

The role of olivary phase-locking

oscillations in cerebellar sensorimotor

adaptation

Short title: The role of olfactory phase-locking oscillations in cerebellar

adaptation

Niceto R. Luque^{1, 2}, Richard R. Carrillo², Francisco Naveros^{2,3}, Eduardo Ros²¶

and Angelo Arleo^{1¶}

¹ Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France

² Department of Computer Engineering, Automation and Robotics, CITIC-University of Granada, Granada, Spain

³*Department of Neuroscience, Baylor College of Medicine, Houston, Texas, US*

* Corresponding author Niceto R. Luque, and Angelo Arleo

E-mail: nluque@ugr.es, angelo.arleo@inserm.fr

¶AA and ER are Joint Senior Authors

15 ABSTRACT

16 The function of the olivary nucleus is key to cerebellar adaptation as it modulates long term synaptic
17 plasticity between parallel fibres and Purkinje cells. Here, we posit that the neural dynamics of the inferior
18 olive (IO) network, and in particular the phase of subthreshold oscillations with respect to afferent
19 excitatory inputs, plays a role in cerebellar sensorimotor adaptation. To test this hypothesis, we first
20 modelled a network of 200 multi-compartment Hodgkin-Huxley IO cells, electrically coupled via
21 anisotropic gap junctions. The model IO neural dynamics captured the properties of real olivary activity in
22 terms of subthreshold oscillations and spike burst responses to dendritic input currents. Then, we integrated
23 the IO network into a large-scale olivo-cerebellar model to study vestibular ocular reflex (VOR) adaptation.
24 VOR produces eye movements contralateral to head motion to stabilise the image on the retina. Hence,
25 studying cerebellar-dependent VOR adaptation provided insights into the functional interplay between
26 olivary subthreshold oscillations and responses to retinal slips (i.e., image movements triggering
27 optokinetic adaptation). Our results showed that the phase-locking of IO subthreshold oscillations to retina
28 slip signals is a necessary condition for cerebellar VOR learning. We also found that phase-locking makes
29 the transmission of IO spike bursts to Purkinje cells more informative with respect to the variable amplitude
30 of retina slip errors. Finally, our results showed that the joint action of IO phase-locking and cerebellar
31 nuclei GABAergic modulation of IO cells' electrical coupling is crucial to increase the state variability of
32 the IO network, which significantly improves cerebellar adaptation.

33 AUTHOR SUMMARY

34 This study aims to elucidate the dual functionality of the inferior olive (IO) in cerebellar motor control,
35 reconciling hypotheses regarding its role as either a timing or instructive signal. Specifically, we explore
36 the role of subthreshold oscillations (STOs) within the IO, investigating their potential influence on the
37 climbing fibres-to-Purkinje cell spike pattern responses and subsequent cerebellar adaptation, notably
38 during the vestibulo ocular reflex. Aiming these objectives, we constructed a detailed olivary network
39 model within a cerebellar neural network, enabling a mechanistic analysis of the functional relevance of
40 STOs in spike burst generation, propagation, and modulation within target Purkinje cells. Our findings
41 reveal the intricate nature of complex spike bursts triggered by climbing fibres—IO axons—into Purkinje

42 cell dendrites, demonstrating a hybrid nature involving binary clock-like signals and graded spikelet

43 components acting as an instructive signal.

44

45 I. INTRODUCTION

46 The role of the inferior olive (IO) in cerebellum-dependent motor control remains partially understood. IO
47 is supposed to instruct a signal that triggers the associative synaptic plasticity at parallel fibres - Purkinje
48 cell (PC) synapses [1]. IO is also hypothesised to provide a timing signal that drives downstream PC outputs
49 thanks to its membrane potential subthreshold oscillations (STOs) [2-4]. Yet, there is a need to understand
50 the role of STOs in the generation of IO spiking patterns transmitted to PCs through climbing fibres, (CFs).
51 It is also necessary to study how STOs determine the neural state of the IO network and, ultimately,
52 cerebellar adaptive dynamics.

53 Neighbour IO neurons dendritically contact each other in a glomeruli through which they are electrically
54 coupled via gap junctions [5]. This electrical coupling enables the propagation of neural activity across the
55 olfactory network. IO internal conductance dynamics generate STOs [6], whose phase is assumed to
56 determine spike burst responses to excitatory inputs [7, 8]. The STO phase-dependent gating mechanism
57 can grade the spike burst lengths according to IO input amplitude, thus allowing more than binary "all-or-
58 nothing" patterns to be encoded [9]. Furthermore, inhibitory inputs to the IO glomeruli from the medial
59 cerebellar nuclei add another piece on the spike bursts generation and propagation jigsaw. These
60 GABAergic synapses are known to modulate IO gap junctions, by reducing the electrical coupling and thus
61 the synchrony amongst IO cells [10]. Therefore, IO drives PC complex spikes by weighting its inhibitory
62 and excitatory inputs, which determines the IO neural activation and synchrony via STO phase-dependent
63 modulation. This complex mechanism raises the question of how information is processed and transmitted
64 by the IO network to facilitate cerebellar adaptation and motor control.

65 To address this question, we simulated a realistic IO network, and we incorporated it within a spiking
66 cerebellar network. We then used the resulting feedforward control loop system to learn a specific
67 sensorimotor adaptation task: the prediction of oculomotor commands for the acquisition of the vestibulo-
68 ocular reflex (VOR). VOR counter rotates the eyes with respect to head rotations to stabilise the images on
69 the retina, thus maintaining the image in the centre of the visual field. VOR has been profusely used as a
70 model system to test the possible cerebellar role in motor learning [11] and feed-forward control adaptation
71 [12]. The model presented in this study aims at investigating the functional relevance of olfactory STOs in

72 terms of spike burst generation, propagation and modulation of PC complex spikes, electrical coupling role
73 on IO neural coding, as well as the interplay of all those mechanisms during VOR adaptation.

74 In particular, we postulate that within the olfactory system, STOs may serve as neural pattern encoders.
75 STOs, acting as a master clock within the IO, are phase-locked to the retinal slip signals, thereby finely
76 regulating the neural response timing for cerebellar motor adaptation. We also test the hypothesis of a dual
77 role of the IO, serving as both a master clock through STOs and as a graded instructive signal during VOR
78 adaptation. Importantly, the complex spike (CS) bursts triggered by CF into PC dendrites exhibit a hybrid
79 nature, combining binary and graded spikelet components. Additionally, we investigate the intricate
80 interplay amongst inhibitory (GABAergic) and excitatory inputs, as well as electrical coupling within the
81 IO network, shaping IO neural coding. The modulation of graded CS bursts depending on the retinal slip
82 amplitude does not require GABAergic action to decrease IO electrical coupling and thereby disrupt olfactory
83 network synchronicity [13, 14]. Yet, we study whether the GABAergic desynchronising action of the
84 olfactory network may play a role in improving rotatory-VOR (r-VOR) adaptation.

85 **II. RESULTS**

86 **A. Olivary neural dynamics**

87 **1. IO spike burst responses to excitatory dendritic inputs**

88 We implemented each IO cell as a Hodgkin-Huxley model with 3 compartments: somatic, axonal, and
89 dendritic (Fig 1A left; see Methods). The neuronal IO model reproduced the spike burst activity of real
90 olfactory cells in response to dendritic step current injections (Fig 1A centre) [15, 16]. It also captured the
91 linear relation between the number of burst spikes and the amplitude of the excitatory synaptic input current
92 (Fig 1A right).

93 We considered an IO network consisting of 200 biophysically modelled cells embedded in a lattice
94 arrangement (Fig 1B) [17]. Each IO dendrite was electrically coupled to 4 dendrites from nearby neighbour
95 cells [17] via anisotropic gap junctions (i.e., directional electrical coupling, [7]) that could vary between 0
96 to 100%. We first tested the burst propagation between a pair of electrically coupled IO cells. The protocol

97 involved the injection of a positive step current into one IO neuron (the left cell in Fig 1C), and the recording
98 of the membrane potentials from both cells. A 100% coupling ensured a complete burst transmission from
99 one IO cell to the other within 1-2 ms (Fig 1C). Second, we studied burst propagation across the entire
100 network of 200 IO cells (Fig 1D). An excitatory step current was synchronously injected into a subset of
101 central IO neurons, and we studied burst propagation as a function of the input current amplitude, whilst
102 fixing the electrical coupling at 100%. We measured the cumulative distribution functions relative to the
103 propagation of each burst spike, and we found a normal distribution with first spike: $(\mu, \sigma) \approx (4 \text{ nA}, 0)$;
104 second spike: $(\mu, \sigma) \approx (5 \text{ nA}, 0.1)$; third spike: $(\mu, \sigma) \approx (9 \text{ nA}, 0.2)$; fourth spike: $(\mu, \sigma) \approx (11.5 \text{ nA}, 0.4)$ (Fig
105 1D). Therefore: an input current of 4 nA was sufficient to elicit 1 spike per burst across the entire 200 cell
106 network; amplitudes larger than 13 nA elicited 4 spikes per burst (i.e., a complete burst propagation) across
107 the entire network; and intermediate input amplitudes generated the propagation of intermediate IO spike
108 burst lengths.

109 *****

110 [----- Figure 1: Placeholder -----]

111 *****

112 **Fig 1/.** *Electrophysiological properties of the HH IO model and the olfactory network. (A)* Schematic
113 representation of the three-compartmental HH IO model used. The compartments represent the axon
114 hillock, the soma, and the dendrite. To modulate the spike burst, a depolarising step current is applied to
115 the dendritic compartment (black line), which exhibits a slow depolarization. The somatic compartment
116 (green line) responds with a slow depolarization, whilst the axon hillock (red line) exhibits fast sodium
117 responses to the somatic depolarisation, resulting in a burst of spikes. Regulating the amplitude of the
118 depolarising step current applied to the dendritic compartment allows for the modulation of the number of
119 spikes within the burst experienced by the axon hillock. The number of spikes within the burst increases
120 linearly with the amplitude of the depolarising step current applied ($R^2: 0.891, p < 1 \times 10^{-10}$), enabling
121 a graded codification that goes beyond the all-or-nothing IO learning paradigm [9, 18]. **(B)** The left-hand
122 side plot depicts an IO network consisting of 200 three-compartment Hodgkin-Huxley (HH) inferior olive
123 (IO) neurons arranged in a 3D lattice configuration with dimensions of $10 \times 10 \times 2$ microzones. Each
124 olfactory microzone is a $10 \times 10 \times 1$ subunit, and they are electrically coupled via gap junctions. The figure

125 illustrates the electrical connectivity scheme for the 100 IO neurons within each microzone. The colour
126 grading in the figure represents gap junctional interconnections within the lattice arrangement, where each
127 neuron in the model is electrically connected only to its closest neighbours. The right-hand side plot depicts
128 an example of axon hillock membrane potential traces during burst propagation due to IO-to-IO electrical
129 coupling. A 10nA depolarising step current is applied for 20ms to the dendritic compartment of the left-
130 hand side IO whilst maintaining maximal coupling strength, i.e., fully open gap junctions. The transmitted
131 dendritic depolarised current via electrical coupling ensures the entire burst propagation (axon hillock
132 membrane potential) to the right-hand side IO neuron in almost no time (microsecond scale). (C) IO
133 neurons located at the centre of each 5 x 5 square within the lattice arrangement receive an instructive
134 input signal. This input signal simultaneously reaches a subset of 5x5 neurons each time we simulate the
135 activation of glutamate receptor channels. Burst propagation within the entire network depends on the
136 effectiveness of the coupling. A graded [0-14nA] depolarising step current, applied for 20ms, reaches the
137 dendritic compartment of the central IO neuron in all subsets of 5x5 neurons in the lattice olfactory network,
138 maintaining 100% effective coupling. Varying the current amplitude modulates the length of the burst. A
139 14nA depolarising step current, when coupled with 100% effectiveness, ensures the maximum burst length
140 to be fully transmitted within the olfactory network. Intermediate current amplitudes modulate the number of
141 spikes within the burst spikelet that are transmitted.

142 Then, we studied burst propagation across the IO network as a function of the electrical coupling strength.
143 We considered an inhibitory input to the entire IO network to modulate the electrical coupling from 0% to
144 100% (Fig 2A). Given a fixed excitatory input current (15 nA), the strength of the electrical coupling
145 significantly influenced the spike burst transmission across the network. Full burst propagation was
146 guaranteed by a coupling strength higher than 85%, whereas, only 3 out of 4 spikes were propagated with,
147 for instance, a 40% coupling (Fig 2B). The coupling strength also influenced the burst propagation time: a
148 100% coupling allowed for a full burst propagation through the entire IO network within 14 ms, whereas
149 progressively lower levels of electrical coupling hindered the timing of burst propagation along with the
150 number of spikes propagated (Fig 2C).

151

152

153 ****

154 [----- Figure 2: Placeholder -----]

155 ****

156 **Fig 2/IO burst propagation properties via electrical coupling.** (A) The schematic illustrates the simulation
157 protocol, wherein a 10nA depolarising step current is applied for 20ms to the dendritic compartment of the
158 central IO neuron in all subsets of 5x5 neurons within the lattice olfactory network synchronously. The
159 effectiveness of coupling is modulated to control burst propagation across the entire network. (B) Effective
160 coupling varies from 0 to 100%, whilst observing IO bursts throughout the entire network. A 100% effective
161 coupling ensures that the burst length is propagated within the lattice arrangement, whereas a 0% effective
162 coupling leads to singular IO neural activations. Intermediate levels of effective coupling values act as
163 regulators, influencing the transmission of burst length within the olfactory network. (C) A 100% effective
164 coupling enables the entire burst to propagate within 14 milliseconds. Reducing the coupling to 50%
165 partially affects propagation, starting from the 4th spike within the spikelet and spanning the entire
166 network. With a 10% effective coupling, transmission is affected from the 3rd spike within the spikelet
167 across the entire network.

168 **2. IO subthreshold oscillations (STOs) and transmission of**
169 **excitatory dendrite inputs**

170 The IO neuronal model reproduced the subthreshold oscillation (STO) inner dynamics of real olfactory cells
171 [19-21], with a frequency of ~10 Hz and an amplitude of ~ 20 mV (Fig 3A). In the model (see Methods),
172 during the hyperpolarisation phase, the somatic current I_k mediated by the K^+ slow component channel
173 dominated the initial rising of the IO membrane potential (red part in Fig 3A). From there, the somatic
174 current I_{ca} (in blue), mediated by the calcium low threshold channel, a Ca^{2+} -dependent K^+ channel, further
175 increased the membrane potential driving the hypopolarisation phase. Hereafter, either the STO continued
176 (first circle) or a spike was generated (second circle), mediated through the I_{Na} and I_K currents at the olfactory
177 axon (green and purple lines, respectively). Then, the STO enters into its repolarisation phase thus resuming
178 the oscillation cycle (Fig 3A). At the level of the IO network, our results confirmed that the electrical

179 coupling amongst IO cells is essential to the synchronicity of STOs, but not their overall frequency (Fig
180 3B) [7].

181 *****

182 [----- Figure 3: Placeholder -----]

183 *****

184 **Fig 3/ IO Subthreshold oscillations (STOs) within the olfactory lattice arrangement and the impact of**
185 **electrical coupling on the STO phase. (A)** During hyperpolarisation, somatic current I_K (slow K^+ channel)
186 initiates the rise in IO membrane potential (in red). Subsequently, somatic current I_{Ca} (in blue) (low-
187 threshold calcium channel and Ca^{2+} -dependent K^+ channel) enhances the depolarisation phase. This
188 leads to either continued subthreshold oscillation (STO) or spike generation, mediated by I_{Na} and I_K
189 currents in the olfactory axon (green and purple lines). The STO then transitions into repolarisation,
190 restarting the oscillatory cycle. **(B)** STO frequency is shown for both electrically uncoupled (reducing
191 coupling to 0%) and fully coupled (100% coupling) olfactory network, revealing that overall frequency
192 remains constant, with changes observed only in oscillation synchronicity. Coupling amongst IO neurons
193 in the lattice arrangement transforms non-synchronous into synchronous oscillations. In the upper panels,
194 the mean voltage of the coupled and uncoupled 200 IO network is depicted, whilst the lower panels provide
195 a top-down view of the overall STO membrane potential of the IO network.

196 We studied the modulation of the STO phase by stimulating the centre of the IO network by a sequence of
197 two excitatory inputs (Fig 4A). We sought to understand to what extent the relative timing of the two inputs
198 (i.e., the interstimulus interval, ISI) would modulate (or possibly reset) the phase of IO STOs. We found
199 that if the two inputs were delivered during different STO phases, they would cause either IO phase
200 advances or delays (Fig 4B). When the second stimulus arrived during a hyperpolarisation period, it caused
201 a delay in the STO phase between $(0 - \pi)$. If the second stimulus arrived during hypopolarisation-
202 depolarisation, it had the opposite effect, causing an advance in the phase between $(\pi - 3\pi/2)$. Finally, when
203 the second stimulus occurred during repolarisation, it caused again a delay in the phase between $(3\pi/2 - 2\pi)$
204 (Fig 4B). Hence, a poor modulation or a reset of the STO phase could either partially or totally block the
205 IO burst response to a sequence of excitatory synaptic inputs. The STOs thus provided a time-window

206 gateway for the transmission of excitatory dendrite inputs occurring during either the IO hypopolarisation
207 or the depolarisation time period.

208 So far, only excitatory inputs with a fixed amplitude were considered. We therefore sought to study how
209 amplitude-modulated inputs were transmitted by the IO network as a function of STOs' phase. Again, we
210 delivered sequences of excitatory inputs onto the centre of the IO network. However, the amplitude of these
211 inputs was modulated according to a sinusoidal curve (Fig 4C). The injected step current was taken
212 according to a probabilistic Poisson process, by comparing the sinusoidal function $i(t)$ with a random
213 number $\eta(t)$ between 0 and 1. A positive input step current was injected at the centre of the IO network
214 when $i(t) > \eta(t)$. The amplitude of the step current increased with the instantaneous $|i(t)|$ value (Fig 4D),
215 whilst its length remained fixed. When the step stimuli were well-timed with the hypopolarisation-
216 depolarisation phases (STO phase locking with respect to the temporal input), the IO was able to properly
217 encode and transmit the graded afferent signal properly (i.e., the length of IO burst responses reflected the
218 amplitude of the input) (Fig 4E left). This was not the case in the absence of STO phase locking (Fig 4E
219 right). IO responses were constrained to be below 10 bursts per second, consistently with those observed
220 in neurophysiological recordings [22].

221 *****

222 [----- Figure 4: Placeholder -----]

223 *****

224 **Fig 4/Modulation of subthreshold oscillation phase through sequential input instructive signals.** (A) The
225 schematic outlines the simulation protocol, involving the synchronous stimulation of the central IO neuron
226 in all subsets of 5x5 neurons within the lattice olfactory network. This stimulation maintains 100% effective
227 coupling and is achieved using a depolarising current composed of a sequence of two stimuli, each with an
228 amplitude of 14 nA during a 20 ms duration. Phase modulation was explored by varying the inter-stimulus
229 interval (ISI) within the step sequence of the input instructive signal. (B) The left-hand side plot depicts the
230 average membrane potential at the axon hillock of IO neurons within the lattice was plotted whilst varying
231 the ISI [0 - 2π]. The right-hand side plot depicts STO phases in the olfactory network responding to a variable
232 ISI [0 - 2π] input signal. An early inter-stimulus occurring during the IO hyperpolarisation phase resulted

233 *in a phase delay within the range of (0 - π). Conversely, a late inter-stimulus occurring during the*
234 *hyperpolarisation-depolarisation phase led to a phase advance within the range of (π - $3\pi/2$). Finally, an*
235 *inter-stimulus occurring during the repolarisation phase caused another phase delay within the range of*
236 *($3\pi/2$ - 2π). (C) Sinusoidal input curve mimicking retinal slip during r-VOR adaptation. (D) The Input*
237 *current (depicted in blue) - Frequency (shown in green) IO Curve is used to generate temporal sequences*
238 *of depolarising step current input stimuli for encoding retinal slip during VOR adaptation. The external*
239 *input activity representing retinal slip sampling by IO activations follows a probabilistic Poisson process.*
240 *In this process, the central IO neuron in all subsets of 5x5 neurons within the lattice olfactory network is*
241 *activated in the range of [1 - 10 Hz], where 1 and 10 Hz correspond to the minimum and maximum retinal*
242 *slip values, respectively. Based on the normalised retinal slip signal $i(t)$ (on the x-axis) and a random*
243 *number $\eta(t)$ ranging from 0 to 1, the central IO neuron in all subsets of 5x5 neurons within the lattice*
244 *olfactory network receives a depolarising step current. The amplitude of this current depends on the actual*
245 *retinal slip amplitude when $i(t) > \eta(t)$ i.e., the larger the retinal slip, the greater the amplitude of the input*
246 *depolarising step current. (E) The upper panels illustrate two sets of temporal sequences of depolarising*
247 *step currents used to encode the sinusoidal curve that simulates the retinal slip during r-VOR adaptation.*
248 *The lower panels display the temporal evolution of voltage at the axon hillock, soma, and dendrite of the*
249 *central IO neuron within a subset of 5x5 neurons. On the left-hand side, IO STO phase-locking is activated,*
250 *meaning that retinal slip signalling is aligned with the IO hyperpolarization-depolarization STO phase,*
251 *resulting in more precise sampling of the sinusoidal curve, i.e., no depolarising step current is lost. In*
252 *contrast, on the right-hand side, an IO STO phase-free modulation is shown, where retinal slip signalling*
253 *can occur at any time. In this case, several depolarising step currents are lost, and the spike burst lengths*
254 *are diminished.*

255 **B. Phase-locking of IO oscillations during r-VOR adaptation**

256 **1. Cerebellar model for r-VOR adaptation**

257 The IO network was integrated into a large-scale cerebellar model to learn r-VOR through adaptive feed-
258 forward control (Fig 5; see Methods). We simulated a 1 Hz sinusoidal head rotation protocol (i.e., within

259 the natural head rotation range of 0.05-5 Hz, [23]). The cerebellar model had to learn to move the eyes
260 contralaterally with respect to the head rotation in order to minimise retina slips errors (i.e., the difference
261 between actual and target eye movements, Fig S1).

262 During head rotation, a population of 100 mossy fibres (MFs) encoded the primary vestibular inputs
263 signalling head velocity to the cerebellar network. MFs projected excitatory afferents onto 200 medial
264 vestibular nuclei (MVN) and 2000 granular cells (GCs). GCs expanded the coding space of MFs inputs
265 [24] into 200 Purkinje cells (PCs) via parallel fibres (PFs, i.e., GCs' axons). PCs were also driven by the
266 climbing fibres (CFs, i.e., IO axons), which conveyed the teaching signal encoding retinal slip errors. The
267 excitatory olivary CF collaterals along with inhibitory PC outputs contacted MVN neurons, which closed
268 the loop through the MVN-IO inhibitory connections [25] conforming the olivo-cortico-nucleo-olivary
269 (OCNO) loop [26]. MVN generated the cerebellar output that was sent to the oculomotor neurons, which
270 ultimately drove eye movements. The OCNO subcircuit comprised two symmetric microcomplexes that
271 compensated the ipsilateral head movement by controlling leftward and rightward eye rotations,
272 respectively (see Methods). Cerebellar motor adaptation was driven by two spike-timing dependent
273 plasticity (STDP) mechanisms at PF-PC and MF-MVN synapses. During 500 s of simulation, plasticity
274 shaped PF-PC and MF-MVN synaptic efficacies (which were randomly initialised) to adapt VOR and
275 reduce retinal slips [25, 27-29]

276 During r-VOR learning, the length of IO spike bursts (transmitted to target PCs via the CFs) had to encode
277 the amplitude of retina image slips (i.e., errors). PCs' complex spikes were linearly correlated with IO bursts
278 (i.e., the spike number in Purkinje complex spikes depended linearly on the spike number in the CF bursts;
279 [16, 25, 27, 28]. Hence, the different lengths of IO spike bursts could modulate the cerebellar adaptation
280 capabilities, beyond an all-or-nothing learning paradigm [9].

281 *****

282 [----- Figure 5: Placeholder -----]

283 *****

284 **Figure 5/ Cerebellum-dependent adaptation of vestibulo-ocular reflex (VOR).** (A) Schematic
285 representation of the main cerebellar layers, cells, and synaptic connections considered in the spiking

286 *cerebellar model. Mossy fibres (MFs) convey vestibular information onto granule cells (GCs) and medial*
287 *vestibular nuclei (MVN). GCs, in turn, project onto Purkinje cells (PCs) through parallel fibres (PFs). PCs*
288 *also receive excitatory inputs from the inferior olive (IO) system. IO cells are electrically coupled and*
289 *regulated via MVN-IO inhibitory connections. They deliver an instructive signal, which is the retinal slip,*
290 *through the climbing fibres (CFs). Each MVN is inhibited by a PC and excited by an IO, both located at*
291 *the same parasagittal band. MVN provides for the cerebellar output that ultimately drives oculomotor*
292 *neurons. Spike-dependent plasticity occurs at PF-PC and MF-MVN synapses.*

293 **3. r-VOR adaptation requires IO STO phase-locking to error-
294 related inputs**

295 We tested the ability of the cerebellar model to perform r-VOR adaptation under two IO-dependent
296 conditions: (i) in the presence of STO phase-locking to error-related inputs; (ii) in the absence of STO
297 phase-locking, henceforth named as phase-free condition (i.e., with error signals arriving at any time with
298 respect to IO STOs). STO phase-locking enabled a better time sampling of the error signal as well as a
299 better encoding of its amplitude over time, which proved to be essential to mediate STDP at PF-PC synapses
300 during r-VOR learning. As a consequence, the mean absolute error (MAE) (i.e., the difference between
301 desired and actual contralateral eye movements) decreased over time, converging within 150 s (Fig 6A, red
302 curve). Hence, IO STO phase-locking modulation allowed the cerebellum to maximise r-VOR accuracy,
303 by optimising the r-VOR gain (i.e., the ratio between the antagonist eye and head displacements) and phase
304 (Fig 6B; 1 Hz r-VOR gain = 1, phase = π), indicating that both eye position and velocity matched the ideal
305 counter head movements (Fig 6C). By contrast, the r-VOR accuracy did not improve under the phase-free
306 condition (Fig 6A, green curve), and neither the r-VOR gain nor the phase were optimised during learning
307 (Figs 6B, C).

308 *****

309 [----- Figure 6: Placeholder -----]

310 *****

311 **Fig 6/ IO STO phase-locking vs phase-free modulation during rotational VOR acquisition. The olivary**
312 *network in a lattice arrangement was integrated into a cerebellar network within a cerebellum-dependent*
313 *feed-forward control scheme. This scheme was tested by assessing cerebellum-dependent r-VOR*
314 *adaptation using a 1 Hz sinusoidal head rotation protocol during 500 seconds of simulation. Plasticity*
315 *shaped PF-PC and MF-MVN synaptic efficacies to adapt rotational-VOR (r-VOR) gain and phase and*
316 *reduce retinal slips. (A) MAE evolution for IO STO phase-locking and IO STO phase-free modulation*
317 *during r-VOR adaptation (error = desired - actual sinusoidal r-VOR curve). (B) r-VOR gain and phase*
318 *with IO STO phase-locking or phase-free modulation (A) r-VOR gain and phase evolution during r-VOR*
319 *adaptation. (C) Actual and desired eye position and velocity at the end of the r-VOR adaptation process.*

320 We found that the STO phase-locking condition elicited 5 times more IO bursts than the phase-free
321 condition across r-VOR learning (Fig 7A). Also, cross-correlation analyses (i.e., between the spikes of IO
322 burst responses during learning and r-VOR MAE values) suggested that the presence of STO phase-locking
323 allowed the IO network to use the 4th to 6th spike of the bursts to grade the amplitude of the teaching signal
324 driving STDP at PF-PC synapses (Fig 7B). The 1st to 3rd spike of the bursts were instead used to merely
325 signal the presence of retina slip errors (the correlation between the 1st to 3rd spike burst and r-VOR MAE
326 was constant; Fig 7B). Conversely, in the phase-free condition all spikes within IO bursts were equally
327 correlated with the MAE error curve, thus indicating that bursts were only signalling errors (binary IO
328 coding) without grading the teaching signal. In addition, during r-VOR learning the STO phase-locking
329 condition generated a larger number of neural states of the IO network, whilst maintaining a small diversity
330 of IO states (Fig 7C).

331 *****

332 [----- Figure 7: Placeholder -----]

333 *****

334 **Fig 7 / Spike bursts under IO STO phase-locking vs. phase-free modulation during r-VOR Acquisition.**
335 **(A) IO burst number and length, i.e., spikes within the burst, under IO STO phase-locking and IO STO**
336 *phase-free modulation during r-VOR adaptation. The IO olivary network elicited bursts to signal the*
337 *presence or absence of retinal slips. STO phase-locking modulation allowed signalling the presence of*
338 *retinal slips with four times more bursts under the same r-VOR protocol. Burst numbers remained*

339 *consistent during r-VOR adaptation in both scenarios; however, IO STO phase-locking modified burst*
340 *lengths along with r-VOR adaptation, i.e., retinal slip amplitudes were progressively declining. (B) Cross-*
341 *Correlation analysis of IO STO phase-locking and phase-free modulations with their corresponding MAE*
342 *curves obtained during r-VOR Adaptation (Fig 6A). When STO phase-locking modulation is used, the 3rd*
343 *to the 6th spike within the burst grade retinal slip amplitude, i.e., correlation increases, whereas the 1st to*
344 *2nd spikes within the burst are used for signalling retinal slip only. In contrast, IO STO phase-free*
345 *modulations employ the entire burst for signalling only. Note that IO STO phase-free modulations cannot*
346 *achieve r-VOR adaptation (Fig 6A MAE curve), which means that only retinal slip signalling at any time*
347 *is reflected in the burst length. (C) Neural states produced during r-VOR adaptation for IO STO phase-*
348 *locking and IO STO phase-free modulation. Each neural state represents a binary matrix (200 x 6) that*
349 *encodes the state of the olivary network whenever a burst is triggered. During r-VOR adaptation, it is*
350 *observed that phase-locking modulation generates a larger number of unique neural states compared to*
351 *phase-free modulation, albeit with slightly less repetition. On the other hand, phase-free modulation results*
352 *in a somewhat lower repetition of neural states, primarily due to the random nature of the modulation,*
353 *which involves free sampling.*

354 **4. STO phase-locking & IO graded error coding improve r-VOR**
355 **learning stability**

356 We then comparatively analysed r-VOR adaptation under all-or-nothing versus variable error signalling.
357 We ran a series of r-VOR learning simulations with IO STO phase-locking but under two conditions. In the
358 all-or-nothing condition, we fixed the amplitude of the error signals received by the IO network (i.e., from
359 minimum to maximum values, by increments of 25% of the range). Therefore, for a given simulation under
360 the all-or-nothing condition, the IO network could only receive either a zero input or an input of a fixed
361 amplitude. In the control variable error condition, we let the input to the IO network be modulated by the
362 actual amount of retina slip (as in the previous r-VOR learning simulations).

363 We found that an all-or-nothing IO teaching signal up to the 75% of the maximum amplitude value did not
364 allow the cerebellar network to minimise the r-VOR MAE over learning (Fig 8A, grey curves). Strikingly,
365 when the all-or-nothing teaching signal was taken at the maximum value (100% of the range), the VOR

366 MAE converged very rapidly (within less than 100 ms) to the optimal value (Fig 8A, black curve).
367 However, VOR accuracy was not sustained over time, and the MAE began to slightly increase around 150
368 ms. By contrast, we found that a variable IO teaching signal amplitude allowed for both VOR MAE
369 minimisation (convergence within about 150 ms) and learning stability (Fig 8A, red curve). These results
370 were reflected in the evolution of the r-VOR gain and phase across learning (Figs. 8 B and C, respectively).
371 An analysis of the eyes position and velocity curves at the end of learning (i.e., at 500 s) confirmed a better
372 match, with respect to the ideal profiles, in the presence of a variable teaching signal amplitude as compared
373 to an all-or-nothing one (Figs. 8D, E). Finally, whilst assessing the factors beneath the better r-VOR
374 learning performance provided by a variable teaching signal, we found that this condition allowed a larger
375 number of IO neural states to be generated, as compared to binary error signalling (Fig 8F). Interestingly,
376 a larger number of IO neural states led to no FFT harmonics in eye position and velocity curves (Fig 8G),
377 resulting in better r-VOR learning stability.

378 *****

379 [----- Figure 8: Placeholder -----]

380 *****

381 **Fig 8 / IO STO phase-locking behaviour under burst length modulation.** We build upon the experimental
382 setup introduced in Fig 7, focusing exclusively on the modulation of IO STO phase-locking. Specifically,
383 we examine the impact of different retinal slip amplitudes, comparing fixed burst lengths whilst controlling
384 retinal slip amplitude in 25% increments. We also consider variable burst lengths regulated through retinal
385 slip amplitude modulation. **(A)** Evolution of MAE during r-VOR adaptation. The MAE serves as a measure
386 of how closely our model aligns with the desired sinusoidal r-VOR curve. Notably, we find that the graded
387 instructive signal configuration (represented by the red curve) results in a further decrease in MAE and
388 better stability. **(B-C)** Evolution of r-VOR Gain and Phase during r-VOR adaptation. These measurements
389 show similar performance between graded and non-graded instructive signal amplitudes when retinal slip
390 amplitude is fixed at its maximum (100%). **(D-E)** Display of actual and desired eye position and velocity
391 at the end of the r-VOR adaptation process assessing how well our setups match the desired outcome. **(F)**
392 Analysis of Neural States during r-VOR Adaptation. The graded instructive signal amplitude (retinal slip)
393 generates a greater number of neural states with less variability compared to the non-graded instructive

394 signal amplitude when the retinal slip amplitude is fixed at its maximum. Notably, an initial rapid decrease
395 in MAE for the non-graded instructive signal configuration (see Fig A) suggests that neural state variability
396 aids in r-VOR convergence. (G) Fast Fourier Transforms (FFT) of eye velocity. In this analysis, it is
397 compared the FFT of eye velocity between graded and non-graded retinal slip amplitude (fixed at 100%).
398 The FFT of the non-graded instructive signal amplitude (fixed at 100%) reveals larger odd and even
399 harmonics, indicating a poorer fit to the ideal r-VOR curve, despite gain and phase measurements
400 suggesting optimal performance. Note that gain and phase measurements only consider the first harmonic
401 (see methods).

402 5. STO phase-locking & GABAergic regulation of IO electrical 403 coupling improve r-VOR adaptation

404 In all previous r-VOR simulations, we did not activate the GABAergic MVN-IO projections in the model
405 (Fig 5). Here, we considered them in order to account for their known role in modulating the electrical
406 coupling amongst IO cells [30]. We sought to investigate to what extent the modulation provided by these
407 MVN-IO inhibitory synapses could play a role in increasing IO neural state diversity (on top of the larger
408 number of neural states provided by variable teaching signalling, shown in Fig 8F).

409 We ran a series of r-VOR simulations to compare two adaptation scenarios: a condition with MVN-IO
410 inhibitory regulation of IO coupling, and a condition without it. In both conditions, we preserved the IO
411 STO phase-locking to error-related inputs. For the condition “with MVN-IO inhibition”, we first ran a
412 sensitivity analysis to set the MVN-IO synaptic weights in order to optimise the VOR MAE function. Then,
413 for each condition, we simulated 100 r-VOR adaptation experiments (again based on a 1 Hz sinusoidal head
414 rotation during 500 s). We found that whilst the total number of IO neural states diminished, an increase of
415 state diversity was associated with the presence of MVN-IO GABAergic modulation (Fig 9A), which
416 resulted in a significantly better VOR accuracy (Fig 9B). Hence, even if MVN-IO inhibition was not a
417 necessary condition for r-VOR adaptation, it contributed to facilitating r-VOR learning.

418

419

420 *****

421 [----- Figure 9: Placeholder -----]

422 *****

423 **Fig 9/ Enhancing r-VOR accuracy by regulating IO-IO coupling through MVN-IO inhibitory afferents.**

424 We maintained the experimental setup from Fig 9, where variable burst lengths were regulated solely
425 through retinal slip amplitude modulation. In this configuration, we enabled/disabled MVN-IO inhibitory
426 connections. (A) Evolution of MAE during r-VOR adaptation (mean and standard deviation each 10
427 seconds). MAE measures the deviation between the desired and the actual sinusoidal r-VOR curve. An
428 ANOVA statistical test confirms significant differences in MAE with and without MVN-IO inhibitory
429 connections, indicating a lower MAE and, consequently, a more accurate r-VOR adaptation in the presence
430 of EC regulation via MVN-IO afferents. (B) Neural States generated with and without MVN-IO inhibitory
431 connections. A statistical test (ANOVA) confirms significant differences in the neural states generated. The
432 presence of EC regulation via MVN-IO afferents results in a lower overall number of neural states but with
433 increased diversity, leading to a more accurate r-VOR adaptation.

434 **III. DISCUSSION**

435 The olfactory nucleus plays a crucial role in cerebellar adaptation by influencing synaptic plasticity between
436 parallel fibres and Purkinje cells. This study suggests that the dynamics of the inferior olive (IO) network,
437 particularly the phase of subthreshold oscillations (STOs) in response to excitatory inputs, is necessary for
438 sensorimotor adaptation. We created a model of IO cells to mimic real activity and we integrated it into a
439 cerebellar model to study vestibular ocular reflex (VOR) adaptation. Our results confirmed that (i) the
440 presence of STOs generated an opportunity modulation time window occurring during the IO
441 hipopolarisation-depolarisation time period; (ii) STO phase-locked modulation during this period allowed
442 the retinal slip [31] signals at low frequencies [1 - 10Hz] to be adequately sensed and naturally graded via
443 spike-burst lengths; (iii) this modulation together with electrical coupling (EC) allowed for the generation
444 of enough olfactory neural states to ensure VOR adaptation; (iv) a wider variety of neural states increased
445 VOR adaptation converging speed. Neural state variety was found to be increased thanks to the EC

446 regulation via the GABA nuclei projections onto the olivary network. These results allow us to postulate a
447 theory on the olivary system operating as a burst-amplitude modulator (see below).

448 **A. IO operates as a master clock and as teaching signal
449 during VOR adaptation**

450 Three conditions were fulfilled by the presented IO system to act as a master clock [32]: (i) The membrane
451 potential of the Hodgkin-Huxley neuronal model was operating as a continuous and accurate carrier
452 frequency that acted as the reference signal. Our HH model membrane potential, acting as the reference
453 signal, was able to generate STOs with a precise 10 Hz periodicity, thanks to the dynamic interactions of
454 ionic channels. These STOs provided multiple modulation opportunities during their hypopolarisation-
455 depolarisation phases, i.e., temporal windows. (ii) The natural range of the r-VOR is from 0.5 to 5 Hz, with
456 our operating frequency being within 1 Hz. Since the temporal frequency of the sensed signal (1 Hz) is
457 lower than the "master clock period" (10 Hz), this ensures sufficient temporal precision [33]. (iii) A timely
458 sequence of external input activities reaching IO cells could control the initiation and termination of STOs,
459 allowing for the correlation of IO timing signals with retinal slip signals (an instructive signal) that drive
460 the specific operation of the r-VOR model system. Note that the external input activities, that is the retinal
461 slip signals, resulted from a Poisson sampling of the retinal slip stimulus.

462 Our modelled olivary system was also able to convey a low-firing rate instructive signal which is typically
463 based on retinal slip amplitude at approximately 1 to 10 Hz. This instructive signal helped the cerebellum
464 compensate for head rotary movement by controlling and adapting the contralateral eye movements (r-
465 VOR), despite the diminished signal transmission capability of the olivary system due to its low-frequency
466 operation [30]. To ensure a proper representation of the entire retinal slip region over trials, i.e., desired vs.
467 actual eye velocity, we generated external input activity driven towards the IO cells using a probabilistic
468 spike sampling of the retinal slip signals (instructive signal generation) according to a Poisson process,
469 whilst maintaining the IO activity between 1 and 10 Hz per fibre (similar to electrophysiological data [22]).
470 This approach allowed us to accurately sample the retinal slip evolution even at such a low frequency, as
471 supported by previous studies [25, 27-29, 34, 35]. We assumed that the CF triggered burst signals based

472 on retinal slip magnitude, supported by two findings in awake mice: (i) CF-triggered signals gradually
473 increases with the duration and pressure of periocular stimuli [36, 37] and (ii) The amplitude of CF-
474 triggered signals onto PC dendrites is graded and represents information about the intensity of sensory
475 stimuli [18, 38].

476 We found that the spike burst triggered by CF into the PC dendrites were neither fully binary nor fully
477 graded. Interestingly, the 1st and 2nd spikes within the burst were used to indicate the binary presence of the
478 retinal slip signals, whilst the 3rd to 6th spikes were used to naturally grade the retinal-slip signal amplitude.
479 This CF spike burst modulation, according to the retinal slip amplitude, did not require the GABAergic
480 nuclei cells to decrease the IO electrical coupling, which can cause the olivary network synchronicity to
481 break [14]. Instead, we found that the GABAergic nuclei cells' ability to desynchronise the olivary network
482 played a role in providing more accurate r-VOR adaptation. We confirmed the GABAergic nuclei action
483 increased the non-redundant neural states in the olivary network during r-VOR adaptation. This increase in
484 the IO information transmission capability contributed to a more precise r-VOR adaptation.

485 **B. HH IO phase modulation and criticality of STOs**

486 Our IO HH three compartment model, based on previous studies [7, 19], was designed to alleviate the
487 computational load whilst maintaining the main morphological and functional properties of the olivary
488 system, especially the generation of spiking bursts at the axon hillock. The PC HH single-compartment
489 model was also able to reproduce the spiking modes of Purkinje cells, including tonic, pause, and burst
490 firing patterns. The PC burst reflected a perfect burst transmission from its corresponding CF [27]. The IO
491 ionic channel dynamics in our model caused STOs to naturally appear at 10Hz, generating opportunity
492 modulation time windows for the IO spike burst responses when following the sensorial stimulation of the
493 IO dendrites. We also found that the temporal input sequences towards the olivary system were able to
494 start/reset the IO STOs generation, and the IO spike burst modulations only occurred properly during their
495 hipopolarisation-depolarisation time periods, indicating STOs as a conditional complex spike gating
496 mechanism [7, 8].

497 These two timing facts pointed to a phase-locked modulation of the STOs during the IO hipopolarisation-
498 depolarisation period. The start/reset mechanism adjusted the IO voltage reference signal to the occurrence
499 of the Poisson sampling of retinal slip signal, whilst the IO hyperpolarisation-depolarisation period adjusted
500 the IO burst length modulation to the amplitude of the Poisson-sampled retinal slip signals during VOR
501 adaptation.

502 **C. The purpose of the IO STOs: Olivary system operating as**

503 **a burst-amplitude modulator (BAM), a theory**

504 In the context of sensory neural processing, the necessity of modulation within the olivary nucleus becomes
505 evident. When attempting to convey multiple sensory stimuli directly to the IOs and PCs downstream
506 without modulation, an inherent issue arises. This issue stems from the fact that all sensory stimuli sharing
507 the same frequency range would saturate the IO-PC-MVN neural circuitry. This is similar to attempting to
508 tune into multiple radio stations operating on the same frequency simultaneously. As a result, the absence
509 of olivary modulation only allows for the transmission of one sensory stimulus at any given time. To address
510 this limitation, a modulation technique involving STOs could be used. The STO modulation shall
511 effectively shift the frequencies of sensory stimuli to higher ranges, typically around 10 Hz. Furthermore,
512 it shall enable the assignment of distinct frequencies to individual sensory stimuli, similar to the concept of
513 amplitude modulation (AM) in radiofrequency transmission. However, our STO modulation does not
514 operate over the amplitude of the carrier signal, represented by STOs amplitude, based on the sensory
515 message. Instead, it varies the lengths of complex spike bursts, ensuring a diverse representation of the
516 sensory input.

517 Interestingly, in amplitude modulation (AM), the carrier signal is modulated by the message signal through
518 multiplication. Additionally, a constant value is added to the message signal. This dual action ensures that
519 when the message signal is at its smallest values, the carrier signal effectively disappears, which is a
520 technique to prevent over-modulation (Supplement S2). Over-modulation, in this context, is akin to the
521 phase of the carrier signal reversing, which can lead to extreme distortion in the subsequent demodulated
522 signal (Supplement S3). Similarly, within the context of IO STOs phase modulation acting as the carrier

523 signal, the sensory stimulus, representing the message signal, is characterised by a variable amplitude input
524 current. The amplitude of this current is equivalent to the magnitude of retinal slip amplitude. This dynamic
525 input, when injected into the IO dendritic compartment, results in the generation of complex spike bursts
526 of varying sizes. Furthermore, the first (1st) and second (2nd) spikes within the CS bursts function as a binary
527 signal to denote the presence or absence of the stimulus. Note that these 1st and 2nd spikes also carry a
528 constant modulation, which shall contribute to the effective reduction of the carrier signal amplitude,
529 essentially causing the STOs to vanish at the lowest sensorial stimulus values, thereby preventing over-
530 modulation.

531 Significant parallels exist between AM demodulation and the mechanisms occurring in the MVN,
532 specifically, the cerebellar neural decoding process. MVN neurons are recognised for their ability to encode
533 various frequency oscillations related to horizontal linear motion. Notably, the medial section of the MVN
534 has been observed to respond to low-frequency stimulation, typically in the range of 0.5 to 1.0 Hz in studies
535 involving rats [39]. Further investigations conducted *in vitro* have identified a distinct subtype of neurons
536 within the vestibular nuclei, labelled as 'type B' that exhibit a form of adaptation in their firing rate in
537 response to depolarising current steps. This adaptive behaviour displays resonance at frequencies within a
538 range relevant to behaviour, facilitating synchronisation with the peaks of incoming stimuli [40, 41].
539 Additionally, modelling of the vestibular nuclei suggests the presence of membrane potential oscillations
540 in response to step current inputs, which is indicative of phenomena that might manifest *in vivo* [42]. Given
541 these observations, it is plausible to consider the oscillations within MVN as a vital aspect of cerebellar
542 decoding. In essence, they can be viewed as a form of a product detector demodulator [43]. The cerebellum
543 demodulation process shall combine the modulated sensorial stimulus with input from inhibitory PC
544 afferents and vestibular signals from MF afferents, incorporating a local oscillator represented by type B
545 vestibular nuclei neurons. Crucially, these type B vestibular nuclei neurons must oscillate at the same
546 frequency as IO STOs, effectively acting as the carrier signal (Supplement S3). The output from MVN shall
547 carry several robust cerebellar outputs, and it shall contain a signal within the frequency range of the sensory
548 stimulus (message). This, in turn, shall lead to the faithful reproduction of the original modulating signal,
549 which represents the sensory stimulus after Spike-Timing-Dependent Plasticity (STDP) learning adaptation
550 (Fig 10).

551 A product detector demodulator uses a direct conversion reception method to extract the message signal,
552 which is the most straightforward approach for receiving information transmitted by a carrier (Supplement
553 S3). An essential component for this process is a simple low-pass filter, known for its effective selectivity
554 [44]. The behaviour of motor ocular neurons aligns with the operation of a low-pass finite impulse filter
555 (FIR), as observed in previous research [45]. This alignment may contribute to the process of demodulation
556 in the medial vestibular nuclei (MVN) (Fig 10).

557 ****

558 [----- Figure 10: Placeholder -----]

559 ****

560 ***Fig 10/Analogies between amplitude modulation in radio transmission and burst-amplitude modulation***
561 ***in the olivary system.*** The olivary network STOs use a phase-locked modulation in amplitude. However,
562 the STOs modulation varied the burst lengths according to the retinal slip amplitudes instead of varying
563 the amplitude of the carrier signal. Consequently, all the sensorial stimuli sharing the same frequency
564 range could simultaneously be transmitted. The olivary system may play the same role as an AM encoder
565 during the input stimuli transmission to downstream cerebellar layers, whereas the MVN together with the
566 motor neurons may play the same role as an AM decoder for stimuli reconstruction at the cerebellar output.

567 **IV. MATERIALS & METHODS**

568 **A. VOR Analysis and Assessment**

569 We simulated the horizontal VOR (h-VOR) during sinusoidal (~1 Hz) whole-body rotations [46]. VOR
570 gain was determined as the ratio between the first harmonic amplitudes of the eye and head velocity Fourier
571 transforms:

$$572 VOR\ GAIN\ G = \frac{H_i^{eye-velocity}}{H_i^{head-velocity}} \quad (1)$$

573 Conversely, VOR shift phase was calculated as the cross-correlation of the eye (e) and head (h) velocity
574 time series:

$$575 \quad VOR \text{ shift phase} = xcorr = (e * h)[\gamma] \stackrel{\text{def}}{=} \sum_{n=-\infty}^{+\infty} e^*(n)h(n+\gamma) \quad (2)$$

576 Here, e^* represents the complex conjugate of e , and γ the lag indicates the shift phase. After normalisation,
577 the ideal eye and head velocity lag is ± 0.5 , with cross-correlation values ranging from -1 to 1. This range
578 is equivalent to a phase shift interval of $[-360^\circ, 360^\circ]$.

579 **B. VOR Mechanical Circuitry**

580 The cerebellum operates as a biological feed-forward controller within a control loop. Its output drives
581 adaptation from the MVN through a series of motor neurons, nerve fibres, and muscles, ultimately affecting
582 eye movement. We modelled this pathway using the EDLUT neural simulator [47-49] as VOR (Vestibulo-
583 Ocular Reflex) mechanical circuitry defined by a continuous-time mathematical model:

$$584 \quad \begin{aligned} e(kT), E(s) &: \text{eye motion (output)} \\ h(kT), H(s) &: \text{head motion (input)} \\ VOR(s) &= \frac{E(s)}{H(s)} = \frac{KT_{c1}s}{(T_{c1}s+1)(T_{c2}s+1)} e^{s\tau_{delay}} \end{aligned} \quad (3)$$

585 This model consists of four parameters: $Q = [K, T_{c1}, T_{c2}, \tau_{delay}]$. The delay parameter τ_{delay} accounts for
586 the time it takes for signals from the inner ear to reach the brain and eyes, estimated to be around 5 ms
587 based on the number of synapses involved in the VOR [50, 51]. It is also included in the cerebellar
588 sensorimotor pathway delay (see the STDP section) [25, 27, 28]. The gain parameter K represents the
589 inability of the eyes to perfectly track head movements and it is assumed to fall within the range of 0.6 to
590 1 [50, 51]. T_{c1} reflects the dynamics associated with the semicircular canals and additional neural
591 processing. These canals act as high-pass filters, because after a subject has been put into rotational motion,
592 the neural active membranes in the canals slowly relax back to resting position, so the canals stop sensing
593 motion. Based on the mechanical characteristics of the canals, combined with additional neural processing

594 which prolongs this time constant to improve the accuracy of the VOR, the T_{C1} parameter is estimated to
595 be between 10 and 30 seconds [50, 51]. Finally, T_{C2} characterises the oculomotor plant dynamics, including
596 the eye, muscles and attached tissues, with T_{C2} assumed to be between 0.005 and 0.05 seconds.

597 To obtain the temporal response for the VOR transfer function, we need to calculate the inverse Laplace
598 transform, taking into account that the delay is modelled and inserted within the control loop (Eq 4).

$$\begin{aligned} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} &= \begin{bmatrix} 0 & 1 \\ -a_0 & -a_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ h(t) \end{bmatrix} \\ y &= \begin{bmatrix} b_0 & b_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \end{aligned} \quad (4)$$

600 Where: $a_0 = 1/(T_{C1}T_{C2})$; $a_1 = a_0 = (T_{C1} + T_{C2})/(T_{C1}T_{C2})$; $b_0 = 0$; $b_1 = KT_{C1}/(T_{C1}T_{C2})$; The VOR plant

601 model parameters were fine-tuned using a genetic algorithm to align with experimental and clinical
602 observations [50-52]. The resulting parameter values are: $K = 1.0$, $T_{C1} = 15$, $T_{C2} = 0.05$.

603 The code for the Neuron Simulator and EDLUT Simulator will be made publicly available upon acceptance of the article. The Neuron
604 code includes HH PC model and HH IO model operating in isolation, whilst the EDLUT code encompasses the r-VOR setup in closed
605 loop with both phase-free and phase-locked configurations. We kindly request the reviewers to consider this note and, if necessary,
606 contact the authors for any additional information, granted code access and/or clarification regarding the code.

607 https://github.com/EduardoRosLab/NEURON_NEURAL_MODELS
608 <https://github.com/EduardoRosLab/OLIVARY-PHASE-LOCKING-OSCILLATIONS>

610 C. Cerebellar Spiking Neural Network Model

611 The cerebellar circuit, modelled as a feed-forward loop, effectively compensated for head movements
612 through contralateral eye movements (see Fig 5). This cerebellar network comprised five neural
613 populations: mossy fibres (MFs), granule cells (GCs), medial vestibular nuclei (MVN), Purkinje cells (PC),
614 and inferior olive (IO) cells [53-57]. This cerebellar model was implemented in EDLUT [47-49], an open-
615 source, spiking-based neural simulator designed for efficient computation and embodied experimentation.

616 **Mossy fibres (MFs):** We modelled 100 MFs as input neurons responsible for transmitting sensory-motor
617 information to both GCs and MVN. In line with the functional principles of VOR models for cerebellar
618 control [58], MF activity ensembles were generated to follow a 1 Hz sinusoidal pattern, with a new MF

619 ensemble for each 2 ms simulation step, encoding head [58-60]. The overall MF activity was organised into
620 non-overlapping and equally sized neural subpopulations to maintain a consistent firing rate for the MF
621 ensemble over time. Note that two different times corresponded to two different subgroups of active MFs,
622 ensuring overall constant activity (see Network connectivity parameters summarised in Table 1).

623 **Granule cells (GCs):** The granular layer consisted of $N = 2000$ GCs (Leaky Integrate & Fire (LIF) neurons)
624 and functioned as a state generator [61-64]. The inner dynamics of the granular layer produced time-
625 evolving states comprising non-overlapping spatiotemporal patterns that were consistently activated in the
626 same sequence during each learning trial (1 Hz rotation for 1 second). Despite receiving a constant MF
627 input encoding each second of the 1 Hz learning trial, the granular layer generated 500 different states. Each
628 state was composed of four non-recursively activated GCs [65].

629 **Purkinje cells (PCs):** 200 PCs were modelled using a single compartment Hodgkin-Huxley (HH) model
630 with five ionic currents, allowing them to replicate the tri-modal spike modes (tonic, silence, and bursting)
631 observed in PCs [27, 66]. These PCs were divided into two subpopulations of 100 neurons each. Each
632 subpopulation received inputs from 100 CFs arranged in a lattice configuration [17]. These CFs encoded
633 the difference between both clockwise or counter clockwise eye and head movements. Additionally, each
634 PC received 2000 PF inputs. Given that PCs are innervated by approximately 150,000 PFs [67], the weights
635 of the PF-Purkinje cell synapses in the model were adjusted to match the biological excitatory drive. Each
636 of the two subgroups of 100 Purkinje cells targeted 100 MVN cells through inhibitory projections. The
637 MVN cells were responsible for generating either clockwise or counter clockwise compensatory motor
638 actions, ultimately driving the activity of agonist/antagonist ocular muscles.

639 **Inferior olive (IO):** 200 IO cells were modelled using a three-compartment Hodgkin-Huxley (HH) model
640 equipped with seven ionic currents and electrical coupling. This HH model accurately reproduced both the
641 spike burst and the subthreshold oscillations observed in the IO [68]. The neural layer was divided into two
642 subpopulations of 100 neurons each, arranged in a lattice configuration [17]. These two subpopulations were
643 responsible for handling clockwise and counter clockwise sensed errors. CFs transmitted the instructive
644 signal (retinal slips) from the IOs to the populations of PCs. Each CF made contact with one PC and one
645 MVN cell. The external input activity of IO cells was generated using a probabilistic Poisson process. Based
646 on the normalised retinal slip current curve $i(t)$ and a random number $\eta(t)$ ranging from 0 to 1, the central

647 IO neuron in all subsets of 5x5 neurons within the lattice olfactory network received a depolarising step
648 current (see Fig 4A). The amplitude of this current depended on the actual retinal slip amplitude when $i(t)$
649 $> \eta(t)$ (Fig 4C and D). In other words, the larger the retinal slip was, the greater the input depolarising step
650 current. These depolarising step current input stimuli, combined with the electrical coupling amongst IO
651 cells regulated by inhibitory NO connections, generated the overall activity in the olfactory system. Each
652 individual CF spike conveyed well-timed information about the instantaneous error (See Fig 4D and E).
653 The probabilistic spike sampling of the error ensured a proper representation of the entire error range across
654 trials whilst maintaining CF activity between 1 and 10 Hz per fibre, which is consistent with
655 electrophysiological data [22]. Even at this low frequency, it accurately sampled the error evolution [34,
656 35, 69-71].

657 **Medial vestibular nuclei (MVN):** 200 MVN cells were modelled as LIF neurons, divided into two groups
658 of 100 cells each, corresponding to agonist and antagonist ocular muscles. Each MVN cell received
659 inhibitory input from a PC and excitatory input from the CF, which simultaneously innervated the
660 corresponding PC. Additionally, each MVN cell received excitatory projections from all MFs, maintaining
661 the baseline activity of MVN cells. The spike activity of both the agonist and antagonist groups of MVN
662 cells was translated into an analogue output signal (eye velocity) according to equations 5 and 6:

$$663 \quad MVN_i(t) = \int_t^{t+T_{step}} \delta_{MVN_{spike}}(t) dt \quad (5)$$

$$664 \quad MVN_{output}(t) = \alpha \left(\sum_{i=1}^{N=100} MVN_i^{agonist}(t) - \sum_{j=1}^{N=100} MVN_j^{antagonist}(t) \right) \quad (6)$$
$$\alpha = \frac{VOR \ range (\deg/s)}{N = 100}$$

665 where α represents the kernel amplitude that normalises the contribution of each MVN cell spike to the
666 cerebellar output correction. i and j are used to represent the MVN neuron tags, ranging from one to $N =$
667 100, which is the total number of MVNs in each sub-population (both agonist and antagonist sub-
668 populations). $\delta_{MVN_{spike}}$ stands for the Dirac delta function that represents MVN spikes that have been

669 triggered, while T_{step} (0.002 seconds) corresponds to the duration of the sliding windows over which the
670 MVN spiking activity is calculated. This neural topology is summarised in Table1.

671 **Table 1.** *Cerebellar network topology parameters. (Dash lines indicate not applicable)*

Neurons		Synapses			
Pre-synaptic neurons (number)	Post-synaptic neurons (number)	Number	Type	Initial weight(nS)	Weight range(nS)
2000 GCs	200 PCs	400000	AMPA	rand	[0,4]
200 IO	200 PCs	200	AMPA	40	—
100 MFs	2000 GCs	8000	AMPA	0.35 ^a	—
100 MFs	200 MVN	20000	AMPA	10	[0, 10]
200 PCs	200 MVN	200	GABA	1.5	—
200 IO	200 MVN	200	NMDA	7	—
200 IO	200 MVN	200	AMPA	1	—
200 MVN	200 IO	200	GABA	0.15	—
IO to IO configuration, there are 5x5 IO neuron squares arranged in a lattice pattern. These squares are connected radially, extending from the centre to each corner of the 5x5 square, resulting in a total of 200 IO neurons.		320	GAP JUNCTION	1	—

672 ^a We used specific parameters to generate offline GrC activity. This activity remained constant
673 throughout the r-VOR adaptation process. This pre-generated GrC activity was preloaded during
674 computation to expedite the simulation.

675 **D. Neuron Models**

676 **I. The LIF model.**

677 The LIF model used for MFs and GCs was the same as the one used in [27]. However, the LIF model used
678 for MVN was implemented based on [25] following equations 7-13. The neural dynamics of MVN were
679 defined by the membrane potential and the presence of excitatory (AMPA and NMDA) and inhibitory
680 (GABA) chemical synapses.

681

$$C_m \frac{dV}{dt} = I_{internal} + I_{external} \quad (7)$$

682

$$I_{internal} = -g_L (V - E_L) \quad (8)$$

683

$$I_{external} = - (g_{AMPA}(t) + g_{NMDA}(t) \cdot g_{NMDA_INF}) (V - E_{AMPA}) - g_{GABA}(t) (V - E_{GABA}) \quad (9)$$

684

$$g_{AMPA}(t) = g_{AMPA}(t_0) e^{-\frac{(t-t_0)}{\tau_{AMPA}}} \quad (10)$$

685

$$g_{NMDA}(t) = g_{NMDA}(t_0) e^{-\frac{(t-t_0)}{\tau_{NMDA}}} \quad (11)$$

686

$$g_{GABA}(t) = g_{GABA}(t_0) e^{-\frac{(t-t_0)}{\tau_{GABA}}} \quad (12)$$

687

$$g_{NMDA_INF} = \frac{1}{1 + e^{-62V}} \frac{1.2}{3.57} \quad (13)$$

688 where C_m denotes the membrane capacitance, V the membrane potential, $I_{internal}$ the internal currents and
689 $I_{external}$ the external currents. E_L is the resting potential and g_L the conductance responsible for the passive
690 decay term towards the resting potential. Conductances g_{AMPA} , g_{NMDA} and g_{GABA} integrate all the
691 contributions received by each receptor type (AMPA, NMDA, GABA) through individual synapses. These
692 conductances are defined as decaying exponential functions [47, 72, 73]. Finally, g_{NMDA_INF} stands for the
693 NMDA activation channel.

694 2. The IO HH model.

695 The IO model was a simplified and corrected version of the three-compartment HH model proposed by
696 [19]. To enhance computational performance, a simplified set of somatic and dendritic currents was

697 adopted, whilst still preserving the ability to generate spike bursts due to the sodium current inactivation
 698 within the axon hillock compartment [74]. Initially, the model was implemented in NEURON for validation
 699 in isolation, and subsequently transferred to EDLUT to accelerate the computation of the entire network.

700 **SOMA:** The total soma voltage was given by:

$$701 \quad \frac{dV_{soma}}{dt} = \frac{-G_{CaL} \cdot k_{\infty}^3 \cdot l \cdot (V - 120) - G_{Leak} (V - 10) - G_{Kdr} \cdot n \cdot p \cdot (V + 75) - I_{interact_compartment}}{C_{soma}} \quad (14)$$

702 Where C_{soma} is the soma membrane capacitance and the dynamics of each gating variable follows:

$$703 \quad \frac{dx}{dt} = \frac{(x_{\text{inf}}[V] - x)}{\tau_x[V]} \quad (15)$$

704 The equilibrium function $x_{\text{inf}}[V]$ and time constant for each current are depicted in table 2

705 **Table 2.** Somatic component. Ionic conductance kinetic parameters

Conductance type	Current	Activation	Inactivation
G_{CaL} - Calcium low threshold	$I_{CaL} = G_{CaL} \cdot k_{\infty}^3 \cdot l \cdot (V_{soma} - 120)$ $G_{CaL} = 0.0007 \text{ (mho/cm}^2\text{)}$	$k_{\infty} = \frac{l}{1 + e^{\frac{-V_{soma} - 6l}{4.2}}}$	$l_{\infty} = \frac{l}{1 + e^{\frac{V_{soma} + 85.5}{8.5}}}$ $\tau_l = \frac{20 \cdot e^{\frac{V_{soma} + 160}{30}}}{1 + e^{\frac{V_{soma} + 84}{7.3}}} + 35$
G_{Leak}	$0.000016 \text{ (mho/cm}^2\text{)}$		
G_{Kdr} - Potassium slow component	$I_{Kdr} = G_{Kdr} \cdot n \cdot p \cdot (V_{soma} + 75)$ $G_{Kdr} = 0.009 \text{ (mho/cm}^2\text{)}$	$n_{\infty} = \frac{l}{1 + e^{\frac{-V_{soma} - 3}{10}}}$	$p_{\infty} = \frac{l}{1 + e^{\frac{V_{soma} + 51}{12}}}$

		$\tau_p = \tau_n = 47 \cdot e^{\frac{-V_{\text{ soma}} - 50}{900}} + 5$
--	--	---

706

707 **AXON HILLOCK:** The total axon voltage was given by:

708

$$\frac{dV_{\text{axon}}}{dt} = \frac{-G_{\text{Na}} \cdot m_{\infty}^3 \cdot h \cdot (V - 55) - G_{\text{Leak}} (V - 10) - G_{\text{K}} \cdot x^4 \cdot (V + 75) - I_{\text{interact_compartment}}}{C_{\text{axon}}} \quad (16)$$

709 Where C_{axon} is the axon membrane capacitance and the dynamics of each gating variable follow Eq. (15).

710 The equilibrium function $x_{\text{inf}} [V]$ and time constant for each current are depicted in table 3:

711 **Table 3 . Axon component. Ionic conductance kinetic parameters**

Conductance type	Current	Activation	Inactivation
G_{Na} -sodium current	$I_{\text{Na}} = G_{\text{Na}} \cdot m_{\infty}^3 \cdot h \cdot (V_{\text{axon}} - 55)$ $G_{\text{Na}} = 0.240 \text{ (mho / cm}^2\text{)}$	$m_{\infty} = \frac{1}{1 + e^{\frac{-V_{\text{axon}} - 30}{5.5}}}$	$h_{\infty} = \frac{1}{1 + e^{\frac{V_{\text{axon}} + 60}{5.8}}}$ $\tau_h = 1.5 \cdot e^{\frac{-V_{\text{axon}} - 40}{33}}$
G_{Leak}	$0.000016 \text{ (mho / cm}^2\text{)}$		

G_K -postassium current	$I_K = G_K \cdot x^4 \cdot (V_{axon} + 75)$ $G_K = 0.020 \text{ (mho / cm}^2\text{)}$	$\alpha_x = \frac{0.13 \cdot V_{axon} + 3.25}{1 - e^{\frac{-V_{axon} + 25}{10}}}$ $\beta_x = 1.69 \cdot e^{-0.0125 \cdot V_{axon} - 0.4375}$ $x_\infty = \frac{\alpha_x}{\alpha_x + \beta_x}$ $\tau_x = \frac{1}{\alpha_x + \beta_x}$
---------------------------	--	--

712

713 **DENDRITE:** The total dendrite voltage was given by

$$714 \quad \frac{dV_{dendrite}}{dt} = \frac{-G_{CaH} \cdot r^2 \cdot (V_{dendrite} - 120) - G_{Leak} (V - 10) - G_{K_Ca} \cdot s \cdot (V_{dendritic} + 75) - I_{interact_compartment} + I_{external}}{C_{dendrite}} \quad (17)$$

715 Where $C_{dendrite}$ is the dendrite membrane capacitance, $A_{dendrite}$ is the dendrite membrane area, and the external
 716 current $I_{external}$ was given by:

$$717 \quad I_{external} = -g_{AMPA}(t)(V - E_{AMPA}) - g_{GABA}(t)(V - E_{GABA}) - I_{GJ} \quad (18)$$

$$718 \quad I_{GJ_k} = \sum_{i=1}^N w_{ik} (V_k - V_i) \left(0.6 e^{-\frac{(V_k - V_i)^2}{50^2}} + 0.4 \right) \quad (19)$$

719 Where conductances gAMPA, and gGABA integrate all the contributions received by each receptor type
 720 (AMPA, GABA) through individual synapses Eq. (10, 12). Where I_{GJ_k} stands for the current injected to
 721 the k^{th} target neuron through the gap-junction (GJ) [20, 25, 28], V_k is the target neuron membrane potential,
 722 the i neuron membrane potential, V_i is the synaptic weight between the neuron i and the target neuron, and
 723 N is the total number of GJ current inputs. The dynamics of each gating variable follows Eq. (15). The
 724 equilibrium function $x_o[V]$ and time constant for each current are depicted in table 4:

725 **Table 4.** *Dendritic component. Ionic conductance kinetic parameters*

Conductance type	Current	Activation	Inactivation
G_{CaH} -High-threshold calcium	$I_{CaH} = G_{CaH} \cdot r^2 \cdot (V_{dendrite} - 120)$ $G_{CaH} = 0.0045 \text{ (mho / cm}^2\text{)}$	$\alpha_r = \frac{1.7}{\frac{-V_{dendrite} - 5}{13.9}}$ $\beta_r = \frac{0.02 \cdot V_{dendrite} + 0.17}{e^{\frac{V_{dendrite} + 8.5}{5}} - 1}$ $r_\infty = \frac{\alpha_r}{\alpha_r + \beta_r}$ $\tau_r = \frac{5}{\alpha_r + \beta_r}$	
Dendritic calcium concentration		$\frac{\partial [Ca^{2+}]}{\partial t} = -3 \cdot I_{CaH} \cdot 1000 - 7.5 \cdot [Ca^{2+}]$	
G_{Leak}	$0.000016 \text{ (mho / cm}^2\text{)}$		
G_{K_Ca} -Calcium dependent potassium	$I_{K_Ca} = G_{K_Ca} \cdot s \cdot (V_{dendrite} + 75)$ $G_{K_Ca} = 0.035 \text{ (mho / cm}^2\text{)}$	$if (0.02 \cdot [Ca^{2+}] \geq 0.01)$ $\alpha_s = 0.01$ $else$ $\alpha_s = 0.00002 \cdot [Ca^{2+}]$ $\beta_s = 0.015$ $s_\infty = \frac{\alpha_s}{\alpha_s + \beta_s}$ $\tau_s = \frac{1}{\alpha_s + \beta_s}$	

726

727 The interaction between compartments was modelled passively taking the surface ratio between
728 compartments into account.

729 Soma to dendrite current:

$$730 \quad Isd_{\text{interact_compartment}} = \frac{G_{\text{Internal}}}{p_{s,d}} \cdot (V_{\text{soma}} - V_{\text{dendrite}})$$
$$G_{\text{Internal}} = 0.00013 \text{ (mho / cm}^2\text{)}, p_{s,d} = \frac{1}{4} \quad (20)$$

731 Axon to soma current:

$$732 \quad Ias_{\text{interact_compartment}} = \frac{G_{\text{Internal}}}{p_{a,s}} \cdot (V_{\text{axon}} - V_{\text{soma}})$$
$$G_{\text{Internal}} = 0.00013 \text{ (mho / cm}^2\text{)}, p_{a,s} = \frac{3}{20} \quad (21)$$

733 Soma to axon current:

$$734 \quad Isa_{\text{interact_compartment}} = \frac{G_{\text{Internal}}}{p_{s,a}} \cdot (V_{\text{soma}} - V_{\text{axon}})$$
$$G_{\text{Internal}} = 0.00013 \text{ (mho / cm}^2\text{)}, p_{s,a} = \frac{20}{3} \quad (22)$$

735 **Table 5.** *Geometrical parameters:*

Soma Geometrical Parameters	
Cylinder length of the soma	20.5790 μm
Diameter of the soma	20.5790 μm
Membrane Capacitance	1 $\mu\text{F/cm}^2$

Axon Geometrical Parameters	
Cylinder length of the axon	53.1329 μm
Diameter of the axon	53.1329 μm
Membrane Capacitance	1 $\mu F/cm^2$
Dendrite Geometrical Parameters	
Cylinder length of the axon	10.2895 μm
Diameter of the axon	10.2895 μm
Membrane Capacitance	1 $\mu F/cm^2$

736

737 **3. The PC HH model.**

738 The HH single-compartment model (PC) was based on [75, 76] and implemented in [27]. It consisted of a
 739 single compartment HH neuron with five ionic currents and excitatory (AMPA) and inhibitory (GABA)
 740 chemical synapses:

$$741 C_m \frac{dV}{dt} = I_{internal} + \frac{I_{external}}{Membrane\ Area} \quad (23)$$

$$742 I_{internal} = -g_k n^4 (V + 95) - g_{Na} m_0 [V]^3 h (V - 50) - g_{Ca} c^2 (V - 125) - g_L (V + 70) - g_M M (V + 95) \quad (24)$$

$$743 I_{external} = -g_{AMPA} (t) (V - E_{AMPA}) - g_{GABA} (t) (V - E_{GABA}) \quad (25)$$

744

$$g_{\text{AMPA}}(t) = g_{\text{AMPA}}(t_0) e^{-\frac{(t-t_0)}{\tau_{\text{AMPA}}}} \quad (26)$$

745

$$g_{\text{GABA}}(t) = g_{\text{GABA}}(t_0) e^{-\frac{(t-t_0)}{\tau_{\text{GABA}}}} \quad (27)$$

746 where V denotes the membrane potential, I_{internal} the internal currents and I_{external} the external currents. C_m is
 747 the membrane capacitance. Conductances g_{AMPA} and g_{GABA} integrate all the contributions received by each
 748 chemical receptor type (AMPA and GABA) through individual synapses as in [25, 27, 28]. These
 749 conductances are defined as decaying exponential functions. Finally, g_K is a delayed rectifier potassium
 750 current, g_{Na} a transient inactivating sodium current, g_{Ca} a high-threshold non-inactivating calcium current,
 751 g_L a leak current, and g_M a muscarinic receptor suppressed potassium current. The dynamics evolution of
 752 each gating variable (n , h , c , and M) can be computed using Eq 15. Where x indicates the variables n , h , c ,
 753 and M . Gating variables are defined in [27].

754 **E. Synaptic Plasticity**

755 The overall input-output function of the cerebellar network model incorporated two STDP mechanisms at
 756 different sites, which balanced long-term potentiation (LTP) and long-term depression (LTD). For a more
 757 detailed review of the implemented synaptic mechanisms, refer to [25, 27, 28, 35].

758 **1. PF-PC synaptic plasticity:**

759 The LTD/LTP balance at PF-PC synapses is based on:

760

$$LTD \Delta w_{PF_j-PC_i}(t) = \alpha \int_{-\infty}^{CF_{\text{spike}}} k \left(\frac{t - t_{CF_{\text{spike}}}}{\tau_{LTD}} \right) \delta_{PF_{\text{spike}}}(t) dt \quad (28)$$

761

$$LTP \Delta w_{PF_j-PC_i}(t) = \beta \delta_{PF_{\text{spike}}}(t) dt \quad (29)$$

762 where $\Delta W_{PFj-PCi}(t)$ denotes the weight change between the j^{th} PF and the target i^{th} PC; $\tau_{LTD} = 100$ ms
763 denotes the time constant that compensates for the sensorimotor delay; δ_{PF} is the Dirac delta function
764 corresponding to an afferent spike from a PF; $\alpha = -0.0304$ nS is the synaptic efficacy decrement; $\beta =$
765 0.0184 nS is the synaptic efficacy increment; and the kernel function $k(x)$ [25, 27-29] is defined as:

766
$$k(x) = e^{-x} \sin(x)^{10} \quad (30)$$

767 The STDP mechanism, as described in (Luque, et al., 2016), results in synaptic efficacy decrement (LTD)
768 when a spike from the CF reaches the target PC neuron. The extent of this synaptic decrement is determined
769 by the activity arriving via PFs, which is convolved with an integrative kernel defined in Eq. (30) and then
770 scaled by the synaptic decrement factor α . This effect on the presynaptic spikes arriving through PFs is
771 most pronounced within a 100 ms window preceding the arrival of the postsynaptic CF spike. This temporal
772 window compensates for the sensorimotor pathway delay [70, 77-79]. On the other hand, the amount of
773 LTP at PF-PC synapses remains fixed, with each spike arriving through a PF to the targeted PC resulting
774 in an increase in synaptic efficacy equal to β . In the simulated loop, The sensory-motor pathway delay [80],
775 with a duration of 100 milliseconds, was modelled using two circular temporal buffers, each lasting 50
776 milliseconds and having 2-millisecond taps. The first buffer was positioned between the cerebellar output
777 and the r-VOR plan, whilst the second buffer was situated between the output of the r-VOR plant and the
778 error signal used as the cerebellar instructive signal (retinal slips) [25].

779 **2. MF–MVN synaptic plasticity:**

780 The LTD/LTP dynamics at MF – MVN synapses are based on:

781
$$LTD \Delta w_{MF_j-MVN_i}(t) = \alpha \int_{-\infty}^{PC_{spike}} k\left(\frac{t - t_{PC_{spike}}}{\tau_{MF-MVN}}\right) \delta_{MF_{spike}}(t) \quad (31)$$

782
$$LTP \Delta w_{MF_j-MVN_i}(t) = \beta \delta_{MF_{spike}}(t) \quad (32)$$

783 with $\Delta W_{MFj-MVNi(t)}$ denoting the weight change between the j^{th} MF and the target i^{th} MVN; $\tau_{MF-MVN} = 5$ ms
784 standing for the time width of the kernel; δ_{MF} representing the Dirac delta function that defines a MF spike;
785 $\alpha = -0.002048$ nS is the synaptic efficacy decrement; $\beta = 0.000792$ nS is the synaptic efficacy increment;
786 and the integrative kernel function $k(x)$ [25, 27-29, 35] defined as:

787

$$k(x) = e^{-|x|} \cos(x)^2 \quad (33)$$

788 The STDP results in a synaptic efficacy decrease (LTD) when a spike from the PC reaches the targeted
789 MVN neuron. The extent of this synaptic decrement is influenced by the activity arriving via MFs, which
790 is convolved with the integrative kernel defined in Eq. (33) and then scaled by the synaptic decrement factor
791 α . This LTD mechanism takes into account presynaptic/postsynaptic MF spikes that arrive before/after the
792 postsynaptic/presynaptic PC spike within the time window defined by the kernel (τ_{MF-MVN}). Conversely, the
793 amount of LTP at MF-MVN synapses remains constant, with each spike arriving through an MF to the
794 targeted MVN resulting in an increase in synaptic efficacy defined as β .

795 The code for the Neuron Simulator and EDLUT Simulator will be made publicly available upon acceptance of the article. The Neuron
796 code includes HH PC model and HH IO model operating in isolation, whilst the EDLUT code encompasses the r-VOR setup in closed
797 loop with both phase-free and phase-locked configurations. We kindly request the reviewers to consider this note and, if necessary,
798 contact the authors for any additional information, granted code access and/or clarification regarding the code.

799 https://github.com/EduardoRosLab/NEURON_NEURAL_MODELS
800 <https://github.com/EduardoRosLab/OLIVARY-PHASE-LOCKING-OSCILLATIONS>

801

ADDITIONAL INFORMATION

802 ***Funding***

803 This work was supported by the following projects: SPIKEAGE [PID2020-113422GA-I00] by the Spanish
804 Ministry of Science and Innovation MCIN/AEI/10.13039/501100011033, awarded to NRL; DLROB
805 [TED2021-131294B-I00] funded by MCIN/AEI/10.13039/501100011033 and by the European Union
806 NextGenerationEU/PRTR, awarded to NRL; MUSCLEBOT [CNS2022-902 135243] funded by
807 MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR, awarded to
808 NRL. The funders had no role in study design, data collection and analysis, decision to publish, or
809 preparation of the manuscript.

810 ***Author contributions***

811 Conceptualisation: Niceto R. Luque, Eduardo Ros, Angelo Arleo
812 Data Curation: Niceto R. Luque, Francisco Naveros, Richard R. Carrillo
813 Formal Analysis: Niceto R. Luque, Angelo Arleo
814 Funding Acquisition: Niceto R. Luque
815 Investigation: Niceto R. Luque, Francisco Naveros, Richard R. Carrillo
816 Methodology: Niceto R. Luque, Angelo Arleo
817 Software: Niceto R. Luque, Francisco Naveros, Richard R. Carrillo
818 Supervision: Eduardo Ros, Niceto R. Luque, Angelo Arleo
819 Writing – Original Draft Preparation: Niceto R. Luque
820 Writing – Review & Editing: Niceto R. Luque, Eduardo Ros, Angelo Arleo
821 No competing interests declared by none of the authors.
822

823 ***Author ORCIDs***

824 Niceto R. Luque <https://orcid.org/0000-0002-0626-5048>
825 Francisco Naveros <https://orcid.org/0000-0003-4208-3871>
826 Richard R. Carrillo <https://orcid.org/0000-0003-3359-4565>
827 Eduardo Ros <https://orcid.org/0000-0001-6613-5256>
828 Angelo Arleo <https://orcid.org/0000-0002-1990-1971>

829

REFERENCES

830 1. Raymond JL, Medina JF. Computational principles of supervised learning in the cerebellum.
831 Annual review of neuroscience. 2018;41:233-53.

832 2. Jacobson GA, Lev I, Yarom Y, Cohen D. Invariant phase structure of olivo-cerebellar oscillations
833 and its putative role in temporal pattern generation. PNAS. 2009;106(9):3579-84. doi:
834 10.1073/pnas.0806661106.

835 3. Jacobson GA, Rokni D, Yarom Y. A model of the olivo-cerebellar system as a temporal pattern
836 generator. Trends Neurosci. 2008;31(12):617-25. Epub 2008/10/28. doi: 10.1016/j.tins.2008.09.005.
837 PubMed PMID: 18952303.

838 4. Llinas RR. Inferior olive oscillation as the temporal basis for motricity and oscillatory reset as the
839 basis for motor error correction. Neurosci. 2009;162(3):797-804.

840 5. Hoge GJ, Davidson KGV, Yasumura T, Castillo PE, Rash JE, Pereda AE. The extent and strength
841 of electrical coupling between inferior olivary neurons is heterogeneous. J Neurophysiol.
842 2011;105(3):1089-101.

843 6. Lefler Y, Amsalem O, Vrieler N, Segev I, Yarom Y. Using subthreshold events to characterize the
844 functional architecture of the electrically coupled inferior olive network. Elife. 2020;9:e43560.

845 7. Negrello M, Warnaar P, Romano V, Owens CB, Lindeman S, Iavarone E, et al. Quasiperiodic
846 rhythms of the inferior olive. PLoS Comp Biol. 2019;15(5):e1006475.

847 8. Van Der Giessen RS, Koekkoek SK, van Dorp S, De Gruyl JR, Cupido A, Khosrovani S, et al.
848 Role of olivary electrical coupling in cerebellar motor learning. Neuron. 2008;58(4):599-612. Epub
849 2008/05/24. doi: 10.1016/j.neuron.2008.03.016. PubMed PMID: 18498740.

850 9. Najafi F, Medina JF. Beyond "all-or-nothing" climbing fibers: graded representation of teaching
851 signals in Purkinje cells. Front Neural Circuits. 2013;7:1-15.

852 10. Lefler Y, Yarom Y, Uusisaari MY. Cerebellar inhibitory input to the inferior olive decreases
853 electrical coupling and blocks subthreshold oscillations. Neuron. 2014;81(6):1389-400.

854 11. Blazquez PM, Hirata Y, Heiney SA, Green AM, Highstein SM. Cerebellar signatures of vestibulo-
855 ocular reflex motor learning. J Neurosci. 2003;23(30):9742-51. doi: 10.1523/JNEUROSCI.23-30-
856 09742.2003. PubMed PMID: 14586001.

857 12. Ito M. Cerebellar learning in the vestibulo-ocular reflex. Trends Cog Sci. 1998;2(9):313-21. doi:
858 10.1016/S1364-6613(98)01222-4.

859 13. Tokuda IT, Hoang H, Schweighofer N, Kawato M. Adaptive coupling of inferior olive neurons in
860 cerebellar learning. Neural Networks. 2013;47:42-50. doi: <https://doi.org/10.1016/j.neunet.2012.12.006>.

861 14. Kawato M, Kuroda S, Schweighofer N. Cerebellar supervised learning revisited: biophysical
862 modeling and degrees-of-freedom control. Current opinion in Neurobiology. 2011;21(5):791-800.

863 15. Eccles JC, Llinas R, Sasaki K. The excitatory synaptic action of climbing fibres on the Purkinje
864 cells of the cerebellum. J Physiol. 1966;182(2):268-96.

865 16. Mathy A, Ho SS, Davie JT, Duguid IC, Clark BA, Hausser M. Encoding of oscillations by axonal
866 bursts in inferior olive neurons. Neuron. 2009;62(3):388-99.

867 17. Nobukawa S, Nishimura H. Chaotic resonance in coupled inferior olive neurons with the Llinás
868 approach neuron model. Neural computation. 2016;28(11):2505-32.

869 18. Najafi F, Giovannucci A, Wang SS-H, Medina JF. Coding of stimulus strength via analog calcium
870 signals in Purkinje cell dendrites of awake mice. eLife. 2014;3. doi: 10.7554/eLife.03663.

871 19. De Gruyl JR, Bazzigaluppi P, de Jeu MTG, De Zeeuw CI. Climbing Fiber Burst Size and Olivary
872 Sub-threshold Oscillations in a Network Setting. PLOS Comput Biol. 2012;8(12).

873 20. Schweighofer N, Doya K, Kawato M. Electrophysiological properties of inferior olive neurons: a
874 compartmental model. *J Neurophysiol.* 1999;82(2):804-17.

875 21. Llinas R, Yarom Y. Electrophysiology of mammalian inferior olivary neurones in vitro. Different
876 types of voltage-dependent ionic conductances. *J Physiol.* 1981;315:549-67. Epub 1981/06/01. PubMed
877 PMID: 6273544; PubMed Central PMCID: PMCPmc1249398.

878 22. Kuroda S, Yamamoto K, Miyamoto H, Doya K, Kawato M. Statistical characteristics of climbing
879 fiber spikes necessary for efficient cerebellar learning. *Biol Cybern.* 2001;84(3):183-92.

880 23. Leigh RJ, Zee DS. *The neurology of eye movements*: Oxford University Press; 2015.

881 24. Carrillo RR, Náveros F, Ros E, Luque NR. A Metric for Evaluating Neural Input Representation
882 in Supervised Learning Networks. *Front Neurosci.* 2018;12(913). doi: 10.3389/fnins.2018.00913.

883 25. Luque NR, Náveros F, Abadía I, Ros E, Arleo A. Electrical coupling regulated by GABAergic
884 nucleo-olivary afferent fibres facilitates cerebellar sensory-motor adaptation. *Neural Networks.* 2022.

885 26. Uusisaari M, De Schutter E. The mysterious microcircuitry of the cerebellar nuclei. *J Physiol.*
886 2011;589(14):3441-57.

887 27. Luque NR, Náveros F, Carrillo RR, Ros E, Arleo A. Spike burst-pause dynamics of Purkinje cells
888 regulate sensorimotor adaptation. *PLoS Comput Biol.* 2019;15(3):e1006298. doi:
889 10.1371/journal.pcbi.1006298.

890 28. Luque NR, Náveros F, Sheynikhovich D, Ros E, Arleo A. Computational epidemiology study of
891 homeostatic compensation during sensorimotor aging. *Neural Networks.* 2022;146:316-33.

892 29. Náveros F, Luque NR, Ros E, Arleo A. VOR Adaptation on a Humanoid iCub Robot Using a
893 Spiking Cerebellar Model. *IEEE Trans Cybern.* 2019.

894 30. Hoang H, Lang EJ, Hirata Y, Tokuda IT, Aihara K, Toyama K, et al. Electrical coupling controls
895 dimensionality and chaotic firing of inferior olive neurons. *PLOS Computational Biology.*
896 2020;16(7):e1008075. doi: 10.1371/journal.pcbi.1008075.

897 31. Binder MD, Hirokawa N, Windhorst U. Retinal Slip. In: Binder MD, Hirokawa N, Windhorst U,
898 editors. *Encyclopedia of Neuroscience*. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. p. 3526-.

899 32. Lefler Y, Torben-Nielsen B, Yarom Y. Oscillatory activity, phase differences, and phase resetting
900 in the inferior olivary nucleus. *Frontiers in systems neuroscience.* 2013;7:22.

901 33. Shannon CE. A mathematical theory of communication. *The Bell system technical journal.*
902 1948;27(3):379-423.

903 34. Carrillo RR, Ros E, Boucheny C, Coenen O. A real-time spiking cerebellum model for learning
904 robot control. *Biosystems.* 2008;94(1-2):18-27.

905 35. Luque NR, Garrido JA, Náveros F, Carrillo RR, D'Angelo E, Ros E. Distributed Cerebellar Motor
906 Learning; a STDP Model. *Front Comput Neurosci.* 2016;10. doi: 10.3389/fncom.2016.00017.

907 36. Eccles JC, Sabah NH, Schmidt RF, Táboříková H. Integration by Purkině cells of mossy and
908 climbing fiber inputs from cutaneous mechanoreceptors. *Exp Brain Res.* 1972;15(5):498-520.

909 37. Eccles JC, Sabah NH, Schmidt RF, Táboříková H. Cutaneous mechanoreceptors influencing
910 impulse discharges in cerebellar cortex. III. In Purkině cells by climbing fiber input. *Exp Brain Res.*
911 1972;15(5):484-97.

912 38. Najafi F, Giovannucci A, Wang SSH, Medina JF. Sensory-driven enhancement of calcium signals
913 in individual Purkinje cell dendrites of awake mice. *Cell reports.* 2014;6(5):792-8.

914 39. Ma CW, Lai CH, Lai SK, Tse YC, Yung KK-L, Shum DK-Y, et al. Developmental distribution
915 of vestibular nuclear neurons responsive to different speeds of horizontal translation. *Brain research.*
916 2010;1326:62-7.

917 40. Du Lac S, Lisberger SG. Cellular processing of temporal information in medial vestibular nucleus
918 neurons. *J Neurosci.* 1995;15(12):8000-10.

919 41. Ris L, Hachemaoui M, Vibert N, Godaux E, Vidal PP, Moore LE. Resonance of spike discharge
920 modulation in neurons of the guinea pig medial vestibular nucleus. *J Neurophysiol.* 2001;86(2):703-16.

921 42. Schneider AD, Cullen KE, Chacron MJ. In vivo conditions induce faithful encoding of stimuli by
922 reducing nonlinear synchronization in vestibular sensory neurons. *PLoS computational biology.*
923 2011;7(7):e1002120.

924 43. Carr J. Chapter 11. Detector and Demodulator Circuits. 2000.

925 44. Hawker P. Synchronous detection in radio reception. *Wireless World.* 1972:419-22.

926 45. Luque NR, Carrillo RR, Naveros F, Garrido JA, Sáez-Lara MJ. Integrated neural and robotic
927 simulations. Simulation of cerebellar neurobiological substrate for an object-oriented dynamic model
928 abstraction process. *Rob Auton Syst.* 2014;62(12):1702-16.

929 46. Van Alphen AM, Stahl JS, De Zeeuw CI. The dynamic characteristics of the mouse horizontal
930 vestibulo-ocular and optokinetic response. *Brain Res.* 2001;890(2):296-305.

931 47. Ros E, Carrillo RR, Ortigosa EM, Barbour B, Agís R. Event-driven simulation scheme for spiking
932 neural networks using lookup tables to characterize neuronal dynamics. *Neural Comput.* 2006;18(12):2959-
933 93.

934 48. Naveros F, Garrido JA, Carrillo RR, Ros E, Luque NR. Event-and Time-Driven Techniques Using
935 Parallel CPU-GPU Co-processing for Spiking Neural Networks. *Front Neuroinformatics.* 2017;11.

936 49. Naveros F, Luque NR, Garrido JA, Carrillo RR, Anguita M, Ros E. A Spiking Neural Simulator
937 Integrating Event-Driven and Time-Driven Computation Schemes Using Parallel CPU-GPU Co-
938 Processing: A Case Study. *IEEE Trans Neural Netw Learn Syst.* 2015;26(7):1567-74.

939 50. Robinson DA. The use of control systems analysis in the neurophysiology of eye movements.
940 *Annu Rev Neurosci* 1981;4(1):463-503.

941 51. Skavenski AA, Robinson DA. Role of abducens neurons in vestibuloocular reflex. *J Neurophysiol.*
942 1973;36(4):724-38. Epub 1973/07/01. PubMed PMID: 4197340.

943 52. Gordon JL, Furman JMR, Kamen EW, editors. System identification of the vestibulo-ocular
944 reflex: application of the recursive least-squares algorithm. Bioengineering Conference, 1989, Proceedings
945 of the 1989 Fifteenth Annual Northeast; 1989: IEEE.

946 53. Eccles JC, Ito M, Szentágothai J. The Cerebellum as a Neuronal Machine New York: Springer-
947 Verlag; 1967.

948 54. Ito M. The cerebellum and neural control. 1984.

949 55. Medina JF, Mauk MD. Simulations of cerebellar motor learning: computational analysis of
950 plasticity at the mossy fiber to deep nucleus synapse. *Journal of Neuroscience.* 1999;19(16):7140-51.

951 56. Medina JF, Mauk MD. Computer simulation of cerebellar information processing. *Nat Neurosci.*
952 2000;3 1205-11.

953 57. Voogd J, Glickstein M. The anatomy of the cerebellum. *Trends Neurosci.* 1998;21(9):370-5.

954 58. Clopath C, Badura A, De Zeeuw CI, Brunel N. A cerebellar learning model of VOR adaptation in
955 wild-type and mutant mice. *J Neurosci.* 2014;34(21):7203-15.

956 59. Arenz A, Silver RA, Schaefer AT, Margrie TW. The Contribution of Single Synapses to Sensory
957 Representation in Vivo. *Science* 2008;321(5891):977-80.

958 60. Lisberger SG, Fuchs AF. Role of primate flocculus during rapid behavioral modification of VOR.
959 II. Mossy fiber firing patterns during horizontal head rotation and eye movement. *J Neurophysiol.*
960 1978;41(3):764-77.

961 61. Honda T, Yamazaki T, Tanaka S, Nagao S, Nishino T. Stimulus-Dependent State Transition
962 between Synchronized Oscillation and Randomly Repetitive Burst in a Model Cerebellar Granular Layer.
963 *PLoS Comput Biol.* 2011;7(7):e1002087. doi: 10.1371/journal.pcbi.1002087.

964 62. Yamazaki T, Tanaka S. Neural modeling of an internal clock. *Neural Comput.* 2005;17(5):1032-
965 58.

966 63. Yamazaki T, Tanaka S. The cerebellum as a liquid state machine. *Neural Networks.* 2007;20:290-
967 7.

968 64. Yamazaki T, Tanaka S. Computational models of timing mechanisms in the cerebellar granular
969 layer. *Cerebellum.* 2009;8(4):423-32.

970 65. Fujita M. Adaptive filter model of the cerebellum. *Biol Cybern.* 1982;45(3):195-206.

971 66. Forrest M. *Biophysics of Purkinje computation:* University of Warwick; 2008.

972 67. Brunel N, Hakim V, Isope P, Nadal JP, Barbour B. Optimal information storage and the
973 distribution of synaptic weights: perceptron versus Purkinje cell. *Neuron.* 2004;43:745-57.

974 68. Bazzigaluppi P, De Gruijl JR, Van Der Giessen RS, Khosrovani S, De Zeeuw CI, De Jeu MTG.
975 Olivary subthreshold oscillations and burst activity revisited. *Front Neural Circuits.* 2012;6:91.

976 69. Luque NR, Garrido JA, Carrillo RR, Coenen O-JM-D, Ros E. Cerebellar Input Configuration
977 Toward Object Model Abstraction in Manipulation Tasks. *IEEE Trans Neural Netw.* 2011;22(8):1321-8.

978 70. Luque NR, Garrido JA, Carrillo RR, Coenen O-JM-D, Ros E. Cerebellarlike Corrective Model
979 Inference Engine for Manipulation Tasks. *IEEE Trans Syst Man Cybern.* 2011;41(5):1299-312.

980 71. Luque NR, Garrido JA, Carrillo RR, Ros E, editors. *Context separability mediated by the granular*
981 *layer in a spiking cerebellum model for robot control.* International Work-Conference on Artificial Neural
982 Networks; 2011: Springer.

983 72. Gerstner W, Kistler WM. *Spiking neuron models: Single neurons, populations, plasticity:*
984 Cambridge university press; 2002.

985 73. Gerstner W, Kistler WM, Naud R, Paninski L. *Neuronal dynamics: From single neurons to*
986 *networks and models of cognition:* Cambridge University Press; 2014.

987 74. Parri HR, Crunelli V. Sodium current in rat and cat thalamocortical neurons: role of a non-
988 inactivating component in tonic and burst firing. *J Neurosci.* 1998;18(3):854-67.

989 75. Middleton SJ, Racca C, Cunningham MO, Traub RD, Monyer H, Knopfel T, et al. High-frequency
990 network oscillations in cerebellar cortex. *Neuron.* 2008;58(5):763-74.

991 76. Miyasho T, Takagi H, Suzuki H, Watanabe S, Inoue M, Kudo Y, et al. Low-threshold potassium
992 channels and a low-threshold calcium channel regulate Ca²⁺ spike firing in the dendrites of cerebellar
993 Purkinje neurons: a modeling study. *Brain Res.* 2001;891(1-2):106-15.

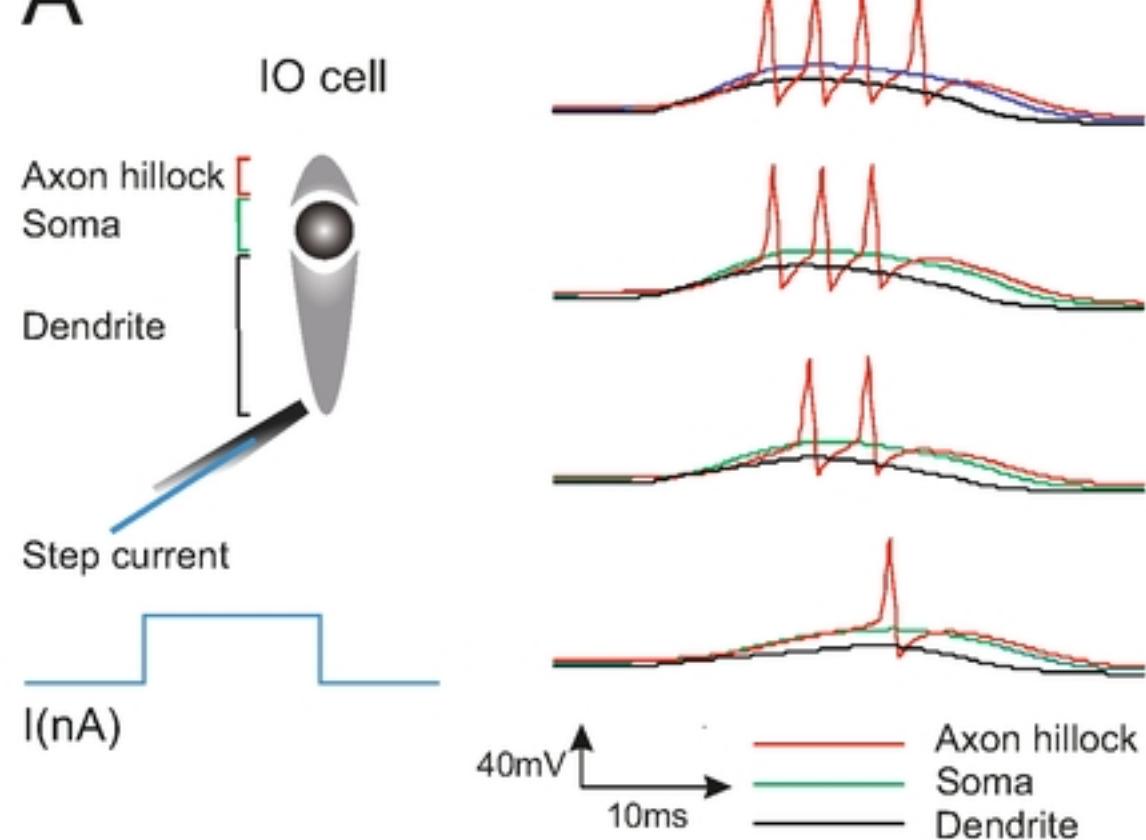
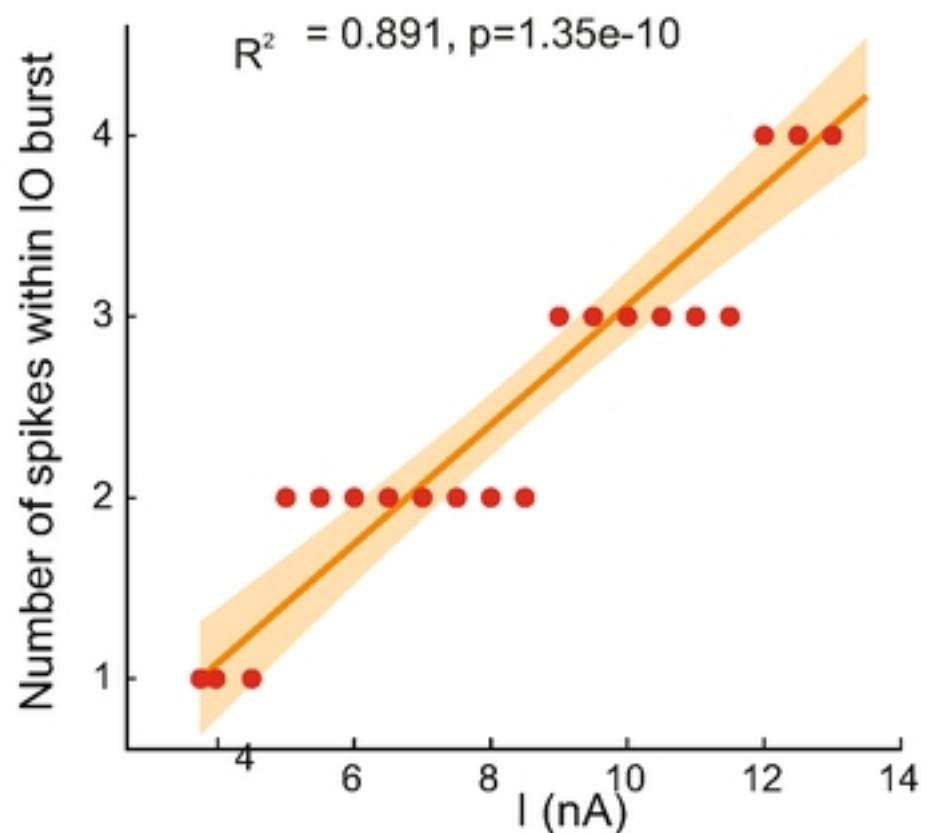
994 77. Abadía I, Náveros F, Garrido JA, Ros E, Luque NR. On Robot Compliance: A Cerebellar Control
995 Approach. *IEEE transactions on cybernetics.* 2019.

996 78. Abadía I, Náveros F, Ros E, Carrillo RR, Luque NR. A cerebellar-based solution to the
997 nondeterministic time delay problem in robotic control. *Science Robotics.* 2021;6(58):eabf2756. doi:
998 doi:10.1126/scirobotics.abf2756.

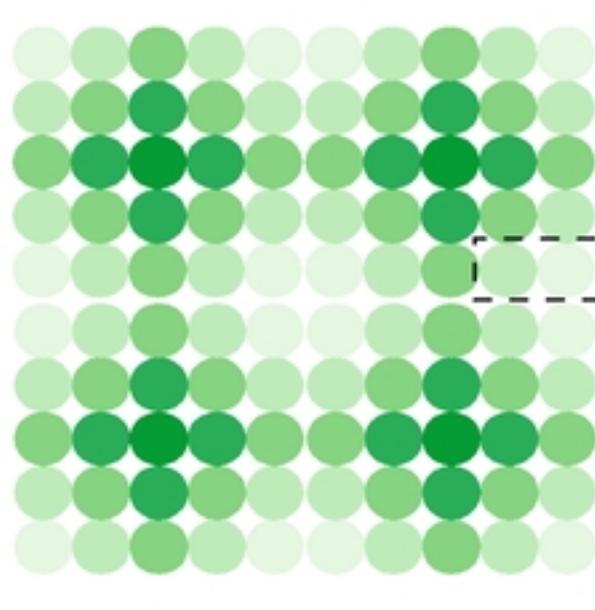
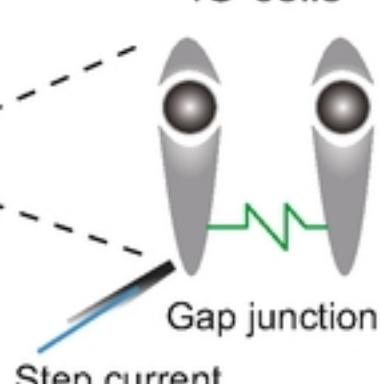
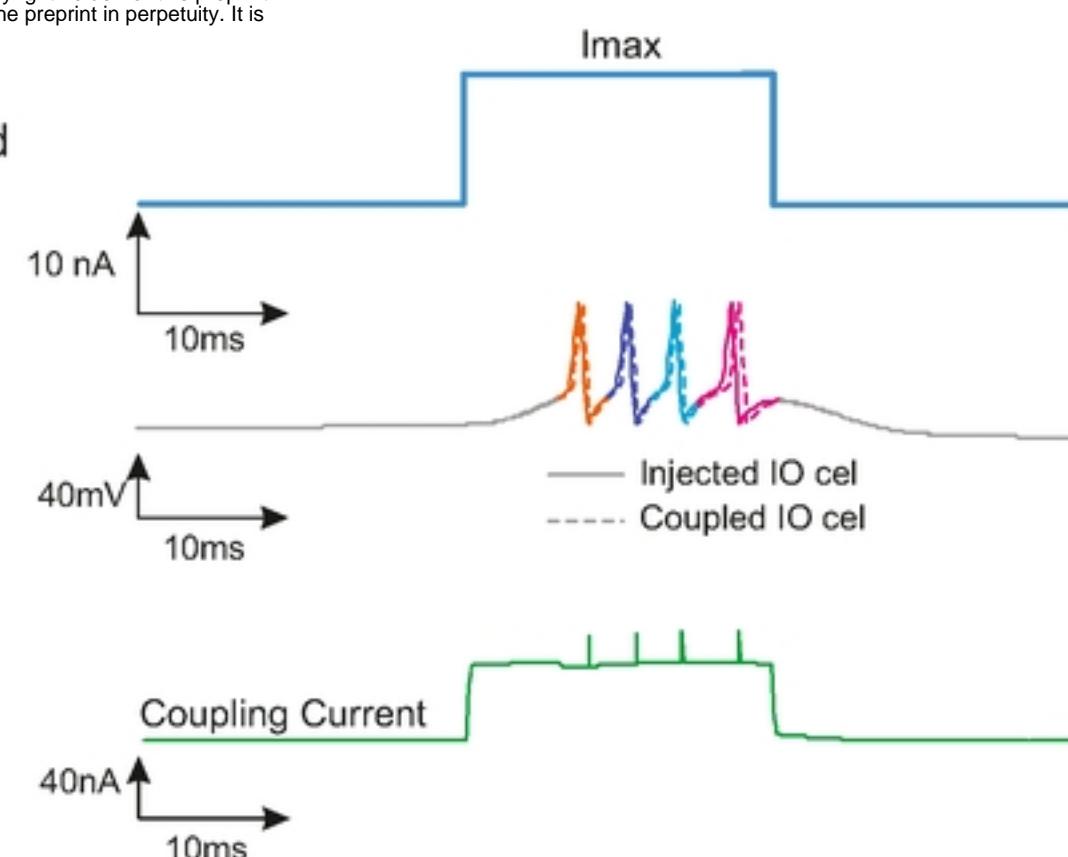
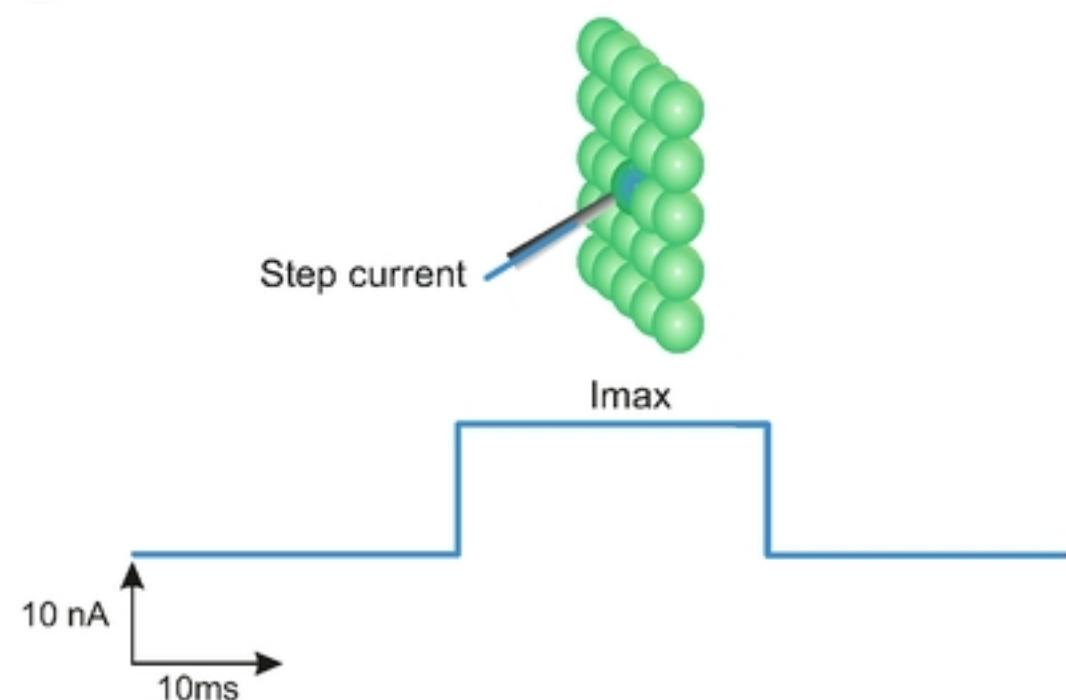
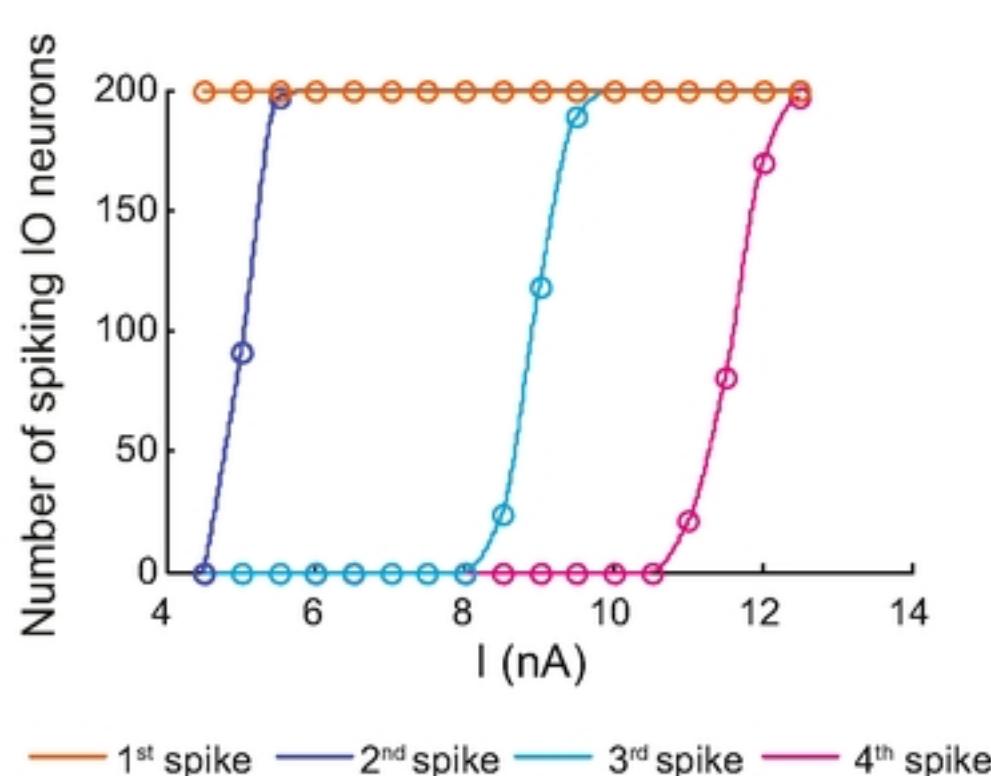
999 79. Kawato M, Gomi H. A computational model of four regions of the cerebellum based on FEL. *Biol*
1000 *Cybern.* 1992;68(2):95-103.

1001 80. Sargolzaei A, Abdelghani M, Yen KK, Sargolzaei S. Sensorimotor control: computing the
1002 immediate future from the delayed present. *BMC bioinformatics.* 2016;17(7):501-9.

1003

A**B**

bioRxiv preprint doi: <https://doi.org/10.1101/2024.03.06.583676>; this version posted March 7, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

IO network**Pair of coupled IO cells****C****IO network - Coupling 100%****Figure 1****Figure 1**

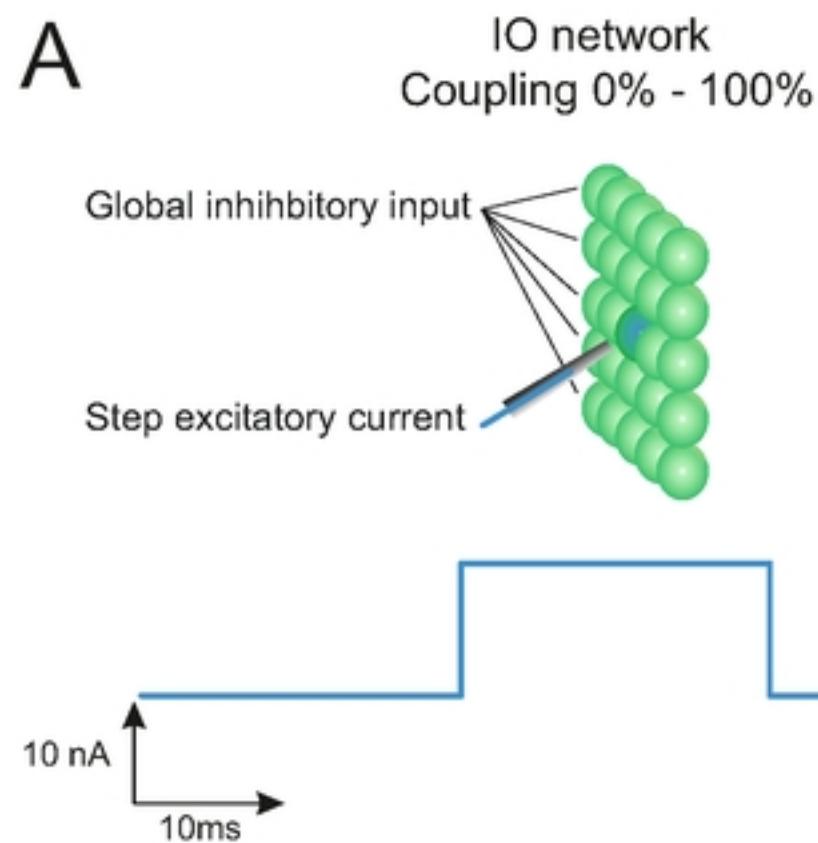
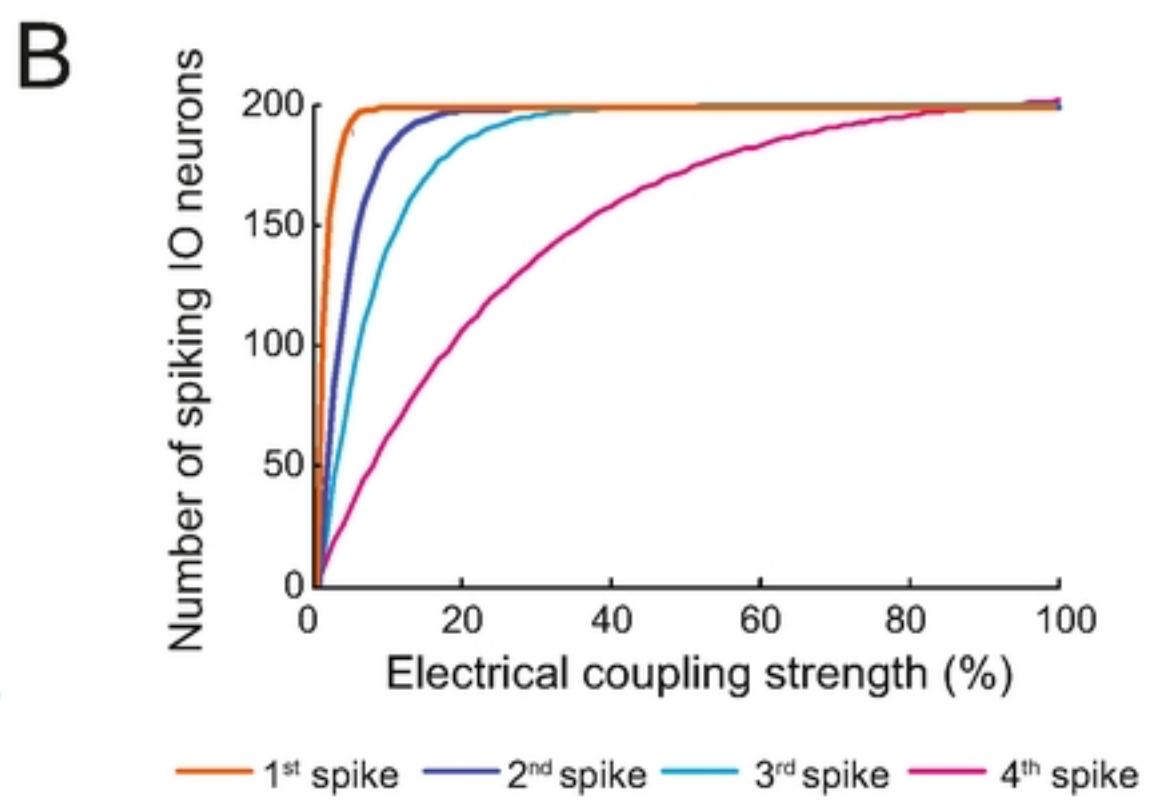
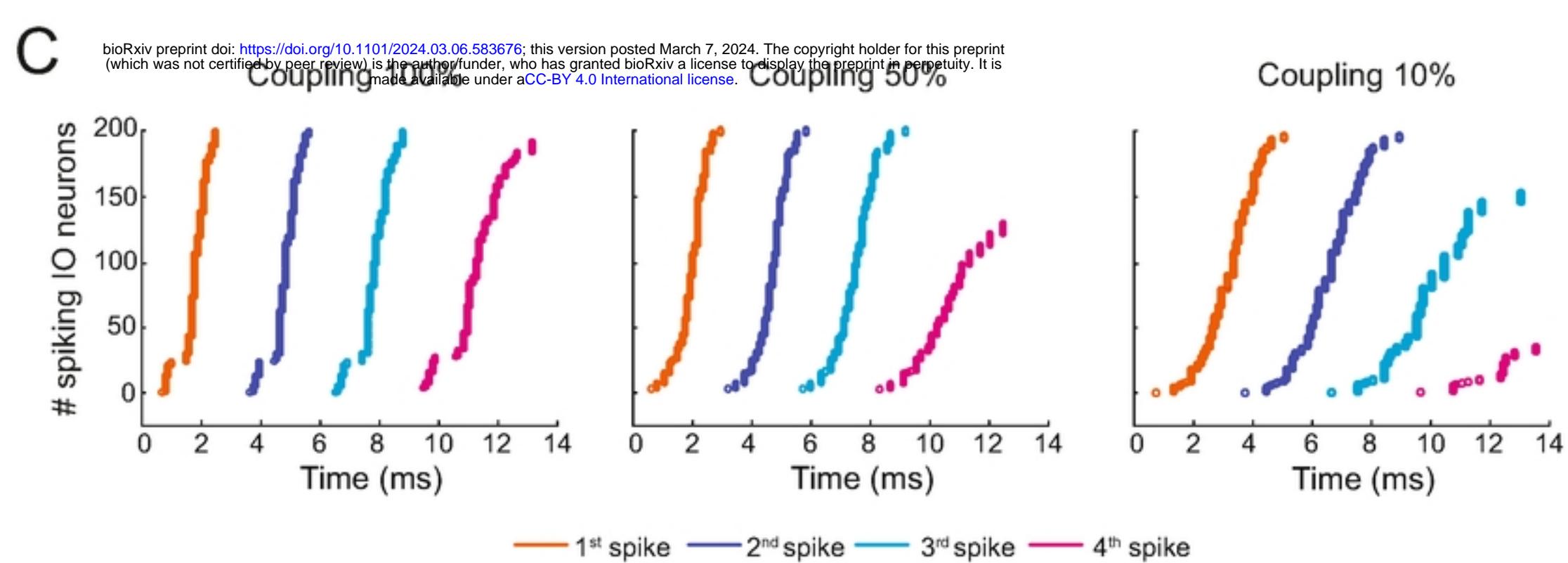
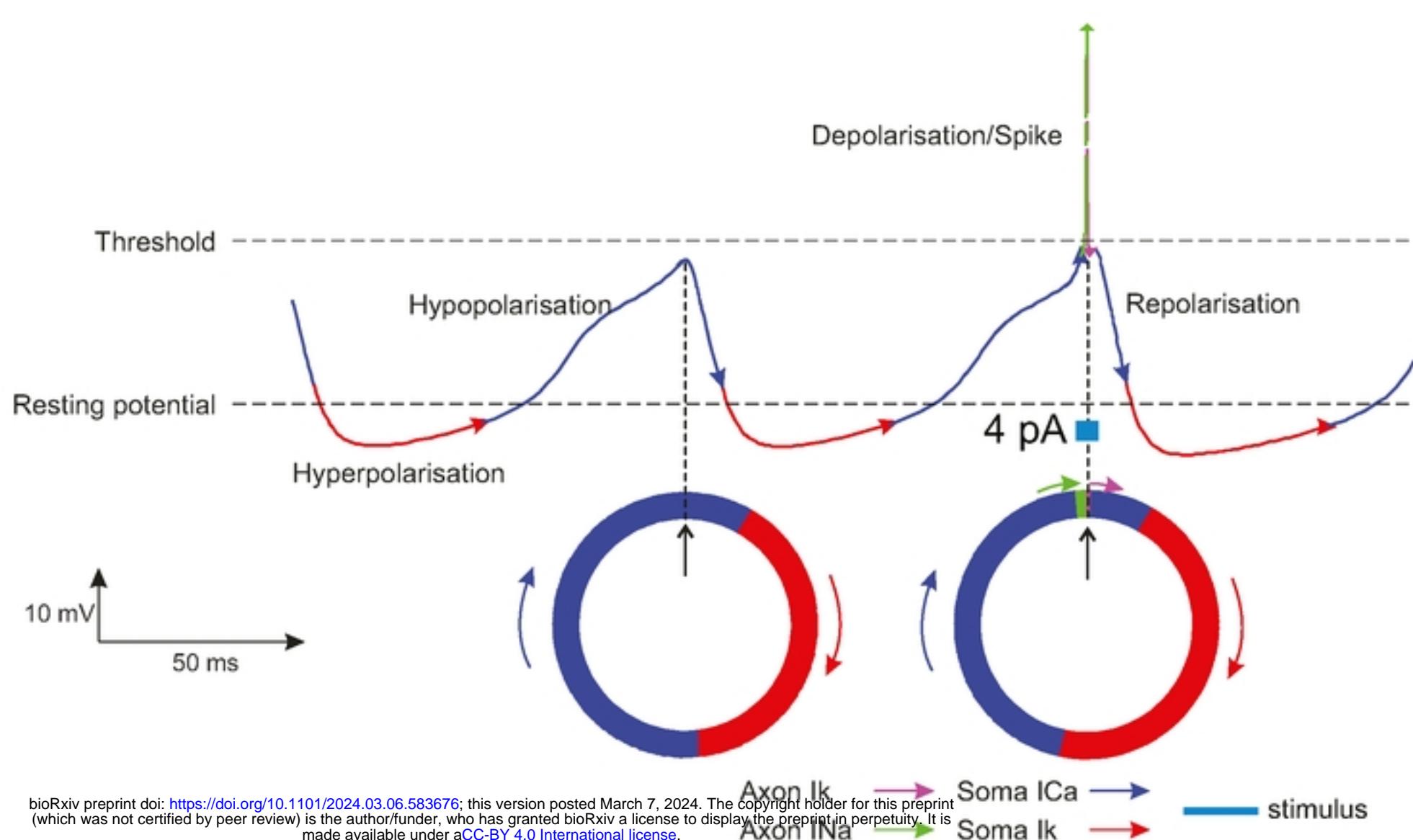
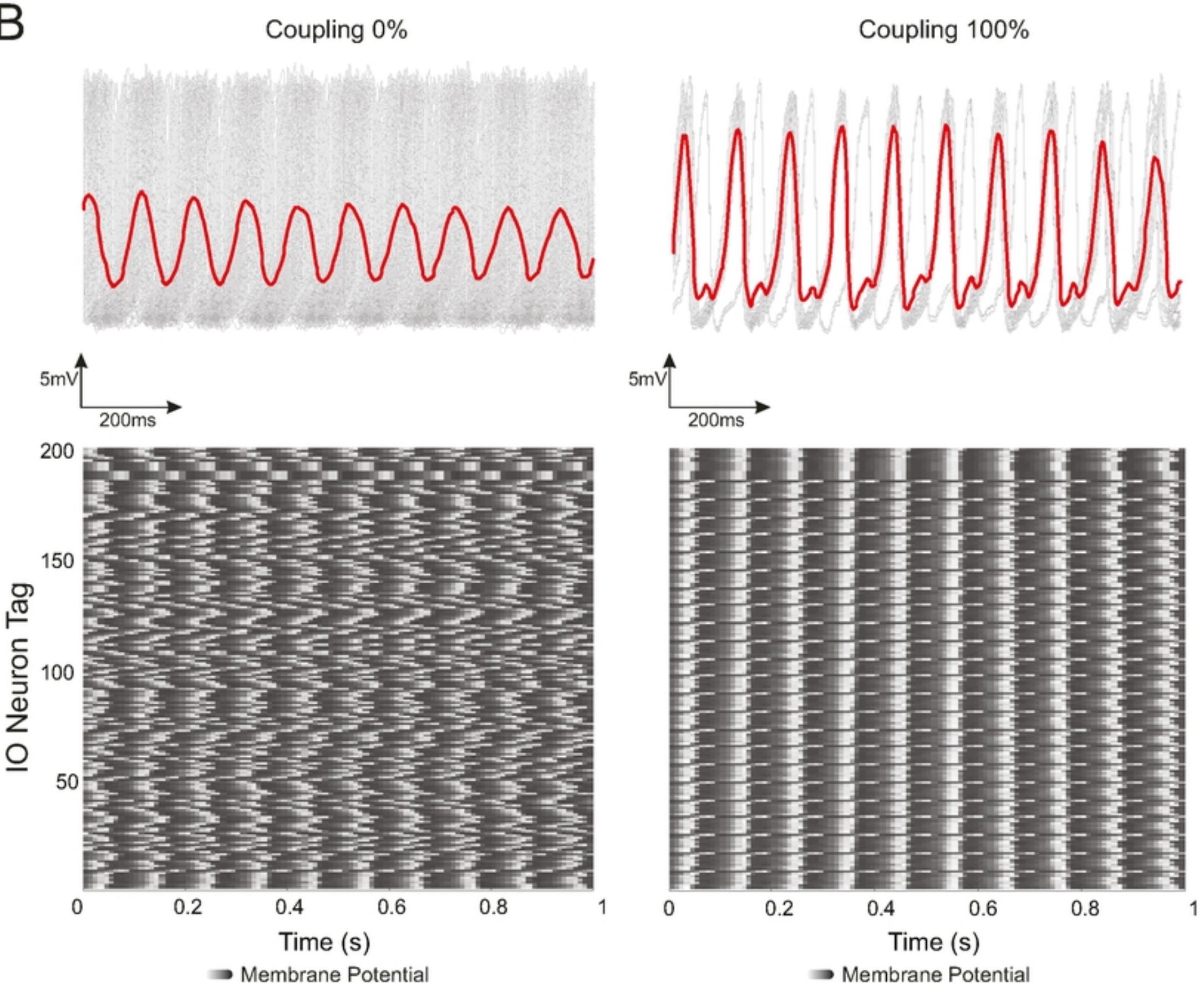
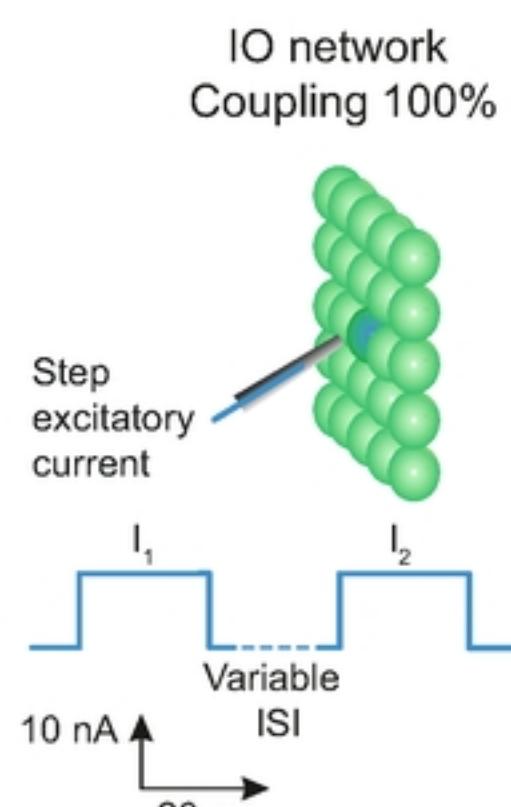


Figure 2

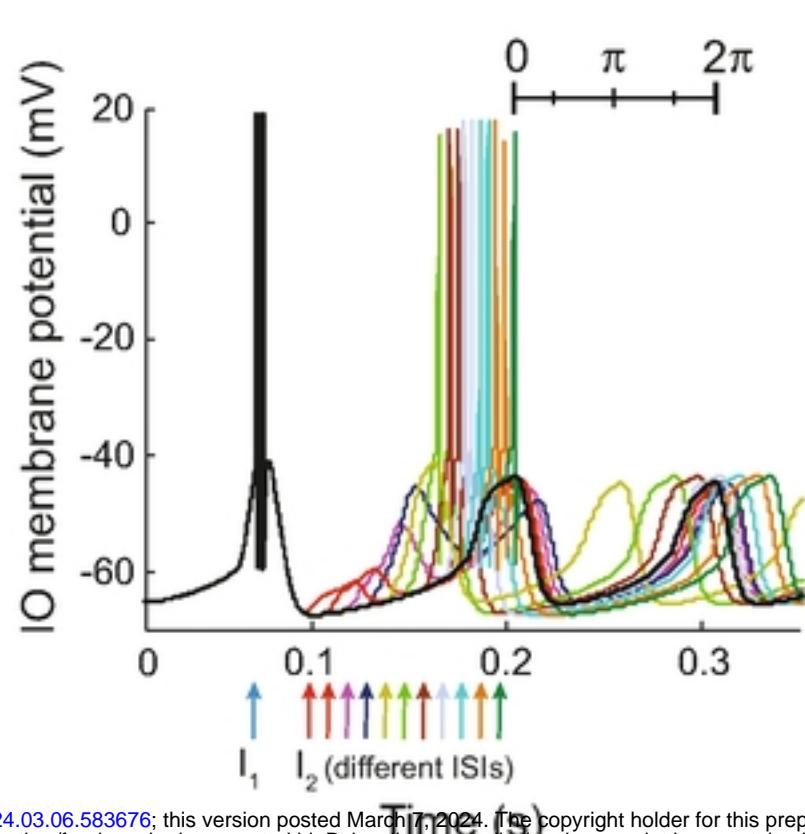
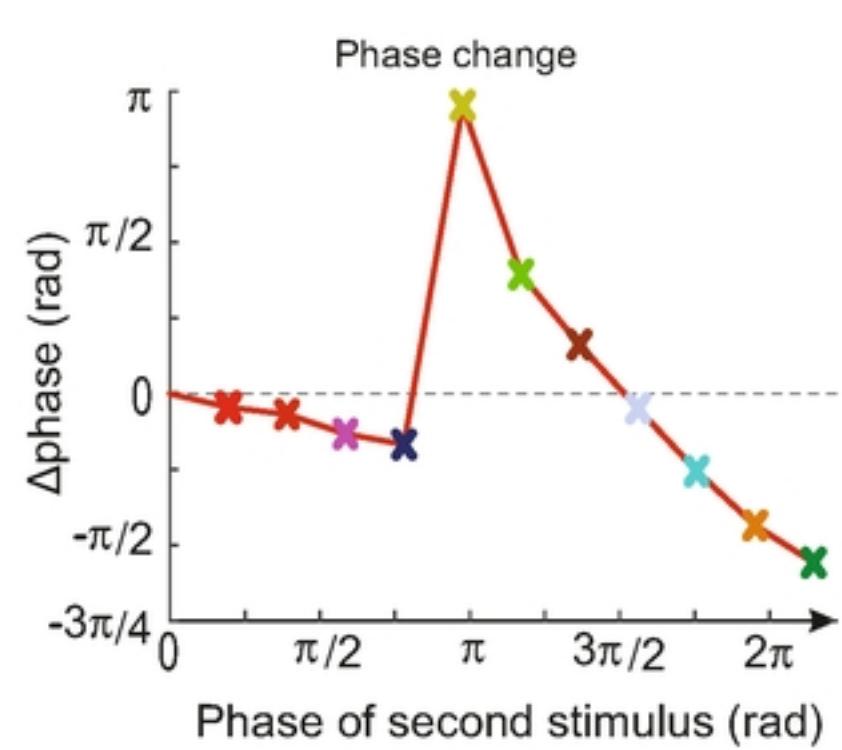
Figure 2

A**B****Figure 3****Figure 3**

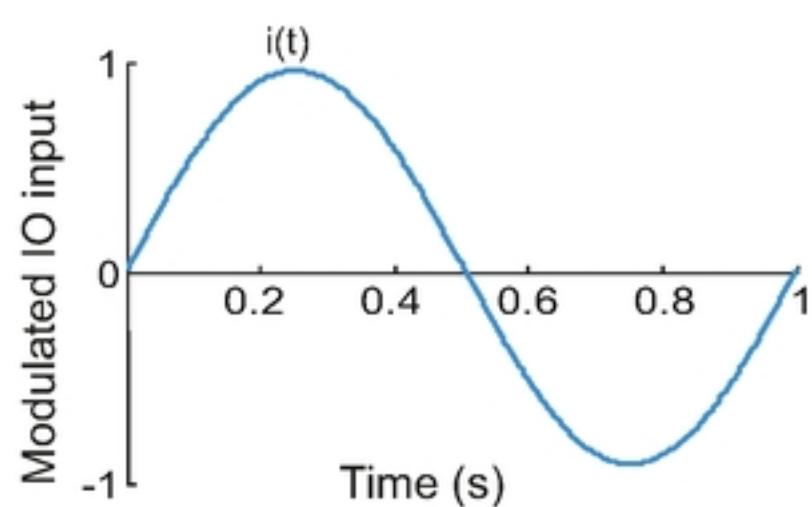
A



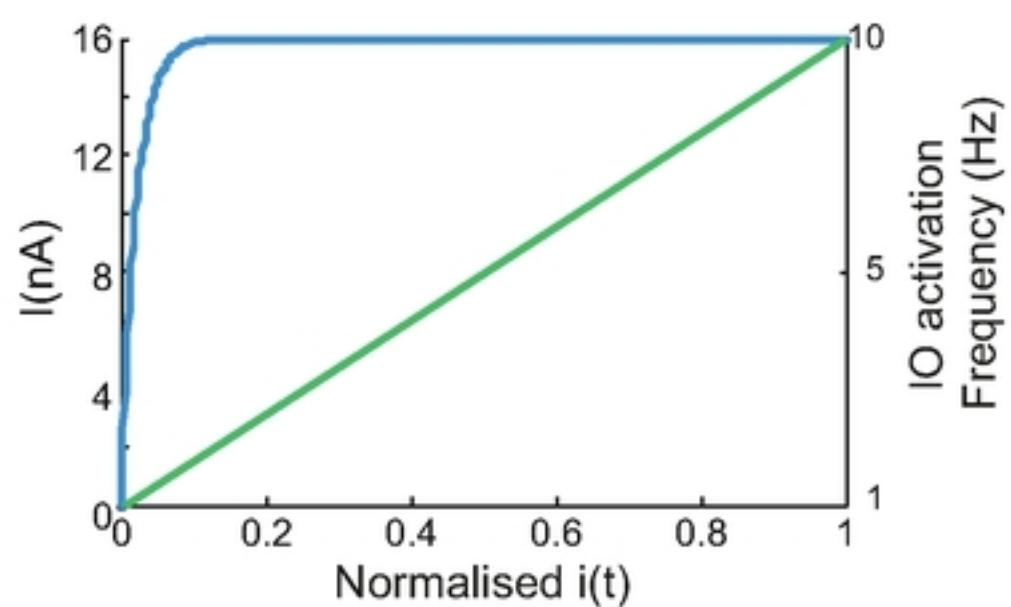
B



C



D



E

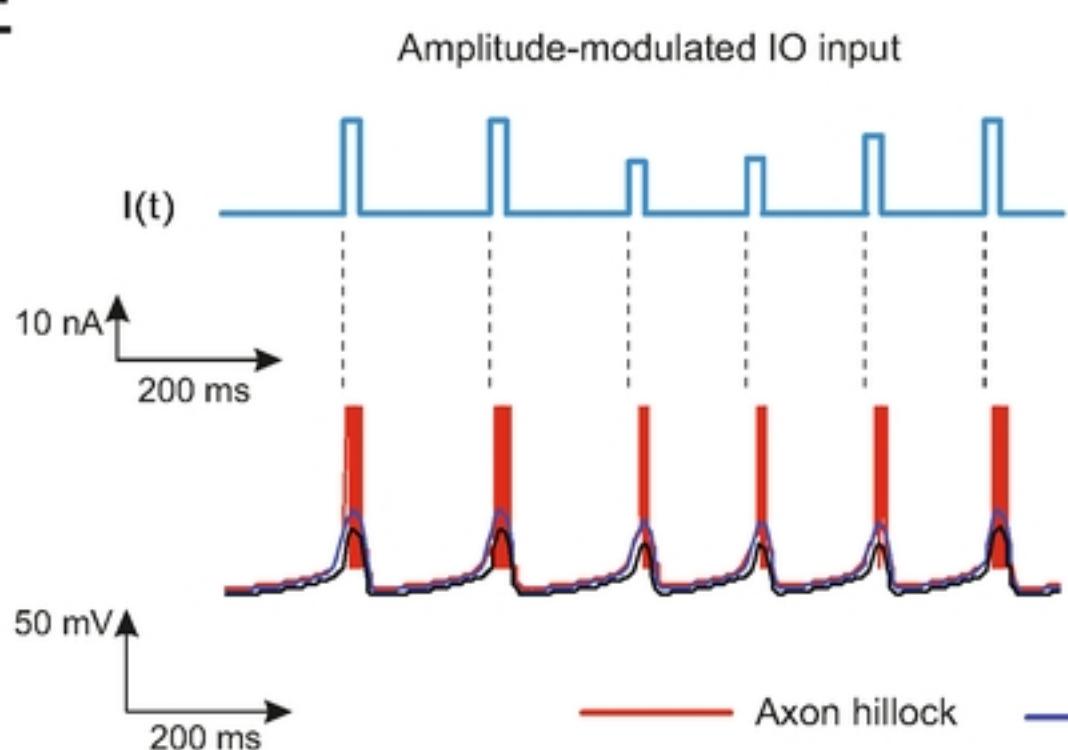
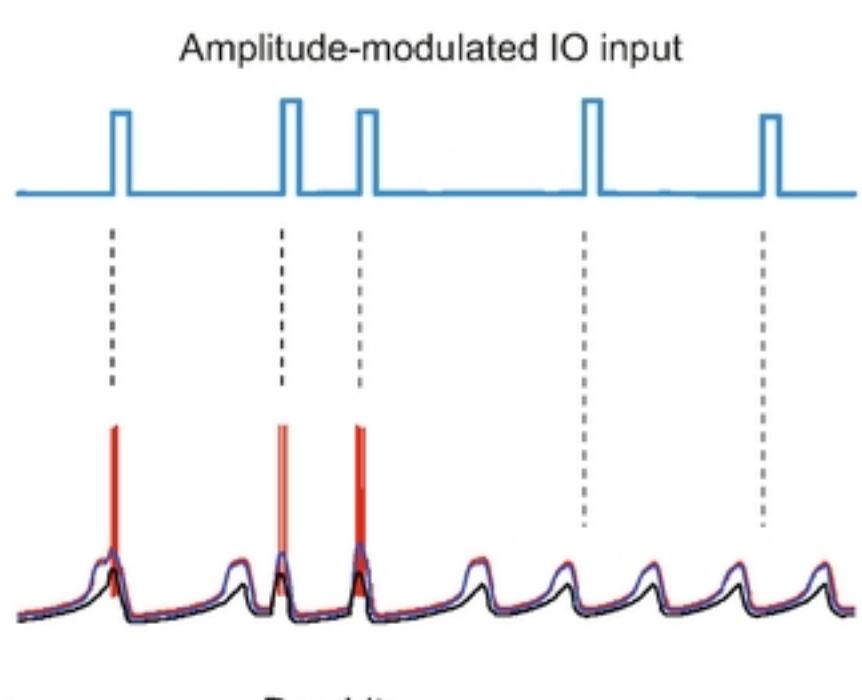


Figure 4

Figure 4

A

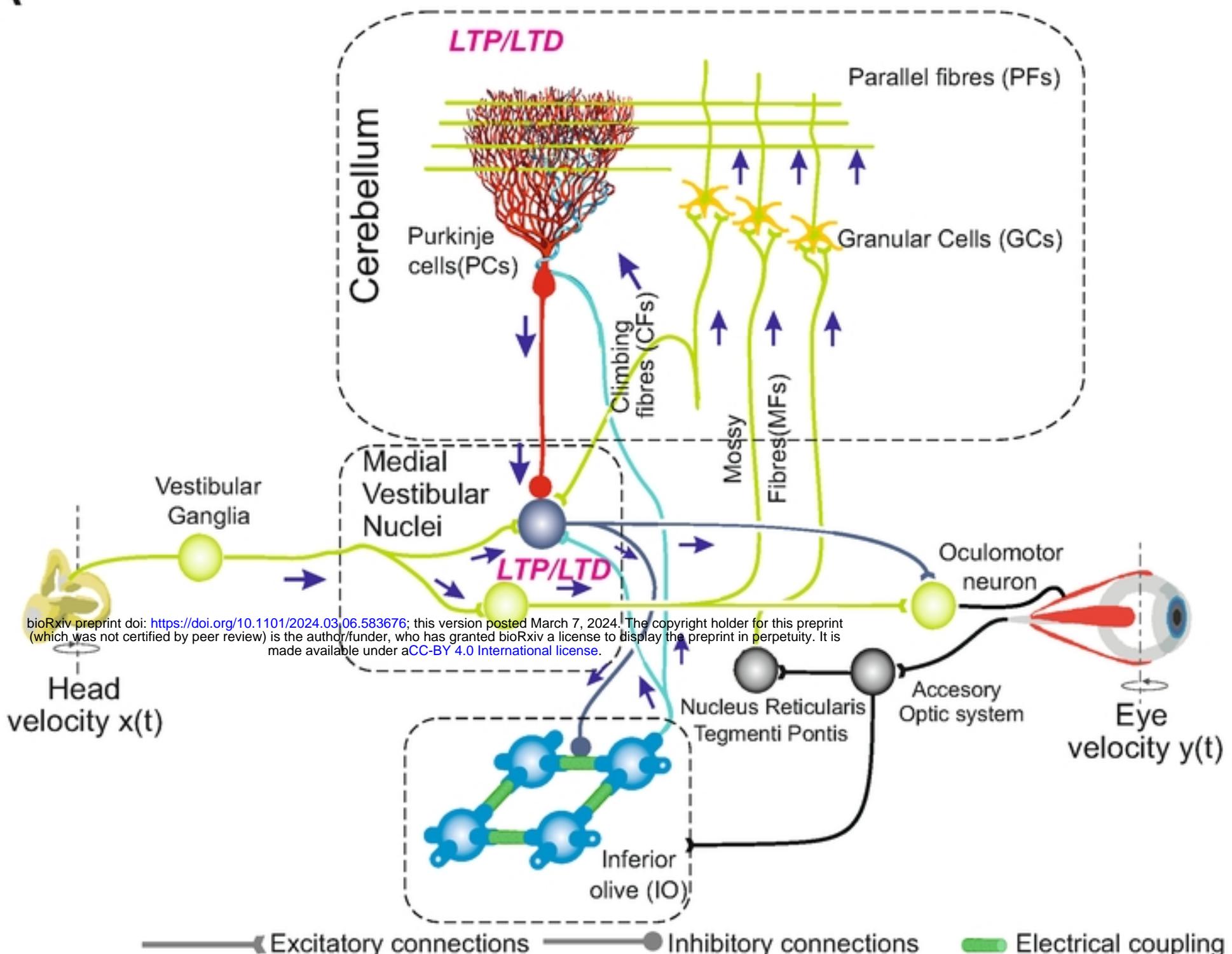
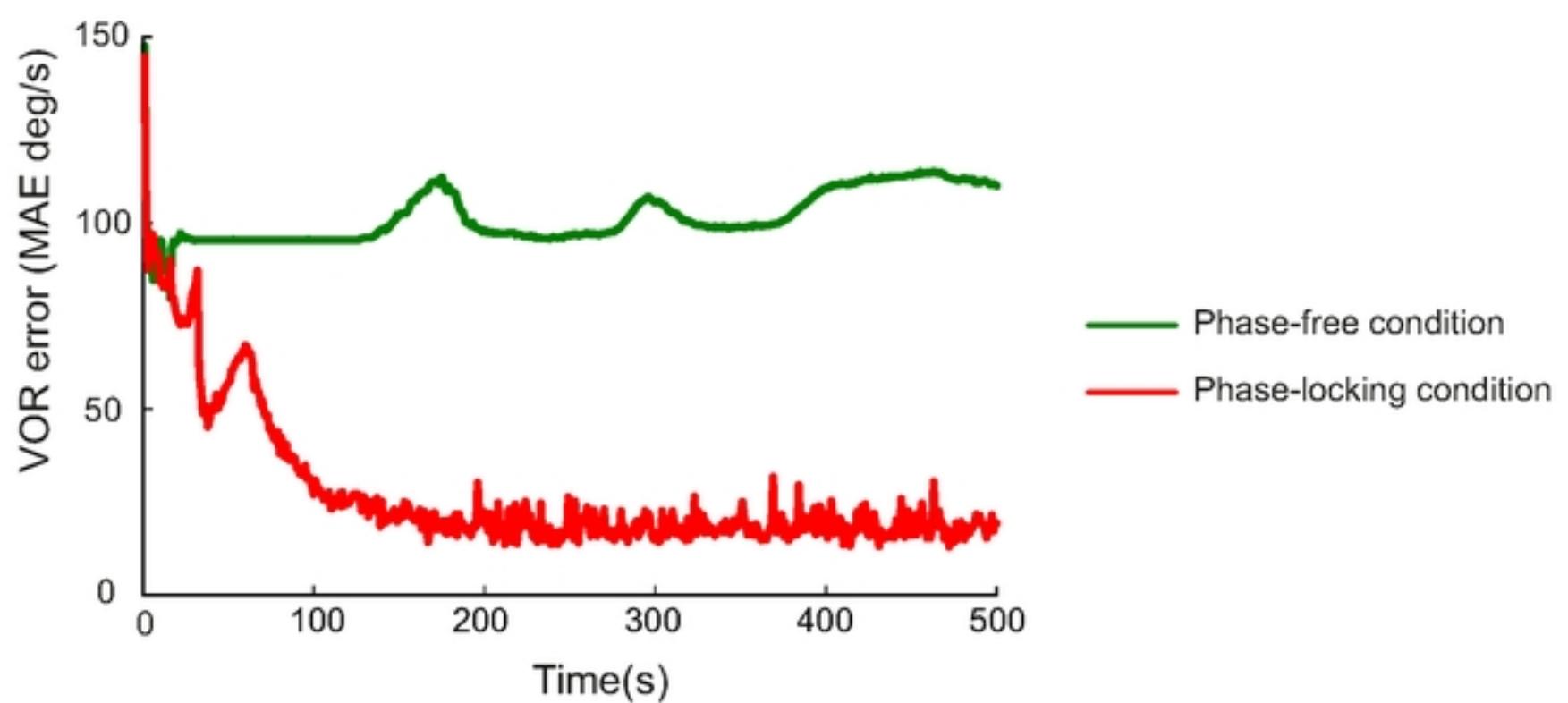


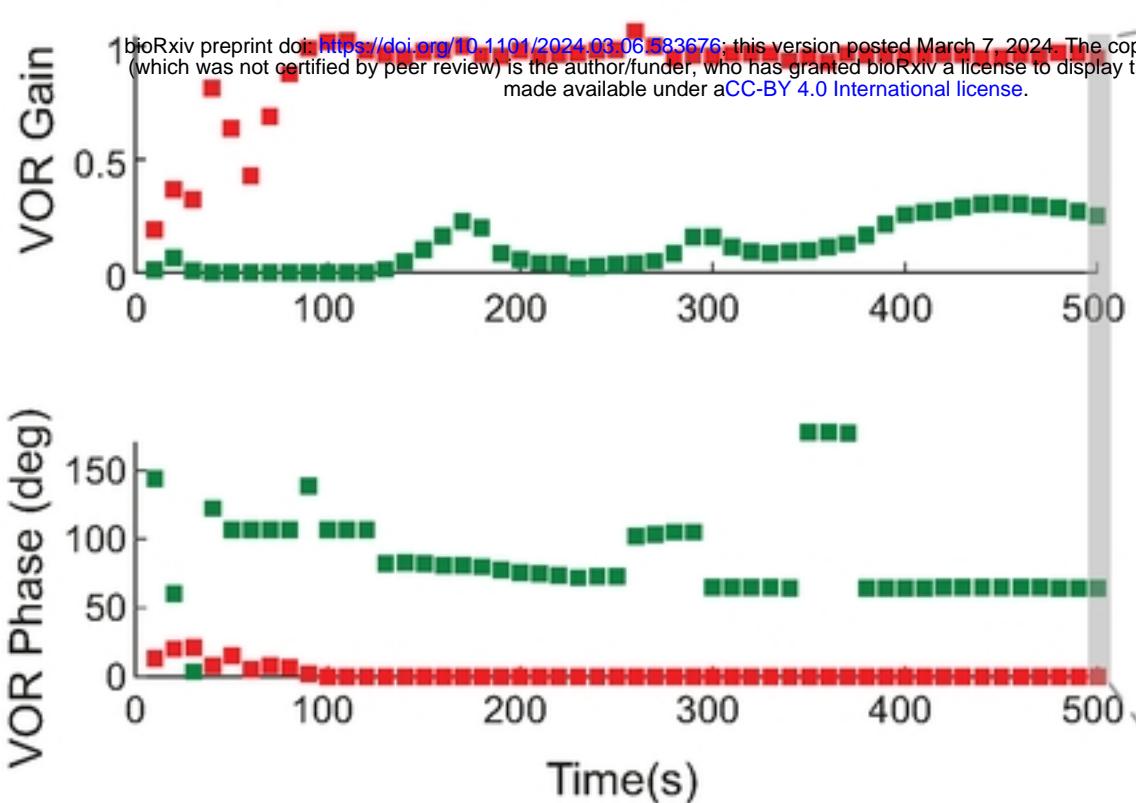
Figure 5

Figure 5

A



B



C

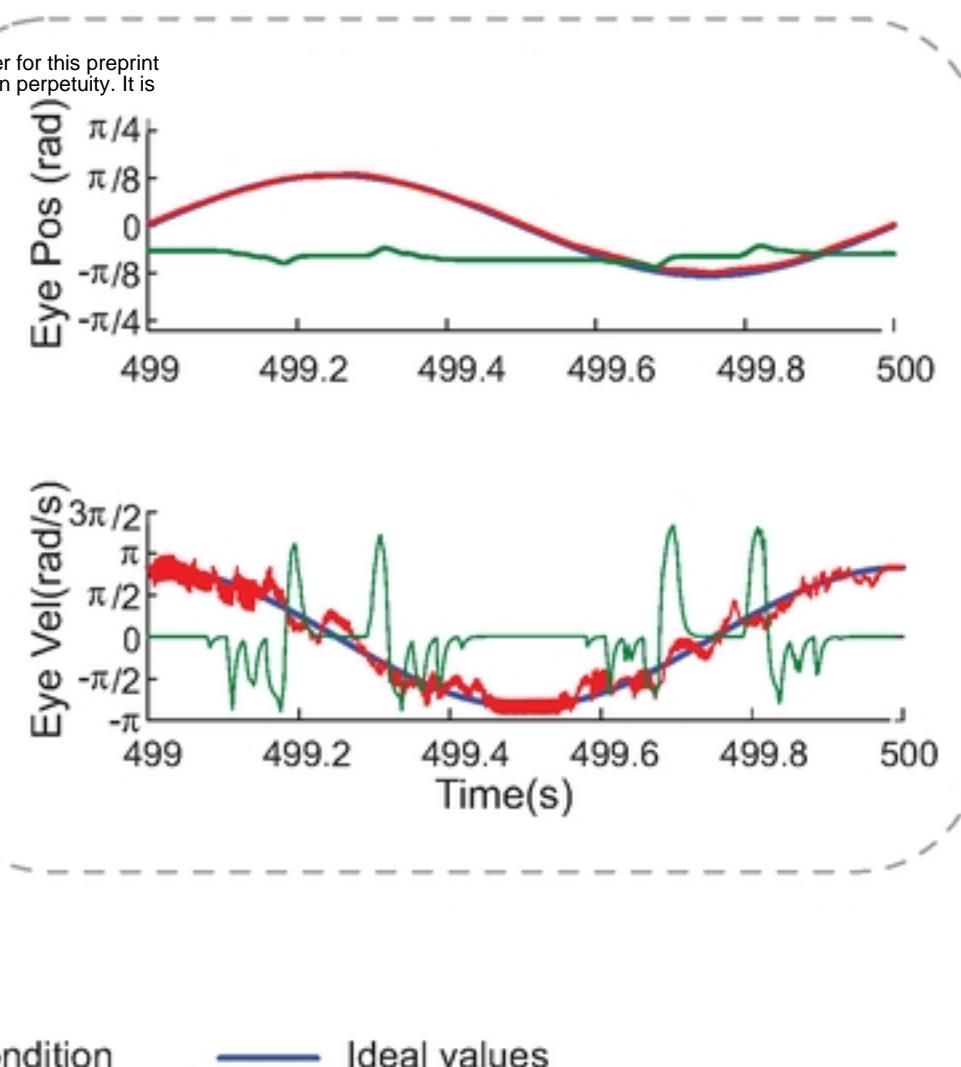
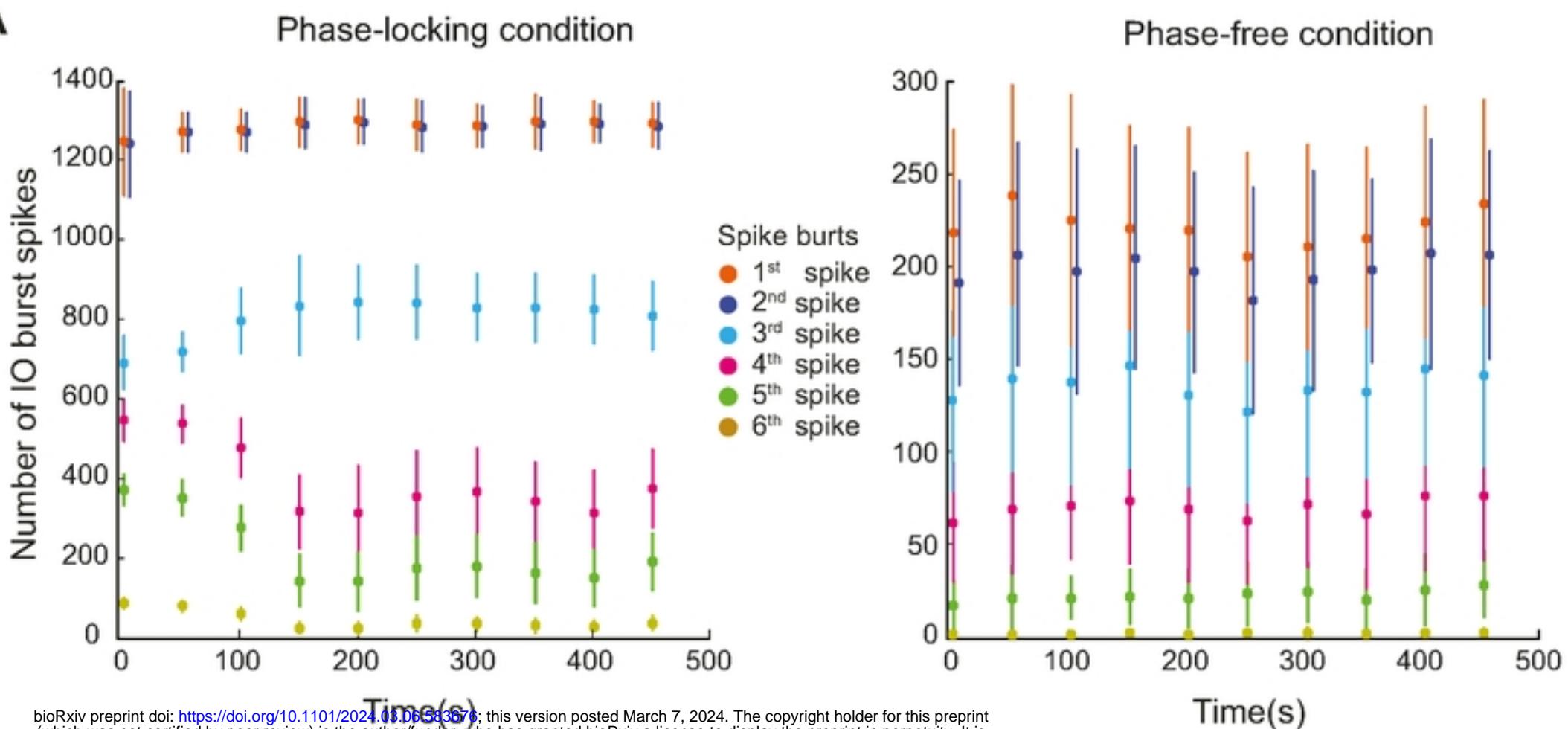


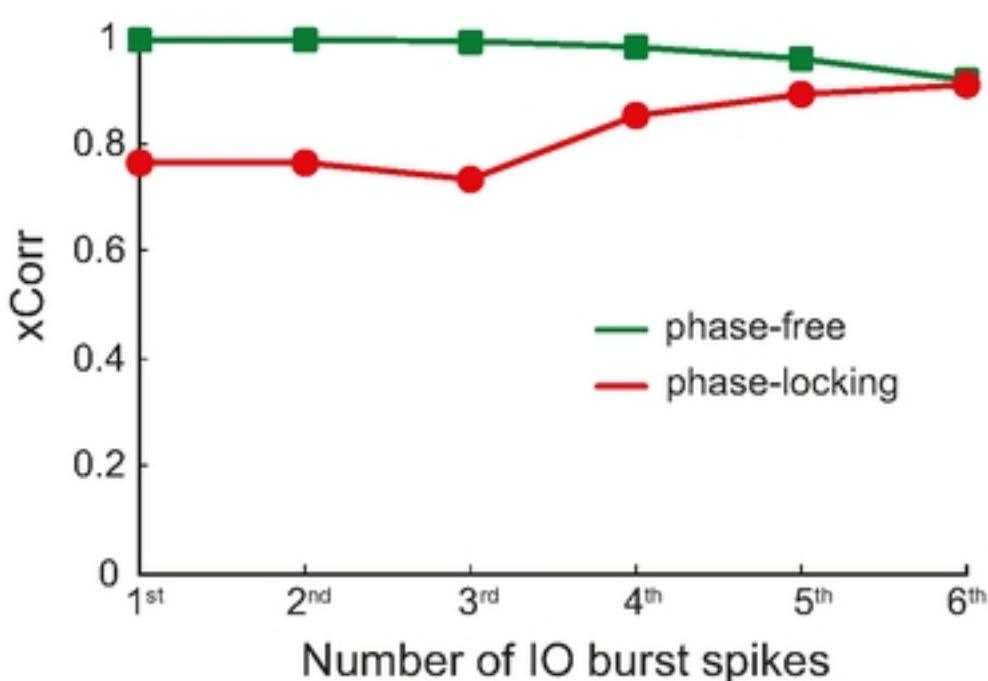
Figure 6

Figure 6

A



B



C

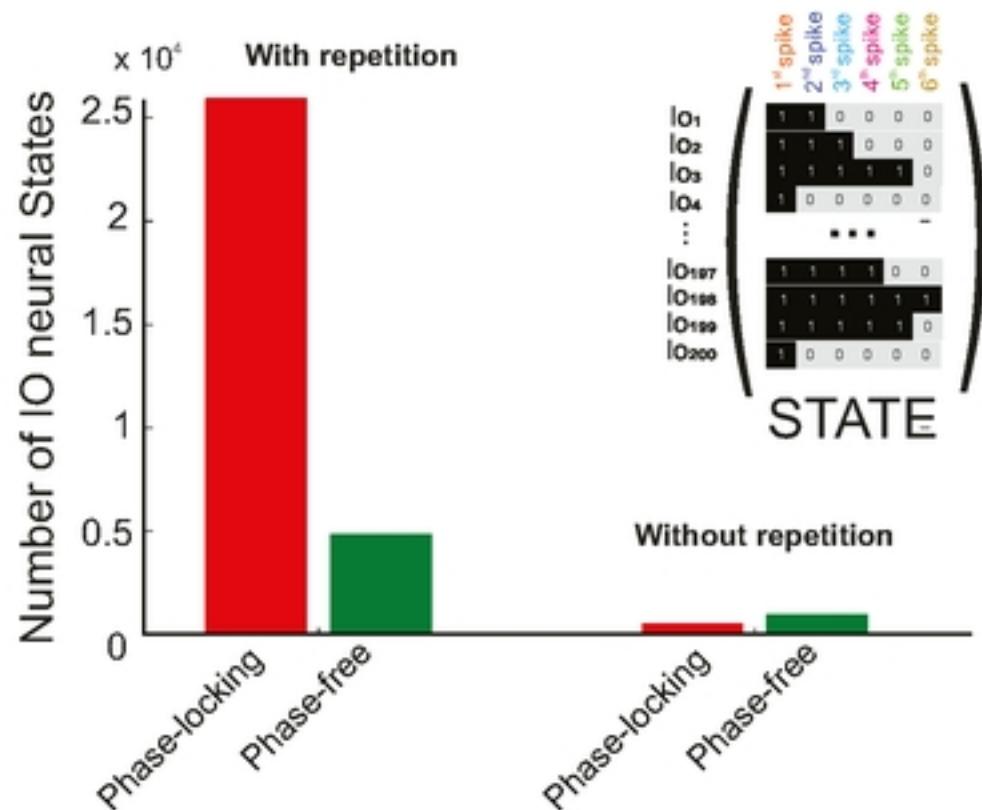


Figure 7

Figure 7

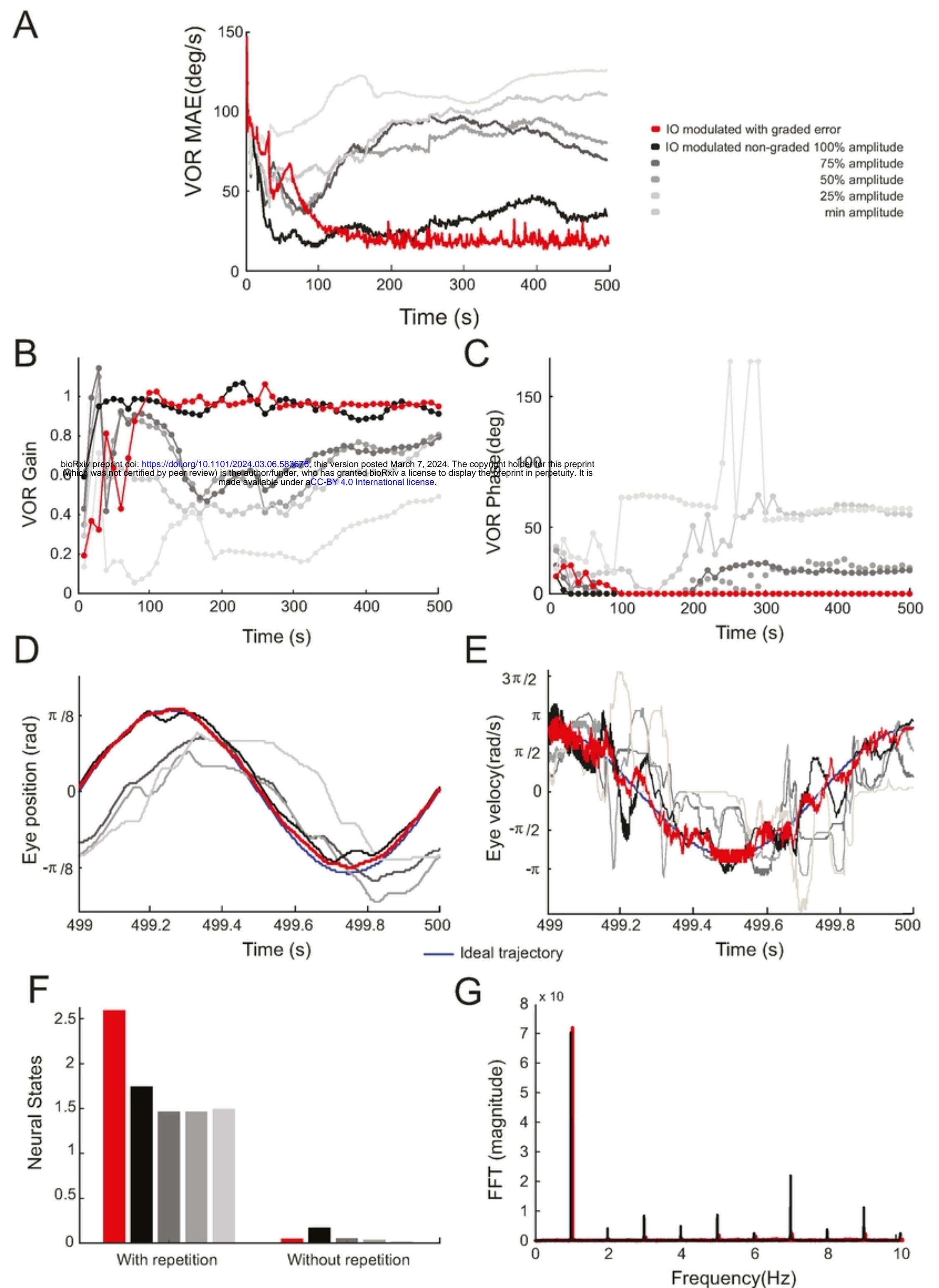


Figure 8

Figure 8

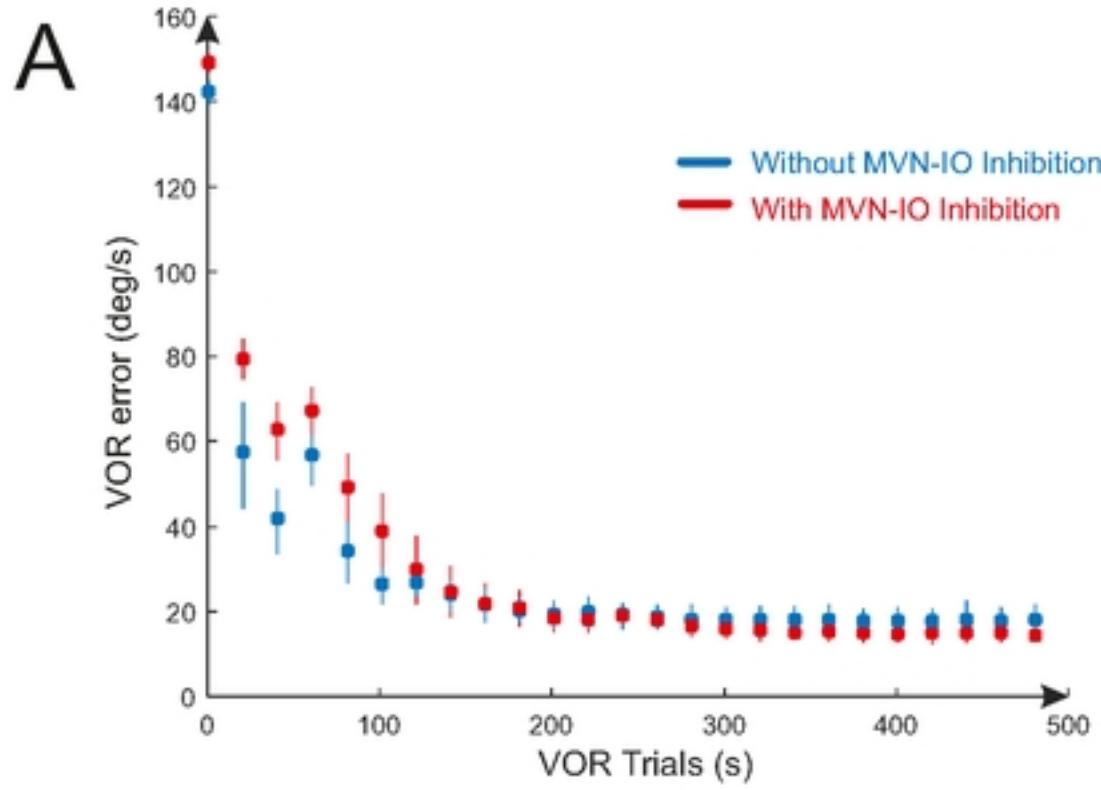
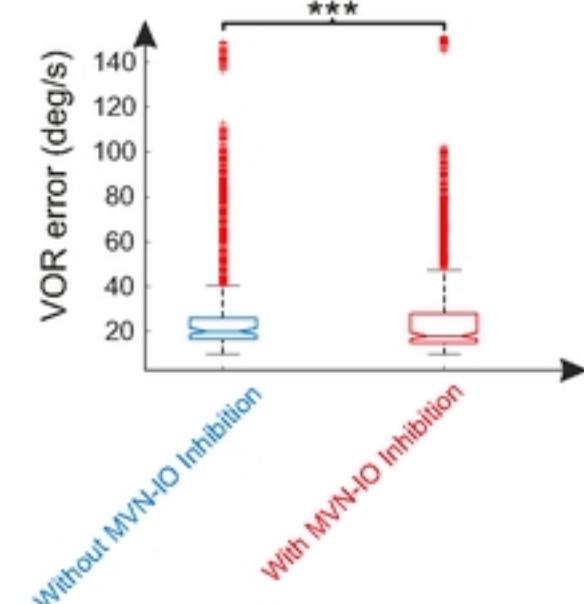
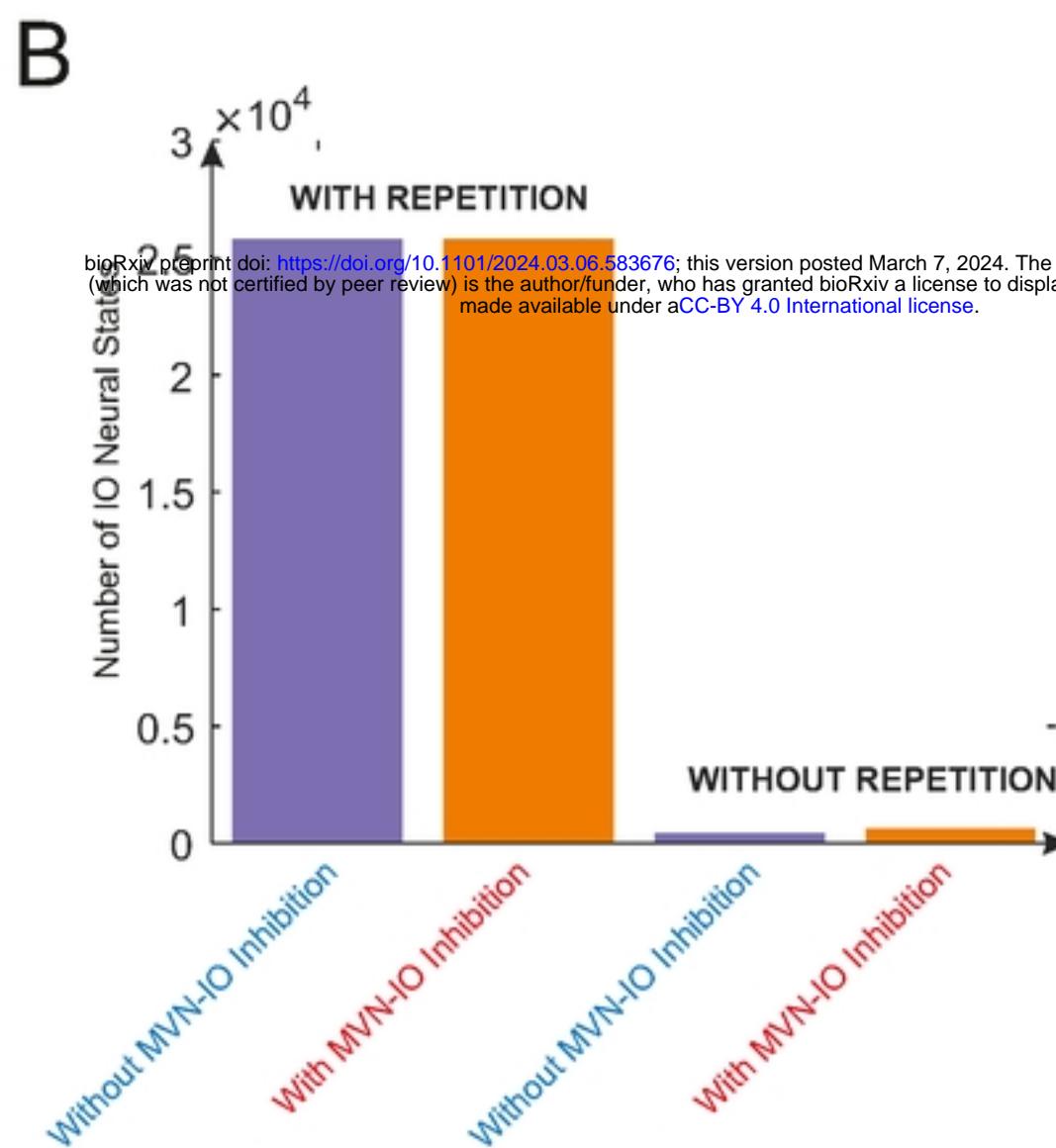
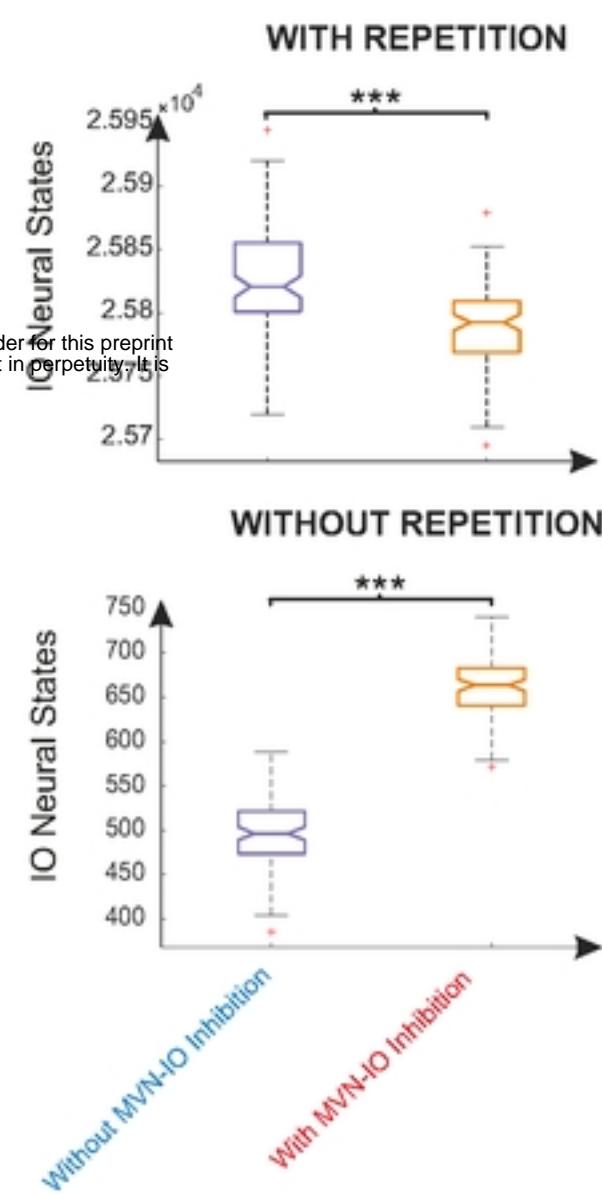
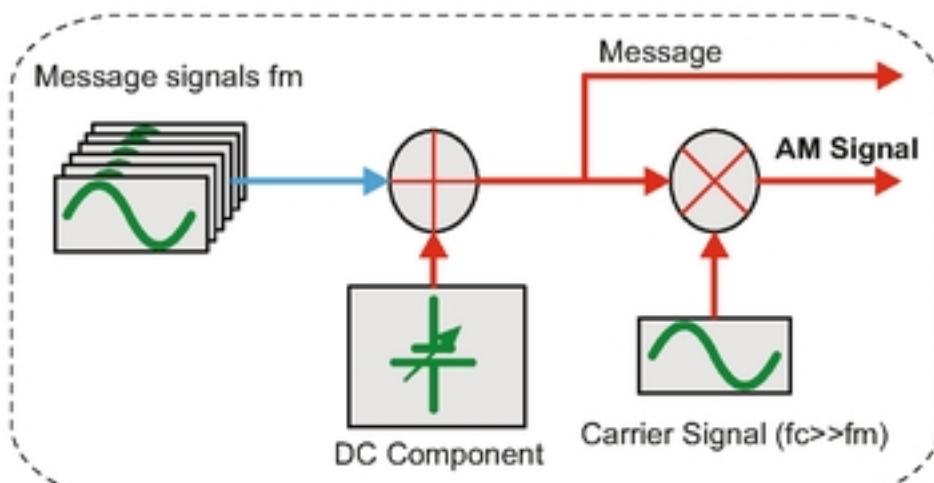


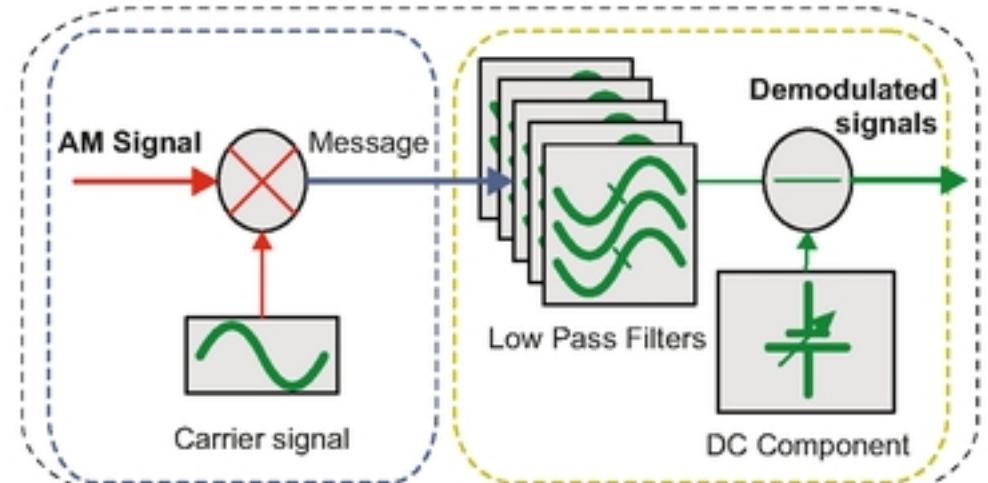
Figure 9

Figure 9

AM ENCODER



AM DECODER



AM ENCODER

bioRxiv preprint doi: <https://doi.org/10.1101/2024.03.06.583676>; this version posted March 7, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Olivary system

Purkinje cells

MVN

Motor neurons

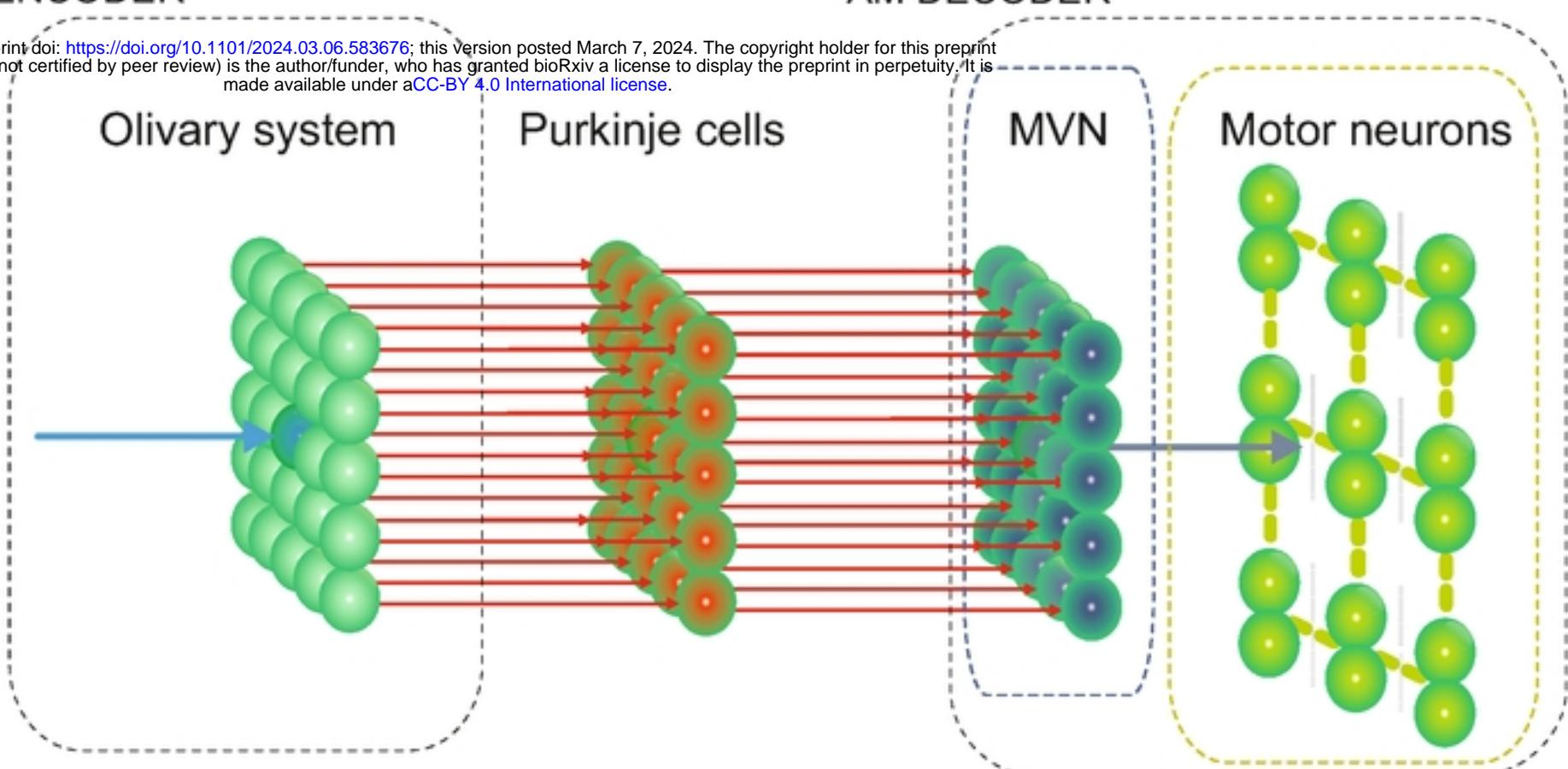


Figure 10

Figure 10