoplasm with intense
245 signals (Fig 2A). Compared to other Nups, only a small proportion of NUP98 was
246 dispersed into cytoplasm at 6 h.p.i.; as infected cells formed syncytia at 12 and 18 h.p.i.,
247 NUP98 was relocated to nuclear envelope as ring signal. These observations confirm
248 that multiple Nups are dislocated from the nuclear envelope and the NPC integrity is
249 disrupted during early stages of infection (6-12 h.p.i.); at late stage of infection (18
250 h.p.i.), NPC integrity is not fully recovered, as evidenced by the mislocalization of
251 NUP153 and NUP62. Notably, the cytoplasmic dispersion signals of these Nups
252 colocalized well with IBV N protein at 6 and 12 h.p.i., suggesting potential interaction.


253 Subsequently, we examined the subcellular localization of soluble phase
254 components of nucleocytoplasmic trafficking system: the key receptors importin α 1 and
255 importin β 1, as well as Ran, which governs the formation and disassembly of transport
256 receptors with cargo proteins. As depicted in Fig 2B, importin β 1 exhibited a ring signal
257 adjacent to the NE. However, during IBV infection at 6 h.p.i., a certain proportion of
258 importin β 1 was dispersed into the cytosol. Despite this, the majority of this receptor
259 remained associated with the nuclear envelope throughout the infection time course.
260 Importin α 1 was predominantly dispersed in the cytoplasm, and IBV infection did not
261 obviously alter its localization. Ran was primarily localized inside the nucleus; however,
262 a small proportion of Ran was translocated to the cytosol and colocalized well with the

263 N protein at 6 and 12 h.p.i. As the infection progressed, Ran relocated to the nucleus at
264 18 h.p.i..

265 To validate these results, we further examined the subcellular localization of FG-
266 Nups and Ran in DF-1 cells. Due to the unavailability of antibodies against chicken
267 Nups, only antibodies against human NUP62, NUP98, NUP153, TPR, and Ran, which
268 could cross-react with the corresponding chicken proteins, were applied in this study.
269 Immunofluorescence analysis showed that these proteins were primarily localized to
270 the nucleus or NE; however, in IBV-infected cells, proportions of NUP62, NUP98,
271 NUP153, TPR, and Ran were redistributed from the nuclear envelope or nucleus to the
272 cytoplasm, colocalizing well with N protein (**S2A Fig**). These results are consistent with
273 the observations in Vero cells. To rule out the possibility of Nups' cytoplasmic
274 dispersion and their colocalization with the N protein being artifacts resulting from the
275 cross-reaction of two fluorescent secondary antibodies with the same primary antibody,
276 we performed staining for NUP62 and N protein or NUP153 and N protein using a
277 different set of fluorescent secondary antibodies in reverse. The result showed that
278 NUP62 and NUP153 were still dispersed into cytoplasm and colocalized perfectly with
279 IBV N protein (**S2B Fig**).

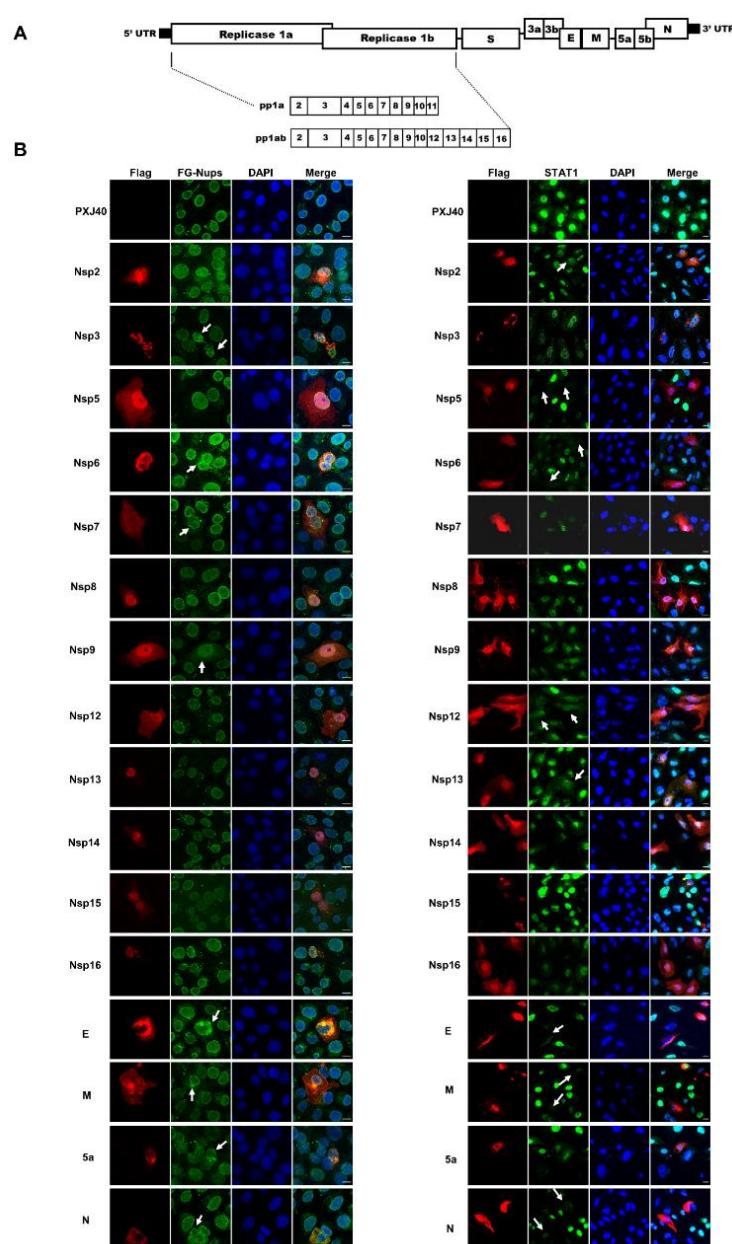

280 Next, we examined the expression levels of NUP42, NUP62, NUP98, NUP153,
281 TPR, importin β 1, importin α 1, Ran, and phosphorylation level of NUP62 (p-NUP62),
282 by western blot analysis. As depicted in **Fig 2C**, the expression levels of NUP42,
283 NUP62, NUP98, NUP153, importin β 1, importin α 1, and Ran remained stable in both
284 IBV-infected Vero and DF-1 cells. However, there was a mobility shift observed in
285 NUP42, with the appearance of a smaller band, and phosphorylation of NUP62 at T269
286 and S272 was observed. Additionally, a potential cleaved p-NUP62 band of
287 approximately 45 kDa was detected in IBV-infected Vero cells. These results suggest
288 that IBV infection alters the post-translational state of NUP42 and NUP62. In summary,
289 these findings suggest that IBV infection primarily disrupts nucleocytoplasmic
290 trafficking function by inducing alterations in the post-translational modifications of
291 Nups and their translocation from the nuclear envelope to the cytoplasm. The
292 redistribution multiple Nups and importin receptors to the cytoplasm likely contributes

293 to the restriction of transcription factor nuclear entry during IBV infection process.

294

295 **Fig 2. IBV infection disrupts the NPC integrity and induces the phosphorylation**
296 **of NUP62. (A-B)** Vero cells were infected with IBV or mock-infected, harvested at 6,
297 12, and 18 h.p.i., and subjected to immunofluorescence analysis. Representative images
298 from three independent experiments are shown. Scale bars: 10 μ m. (C) Vero and DF-1
299 cells were infected with IBV or mock-infected, harvested at the indicated time points,
300 and subjected to western blot analysis. β -actin was detected as a loading control. Protein
301 band signals were quantified using Image J, with the intensities of p-NUP62 normalized
302 to total NUP62. The ratio of p-NUP62 in IBV-infected cells to mock-infected cells is
303 presented as p-NUP62 (+:-)

304


305 **S2 Fig. IBV infection induces dislocation of Nups and Ran from nuclear envelope**

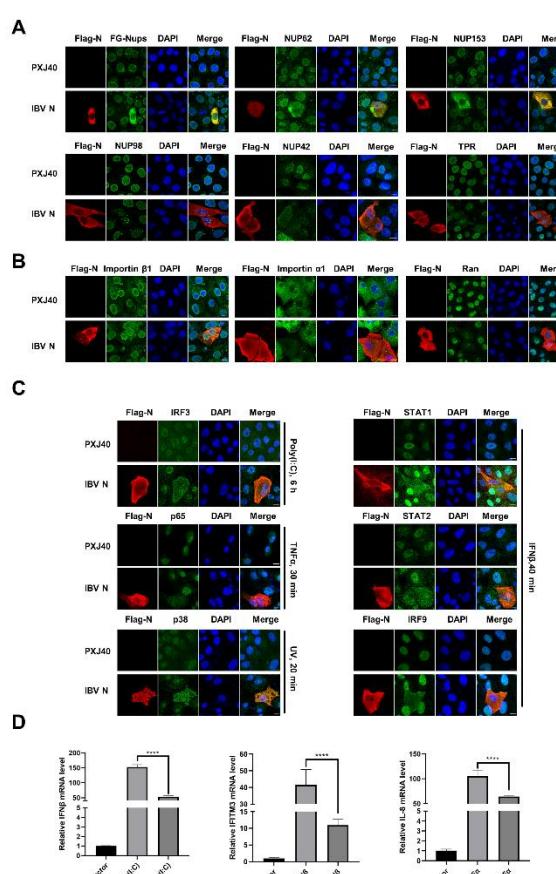
306 **or nucleus to the cytoplasm in DF-1 cells.** (A-B) DF-1 cells were infected with IBV
307 at an MOI of 1 or mock-infected, harvested at the indicated time points, and subjected
308 to immunofluorescence analysis. Representative images from three independent
309 experiments are shown. Scale bars: 10 μ m.

310 **The IBV N protein is implicated in disrupting nucleocytoplasmic trafficking and**
311 **hindering the nuclear translocation of transcription factors**

312 To identify viral proteins responsible for the cytoplasmic dispersion of Nups and the
313 obstruction of transcription factor nuclear translocation, IBV proteins were tagged with
314 Flag and expressed in Vero cells. The schematic depiction of IBV-encoded proteins is
315 illustrated in [Fig 3A](#). Immunofluorescence analysis revealed that overexpression of
316 nsp2, nsp5, nsp8, nsp12, nsp13, nsp14, nsp15 and nsp16 did not impact the nuclear
317 envelope localization of FG-Nups; conversely, in cells expressing nsp3, nsp6, nsp7,
318 nsp9, E, M, 5a, and N, mislocalization of FG-Nups was observed ([Fig 3A](#)).
319 Subsequently, we investigated whether these viral proteins hindered nuclear
320 translocation of STAT1. As depicted in [Fig 3B](#), nsp2, nsp12, nsp13, E, M and N notably
321 inhibited nuclear translocation of STAT1 induced by IFN β , nsp5 and nsp6 reduced the
322 STAT1 signal to undetectable levels. Based on these findings, we infer that nsp6, E, M
323 and N not only facilitate the cytoplasmic dispersion of FG-Nups but also impede IFN β -

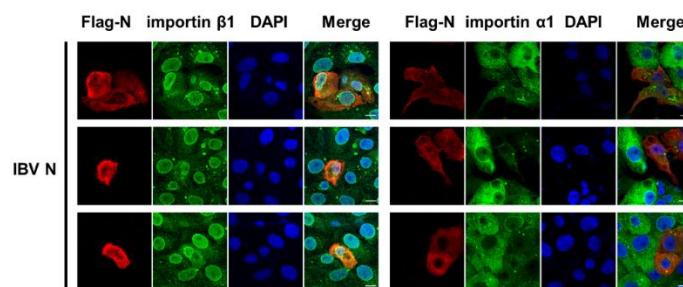
324 induced STAT1 nuclear translocation. Notably, among these viral proteins, the N
325 protein prominently promotes the cytoplasmic distribution of FG-Nups, consistent with
326 the observation in IBV-infected cells. Therefore, the IBV N protein emerges as a
327 promising candidate for further investigation. It is noteworthy to mention that the
328 expression of nsp4, nsp10, nsp11, S, 3a, 3b, and 5b was not successful in this study.
329 Therefore, we cannot exclude the possibility that these viral proteins may also
330 contribute to the perturbation of FG-Nups or the inhibition of STAT1 nuclear entry.

331


332 **Fig 3. Screening of IBV proteins that induce mislocalization of FG-Nups and**

333 **inhibit IFN β -induced nuclear translocation of STAT1.** (A) Schematic diagram of the
334 proteins encoded by IBV. (B) Vero cells were transfected with plasmids encoding Flag-
335 tagged IBV proteins or vector PXJ40. At 24 h post-transfection, cells were subjected to
336 immunofluorescence staining for the detection of FG-Nups using mAb414 (left panel).
337 In a parallel group, transfected cells were treated with IFN β (1000 IU/mL) for 40 min
338 before immunofluorescence staining for detection of STAT1 (right panel). The
339 representative images from three independent experiments are presented. Scale bars:
340 10 μ m.

341 To further investigate the impact of IBV N protein on the subcellular localization
342 of Nups, Vero cells were transfected with a plasmid encoding IBV N. The subcellular
343 distributions of specific Nups were assessed with corresponding antibodies.
344 Immunofluorescence analysis revealed that in cells expressing the N protein, the
345 subcellular distributions of NUP42, NUP62, and NUP153 were dispersed from the
346 nuclear envelope to the cytoplasm, showing significant colocalization with the N
347 protein. Additionally, the signals of NUP98 and TPR were also altered: NUP98 lost its
348 characteristic intact ring signal and appeared as punctate signals in the cytoplasm, while
349 TPR was dispersed into the cytoplasm with reduced signal intensity (Fig 4A). These
350 findings further support the notion that IBV N is the viral protein responsible for the
351 cytoplasmic dispersion or mislocalization of Nups. Furthermore, importin β 1, which is
352 typically localized adjacent to the nuclear envelope as ring signals, exhibited altered
353 morphology associated with the distorted nuclear envelope in cells expressing the N
354 protein (Fig 4B and S3 Fig). Conversely, importin α 1, which is primarily dispersed in
355 the cytoplasm, exhibited reduced signals in cells expressing the N protein (Fig 4B and
356 S3 Fig). Regarding Ran, whose signals are predominantly nuclear, they were relocated
357 from the nucleus to the cytoplasm with diminished signal intensity in cells expressing
358 the N protein (Fig 4B). Collectively, these findings provide evidence that the NPC
359 integrity and nucleocytoplasmic trafficking function are perturbed by IBV N protein.

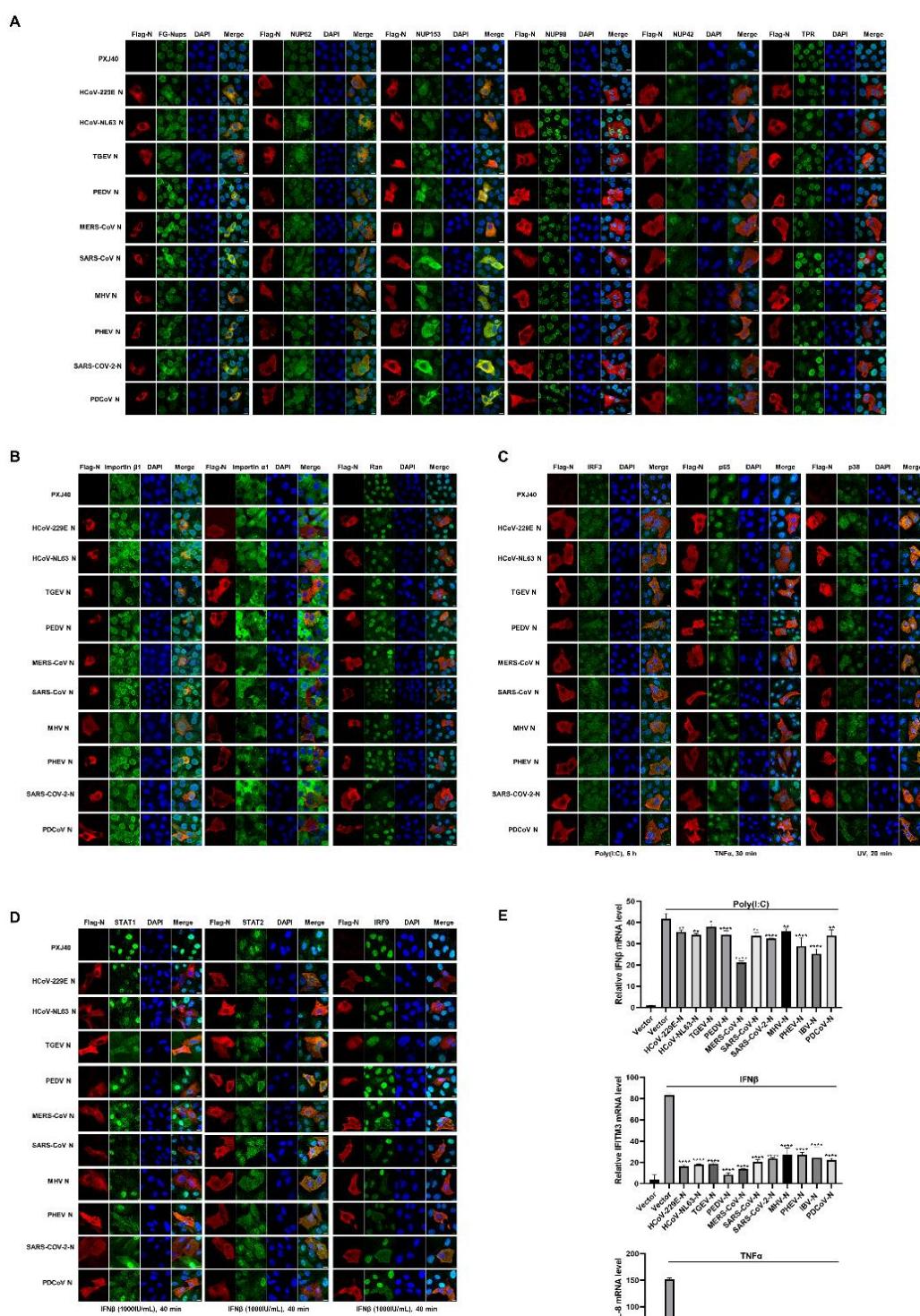

360 To ascertain whether N protein impedes the nuclear translocation of transcription
361 factors, similar to those observations during IBV infection, Vero cells were transfected

362 with the plasmid encoding Flag-tagged IBV N followed by poly(I:C) transfection.
363 According to **Fig 4C**, the expression of IBV N protein significantly inhibited the
364 poly(I:C)-induced nuclear translocation of IRF3, resulting in the retention of IRF3 in
365 the cytoplasm. Further examination of the JAK-STAT pathway revealed that although
366 IFN β effectively stimulated the nuclear entry of STAT1, STAT2, and IRF9 in Vero cells,
367 the expression N protein sequestered these transcription factors in the cytoplasm (**Fig**
368 **4C**). Evaluation of NF- κ B pathway demonstrated that N protein expression impeded
369 the TNF α -induced nuclear translocation of p65. Similarly, a blockage of UV irradiation-
370 triggered nuclear translocation of p38 MAPK was observed in cells expressing N
371 protein (**Fig 4C**). Consequently, the transcription of IFN β , IFITM3, and IL-8, induced
372 by their respective stimuli, was significantly inhibited by the N protein in DF-1 cells
373 (**Fig 4D**). These results collectively indicate that IBV N protein disrupts NPC integrity
374 and prevents the nuclear translocation of transcription factors, ultimately impairing the
375 expression of downstream antiviral and pro-inflammatory genes.

376

377 **Fig 4. IBV N protein induces dislocation of Nups from the nuclear envelope to the**
378 **cytoplasm, inhibits nuclear translocation of transcription factors, and suppresses**
379 **the transcription of antiviral genes.** (A-B) Vero cells were transfected with either the
380 vector PXJ40 or a plasmid encoding IBV N protein. At 24 h post-transfection, cells
381 were harvested and subjected to immunofluorescence analysis. (C) Vero cells were
382 transfected with either vector PXJ40 or a plasmid encoding IBV N protein. At 18 h
383 post-transfection, cells were further treated with poly(I:C) (20 μ g/mL) for 6 h. In
384 parallel experimental groups, cells were transfected with the vector PXJ40 or a plasmid
385 encoding IBV N protein for 24 h, followed by treatment with IFN β , TNF α , or UV
386 irradiation, respectively. Cells were then harvested and subjected to
387 immunofluorescence analysis. Representative images from three independent
388 experiments are shown. Scale bars: 10 μ m. (D) DF-1 cells were transfected with the
389 vector PXJ40 or a plasmid encoding IBV N protein. At 24 h post-transfection, cells
390 were transfected with poly(I:C) or treated with IFN β or TNF α for 12 h, followed by
391 qRT-PCR analysis.

392
393 **S3 Fig. IBV N protein alters the morphology of nuclear envelope and the ring**
394 **signal of importin β 1, and reduces the cytoplasmic signal of importin α 1.** Vero cells
395 were transfected with either the vector PXJ40 or a plasmid encoding IBV N protein. At
396 24 h post-transfection, cells were harvested and subjected to immunofluorescence
397 analysis.


398 **The disruption of NPC integrity and interference with nuclear translocation of**
399 **transcription factors by the N protein is conserved across pan-coronaviruses**

400 The coronavirus N protein is a highly conserved structural protein responsible for
401 encapsulating the viral genomic RNA and facilitating viral RNA synthesis/translation

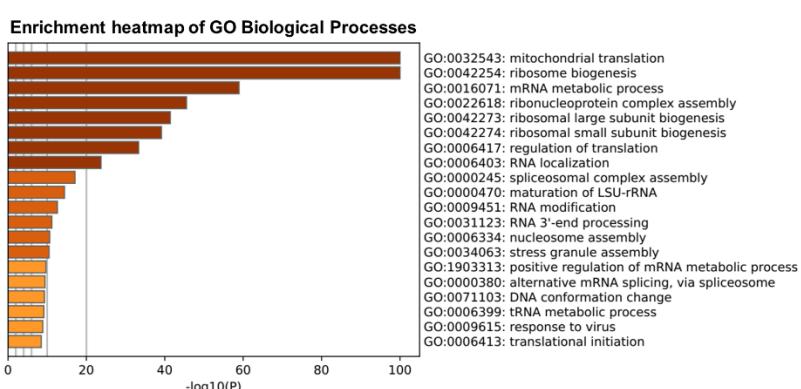
402 [49]. We aimed to investigate whether the disruption of nucleocytoplasmic trafficking
403 by N protein is conserved across pan-coronaviruses. Flag-tagged N proteins from
404 various genera of coronaviruses, including *alpha-coronavirus* HCoV-H229E, HCoV-
405 NL63, TGEV and PEDV, *beta-coronavirus* MERS-CoV, SARS-CoV, MHV, PHEV, and
406 SARS-CoV-2, and *delta-coronavirus* PDCoV, were expressed in Vero cells, and the
407 subcellular localization of several Nups were examined. As shown in Fig 5A, N proteins
408 from various coronaviruses induced cytoplasmic dispersion of FG-Nups, NUP62,
409 NUP153, and NUP42, with significant colocalization with the N protein. TPR exhibited
410 a cytoplasmic dispersion pattern with reduced signal intensity in all N protein-
411 expressing cells. Conversely, NUP98 lost its intact ring signal and formed punctate
412 aggregates in the cytoplasm in the majority of N protein-expressing cells (including
413 those from HCoV-NL63, MERS-CoV, SARS-CoV, MHV, PHEV, SARS-CoV-2, and
414 PDCoV). The subcellular localization of two importin receptors and Ran was also
415 assessed. As illustrated in Fig 5B, in all N protein-expressing cells, importin β 1 lost its
416 intact ring signals on the nuclear envelope and displayed as mislocated signal.
417 Additionally, a decreased signal of importin α 1 was observed, and Ran was dispersed
418 into the cytoplasm with diminished signal. Taken together, these data suggest that the
419 ability to dismantle the NPC and interfere with nucleocytoplasmic trafficking is
420 conserved across pan-coronaviruses N proteins.

421 Subsequently, we investigated whether the nuclear translocation of transcription
422 factors is impeded by N proteins from various coronaviruses. Vero cells were
423 transfected with N proteins, followed by poly (I:C) transfection. As shown in Fig 5C-
424 D, poly(I:C) successfully induced the nuclear translocation of IRF3; however, in all N
425 protein-expressing cells, IRF3 remained in the cytoplasm. Further examination of the
426 JAK-STAT pathway also revealed that, although IFN β successfully stimulated the
427 nuclear translocation of STAT1, STAT2, and IRF9, in all N protein-expressing cells,
428 STAT1, STAT2, and IRF9 were dispersed in the cytoplasm. Moreover, the transcription
429 factors p65 and p38 MAPK entered the nucleus following TNF α treatment or UV
430 irradiation; however, the expression of N proteins impeded the nuclear translocation of
431 these transcription factors. Alongside these observations, the transcription of IFN β ,

432 IFITM3 and IL-8 in response to corresponding stimuli were significantly inhibited by
433 all N proteins from different coronaviruses (Fig 5E). Overall, these findings
434 demonstrate the blockage of multiple transcription factors' nuclear translocation and
435 inhibition of antiviral gene expression by the N protein is conserved across pan-
436 coronaviruses.

437

438 **Fig 5. Disruption of nucleocytoplasmic trafficking, inhibition of nuclear**
 439 **translocation of transcription factors, and suppression of antiviral genes**
 440 **transcription by pan-coronaviruses N proteins.** (A-B) Vero cells were transfected


441 with plasmids encoding Flag-tagged N proteins from different genera of coronaviruses,

442 while vector PXJ40 served as a control. Cells were harvested 24 h post-transfection and
443 subjected to immunofluorescence analysis. (C-D) Vero cells were transfected with
444 plasmids encoding N proteins or vector PXJ40. At 18 h post-transfection, cells were
445 treated with poly(I:C), IFN β , TNF α , or UV irradiation, respectively, followed by
446 immunofluorescence analysis. Representative images from three independent
447 experiments are shown. Scale bars: 10 μ m. (E) HEK-293T cells were transfected with
448 plasmids encoding N proteins or vector PXJ40. At 24 h post-transfection, cells were
449 treated with poly(I:C), IFN β , or TNF α . Cells were harvested at 12 h post-treatment, and
450 the transcription levels of IFN β , IFITM3, or IL-8 were detected using qRT-PCR.

451 **Pan-coronaviruses N proteins interact with scaffold protein RACK1**

452 To delve into the mechanisms underlying how the N protein modulates the
453 nucleocytoplasmic trafficking, we conducted co-immunoprecipitation (Co-IP) assays
454 combined with liquid chromatography and mass spectrometry (LC-MS/MS) to screen
455 cellular proteins interacting with IBV N protein. A comprehensive analysis identified a
456 total of 694 cellular candidates that co-immunoprecipitated with IBV N protein. Gene
457 ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG)
458 database analyses revealed a significant enrichment of host gene expression pathways.
459 These include mitochondrial translation, mRNA metabolic process, ribosome
460 biogenesis, regulation of translation, ribonucleoprotein complex assembly, RNA
461 localization, spliceosomal complex assembly, RNA modification, RNA 3'-end
462 processing, among others (Fig 6A-B). Notably, these findings align with the previous
463 interactome analyses of the N proteins from IBV [50], PEDV [51], SARS-CoV-2 [52,
464 53]. Among the IBV N binding proteins involved in nucleocytoplasmic transport, key
465 players were identified and listed in Fig 6C, including RACK1 (Receptor of activated
466 protein C kinase 1), NXF1 (Nuclear RNA export factor 1), LMNB1 (Lamin B1),
467 KPNA2 (importin α 1), PPP1CC (Protein phosphatase PP1 γ), RAE1 (mRNA export
468 factor), LBR (Lamin B receptor), SRPK1 (SRSF protein kinase 1), NUPL2
469 (Nucleoporin-like protein 2, NUP42).

A

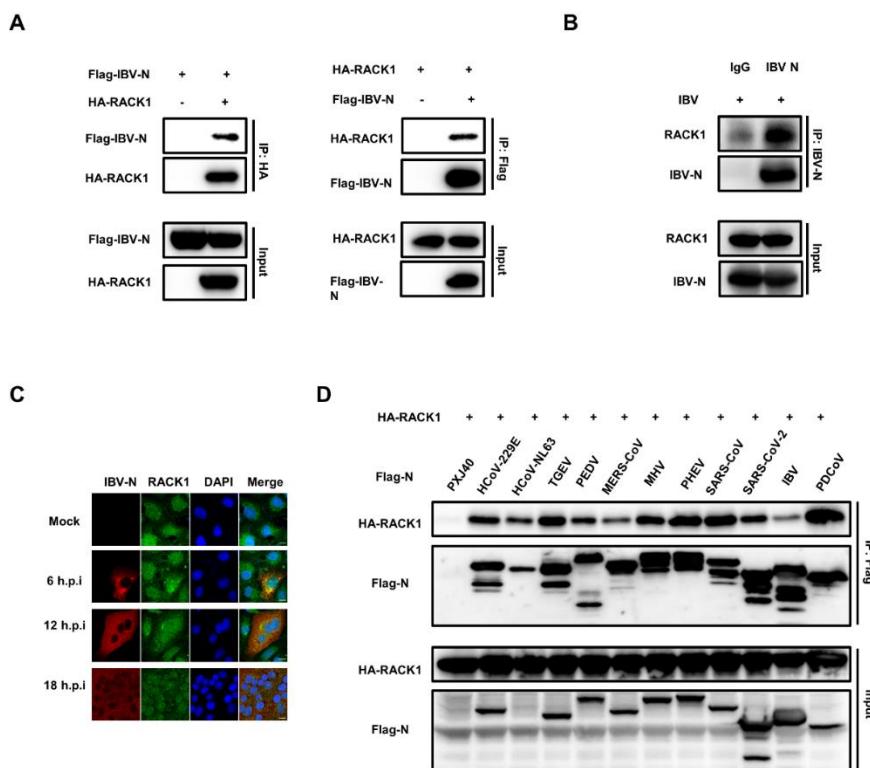
B

C

The IBV N interacting proteins involved in nucleocytoplasmic transport

Gene name	Protein name	Score (-10lgP)*
RACK1	Receptor of activated protein C kinase 1	222.68
NXF1	Nuclear RNA export factor 1	221.86
LMNB1	Lamin B1	206.63
KPN42	Importin subunit alpha 1	199.31
PPP1CC	Serine/threonine protein phosphatase PP1 gamma catalytic subunit	171.61
RAE1	mRNA export factor	130
LBR	Lamin B receptor	120.17
SRPK1	SRSF protein kinase 1	107.94
NUPL2	Nucleoporin-like protein 2	106.33

*Score (-10lgP) is based on the cumulative confidence scores of all peptide fragments detected for an individual protein.


470

471 **Fig 6. Bioinformatic analysis of IBV N-protein interactome.** Plasmid encoding IBV
472 N protein was transfected into HEK-293T cells for 24 h. Whole-cell lysates were
473 immunoprecipitated using anti-Flag antibody, and three independent
474 immunoprecipitated samples were subjected to LC-MS/MS analysis. PXJ40-
475 transfected cell lysates served as negative control to eliminate nonspecific binding
476 proteins. (A) Heatmap illustrating the enrichment of Gene Ontology (GO) annotations
477 within the IBV N-protein interactome. (B) Heatmap displaying the enrichment of Kyoto
478 Encyclopedia of Genes and Genomes (KEGG) pathways in the IBV N-protein
479 interactome. (C) IBV N protein interacts with several cellular proteins involved in
480 nucleocytoplasmic transport.

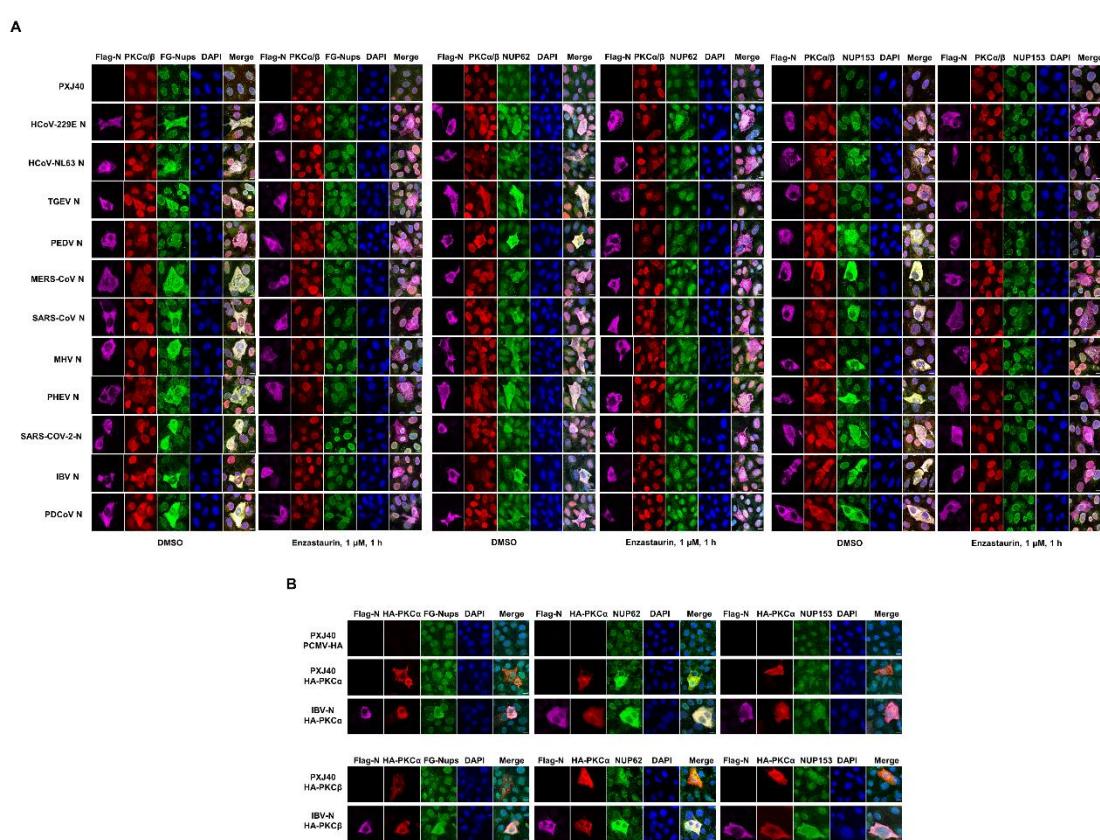
481 Among the proteins interacting with IBV N, as listed in **Fig 6C**, RACK1 stands
482 out as highly conserved intracellular adaptor protein with pivotal roles in anchoring and

483 stabilizing proteins activity, and shuttling proteins to specific cellular location, such as
484 activated PKC [54]. To validate the interaction between N protein and RACK1, we co-
485 transfected plasmids encoding Flag-tagged IBV N and HA-tagged RACK1 into HEK-
486 293T cells. The specific binding between IBV N protein and RACK1 was confirmed
487 by Co-IP using anti-HA or anti-Flag antibodies: both antibodies successfully
488 precipitated Flag-N and HA-RACK1 together (Fig 7A). We further examined whether
489 IBV N binds to endogenous RACK1 during virus infection. DF-1 cells were infected
490 with IBV, followed with immunoprecipitation using anti-IBV N polyclonal antibody.
491 The results demonstrated that the anti-IBV N antibody efficiently co-precipitated N
492 protein and endogenous RACK1, providing evidence of specific binding during the
493 virus infection process (Fig 7B). Since the antibody against human RACK1 recognizes
494 the linear epitopes of chicken RACK1 but not its conformational epitopes, DF-1 cells
495 are not suitable for studying the subcellular localization of endogenous RACK1.
496 Therefore, Vero cells were employed for subsequent immunofluorescence study. The
497 results in Fig 7C revealed that in mock-infected Vero cells, endogenous RACK1 was
498 distributed in both the nucleus and cytoplasm. However, in IBV-infected Vero cells, a
499 proportion of endogenous RACK1 was dispersed into the cytoplasm at 6 and 12 h.p.i.,
500 where it co-localized with IBV N protein, indicating alterations in its localization by N
501 protein during infection.

502 To investigate whether the interaction with RACK1 is a common feature among
503 pan-coronaviruses N proteins, Flag-tagged N proteins from various coronaviruses were
504 co-expressed with HA-RACK1 in HEK-293T cells. Co-IP results showed that the anti-
505 Flag antibody efficiently precipitated both Flag-N proteins and HA-RACK1, while no
506 RACK1 was pulled down in the absence of N protein (PXJ40 transfection group) (Fig
507 7D), indicating that the interaction with RACK1 is a conserved characteristic among
508 pan-coronaviruses N proteins.

509

Fig 7. Pan-coronaviruses N proteins interact with RACK1. (A) HEK-293T cells were co-transfected with plasmids encoding Flag-IBV N and HA-RACK1. Co-transfections with Flag-IBV-N and PCMV-HA, or PXJ40 and HA-RACK1 were performed as control groups. Cell lysates were immunoprecipitated using anti-Flag or anti-HA antibodies, followed by immunoblot analysis. (B) DF-1 cells were infected with IBV at an MOI of 1. At 12 h.p.i., cell lysates were immunoprecipitated using anti-IBV N antibody, followed by immunoblot analysis. (C) Vero cells were infected with IBV at an MOI of 1 or mock-infected. Immunostaining was performed at 6, 12, and 18 h.p.i. Representative images from three independent experiments are shown. Scale bars: 10 μ m. (D) HEK-293T cells were co-transfected with plasmids encoding Flag-tagged N proteins from different coronaviruses and HA-RACK1. Co-transfection of PXJ40 with plasmid encoding HA-RACK1 served as a control. Cell lysates were immunoprecipitated using anti-Flag antibody, followed by immunoblot analysis.


523 The cytoplasmic redistribution of Nups requires PKC α / β activity

524 RACK1 serves as an anchoring protein for PKC and is responsible for trafficking PKC

525 to specific subcellular locations. Although PKC has been reported to be involved in the
526 modulation of lamin B1 phosphorylation and the cell cycle [55-57], whether PKC
527 phosphorylates Nups remains unexplored. Notably, phosphorylation and cytoplasmic
528 distribution of NUP62 were observed in IBV-infected cells, and N protein was found to
529 be responsible for the cytoplasmic distribution of Nups. Intriguingly, N protein interacts
530 with the PKC scaffold protein RACK1. These observations prompt us to speculate that
531 N protein might regulate PKC activity via RACK1 and be involved in NUP62
532 phosphorylation. To test our hypothesis, we first examined whether PKC activity is
533 implicated in the cytoplasmic distribution of Nups induced by N protein expression.
534 Vero cells were transfected with Flag-tagged N proteins from different coronaviruses
535 and the subcellular localization of PKC α/β , FG-Nups, NUP62, and NUP153 was
536 examined. Immunofluorescence analysis revealed that PKC α/β translocated from the
537 nucleus to the cytoplasm together with FG-Nups, NUP62, or NUP153 in all N protein-
538 expressing cells (Fig 8A), demonstrating that N protein alters the subcellular
539 localization of PKC α/β and affects their activity. The pronounced colocalization of N,
540 PKC α/β , and FG-Nups/NUP62/NUP153 suggests potential interactions among N
541 kinases and Nups. The application of the PKC α/β inhibitor Enzastaurin resulted in the
542 majority of PKC α/β , FG-Nups, NUP62, and NUP153 relocating to the nucleus or
543 perinuclear region, while all N proteins remained diffusely distributed throughout the
544 cytoplasm (Fig 8A). Thus, the activity of PKC α/β is implicated in the cytoplasmic
545 dispersion of Nups in N protein-expressing cells.

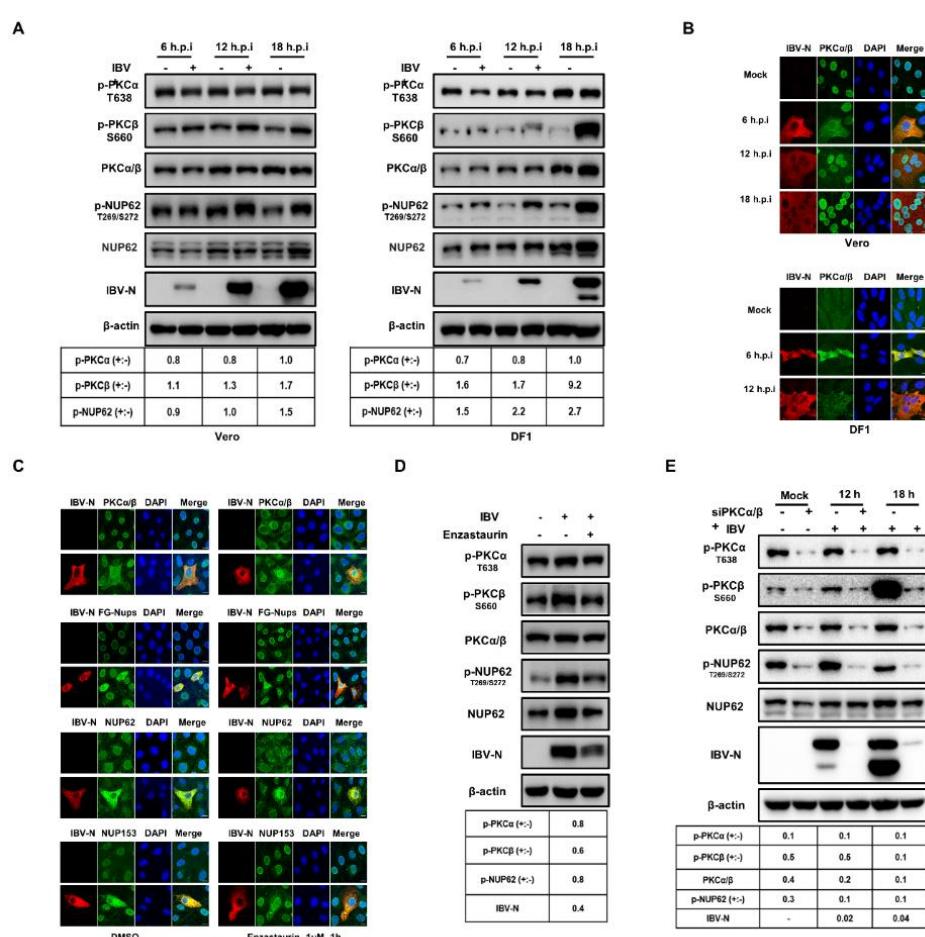
546 To further confirm the implication of PKC in the cytoplasmic distribution of Nups,
547 HA-tagged PKC α and PKC β were expressed in Vero cells alone or together with IBV
548 N protein. Immunofluorescence analysis revealed that overexpression of both HA-
549 PKC α and HA-PKC β promoted the cytoplasmic distribution of NUP62, while the
550 cytoplasmic dispersion of FG-Nups and NUP153 was less pronounced. Surprisingly,
551 co-expression of IBV N protein and PKC α /PKC β led to enhanced cytoplasmic
552 distribution of FG-Nups, NUP62, and NUP153, with these Nups colocalizing well with
553 N and PKC α /PKC β (Fig 8B). This observation suggests that PKC α and PKC β are
554 capable of inducing the cytoplasmic dispersion of NUP62, and the presence of N

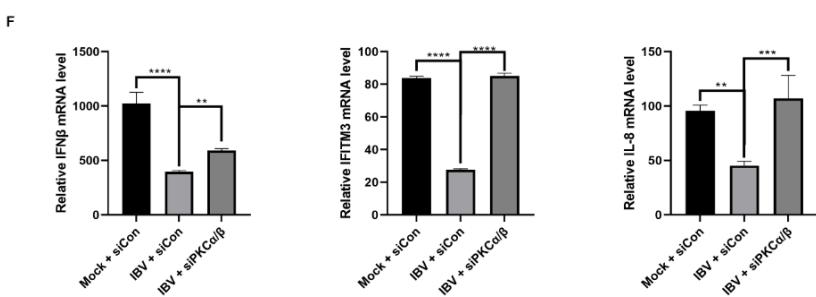
555 protein promotes the dispersion of more Nups into the cytoplasm.

571 As illustrated in **Fig 9A**, compared to mock-infected cells, the phosphorylation level of
572 PKC β (p-PKC β , at S660) gradually increased over the course of infection, peaking at
573 18 h.p.i., while the phosphorylation level of PKC α (p-PKC α , at T638) remained stable.
574 Remarkably, the level of p-NUP62 (at T269/S272) also exhibited a gradual increase
575 during IBV infection, concurrent with PKC β phosphorylation. Immunofluorescence
576 analysis in **Fig 9B** revealed that during the early stages of infection (6 and 12 h.p.i.),
577 PKC α/β translocated from the nucleus to the cytoplasm and exhibited diffuse
578 colocalization with N protein. However, as the infection progressed, PKC α/β gradually
579 relocated to the nucleus (12-18 h.p.i.), indicating dynamic regulation of their subcellular
580 localization by IBV infection. The alteration in subcellular localization of PKC α/β
581 induced by virus infection likely determines their proximity to substrates, influencing
582 their kinase activity.

583 The next question we addressed was whether PKC α/β activity is implicated in the
584 cytoplasmic dispersion of Nups during IBV infection. We treated IBV-infected cells
585 with the PKC α/β inhibitor Enzastaurin and examined the subcellular localization of
586 Nups. As shown in **Fig 9C**, compared to the DMSO-treated group, Enzastaurin
587 treatment caused PKC α/β , FG-Nups, NUP62, and NUP153 to relocate to the nucleus
588 and perinuclear region in IBV-infected cells, resulting in reduced cytoplasmic
589 dispersion. These observations suggest that PKC α/β activity is necessary for IBV
590 infection-induced Nups cytoplasmic redistribution, similar to what was observed in N
591 protein-expressing cells. Interestingly, Enzastaurin treatment reduced the
592 phosphorylation levels of PKC β , NUP62, and the expression of IBV N protein (**Fig.**
593 **9D**), indicating that the activation of PKC α/β is involved in NUP62 phosphorylation
594 and benefits virus replication.

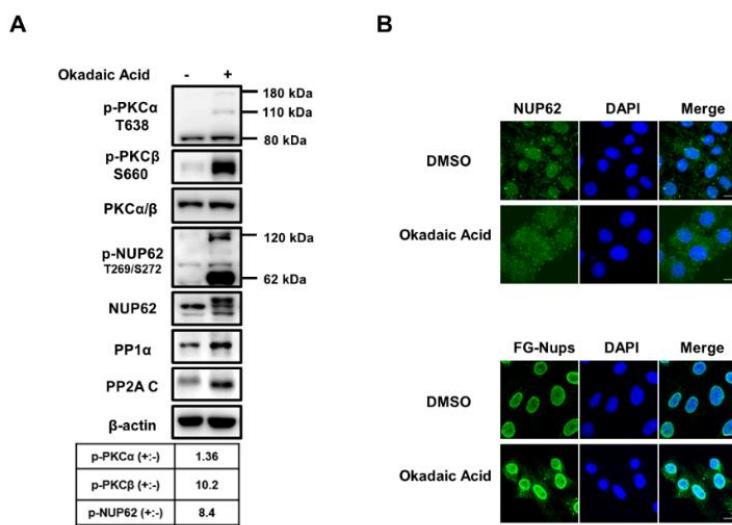
595 The impact of PKC α/β on NUP62 phosphorylation was further investigated by
596 suppressing PKC α and PKC β expression using a siRNA targeting both PKC α and
597 PKC β . As depicted in **Fig 9E**, transfection with PKC α/β siRNA effectively suppressed
598 the expression of both PKC α and PKC β , leading to a substantial reduction in total
599 PKC α/β levels, as well as p-PKC α and p-PKC β . Concurrently, phosphorylation of
600 NUP62 (p-NUP62) decreased to nearly undetectable levels in both mock- and IBV-


601 infected cells, indicating the essential role of PKC α / β in NUP62 phosphorylation, under
602 both normal physiological conditions and during virus infection. Furthermore,
603 depletion of PKC α / β resulted in a significant decrease in IBV N protein levels,
604 underscoring the necessity of PKC α / β for efficient virus replication.

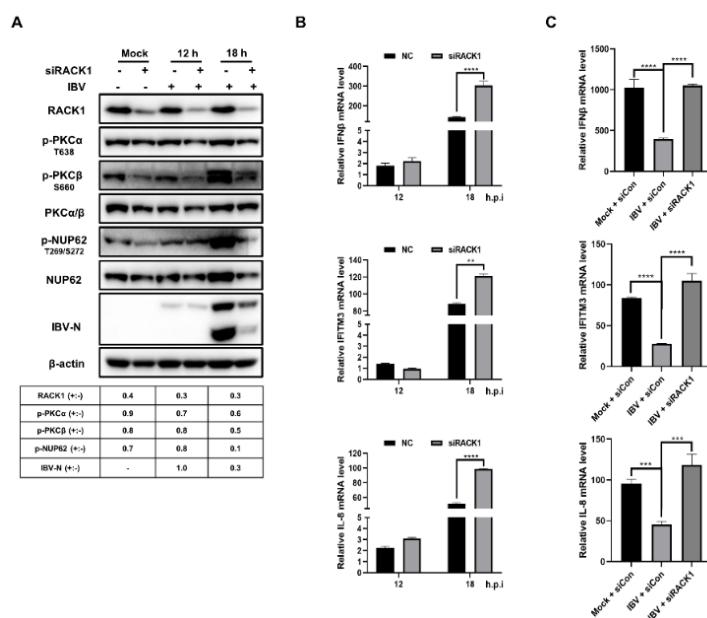

605 To investigate whether phosphorylation of NUP62 is responsible for its
606 cytoplasmic distribution, we treated Vero cells with the PP1 and PP2A inhibitor okadaic
607 acid to inhibit dephosphorylation events. We examined the phosphorylation levels of
608 PKC α , PKC β , and NUP62 by Western blot analysis. As shown in **S4A Fig**, okadaic acid
609 treatment led to a slight accumulation of p-PKC α , accompanied by the appearance of
610 two additional bands corresponding to 110 or 180 kDa, which represent dimers/trimers
611 with enhanced activity [58, 59]. The phosphorylation form of PKC β (p-PKC β) was also
612 greatly accumulated. Therefore, PP1 or PP2A is implicated in the dephosphorylation of
613 PKC α /PKC β and suppression of their activity. Simultaneously, the phosphorylation
614 form of NUP62 (p-NUP62) was predominantly accumulated. Meanwhile, a band with
615 slower mobility at approximately 120 kDa was detected, which might represent a
616 potential dimer. The dimerization or oligomerization of p-NUP62 is involved in self-
617 interaction or interaction with other Nups [60, 61], although the underlying mechanism
618 and functional consequence are unclear. Total NUP62 exhibited minor mobility shift
619 bands representing hyperphosphorylation forms at multiple sites. The significant
620 accumulation of p-NUP62 by okadaic acid treatment demonstrates that PP1 or PP2A
621 directly dephosphorylates NUP62 and probably contribute to the disassembly of NPC.
622 Immunofluorescence analysis showed that okadaic acid treatment greatly promoted the
623 cytoplasmic distribution of NUP62 (**S4B Fig, top panel**), confirming the correlation
624 between phosphorylation of NUP62 and its cytoplasmic dispersion. Additionally, a
625 small proportion of FG-Nups was also dispersed to the cytosol in okadaic acid-treated
626 cells (**S4B Fig, lower panel**), further supporting the idea that phosphorylation events
627 lead to the dissociation of FG-Nups.

628 Finally, we examined whether depletion of PKC α / β affects the expression profile
629 of antiviral genes. Real-time qRT-PCR results revealed that IBV infection compromised
630 the expression of IFN β , IFITM3, and IL-8 induced by corresponding stimuli. In PKC α

631 and PKC β knockdown cells, the transcription of these antiviral genes was significantly
 632 restored (Fig 9F). This observation suggests that PKC α/β is involved in the suppression
 633 of the innate immune response during IBV infection.


634 Overall, the above results demonstrate that IBV infection activates PKC β through
 635 phosphorylation and synchronously alters the subcellular localization of PKC α/β .
 636 Meanwhile, the activated PKC α/β is responsible for phosphorylating NUP62 and
 637 distributing Nups to the cytoplasm, ultimately suppressing the expression of antiviral
 638 genes and facilitating virus replication. However, due to the indiscriminate knockdown
 639 or inhibition of PKC α and PKC β by siRNA or chemical inhibitors, we are unable to
 640 determine from the current data whether PKC α or PKC β specifically mediates the
 641 phosphorylation of NUP62.

643


644 **Fig 9. role of PKC α/β activity in NUP62 phosphorylation, the cytoplasmic**
645 **distribution of FG-Nups, suppression of the antiviral response, and virus**
646 **replication.** (A) Vero or DF-1 cells were infected with IBV at an MOI of 1 or mock-
647 infected. Cells were harvested at 6, 12, and 18 h.p.i. and subjected to western blot
648 analysis using corresponding antibodies. The intensities of p-PKC α , p-PKC β , and p-
649 NUP62 bands were normalized to total PKC α/β or NUP62, respectively. The ratio of
650 p-PKC α , p-PKC β , and p-NUP62 in IBV-infected cells to those in mock-infected cells
651 is denoted as p-PKC α (+:-), p-PKC β (+:-), and p-NUP62 (+:-). (B) Vero and DF-1 cells
652 were infected with IBV or mock-infected and subjected to immunostaining. (C) Vero
653 cells were infected with IBV or mock-infected. At 2 h.p.i., cells were treated with
654 DMSO or Enzastaurin (1 μ M) for 4 h. The subcellular localization of the indicated
655 proteins was analyzed with immunostaining. Representative images from three
656 independent experiments are presented. Scale bars: 10 μ m. (D) DF-1 cells were infected
657 with IBV or mock-infected, followed by treatment with DMSO or Enzastaurin (1 μ M)
658 at 18 h.p.i. Western blot analysis was performed with indicated antibodies. (E) DF-1
659 cells were transfected with siRNA targeting PKC α/β for 48 h, followed by IBV
660 infection. Western blot analysis was conducted to detect the indicated proteins. The
661 ratio of p-PKC α , p-PKC β , p-NUP62, and N protein in Enzastaurin-treated cells or
662 siPKC α/β -transfected cells to those in DMSO-treated or siControl-transfected cells is
663 denoted as p-PKC α (+:-), p-PKC β (+:-), NUP62 (+:-), and N (+:-). (F) DF-1 cells were
664 transfected with siRNA targeting PKC α/β for 48 h, followed by IBV infection at an
665 MOI of 5. The infected cells were treated with poly(I:C) or TNF α at 2 h.p.i for 6 h, or
666 subjected to IFN β treatment at 6 h.p.i for 6 h. qRT-PCR was performed to detect the
667 transcription levels of IFN β , IFITM3, and IL-8.

669 **S4 Fig. Effect of PP1 and PP2A inhibitor okadaic acid treatment on**
670 **phosphorylation of PKC α , PKC β and NUP62, and induction of cytoplasmic**
671 **dispersion of NUP62 and FG-Nups. (A)** DF-1 cells were treated with either DMSO
672 or okadaic acid (1 μ M) for 1 h and subjected to western blot analysis using the indicated
673 antibodies. The intensities of p-PKC α , p-PKC β , and p-NUP62 bands were normalized
674 to total PKC α / β or NUP62. The ratio of p-PKC α , p-PKC β , and p-NUP62 in okadaic
675 acid-treated cells to DMSO-treated cells is denoted as p-PKC α (+:-), p-PKC β (+:-), and
676 p-NUP62 (+:-). (B) Vero cells were treated with either DMSO or okadaic acid (1 μ M)
677 for 1 h and subjected to immunostaining. Representative images are shown. Scale bars:
678 10 μ m.

679 **RACK1 is essential for the phosphorylation of PKC α / β and NUP62, the**
680 **suppression of antiviral gene expression, and the promotion of IBV infection**
681 To investigate whether RACK1 is involved in the regulation of PKC activity and
682 NUP62 phosphorylation, we knocked down RACK1 in DF-1 cells, followed by IBV
683 infection. As illustrated in Fig 10A, the reduced expression of RACK1 led to a decrease
684 in p-PKC α , p-PKC β , and p-NUP62 levels in both mock- and IBV-infected DF-1 cells,
685 demonstrating that RACK1 participates in the phosphorylation of PKC α , PKC β , and
686 NUP62. Concurrently, the expression level of IBV N protein was also reduced in
687 RACK1 knockdown cells, revealing the importance of RACK1 in virus infection.
688 Furthermore, depletion of RACK1 significantly restored the transcription of IFN β ,

689 IFITM3, and IL-8 in IBV-infected DF-1 cells, under conditions with or without
690 chemical stimuli (Fig 10B-C). These results demonstrate that RACK1 is an essential
691 host factor for PKC α and PKC β to maintain and exert kinase activity on
692 phosphorylating NUP62, thereby suppressing the expression of antiviral genes and
693 ultimately benefiting IBV replication.

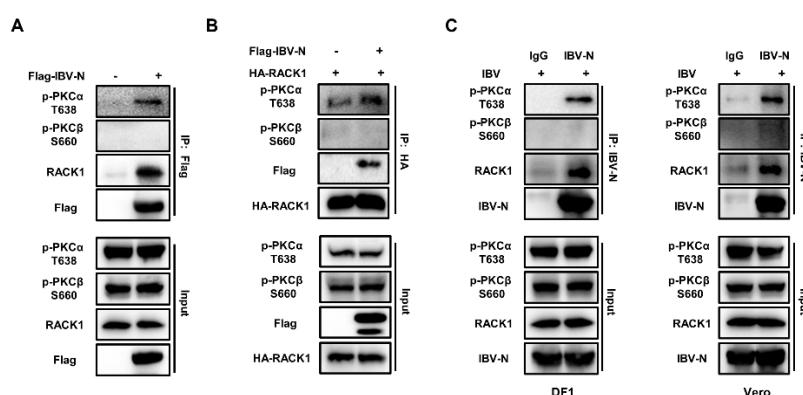
694
695 **Fig 10. Role of RACK1 in maintaining phosphorylation of PKC α , PKC β , and**
696 **NUP62, suppression of antiviral gene expression, and promotion of IBV infection.**
697 (A-C) DF-1 cells were transfected with RACK1 siRNA or control siRNA, followed by
698 IBV infection at 48 h post-transfection. One parallel experimental group was subjected
699 to treatment with poly(I:C) transfection, TNF α , or IFN β , respectively. Cells were
700 harvested at indicated time points and subjected to Western blot analysis (A) or qRT-
701 PCR analysis (B and C). For panel A, the intensities of RACK1, p-PKC α , p-PKC β , p-
702 NUP62, and IBV N bands were normalized to β -actin, PKC α / β , NUP62, and β -actin,
703 respectively. The ratio of these protein signals in cells transfected with RACK1 siRNA
704 to those transfected with control siRNA is denoted as RACK1 (+:-), p-PKC α (+:-), p-
705 PKC β (+:-), p-NUP62 (+:-), and IBV N (+:-). For panel B and C, the value of mock-
706 infected cells was regarded as 1.

707 **The pan-coronaviruses N proteins promotes the anchoring of p-PKC α to RACK1,**
708 **and both PKC α / β and RACK1 are required for N protein to suppress the host**

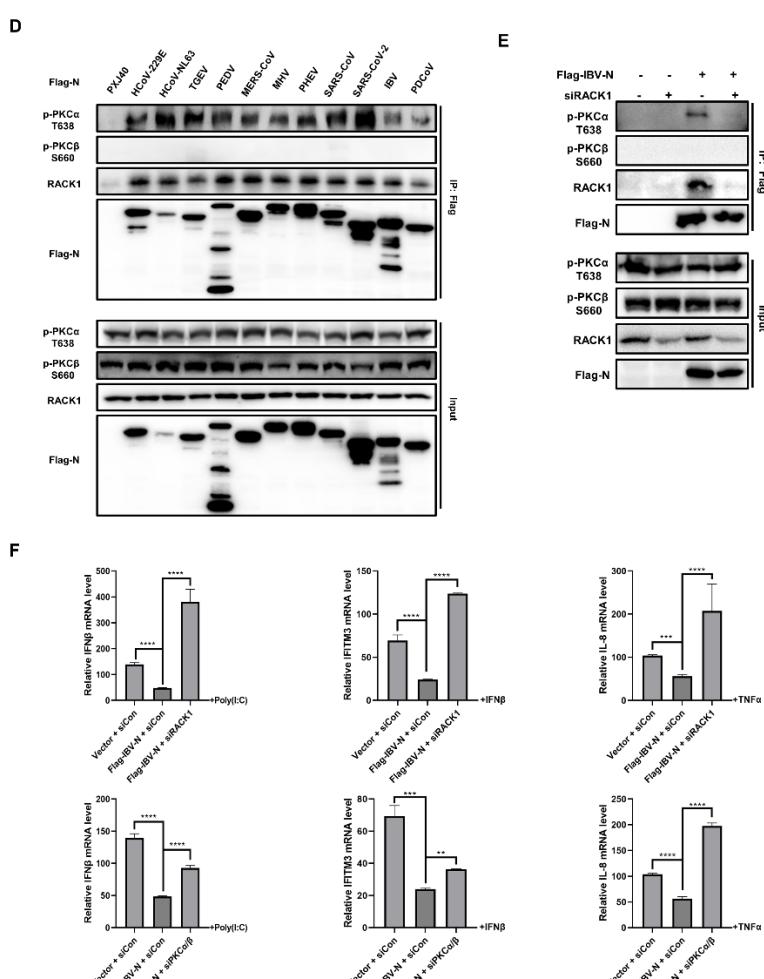
709 **antiviral response**

710 One of the major functions of RACK1 is anchoring and trafficking activated PKC to
711 specific subcellular locations [62]. We further investigated the effect of the interaction
712 between IBV N and RACK1 on PKC α / β activity. Flag-tagged IBV N was expressed in
713 DF-1 cells and immunoprecipitated with anti-Flag antibody, followed by Western blot
714 analysis to detect endogenous RACK1, p-PKC α , and p-PKC β . As depicted in **Fig 11A**,
715 both endogenous RACK1 and p-PKC α were successfully co-immunoprecipitated with
716 Flag-tagged IBV N, while p-PKC β was not detected in the precipitated complex. This
717 result demonstrates that IBV N, RACK1, and p-PKC α interact with each other to form
718 a complex.

719 In cells overexpressing HA-RACK1, more p-PKC α , but not p-PKC β , was co-
720 immunoprecipitated with HA-RACK1 in the presence of IBV N (**Fig 11B**), indicating
721 that IBV N promotes the anchoring of p-PKC α to scaffold RACK1. This interaction
722 was confirmed under IBV infection conditions (**Fig 11C**), as evidenced by successful
723 pull-down of N protein together with endogenous RACK1 and p-PKC α using anti-IBV
724 N polyclonal antibody, while p-PKC β was not associated with RACK1 and N protein.
725 These results validate the formation of a complex involving N, RACK1, and p-PKC α
726 during IBV infection.


727 To determine whether the formation of the N-RACK1-p-PKC α complex is a
728 conserved feature, Flag-tagged N proteins from eleven strains of coronaviruses were
729 expressed in HEK-293T cells, and Co-IP was performed using anti-Flag antibody.
730 HEK-293T cells were chosen for this study due to their high transfection efficiency,
731 which facilitates the expression of N proteins. Western blot analysis showed that all the
732 N proteins were able to bind and pull down endogenous RACK1 and p-PKC α together;
733 once again, p-PKC β was not detected in the precipitates. These results confirm that the
734 formation of the N-RACK1-p-PKC α complex is conserved across pan-coronaviruses,
735 and N protein plays an important role in promoting the anchoring of p-PKC α to RACK1
736 (**Fig 11D**).

737 Next, we investigated whether RACK1 serves as the scaffold to anchor N and
738 PKC α together. RACK1 was knocked down in DF-1 cells, followed by transfection of


739 IBV N. The Flag antibody successfully co-immunoprecipitated Flag-tagged IBV N and
740 p-PKC α together with RACK1 in control siRNA-transfected cells. However, it failed
741 to co-immunoprecipitate p-PKC α in the absence of RACK1 (siRACK-transfected cells).
742 Once again, p-PKC β was not co-immunoprecipitated with IBV N protein (Fig 11E).
743 This result demonstrates that RACK1 serves as the scaffold for the formation of the N-
744 RACK1-p-PKC α complex.

745 To test the effect of RACK1 and PKC α/β on the expression of antiviral genes,
746 these proteins were individually knocked down in DF-1 cells, followed by the
747 overexpression of IBV N and stimulation with poly(I:C), IFN β , or TNF α . The
748 transcription of IFN β , IFITM3, and IL-8 was examined by qRT-PCR. As shown in Fig
749 11F, knockdown of either RACK1 or PKC α/β significantly restored the expression of
750 these antiviral genes, which had been suppressed by IBV N. Therefore, both RACK1
751 and PKC α/β are required for N protein to suppress the innate immune response.

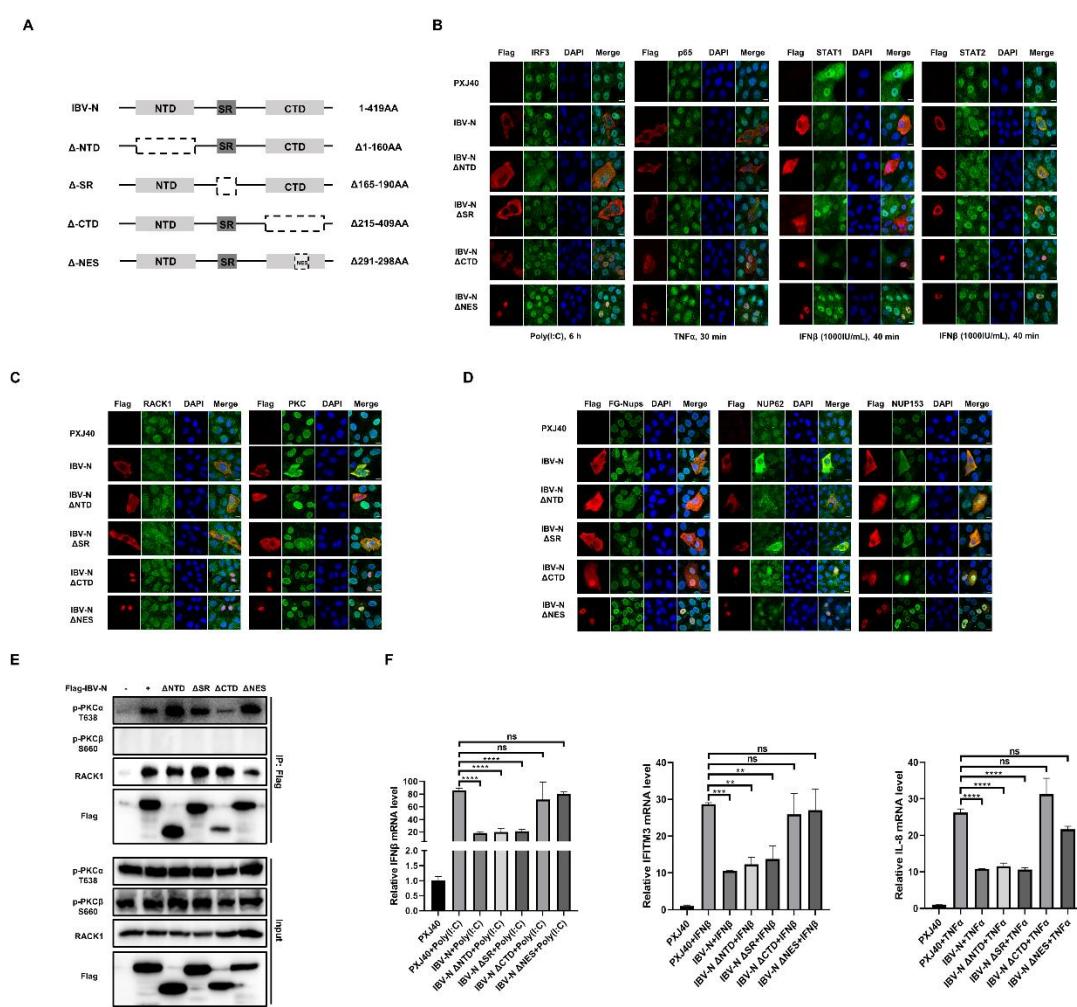
752 The anchoring of p-PKC α to the RACK1-N complex, rather than p-PKC β , and the
753 essential role of PKC α/β and RACK1 in NUP62 phosphorylation and N protein-
754 mediated suppression of antiviral gene expression, suggest that the association with the
755 RACK1-N complex enables p-PKC α to execute its kinase function in close proximity
756 to its substrates, including phosphorylating NUP62. Conversely, since p-PKC β does not
757 associate with the RACK1-N complex, it likely exerts its kinase function by
758 translocating to specific subcellular locations through alternative mechanisms.

759

760

761 **Fig 11. Interaction between IBV N, p-PKCa, and RACK1, and their role in**
762 **suppression of innate immune response.** (A) DF-1 cells were transfected with Flag-
763 tagged IBV N or vector PXJ40 for 24 h and subjected to Co-IP using anti-Flag antibody,
764 followed by Western blot analysis. (B) Plasmids encoding HA-RACK1 and Flag-tagged
765 IBV N, or HA-RACK1 and PXJ40 were co-transfected into DF-1 cells for 24 h. Cell
766 lysates were subjected to Co-IP using anti-HA antibody, followed by Western blot
767 analysis. (C) DF-1 cells or Vero cells were infected with IBV for 12 h and subjected to
768 Co-IP using anti-IBV N antibody. The interaction of IBV N, p-PKCa, p-PKCB, and
769 RACK1 was detected by Western blot. (D) HEK-293T cells were transfected with
770 plasmids encoding Flag-tagged N proteins from eleven coronaviruses or PXJ40 for 24
771 h. Cell lysates were subjected to CO-IP with anti-Flag antibody, followed by
772 immunoblot with indicated antibodies. (E) siRACK1 or control siRNA was transfected
773 into DF-1 cells for 36 h, followed by transfection of plasmid encoding Flag-tagged IBV

774 N or vector PXJ40 for 24 h. Cell lysates were subjected to Co-IP using anti-Flag
775 antibody, followed by Western blot analysis. (F) siRNA targeting RACK1, PKC α / β , or
776 control siRNA was transfected into DF-1 cells for 36 h, followed by transfection of
777 plasmid encoding Flag-tagged IBV N or vector PXJ40. At 24 h post-transfection, cells
778 were stimulated with poly(I:C), IFN β , or TNF α , respectively. Cells were harvested after
779 12 h post-stimulation, and the transcription levels of IFN β , IFITM3, and IL-8 was
780 measured by qRT-PCR. The group transfected with vector PXJ40 without stimulation
781 was set as 1.


782 **Nuclear export signal (NES) of IBV N is essential for promotion of cytoplasmic
783 dispersion of FG-Nups and suppression of innate immune response**

784 The coronavirus N protein compromises three highly conserved domains: the N-
785 terminal viral RNA binding region (NTD), the Ser/Arg-rich region (SR-domain), and
786 the C-terminal dimerization domain (CTD). To characterize which domain is involved
787 inhibiting nucleocytoplasmic trafficking, plasmids encoding four IBV N truncation
788 fragments were constructed: Δ NTD with deletion of N-terminal 1 to 160 aa, the viral
789 RNA binding region; Δ SR with deletion of the Ser/Arg-rich region 165 to 190 aa, the
790 potential phosphorylation region; Δ CTD with deletion of the C-terminal 215 to 409 aa,
791 the dimerization domain; Δ NES by removing the nuclear export signal (NES,
792 291 LQLDGLHL 298) (Fig 12A). Vero cells were transfected with these plasmids and
793 applied to immunofluorescence analysis. As illustrated in Fig 12B, both Δ NTD and
794 Δ SR were distributed in the cytoplasm and exhibited the ability to inhibit the nuclear
795 translocation of IRF3, p65, STAT1, and STAT2 in response to their respective stimuli,
796 similar to wild-type IBV N. However, Δ CTD and Δ NES were primarily localized in
797 the nucleus and showed a loss of capacity to inhibit the nuclear translocation of IRF3,
798 p65, STAT1, and STAT2. The nuclear retention of Δ CTD might be attributed to the
799 loss of NES (291 LQLDGLHL 298), which is located within the CTD (215 to 409 aa).
800 Thus, the cytoplasmic distribution of N protein might be critical for perturbing the
801 nucleocytoplasmic trafficking.

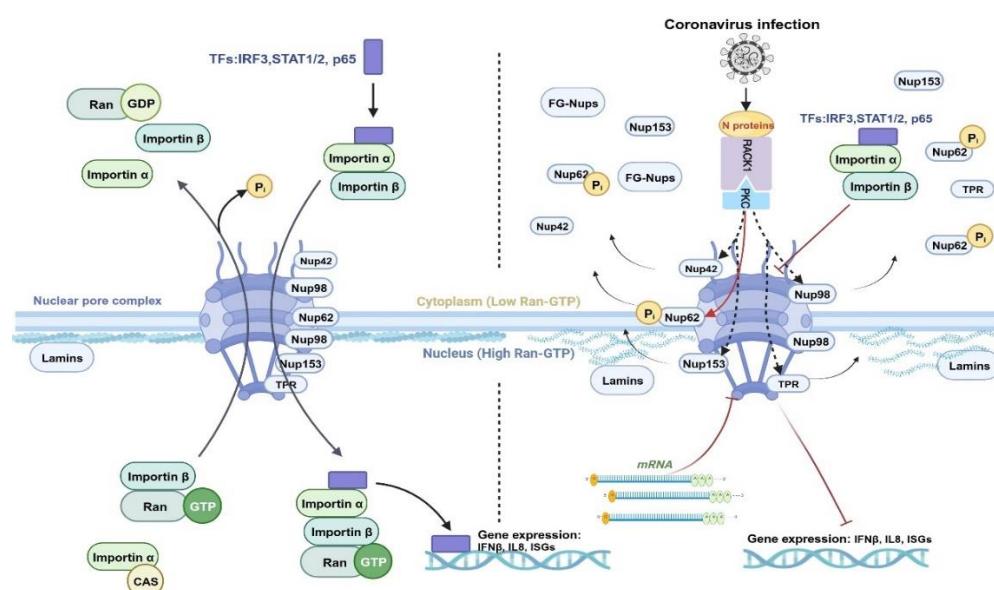
802 We further investigated the subcellular localization of RACK1 and PKC α / β in

803 cells expressing various IBV N mutants. As illustrated in **Fig 12C**, cells transfected with
804 PXJ40 exhibited RACK1 signal in the nucleus and perinuclear region, whereas PKC α / β
805 signals were predominantly detected in the nucleus. In cells expressing wild-type IBV
806 N, Δ NTD, or Δ SR, RACK1 and PKC α / β were redistributed to the cytoplasm,
807 colocalizing with N protein or its truncated mutants. This indicates that N protein has
808 the capacity to modulate the subcellular localization of RACK1 and PKC α / β . However,
809 when Δ CTD and Δ NES mutants were confined to the nucleus, there was no significant
810 dispersion of RACK1 and PKC α / β into the cytoplasm: RACK1 remained localized in
811 the nucleus and perinuclear region, while PKC α / β predominantly remained in the
812 nucleus (**Fig 12C**). These findings suggest that the localization of the N protein dictates
813 the positioning of the RACK1-PKC α complex. Further examination of the impact of
814 these N mutants on the intracellular distribution of Nups revealed that Δ NTD and Δ SR
815 induced cytoplasmic dispersion of FG-Nups, NUP62, and NUP153, similar to cells
816 expressing wild-type N protein. Conversely, in cells expressing Δ NES, FG-Nups,
817 NUP62, and NUP153 signals remained concentrated at the NE, with intense signals
818 observed within the nucleus (**Fig 12D**). Notably, in cells expressing Δ CTD, a minor
819 fraction of FG-Nups and NUP153 exhibited cytoplasmic dispersion, while the signal of
820 NUP62 and NUP153 was intensified in the nucleus. Co-IP analysis revealed that similar
821 to wild-type N protein, Δ NTD, Δ SR, Δ CTD, and Δ NES exhibited varying degrees of
822 interaction capability with RACK1 and p-PKC α (**Fig 12E**).

823 Consistent with the observations in **Fig 12B-D**, Δ NTD and Δ SR maintained the
824 capability to inhibit the expression of IFN β , IFITM3, and IL-8 in response to poly(I:C),
825 IFN β , and TNF α stimuli, whereas Δ CTD and Δ NES lost this capacity (**Fig 12F**). Overall,
826 the presence of CTD and NES enables the N protein to localize in the cytosol alongside
827 RACK1 and PKC α / β , thereby facilitating the function of the N-RACK1-p-PKC α
828 complex in inducing cytoplasmic dispersion of FG-Nups. This process prevents the
829 nuclear translocation of transcription factors and the subsequent antiviral innate
830 immune response, as indicated by the results presented in **Fig 12B-F**.

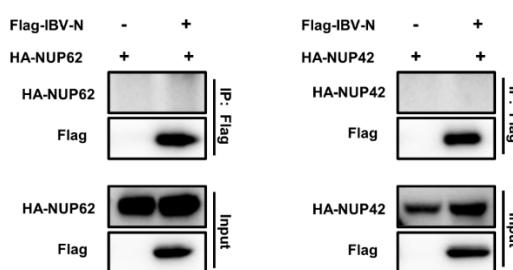
831

832 **Fig 12. Significance of cytoplasmic localization of IBV N protein in disrupting the**
 833 **nuclear envelope localization of Nups and suppressing antiviral gene expression.**


834 (A) Schematic representation of truncated mutants of the IBV N protein. (B) Vero cells
 835 were transfected with plasmids encoding Flag-tagged IBV N, Δ NTD, Δ SR, Δ CTD,
 836 Δ NES, or PXJ40. At 18 h post-transfection, cells were treated with poly (I:C), while
 837 treatment with IFN β or TNF α was initiated at 24 h post-transfection. Subsequently, cells
 838 were subjected to immunostaining. (C-D) Vero cells were transfected with plasmids
 839 encoding Flag-tagged IBV N, Δ NTD, Δ SR, Δ CTD, Δ NES, or PXJ40. At 24 h post-
 840 transfection, cells were subjected to immunostaining with corresponding antibodies.
 841 Representative images from three independent experiments are shown. Scale bars: 10
 842 μ m. (E) DF-1 cells were transfected with plasmids encoding Flag-tagged IBV N or the
 843 truncated mutants, or PXJ40. At 24 h post-transfection, cell lysates were subjected to

844 Co-IP with anti-Flag antibody and subsequently immunoblotted with corresponding
845 antibodies. (F) DF-1 cells were transfected with plasmids encoding Flag-tagged IBV N,
846 the truncated mutants, or PXJ40. At 24 h post-transfection, cells were treated with
847 poly(I:C), IFN β , or TNF α for 12 h. Cells were harvested, and the levels of IFN β ,
848 IFITM3, and IL-8 were determined using qRT-PCR.

849 **Discussion**


850 The coronavirus has evolved multiple strategies to inhibit the innate immune response
851 for its own benefit. In this study, we demonstrate that IBV infection inhibits the
852 expression of several antiviral genes by suppressing the nuclear translocation of their
853 corresponding transcription factors: IRF3, STAT1/STAT2/IRF9, and p65. We identified
854 the IBV N protein as the factor responsible for retaining these transcription factors in
855 the cytoplasm and suppressing the expression of antiviral genes. Both IBV infection
856 and N protein expression promote the cytoplasmic dispersion of multiple Nups,
857 indicating perturbation of the NPC function, which governs the nucleocytoplasmic
858 trafficking of RNA and proteins. Although immunofluorescence analysis shows the
859 colocalization of N and Nups in the cytoplasm, there is no direct interaction between
860 the N protein and several Nups (NUP62 and NUP42), as determined by Co-IP analysis
861 ([S5 Fig](#)). Previous studies have reported that the disassembly of the NPC is regulated
862 by phosphorylation of Nups during cell mitosis [48, 63]. Here, Western blot analysis
863 demonstrates that NUP62 is phosphorylated at T269 and S272 during IBV infection.
864 Chemical inhibition of intracellular PP1 and PP2A activity by okadaic acid leads to the
865 accumulation of phosphorylated NUP62 and promotes its cytoplasmic dispersion.
866 These findings strongly support the idea that phosphorylation events of Nups lead to
867 the disassembly of the NPC. Mechanistic studies reveal that the N protein interacts with
868 RACK1 and promotes the anchoring of p-PKCa, but not p-PKC β , to RACK1. The
869 presence of both RACK1 and PKCa β is required for the phosphorylation of NUP62
870 and suppression of antiviral gene expression, thereby benefiting virus infection.
871 Inhibition of PKCa β activity by chemical inhibitor prevents the cytoplasmic
872 distribution of multiple Nups in both N protein-expressing or IBV-infected cells, further

873 indicating the role of PKC α / β in Nups phosphorylation and NPC disassembly. Although
874 phosphorylation of other Nups was not detected due to the lack of phospho-specific
875 antibodies, the cytoplasmic dispersion of FG-Nups, NUP42, NUP153, and TPR
876 suggests that additional Nups might undergo phosphorylation during IBV infection.
877 These observations were also apparent in cells expressing the N proteins across various
878 coronaviruses. Hence, coronavirus infection potentially triggers the phosphorylation of
879 Nups and the disassembly of the NPC through the N-RACK1-p-PKC α -Nup signaling
880 axis. Disruption of the NPC hinders transcription factors from accessing the nucleus,
881 consequently inhibiting the transcription of antiviral genes and ultimately leading to
882 immune suppression, thereby favoring viral replication (Fig 13).

883
884 **Fig 13. A working model illustrating how coronavirus N protein disrupts the**
885 **nuclear transport system to inhibit the nuclear translocation of transcription**
886 **factors and subsequent gene expression.** In the left panel, the canonical nuclear
887 import pathway is described, where the nuclear localization signal (NLS) of cargo
888 proteins (e.g., transcription factors) is recognized by nuclear import receptors such as
889 importin α , forming a complex with importin β . This complex then translocates through
890 NPC by interacting with FG-Nups. Upon entering the nucleoplasm, importin β binds
891 Ran-GTP, leading to disassembly of the import complex and release of the cargo.
892 Importin β bound to Ran-GTP is transported back to the cytoplasm, while importin α is

893 recycled by cellular apoptosis susceptibility (CAS) protein (also known as exportin 2).
894 GTP hydrolysis of Ran releases importin β for the next round of import.
895 In the right panel, during coronavirus infection, the N protein interacts with RACK1
896 and recruits p-PKCa to RACK1 to form a ternary complex. This N-RACK1-p-PKCa
897 complex phosphorylates NUP62, leading to its cytoplasmic dispersion together with
898 other Nups. Consequently, the NPC fails to transport cargo into the nucleus, thereby
899 inhibiting the nuclear translocation of transcription factors such as IRF3, STAT1/2, and
900 p65, subsequently blocking the expression of downstream antiviral genes. This figure
901 was created using Biorender (BioRender, Toronto, ON, Canada).

902
903 **S5 Fig. The in vitro interaction results between IBV N protein and NUP62 or**
904 **NUP42.** Plasmids encoding HA-NUP62 or HA-NUP42 were co-transfected with Flag-
905 tagged IBV N protein, or PXJ40 control plasmid, into HEK-293T cells for 24 h. Cell
906 lysates were subjected to Co-IP using anti-Flag antibody, followed by Western blot
907 analysis.

908 FG-Nups primarily anchor to the central channel of the NPC, forming a dense
909 barrier that prevents passive diffusion while facilitating the passage of cargos via
910 nuclear transport receptors [64]. During IBV infection, no degradation of FG-Nups is
911 observed; however, NUP62 and NUP42 exhibit a shift in size, and phosphorylation of
912 NUP62 at T269 and S272 is confirmed by anti-p-NUP62 antibody (Fig 2D). In Vero
913 cells, a potential cleaved p-NUP62 band at around 45 kDa is detected, indicating the
914 instability of p-NUP62 during infection. Extensive phosphorylation of Nups has been
915 reported to disrupt protein-protein interactions at key contact nodes within the NPC,
916 leading to NPC disintegration and dispersion of Nups into the cytosol [48]. Although
917 we were unable to detect phosphorylation of NUP98 by Western blot analysis due to

918 the lack of an anti-p-NUP98 antibody, immunofluorescence analysis revealed the
919 breakdown of the NUP98 nuclear ring signal in cells expressing N proteins, indicating
920 disassembly of this Nup (Fig 5A). The central FG-Nup subunit NUP62 is demonstrated
921 to be phosphorylated and disperses into the cytosol, along with the cytoplasmic
922 dispersion of Nup153, Nup42, and TPR (Fig 2A, 2C). When the PP1 and PP2A inhibitor
923 okadaic acid was applied to cells, the phosphorylation level of NUP62 was dramatically
924 increased (Fig S4A), which coincided with cytoplasmic dispersion (Fig S4B). This
925 observation demonstrates a direct correlation between the phosphorylation of NUP62
926 and its diffusion into the cytosol. It is noteworthy that in cells treated with okadaic acid,
927 the cytoplasmic distribution pattern of FG-Nups (Fig S4B) is not as pronounced as in
928 IBV-infected or N protein-expressing cells; most FG-Nups remain associated with the
929 NE. Thus, in virus-infected cells or cells expressing the N protein, the NPC is
930 dismantled more extensively than in cells treated with a PP1 and PP2A inhibitor.
931 Moreover, inhibition of phosphatase activity by inhibitor results in the appearance of
932 two p-NUP62 bands around 120 kDa and 62 kDa (Fig S4A), indicating the formation
933 of dimers after hyperphosphorylation. The antibody against total NUP62 detects three
934 bands adjacent to 62 kDa in inhibitor-treated cells (Fig S4A), suggesting that NUP62
935 harbors multiple phosphorylation sites in addition to T269 and S272. It has been
936 reported that extracellular signal-regulated kinase (ERK) and p38 MAPK, activated by
937 encephalomyocarditis virus leader protein, are involved in hyperphosphorylation of
938 several FG-Nups including NUP62, NUP153, and NUP214, leading to diffusion of their
939 nuclear ring signals and inhibition of nuclear import [65, 66]. The ERK-targeted
940 phosphorylation site of NUP62 has previously been mapped to a single PxTP motif
941 within the FG repeat region of NUP62, resulting in an alteration in NPC sensitivity to
942 STAT3 passage [67]. In our study, the phosphorylation site of NUP62 was identified at
943 T269 and S272 within the flexible region. Hyperphosphorylation of NUP62 coincided
944 with cytoplasmic dispersion of NUP62 itself and multiple other Nups, as well as
945 inhibition of transcription factor import. Thus, we conclude that the perturbation of
946 NPC integrity in IBV-infected cells is attributed to the phosphorylation events of
947 NUP62 and other FG-Nups.

948 It has been elucidated that the disintegration of the nuclear envelope induced by
949 parvovirus infection involves a sequential enzymatic cascade mediated by PKC, CDK2,
950 and caspase-3 [68]. In this study, we focused on screening the kinases responsible for
951 NUP62 phosphorylation using chemical inhibitors, which prompted us to investigate
952 PKC α/β . PKC α/β is known for its ability to phosphorylate a diverse set of protein
953 substrates and its involvement in various cellular processes, including cell adhesion,
954 cell transformation, cell cycle regulation, apoptosis, and macrophage development [69].
955 Several direct substrates of PKC α/β have been identified, such as RAF1 [70], BCL2
956 [71], DOCK8 [72], Lamin B1 [55] and components of the signaling cascade involving
957 ERK1/2 [73], as well as RAP1GAP [74]. In our study, we observed that the PKC α/β
958 specific inhibitor, Enzastaurin, effectively suppresses the cytoplasmic dispersion of
959 several Nups in both IBV-infected cells and cells expressing the N proteins of pan-
960 coronaviruses (Fig 8A and 9C), indicating a clear correlation between PKC α/β activity
961 and Nups disassembly. Inhibition of PKC α/β activity or knockdown of PKC α/β
962 specifically reduces the level of phosphorylated NUP62 (Fig 9D, 9E). This study
963 provides the first evidence of PKC α/β involvement in NUP62 phosphorylation and
964 subsequent cytoplasmic dispersion. Additionally, the presence of PKC α/β is essential
965 for IBV or N protein-mediated suppression of antiviral gene expression (Fig 9F and Fig
966 11F) and facilitates IBV infection (Fig 9 D-E). In line with our findings, a recent study
967 has demonstrated that the replication of SARS-CoV-2 is impeded by pan-PKC
968 inhibitors such as Go 6983, Bisindolmaleimide I, Enzastaurin, and Sotрастaurин [75].
969 This suggests that PKC may play an essential role in facilitating coronavirus infection.
970 Hence, the targeting of PKC emerges as a promising strategy in the development of
971 broad-spectrum anti-coronaviral drugs.

972 The regulation of PKC signaling by coronavirus involves the interaction of the
973 viral N protein with the PKC scaffold protein RACK1, as revealed by N protein
974 interactome analysis and Co-IP. As a highly conserved multifunctional protein, RACK1
975 interacts directly or in complex with various cellular proteins, including PKC α/β II,
976 contributing to protein shuttling, subcellular localization, and activity modulation [54,
977 76]. In IBV-infected or pan-coronaviruses N protein-expressing cells, we observed an

978 augmentation in the interaction between p-PKC α and RACK1 (Fig 11A-C), with
979 PKC α / β and RACK1 exhibiting colocalization with the N protein in the cytoplasm (Fig
980 7C and 9B). These findings suggest that the N protein facilitates the translocation of p-
981 PKC α from the nucleus to the cytoplasm, where it associates with RACK1. The
982 depletion of RACK1 demonstrates its indispensability in the formation of the N-
983 RACK1-p-PKC α complex (Fig 11E). Furthermore, the presence of RACK1 is essential
984 for the phosphorylation of PKC α , PKC β , and NUP62, as well as for efficient IBV
985 replication (Fig 10A). The conserved enhancement of p-PKC α anchoring to RACK1
986 by the N protein across pan-coronaviruses suggests a common mechanism employed
987 by coronaviruses to recruit p-PKC α to RACK1, promoting the phosphorylation and
988 disassembly of NUP62 (Fig 11D), as well as potentially affecting other Nups. The
989 necessity of RACK1 and PKC α / β for the N proteins or IBV to suppress the expression
990 of antiviral factors such as IFN β , IFITM3, and IL-8 (Fig 9F, 10C, and 11F) further
991 underscores the critical role of the N-RACK1-p-PKC α complex in antagonizing the
992 host innate immune response, potentially through phosphorylation events on NUP62 or
993 other substrates. In line with our findings, RACK1 has been implicated in facilitating
994 SARS-CoV-2 replication, as its depletion has been shown to reduce infectious virus
995 release and intracellular spike protein expression [77]. Furthermore, it has been
996 demonstrated that the N protein of porcine reproductive and respiratory syndrome virus
997 (PRRSV) interacts with RACK1, thereby facilitating PRRSV replication [78]. Thus,
998 RACK1 may play a pivotal role not only in coronavirus infections but also in arterivirus
999 infections. Previous research indicates that a portion of the RACK1-binding site for
1000 PKC β II resides within the PKC β II V5 domain, and a peptide corresponding to amino
1001 acids 645-650 in PKC β II selectively inhibits phorbol 12-myristate 13-acetate (PMA)-
1002 induced translocation of PKC β II, thereby blocking PKC activity [79]. Developing
1003 RACK-competitive PKC inhibitors could be a novel strategy for the development of
1004 anti-coronaviral therapeutics.

1005 As a multifunctional protein, the coronavirus N protein plays pivotal roles in
1006 packaging viral RNA into ribonucleoprotein, participating in virion assembly,
1007 modulating viral replication and transcription, and regulating host innate immunity [80,

1008 81]. Our study reveals that pan-coronaviruses N proteins interact with RACK1 and p-
1009 PKC α (Fig 11D), as well as induce the cytoplasmic dispersion of multiple Nups (Fig
1010 5A), leading to the blockade of nuclear translocation of transcription factors such as
1011 IRF3, STAT1/STAT2/IRF9, and p65 (Fig 5C-5D), ultimately inhibiting the expression
1012 of antiviral genes (Fig 5E). The N protein consist of three conserved domains: NTD,
1013 SR domain, and CTD [82-84]. Using IBV N protein as a model, we identified the NES
1014 residing in NTD as the primary sequence responsible for the cytoplasmic distribution
1015 of the N-RACK1-p-PKC α complex and Nups, prevention of the nuclear import of
1016 transcription factors, and repression of antiviral gene expression (Fig 12). Our findings
1017 suggest that within the ternary complex of IBV N, RACK1, and p-PKC α , N plays a
1018 pivotal role in determining the subcellular localization of the complex. The full-length
1019 N protein, Δ NTD, Δ SR, interact with RACK1 and p-PKC α , causing their distribution
1020 in the cytoplasm. However, N protein lacking CTD or NES is retained in the nucleus
1021 together with RACK1 and PKC α/β , thereby losing the ability to promote the
1022 cytoplasmic dispersion of Nups and subsequent nuclear importing and transcription
1023 events. Thus, the cytoplasmic localization of IBV N determines the positioning and
1024 regulation role of the N-RACK1-p-PKC α complex in phosphorylating NUP62 or other
1025 substrates. We attempted to generate a recombinant virus by deleting the NES of N
1026 protein based on the IBV Beaudette strain using reverse genetic technique; however,
1027 we were unable to rescue the NES-deficient rIBV strain. This underscores the
1028 significance of nuclear export and cytoplasmic localization for the N protein to fulfill
1029 its function, which is indispensable for IBV replication. Although limited research has
1030 been conducted on the NES of N proteins from other coronaviruses, localization to the
1031 nucleolus appears to be a common feature of N proteins from four genera of
1032 coronaviruses [85, 86]. This suggests that the N protein possesses the capability for
1033 cytoplasm-nucleus shuttling; for instance, phosphorylated SARS-CoV N is translocated
1034 to the cytoplasm from nucleus with the assistance of 14-3-3 [87]. Given the critical
1035 role of N protein subcellular localization in its function, investigating the nuclear import
1036 and export strategies of coronavirus N proteins will presents an intriguing avenue for
1037 future research.

1038 The disassembly of NPC not only inhibits the nuclear transport of transcription
1039 factors involved in the immune response but also disrupts host mRNA export or
1040 sequesters nuclear proteins essential for viral replication in the cytoplasm, thereby
1041 promoting viral replication. In addition to inhibiting the nuclear translocation of STAT1,
1042 a recent study demonstrated that SARS-CoV and SARS-CoV-2 ORF6 interacts with
1043 NUP98/Rae1 to impede cellular mRNA export, thereby reducing the translation of
1044 antiviral genes and diverting limited cellular translational machinery towards viral
1045 translation [88]. Future investigations are warranted to elucidate whether N protein
1046 prevents host mRNA export to reduce host translation events or retains nuclear proteins
1047 in the cytoplasm to facilitate virus replication.

1048 In summary, our study reveals that IBV N protein promotes the anchoring of p-
1049 PKC α to RACK1 and relocates the N-RACK1-p-PKC α complex to the cytoplasm. In
1050 this context, p-PKC α phosphorylates NUP62 and potentially other Nups, promoting
1051 their disassembly and cytoplasmic dispersion. Consequently, this process inhibits the
1052 nuclear import of transcription factors such as IRF3, STAT1/2/IRF9, and p65, thereby
1053 blocking the expression of antiviral genes, and ultimately facilitating IBV replication.
1054 The disruption of nuclear trafficking and inhibition of transcription factor nuclear entry
1055 represent a novel and evolutionarily conserved function in N proteins across pan-
1056 coronaviruses.

1057 **Materials and methods**

1058 **Cells and viruses**

1059 Chicken embryo fibroblast DF-1 cells (ATCC® CRL-12203™), African green monkey
1060 kidney epithelial Vero cells (ATCC® CCL-81™), and human embryonic kidney HEK-
1061 293T cells (ATCC® CRL-3216™) were obtained from ATCC. These cells were
1062 cultured in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% (v/v)
1063 fetal bovine serum (FBS) (Gibco-Thermo Fisher, Waltham, MA, USA). The IBV
1064 Beaudette strain was kindly provided by Prof. Dingxiang Liu's laboratory at South
1065 China Agricultural University.

1066 **Antibodies and chemicals**

1067 Rabbit anti-IBV-N and mouse anti-IBV-N polyclonal antibodies were generated in our
1068 laboratory. Additionally, the following antibodies were purchased: rabbit anti-IRF3
1069 (ab68481), rabbit anti-p65 (ab32536), rabbit anti-p38 (ab170099), rabbit anti-IRF-9
1070 (ab271043), rabbit anti-TPR (ab170940), rabbit anti-Ran (ab157213), rabbit anti-
1071 NUP42 (Nucleoporin hCG1, ab192609), rat anti-NUP62 (ab188413), mouse anti-
1072 NUP153 (ab24700), mouse anti-FG-Nups [Mab414] (ab24609), mouse anti-importin
1073 β 1 (ab2811), rabbit anti-PKC α / β II (ab184746), rabbit anti-phospho-PKC α (T638)
1074 (ab32502), rabbit anti-NUP98 (#2598), rabbit anti-phospho-PKC β II (Ser660) (#9371),
1075 rabbit anti-STAT1 (#14994), rabbit anti-HA Tag (#3724), rabbit anti-Flag Tag
1076 (#14793), rabbit anti-PP1 α (#2582), rabbit anti-PP2A C Subunit (#2038), rabbit anti-
1077 STAT2 (16674-1-AP), rabbit anti-NUP62 (13916-1-AP), rabbit anti-importin α 1
1078 (16674-1-AP), and rabbit anti-RACK1 (R1905) were purchased from Abcam, Cell
1079 Signaling Technology, Proteintech Group, and Merck, respectively. Mouse anti-Flag
1080 Tag (M185-3L) was purchased from MBL, and rabbit anti- β -actin (AC026) was also
1081 used. The dilution of antibodies and their cross-reactivity with corresponding chicken
1082 proteins are summarized in Table 1. Alexa Fluor goat anti-rabbit-488 (A-11034), Alexa
1083 Fluor goat anti-rabbit-594 (A-11037), Alexa Fluor goat anti-mouse-488 (A-11029), and
1084 Alexa Fluor goat anti-mouse-594 (A-11005) were obtained from Invitrogen, USA.
1085 Poly(I:C) (31852-29-6) was from InvivoGen, France. Recombinant human IFN- β
1086 protein (#8499-IF) was purchased from Bio-Techne R&D Systems, USA. Recombinant
1087 Human TNF- α (P00029) was purchased from Solarbio, China. Okadaic Acid (#5934)
1088 was purchased from Cell Signaling Technology, USA. Enzastaurin (HY-10342) was
1089 purchased from MCE, China. The ClonExpress Ultra One Step Cloning Kit (C115) and
1090 Mut Express II Fast Mutagenesis Kit V2 (C214) were purchased from Vazyme, China.

1091 **Plasmids construction**

1092 Plasmids encoding HCOV-229E-N, HCOV-NL63-N, TGEV-N, PEDV-N, MERS-CoV-
1093 N, MHV-N, PHEV-N, SARS-CoV-N, and SARS-CoV-2-N were provided by Prof.
1094 Tongling Shan (Shanghai Veterinary Research Institute, CAAS) [89]. Plasmids

1095 encoding Flag-tagged IBV nsp2, nsp3, nsp5, nsp6, nsp7, nsp8, nsp9, nsp12, nsp13,
1096 nsp14, nsp15, nsp16, E, M, 5a, and N, constructed by Dr. Gao, are maintained in our
1097 laboratory [90]. The plasmid encoding IBV N was generated by amplifying cDNA from
1098 IBV Beaudette-infected DF-1 cells using corresponding primers and cloning into
1099 PXJ40. IBV N Δ NTD, Δ SR, Δ CTD, and Δ NES mutants were generated by mutagenesis
1100 of the Flag-tagged IBV N plasmid using the Mut Express II Fast Mutagenesis Kit V2.
1101 PKC α and PKC β genes were synthesized and ligated into the pCMV-HA expression
1102 vector by Sangon Bioengineering (Shanghai) Co., Ltd., Shanghai, China. NUP62,
1103 NUP42, and RACK1 genes were cloned by RT-PCR from HEK-293T cells and ligated
1104 into the pCMV-HA expression vector using the ClonExpress Ultra One Step Cloning
1105 Kit. The corresponding primers used to generate the above plasmids are shown in Table
1106 2.

1107 **Cell transfection and RNA interference**

1108 Vero cells or DF-1 cells were seeded in 6-well plates, 12-well plates, or chamber slides
1109 (Nunc Lab-Tek II Chamber Slide System, Thermo Fisher Scientific, USA) with 70-80%
1110 confluency. The indicated plasmids were transfected into cells using Lipofectamine
1111 2000 (Invitrogen, Carlsbad, CA) according to the manufacturer's instructions. Briefly,
1112 1 μ g of plasmid and 3 μ L of Lipofectamine 2000 (m/v = 1:3) were diluted in 0.1 mL of
1113 Opti-MEM (Gibco, 31985070, Gaithersburg, MD). After 5 min of incubation, the
1114 plasmid and Lipofectamine 2000 were mixed and incubated at room temperature for 20
1115 min to allow the formation of lipid-plasmid complexes. Finally, the complexes were
1116 added to the cultured cells and incubated for 24 h.

1117 To knock down chicken RACK1 and PKC α / β genes in DF-1 cells, siGenome
1118 Gallus gallus RACK1 and PKC α / β siRNA were purchased from GenePharma Co,
1119 China. The sequences targeting RACK1 and PKC α / β were as follows: RACK1-siRNA:
1120 5'-CGGGAUUAUCUGAACACACAGUTT-3'; PKC α / β -siRNA: 5'-
1121 GGAGCUCUAUGCAAUCAAATT-3'. A non-targeting control siRNA was also
1122 provided by GenePharma Co and used as a control with no specific gene targeting. For
1123 each siRNA transfection, 100 pmol of siRNA and 5 μ L of Lipofectamine 2000 were

1124 diluted in 0.1 mL of Opti-MEM, respectively. After 5 min of incubation, the siRNA and
1125 Lipofectamine 2000 were mixed and incubated at room temperature for 20 min,
1126 allowing the formation of lipid-siRNA complexes. The complexes were then added to
1127 the cultured cells (30-40% confluence) and incubated for 48 h, followed by plasmid
1128 transfection or IBV infection. Cells were subjected to Western blot analysis or real-time
1129 qRT-PCR analysis at the indicated times.

1130 **Western blotting analysis**

1131 DF-1 cells or Vero cells were seeded in 6-well plates and transfected with various
1132 siRNAs or infected with IBV at an MOI of 1 according to experimental requirements.
1133 Cells were harvested at the indicated time points or treated with Enzastaurin (1 μ M, 16
1134 h) or Okadaic Acid (1 μ M, 1 h), with DMSO included in the parallel experiment as a
1135 negative control. Cell samples were lysed in 2x protein loading buffer (20 mM Tris-
1136 HCl, 2% SDS, 100 mM DTT, 20% glycerol, 0.016% bromophenol blue) and incubated
1137 in a 100°C metal bath for 10 min to fully denature the proteins. The denatured cell
1138 samples were then subjected to centrifugation at 12,000 rpm for 5 min. The supernatant
1139 proteins were resolved on a 10% SDS-PAGE and transferred to a nitrocellulose
1140 membrane (0.45 μ m, Millipore, USA). Membranes were blocked in blocking buffer (5%
1141 nonfat milk, TBS, 0.1% Tween 20) for 1 h, followed by overnight incubation at 4°C
1142 with primary antibodies diluted in dilution buffer (Beyotime, P0023, China) as
1143 indicated in Table 1. The membranes were then incubated with secondary antibodies
1144 conjugated with HRP (Invitrogen, USA) diluted 1:10,000 in blocking buffer for 1 h at
1145 room temperature. After each incubation, membranes were washed three times with
1146 washing buffer (0.1% Tween in TBS). Proteins were visualized using the ECL detection
1147 system (Thermo, Rockford, IL). Image J program (NIH, USA) was used to quantify the
1148 intensities of corresponding bands on the Western blot according to the manufacturer's
1149 instructions.

1150 **Indirect immunofluorescence analysis**

1151 Cells were seeded onto chamber slides and transfected with various plasmids or
1152 infected with IBV at an MOI of 1, according to experimental requirements. At the

1153 indicated time points, cells were transfected with poly (I:C) (20 μ g/mL) or treated with
1154 IFN β (1000 IU/mL, 40 min), TNF α (20 ng/mL, 30 min), UV irradiation (1.92 J/cm²,
1155 20 min), Enzastaurin (1 μ M, 1 h), or Okadaic Acid (1 μ M, 1 h). DMSO was used as the
1156 negative control in the case of drug treatment. Following treatment, cells were fixed
1157 with 4% paraformaldehyde for 15 min at room temperature. After three washes with
1158 PBS, cells were permeabilized with 0.5% Triton X-100 for 15 min and incubated in
1159 blocking buffer (3% BSA in PBS) for 1 h. Cells were then incubated with the primary
1160 antibody diluted in blocking buffer for 2 h at 37°C (the dilution was indicated in Table
1161 1), followed by incubation with Alexa Fluor-conjugated secondary antibody diluted
1162 1:500 in blocking buffer for 1 h at 37°C. In the case of double staining, cells were
1163 further incubated with the other primary antibody, followed by incubation with the
1164 corresponding fluorescent-conjugated secondary antibody. After each incubation step,
1165 the cells were washed three times with PBST. DAPI (Beyotime, C1002, China) was
1166 then applied to stain the nuclei for 10 min. Finally, cells were washed three times with
1167 PBST, and the subcellular localization of corresponding proteins was examined using
1168 a Zeiss LSM880 confocal microscope.

1169 **Real-time quantitative RT-PCR analysis**

1170 DF-1 cells or HEK-293T cells were seeded in 6-well plates and transfected with siRNA
1171 or plasmid, or infected with IBV at the indicated MOI according to experimental
1172 requirements. At the specified time points, cells were transfected with poly I:C (20
1173 μ g/mL) or treated with IFN β (1000 IU/mL) or TNF α (20 ng/mL). DMSO treatment was
1174 included in parallel experiments as a negative control.

1175 Total cellular RNA was extracted using Trizol reagent (Ambion, Austin, TX).
1176 cDNA was synthesized by reverse transcription using the EasyScript® One-Step gDNA
1177 Removal and cDNA Synthesis SuperMix kit (Trans, AE311, China) with oligo dT
1178 primer. The cDNA served as a template for real-time qPCR using SYBR green master
1179 mix (Dongsheng Biotech, China) and corresponding primers. Real-time qPCR was
1180 conducted in the CFX-96 Bio-rad instrument (Bio-rad, USA), and the specificity of the
1181 amplified PCR products was confirmed by melting curve analysis after each reaction.

1182 The primers used for IFN β , IFITM3, and IL-8 in this study are listed in Table 3.
1183 Statistical analysis was performed using Graphpad Prism8 software. The data are
1184 presented as mean \pm standard deviation (SD) of three independent experiments.
1185 Significance was determined using the two-tailed independent Student's t-test ($P < 0.05$)
1186 between two groups. One-way analysis of variance followed by Tukey's test was used
1187 to compare multiple groups (>2).

1188 **Co-immunoprecipitation (Co-IP) and liquid chromatography-mass spectrometry**
1189 DF-1 cells or HEK-293T cells cultured in 6 cm plates were transfected with plasmid or
1190 infected with IBV. Cells were lysed using RIPA Lysis Buffer (Beyotime, P0013D, China)
1191 supplemented with 1 mM phenylmethylsulfonyl fluoride (PMSF) (Beyotime, ST506,
1192 China) and protease inhibitors (Millipore, USA). The cell lysates were centrifuged at
1193 12,000 rpm for 15 min, and the supernatant proteins were incubated overnight at 4°C
1194 with gentle rotation with 4 μ g of IBV N antibody (mouse), or 2 μ g of Flag Tag antibody
1195 (mouse) conjugated with Dynabeads Protein G Magnetic Beads (Invitrogen, 10004D,
1196 USA), or anti-HA magnetic Beads (Abmart, M20034, China). After incubation, the
1197 beads were washed three times with RIPA buffer and then precipitated using a magnetic
1198 stand. The beads were resuspended in 40 μ L of RIPA lysis buffer and denatured by
1199 boiling at 100°C for 5 min after adding 5 \times SDS loading buffer (Beyotime, P0015L,
1200 China). Following centrifugation, the supernatants were subjected to Western blot
1201 analysis.

1202 For the samples intended for Co-IP and liquid chromatography-mass spectrometry
1203 (LC-MS) analysis, HEK-293T cells were seeded in 10 cm plates and transfected with
1204 Flag-tagged IBV N or PXJ40. At 30 h post-transfection, cells were lysed, and Co-IP
1205 experiments were conducted using anti-Flag antibody. Coomassie blue-stained gels
1206 from the Co-IP experiments were pooled and subjected to protein identification via LC-
1207 MS analysis performed at Jingjie PTM BioLab (Hangzhou, China).

1208 **Supporting information**

1209 **S1 Fig. IBV infection suppresses nuclear translocation of transcription factor IRF3,**

1210 **STAT2, and p65 in DF-1 cells.** (A-B) DF-1 cells were infected with IBV at an MOI of
1211 1, followed by treatment with poly(I:C), IFN β , or TNF α . Cells were harvested at the
1212 indicated time points and subjected to immunofluorescence analysis. Representative
1213 images from three independent experiments are shown. Scale bars: 10 μ m.

1214 **S2 Fig. IBV infection induces dislocation of Nups and Ran from nuclear envelope**
1215 **or nucleus to the cytoplasm in DF-1 cells.** (A-B) DF-1 cells were infected with IBV
1216 at an MOI of 1 or mock-infected, harvested at the indicated time points, and subjected
1217 to immunofluorescence analysis. Representative images from three independent
1218 experiments are shown. Scale bars: 10 μ m.

1219 **S3 Fig. IBV N protein alters the morphology of nuclear envelope and the ring**
1220 **signal of importin β 1, and reduces the cytoplasmic signal of importin α 1.** Vero cells
1221 were transfected with either the vector PXJ40 or a plasmid encoding IBV N protein. At
1222 24 h post-transfection, cells were harvested and subjected to immunofluorescence
1223 analysis.

1224 **S4 Fig. Effect of PP1 and PP2A inhibitor okadaic acid treatment on**
1225 **phosphorylation of PKC α , PKC β and NUP62, and induction of cytoplasmic**
1226 **dispersion of NUP62 and FG-Nups.** (A) DF-1 cells were treated with either DMSO
1227 or okadaic acid (1 μ M) for 1 h and subjected to western blot analysis using the indicated
1228 antibodies. The intensities of p-PKC α , p-PKC β , and p-NUP62 bands were normalized
1229 to total PKC α / β or NUP62. The ratio of p-PKC α , p-PKC β , and p-NUP62 in okadaic
1230 acid-treated cells to DMSO-treated cells is denoted as p-PKC α (+:-), p-PKC β (+:-), and
1231 p-NUP62 (+:-). (B) Vero cells were treated with either DMSO or okadaic acid (1 μ M)
1232 for 1 h and subjected to immunostaining. Representative images are shown. Scale bars:
1233 10 μ m.

1234 **S5 Fig. The in vitro interaction results between IBV N protein and NUP62 or**
1235 **NUP42.** Plasmids encoding HA-NUP62 or HA-NUP42 were co-transfected with Flag-
1236 tagged IBV N protein, or PXJ40 control plasmid, into HEK-293T cells for 24 h. Cell
1237 lysates were subjected to Co-IP using anti-Flag antibody, followed by Western blot
1238 analysis.

1239

1240 **Table 1 Dilution of primary antibodies and their cross-reactivity with**
1241 **corresponding chicken proteins**

Antibody name	Application and dilution	Cross-reactivity with chicken protein
Anti-IBV-N	Western blot (1:5000) Immunofluorescence (1:500)	NA NA
Anti-IRF3	Immunofluorescence (1:100)	Yes
Anti-p65	Immunofluorescence (1:100)	Yes
Anti-STAT1	Immunofluorescence (1:100)	No
Anti-STAT2	Immunofluorescence (1:100)	Yes
Anti-IRF9	Immunofluorescence (1:100)	No
Anti-p38	Immunofluorescence (1:100)	No
Anti-NUP62	Western blot (1:1000) Immunofluorescence (1:100)	Yes Yes
Anti-p-NUP62	Western blot (1:1000)	Yes
Anti-FG-Nups (mAb414)	Immunofluorescence (1:500)	No
Anti-NUP153	Western blot (1:1000) Immunofluorescence (1:500)	Yes Yes
Anti-NUP98	Western blot (1:1000) Immunofluorescence (1:100)	Yes Yes
Anti-NUP42 (hCG1)	Western blot (1:1000) Immunofluorescence (1:50)	Yes No
Anti-TPR	Western blot (1:1000) Immunofluorescence (1:400)	Yes Yes
Anti-Ran	Western blot (1:1000) Immunofluorescence (1:100)	Yes Yes
Anti-Importin β 1	Western blot (1:1000) Immunofluorescence (1:100)	Yes No
Anti-Importin α 1	Western blot (1:1000) Immunofluorescence (1:100)	Yes No
Anti-RACK1	Western blot (1:1000) Immunofluorescence (1:100)	Yes No
Anti-PKC α / β	Western blot (1:1000) Immunofluorescence (1:200)	Yes Yes
Anti-p-PKC α	Western blot (1:1000)	Yes
Anti-p-PKC β	Western blot (1:1000)	Yes
Anti-HA	Western blot (1:1000) Immunofluorescence (1:500)	NA NA
Anti-Flag	Western blot (1:1000) Immunofluorescence (1:500)	NA NA
Anti-PP1 α	Western blot (1:1000)	Yes
Anti-PP2A C	Western blot (1:1000)	Yes
Anti- β -actin	Western blot (1:1000)	Yes

1242

1243 **Table 2 Primer sequences used for plasmid construction**

	Primer Name	Sequence
1	IBV N Forward	5'-ATGGACTACAAGGACGACGATGAT-3'
2	IBV N Reverse	5'-TAATTACCTTGGGCTCATCATAAA-3'
3	IBV N Δ NTD Forward	5'-AAAGTCGGTAACCGTGGTAGGAGTGGAAAGATCA-3'
4	IBV N Δ NTD Reverse	5'-ACCACGGTTACCGACTTGGAGTGGTTGGTCC-3'
5	IBV N Δ SR Forward	5'-TGGTAGGGATTCTGGAGATGACCTTATTGCTCG-3'

6	IBV N ΔSR Reverse	5'-TCTCCAGAATCCCTACCACGGTCAGGGGAATG-3'
7	IBV N ΔCTD Forward	5'-TCTCGCATTGACGAACCAAAACCAAGTCACGC-3'
8	IBV N ΔCTD Reverse	5'-TGGTTCGTCAATGCGAGAGCCCTTTCTGCTG-3'
9	IBV N ΔNES Forward	5'-GAGTGACACCCAAAAGGTTGAATTACTACTGTGGTCCC-3'
10	IBV N ΔNES Reverse	5'-ACCTTTGGGTGTCACTCTACTTCCAAAAAGAC-3'
11	NUP42 Forward	5'-CGGAATTCGGATGCCATTGTCATTCTCCTT-3'
12	NUP42 Reverse	5'-CGGGGTACCTAAACATTAGAAGTCCAGAGGT-3'
13	NUP62 Forward	5'-TCCATGGAGGCCGAATTCTTATGAGCGGGTTAATTTGGAG-3'
14	NUP62 Reverse	5'-GATCCCCGCGGCCGCGGTACCTCAGTCAAAGGTGATCCGGAA-3'
15	RACK1 Forward	5'-GGTCGACCGAGATCTCTGAATGACTGAGCAGATGACCCTCG-3'
16	RACK1 Reverse	5'-GTCTGGATCCCCGCGGCCCTAGCGTGTGCCAATGGTCA-3'
17	pCMV-HA Forward	5'-CGGGCCCGGGGATCCAG-3'
18	pCMV-HA Reverse	5'-TCGAGAGATCTCGGTCGACCG-3'

1244

1245 **Table 3 Primer sequences used for real-time qPCR**

	Primer Name	Sequence
1	ch-IFN β Forward	5'-AGCTCTCACCACCACTTCTC-3'
2	ch-IFN β Reverse	5'-TGGCTGCTTGCTTCTGTCCTT-3'
3	ch-IFITM3 Forward	5'-TGGTGACGGTGGAGACG-3'
4	ch-IFITM3 Reverse	5'-GGCAACCAGGGCGATGA-3'
5	ch-IL8 Forward	5'-GCAGTTCTGGCTCCTCCTGGTT-3'
6	ch-IL8 Reverse	5'-GCTCGGTGTCAGCTCACATCTG-3'
7	ch-actin Forward	5'-TATTGCTGCGCTCGTTGAC-3'
8	ch-actin Reverse	5'-GATACTCTTTGCTCTGGCTTC-3'
9	hu-IFN β Forward	5'-GCTTGGATTCCCTACAAAGAAGCA-3'
10	hu-IFN β Reverse	5'-ATAGATGGTCAATGCGGCGTC-3'
11	hu-IFITM3 Forward	5'-CTGGGCTTCATAGCATTGCC-3'
12	hu-IFITM3 Reverse	5'-AGATGTTCAAGGACTTGGCGGT-3'
13	hu-IL8 Forward	5'-CTTGGTTCTCCTTATTCTA-3'
14	hu-IL8 Reverse	5'-GCACAAATATTGATGCTTAA-3'
15	hu-actin Forward	5'-CCAGACATCAGGGTGTGATGG-3'
16	hu-actin Reverse	5'-CTCCATATCATCCCAGTTGGTGA-3'

1246 **Acknowledgments**

1247 We gratefully acknowledge Prof. Dingxiang Liu from South China Agricultural
1248 University, China, for providing the IBV Beaudette strain. Our sincere appreciation also
1249 goes to Prof. Tongling Shan from the Shanghai Academy of Agricultural Sciences,
1250 CAAS, for generously sharing the plasmids encoding N protein from various genera of
1251 coronaviruses. Furthermore, we would like to thank Dr. Huan Wang, also affiliated with
1252 the Shanghai Academy of Agricultural Sciences, CAAS, for his contribution in

1253 generating the polyclonal IBV N antibody.

1254 **Author Contributions**

1255 Conceptualization: Wenxiang Xue, Ying Liao.

1256 Formal analysis: Wenxiang Xue, Ying Liao.

1257 Funding acquisition: Chan Ding, Ying Liao.

1258 Investigation: Wenxiang Xue, Hongyan Chu, Jiehuang Wang.

1259 Project administration: Chan Ding, Ying Liao.

1260 Resources: Yingjie Sun, Lei Tan, Cuiping Song, Xusheng Qiu.

1261 Supervision: Yingjie Sun, Chan Ding, Ying Liao.

1262 Writing-original draft: Wenxiang Xue, Ying Liao.

1263 Writing-review & editing: Ying Liao.

1264 **Funding**

1265 The author(s) declare financial support was received for the research, authorship, and/or
1266 publication of this article. This work was supported by the National Key Research and
1267 Development Program (2021YFD1801104), National Natural Science Foundation of
1268 China (32372999, 32172834), and the Shanghai Natural Science Foundation
1269 (23ZR1477000).

1270 **Competing interests:**

1271 The authors have declared that no competing interests exist.

1272 **References**

- 1273 1. Yarbrough ML, Mata MA, Sakthivel R, Fontoura BM. Viral subversion of nucleocytoplasmic
1274 trafficking. *Traffic*. 2014;15(2):127-40. Epub 2013/12/03. doi: 10.1111/tra.12137. PubMed PMID:
1275 24289861; PubMed Central PMCID: PMC3910510.
- 1276 2. Makhnevych T, Lusk CP, Anderson AM, Aitchison JD, Wozniak RW. Cell cycle regulated
1277 transport controlled by alterations in the nuclear pore complex. *Cell*. 2003;115(7):813-23. Epub
1278 2003/12/31. doi: 10.1016/s0092-8674(03)00986-3. PubMed PMID: 14697200.
- 1279 3. Sun J, Shi Y, Yildirim E. The Nuclear Pore Complex in Cell Type-Specific Chromatin Structure
1280 and Gene Regulation. *Trends Genet.* 2019;35(8):579-88. Epub 2019/06/20. doi:
1281 10.1016/j.tig.2019.05.006. PubMed PMID: 31213386.
- 1282 4. Gu Y, Zebell SG, Liang Z, Wang S, Kang BH, Dong X. Nuclear Pore Permeabilization Is a
1283 Convergent Signaling Event in Effector-Triggered Immunity. *Cell*. 2016;166(6):1526-38 e11. Epub

1284 2016/08/30. doi: 10.1016/j.cell.2016.07.042. PubMed PMID: 27569911; PubMed Central PMCID: 1285 PMCPMC5017918.

1286 5. Buendia B, Courvalin JC, Collas P. Dynamics of the nuclear envelope at mitosis and during 1287 apoptosis. *Cell Mol Life Sci.* 2001;58(12–13):1781–9. Epub 2002/01/05. doi: 10.1007/PL00000818. 1288 PubMed PMID: 11766879.

1289 6. Hampelz B, Baumbach J. Nuclear envelope assembly and dynamics during development. 1290 *Semin Cell Dev Biol.* 2023;133:96–106. Epub 2022/03/08. doi: 10.1016/j.semcdcb.2022.02.028. 1291 PubMed PMID: 35249812.

1292 7. Lin DH, Stuwe T, Schilbach S, Rundlet EJ, Perriches T, Mobbs G, et al. Architecture of the 1293 symmetric core of the nuclear pore. *Science.* 2016;352(6283):aaf1015. Epub 2016/04/16. doi: 1294 10.1126/science.aaf1015. PubMed PMID: 27081075; PubMed Central PMCID: PMCPMC5207208.

1295 8. Lin DH, Hoelz A. The Structure of the Nuclear Pore Complex (An Update). *Annu Rev Biochem.* 1296 2019;88:725–83. Epub 2019/03/19. doi: 10.1146/annurev-biochem-062917-011901. PubMed 1297 PMID: 30883195; PubMed Central PMCID: PMCPMC6588426.

1298 9. Beck M, Hurt E. The nuclear pore complex: understanding its function through structural 1299 insight. *Nat Rev Mol Cell Biol.* 2017;18(2):73–89. Epub 2016/12/22. doi: 10.1038/nrm.2016.147. 1300 PubMed PMID: 27999437.

1301 10. Shen Q, Wang YE, Palazzo AF. Crosstalk between nucleocytoplasmic trafficking and the innate 1302 immune response to viral infection. *J Biol Chem.* 2021;297(1):100856. Epub 2021/06/08. doi: 1303 10.1016/j.jbc.2021.100856. PubMed PMID: 34097873; PubMed Central PMCID: PMCPMC8254040.

1304 11. Thompson LJ, Fields AP. Betall protein kinase C is required for the G2/M phase transition of 1305 cell cycle. *J Biol Chem.* 1996;271(25):15045–53. Epub 1996/06/21. doi: 10.1074/jbc.271.25.15045. 1306 PubMed PMID: 8663071.

1307 12. Collas P. Sequential PKC- and Cdc2-mediated phosphorylation events elicit zebrafish nuclear 1308 envelope disassembly. *J Cell Sci.* 1999;112 (Pt 6):977–87. Epub 1999/02/26. doi: 1309 10.1242/jcs.112.6.977. PubMed PMID: 10036247.

1310 13. Linder MI, Kohler M, Boersema P, Weberruss M, Wandke C, Marino J, et al. Mitotic 1311 Disassembly of Nuclear Pore Complexes Involves CDK1- and PLK1-Mediated Phosphorylation of 1312 Key Interconnecting Nucleoporins. *Dev Cell.* 2017;43(2):141–56 e7. Epub 2017/10/25. doi: 1313 10.1016/j.devcel.2017.08.020. PubMed PMID: 29065306; PubMed Central PMCID: 1314 PMCPMC5654724.

1315 14. Martino L, Morchoisne-Bolhy S, Cheerambathur DK, Van Hove L, Dumont J, Joly N, et al. 1316 Channel Nucleoporins Recruit PLK-1 to Nuclear Pore Complexes to Direct Nuclear Envelope 1317 Breakdown in *C. elegans*. *Dev Cell.* 2017;43(2):157–71 e7. Epub 2017/10/25. doi: 1318 10.1016/j.devcel.2017.09.019. PubMed PMID: 29065307; PubMed Central PMCID: 1319 PMCPMC8184135.

1320 15. Favreau C, Worman HJ, Wozniak RW, Frappier T, Courvalin JC. Cell cycle-dependent 1321 phosphorylation of nucleoporins and nuclear pore membrane protein Gp210. *Biochemistry.* 1322 1996;35(24):8035–44. Epub 1996/06/18. doi: 10.1021/bi9600660. PubMed PMID: 8672508.

1323 16. Wurzenberger C, Gerlich DW. Phosphatases: providing safe passage through mitotic exit. *Nat* 1324 *Rev Mol Cell Biol.* 2011;12(8):469–82. Epub 2011/07/14. doi: 10.1038/nrm3149. PubMed PMID: 1325 21750572.

1326 17. Grallert A, Boke E, Hagting A, Hodgson B, Connolly Y, Griffiths JR, et al. A PP1-PP2A 1327 phosphatase relay controls mitotic progression. *Nature.* 2015;517(7532):94–8. Epub 2014/12/10.

1328 doi: 10.1038/nature14019. PubMed PMID: 25487150; PubMed Central PMCID: PMCPMC4338534.

1329 18. Xue W, Ding C, Qian K, Liao Y. The Interplay Between Coronavirus and Type I IFN Response.

1330 *Front Microbiol.* 2021;12:805472. Epub 2022/03/24. doi: 10.3389/fmicb.2021.805472. PubMed

1331 PMID: 35317429; PubMed Central PMCID: PMCPMC8934427.

1332 19. Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: a complex web of host

1333 defenses. *Annu Rev Immunol.* 2014;32:513–45. Epub 2014/02/22. doi: 10.1146/annurev-immunol-

1334 032713-120231. PubMed PMID: 24555472; PubMed Central PMCID: PMCPMC4313732.

1335 20. Lawrence T. The nuclear factor NF- κ B pathway in inflammation. *Cold Spring Harb*

1336 *Perspect Biol.* 2009;1(6):a001651. Epub 2010/05/12. doi: 10.1101/cshperspect.a001651. PubMed

1337 PMID: 20457564; PubMed Central PMCID: PMCPMC2882124.

1338 21. Maik-Rachline G, Lifshits L, Seger R. Nuclear p38: Roles in Physiological and Pathological

1339 Processes and Regulation of Nuclear Translocation. *Int J Mol Sci.* 2020;21(17). Epub 2020/08/28.

1340 doi: 10.3390/ijms21176102. PubMed PMID: 32847129; PubMed Central PMCID: PMCPMC7504396.

1341 22. Maik-Rachline G, Zehorai E, Hanoch T, Blenis J, Seger R. The nuclear translocation of the

1342 kinases p38 and JNK promotes inflammation-induced cancer. *Sci Signal.* 2018;11(525). Epub

1343 2018/04/11. doi: 10.1126/scisignal.aao3428. PubMed PMID: 29636389.

1344 23. Wang Y, Grunewald M, Perlman S. Coronaviruses: An Updated Overview of Their Replication

1345 and Pathogenesis. *Methods Mol Biol.* 2020;2203:1–29. Epub 2020/08/25. doi: 10.1007/978-1-

1346 0716-0900-2_1. PubMed PMID: 32833200; PubMed Central PMCID: PMCPMC7682345.

1347 24. Hasoksuz M, Kilic S, Sarac F. Coronaviruses and SARS-CoV-2. *Turk J Med Sci.* 2020;50(SI-1):549–56. Epub 2020/04/16. doi: 10.3906/sag-2004-127. PubMed PMID: 32293832; PubMed

1348 Central PMCID: PMCPMC7195990.

1349 25. Hudson CB, Beaudette FR. Infection of the Cloaca with the Virus of Infectious Bronchitis.

1350 *Science.* 1932;76(1958):34. Epub 1932/07/08. doi: 10.1126/science.76.1958.34-a. PubMed PMID:

1351 17732084.

1352 26. Cavanagh D. Coronavirus avian infectious bronchitis virus. *Vet Res.* 2007;38(2):281–97. Epub

1353 2007/02/14. doi: 10.1051/vetres:2006055. PubMed PMID: 17296157.

1354 27. Jordan B. Vaccination against infectious bronchitis virus: A continuous challenge. *Vet*

1355 *Microbiol.* 2017;206:137–43. Epub 2017/01/14. doi: 10.1016/j.vetmic.2017.01.002. PubMed PMID:

1356 28081857.

1357 28. Pensaert MB, de Bouck P. A new coronavirus-like particle associated with diarrhea in swine.

1358 *Arch Virol.* 1978;58(3):243–7. Epub 1978/01/01. doi: 10.1007/BF01317606. PubMed PMID: 83132;

1359 PubMed Central PMCID: PMCPMC7086830.

1360 29. Zhang H, Zou C, Peng O, Ashraf U, Xu Q, Gong L, et al. Global Dynamics of Porcine Enteric

1361 Coronavirus PEDV Epidemiology, Evolution, and Transmission. *Mol Biol Evol.* 2023;40(3). Epub

1362 2023/03/05. doi: 10.1093/molbev/msad052. PubMed PMID: 36869744; PubMed Central PMCID:

1363 PMCPMC10027654.

1364 30. Jung K, Annamalai T, Lu Z, Saif LJ. Comparative pathogenesis of US porcine epidemic diarrhea

1365 virus (PEDV) strain PC21A in conventional 9-day-old nursing piglets vs. 26-day-old weaned pigs.

1366 *Vet Microbiol.* 2015;178(1–2):31–40. Epub 2015/05/06. doi: 10.1016/j.vetmic.2015.04.022. PubMed

1367 PMID: 25939885; PubMed Central PMCID: PMCPMC7117181.

1368 31. Cao L, Ge X, Gao Y, Herrler G, Ren Y, Ren X, et al. Porcine epidemic diarrhea virus inhibits

1369 dsRNA-induced interferon-beta production in porcine intestinal epithelial cells by blockade of the

1370 RIG-I-mediated pathway. *Virol J.* 2015;12:127. Epub 2015/08/19. doi: 10.1186/s12985-015-0345-

1371

1372 x. PubMed PMID: 26283628; PubMed Central PMCID: PMCPMC4539884.

1373 32. Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz DK, et al. Dysregulated Type
1374 I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in
1375 SARS-CoV-Infected Mice. *Cell Host Microbe*. 2016;19(2):181-93. Epub 2016/02/13. doi:
1376 10.1016/j.chom.2016.01.007. PubMed PMID: 26867177; PubMed Central PMCID:
1377 PMCPMC4752723.

1378 33. Xia H, Cao Z, Xie X, Zhang X, Chen JY, Wang H, et al. Evasion of Type I Interferon by SARS-
1379 CoV-2. *Cell Rep*. 2020;33(1):108234. Epub 2020/09/28. doi: 10.1016/j.celrep.2020.108234.
1380 PubMed PMID: 32979938; PubMed Central PMCID: PMCPMC7501843.

1381 34. Lei X, Dong X, Ma R, Wang W, Xiao X, Tian Z, et al. Activation and evasion of type I interferon
1382 responses by SARS-CoV-2. *Nat Commun*. 2020;11(1):3810. Epub 2020/08/01. doi:
1383 10.1038/s41467-020-17665-9. PubMed PMID: 32733001; PubMed Central PMCID:
1384 PMCPMC7392898.

1385 35. Channappanavar R, Fehr AR, Zheng J, Wohlford-Lenane C, Abrahante JE, Mack M, et al. IFN-
1386 I response timing relative to virus replication determines MERS coronavirus infection outcomes. *J
1387 Clin Invest*. 2019;129(9):3625-39. Epub 2019/07/30. doi: 10.1172/JCI126363. PubMed PMID:
1388 31355779; PubMed Central PMCID: PMCPMC6715373.

1389 36. Roth-Cross JK, Martinez-Sobrido L, Scott EP, Garcia-Sastre A, Weiss SR. Inhibition of the
1390 alpha/beta interferon response by mouse hepatitis virus at multiple levels. *J Virol*.
1391 2007;81(13):7189-99. Epub 2007/04/27. doi: 10.1128/JVI.00013-07. PubMed PMID: 17459917;
1392 PubMed Central PMCID: PMCPMC1933268.

1393 37. Kint J, Fernandez-Gutierrez M, Maier HJ, Britton P, Langereis MA, Koumans J, et al. Activation
1394 of the chicken type I interferon response by infectious bronchitis coronavirus. *J Virol*.
1395 2015;89(2):1156-67. Epub 2014/11/08. doi: 10.1128/JVI.02671-14. PubMed PMID: 25378498;
1396 PubMed Central PMCID: PMCPMC4300645.

1397 38. Luo J, Fang L, Dong N, Fang P, Ding Z, Wang D, et al. Porcine deltacoronavirus (PDCoV)
1398 infection suppresses RIG-I-mediated interferon-beta production. *Virology*. 2016;495:10-7. Epub
1399 2016/05/07. doi: 10.1016/j.virol.2016.04.025. PubMed PMID: 27152478; PubMed Central PMCID:
1400 PMCPMC7111668.

1401 39. Zhang K, Lin S, Li J, Deng S, Zhang J, Wang S. Modulation of Innate Antiviral Immune
1402 Response by Porcine Enteric Coronavirus. *Front Microbiol*. 2022;13:845137. Epub 2022/03/04. doi:
1403 10.3389/fmicb.2022.845137. PubMed PMID: 35237253; PubMed Central PMCID:
1404 PMCPMC8882816.

1405 40. Lowery SA, Sariol A, Perlman S. Innate immune and inflammatory responses to SARS-CoV-2:
1406 Implications for COVID-19. *Cell Host Microbe*. 2021;29(7):1052-62. Epub 2021/05/23. doi:
1407 10.1016/j.chom.2021.05.004. PubMed PMID: 34022154; PubMed Central PMCID:
1408 PMCPMC8126603.

1409 41. Frieman M, Heise M, Baric R. SARS coronavirus and innate immunity. *Virus Res*.
1410 2008;133(1):101-12. Epub 2007/04/25. doi: 10.1016/j.virusres.2007.03.015. PubMed PMID:
1411 17451827; PubMed Central PMCID: PMCPMC2292640.

1412 42. Frieman M, Yount B, Heise M, Kopecky-Bromberg SA, Palese P, Baric RS. Severe acute
1413 respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear
1414 import factors on the rough endoplasmic reticulum/Golgi membrane. *J Virol*. 2007;81(18):9812-
1415 24. Epub 2007/06/29. doi: 10.1128/JVI.01012-07. PubMed PMID: 17596301; PubMed Central

1416 PMCID: PMCPMC2045396.

1417 43. Miorin L, Kehrer T, Sanchez-Aparicio MT, Zhang K, Cohen P, Patel RS, et al. SARS-CoV-2 Orf6
1418 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling. *Proc Natl Acad
1419 Sci U S A*. 2020;117(45):28344-54. Epub 2020/10/25. doi: 10.1073/pnas.2016650117. PubMed
1420 PMID: 33097660; PubMed Central PMCID: PMCPMC7668094.

1421 44. Kint J, Dickhout A, Kutter J, Maier HJ, Britton P, Koumans J, et al. Infectious Bronchitis
1422 Coronavirus Inhibits STAT1 Signaling and Requires Accessory Proteins for Resistance to Type I
1423 Interferon Activity. *J Virol*. 2015;89(23):12047-57. Epub 2015/09/25. doi: 10.1128/JVI.01057-15.
1424 PubMed PMID: 26401035; PubMed Central PMCID: PMCPMC4645315.

1425 45. Emeny JM, Morgan MJ. Regulation of the interferon system: evidence that Vero cells have a
1426 genetic defect in interferon production. *J Gen Virol*. 1979;43(1):247-52. Epub 1979/04/01. doi:
1427 10.1099/0022-1317-43-1-247. PubMed PMID: 113494.

1428 46. Mosca JD, Pitha PM. Transcriptional and posttranscriptional regulation of exogenous human
1429 beta interferon gene in simian cells defective in interferon synthesis. *Mol Cell Biol*. 1986;6(6):2279 -
1430 83. Epub 1986/06/01. doi: 10.1128/mcb.6.6.2279-2283.1986. PubMed PMID: 3785197; PubMed
1431 Central PMCID: PMCPMC367773.

1432 47. De Jesus-Gonzalez LA, Cervantes-Salazar M, Reyes-Ruiz JM, Osuna-Ramos JF, Farfan-
1433 Morales CN, Palacios-Rapalo SN, et al. The Nuclear Pore Complex: A Target for NS3 Protease of
1434 Dengue and Zika Viruses. *Viruses*. 2020;12(6). Epub 2020/05/30. doi: 10.3390/v12060583. PubMed
1435 PMID: 32466480; PubMed Central PMCID: PMCPMC7354628.

1436 48. Kutay U, Juhlen R, Antonin W. Mitotic disassembly and reassembly of nuclear pore complexes.
1437 *Trends Cell Biol*. 2021;31(12):1019-33. Epub 2021/07/24. doi: 10.1016/j.tcb.2021.06.011. PubMed
1438 PMID: 34294532.

1439 49. Malik YA. Properties of Coronavirus and SARS-CoV-2. *Malays J Pathol*. 2020;42(1):3-11. Epub
1440 2020/04/29. PubMed PMID: 32342926.

1441 50. Emmott E, Munday D, Bickerton E, Britton P, Rodgers MA, Whitehouse A, et al. The cellular
1442 interactome of the coronavirus infectious bronchitis virus nucleocapsid protein and functional
1443 implications for virus biology. *J Virol*. 2013;87(17):9486-500. Epub 2013/05/03. doi:
1444 10.1128/JVI.00321-13. PubMed PMID: 23637410; PubMed Central PMCID: PMCPMC3754094.

1445 51. Zhou J, Qiu Y, Zhao J, Wang Y, Zhu N, Wang D, et al. The Network of Interactions between
1446 the Porcine Epidemic Diarrhea Virus Nucleocapsid and Host Cellular Proteins. *Viruses*. 2022;14(10).
1447 Epub 2022/10/28. doi: 10.3390/v14102269. PubMed PMID: 36298827; PubMed Central PMCID:
1448 PMCPMC9611260.

1449 52. Zheng X, Sun Z, Yu L, Shi D, Zhu M, Yao H, et al. Interactome Analysis of the Nucleocapsid
1450 Protein of SARS-CoV-2 Virus. *Pathogens*. 2021;10(9). Epub 2021/09/29. doi:
1451 10.3390/pathogens10091155. PubMed PMID: 34578187; PubMed Central PMCID:
1452 PMCPMC8465953.

1453 53. Min YQ, Huang M, Feng K, Jia Y, Sun X, Ning YJ. A New Cellular Interactome of SARS-CoV-2
1454 Nucleocapsid Protein and Its Biological Implications. *Mol Cell Proteomics*. 2023;22(7):100579. Epub
1455 2023/05/22. doi: 10.1016/j.mcpro.2023.100579. PubMed PMID: 37211047; PubMed Central
1456 PMCID: PMCPMC10198743.

1457 54. Adams DR, Ron D, Kiely PA. RACK1, A multifaceted scaffolding protein: Structure and function.
1458 *Cell Commun Signal*. 2011;9:22. Epub 2011/10/08. doi: 10.1186/1478-811X-9-22. PubMed PMID:
1459 21978545; PubMed Central PMCID: PMCPMC3195729.

1460 55. Hocevar BA, Burns DJ, Fields AP. Identification of protein kinase C (PKC) phosphorylation sites
1461 on human lamin B. Potential role of PKC in nuclear lamina structural dynamics. *J Biol Chem.*
1462 1993;268(10):7545-52. Epub 1993/04/05. PubMed PMID: 8463284.

1463 56. Eggert M, Radomski N, Linder D, Tripier D, Traub P, Jost E. Identification of novel
1464 phosphorylation sites in murine A-type lamins. *Eur J Biochem.* 1993;213(2):659-71. Epub
1465 1993/04/15. doi: 10.1111/j.1432-1033.1993.tb17806.x. PubMed PMID: 8477740.

1466 57. Livneh E, Fishman DD. Linking protein kinase C to cell-cycle control. *Eur J Biochem.*
1467 1997;248(1):1-9. Epub 1997/08/15. doi: 10.1111/j.1432-1033.1997.t01-4-00001.x. PubMed PMID:
1468 9310352.

1469 58. Newton AC. Protein kinase C: poised to signal. *Am J Physiol Endocrinol Metab.*
1470 2010;298(3):E395-402. Epub 2009/11/26. doi: 10.1152/ajpendo.00477.2009. PubMed PMID:
1471 19934406; PubMed Central PMCID: PMCPMC2838521.

1472 59. Newton AC. Regulation of protein kinase C. *Curr Opin Cell Biol.* 1997;9(2):161-7. Epub
1473 1997/04/01. doi: 10.1016/s0955-0674(97)80058-0. PubMed PMID: 9069266.

1474 60. Solmaz SR, Chauhan R, Blobel G, Melcak I. Molecular architecture of the transport channel of
1475 the nuclear pore complex. *Cell.* 2011;147(3):590-602. Epub 2011/11/01. doi:
1476 10.1016/j.cell.2011.09.034. PubMed PMID: 22036567; PubMed Central PMCID: PMCPMC3431207.

1477 61. Stuwe T, Bley CJ, Thierbach K, Petrovic S, Schilbach S, Mayo DJ, et al. Architecture of the fungal
1478 nuclear pore inner ring complex. *Science.* 2015;350(6256):56-64. Epub 2015/09/01. doi:
1479 10.1126/science.aac9176. PubMed PMID: 26316600; PubMed Central PMCID: PMCPMC4826903.

1480 62. Schechtman D, Mochly-Rosen D. Adaptor proteins in protein kinase C-mediated signal
1481 transduction. *Oncogene.* 2001;20(44):6339-47. Epub 2001/10/19. doi: 10.1038/sj.onc.1204778.
1482 PubMed PMID: 11607837.

1483 63. Hampelz B, Andres-Pons A, Kastritis P, Beck M. Structure and Assembly of the Nuclear Pore
1484 Complex. *Annu Rev Biophys.* 2019;48:515-36. Epub 2019/04/04. doi: 10.1146/annurev-biophys-
1485 052118-115308. PubMed PMID: 30943044.

1486 64. Hayama R, Rout MP, Fernandez-Martinez J. The nuclear pore complex core scaffold and
1487 permeability barrier: variations of a common theme. *Curr Opin Cell Biol.* 2017;46:110-8. Epub
1488 2017/06/19. doi: 10.1016/j.ceb.2017.05.003. PubMed PMID: 28624666; PubMed Central PMCID:
1489 PMCPMC5568245.

1490 65. Porter FW, Palmenberg AC. Leader-induced phosphorylation of nucleoporins correlates with
1491 nuclear trafficking inhibition by cardioviruses. *J Virol.* 2009;83(4):1941-51. Epub 2008/12/17. doi:
1492 10.1128/JVI.01752-08. PubMed PMID: 19073724; PubMed Central PMCID: PMCPMC2643766.

1493 66. Porter FW, Brown B, Palmenberg AC. Nucleoporin phosphorylation triggered by the
1494 encephalomyocarditis virus leader protein is mediated by mitogen-activated protein kinases. *J
1495 Virol.* 2010;84(24):12538-48. Epub 2010/10/01. doi: 10.1128/JVI.01484-09. PubMed PMID:
1496 20881039; PubMed Central PMCID: PMCPMC3004318.

1497 67. Lu D, Yang H, Raizada MK. Involvement of p62 nucleoporin in angiotensin II-induced nuclear
1498 translocation of STAT3 in brain neurons. *J Neurosci.* 1998;18(4):1329-36. Epub 1998/03/14. doi:
1499 10.1523/JNEUROSCI.18-04-01329.1998. PubMed PMID: 9454842; PubMed Central PMCID:
1500 PMCPMC6792719.

1501 68. Porwal M, Cohen S, Snoussi K, Popa-Wagner R, Anderson F, Dugot-Senant N, et al.
1502 Parvoviruses cause nuclear envelope breakdown by activating key enzymes of mitosis. *PLoS
1503 Pathog.* 2013;9(10):e1003671. Epub 2013/11/10. doi: 10.1371/journal.ppat.1003671. PubMed

1504 PMID: 24204256; PubMed Central PMCID: PMCPMC3814971.

1505 69. Kawano T, Inokuchi J, Eto M, Murata M, Kang JH. Activators and Inhibitors of Protein Kinase

1506 C (PKC): Their Applications in Clinical Trials. *Pharmaceutics*. 2021;13(11). Epub 2021/11/28. doi:

1507 10.3390/pharmaceutics13111748. PubMed PMID: 34834162; PubMed Central PMCID:

1508 PMCPMC8621927.

1509 70. Kawauchi K, Lazarus AH, Sanghera JS, Man GL, Pelech SL, Delovitch TL. Regulation of BCR-

1510 and PKC/Ca(2+)-mediated activation of the Raf1/MEK/MAPK pathway by protein-tyrosine kinase

1511 and -tyrosine phosphatase activities. *Mol Immunol*. 1996;33(3):287-96. Epub 1996/02/01. doi:

1512 10.1016/0161-5890(95)00134-4. PubMed PMID: 8649450.

1513 71. Jiffar T, Kurinna S, Suck G, Carlson-Bremer D, Ricciardi MR, Konopleva M, et al. PKC alpha

1514 mediates chemoresistance in acute lymphoblastic leukemia through effects on Bcl2

1515 phosphorylation. *Leukemia*. 2004;18(3):505-12. Epub 2004/01/23. doi: 10.1038/sj.leu.2403275.

1516 PubMed PMID: 14737078.

1517 72. Xu X, Han L, Zhao G, Xue S, Gao Y, Xiao J, et al. LRCH1 interferes with DOCK8-Cdc42-induced

1518 T cell migration and ameliorates experimental autoimmune encephalomyelitis. *J Exp Med*.

1519 2017;214(1):209-26. Epub 2016/12/29. doi: 10.1084/jem.20160068. PubMed PMID: 28028151;

1520 PubMed Central PMCID: PMCPMC5206493.

1521 73. Albano GD, Bonanno A, Moscato M, Anzalone G, Di Sano C, Riccobono L, et al. Crosstalk

1522 between mAChRM3 and beta2AR, via acetylcholine PI3/PKC/PBEP1/Raf-1 MEK1/2/ERK1/2

1523 pathway activation, in human bronchial epithelial cells after long-term cigarette smoke exposure.

1524 *Life Sci*. 2018;192:99-109. Epub 2017/11/28. doi: 10.1016/j.lfs.2017.11.034. PubMed PMID:

1525 29175450.

1526 74. Ghandour H, Cullere X, Alvarez A, Luscinskas FW, Mayadas TN. Essential role for Rap1 GTPase

1527 and its guanine exchange factor CalDAG-GEFI in LFA-1 but not VLA-4 integrin mediated human

1528 T-cell adhesion. *Blood*. 2007;110(10):3682-90. Epub 2007/08/19. doi: 10.1182/blood-2007-03-

1529 077628. PubMed PMID: 17702895; PubMed Central PMCID: PMCPMC2077316.

1530 75. Huang C, Feng F, Shi Y, Li W, Wang Z, Zhu Y, et al. Protein Kinase C Inhibitors Reduce SARS-

1531 CoV-2 Replication in Cultured Cells. *Microbiol Spectr*. 2022;10(5):e0105622. Epub 2022/08/25. doi:

1532 10.1128/spectrum.01056-22. PubMed PMID: 36000889; PubMed Central PMCID:

1533 PMCPMC9603170.

1534 76. Ron D, Luo J, Mochly-Rosen D. C2 region-derived peptides inhibit translocation and function

1535 of beta protein kinase C in vivo. *J Biol Chem*. 1995;270(41):24180-7. Epub 1995/10/13. doi:

1536 10.1074/jbc.270.41.24180. PubMed PMID: 7592622.

1537 77. Shue B, Chiramel AI, Cerikan B, To TH, Frolich S, Pederson SM, et al. Genome-Wide CRISPR

1538 Screen Identifies RACK1 as a Critical Host Factor for Flavivirus Replication. *J Virol*.

1539 2021;95(24):e0059621. Epub 2021/09/30. doi: 10.1128/JVI.00596-21. PubMed PMID: 34586867;

1540 PubMed Central PMCID: PMCPMC8610583.

1541 78. Wang X, Bi J, Yang Y, Li L, Zhang R, Li Y, et al. RACK1 promotes porcine reproductive and

1542 respiratory syndrome virus infection in Marc-145 cells through ERK1/2 activation. *Virology*.

1543 2023;588:109886. Epub 2023/10/09. doi: 10.1016/j.virol.2023.109886. PubMed PMID: 37806007.

1544 79. Stebbins EG, Mochly-Rosen D. Binding specificity for RACK1 resides in the V5 region of beta

1545 II protein kinase C. *J Biol Chem*. 2001;276(32):29644-50. Epub 2001/06/02. doi:

1546 10.1074/jbc.M101044200. PubMed PMID: 11387319.

1547 80. McBride R, van Zyl M, Fielding BC. The coronavirus nucleocapsid is a multifunctional protein.

1548 Viruses. 2014;6(8):2991-3018. Epub 2014/08/12. doi: 10.3390/v6082991. PubMed PMID:
1549 25105276; PubMed Central PMCID: PMCPMC4147684.

1550 81. Bai Z, Cao Y, Liu W, Li J. The SARS-CoV-2 Nucleocapsid Protein and Its Role in Viral Structure,
1551 Biological Functions, and a Potential Target for Drug or Vaccine Mitigation. Viruses. 2021;13(6).
1552 Epub 2021/07/03. doi: 10.3390/v13061115. PubMed PMID: 34200602; PubMed Central PMCID:
1553 PMCPMC8227405.

1554 82. Masters PS. Localization of an RNA-binding domain in the nucleocapsid protein of the
1555 coronavirus mouse hepatitis virus. Arch Virol. 1992;125(1-4):141-60. Epub 1992/01/01. doi:
1556 10.1007/BF01309634. PubMed PMID: 1322650; PubMed Central PMCID: PMCPMC7086615.

1557 83. Hartenian E, Nandakumar D, Lari A, Ly M, Tucker JM, Glaunsinger BA. The molecular virology
1558 of coronaviruses. J Biol Chem. 2020;295(37):12910-34. Epub 2020/07/15. doi:
1559 10.1074/jbc.REV120.013930. PubMed PMID: 32661197; PubMed Central PMCID:
1560 PMCPMC7489918.

1561 84. Huang Q, Yu L, Petros AM, Gunasekera A, Liu Z, Xu N, et al. Structure of the N-terminal RNA-
1562 binding domain of the SARS CoV nucleocapsid protein. Biochemistry. 2004;43(20):6059-63. Epub
1563 2004/05/19. doi: 10.1021/bi036155b. PubMed PMID: 15147189.

1564 85. Wurm T, Chen H, Hodgson T, Britton P, Brooks G, Hiscox JA. Localization to the nucleolus is
1565 a common feature of coronavirus nucleoproteins, and the protein may disrupt host cell division. J
1566 Virol. 2001;75(19):9345-56. Epub 2001/09/05. doi: 10.1128/JVI.75.19.9345-9356.2001. PubMed
1567 PMID: 11533198; PubMed Central PMCID: PMCPMC114503.

1568 86. Ding Z, Luo S, Gong W, Wang L, Ding N, Chen J, et al. Subcellular localization of the porcine
1569 deltacoronavirus nucleocapsid protein. Virus Genes. 2020;56(6):687-95. Epub 2020/09/19. doi:
1570 10.1007/s11262-020-01790-0. PubMed PMID: 32944812; PubMed Central PMCID:
1571 PMCPMC7497858.

1572 87. Surjit M, Kumar R, Mishra RN, Reddy MK, Chow VT, Lal SK. The severe acute respiratory
1573 syndrome coronavirus nucleocapsid protein is phosphorylated and localizes in the cytoplasm by
1574 14-3-3-mediated translocation. J Virol. 2005;79(17):11476-86. Epub 2005/08/17. doi:
1575 10.1128/JVI.79.17.11476-11486.2005. PubMed PMID: 16103198; PubMed Central PMCID:
1576 PMCPMC1193639.

1577 88. Hall R, Guedan A, Yap MW, Young GR, Harvey R, Stoye JP, et al. SARS-CoV-2 ORF6 disrupts
1578 innate immune signalling by inhibiting cellular mRNA export. PLoS Pathog. 2022;18(8):e1010349.
1579 Epub 2022/08/26. doi: 10.1371/journal.ppat.1010349. PubMed PMID: 36007063; PubMed Central
1580 PMCID: PMCPMC9451085.

1581 89. Jiao Y, Kong N, Wang H, Sun D, Dong S, Chen X, et al. PABPC4 Broadly Inhibits Coronavirus
1582 Replication by Degrading Nucleocapsid Protein through Selective Autophagy. Microbiol Spectr.
1583 2021;9(2):e0090821. Epub 2021/10/07. doi: 10.1128/Spectrum.00908-21. PubMed PMID:
1584 34612687; PubMed Central PMCID: PMCPMC8510267.

1585 90. Gao B, Gong X, Fang S, Weng W, Wang H, Chu H, et al. Inhibition of anti-viral stress granule
1586 formation by coronavirus endoribonuclease nsp15 ensures efficient virus replication. PLoS Pathog.
1587 2021;17(2):e1008690. Epub 2021/02/27. doi: 10.1371/journal.ppat.1008690. PubMed PMID:
1588 33635931; PubMed Central PMCID: PMCPMC7946191.

1589