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15 ABSTRACT

16  The function of the olivary nucleus is key to cerebellar adaptation as it modulates long term synaptic
17 plasticity between parallel fibres and Purkinje cells. Here, we posit that the neural dynamics of the inferior
18  olive (I0) network, and in particular the phase of subthreshold oscillations with respect to afferent
19  excitatory inputs, plays a role in cerebellar sensorimotor adaptation. To test this hypothesis, we first
20 modelled a network of 200 multi-compartment Hodgkin-Huxley 10 cells, electrically coupled via
21  anisotropic gap junctions. The model 10 neural dynamics captured the properties of real olivary activity in
22 terms of subthreshold oscillations and spike burst responses to dendritic input currents. Then, we integrated
23 the IO network into a large-scale olivo-cerebellar model to study vestibular ocular reflex (VOR) adaptation.
24 VOR produces eye movements contralateral to head motion to stabilise the image on the retina. Hence,
25 studying cerebellar-dependent VOR adaptation provided insights into the functional interplay between
26 olivary subthreshold oscillations and responses to retinal slips (i.e., image movements triggering
27 optokinetic adaptation). Our results showed that the phase-locking of 10 subthreshold oscillations to retina
28  slip signals is a necessary condition for cerebellar VOR learning. We also found that phase-locking makes
29  thetransmission of 10 spike bursts to Purkinje cells more informative with respect to the variable amplitude
30 of retina slip errors. Finally, our results showed that the joint action of 10 phase-locking and cerebellar
31 nuclei GABAergic modulation of IO cells’ electrical coupling is crucial to increase the state variability of

32 the 10 network, which significantly improves cerebellar adaptation.

33 AUTHOR SUMMARY

34 This study aims to elucidate the dual functionality of the inferior olive (10) in cerebellar motor control,
35 reconciling hypotheses regarding its role as either a timing or instructive signal. Specifically, we explore
36 the role of subthreshold oscillations (STOs) within the 10, investigating their potential influence on the
37  climbing fibres-to-Purkinje cell spike pattern responses and subsequent cerebellar adaptation, notably
38  during the vestibulo ocular reflex. Aiming these objectives, we constructed a detailed olivary network
39  model within a cerebellar neural network, enabling a mechanistic analysis of the functional relevance of
40  STOs in spike burst generation, propagation, and modulation within target Purkinje cells. Our findings
41 reveal the intricate nature of complex spike bursts triggered by climbing fibres—IO axons—into Purkinje
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42 cell dendrites, demonstrating a hybrid nature involving binary clock-like signals and graded spikelet

43 components acting as an instructive signal.
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s |.  INTRODUCTION

46  The role of the inferior olive (10) in cerebellum-dependent motor control remains partially understood. 10
47 is supposed to instruct a signal that triggers the associative synaptic plasticity at parallel fibres - Purkinje
48  cell (PC) synapses [1]. 1O is also hypothesised to provide a timing signal that drives downstream PC outputs
49  thanks to its membrane potential subthreshold oscillations (STOs) [2-4]. Yet, there is a need to understand
50  therole of STOs in the generation of 10 spiking patterns transmitted to PCs through climbing fibres, (CFs).
51 It is also necessary to study how STOs determine the neural state of the 10 network and, ultimately,

52  cerebellar adaptive dynamics.

53  Neighbour 10 neurons dendritically contact each other in a glomeruli through which they are electrically
54 coupled via gap junctions [5]. This electrical coupling enables the propagation of neural activity across the
55 olivary network. 10 internal conductance dynamics generate STOs [6], whose phase is assumed to
56 determine spike burst responses to excitatory inputs [7, 8]. The STO phase-dependent gating mechanism
57 can grade the spike burst lengths according to 10 input amplitude, thus allowing more than binary “all-or-
58 nothing" patterns to be encoded [9]. Furthermore, inhibitory inputs to the 10 glomeruli from the medial
59  cerebellar nuclei add another piece on the spike bursts generation and propagation jigsaw. These
60 GABAergic synapses are known to modulate 10 gap junctions, by reducing the electrical coupling and thus
61 the synchrony amongst 10 cells [10]. Therefore, 10 drives PC complex spikes by weighting its inhibitory
62 and excitatory inputs, which determines the 10 neural activation and synchrony via STO phase-dependent
63 modulation. This complex mechanism raises the question of how information is processed and transmitted

64 by the 10 network to facilitate cerebellar adaptation and motor control.

65 To address this question, we simulated a realistic 10 network, and we incorporated it within a spiking
66 cerebellar network. We then used the resulting feedforward control loop system to learn a specific
67 sensorimotor adaptation task: the prediction of oculomotor commands for the acquisition of the vestibulo-
68  ocular reflex (VOR). VOR counter rotates the eyes with respect to head rotations to stabilise the images on
69  the retina, thus maintaining the image in the centre of the visual field. VOR has been profusely used as a
70 model system to test the possible cerebellar role in motor learning [11] and feed-forward control adaptation

71 [12]. The model presented in this study aims at investigating the functional relevance of olivary STOs in
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72 terms of spike burst generation, propagation and modulation of PC complex spikes, electrical coupling role

73 on 10 neural coding, as well as the interplay of all those mechanisms during VOR adaptation.

74 In particular, we postulate that within the olivary system, STOs may serve as neural pattern encoders.
75  STOs, acting as a master clock within the 10, are phase-locked to the retinal slip signals, thereby finely
76 regulating the neural response timing for cerebellar motor adaptation. We also test the hypothesis of a dual
77 role of the 10, serving as both a master clock through STOs and as a graded instructive signal during VOR
78  adaptation. Importantly, the complex spike (CS) bursts triggered by CF into PC dendrites exhibit a hybrid
79 nature, combining binary and graded spikelet components. Additionally, we investigate the intricate
80 interplay amongst inhibitory (GABAergic) and excitatory inputs, as well as electrical coupling within the
81 10 network, shaping 10 neural coding. The modulation of graded CS bursts depending on the retinal slip
82 amplitude does not require GABAergic action to decrease 10 electrical coupling and thereby disrupt olivary
83 network synchronicity [13, 14]. Yet, we study whether the GABAergic desynchronising action of the

84 olivary network may play a role in improving rotatory-VOR (r-VOR) adaptation.

ss |Il. RESULTS

gs A. Olivary neural dynamics

g7 1. 10 spike burst responses to excitatory dendritic inputs

88  We implemented each 10 cell as a Hodgkin-Huxley model with 3 compartments: somatic, axonal, and
89 dendritic (Fig 1A left; see Methods). The neuronal 10 model reproduced the spike burst activity of real
90 olivary cells in response to dendritic step current injections (Fig 1A centre) [15, 16]. It also captured the
91 linear relation between the number of burst spikes and the amplitude of the excitatory synaptic input current

92 (Fig 1A right).

93  We considered an 10 network consisting of 200 biophysically modelled cells embedded in a lattice
94  arrangement (Fig 1B) [17]. Each IO dendrite was electrically coupled to 4 dendrites from nearby neighbour
95  cells [17] via anisotropic gap junctions (i.e., directional electrical coupling, [7]) that could vary between 0
96  to 100%. We first tested the burst propagation between a pair of electrically coupled 10 cells. The protocol
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97 involved the injection of a positive step current into one 10 neuron (the left cell in Fig 1C), and the recording

98  of the membrane potentials from both cells. A 100% coupling ensured a complete burst transmission from

99  one IO cell to the other within 1-2 ms (Fig 1C). Second, we studied burst propagation across the entire
100 network of 200 10 cells (Fig 1D). An excitatory step current was synchronously injected into a subset of
101 central 10 neurons, and we studied burst propagation as a function of the input current amplitude, whilst
102  fixing the electrical coupling at 100%. We measured the cumulative distribution functions relative to the
103 propagation of each burst spike, and we found a normal distribution with first spike: (n, ) = (4 nA, 0);
104 second spike: (i, 0) = (5 nA, 0.1); third spike: (1, 6) = (9 nA, 0.2); fourth spike: (n, 6) = (11.5 nA, 0.4) (Fig
105 1D). Therefore: an input current of 4 nA was sufficient to elicit 1 spike per burst across the entire 200 cell
106 network; amplitudes larger than 13 nA elicited 4 spikes per burst (i.e., a complete burst propagation) across
107  the entire network; and intermediate input amplitudes generated the propagation of intermediate 10 spike

108  burst lengths.

1 09 B R e R R S S S S S R S R R S R R S R R S S S S e

110 [~ Figure 1: Placeholder ----------------- ]
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112 Fig 1|. Electrophysiological properties of the HH 10 model and the olivary network. (A) Schematic
113 representation of the three-compartmental HH 10 model used. The compartments represent the axon
114 hillock, the soma, and the dendrite. To modulate the spike burst, a depolarising step current is applied to
115 the dendritic compartment (black line), which exhibits a slow depolarization. The somatic compartment
116  (green line) responds with a slow depolarization, whilst the axon hillock (red line) exhibits fast sodium
117 responses to the somatic depolarisation, resulting in a burst of spikes. Regulating the amplitude of the
118  depolarising step current applied to the dendritic compartment allows for the modulation of the number of
119 spikes within the burst experienced by the axon hillock. The number of spikes within the burst increases
120 linearly with the amplitude of the depolarising step current applied (R2: 0.891, p < 1 x 10"-10), enabling
121 a graded codification that goes beyond the all-or-nothing 10 learning paradigm [9, 18]. (B) The left-hand
122 side plot depicts an 10 network consisting of 200 three-compartment Hodgkin-Huxley (HH) inferior olive
123 (10) neurons arranged in a 3D lattice configuration with dimensions of 10 x 10 x 2 microzones. Each

124 olivary microzone is a 10 x 10 x 1 subunit, and they are electrically coupled via gap junctions. The figure
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125 illustrates the electrical connectivity scheme for the 100 10 neurons within each microzone. The colour
126 grading in the figure represents gap junctional interconnections within the lattice arrangement, where each
127 neuron in the model is electrically connected only to its closest neighbours. The right-hand side plot depicts
128  an example of axon hillock membrane potential traces during burst propagation due to 10-to-10 electrical
129 coupling. A 10nA depolarising step current is applied for 20ms to the dendritic compartment of the left-
130 hand side 10 whilst maintaining maximal coupling strength, i.e., fully open gap junctions. The transmitted
131 dendritic depolarised current via electrical coupling ensures the entire burst propagation (axon hillock
132 membrane potential) to the right-hand side 10 neuron in almost no time (microsecond scale). (C) 10
133 neurons located at the centre of each 5 x 5 square within the lattice arrangement receive an instructive
134 input signal. This input signal simultaneously reaches a subset of 5x5 neurons each time we simulate the
135  activation of glutamate receptor channels. Burst propagation within the entire network depends on the
136  effectiveness of the coupling. A graded [0-14nA] depolarising step current, applied for 20ms, reaches the
137 dendritic compartment of the central 10 neuron in all subsets of 5x5 neurons in the lattice olivary network,
138 maintaining 100% effective coupling. Varying the current amplitude modulates the length of the burst. A
139 14nA depolarising step current, when coupled with 100% effectiveness, ensures the maximum burst length
140  to be fully transmitted within the olivary network. Intermediate current amplitudes modulate the number of

141 spikes within the burst spikelet that are transmitted.

142 Then, we studied burst propagation across the 10 network as a function of the electrical coupling strength.
143 We considered an inhibitory input to the entire 10 network to modulate the electrical coupling from 0% to
144 100% (Fig 2A). Given a fixed excitatory input current (15 nA), the strength of the electrical coupling
145  significantly influenced the spike burst transmission across the network. Full burst propagation was
146 guaranteed by a coupling strength higher than 85%, whereas, only 3 out of 4 spikes were propagated with,
147 for instance, a 40% coupling (Fig 2B). The coupling strength also influenced the burst propagation time: a
148 100% coupling allowed for a full burst propagation through the entire 10 network within 14 ms, whereas
149 progressively lower levels of electrical coupling hindered the timing of burst propagation along with the

150 number of spikes propagated (Fig 2C).

151

152


https://doi.org/10.1101/2024.03.06.583676
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.06.583676; this version posted March 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

1 53 AEAEAAKAKAKAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A A A ARk AAhhhhhhhihxkx
154 [-------mm - Figure 2: Placeholder ----------------- ]
1 55 AEAEAKKAKAAAAAAAAAAAAAAAAAAAAAAAAAAA AR AR A A A A A AAhhhhhhhiixkx

156 Fig 2| 10 burst propagation properties via electrical coupling. (A) The schematic illustrates the simulation
157 protocol, wherein a 10nA depolarising step current is applied for 20ms to the dendritic compartment of the
158 central 10 neuron in all subsets of 5x5 neurons within the lattice olivary network synchronously. The
159  effectiveness of coupling is modulated to control burst propagation across the entire network. (B) Effective
160  coupling varies from 0 to 100%, whilst observing 10 bursts throughout the entire network. A 100% effective
161 coupling ensures that the burst length is propagated within the lattice arrangement, whereas a 0% effective
162 coupling leads to singular 10 neural activations. Intermediate levels of effective coupling values act as
163  regulators, influencing the transmission of burst length within the olivary network. (C) A 100% effective
164  coupling enables the entire burst to propagate within 14 milliseconds. Reducing the coupling to 50%
165  partially affects propagation, starting from the 4th spike within the spikelet and spanning the entire
166 network. With a 10% effective coupling, transmission is affected from the 3rd spike within the spikelet

167 across the entire network.

168 2. I0 subthreshold oscillations (STOs) and transmission of

169  excitatory dendrite inputs

170 The 10 neuronal model reproduced the subthreshold oscillation (STO) inner dynamics of real olivary cells
171 [19-21], with a frequency of ~10 Hz and an amplitude of ~ 20 mV (Fig 3A). In the model (see Methods),
172 during the hyperpolarisation phase, the somatic current I, mediated by the K* slow component channel
173 dominated the initial rising of the 10 membrane potential (red part in Fig 3A). From there, the somatic
174 current I, (in blue), mediated by the calcium low threshold channel, a Ca?*-dependent K* channel, further
175 increased the membrane potential driving the hypopolarisation phase. Hereafter, either the STO continued
176 (first circle) or a spike was generated (second circle), mediated through the Ina and Ik currents at the olivary
177 axon (green and purple lines, respectively). Then, the STO enters into its repolarisation phase thus resuming

178  the oscillation cycle (Fig 3A). At the level of the 10 network, our results confirmed that the electrical
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179  coupling amongst 10 cells is essential to the synchronicity of STOs, but not their overall frequency (Fig

180  3B)[7].

181 ook Ak Akdekedodedokeok *
182 [------mmm e Figure 3: Placeholder ----------------- ]
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184 Fig 3| 10 Subthreshold oscillations (STOs) within the olivary lattice arrangement and the impact of
185 electrical coupling on the STO phase. (A) During hyperpolarisation, somatic current Ik (slow K+ channel)
186 initiates the rise in 10 membrane potential (in red). Subsequently, somatic current Ica (in blue) (low-
187  threshold calcium channel and Ca2+-dependent K+ channel) enhances the depolarisation phase. This
188 leads to either continued subthreshold oscillation (STO) or spike generation, mediated by INa and IK
189  currents in the olivary axon (green and purple lines). The STO then transitions into repolarisation,
190 restarting the oscillatory cycle. (B) STO frequency is shown for both electrically uncoupled (reducing
191 coupling to 0%) and fully coupled (100% coupling) olivary network, revealing that overall frequency
192 remains constant, with changes observed only in oscillation synchronicity. Coupling amongst 10 neurons
193 in the lattice arrangement transforms non-synchronous into synchronous oscillations. In the upper panels,
194  the mean voltage of the coupled and uncoupled 200 10 network is depicted, whilst the lower panels provide

195  atop-down view of the overall STO membrane potential of the 10 network.

196  We studied the modulation of the STO phase by stimulating the centre of the 10 network by a sequence of
197  two excitatory inputs (Fig 4A). We sought to understand to what extent the relative timing of the two inputs
198 (i.e., the interstimulus interval, 1SI) would modulate (or possibly reset) the phase of 10 STOs. We found
199 that if the two inputs were delivered during different STO phases, they would cause either 10 phase
200 advances or delays (Fig 4B). When the second stimulus arrived during a hyperpolarisation period, it caused
201 a delay in the STO phase between (0 — ). If the second stimulus arrived during hypopolarisation-
202 depolarisation, it had the opposite effect, causing an advance in the phase between (n — 37/2). Finally, when
203 the second stimulus occurred during repolarisation, it caused again a delay in the phase between (37/2 - 2m)
204  (Fig 4B). Hence, a poor modulation or a reset of the STO phase could either partially or totally block the

205 10 burst response to a sequence of excitatory synaptic inputs. The STOs thus provided a time-window
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206  gateway for the transmission of excitatory dendrite inputs occurring during either the 10 hypopolarisation

207 or the depolarisation time period.

208  So far, only excitatory inputs with a fixed amplitude were considered. We therefore sought to study how
209  amplitude-modulated inputs were transmitted by the 10 network as a function of STOs” phase. Again, we
210  delivered sequences of excitatory inputs onto the centre of the 10 network. However, the amplitude of these
211 inputs was modulated according to a sinusoidal curve (Fig 4C). The injected step current was taken
212 according to a probabilistic Poisson process, by comparing the sinusoidal function i(t) with a random

213 number #(t) between 0 and 1. A positive input step current was injected at the centre of the 10 network

214 when i(t) > #(t), The amplitude of the step current increased with the instantaneous |i(t)| value (Fig 4D),

215 whilst its length remained fixed. When the step stimuli were well-timed with the hypopolarisation-
216 depolarisation phases (STO phase locking with respect to the temporal input), the 10 was able to properly
217 encode and transmit the graded afferent signal properly (i.e., the length of 10 burst responses reflected the
218  amplitude of the input) (Fig 4E left). This was not the case in the absence of STO phase locking (Fig 4E
219  right). 10 responses were constrained to be below 10 bursts per second, consistently with those observed

220 in neurophysiological recordings [22].

22 1 FEAEAAAAAAAAAAAAAAAA AR A AAAA A A A A A AA A AR AA A A A A A hhhhhiihhiixkx
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224 Fig 4| Modulation of subthreshold oscillation phase through sequential input instructive signals. (A) The
225 schematic outlines the simulation protocol, involving the synchronous stimulation of the central 10 neuron
226 in all subsets of 5x5 neurons within the lattice olivary network. This stimulation maintains 100% effective
227 coupling and is achieved using a depolarising current composed of a sequence of two stimuli, each with an
228  amplitude of 14 nA during a 20 ms duration. Phase modulation was explored by varying the inter-stimulus
229 interval (I1S1) within the step sequence of the input instructive signal. (B) The left-hand side plot depicts the
230  average membrane potential at the axon hillock of 10 neurons within the lattice was plotted whilst varying
231 thelSI[0- 2x]. The right-hand side plot depicts STO phases in the olivary network responding to a variable

232 ISI [0 - 2x] input signal. An early inter-stimulus occurring during the 10 hyperpolarisation phase resulted

10
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233 in a phase delay within the range of (0 - ). Conversely, a late inter-stimulus occurring during the
234 hyperpolarisation-depolarisation phase led to a phase advance within the range of (x - 37/2). Finally, an
235 inter-stimulus occurring during the repolarisation phase caused another phase delay within the range of
236  (37/2 - 2xm). (C) Sinusoidal input curve mimicking retinal slip during r-VOR adaptation. (D) The Input
237 current (depicted in blue) - Frequency (shown in green) 10 Curve is used to generate temporal sequences
238  of depolarising step current input stimuli for encoding retinal slip during VOR adaptation. The external
239 input activity representing retinal slip sampling by 10 activations follows a probabilistic Poisson process.
240 In this process, the central 10 neuron in all subsets of 5x5 neurons within the lattice olivary network is
241 activated in the range of [1 - 10 Hz], where 1 and 10 Hz correspond to the minimum and maximum retinal
242 slip values, respectively. Based on the normalised retinal slip signal i(t) (on the x-axis) and a random
243 number n(t) ranging from 0 to 1, the central 10 neuron in all subsets of 5x5 neurons within the lattice
244 olivary network receives a depolarising step current. The amplitude of this current depends on the actual
245 retinal slip amplitude when i(t) > n(t) i.e., the larger the retinal slip, the greater the amplitude of the input
246 depolarising step current. (E) The upper panels illustrate two sets of temporal sequences of depolarising
247 step currents used to encode the sinusoidal curve that simulates the retinal slip during r-VOR adaptation.
248  The lower panels display the temporal evolution of voltage at the axon hillock, soma, and dendrite of the
249  central 10 neuron within a subset of 5x5 neurons. On the left-hand side, IO STO phase-locking is activated,
250 meaning that retinal slip signalling is aligned with the 10 hyperpolarization-depolarization STO phase,
251 resulting in more precise sampling of the sinusoidal curve, i.e., no depolarising step current is lost. In
252 contrast, on the right-hand side, an 10 STO phase-free modulation is shown, where retinal slip signalling
253  can occur at any time. In this case, several depolarising step currents are lost, and the spike burst lengths

254 are diminished.

255 B.  Phase-locking of 10 oscillations during r-VOR adaptation

256 1. Cerebellar model for r-VOR adaptation

257  The IO network was integrated into a large-scale cerebellar model to learn r-VOR through adaptive feed-

258  forward control (Fig 5; see Methods). We simulated a 1 Hz sinusoidal head rotation protocol (i.e., within

11
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259  the natural head rotation range of 0.05-5 Hz, [23]). The cerebellar model had to learn to move the eyes
260  contralaterally with respect to the head rotation in order to minimise retina slips errors (i.e., the difference

261 between actual and target eye movements, Fig S1).

262 During head rotation, a population of 100 mossy fibres (MFs) encoded the primary vestibular inputs
263  signalling head velocity to the cerebellar network. MFs projected excitatory afferents onto 200 medial
264  vestibular nuclei (MVN) and 2000 granular cells (GCs). GCs expanded the coding space of MFs inputs
265 [24] into 200 Purkinje cells (PCs) via parallel fibres (PFs, i.e., GCs” axons). PCs were also driven by the
266  climbing fibres (CFs, i.e., 10 axons), which conveyed the teaching signal encoding retinal slip errors. The
267 excitatory olivary CF collaterals along with inhibitory PC outputs contacted MVN neurons, which closed
268  the loop through the MVN-IO inhibitory connections [25] conforming the olivo-cortico-nucleo-olivary
269 (OCNO) loop [26]. MVN generated the cerebellar output that was sent to the oculomotor neurons, which
270 ultimately drove eye movements. The OCNO subcircuit comprised two symmetric microcomplexes that
271 compensated the ipsilateral head movement by controlling leftward and rightward eye rotations,
272 respectively (see Methods). Cerebellar motor adaptation was driven by two spike-timing dependent
273 plasticity (STDP) mechanisms at PF-PC and MF-MVN synapses. During 500 s of simulation, plasticity
274 shaped PF-PC and MF-MVN synaptic efficacies (which were randomly initialised) to adapt VOR and

275 reduce retinal slips [25, 27-29]

276 During r-VOR learning, the length of 10 spike bursts (transmitted to target PCs via the CFs) had to encode
277 the amplitude of retina image slips (i.e., errors). PCs’ complex spikes were linearly correlated with 10 bursts
278 (i.e., the spike number in Purkinje complex spikes depended linearly on the spike number in the CF bursts;
279 [16, 25, 27, 28]. Hence, the different lengths of 10 spike bursts could modulate the cerebellar adaptation

280 capabilities, beyond an all-or-nothing learning paradigm [9].

281 FAEAAAAAAAAAAITARAAAAA AR A AAAAAAAAAAAAAA A A A A A A Ak hhhhiihhiixkx
282 [----m-mmmmmmee Figure 5: Placeholder ----------------- ]
283 *hkkhkkhkkkhkkhkkhkhkkhkhkhkhkkhkkhkkhkkhkkhkhkhkkhkikhkhkkhkkhkhkhkhkkikikhkhkhkikhkkhkhhkhkhkkiikhkiikkkkx

284 Figure 5| Cerebellum-dependent adaptation of vestibulo-ocular reflex (VOR). (A) Schematic

285 representation of the main cerebellar layers, cells, and synaptic connections considered in the spiking

12
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286  cerebellar model. Mossy fibres (MFs) convey vestibular information onto granule cells (GCs) and medial
287  vestibular nuclei (MVN). GCs, in turn, project onto Purkinje cells (PCs) through parallel fibres (PFs). PCs
288  also receive excitatory inputs from the inferior olivary (10) system. 10 cells are electrically coupled and
289 regulated via MVN-IO inhibitory connections. They deliver an instructive signal, which is the retinal slip,
290  through the climbing fibres (CFs). Each MVN is inhibited by a PC and excited by an 10, both located at
291  the same parasagittal band. MVN provides for the cerebellar output that ultimately drives oculomotor

292 neurons. Spike-dependent plasticity occurs at PF-PC and MF-MVN synapses.

293 3. r-VOR adaptation requires 10 STO phase-locking to error-

294  related inputs

295  We tested the ability of the cerebellar model to perform r-VOR adaptation under two 10-dependent
296 conditions: (i) in the presence of STO phase-locking to error-related inputs; (ii) in the absence of STO
297 phase-locking, henceforth named as phase-free condition (i.e., with error signals arriving at any time with
298 respect to 10 STOs). STO phase-locking enabled a better time sampling of the error signal as well as a
299 better encoding of its amplitude over time, which proved to be essential to mediate STDP at PF-PC synapses
300  during r-VOR learning. As a consequence, the mean absolute error (MAE) (i.e., the difference between
301 desired and actual contralateral eye movements) decreased over time, converging within 150 s (Fig 6A, red
302 curve). Hence, 10 STO phase-locking modulation allowed the cerebellum to maximise r-VOR accuracy,
303 by optimising the r-VOR gain (i.e., the ratio between the antagonist eye and head displacements) and phase
304 (Fig 6B; 1 Hz r-VOR gain = 1, phase = x), indicating that both eye position and velocity matched the ideal
305  counter head movements (Fig 6C). By contrast, the r-VOR accuracy did not improve under the phase-free
306  condition (Fig 6A, green curve), and neither the r-VOR gain nor the phase were optimised during learning

307 (Figs 6B, C).

308 AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA XA A A A Ak AAAhhhihhiixkx
309 [-------m-mme - Figure 6: Placeholder ----------------- ]
310 AEAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA XA A A A A A AAAhhhihhiixkx
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311 Fig 6] 10 STO phase-locking vs phase-free modulation during rotational VOR acquisition. The olivary
312 network in a lattice arrangement was integrated into a cerebellar network within a cerebellum-dependent
313  feed-forward control scheme. This scheme was tested by assessing cerebellum-dependent r-VOR
314  adaptation using a 1 Hz sinusoidal head rotation protocol during 500 seconds of simulation. Plasticity
315  shaped PF-PC and MF-MVN synaptic efficacies to adapt rotational-VOR (r-VOR) gain and phase and
316 reduce retinal slips. (A) MAE evolution for 10 STO phase-locking and 10 STO phase-free modulation
317 during r-VOR adaptation (error = desired - actual sinusoidal r-VOR curve).(B) r-VOR gain and phase
318  with 10 STO phase-locking or phase-free modulation (A) r-VOR gain and phase evolution during r-VOR

319  adaptation. (C) Actual and desired eye position and velocity at the end of the r-VOR adaptation process.

320  We found that the STO phase-locking condition elicited 5 times more 10 bursts than the phase-free
321 condition across r-VOR learning (Fig 7A). Also, cross-correlation analyses (i.e., between the spikes of 10
322 burst responses during learning and r-VOR MAE values) suggested that the presence of STO phase-locking
323 allowed the 10 network to use the 4™ to 61 spike of the bursts to grade the amplitude of the teaching signal
324  driving STDP at PF-PC synapses (Fig 7B). The 1% to 3" spike of the bursts were instead used to merely
325  signal the presence of retina slip errors (the correlation between the 1% to 3" spike burst and r-VOR MAE
326  was constant; Fig 7B). Conversely, in the phase-free condition all spikes within 10 bursts were equally
327 correlated with the MAE error curve, thus indicating that bursts were only signalling errors (binary 10
328 coding) without grading the teaching signal. In addition, during r-VOR learning the STO phase-locking
329  condition generated a larger number of neural states of the 10 network, whilst maintaining a small diversity

330  of 10 states (Fig 7C).

331 *hkkkhkkkkkhhkhkkkhkhkkkhkhkkhkhkkhkhhkhkkhkhhkhkkhkhkhkhkkhkhhkkhkhhkhkkhkhikkhkhkihkkhiikkk
332 [ Figure 7: Placeholder ----------------- ]
333 *hkhkkhkkkhhkkhhkhkkhhkkhhrhkkhhhirhkkhhhihhkkhhhkrhhkhhkrkhhihkhhhihhhhihkhiikkx

334 Fig 7 | Spike bursts under 10 STO phase-locking vs. phase-free modulation during r-VOR Acquisition.
335 (A) 10 burst number and length, i.e., spikes within the burst, under 10 STO phase-locking and 10 STO
336 phase-free modulation during r-VOR adaptation. The 10 olivary network elicited bursts to signal the
337 presence or absence of retinal slips. STO phase-locking modulation allowed signalling the presence of

338 retinal slips with four times more bursts under the same r-VOR protocol. Burst numbers remained
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339  consistent during r-VOR adaptation in both scenarios; however, 10 STO phase-locking modified burst
340 lengths along with r-VOR adaptation, i.e., retinal slip amplitudes were progressively declining. (B) Cross-
341 Correlation analysis of 10 STO phase-locking and phase-free modulations with their corresponding MAE
342 curves obtained during r-VOR Adaptation (Fig 6A). When STO phase-locking modulation is used, the 3rd
343 to the 6th spike within the burst grade retinal slip amplitude, i.e., correlation increases, whereas the 1st to
344 2nd spikes within the burst are used for signalling retinal slip only. In contrast, 10 STO phase-free
345 modulations employ the entire burst for signalling only. Note that 10 STO phase-free modulations cannot
346  achieve r-VOR adaptation (Fig 6A MAE curve), which means that only retinal slip signalling at any time
347 is reflected in the burst length. (C) Neural states produced during r-VOR adaptation for 10 STO phase-
348  locking and 10 STO phase-free modulation. Each neural state represents a binary matrix (200 x 6) that
349  encodes the state of the olivary network whenever a burst is triggered. During r-VOR adaptation, it is
350  observed that phase-locking modulation generates a larger number of unique neural states compared to
351 phase-free modulation, albeit with slightly less repetition. On the other hand, phase-free modulation results
352 in a somewhat lower repetition of neural states, primarily due to the random nature of the modulation,

353 which involves free sampling.

34 4, STO phase-locking & 10 graded error coding improve r-VOR

355  learning stability

356 We then comparatively analysed r-VOR adaptation under all-or-nothing versus variable error signalling.
357  Weran aseries of r-VOR learning simulations with 10 STO phase-locking but under two conditions. In the
358  all-or-nothing condition, we fixed the amplitude of the error signals received by the 10 network (i.e., from
359 minimum to maximum values, by increments of 25% of the range). Therefore, for a given simulation under
360 the all-or-nothing condition, the 10 network could only receive either a zero input or an input of a fixed
361 amplitude. In the control variable error condition, we let the input to the 10 network be modulated by the

362 actual amount of retina slip (as in the previous r-VOR learning simulations).

363  We found that an all-or-nothing 10 teaching signal up to the 75% of the maximum amplitude value did not
364  allow the cerebellar network to minimise the r-VOR MAE over learning (Fig 8A, grey curves). Strikingly,

365  when the all-or-nothing teaching signal was taken at the maximum value (100% of the range), the VOR
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366 MAE converged very rapidly (within less than 100 ms) to the optimal value (Fig 8A, black curve).
367 However, VOR accuracy was not sustained over time, and the MAE began to slightly increase around 150
368 ms. By contrast, we found that a variable 10 teaching signal amplitude allowed for both VOR MAE
369 minimisation (convergence within about 150 ms) and learning stability (Fig 8A, red curve). These results
370  were reflected in the evolution of the r-VOR gain and phase across learning (Figs. 8 B and C, respectively).
371  Ananalysis of the eyes position and velocity curves at the end of learning (i.e., at 500 s) confirmed a better
372 match, with respect to the ideal profiles, in the presence of a variable teaching signal amplitude as compared
373  to an all-or-nothing one (Figs. 8D, E). Finally, whilst assessing the factors beneath the better r-VOR
374 learning performance provided by a variable teaching signal, we found that this condition allowed a larger
375  number of 10 neural states to be generated, as compared to binary error signalling (Fig 8F). Interestingly,
376  alarger number of 10 neural states led to no FFT harmonics in eye position and velocity curves (Fig 8G),

377 resulting in better r-VOR learning stability.

378 B R R b S S S S S S 2 R S R R S R R T S S S s S

379 [~ Figure 8: Placeholder ----------------- ]

380 *hkkkhkkhkkhkkikkik *k*k **kk * *k*k *hkkkkkhkkhkikkik *x

381 Fig 8| 10 STO phase-locking behaviour under burst length modulation. We build upon the experimental
382  setup introduced in Fig 7, focusing exclusively on the modulation of 10 STO phase-locking. Specifically,
383 we examine the impact of different retinal slip amplitudes, comparing fixed burst lengths whilst controlling
384 retinal slip amplitude in 25% increments. We also consider variable burst lengths regulated through retinal
385  slip amplitude modulation. (A) Evolution of MAE during r-VOR adaptation. The MAE serves as a measure
386  of how closely our model aligns with the desired sinusoidal r-VOR curve. Notably, we find that the graded
387 instructive signal configuration (represented by the red curve) results in a further decrease in MAE and
388 better stability. (B-C) Evolution of r-VOR Gain and Phase during r-VOR adaptation. These measurements
389  show similar performance between graded and non-graded instructive signal amplitudes when retinal slip
390  amplitude is fixed at its maximum (100%). (D-E) Display of actual and desired eye position and velocity
391 at the end of the r-VOR adaptation process assessing how well our setups match the desired outcome. (F)
392  Analysis of Neural States during r-VOR Adaptation. The graded instructive signal amplitude (retinal slip)

393  generates a greater number of neural states with less variability compared to the non-graded instructive
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394  signal amplitude when the retinal slip amplitude is fixed at its maximum. Notably, an initial rapid decrease
395 in MAE for the non-graded instructive signal configuration (see Fig A) suggests that neural state variability
396  aids in r-VOR convergence. (G) Fast Fourier Transforms (FFT) of eye velocity. In this analysis, it is
397 compared the FFT of eye velocity between graded and non-graded retinal slip amplitude (fixed at 100%).
398  The FFT of the non-graded instructive signal amplitude (fixed at 100%) reveals larger odd and even
399  harmonics, indicating a poorer fit to the ideal r-VOR curve, despite gain and phase measurements
400  suggesting optimal performance. Note that gain and phase measurements only consider the first harmonic

401 (see methods).

402 5. STO phase-locking & GABAergic regulation of 10 electrical

403 coupling improve r-VOR adaptation

404 In all previous r-VOR simulations, we did not activate the GABAergic MVN-IO projections in the model
405 (Fig 5). Here, we considered them in order to account for their known role in modulating the electrical
406 coupling amongst 10 cells [30]. We sought to investigate to what extent the modulation provided by these
407 MVN-IO inhibitory synapses could play a role in increasing 10 neural state diversity (on top of the larger

408  number of neural states provided by variable teaching signalling, shown in Fig 8F).

409 We ran a series of r-VOR simulations to compare two adaptation scenarios: a condition with MVN-IO
410  inhibitory regulation of 10 coupling, and a condition without it. In both conditions, we preserved the 10
411  STO phase-locking to error-related inputs. For the condition “with MVN-IO inhibition”, we first ran a
412 sensitivity analysis to set the MVVN-10 synaptic weights in order to optimise the VOR MAE function. Then,
413 for each condition, we simulated 100 r-VOR adaptation experiments (again based on a 1 Hz sinusoidal head
414 rotation during 500 s). We found that whilst the total number of 10 neural states diminished, an increase of
415 state diversity was associated with the presence of MVN-IO GABAergic modulation (Fig 9A), which
416 resulted in a significantly better VOR accuracy (Fig 9B). Hence, even if MVN-1O inhibition was not a

417 necessary condition for r-VOR adaptation, it contributed to facilitating r-VOR learning.
418

419
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423 Fig 9] Enhancing r-VOR accuracy by regulating 10-10 coupling through MVN-10O inhibitory afferents.
424 We maintained the experimental setup from Fig 9, where variable burst lengths were regulated solely
425 through retinal slip amplitude modulation. In this configuration, we enabled/disabled MVN-10 inhibitory
426 connections. (A) Evolution of MAE during r-VOR adaptation (mean and standard deviation each 10
427 seconds). MAE measures the deviation between the desired and the actual sinusoidal r-VOR curve. An
428 ANOVA statistical test confirms significant differences in MAE with and without MVN-IO inhibitory
429 connections, indicating a lower MAE and, consequently, a more accurate r-VOR adaptation in the presence
430  of EC regulation via MVN-IO afferents. (B) Neural States generated with and without MVN-IO inhibitory
431 connections. A statistical test (ANOVA) confirms significant differences in the neural states generated. The
432 presence of EC regulation via MVN-I0 afferents results in a lower overall number of neural states but with

433 increased diversity, leading to a more accurate r-VOR adaptation.

s34 111. DISCUSSION

435 The olivary nucleus plays a crucial role in cerebellar adaptation by influencing synaptic plasticity between
436 parallel fibres and Purkinje cells. This study suggests that the dynamics of the inferior olive (10) network,
437 particularly the phase of subthreshold oscillations (STOs) in response to excitatory inputs, is necessary for
438  sensorimotor adaptation. We created a model of 10 cells to mimic real activity and we integrated it into a
439 cerebellar model to study vestibular ocular reflex (VOR) adaptation. Our results confirmed that (i) the
440 presence of STOs generated an opportunity modulation time window occurring during the 10
441 hipopolarisation-depolarisation time period; (ii) STO phase-locked modulation during this period allowed
442  the retinal slip [31] signals at low frequencies [1 - 10Hz] to be adequately sensed and naturally graded via
443  spike-burst lengths; (iii) this modulation together with electrical coupling (EC) allowed for the generation
444 of enough olivary neural states to ensure VOR adaptation; (iv) a wider variety of neural states increased

445  VOR adaptation converging speed. Neural state variety was found to be increased thanks to the EC
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446 regulation via the GABA nuclei projections onto the olivary network. These results allow us to postulate a

447  theory on the olivary system operating as a burst-amplitude modulator (see below).

as  A. 10 operates as a master clock and as teaching signal

a9 during VOR adaptation

450  Three conditions were fulfilled by the presented 10 system to act as a master clock [32]: (i) The membrane
451  potential of the Hodgkin-Huxley neuronal model was operating as a continuous and accurate carrier
452 frequency that acted as the reference signal. Our HH model membrane potential, acting as the reference
453 signal, was able to generate STOs with a precise 10 Hz periodicity, thanks to the dynamic interactions of
454 ionic channels. These STOs provided multiple modulation opportunities during their hypopolarisation-
455  depolarisation phases, i.e., temporal windows. (ii) The natural range of the r-VOR is from 0.5 to 5 Hz, with
456  our operating frequency being within 1 Hz. Since the temporal frequency of the sensed signal (1 Hz) is
457 lower than the "master clock period” (10 Hz), this ensures sufficient temporal precision [33]. (iii) A timely
458 sequence of external input activities reaching 10 cells could control the initiation and termination of STOs,
459 allowing for the correlation of 10 timing signals with retinal slip signals (an instructive signal) that drive
460 the specific operation of the r-VOR model system. Note that the external input activities, that is the retinal

461 slip signals, resulted from a Poisson sampling of the retinal slip stimulus.

462 Our modelled olivary system was also able to convey a low-firing rate instructive signal which is typically
463 based on retinal slip amplitude at approximately 1 to 10 Hz. This instructive signal helped the cerebellum
464  compensate for head rotary movement by controlling and adapting the contralateral eye movements (r-
465  VOR), despite the diminished signal transmission capability of the olivary system due to its low-frequency
466  operation [30]. To ensure a proper representation of the entire retinal slip region over trials, i.e., desired vs.
467 actual eye velocity, we generated external input activity driven towards the 10 cells using a probabilistic
468 spike sampling of the retinal slip signals (instructive signal generation) according to a Poisson process,
469  whilst maintaining the 10 activity between 1 and 10 Hz per fibre (similar to electrophysiological data [22]).
470  This approach allowed us to accurately sample the retinal slip evolution even at such a low frequency, as

471 supported by previous studies [25, 27-29, 34, 35]. We assumed that the CF triggered burst signals based
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472 on retinal slip magnitude, supported by two findings in awake mice: (i) CF-triggered signals gradually
473 increases with the duration and pressure of periocular stimuli [36, 37] and (ii) The amplitude of CF-
474 triggered signals onto PC dendrites is graded and represents information about the intensity of sensory

475  stimuli [18, 38].

476  We found that the spike burst triggered by CF into the PC dendrites were neither fully binary nor fully
477 graded. Interestingly, the 1%t and 2" spikes within the burst were used to indicate the binary presence of the
478 retinal slip signals, whilst the 3™ to 6 spikes were used to naturally grade the retinal-slip signal amplitude.
479  This CF spike burst modulation, according to the retinal slip amplitude, did not require the GAB Aergic
480 nuclei cells to decrease the 10 electrical coupling, which can cause the olivary network synchronicity to
481 break [14]. Instead, we found that the GABAergic nuclei cells’ ability to desynchronise the olivary network
482 played a role in providing more accurate r-VOR adaptation. We confirmed the GABAergic nuclei action
483 increased the non-redundant neural states in the olivary network during r-VOR adaptation. This increase in

484 the 10 information transmission capability contributed to a more precise r-VOR adaptation.

as5  B. HH 10 phase modulation and criticality of STOs

486 Our 10 HH three compartment model, based on previous studies [7, 19], was designed to alleviate the
487  computational load whilst maintaining the main morphological and functional properties of the olivary
488  system, especially the generation of spiking bursts at the axon hillock. The PC HH single-compartment
489 model was also able to reproduce the spiking modes of Purkinje cells, including tonic, pause, and burst
490 firing patterns. The PC burst reflected a perfect burst transmission from its corresponding CF [27]. The 1O
491 ionic channel dynamics in our model caused STOs to naturally appear at 10Hz, generating opportunity
492 modulation time windows for the 10 spike burst responses when following the sensorial stimulation of the
493 10 dendrites. We also found that the temporal input sequences towards the olivary system were able to
494 start/reset the IO STOs generation, and the 10 spike burst modulations only occurred properly during their
495 hipopolarisation-depolarisation time periods, indicating STOs as a conditional complex spike gating

496 mechanism [7, 8].
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497  These two timing facts pointed to a phase-locked modulation of the STOs during the 10 hipopolarisation-
498  depolarisation period. The start/reset mechanism adjusted the 10 voltage reference signal to the occurrence
499  of the Poisson sampling of retinal slip signal, whilst the 10 hyperpolarisation-depolarisation period adjusted
500  the 10 burst length modulation to the amplitude of the Poisson-sampled retinal slip signals during VOR

501  adaptation.

so2  C. The purpose of the IO STOs: Olivary system operating as

503 a burst-amplitude modulator (BAM), a theory

504 In the context of sensory neural processing, the necessity of modulation within the olivary nucleus becomes
505 evident. When attempting to convey multiple sensory stimuli directly to the 10s and PCs downstream
506  without modulation, an inherent issue arises. This issue stems from the fact that all sensory stimuli sharing
507  the same frequency range would saturate the 10-PC-MVN neural circuitry. This is similar to attempting to
508  tune into multiple radio stations operating on the same frequency simultaneously. As a result, the absence
509 of olivary modulation only allows for the transmission of one sensory stimulus at any given time. To address
510 this limitation, a modulation technique involving STOs could be used. The STO modulation shall
511 effectively shift the frequencies of sensory stimuli to higher ranges, typically around 10 Hz. Furthermore,
512 it shall enable the assignment of distinct frequencies to individual sensory stimuli, similar to the concept of
513  amplitude modulation (AM) in radiofrequency transmission. However, our STO modulation does not
514 operate over the amplitude of the carrier signal, represented by STOs amplitude, based on the sensory
515 message. Instead, it varies the lengths of complex spike bursts, ensuring a diverse representation of the

516 sensory input.

517 Interestingly, in amplitude modulation (AM), the carrier signal is modulated by the message signal through
518 multiplication. Additionally, a constant value is added to the message signal. This dual action ensures that
519  when the message signal is at its smallest values, the carrier signal effectively disappears, which is a
520  technique to prevent over-modulation (Supplement S2). Over-modulation, in this context, is akin to the
521  phase of the carrier signal reversing, which can lead to extreme distortion in the subsequent demodulated

522 signal (Supplement S3). Similarly, within the context of IO STOs phase modulation acting as the carrier
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523  signal, the sensory stimulus, representing the message signal, is characterised by a variable amplitude input
524 current. The amplitude of this current is equivalent to the magnitude of retinal slip amplitude. This dynamic
525 input, when injected into the 10 dendritic compartment, results in the generation of complex spike bursts
526  of varying sizes. Furthermore, the first (1) and second (2"%) spikes within the CS bursts function as a binary
527  signal to denote the presence or absence of the stimulus. Note that these 1 and 2" spikes also carry a
528 constant modulation, which shall contribute to the effective reduction of the carrier signal amplitude,
529  essentially causing the STOs to vanish at the lowest sensorial stimulus values, thereby preventing over-

530 modulation.

531 Significant parallels exist between AM demodulation and the mechanisms occurring in the MVN,
532 specifically, the cerebellar neural decoding process. MV N neurons are recognised for their ability to encode
533 various frequency oscillations related to horizontal linear motion. Notably, the medial section of the MVN
534 has been observed to respond to low-frequency stimulation, typically in the range of 0.5 to 1.0 Hz in studies
535 involving rats [39]. Further investigations conducted in vitro have identified a distinct subtype of neurons
536  within the vestibular nuclei, labelled as ‘type B' that exhibit a form of adaptation in their firing rate in
537 response to depolarising current steps. This adaptive behaviour displays resonance at frequencies within a
538  range relevant to behaviour, facilitating synchronisation with the peaks of incoming stimuli [40, 41].
539 Additionally, modelling of the vestibular nuclei suggests the presence of membrane potential oscillations
540 in response to step current inputs, which is indicative of phenomena that might manifest in vivo [42]. Given
541  these observations, it is plausible to consider the oscillations within MVN as a vital aspect of cerebellar
542 decoding. In essence, they can be viewed as a form of a product detector demodulator [43]. The cerebellum
543  demodulation process shall combine the modulated sensorial stimulus with input from inhibitory PC
544 afferents and vestibular signals from MF afferents, incorporating a local oscillator represented by type B
545 vestibular nuclei neurons. Crucially, these type B vestibular nuclei neurons must oscillate at the same
546 frequency as 10 STOs, effectively acting as the carrier signal (Supplement S3). The output from MVN shall
547 carry several robust cerebellar outputs, and it shall contain a signal within the frequency range of the sensory
548  stimulus (message). This, in turn, shall lead to the faithful reproduction of the original modulating signal,
549  which represents the sensory stimulus after Spike-Timing-Dependent Plasticity (STDP) learning adaptation

550  (Fig 10).
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551 A product detector demodulator uses a direct conversion reception method to extract the message signal,
552  which is the most straightforward approach for receiving information transmitted by a carrier (Supplement
553  S3). An essential component for this process is a simple low-pass filter, known for its effective selectivity
554 [44].The behaviour of motor ocular neurons aligns with the operation of a low-pass finite impulse filter
555 (FIR), as observed in previous research [45]. This alignment may contribute to the process of demodulation

556 in the medial vestibular nuclei (MVN) (Fig 10).

557 khkhkkhkkkhhkhhkhkkhhkhkrhkkhhkhkhhkkhhkhkkhhkhhkhkkihkhkhhkihhkhhkihhkhhhhhihkiiikx
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560 Fig 10| Analogies between amplitude modulation in radio transmission and burst-amplitude modulation
561 in the olivary system. The olivary network STOs use a phase-locked modulation in amplitude. However,
562 the STOs modulation varied the burst lengths according to the retinal slip amplitudes instead of varying
563 the amplitude of the carrier signal. Consequently, all the sensorial stimuli sharing the same frequency
564 range could simultaneously be transmitted. The olivary system may play the same role as an AM encoder
565  during the input stimuli transmission to downstream cerebellar layers, whereas the MVN together with the

566 motor neurons may play the same role as an AM decoder for stimuli reconstruction at the cerebellar output.

567 1V. MATERIALS & METHODS

se8 A, VOR Analysis and Assessment

569 We simulated the horizontal VOR (h-VOR) during sinusoidal (~1 Hz) whole-body rotations [46]. VOR
570  gain was determined as the ratio between the first harmonic amplitudes of the eye and head velocity Fourier
571 transforms:

eye—velocity

VOR GAIN G =—

head —velocity
572 H, (1)
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573 Conversely, VOR shift phase was calculated as the cross-correlation of the eye (e) and head (h) velocity

574 time series:

def 4o
VOR shift phase = xcorr = (e=h)[y]=>_e (n)h(n+y)

575 (2)

576 Here, e* represents the complex conjugate of e, and ¥ the lag indicates the shift phase. After normalisation,

577  the ideal eye and head velocity lag is + 0.5, with cross-correlation values ranging from -1 to 1. This range

578 is equivalent to a phase shift interval of [-360°, 360°].

579 B. VOR Mechanical Circuitry

580 The cerebellum operates as a biological feed-forward controller within a control loop. Its output drives
581 adaptation from the MV N through a series of motor neurons, nerve fibres, and muscles, ultimately affecting
582 eye movement. We modelled this pathway using the EDLUT neural simulator [47-49] as VOR (Vestibulo-

583  Ocular Reflex) mechanical circuitry defined by a continuous-time mathematical model:

e (kT), E‘.(s) teye motion(outpul)
h(kT)_.H(s):head mation(input)
H(s) (T.s+1)(Ts+1)

VOR(s) =

584 (3)

585  This model consists of four parameters: Q = [K, Tc1, Tca, 7delay]. The delay parameter zgelay accounts for
586 the time it takes for signals from the inner ear to reach the brain and eyes, estimated to be around 5 ms
587 based on the number of synapses involved in the VOR [50, 51]. It is also included in the cerebellar
588 sensorimotor pathway delay (see the STDP section) [25, 27, 28]. The gain parameter K represents the
589 inability of the eyes to perfectly track head movements and it is assumed to fall within the range of 0.6 to
590 1 [50, 51]. Tci reflects the dynamics associated with the semicircular canals and additional neural
591 processing. These canals act as high-pass filters, because after a subject has been put into rotational motion,
592  the neural active membranes in the canals slowly relax back to resting position, so the canals stop sensing

593 motion. Based on the mechanical characteristics of the canals, combined with additional neural processing
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which prolongs this time constant to improve the accuracy of the VOR, the T¢i parameter is estimated to
be between 10 and 30 seconds [50, 51]. Finally, Tc, characterises the oculomotor plant dynamics, including

the eye, muscles and attached tissues, with TC2 assumed to be between 0.005 and 0.05 seconds.

To obtain the temporal response for the VOR transfer function, we need to calculate the inverse Laplace

transform, taking into account that the delay is modelled and inserted within the control loop (Eq 4).

NS

X
y-Ib bl][ }
X, (4)

Where: a, :]/(TmTcz ); a=a,= (Tc1 +Tc2 )/(Tc1Tcz );bo =0; b1 = KTCl/(TclTCZ); The VOR plant

model parameters were fine-tuned using a genetic algorithm to align with experimental and clinical

observationsl [50-52]. The resulting parameter values are: K =1.0, Tc1=15, Tc2= 0.05.

The code for the Neuron Simulator and EDLUT Simulator will be made publicly available upon acceptance of the article. The Neuron
code includes HH PC model and HH 10 model operating in isolation, whilst the EDLUT code encompasses the r-VOR setup in closed
loop with both phase-free and phase-locked configurations. We kindly request the reviewers to consider this note and, if necessary,
contact the authors for any additional information, granted code access and/or clarification regarding the code.
https://github.com/EduardoRosLab/NEURON_NEURAL_MODELS
https://github.com/EduardoRosLab/OLIVARY-PHASE-LOCKING-OSCILLATIONS

C. Cerebellar Spiking Neural Network Model

The cerebellar circuit, modelled as a feed-forward loop, effectively compensated for head movements
through contralateral eye movements (see Fig 5). This cerebellar network comprised five neural
populations: mossy fibres (MFs), granule cells (GCs), medial vestibular nuclei (MVN), Purkinje cells (PC),
and inferior olive (10) cells [53-57]. This cerebellar model was implemented in EDLUT [47-49], an open-

source, spiking-based neural simulator designed for efficient computation and embodied experimentation.

Mossy fibres (MFs): We modelled 100 MFs as input neurons responsible for transmitting sensory-motor
information to both GCs and MVN. In line with the functional principles of VOR models for cerebellar

control [58], MF activity ensembles were generated to follow a 1 Hz sinusoidal pattern, with a new MF
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619  ensemble for each 2 ms simulation step, encoding head [58-60]. The overall MF activity was organised into
620 non-overlapping and equally sized neural subpopulations to maintain a consistent firing rate for the MF
621 ensemble over time. Note that two different times corresponded to two different subgroups of active MFs,

622 ensuring overall constant activity (see Network connectivity parameters summarised in Table 1).

623 Granule cells (GCs): The granular layer consisted of N = 2000 GCs (Leaky Integrate & Fire (LIF) neurons)
624  and functioned as a state generator [61-64]. The inner dynamics of the granular layer produced time-
625  evolving states comprising non-overlapping spatiotemporal patterns that were consistently activated in the
626  same sequence during each learning trial (1 Hz rotation for 1 second). Despite receiving a constant MF
627 input encoding each second of the 1 Hz learning trial, the granular layer generated 500 different states. Each

628  state was composed of four non-recursively activated GCs [65].

629 Purkinje cells (PCs): 200 PCs were modelled using a single compartment Hodgkin-Huxley (HH) model
630  with five ionic currents, allowing them to replicate the tri-modal spike modes (tonic, silence, and bursting)
631 observed in PCs [27, 66].These PCs were divided into two subpopulations of 100 neurons each. Each
632 subpopulation received inputs from 100 CFs arranged in a lattice configuration [17]. These CFs encoded
633 the difference between both clockwise or counter clockwise eye and head movements. Additionally, each
634 PC received 2000 PF inputs. Given that PCs are innervated by approximately 150,000 PFs [67], the weights
635  of the PF-Purkinje cell synapses in the model were adjusted to match the biological excitatory drive. Each
636  of the two subgroups of 100 Purkinje cells targeted 100 MVN cells through inhibitory projections. The
637 MVN cells were responsible for generating either clockwise or counter clockwise compensatory motor

638 actions, ultimately driving the activity of agonist/antagonist ocular muscles.

639 Inferior olive (10): 200 10 cells were modelled using a three-compartment Hodgkin-Huxley (HH) model
640  equipped with seven ionic currents and electrical coupling. This HH model accurately reproduced both the
641 spike burst and the subthreshold oscillations observed in the 10 [68]. The neural layer was divided into two
642 subpopulations of 100 neurons each, arranged in a lattice configuration[17]. These two subpopulations were
643 responsible for handling clockwise and counter clockwise sensed errors. CFs transmitted the instructive
644  signal (retinal slips) from the 10s to the populations of PCs. Each CF made contact with one PC and one
645 MVN cell. The external input activity of 10 cells was generated using a probabilistic Poisson process. Based

646  on the normalised retinal slip current curve i(t) and a random number n(t) ranging from 0 to 1, the central
26
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647 10 neuron in all subsets of 5x5 neurons within the lattice olivary network received a depolarising step
648  current (see Fig 4A).The amplitude of this current depended on the actual retinal slip amplitude when i(t)
649  >n(t)(Fig 4C and D). In other words, the larger the retinal slip was, the greater the input depolarising step
650  current. These depolarising step current input stimuli, combined with the electrical coupling amongst 10
651 cells regulated by inhibitory NO connections, generated the overall activity in the olivary system. Each
652 individual CF spike conveyed well-timed information about the instantaneous error (See Fig 4D and E).
653  The probabilistic spike sampling of the error ensured a proper representation of the entire error range across
654  trials whilst maintaining CF activity between 1 and 10 Hz per fibre, which is consistent with
655  electrophysiological data [22]. Even at this low frequency, it accurately sampled the error evolution [34,

656 35, 69-71].

657 Medial vestibular nuclei (MVN): 200 MV N cells were modelled as LIF neurons, divided into two groups
658 of 100 cells each, corresponding to agonist and antagonist ocular muscles. Each MVN cell received
659 inhibitory input from a PC and excitatory input from the CF, which simultaneously innervated the
660  corresponding PC. Additionally, each MVN cell received excitatory projections from all MFs, maintaining
661  the baseline activity of MVN cells. The spike activity of both the agonist and antagonist groups of MVN

662 cells was translated into an analogue output signal (eye velocity) according to equations 5 and 6:

t+T,

663 MWN, (t)=[ "5

t MVN

(t)dt (5)

spike

N =100 ) N=100 )
MVNoutpul (t) = Ol( z MVNiagonlst (t) _ Z MVN ;antagomst (t)J
664 — = o

VOR range(deg/s)
o=
N =100

665  where o represents the kernel amplitude that normalises the contribution of each MVN cell spike to the
666  cerebellar output correction. i and j are used to represent the MVN neuron tags, ranging from one to N =

667 100, which is the total number of MVNSs in each sub-population (both agonist and antagonist sub-

668 populations). &, stands for the Dirac delta function that represents MVN spikes that have been

VN i
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triggered, while Tsep (0.002 seconds) corresponds to the duration of the sliding windows over which the

MVN spiking activity is calculated. This neural topology is summarised in Tablel.

Table 1. Cerebellar network topology parameters. (Dash lines indicate not applicable)

Neurons Synapses
Pre-synaptic Post-synaptic Number Type Initial Weight
neurons neurons weight(nS) | range(nS)
(number) (number)
2000 GCs 200 PCs 400000 AMPA rand [0,4]
200 10 200 PCs 200 AMPA 40 -
100 MFs 2000 GCs 8000 AMPA 0.352 -
100 MFs 200 MVN 20000 AMPA 10 [0, 10]
200 PCs 200 MVN 200 GABA 15 -
200 10 200 MVN 200 NMDA 7 -
20010 200 MVN 200 AMPA 1 -
200 MVN 200 10 200 GABA 0.15
10 to 10 configuration, there are
5x5 10 neuron squares arranged in a GAP
lattice pattern. These squares are 320 1 _
connected radially, extending from JUNTION
the centre to each corner of the 5x5
square, resulting in a total of 200 10
neurons.

@ We used specific parameters to generate offline GrC activity. This activity remained constant
throughout the r-VOR adaptation process. This pre-generated GrC activity was preloaded during
computation to expedite the simulation.

D. Neuron Models

1. The LIF model.

The LIF model used for MFs and GCs was the same as the one used in [27]. However, the LIF model used
for MVN was implemented based on [25] following equations 7-13. The neural dynamics of MVVN were
defined by the membrane potential and the presence of excitatory (AMPA and NMDA) and inhibitory

(GABA) chemical synapses.
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dv
Cm = internal + external
681 dt ()
682 Iinternal = _gL (V - EL) (8)
683 Iexternal == ( 9 avea (t) + O on (t) : gNMDAfINF )(V - EAMPA ) ~ Oonen (t)(V - EGABA ) (9)
(1)
684 gAMPA (t) = gAMPA (tO )e o (10)
(t=t)
685 g NMDA (t) = g NMDA (tO ) e e (11)
(%)
686 gGABA (t) = gGABA (tO )e o (12)
B 1
gNMDAfINF - o 1.2
l+e™ —
687 3.57 (13)

688 where Cy, denotes the membrane capacitance, V the membrane potential, linema the internal currents and
689 lexternal the external currents. E. is the resting potential and g, the conductance responsible for the passive
690  decay term towards the resting potential. Conductances gamea, Onmpa and geasa integrate all the
691 contributions received by each receptor type (AMPA, NMDA, GABA) through individual synapses. These
692 conductances are defined as decaying exponential functions [47, 72, 73]. Finally, gnmpa_inr Stands for the

693 NMDA activation channel.

694 2. The 10 HH model.

695  The 10 model was a simplified and corrected version of the three-compartment HH model proposed by
696 [19]. To enhance computational performance, a simplified set of somatic and dendritic currents was
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697 adopted, whilst still preserving the ability to generate spike bursts due to the sodium current inactivation
698  within the axon hillock compartment [74]. Initially, the model was implemented in NEURON for validation

699 in isolation, and subsequently transferred to EDLUT to accelerate the computation of the entire network.

700  SOMA: The total soma voltage was given by:

701 dvsoma _ _GCaL ’ ki 1 (V - 120)_GLeak (V _10)_GKdr -n p(V +75)— |
dt C

interact _compartment (14)

soma
702  Where Csmais the soma membrane capacitance and the dynamics of each gating variable follows:

703 ax (%, [V]-%) (15)
dt T, [V]

704 The equilibrium function X [V] and time constant for each current are depicted in table 2

705  Table 2. Somatic component. lonic conductance kinetic parameters

Conductance type Current Activation Inactivation
Gcal- - Calcium ICaL = GCaL ’ k: 1 (vSoma - 120) l 1
2 k°° = -V__ -61 Iw = V__+855
G, =0.0007 (mho/cm*) o B
Cal 1 . 2 1 e o
low threshold
Vv, +160
20 . e 30
T, =—7——+35
[ v, +84
1 + e 73
Gea 0.000016 (mho / cm’ )
GKdr - Potassium l, =G, n P'(Vsuma +75) 1 1
n =—— p =——
G, =0009 (mho/cm’) - 3 * Yy 51
kdr 1 + e 0 1 + e ”
slow component
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AXON HILLOCK: The total axon voltage was given by:

dv -G,,-m’ -h-(V-55)-G

axon _ N

(V-10)-G, -x*-(V +75)-1
dt C

Leak

interact _ compartment (16)

axon

Where Caon is the axon membrane capacitance and the dynamics of each gating variable follow Eq. (15).

The equilibrium function X [V] and time constant for each current are depicted in table 3:

Table 3. Axon component. lonic conductance kinetic parameters

Conductance Current Activation Inactivation
type
GNa -sodium INa = GNa . m: -h- (Vaxon - 55) 1 1
: i, == h=—""s
G, =0.240 (mho/cm’) = =
- l+e 1+e
current
—an—AO
r =15-e ®
Gea 0.000016 (mho / cm’ )
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GK -postassium IK = GK X (Vaxnn +75) a = 0.13 ‘Vaxon +3.25
G, =0.020 (mho /cm’ ) x . ==
—e

current

—0.0125-V_ -0.4375
B =169 "

a)(
X =——
aX+ﬂX

1
T =———
aX+ﬂX

712

713 DENDRITE: The total dendrite voltage was given by

Gy, 1+ (V, e ~120)-G, (V -10)-G, _ -s-(V externel

dV dendrite dendritic + )_ interact _compartment

714 dendrite _ Ajendrite ( 17)

dt C

dendrite

715 Where Cgenarite IS the dendrite membrane capacitance, Agendrite IS the dendrite membrane area, and the external

716 current lexernal Was given by:
i Iexternal = ~uven (t) (V - EAMPA ) ~Uorea (t)(V - EGABA ) - IGJ (18)

(Vi )

N
718 Iy, =2 Wy (V, —V,)| 0.6e % +0.4 (19)

i=1

719 Where conductances gAMPA, and gGABA integrate all the contributions received by each receptor type
720  (AMPA, GABA) through individual synapses Eq. (10, 12). Where IGJK stands for the current injected to

721 the k™ target neuron through the gap-junction (GJ) [20, 25, 28], Vi is the target neuron membrane potential,
722 the i neuron membrane potential, V; is the synaptic weight between the neuron i and the target neuron, and

723 N is the total number of GJ current inputs. The dynamics of each gating variable follows Eq. (15). The

724 equilibrium function %o [V] and time constant for each current are depicted in table 4:
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725  Table 4 . Dendritic component. lonic conductance kinetic parameters

Conductance type Current Activation Inactivation

Dendritic calcium 0 [Ca2+ ]

3-1,,-1000-75-[Ca” ]

concentration ot

if (0.02-[ca™ | >=0.01)
a, =0.01
else
GK-Ca -Calcium | e =G 8 (Vo +75) a, =0.00002 - [Caz+]
G, ., =0.035 (mho/cm’) 5 —0015
dependent s '
potassium s = a
’ as + ﬂs
1
T=——
aS + ﬁs
726
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727

728

729

730

731

732

733

734

735

The interaction between compartments was modelled passively taking the surface ratio between

compartments into account.

Soma to dendrite current:

G ternal
ISdinteracticampartmem = —men (Vsoma _Vdendrite )
ps,d
Gy g =0.00013(mho / cm® ), p,, ==
(20)
Axon to soma current:
Iasimeracl_ccmpanmem = e : (Vaxon _Vsoma)
pa‘s
) 3
G =0.00013(mho / cm* ), p,, = —
20 (21)
Soma to axon current:
G
|Sa — Internal (V _V )
int eract _ compartment soma axon
ps‘a
) 20
Gy =0.00013(mho / cm? ), p,, = —
3 (22)
Table 5. Geometrical parameters:
Soma Geometrical Parameters
Cylinder length of the soma 20.5790 #m
Diameter of the soma 20.5790 #m
/ 2
Membrane Capacitance 1 #F/em
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Axon Geometrical Parameters

Cylinder length of the axon 53.1329 #m
Diameter of the axon 53.1329 #m

/ 2

Membrane Capacitance 1 #F/cm

Dendrite Geometrical Parameters

Cylinder length of the axon 10.2895 #m
Diameter of the axon 10.2895 #m

/ 2

Membrane Capacitance 1 #F/em

736

737 3. The PC HH model.

738  The HH single-compartment model (PC) was based on [75, 76] and implemented in [27]. It consisted of a
739 single compartment HH neuron with five ionic currents and excitatory (AMPA) and inhibitory (GABA)

740 chemical synapses:

av

external
C = I +
m internal

741 dt Membrane Area (23)

742 Iimernal :_gkn4 (V +95)_gNam0 [V]3 h(V _50)_g0ac2 (V _125)_gL(V +70)_gMM (V +95) (24)

743 Iextemal =G (t)(V - EAMPA ) ~ Yo (t)(V - EGABA) (25)
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)
744 gAMPA (t) = gAMPA (tO )e e (26)

_()
745 gGABA (t) = gGABA (tO ) e o (27)

746 where V denotes the membrane potential, linema the internal currents and lexemar the external currents. Cp, is
747  the membrane capacitance. Conductances gamea and geasa integrate all the contributions received by each
748 chemical receptor type (AMPA and GABA) through individual synapses as in [25, 27, 28]. These
749 conductances are defined as decaying exponential functions. Finally, gk is a delayed rectifier potassium
750 current, gna a transient inactivating sodium current, gca a high-threshold non-inactivating calcium current,
751 gL a leak current, and gm a muscarinic receptor suppressed potassium current. The dynamics evolution of
752 each gating variable (n, h, ¢, and M) can be computed using Eq 15. Where x indicates the variables n, h, c,

753  and M. Gating variables are defined in [27] .

754 E.  Synaptic Plasticity

755 The overall input-output function of the cerebellar network model incorporated two STDP mechanisms at
756  different sites, which balanced long-term potentiation (LTP) and long-term depression (LTD). For a more

757 detailed review of the implemented synaptic mechanisms, refer to [25, 27, 28, 35].
758 1. PF-PC synaptic plasticity:

759 The LTD/LTP balance at PF-PC synapses is based on:

e t-t,
LTD Aw,, . ()=a [ k = |5, (t)dt

760 =

LTD

(28)

LTP AWPF]—PCI (t) = ,3 5PFW (t) dt

761 (29)
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762  where AWer; rci(t) denotes the weight change between the j PF and the target i PC; t.tp = 100 ms
763 denotes the time constant that compensates for the sensorimotor delay; dpr is the Dirac delta function
764  corresponding to an afferent spike from a PF; o = -0.0304 nS is the synaptic efficacy decrement; =

765 0.0184 nS is the synaptic efficacy increment; and the kernel function k(x) [25, 27-29] is defined as:
x - 10
266 k(x)=e"sin(x) (30)

767 The STDP mechanism, as described in (Luque, et al., 2016), results in synaptic efficacy decrement (LTD)
768  when aspike from the CF reaches the target PC neuron. The extent of this synaptic decrement is determined
769 by the activity arriving via PFs, which is convolved with an integrative kernel defined in Eq. (30) and then
770 scaled by the synaptic decrement factor a. This effect on the presynaptic spikes arriving through PFs is
771 most pronounced within a 100 ms window preceding the arrival of the postsynaptic CF spike. This temporal
772 window compensates for the sensorimotor pathway delay [70, 77-79] .On the other hand, the amount of
773 LTP at PF-PC synapses remains fixed, with each spike arriving through a PF to the targeted PC resulting
774 in an increase in synaptic efficacy equal to $. In the simulated loop, The sensory-motor pathway delay [80],
775  with a duration of 100 milliseconds, was modelled using two circular temporal buffers, each lasting 50
776 milliseconds and having 2-millisecond taps. The first buffer was positioned between the cerebellar output
777 and the r-VOR plan, whilst the second buffer was situated between the output of the r-VOR plant and the

778 error signal used as the cerebellar instructive signal (retinal slips) [25].
79 2. MF-MVN synaptic plasticity:

780 The LTD/LTP dynamics at MF — MVN synapses are based on:

s t- tPC
781 LTD Aw,, ., ()=a [ & =15 (1) (31)
l ‘ -0 TMF —MVN -
782 LTP AWMFJ*MVNI (t) = ﬂ 5MFSPME (t) (32)
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783 with AWwr wwig denoting the weight change between the j" MF and the target i" MVN; zve-mun = 5 ms
784  standing for the time width of the kernel; dwe representing the Dirac delta function that defines a MF spike;
785 o =-0.002048 nS is the synaptic efficacy decrement; g = 0.000792 nS is the synaptic efficacy increment;

786  and the integrative kernel function k(x) [25, 27-29, 35] defined as:
_ o 2
787 k(x)=e" cos(x) (33)

788  The STDP results in a synaptic efficacy decrease (LTD) when a spike from the PC reaches the targeted
789 MVN neuron. The extent of this synaptic decrement is influenced by the activity arriving via MFs, which
790 is convolved with the integrative kernel defined in Eq. (33) and then scaled by the synaptic decrement factor
791 a. This LTD mechanism takes into account presynaptic/postsynaptic MF spikes that arrive before/after the
792 postsynaptic/presynaptic PC spike within the time window defined by the kernel (zme-mvn). Conversely, the
793 amount of LTP at MF-MVN synapses remains constant, with each spike arriving through an MF to the

794 targeted MV N resulting in an increase in synaptic efficacy defined as .

795 The code for the Neuron Simulator and EDLUT Simulator will be made publicly available upon acceptance of the article. The Neuron
796 code includes HH PC model and HH 10 model operating in isolation, whilst the EDLUT code encompasses the r-VOR setup in closed
797 loop with both phase-free and phase-locked configurations. We kindly request the reviewers to consider this note and, if necessary,
798 contact the authors for any additional information, granted code access and/or clarification regarding the code.

799 https:/github.com/EduardoRosLab/NEURON_NEURAL_MODELS

800 https:/github.com/EduardoRosLab/OLIVARY-PHASE-LOCKING-OSCILLATIONS
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