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ABSTRACT  15 

The function of the olivary nucleus is key to cerebellar adaptation as it modulates long term synaptic 16 

plasticity between parallel fibres and Purkinje cells. Here, we posit that the neural dynamics of the inferior 17 

olive (IO) network, and in particular the phase of subthreshold oscillations with respect to afferent 18 

excitatory inputs, plays a role in cerebellar sensorimotor adaptation. To test this hypothesis, we first 19 

modelled a network of 200 multi-compartment Hodgkin-Huxley IO cells, electrically coupled via 20 

anisotropic gap junctions. The model IO neural dynamics captured the properties of real olivary activity in 21 

terms of subthreshold oscillations and spike burst responses to dendritic input currents. Then, we integrated 22 

the IO network into a large-scale olivo-cerebellar model to study vestibular ocular reflex (VOR) adaptation. 23 

VOR produces eye movements contralateral to head motion to stabilise the image on the retina. Hence, 24 

studying cerebellar-dependent VOR adaptation provided insights into the functional interplay between 25 

olivary subthreshold oscillations and responses to retinal slips (i.e., image movements triggering 26 

optokinetic adaptation). Our results showed that the phase-locking of IO subthreshold oscillations to retina 27 

slip signals is a necessary condition for cerebellar VOR learning. We also found that phase-locking makes 28 

the transmission of IO spike bursts to Purkinje cells more informative with respect to the variable amplitude 29 

of retina slip errors. Finally, our results showed that the joint action of IO phase-locking and cerebellar 30 

nuclei GABAergic modulation of IO cells’ electrical coupling is crucial to increase the state variability of 31 

the IO network, which significantly improves cerebellar adaptation. 32 

AUTHOR SUMMARY  33 

This study aims to elucidate the dual functionality of the inferior olive (IO) in cerebellar motor control, 34 

reconciling hypotheses regarding its role as either a timing or instructive signal. Specifically, we explore 35 

the role of subthreshold oscillations (STOs) within the IO, investigating their potential influence on the 36 

climbing fibres-to-Purkinje cell spike pattern responses and subsequent cerebellar adaptation, notably 37 

during the vestibulo ocular reflex. Aiming these objectives, we constructed a detailed olivary network 38 

model within a cerebellar neural network, enabling a mechanistic analysis of the functional relevance of 39 

STOs in spike burst generation, propagation, and modulation within target Purkinje cells. Our findings 40 

reveal the intricate nature of complex spike bursts triggered by climbing fibres—IO axons—into Purkinje 41 
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cell dendrites, demonstrating a hybrid nature involving binary clock-like signals and graded spikelet 42 

components acting as an instructive signal. 43 
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I. INTRODUCTION 45 

The role of the inferior olive (IO) in cerebellum-dependent motor control remains partially understood. IO 46 

is supposed to instruct a signal that triggers the associative synaptic plasticity at parallel fibres - Purkinje 47 

cell (PC) synapses [1]. IO is also hypothesised to provide a timing signal that drives downstream PC outputs 48 

thanks to its membrane potential subthreshold oscillations (STOs) [2-4]. Yet, there is a need to understand 49 

the role of STOs in the generation of IO spiking patterns transmitted to PCs through climbing fibres, (CFs). 50 

It is also necessary to study how STOs determine the neural state of the IO network and, ultimately, 51 

cerebellar adaptive dynamics. 52 

Neighbour IO neurons dendritically contact each other in a glomeruli through which they are electrically 53 

coupled via gap junctions [5]. This electrical coupling enables the propagation of neural activity across the 54 

olivary network. IO internal conductance dynamics generate STOs [6], whose phase is assumed to 55 

determine spike burst responses to excitatory inputs [7, 8]. The STO phase-dependent gating mechanism 56 

can grade the spike burst lengths according to IO input amplitude, thus allowing more than binary “all-or-57 

nothing" patterns to be encoded [9]. Furthermore, inhibitory inputs to the IO glomeruli from the medial 58 

cerebellar nuclei add another piece on the spike bursts generation and propagation jigsaw. These 59 

GABAergic synapses are known to modulate IO gap junctions, by reducing the electrical coupling and thus 60 

the synchrony amongst IO cells [10]. Therefore, IO drives PC complex spikes by weighting its inhibitory 61 

and excitatory inputs, which determines the IO neural activation and synchrony via STO phase-dependent 62 

modulation. This complex mechanism raises the question of how information is processed and transmitted 63 

by the IO network to facilitate cerebellar adaptation and motor control. 64 

To address this question, we simulated a realistic IO network, and we incorporated it within a spiking 65 

cerebellar network. We then used the resulting feedforward control loop system to learn a specific 66 

sensorimotor adaptation task: the prediction of oculomotor commands for the acquisition of the vestibulo-67 

ocular reflex (VOR). VOR counter rotates the eyes with respect to head rotations to stabilise the images on 68 

the retina, thus maintaining the image in the centre of the visual field. VOR has been profusely used as a 69 

model system to test the possible cerebellar role in motor learning [11] and feed-forward control adaptation 70 

[12]. The model presented in this study aims at investigating the functional relevance of olivary STOs in 71 
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terms of spike burst generation, propagation and modulation of PC complex spikes, electrical coupling role 72 

on IO neural coding, as well as the interplay of all those mechanisms during VOR adaptation.  73 

In particular, we postulate that within the olivary system, STOs may serve as neural pattern encoders.  74 

STOs, acting as a master clock within the IO, are phase-locked to the retinal slip signals, thereby finely 75 

regulating the neural response timing for cerebellar motor adaptation. We also test the hypothesis of a dual 76 

role of the IO, serving as both a master clock through STOs and as a graded instructive signal during VOR 77 

adaptation. Importantly, the complex spike (CS) bursts triggered by CF into PC dendrites exhibit a hybrid 78 

nature, combining binary and graded spikelet components. Additionally, we investigate the intricate 79 

interplay amongst inhibitory (GABAergic) and excitatory inputs, as well as electrical coupling within the 80 

IO network, shaping IO neural coding. The modulation of graded CS bursts depending on the retinal slip 81 

amplitude does not require GABAergic action to decrease IO electrical coupling and thereby disrupt olivary 82 

network synchronicity [13, 14]. Yet, we study whether the GABAergic desynchronising action of the 83 

olivary network may play a role in improving rotatory-VOR (r-VOR) adaptation. 84 

II. RESULTS 85 

A. Olivary neural dynamics  86 

1. IO spike burst responses to excitatory dendritic inputs  87 

We implemented each IO cell as a Hodgkin-Huxley model with 3 compartments: somatic, axonal, and 88 

dendritic (Fig 1A left; see Methods). The neuronal IO model reproduced the spike burst activity of real 89 

olivary cells in response to dendritic step current injections (Fig 1A centre) [15, 16]. It also captured the 90 

linear relation between the number of burst spikes and the amplitude of the excitatory synaptic input current 91 

(Fig 1A right).  92 

We considered an IO network consisting of 200 biophysically modelled cells embedded in a lattice 93 

arrangement (Fig 1B) [17]. Each IO dendrite was electrically coupled to 4 dendrites from nearby neighbour 94 

cells [17] via anisotropic gap junctions (i.e., directional electrical coupling, [7]) that could vary between 0 95 

to 100%. We first tested the burst propagation between a pair of electrically coupled IO cells. The protocol 96 
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involved the injection of a positive step current into one IO neuron (the left cell in Fig 1C), and the recording 97 

of the membrane potentials from both cells. A 100% coupling ensured a complete burst transmission from 98 

one IO cell to the other within 1-2 ms (Fig 1C). Second, we studied burst propagation across the entire 99 

network of 200 IO cells (Fig 1D). An excitatory step current was synchronously injected into a subset of 100 

central IO neurons, and we studied burst propagation as a function of the input current amplitude, whilst 101 

fixing the electrical coupling at 100%. We measured the cumulative distribution functions relative to the 102 

propagation of each burst spike, and we found a normal distribution with first spike: (µ, σ) ≈ (4 nA, 0); 103 

second spike: (µ, σ) ≈ (5 nA, 0.1); third spike: (µ, σ) ≈ (9 nA, 0.2); fourth spike: (µ, σ) ≈ (11.5 nA, 0.4) (Fig 104 

1D). Therefore: an input current of 4 nA was sufficient to elicit 1 spike per burst across the entire 200 cell 105 

network; amplitudes larger than 13 nA elicited 4 spikes per burst (i.e., a complete burst propagation) across 106 

the entire network; and intermediate input amplitudes generated the propagation of intermediate IO spike 107 

burst lengths. 108 

****************************************************** 109 

[----------------- Figure 1: Placeholder -----------------] 110 

****************************************************** 111 

Fig 1|. Electrophysiological properties of the HH IO model and the olivary network. (A) Schematic 112 

representation of the three-compartmental HH IO model used. The compartments represent the axon 113 

hillock, the soma, and the dendrite. To modulate the spike burst, a depolarising step current is applied to 114 

the dendritic compartment (black line), which exhibits a slow depolarization. The somatic compartment 115 

(green line) responds with a slow depolarization, whilst the axon hillock (red line) exhibits fast sodium 116 

responses to the somatic depolarisation, resulting in a burst of spikes. Regulating the amplitude of the 117 

depolarising step current applied to the dendritic compartment allows for the modulation of the number of 118 

spikes within the burst experienced by the axon hillock. The number of spikes within the burst increases 119 

linearly with the amplitude of the depolarising step current applied (R2: 0.891, p < 1 x 10^-10), enabling 120 

a graded codification that goes beyond the all-or-nothing IO learning paradigm [9, 18]. (B) The left-hand 121 

side plot depicts an IO network consisting of 200 three-compartment Hodgkin-Huxley (HH) inferior olive 122 

(IO) neurons arranged in a 3D lattice configuration with dimensions of 10 x 10 x 2 microzones. Each 123 

olivary microzone is a 10 x 10 x 1 subunit, and they are electrically coupled via gap junctions. The figure 124 
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illustrates the electrical connectivity scheme for the 100 IO neurons within each microzone. The colour 125 

grading in the figure represents gap junctional interconnections within the lattice arrangement, where each 126 

neuron in the model is electrically connected only to its closest neighbours. The right-hand side plot depicts 127 

an example of axon hillock membrane potential traces during burst propagation due to IO-to-IO electrical 128 

coupling. A 10nA depolarising step current is applied for 20ms to the dendritic compartment of the left-129 

hand side IO whilst maintaining maximal coupling strength, i.e., fully open gap junctions. The transmitted 130 

dendritic depolarised current via electrical coupling ensures the entire burst propagation (axon hillock 131 

membrane potential) to the right-hand side IO neuron in almost no time (microsecond scale). (C) IO 132 

neurons located at the centre of each 5 x 5 square within the lattice arrangement receive an instructive 133 

input signal. This input signal simultaneously reaches a subset of 5x5 neurons each time we simulate the 134 

activation of glutamate receptor channels. Burst propagation within the entire network depends on the 135 

effectiveness of the coupling. A graded [0-14nA] depolarising step current, applied for 20ms, reaches the 136 

dendritic compartment of the central IO neuron in all subsets of 5x5 neurons in the lattice olivary network, 137 

maintaining 100% effective coupling. Varying the current amplitude modulates the length of the burst. A 138 

14nA depolarising step current, when coupled with 100% effectiveness, ensures the maximum burst length 139 

to be fully transmitted within the olivary network. Intermediate current amplitudes modulate the number of 140 

spikes within the burst spikelet that are transmitted. 141 

 Then, we studied burst propagation across the IO network as a function of the electrical coupling strength. 142 

We considered an inhibitory input to the entire IO network to modulate the electrical coupling from 0% to 143 

100% (Fig 2A). Given a fixed excitatory input current (15 nA), the strength of the electrical coupling 144 

significantly influenced the spike burst transmission across the network. Full burst propagation was 145 

guaranteed by a coupling strength higher than 85%, whereas, only 3 out of 4 spikes were propagated with, 146 

for instance, a 40% coupling (Fig 2B). The coupling strength also influenced the burst propagation time: a 147 

100% coupling allowed for a full burst propagation through the entire IO network within 14 ms, whereas 148 

progressively lower levels of electrical coupling hindered the timing of burst propagation along with the 149 

number of spikes propagated (Fig 2C).  150 

 151 

 152 
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****************************************************** 153 

[----------------- Figure 2: Placeholder -----------------] 154 

****************************************************** 155 

Fig 2| IO burst propagation properties via electrical coupling. (A) The schematic illustrates the simulation 156 

protocol, wherein a 10nA depolarising step current is applied for 20ms to the dendritic compartment of the 157 

central IO neuron in all subsets of 5x5 neurons within the lattice olivary network synchronously. The 158 

effectiveness of coupling is modulated to control burst propagation across the entire network. (B) Effective 159 

coupling varies from 0 to 100%, whilst observing IO bursts throughout the entire network. A 100% effective 160 

coupling ensures that the burst length is propagated within the lattice arrangement, whereas a 0% effective 161 

coupling leads to singular IO neural activations. Intermediate levels of effective coupling values act as 162 

regulators, influencing the transmission of burst length within the olivary network. (C) A 100% effective 163 

coupling enables the entire burst to propagate within 14 milliseconds. Reducing the coupling to 50% 164 

partially affects propagation, starting from the 4th spike within the spikelet and spanning the entire 165 

network. With a 10% effective coupling, transmission is affected from the 3rd spike within the spikelet 166 

across the entire network. 167 

2. IO subthreshold oscillations (STOs) and transmission of 168 

excitatory dendrite inputs  169 

The IO neuronal model reproduced the subthreshold oscillation (STO) inner dynamics of real olivary cells 170 

[19-21], with a frequency of ~10 Hz and an amplitude of ~ 20 mV (Fig 3A). In the model (see Methods), 171 

during the hyperpolarisation phase, the somatic current Ik mediated by the K+ slow component channel 172 

dominated the initial rising of the IO membrane potential (red part in Fig 3A). From there, the somatic 173 

current Ica (in blue), mediated by the calcium low threshold channel, a Ca2+-dependent K+ channel, further 174 

increased the membrane potential driving the hypopolarisation phase. Hereafter, either the STO continued 175 

(first circle) or a spike was generated (second circle), mediated through the INa and IK currents at the olivary 176 

axon (green and purple lines, respectively). Then, the STO enters into its repolarisation phase thus resuming 177 

the oscillation cycle (Fig 3A). At the level of the IO network, our results confirmed that the electrical 178 
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coupling amongst IO cells is essential to the synchronicity of STOs, but not their overall frequency (Fig 179 

3B) [7].  180 

****************************************************** 181 

[----------------- Figure 3: Placeholder -----------------] 182 

****************************************************** 183 

Fig 3| IO Subthreshold oscillations (STOs) within the olivary lattice arrangement and the impact of 184 

electrical coupling on the STO phase. (A) During hyperpolarisation, somatic current Ik (slow K+ channel) 185 

initiates the rise in IO membrane potential (in red). Subsequently, somatic current Ica (in blue) (low-186 

threshold calcium channel and Ca2+-dependent K+ channel) enhances the depolarisation phase. This 187 

leads to either continued subthreshold oscillation (STO) or spike generation, mediated by INa and IK 188 

currents in the olivary axon (green and purple lines). The STO then transitions into repolarisation, 189 

restarting the oscillatory cycle. (B) STO frequency is shown for both electrically uncoupled (reducing 190 

coupling to 0%) and fully coupled (100% coupling) olivary network, revealing that overall frequency 191 

remains constant, with changes observed only in oscillation synchronicity. Coupling amongst IO neurons 192 

in the lattice arrangement transforms non-synchronous into synchronous oscillations. In the upper panels, 193 

the mean voltage of the coupled and uncoupled 200 IO network is depicted, whilst the lower panels provide 194 

a top-down view of the overall STO membrane potential of the IO network. 195 

We studied the modulation of the STO phase by stimulating the centre of the IO network by a sequence of 196 

two excitatory inputs (Fig 4A). We sought to understand to what extent the relative timing of the two inputs 197 

(i.e., the interstimulus interval, ISI) would modulate (or possibly reset) the phase of IO STOs. We found 198 

that if the two inputs were delivered during different STO phases, they would cause either IO phase 199 

advances or delays (Fig 4B). When the second stimulus arrived during a hyperpolarisation period, it caused 200 

a delay in the STO phase between (0 – π). If the second stimulus arrived during hypopolarisation-201 

depolarisation, it had the opposite effect, causing an advance in the phase between (π – 3π/2). Finally, when 202 

the second stimulus occurred during repolarisation, it caused again a delay in the phase between (3π/2 - 2π) 203 

(Fig 4B). Hence, a poor modulation or a reset of the STO phase could either partially or totally block the 204 

IO burst response to a sequence of excitatory synaptic inputs. The STOs thus provided a time-window 205 
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gateway for the transmission of excitatory dendrite inputs occurring during either the IO hypopolarisation 206 

or the depolarisation time period. 207 

So far, only excitatory inputs with a fixed amplitude were considered. We therefore sought to study how 208 

amplitude-modulated inputs were transmitted by the IO network as a function of STOs’ phase. Again, we 209 

delivered sequences of excitatory inputs onto the centre of the IO network. However, the amplitude of these 210 

inputs was modulated according to a sinusoidal curve (Fig 4C). The injected step current was taken 211 

according to a probabilistic Poisson process, by comparing the sinusoidal function i(t) with a random 212 

number η(t) between 0 and 1. A positive input step current was injected at the centre of the IO network 213 

when i(t) > η(t). The amplitude of the step current increased with the instantaneous |i(t)| value (Fig 4D), 214 

whilst its length remained fixed. When the step stimuli were well-timed with the hypopolarisation-215 

depolarisation phases (STO phase locking with respect to the temporal input), the IO was able to properly 216 

encode and transmit the graded afferent signal properly (i.e., the length of IO burst responses reflected the 217 

amplitude of the input) (Fig 4E left). This was not the case in the absence of STO phase locking (Fig 4E 218 

right). IO responses were constrained to be below 10 bursts per second, consistently with those observed 219 

in neurophysiological recordings [22]. 220 

****************************************************** 221 

[----------------- Figure 4: Placeholder -----------------] 222 

******************************************************   223 

Fig 4| Modulation of subthreshold oscillation phase through sequential input instructive signals. (A) The 224 

schematic outlines the simulation protocol, involving the synchronous stimulation of the central IO neuron 225 

in all subsets of 5x5 neurons within the lattice olivary network. This stimulation maintains 100% effective 226 

coupling and is achieved using a depolarising current composed of a sequence of two stimuli, each with an 227 

amplitude of 14 nA during a 20 ms duration. Phase modulation was explored by varying the inter-stimulus 228 

interval (ISI) within the step sequence of the input instructive signal. (B) The left-hand side plot depicts the 229 

average membrane potential at the axon hillock of IO neurons within the lattice was plotted whilst varying 230 

the ISI [0 - 2π]. The right-hand side plot depicts STO phases in the olivary network responding to a variable 231 

ISI [0 - 2π] input signal. An early inter-stimulus occurring during the IO hyperpolarisation phase resulted 232 
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in a phase delay within the range of (0 - π). Conversely, a late inter-stimulus occurring during the 233 

hyperpolarisation-depolarisation phase led to a phase advance within the range of (π - 3π/2). Finally, an 234 

inter-stimulus occurring during the repolarisation phase caused another phase delay within the range of 235 

(3π/2 - 2π). (C) Sinusoidal input curve mimicking retinal slip during r-VOR adaptation. (D) The Input 236 

current (depicted in blue) - Frequency (shown in green) IO Curve is used to generate temporal sequences 237 

of depolarising step current input stimuli for encoding retinal slip during VOR adaptation. The external 238 

input activity representing retinal slip sampling by IO activations follows a probabilistic Poisson process. 239 

In this process, the central IO neuron in all subsets of 5x5 neurons within the lattice olivary network is 240 

activated in the range of [1 - 10 Hz], where 1 and 10 Hz correspond to the minimum and maximum retinal 241 

slip values, respectively. Based on the normalised retinal slip signal i(t) (on the x-axis) and a random 242 

number η(t) ranging from 0 to 1, the central IO neuron in all subsets of 5x5 neurons within the lattice 243 

olivary network receives a depolarising step current. The amplitude of this current depends on the actual 244 

retinal slip amplitude when i(t) > η(t)  i.e., the larger the retinal slip, the greater the amplitude of the input 245 

depolarising step current. (E) The upper panels illustrate two sets of temporal sequences of depolarising 246 

step currents used to encode the sinusoidal curve that simulates the retinal slip during r-VOR adaptation. 247 

The lower panels display the temporal evolution of voltage at the axon hillock, soma, and dendrite of the 248 

central IO neuron within a subset of 5x5 neurons. On the left-hand side, IO STO phase-locking is activated, 249 

meaning that retinal slip signalling is aligned with the IO hyperpolarization-depolarization STO phase, 250 

resulting in more precise sampling of the sinusoidal curve, i.e., no depolarising step current is lost. In 251 

contrast, on the right-hand side, an IO STO phase-free modulation is shown, where retinal slip signalling 252 

can occur at any time. In this case, several depolarising step currents are lost, and the spike burst lengths 253 

are diminished. 254 

B. Phase-locking of IO oscillations during r-VOR adaptation   255 

1. Cerebellar model for r-VOR adaptation  256 

The IO network was integrated into a large-scale cerebellar model to learn r-VOR through adaptive feed-257 

forward control (Fig 5; see Methods). We simulated a 1 Hz sinusoidal head rotation protocol (i.e., within 258 
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the natural head rotation range of 0.05-5 Hz, [23]). The cerebellar model had to learn to move the eyes 259 

contralaterally with respect to the head rotation in order to minimise retina slips errors (i.e., the difference 260 

between actual and target eye movements, Fig S1).  261 

During head rotation, a population of 100 mossy fibres (MFs) encoded the primary vestibular inputs 262 

signalling head velocity to the cerebellar network. MFs projected excitatory afferents onto 200 medial 263 

vestibular nuclei (MVN) and 2000 granular cells (GCs). GCs expanded the coding space of MFs inputs 264 

[24] into 200 Purkinje cells (PCs) via parallel fibres (PFs, i.e., GCs’ axons). PCs were also driven by the 265 

climbing fibres (CFs, i.e., IO axons), which conveyed the teaching signal encoding retinal slip errors. The 266 

excitatory olivary CF collaterals along with inhibitory PC outputs contacted MVN neurons, which closed 267 

the loop through the MVN-IO inhibitory connections [25] conforming the olivo-cortico-nucleo-olivary 268 

(OCNO) loop [26]. MVN generated the cerebellar output that was sent to the oculomotor neurons, which 269 

ultimately drove eye movements. The OCNO subcircuit comprised two symmetric microcomplexes that 270 

compensated the ipsilateral head movement by controlling leftward and rightward eye rotations, 271 

respectively (see Methods). Cerebellar motor adaptation was driven by two spike-timing dependent 272 

plasticity (STDP) mechanisms at PF-PC and MF-MVN synapses. During 500 s of simulation, plasticity 273 

shaped PF-PC and MF-MVN synaptic efficacies (which were randomly initialised) to adapt VOR and 274 

reduce retinal slips [25, 27-29]  275 

During r-VOR learning, the length of IO spike bursts (transmitted to target PCs via the CFs) had to encode 276 

the amplitude of retina image slips (i.e., errors). PCs’ complex spikes were linearly correlated with IO bursts 277 

(i.e., the spike number in Purkinje complex spikes depended linearly on the spike number in the CF bursts; 278 

[16, 25, 27, 28]. Hence, the different lengths of IO spike bursts could modulate the cerebellar adaptation 279 

capabilities, beyond an all-or-nothing learning paradigm [9]. 280 

****************************************************** 281 

[----------------- Figure 5: Placeholder -----------------] 282 

******************************************************  283 

Figure 5| Cerebellum-dependent adaptation of vestibulo-ocular reflex (VOR). (A) Schematic 284 

representation of the main cerebellar layers, cells, and synaptic connections considered in the spiking 285 
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cerebellar model. Mossy fibres (MFs) convey vestibular information onto granule cells (GCs) and medial 286 

vestibular nuclei (MVN). GCs, in turn, project onto Purkinje cells (PCs) through parallel fibres (PFs). PCs 287 

also receive excitatory inputs from the inferior olivary (IO) system. IO cells are electrically coupled and 288 

regulated via MVN-IO inhibitory connections. They deliver an instructive signal, which is the retinal slip, 289 

through the climbing fibres (CFs). Each MVN is inhibited by a PC and excited by an IO, both located at 290 

the same parasagittal band. MVN provides for the cerebellar output that ultimately drives oculomotor 291 

neurons. Spike-dependent plasticity occurs at PF-PC and MF-MVN synapses. 292 

3. r-VOR adaptation requires IO STO phase-locking to error-293 

related inputs 294 

We tested the ability of the cerebellar model to perform r-VOR adaptation under two IO-dependent 295 

conditions: (i) in the presence of STO phase-locking to error-related inputs; (ii) in the absence of STO 296 

phase-locking, henceforth named as phase-free condition (i.e., with error signals arriving at any time with 297 

respect to IO STOs). STO phase-locking enabled a better time sampling of the error signal as well as a 298 

better encoding of its amplitude over time, which proved to be essential to mediate STDP at PF-PC synapses 299 

during r-VOR learning. As a consequence, the mean absolute error (MAE) (i.e., the difference between 300 

desired and actual contralateral eye movements) decreased over time, converging within 150 s (Fig 6A, red 301 

curve). Hence, IO STO phase-locking modulation allowed the cerebellum to maximise r-VOR accuracy, 302 

by optimising the r-VOR gain (i.e., the ratio between the antagonist eye and head displacements) and phase 303 

(Fig 6B; 1 Hz r-VOR gain = 1, phase = π), indicating that both eye position and velocity matched the ideal 304 

counter head movements (Fig 6C). By contrast, the r-VOR accuracy did not improve under the phase-free 305 

condition (Fig 6A, green curve), and neither the r-VOR gain nor the phase were optimised during learning 306 

(Figs 6B, C).  307 

****************************************************** 308 

[----------------- Figure 6: Placeholder -----------------] 309 

****************************************************** 310 
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Fig 6| IO STO phase-locking vs phase-free modulation during rotational VOR acquisition. The olivary 311 

network in a lattice arrangement was integrated into a cerebellar network within a cerebellum-dependent 312 

feed-forward control scheme. This scheme was tested by assessing cerebellum-dependent r-VOR 313 

adaptation using a 1 Hz sinusoidal head rotation protocol during 500 seconds of simulation. Plasticity 314 

shaped PF-PC and MF-MVN synaptic efficacies to adapt rotational-VOR (r-VOR) gain and phase and 315 

reduce retinal slips. (A) MAE evolution for IO STO phase-locking and IO STO phase-free modulation 316 

during r-VOR adaptation (error = desired - actual sinusoidal r-VOR curve).(B) r-VOR gain and phase 317 

with IO STO phase-locking or phase-free modulation (A) r-VOR gain and phase evolution during r-VOR 318 

adaptation. (C) Actual and desired eye position and velocity at the end of the r-VOR adaptation process. 319 

We found that the STO phase-locking condition elicited 5 times more IO bursts than the phase-free 320 

condition across r-VOR learning (Fig 7A). Also, cross-correlation analyses (i.e., between the spikes of IO 321 

burst responses during learning and r-VOR MAE values) suggested that the presence of STO phase-locking 322 

allowed the IO network to use the 4th to 6th spike of the bursts to grade the amplitude of the teaching signal 323 

driving STDP at PF-PC synapses (Fig 7B). The 1st to 3rd spike of the bursts were instead used to merely 324 

signal the presence of retina slip errors (the correlation between the 1st to 3rd spike burst and r-VOR MAE 325 

was constant; Fig 7B). Conversely, in the phase-free condition all spikes within IO bursts were equally 326 

correlated with the MAE error curve, thus indicating that bursts were only signalling errors (binary IO 327 

coding) without grading the teaching signal. In addition, during r-VOR learning the STO phase-locking 328 

condition generated a larger number of neural states of the IO network, whilst maintaining a small diversity 329 

of IO states (Fig 7C). 330 

****************************************************** 331 

[----------------- Figure 7: Placeholder -----------------] 332 

****************************************************** 333 

Fig 7 | Spike bursts under IO STO phase-locking vs. phase-free modulation during r-VOR Acquisition. 334 

(A) IO burst number and length, i.e., spikes within the burst, under IO STO phase-locking and IO STO 335 

phase-free modulation during r-VOR adaptation. The IO olivary network elicited bursts to signal the 336 

presence or absence of retinal slips. STO phase-locking modulation allowed signalling the presence of 337 

retinal slips with four times more bursts under the same r-VOR protocol. Burst numbers remained 338 
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consistent during r-VOR adaptation in both scenarios; however, IO STO phase-locking modified burst 339 

lengths along with r-VOR adaptation, i.e., retinal slip amplitudes were progressively declining. (B) Cross-340 

Correlation analysis of IO STO phase-locking and phase-free modulations with their corresponding MAE 341 

curves obtained during r-VOR Adaptation (Fig 6A). When STO phase-locking modulation is used, the 3rd 342 

to the 6th spike within the burst grade retinal slip amplitude, i.e., correlation increases, whereas the 1st to 343 

2nd spikes within the burst are used for signalling retinal slip only. In contrast, IO STO phase-free 344 

modulations employ the entire burst for signalling only. Note that IO STO phase-free modulations cannot 345 

achieve r-VOR adaptation (Fig 6A MAE curve), which means that only retinal slip signalling at any time 346 

is reflected in the burst length. (C) Neural states produced during r-VOR adaptation for IO STO phase-347 

locking and IO STO phase-free modulation. Each neural state represents a binary matrix (200 x 6) that 348 

encodes the state of the olivary network whenever a burst is triggered. During r-VOR adaptation, it is 349 

observed that phase-locking modulation generates a larger number of unique neural states compared to 350 

phase-free modulation, albeit with slightly less repetition. On the other hand, phase-free modulation results 351 

in a somewhat lower repetition of neural states, primarily due to the random nature of the modulation, 352 

which involves free sampling. 353 

4. STO phase-locking & IO graded error coding improve r-VOR 354 

learning stability 355 

We then comparatively analysed r-VOR adaptation under all-or-nothing versus variable error signalling. 356 

We ran a series of r-VOR learning simulations with IO STO phase-locking but under two conditions. In the 357 

all-or-nothing condition, we fixed the amplitude of the error signals received by the IO network (i.e., from 358 

minimum to maximum values, by increments of 25% of the range). Therefore, for a given simulation under 359 

the all-or-nothing condition, the IO network could only receive either a zero input or an input of a fixed 360 

amplitude. In the control variable error condition, we let the input to the IO network be modulated by the 361 

actual amount of retina slip (as in the previous r-VOR learning simulations). 362 

We found that an all-or-nothing IO teaching signal up to the 75% of the maximum amplitude value did not 363 

allow the cerebellar network to minimise the r-VOR MAE over learning (Fig 8A, grey curves). Strikingly, 364 

when the all-or-nothing teaching signal was taken at the maximum value (100% of the range), the VOR 365 
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MAE converged very rapidly (within less than 100 ms) to the optimal value (Fig 8A, black curve). 366 

However, VOR accuracy was not sustained over time, and the MAE began to slightly increase around 150 367 

ms. By contrast, we found that a variable IO teaching signal amplitude allowed for both VOR MAE 368 

minimisation (convergence within about 150 ms) and learning stability (Fig 8A, red curve). These results 369 

were reflected in the evolution of the r-VOR gain and phase across learning (Figs. 8 B and C, respectively). 370 

An analysis of the eyes position and velocity curves at the end of learning (i.e., at 500 s) confirmed a better 371 

match, with respect to the ideal profiles, in the presence of a variable teaching signal amplitude as compared 372 

to an all-or-nothing one (Figs. 8D, E). Finally, whilst assessing the factors beneath the better r-VOR 373 

learning performance provided by a variable teaching signal, we found that this condition allowed a larger 374 

number of IO neural states to be generated, as compared to binary error signalling (Fig 8F). Interestingly, 375 

a larger number of IO neural states led to no FFT harmonics in eye position and velocity curves (Fig 8G), 376 

resulting in better r-VOR learning stability. 377 

****************************************************** 378 

[----------------- Figure 8: Placeholder -----------------] 379 

******************************************************  380 

Fig 8 | IO STO phase-locking behaviour under burst length modulation. We build upon the experimental 381 

setup introduced in Fig 7, focusing exclusively on the modulation of IO STO phase-locking. Specifically, 382 

we examine the impact of different retinal slip amplitudes, comparing fixed burst lengths whilst controlling 383 

retinal slip amplitude in 25% increments. We also consider variable burst lengths regulated through retinal 384 

slip amplitude modulation. (A) Evolution of MAE during r-VOR adaptation. The MAE serves as a measure 385 

of how closely our model aligns with the desired sinusoidal r-VOR curve. Notably, we find that the graded 386 

instructive signal configuration (represented by the red curve) results in a further decrease in MAE and 387 

better stability. (B-C) Evolution of r-VOR Gain and Phase during r-VOR adaptation. These measurements 388 

show similar performance between graded and non-graded instructive signal amplitudes when retinal slip 389 

amplitude is fixed at its maximum (100%). (D-E) Display of actual and desired eye position and velocity 390 

at the end of the r-VOR adaptation process assessing how well our setups match the desired outcome. (F) 391 

Analysis of Neural States during r-VOR Adaptation. The graded instructive signal amplitude (retinal slip) 392 

generates a greater number of neural states with less variability compared to the non-graded instructive 393 
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signal amplitude when the retinal slip amplitude is fixed at its maximum. Notably, an initial rapid decrease 394 

in MAE for the non-graded instructive signal configuration (see Fig A) suggests that neural state variability 395 

aids in r-VOR convergence. (G) Fast Fourier Transforms (FFT) of eye velocity. In this analysis, it is 396 

compared the FFT of eye velocity between graded and non-graded retinal slip amplitude (fixed at 100%). 397 

The FFT of the non-graded instructive signal amplitude (fixed at 100%) reveals larger odd and even 398 

harmonics, indicating a poorer fit to the ideal r-VOR curve, despite gain and phase measurements 399 

suggesting optimal performance. Note that gain and phase measurements only consider the first harmonic 400 

(see methods). 401 

5. STO phase-locking & GABAergic regulation of IO electrical 402 

coupling improve r-VOR adaptation 403 

In all previous r-VOR simulations, we did not activate the GABAergic MVN-IO projections in the model 404 

(Fig 5). Here, we considered them in order to account for their known role in modulating the electrical 405 

coupling amongst IO cells [30]. We sought to investigate to what extent the modulation provided by these 406 

MVN-IO inhibitory synapses could play a role in increasing IO neural state diversity (on top of the larger 407 

number of neural states provided by variable teaching signalling, shown in Fig 8F).  408 

We ran a series of r-VOR simulations to compare two adaptation scenarios: a condition with MVN-IO 409 

inhibitory regulation of IO coupling, and a condition without it. In both conditions, we preserved the IO 410 

STO phase-locking to error-related inputs. For the condition “with MVN-IO inhibition”, we first ran a 411 

sensitivity analysis to set the MVN-IO synaptic weights in order to optimise the VOR MAE function. Then, 412 

for each condition, we simulated 100 r-VOR adaptation experiments (again based on a 1 Hz sinusoidal head 413 

rotation during 500 s). We found that whilst the total number of IO neural states diminished, an increase of 414 

state diversity was associated with the presence of MVN-IO GABAergic modulation (Fig 9A), which 415 

resulted in a significantly better VOR accuracy (Fig 9B). Hence, even if MVN-IO inhibition was not a 416 

necessary condition for r-VOR adaptation, it contributed to facilitating r-VOR learning. 417 

 418 

 419 
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****************************************************** 420 

[----------------- Figure 9: Placeholder -----------------] 421 

******************************************************  422 

Fig 9| Enhancing r-VOR accuracy by regulating IO-IO coupling through MVN-IO inhibitory afferents. 423 

We maintained the experimental setup from Fig 9, where variable burst lengths were regulated solely 424 

through retinal slip amplitude modulation. In this configuration, we enabled/disabled MVN-IO inhibitory 425 

connections. (A) Evolution of MAE during r-VOR adaptation (mean and standard deviation each 10 426 

seconds). MAE measures the deviation between the desired and the actual sinusoidal r-VOR curve. An 427 

ANOVA statistical test confirms significant differences in MAE with and without MVN-IO inhibitory 428 

connections, indicating a lower MAE and, consequently, a more accurate r-VOR adaptation in the presence 429 

of EC regulation via MVN-IO afferents. (B) Neural States generated with and without MVN-IO inhibitory 430 

connections. A statistical test (ANOVA) confirms significant differences in the neural states generated. The 431 

presence of EC regulation via MVN-IO afferents results in a lower overall number of neural states but with 432 

increased diversity, leading to a more accurate r-VOR adaptation. 433 

III. DISCUSSION 434 

The olivary nucleus plays a crucial role in cerebellar adaptation by influencing synaptic plasticity between 435 

parallel fibres and Purkinje cells. This study suggests that the dynamics of the inferior olive (IO) network, 436 

particularly the phase of subthreshold oscillations (STOs) in response to excitatory inputs, is necessary for 437 

sensorimotor adaptation. We created a model of IO cells to mimic real activity and we integrated it into a 438 

cerebellar model to study vestibular ocular reflex (VOR) adaptation. Our results confirmed that (i) the 439 

presence of STOs generated an opportunity modulation time window occurring during the IO 440 

hipopolarisation-depolarisation time period; (ii) STO phase-locked modulation during this period allowed 441 

the retinal slip [31] signals at low frequencies [1 - 10Hz] to be adequately sensed and naturally graded via 442 

spike-burst lengths; (iii) this modulation together with electrical coupling (EC) allowed for the generation 443 

of enough olivary neural states to ensure VOR adaptation; (iv) a wider variety of neural states increased 444 

VOR adaptation converging speed. Neural state variety was found to be increased thanks to the EC 445 
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regulation via the GABA nuclei projections onto the olivary network. These results allow us to postulate a 446 

theory on the olivary system operating as a burst-amplitude modulator (see below). 447 

A. IO operates as a master clock and as teaching signal 448 

during VOR adaptation 449 

Three conditions were fulfilled by the presented IO system to act as a master clock [32]:  (i) The membrane 450 

potential of the Hodgkin-Huxley neuronal model was operating as a continuous and accurate carrier 451 

frequency that acted as the reference signal. Our HH model membrane potential, acting as the reference 452 

signal, was able to generate STOs with a precise 10 Hz periodicity, thanks to the dynamic interactions of 453 

ionic channels. These STOs provided multiple modulation opportunities during their hypopolarisation-454 

depolarisation phases, i.e., temporal windows. (ii) The natural range of the r-VOR is from 0.5 to 5 Hz, with 455 

our operating frequency being within 1 Hz. Since the temporal frequency of the sensed signal (1 Hz) is 456 

lower than the "master clock period" (10 Hz), this ensures sufficient temporal precision [33]. (iii) A timely 457 

sequence of external input activities reaching IO cells could control the initiation and termination of STOs, 458 

allowing for the correlation of IO timing signals with retinal slip signals (an instructive signal) that drive 459 

the specific operation of the r-VOR model system. Note that the external input activities, that is the retinal 460 

slip signals, resulted from a Poisson sampling of the retinal slip stimulus.  461 

Our modelled olivary system was also able to convey a low-firing rate instructive signal which is typically 462 

based on retinal slip amplitude at approximately 1 to 10 Hz. This instructive signal helped the cerebellum 463 

compensate for  head rotary movement by controlling and adapting the contralateral eye movements (r-464 

VOR), despite the diminished signal transmission capability of the olivary system due to its low-frequency 465 

operation [30]. To ensure a proper representation of the entire retinal slip region over trials, i.e., desired vs. 466 

actual eye velocity, we generated external input activity driven towards the IO cells using a probabilistic 467 

spike sampling of the retinal slip signals (instructive signal generation) according to a Poisson process, 468 

whilst maintaining the IO  activity between 1 and 10 Hz per fibre (similar to electrophysiological data [22]). 469 

This approach allowed us to accurately sample the retinal slip evolution even at such a low frequency, as 470 

supported by previous studies [25, 27-29, 34, 35]. We assumed that the  CF triggered burst signals based 471 
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on retinal slip magnitude, supported by two findings in awake mice: (i) CF-triggered signals gradually 472 

increases with the duration and pressure of periocular stimuli [36, 37] and (ii) The amplitude of CF-473 

triggered signals onto PC dendrites is graded and represents information about the intensity of sensory 474 

stimuli [18, 38]. 475 

We found that the spike burst triggered by CF into the PC dendrites were neither fully binary nor fully 476 

graded. Interestingly, the 1st and 2nd spikes within the burst were used to indicate the binary presence of the 477 

retinal slip signals, whilst the 3rd to 6th spikes were used to naturally grade the retinal-slip signal amplitude. 478 

This CF spike burst modulation, according to the retinal slip amplitude, did not require the GABAergic 479 

nuclei cells to decrease the IO electrical coupling, which can cause the olivary network synchronicity to 480 

break [14]. Instead, we found that the GABAergic nuclei cells’ ability to desynchronise the olivary network 481 

played a role in providing more accurate r-VOR adaptation. We confirmed the GABAergic nuclei action 482 

increased the non-redundant neural states in the olivary network during r-VOR adaptation. This increase in 483 

the IO information transmission capability contributed to a more precise r-VOR adaptation.  484 

B. HH IO phase modulation and criticality of STOs 485 

Our IO HH three compartment model, based on previous studies [7, 19], was designed to alleviate the 486 

computational load whilst maintaining the main morphological and functional properties of the olivary 487 

system, especially the generation of spiking bursts at the axon hillock. The PC HH single-compartment 488 

model was also able to reproduce the spiking modes of Purkinje cells, including tonic, pause, and burst 489 

firing patterns. The PC burst reflected a perfect burst transmission from its corresponding CF [27]. The IO 490 

ionic channel dynamics in our model caused STOs to naturally appear at 10Hz, generating opportunity 491 

modulation time windows for the IO spike burst responses when following the sensorial stimulation of the 492 

IO dendrites. We also found that the temporal input sequences towards the olivary system were able to 493 

start/reset the IO STOs generation, and the IO spike burst modulations only occurred properly during their 494 

hipopolarisation-depolarisation time periods, indicating STOs as a conditional complex spike gating 495 

mechanism [7, 8].  496 
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These two timing facts pointed to a phase-locked modulation of the STOs during the IO hipopolarisation-497 

depolarisation period. The start/reset mechanism adjusted the IO voltage reference signal to the occurrence 498 

of the Poisson sampling of retinal slip signal, whilst the IO hyperpolarisation-depolarisation period adjusted 499 

the IO burst length modulation to the amplitude of the Poisson-sampled retinal slip signals during VOR 500 

adaptation.  501 

C. The purpose of the IO STOs: Olivary system operating as 502 

a burst-amplitude modulator (BAM), a theory 503 

In the context of sensory neural processing, the necessity of modulation within the olivary nucleus becomes 504 

evident. When attempting to convey multiple sensory stimuli directly to the IOs and PCs downstream 505 

without modulation, an inherent issue arises. This issue stems from the fact that all sensory stimuli sharing 506 

the same frequency range would saturate the IO-PC-MVN neural circuitry. This is similar to attempting to 507 

tune into multiple radio stations operating on the same frequency simultaneously. As a result, the absence 508 

of olivary modulation only allows for the transmission of one sensory stimulus at any given time. To address 509 

this limitation, a modulation technique involving STOs could be used. The STO modulation shall 510 

effectively shift the frequencies of sensory stimuli to higher ranges, typically around 10 Hz. Furthermore, 511 

it shall enable the assignment of distinct frequencies to individual sensory stimuli, similar to the concept of 512 

amplitude modulation (AM) in radiofrequency transmission. However, our STO modulation does not 513 

operate over the amplitude of the carrier signal, represented by STOs amplitude, based on the sensory 514 

message. Instead, it varies the lengths of complex spike bursts, ensuring a diverse representation of the 515 

sensory input. 516 

Interestingly, in amplitude modulation (AM), the carrier signal is modulated by the message signal through 517 

multiplication. Additionally, a constant value is added to the message signal. This dual action ensures that 518 

when the message signal is at its smallest values, the carrier signal effectively disappears, which is a 519 

technique to prevent over-modulation (Supplement S2). Over-modulation, in this context, is akin to the 520 

phase of the carrier signal reversing, which can lead to extreme distortion in the subsequent demodulated 521 

signal (Supplement S3). Similarly, within the context of IO STOs phase modulation acting as the carrier 522 
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signal, the sensory stimulus, representing the message signal, is characterised by a variable amplitude input 523 

current. The amplitude of this current is equivalent to the magnitude of retinal slip amplitude. This dynamic 524 

input, when injected into the IO dendritic compartment, results in the generation of complex spike bursts 525 

of varying sizes. Furthermore, the first (1st) and second (2nd) spikes within the CS bursts function as a binary 526 

signal to denote the presence or absence of the stimulus. Note that these 1st and 2nd spikes also carry a 527 

constant modulation, which shall contribute to the effective reduction of the carrier signal amplitude, 528 

essentially causing the STOs to vanish at the lowest sensorial stimulus values, thereby preventing over-529 

modulation. 530 

Significant parallels exist between AM demodulation and the mechanisms occurring in the MVN, 531 

specifically, the cerebellar neural decoding process. MVN neurons are recognised for their ability to encode 532 

various frequency oscillations related to horizontal linear motion. Notably, the medial section of the MVN 533 

has been observed to respond to low-frequency stimulation, typically in the range of 0.5 to 1.0 Hz in studies 534 

involving rats [39]. Further investigations conducted in vitro have identified a distinct subtype of neurons 535 

within the vestibular nuclei, labelled as 'type B' that exhibit a form of adaptation in their firing rate in 536 

response to depolarising current steps. This adaptive behaviour displays resonance at frequencies within a 537 

range relevant to behaviour, facilitating synchronisation with the peaks of incoming stimuli [40, 41]. 538 

Additionally, modelling of the vestibular nuclei suggests the presence of membrane potential oscillations 539 

in response to step current inputs, which is indicative of phenomena that might manifest in vivo [42]. Given 540 

these observations, it is plausible to consider the oscillations within MVN as a vital aspect of cerebellar 541 

decoding. In essence, they can be viewed as a form of a product detector demodulator [43].  The cerebellum 542 

demodulation process shall combine the modulated sensorial stimulus with input from inhibitory PC 543 

afferents and vestibular signals from MF afferents, incorporating a local oscillator represented by type B 544 

vestibular nuclei neurons. Crucially, these type B vestibular nuclei neurons must oscillate at the same 545 

frequency as IO STOs, effectively acting as the carrier signal (Supplement S3). The output from MVN shall 546 

carry several robust cerebellar outputs, and it shall contain a signal within the frequency range of the sensory 547 

stimulus (message). This, in turn, shall lead to the faithful reproduction of the original modulating signal, 548 

which represents the sensory stimulus after Spike-Timing-Dependent Plasticity (STDP) learning adaptation 549 

(Fig 10).  550 
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A product detector demodulator uses a direct conversion reception method to extract the message signal, 551 

which is the most straightforward approach for receiving information transmitted by a carrier (Supplement 552 

S3). An essential component for this process is a simple low-pass filter, known for its effective selectivity 553 

[44].The behaviour of motor ocular neurons aligns with the operation of a low-pass finite impulse filter 554 

(FIR), as observed in previous research [45]. This alignment may contribute to the process of demodulation 555 

in the medial vestibular nuclei (MVN) (Fig 10). 556 

****************************************************** 557 

[----------------- Figure 10: Placeholder -----------------] 558 

****************************************************** 559 

Fig 10| Analogies between amplitude modulation in radio transmission and burst-amplitude modulation 560 

in the olivary system. The olivary network STOs use a phase-locked modulation in amplitude. However, 561 

the STOs modulation varied the burst lengths according to the retinal slip amplitudes instead of varying 562 

the amplitude of the carrier signal. Consequently, all the sensorial stimuli sharing the same frequency 563 

range could simultaneously be transmitted. The olivary system may play the same role as an AM encoder 564 

during the input stimuli transmission to downstream cerebellar layers, whereas the MVN together with the 565 

motor neurons may play the same role as an AM decoder for stimuli reconstruction at the cerebellar output. 566 

IV. MATERIALS & METHODS 567 

A. VOR Analysis and Assessment 568 

We simulated the horizontal VOR (h-VOR) during sinusoidal (~1 Hz) whole-body rotations [46]. VOR 569 

gain was determined as the ratio between the first harmonic amplitudes of the eye and head velocity Fourier 570 

transforms: 571 
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Conversely, VOR shift phase was calculated as the cross-correlation of the eye (e) and head (h) velocity 573 

time series: 574 

      
def

n

VOR shift phase xcorr e h n ne h 






    
    (2) 575 

Here, e* represents the complex conjugate of e, and the lag indicates the shift phase. After normalisation, 576 

the ideal eye and head velocity lag is ± 0.5, with cross-correlation values ranging from -1 to 1. This range 577 

is equivalent to a phase shift interval of [-360º, 360º]. 578 

B. VOR Mechanical Circuitry 579 

The cerebellum operates as a biological feed-forward controller within a control loop. Its output drives 580 

adaptation from the MVN through a series of motor neurons, nerve fibres, and muscles, ultimately affecting 581 

eye movement. We modelled this pathway using the EDLUT neural simulator [47-49] as VOR (Vestibulo-582 

Ocular Reflex) mechanical circuitry defined by a continuous-time mathematical model: 583 

    (3) 584 

This model consists of four parameters: Q = [K, TC1, TC2, τdelay]. The delay parameter  τdelay  accounts for 585 

the time it takes for signals from the inner ear to reach the brain and eyes, estimated to be around 5 ms 586 

based on the number of synapses involved in the VOR [50, 51]. It is also included in the cerebellar 587 

sensorimotor pathway delay (see the STDP section) [25, 27, 28]. The gain parameter K represents the 588 

inability of the eyes to perfectly track head movements and it is assumed to fall within the range of 0.6 to 589 

1 [50, 51]. TC1 reflects the dynamics associated with the semicircular canals and additional neural 590 

processing. These canals act as high-pass filters, because after a subject has been put into rotational motion, 591 

the neural active membranes in the canals slowly relax back to resting position, so the canals stop sensing 592 

motion. Based on the mechanical characteristics of the canals, combined with additional neural processing 593 
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which prolongs this time constant to improve the accuracy of the VOR, the TC1 parameter is estimated to 594 

be between 10 and 30 seconds [50, 51]. Finally, TC2 characterises the oculomotor plant dynamics, including 595 

the eye, muscles and attached tissues, with TC2 assumed to be between 0.005 and 0.05 seconds. 596 

To obtain the temporal response for the VOR transfer function, we need to calculate the inverse Laplace 597 

transform, taking into account that the delay is modelled and inserted within the control loop (Eq 4). 598 

 

 

1 1

0 1 22

1

0 1

2

00 1x x

h ta a xx

x
y b b

x

 
 



      
      

     

 
 
      (4) 599 

Where:        
0 1 2 1 0 1 2 1 2 0 1 1 1 2

1 ; ; 0; ;
C C C C C C C C C

a T T a a T T T T b b KT T T       The VOR plant 600 

model parameters were fine-tuned using a genetic algorithm to align with experimental and clinical 601 

observations1 [50-52]. The resulting parameter values are:  K = 1.0, TC1 = 15, TC2 = 0.05.  602 

The code for the Neuron Simulator and EDLUT Simulator will be made publicly available upon acceptance of the article. The Neuron 603 
code includes HH PC model and HH IO model operating in isolation, whilst the EDLUT code encompasses the r-VOR setup in closed 604 
loop with both phase-free and phase-locked configurations. We kindly request the reviewers to consider this note and, if necessary, 605 
contact the authors for any additional information, granted code access and/or clarification regarding the code. 606 

https://github.com/EduardoRosLab/NEURON_NEURAL_MODELS 607 
https://github.com/EduardoRosLab/OLIVARY-PHASE-LOCKING-OSCILLATIONS 608 

 609 

C. Cerebellar Spiking Neural Network Model 610 

The cerebellar circuit, modelled as a feed-forward loop, effectively compensated for head movements 611 

through contralateral eye movements (see Fig 5). This cerebellar network comprised five neural 612 

populations: mossy fibres (MFs), granule cells (GCs), medial vestibular nuclei (MVN), Purkinje cells (PC), 613 

and inferior olive (IO) cells [53-57]. This cerebellar model was implemented in EDLUT [47-49], an open-614 

source, spiking-based neural simulator designed for efficient computation and embodied experimentation. 615 

Mossy fibres (MFs): We modelled 100 MFs as input neurons responsible for transmitting sensory-motor 616 

information to both GCs and MVN. In line with the functional principles of VOR models for cerebellar 617 

control [58], MF activity ensembles were generated to follow a 1 Hz sinusoidal pattern, with a new MF 618 
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ensemble for each 2 ms simulation step, encoding head [58-60]. The overall MF activity was organised into 619 

non-overlapping and equally sized neural subpopulations to maintain a consistent firing rate for the MF 620 

ensemble over time. Note that two different times corresponded to two different subgroups of active MFs, 621 

ensuring overall constant activity (see Network connectivity parameters summarised in Table 1). 622 

Granule cells (GCs): The granular layer consisted of N = 2000 GCs (Leaky Integrate & Fire (LIF) neurons) 623 

and functioned as a state generator [61-64]. The inner dynamics of the granular layer produced time-624 

evolving states comprising non-overlapping spatiotemporal patterns that were consistently activated in the 625 

same sequence during each learning trial (1 Hz rotation for 1 second). Despite receiving a constant MF 626 

input encoding each second of the 1 Hz learning trial, the granular layer generated 500 different states. Each 627 

state was composed of four non-recursively activated GCs [65]. 628 

Purkinje cells (PCs): 200 PCs were modelled using a single compartment Hodgkin-Huxley (HH) model 629 

with five ionic currents, allowing them to replicate the tri-modal spike modes (tonic, silence, and bursting) 630 

observed in PCs [27, 66].These PCs were divided into two subpopulations of 100 neurons each. Each 631 

subpopulation received inputs from 100 CFs arranged in a lattice configuration [17]. These CFs encoded 632 

the difference between both clockwise or counter clockwise eye and head movements. Additionally, each 633 

PC received 2000 PF inputs. Given that PCs are innervated by approximately 150,000 PFs [67], the weights 634 

of the PF-Purkinje cell synapses in the model were adjusted to match the biological excitatory drive. Each 635 

of the two subgroups of 100 Purkinje cells targeted 100 MVN cells through inhibitory projections. The 636 

MVN cells were responsible for generating either clockwise or counter clockwise compensatory motor 637 

actions, ultimately driving the activity of agonist/antagonist ocular muscles. 638 

Inferior olive (IO): 200 IO cells were modelled using a three-compartment Hodgkin-Huxley (HH) model 639 

equipped with seven ionic currents and electrical coupling. This HH model accurately reproduced both the 640 

spike burst and the subthreshold oscillations observed in the IO [68]. The neural layer was divided into two 641 

subpopulations of 100 neurons each, arranged in a lattice configuration[17]. These two subpopulations were 642 

responsible for handling clockwise and counter clockwise sensed errors. CFs transmitted the instructive 643 

signal (retinal slips) from the IOs to the populations of PCs. Each CF made contact with one PC and one 644 

MVN cell. The external input activity of IO cells was generated using a probabilistic Poisson process. Based 645 

on the normalised retinal slip current curve i(t)  and a random number η(t) ranging from 0 to 1, the central 646 
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IO neuron in all subsets of 5x5 neurons within the lattice olivary network received a depolarising step 647 

current (see Fig 4A).The amplitude of this current depended on the actual retinal slip amplitude when i(t) 648 

> η(t)(Fig 4C and D).  In other words, the larger the retinal slip was, the greater the input depolarising step 649 

current. These depolarising step current input stimuli, combined with the electrical coupling amongst IO 650 

cells regulated by inhibitory NO connections, generated the overall activity in the olivary system. Each 651 

individual CF spike conveyed well-timed information about the instantaneous error (See Fig 4D and E). 652 

The probabilistic spike sampling of the error ensured a proper representation of the entire error range across 653 

trials whilst maintaining CF activity between 1 and 10 Hz per fibre, which is consistent with 654 

electrophysiological data [22]. Even at this low frequency, it accurately sampled the error evolution [34, 655 

35, 69-71].  656 

Medial vestibular nuclei (MVN): 200 MVN cells were modelled as LIF neurons, divided into two groups 657 

of 100 cells each, corresponding to agonist and antagonist ocular muscles. Each MVN cell received 658 

inhibitory input from a PC and excitatory input from the CF, which simultaneously innervated the 659 

corresponding PC. Additionally, each MVN cell received excitatory projections from all MFs, maintaining 660 

the baseline activity of MVN cells. The spike activity of both the agonist and antagonist groups of MVN 661 

cells was translated into an analogue output signal (eye velocity) according to equations 5 and 6: 662 

   
step

spike

t T

i MVN
t

MVN t t dt


       (5) 663 

     

 

100 100

1 1

deg/

100

output

N N
agonist antagonist

i j

i j

MVN t MVN t MVN t

VOR range s

N





 

 





 
 

 



 
      (6) 664 

where α represents the kernel amplitude that normalises the contribution of each MVN cell spike to the 665 

cerebellar output correction. i and j are used to represent the MVN neuron tags, ranging from one to N = 666 

100, which is the total number of MVNs in each sub-population (both agonist and antagonist sub-667 

populations). 
spikeMVN

 stands for the Dirac delta function that represents MVN spikes that have been 668 
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triggered, while Tstep (0.002 seconds) corresponds to the duration of the sliding windows over which the 669 

MVN spiking activity is calculated. This neural topology is summarised in Table1. 670 

Table 1. Cerebellar network topology parameters. (Dash lines indicate not applicable) 671 

Neurons Synapses 

Pre-synaptic 
neurons 
(number) 

Post-synaptic 
neurons 
(number) 

Number Type Initial 
weight(nS) 

Weight 
range(nS) 

2000 GCs 200 PCs 400000 AMPA rand [0,4] 

200 IO 200 PCs 200 AMPA 40 – 

100 MFs 2000 GCs 8000 AMPA 0.35a – 

100 MFs 200 MVN 20000 AMPA 10 [0, 10] 

200 PCs 200 MVN 200 GABA 1.5 – 

200 IO 200 MVN 200 NMDA 7 – 

200 IO 200 MVN 200 AMPA 1 – 

200 MVN 200 IO 200 GABA 0.15  

IO to IO configuration, there are 
5x5 IO neuron squares arranged in a 

lattice pattern. These squares are 
connected radially, extending from 
the centre to each corner of the 5x5 
square, resulting in a total of 200 IO 

neurons. 

320 
GAP 

JUNTION 
1 – 

a We used specific parameters to generate offline GrC activity. This activity remained constant 672 

throughout the r-VOR adaptation process. This pre-generated GrC activity was preloaded during 673 

computation to expedite the simulation. 674 

D. Neuron Models 675 

1. The LIF model. 676 

The LIF model used for MFs and GCs was the same as the one used in [27]. However, the LIF model used 677 

for MVN was implemented based on [25] following equations 7-13. The neural dynamics of MVN were 678 

defined by the membrane potential and the presence of excitatory (AMPA and NMDA) and inhibitory 679 

(GABA) chemical synapses. 680 
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intm ernal external

dV
C I I

dt
 

      (7) 681 

 
int ernal L L

I g V E        (8)  682 

        
_external AMPA NMDA NMDA INF AMPA GABA GABA

I g t g t g V E g t V E      
  (9)  683 

   

 

0

0

AMPA

AMPA AMPA

t t

g t g t e





     (10)  684 

   

 

0

0

NMDA

NMDA NMDA

t t

g t g t e





     (11)  685 

   

 

0

0

GABA

GABA GABA

t t

g t g t e





     (12) 686 

_

62

1

1.2
1

3.57

NMDA INF

V

g

e





     (13)   687 

where Cm denotes the membrane capacitance, V the membrane potential, Iinternal the internal currents and 688 

Iexternal the external currents. EL is the resting potential and gL the conductance responsible for the passive 689 

decay term towards the resting potential. Conductances gAMPA, gNMDA and gGABA integrate all the 690 

contributions received by each receptor type (AMPA, NMDA, GABA) through individual synapses. These 691 

conductances are defined as decaying exponential functions [47, 72, 73]. Finally, gNMDA_INF stands for the 692 

NMDA activation channel. 693 

2. The IO HH model. 694 

The IO model was a simplified and corrected version of the three-compartment HH model proposed by 695 

[19]. To enhance computational performance, a simplified set of somatic and dendritic currents was 696 
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adopted, whilst still preserving the ability to generate spike bursts due to the sodium current inactivation 697 

within the axon hillock compartment [74]. Initially, the model was implemented in NEURON for validation 698 

in isolation, and subsequently transferred to EDLUT to accelerate the computation of the entire network. 699 

SOMA: The total soma voltage was given by: 700 

   3

CaL Leak Kdr int eract _ compartmentsoma

soma

G k l V 120 G V 10 G n p (V 75 ) IdV

dt C


            

 (14) 701 

Where Csoma is the soma membrane capacitance and the dynamics of each gating variable follows: 702 

  

 
inf

x

x V x

V

dx

dt 


       (15) 703 

The equilibrium function  infx V  and time constant for each current are depicted in table 2 704 

Table 2. Somatic component. Ionic conductance kinetic parameters 705 

Conductance type Current Activation Inactivation 

CaLG  - Calcium 

low threshold 

 

 

3

CaL CaL

2

soma

CaL

I G k l V 120

G 0.0007 mho / cm


    

  
 

soma
V 61

4.2

1
k

1 e

  


  

soma

soma

soma

V 85.5

8.5

V 160

30

l V 84

7.3

1
l

1 e

20 e
35

1 e



 










 

  

LeakG
  2

0.000016 mho / cm 
 

  

KdrG  - Potassium 

slow component 

 

 
kdr kdr soma

kdr

2

I G n p V 75

G 0.00 mho / c9 m

    

  
 

soma
V 3

10

1
n

1 e

  


  
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1
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1 e

 


  
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soma
V 50

900

p n
47 e 5 

 

   
 

 706 

AXON HILLOCK: The total axon voltage was given by: 707 

   3 4

Na Leak K int eract _ compartmentaxon

axon

G m h V 55 G V 10 G x (V 75 ) IdV

dt C


           

  (16) 708 

Where Caxon is the axon membrane capacitance and the dynamics of each gating variable follow Eq. (15). 709 

The equilibrium function  infx V  and time constant for each current are depicted in table 3: 710 

Table 3 . Axon component. Ionic conductance kinetic parameters 711 

Conductance 

type 

Current Activation Inactivation 

NaG  -sodium 

current 

 

 

3

Na Na axon

Na

2

I G m h V 55

G 0.240 mho / cm


    

  
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5.5

1
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1 e

  


  
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h

1
h

1 e

1.5 e

 

 





   

LeakG
  2

0.000016 mho / cm 
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KG  -postassium 

current 

 

 

4

K K axon

2

K

I G x V 75

G 0.020 mho / cm

   
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
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 712 

DENDRITE: The total dendrite voltage was given by 713 

     2

CaH dendrite Leak K _Ca dendritic int eract _ compartment

external

dendrite dendrite

dendrite

G r V 120 G V 10 G s V 75 I
I

dV A

dt C

          





(17) 714 

Where Cdendrite is the dendrite membrane capacitance, Adendrite is the dendrite membrane area, and the external 715 

current Iexternal  was given by: 716 

     
external AMPA AMPA GABA GABA GJI g t V E g t V E I         (18) 717 

 
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2

250

1

0.6 0.4
GJ

k i

k

V VN

ik k i

i

I w V V e








 
  
 
 

     (19) 718 

Where conductances gAMPA, and gGABA integrate all the contributions received by each receptor type 719 

(AMPA, GABA) through individual synapses Eq. (10, 12). Where 
GJk

I stands for the current injected to 720 

the kth target neuron through the gap-junction (GJ) [20, 25, 28], Vk is the target neuron membrane potential, 721 

the i neuron membrane potential, Vi is the synaptic weight between the neuron i and the target neuron, and 722 

N is the total number of GJ current inputs.  The dynamics of each gating variable follows Eq. (15). The 723 

equilibrium function  
0

x V  and time constant for each current are depicted in table 4: 724 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 7, 2024. ; https://doi.org/10.1101/2024.03.06.583676doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.06.583676
http://creativecommons.org/licenses/by/4.0/


33 

 

Table 4 . Dendritic component. Ionic conductance kinetic parameters 725 

Conductance type Current Activation Inactivation 

CaHG
 -High-

threshold calcium 

 
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2
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The interaction between compartments was modelled passively taking the surface ratio between 727 

compartments into account.  728 

Soma to dendrite current: 729 

 

 

Internal

int eract _ compartment soma dendrite

s,d

2

Internal s,d

G
Isd V V

p

1
G 0.00013 mho / cm , p

4

  

 
   (20) 730 

Axon to soma current: 731 

 

 

Internal

int eract _ compartment axon soma

a,s

2

Internal a,s

G
Ias V V

p

3
G 0.00013 mho / cm , p

20

  

 
   (21) 732 

Soma to axon current: 733 

 

 

Internal

int eract _ compartment soma axon

s,a

2

Internal s,a

G
Isa V V

p

20
G 0.00013 mho / cm , p

3

  

 
   (22) 734 

Table 5. Geometrical parameters: 735 

Soma Geometrical Parameters 

Cylinder length of the soma 20.5790 m  

Diameter of the soma 20.5790 m  

Membrane Capacitance 1
2

F cm  
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Axon Geometrical Parameters 

Cylinder length of the axon 53.1329 m  

Diameter of the axon 53.1329 m  

Membrane Capacitance 1
2

F cm  

Dendrite Geometrical Parameters 

Cylinder length of the axon 10.2895 m  

Diameter of the axon 10.2895 m  

Membrane Capacitance 1
2

F cm   

 736 

3. The PC HH model.  737 

The HH single-compartment model (PC) was based on [75, 76] and implemented in [27]. It consisted of a 738 

single compartment HH neuron with five ionic currents and excitatory (AMPA) and inhibitory (GABA) 739 

chemical synapses:  740 

int

external

m ernal

IdV
C I

dt Membrane Area
 

     (23) 741 

           
34 2

int 0
95 50 125 70 95

ernal k Na Ca L M
I g n V g m V h V g c V g V g M V          

 (24)742 

     
external AMPA AMPA GABA GABA

I g t V E g t V E    
  (25)  743 
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   

 
0

0

AMPA

t t

AMPA AMPA
g t g t e






      (26) 744 

   

 
0

0

GABA

t t

GABA GABA
g t g t e






     (27) 745 

where V denotes the membrane potential, Iinternal the internal currents and Iexternal the external currents. Cm is 746 

the membrane capacitance. Conductances gAMPA and gGABA integrate all the contributions received by each 747 

chemical receptor type (AMPA and GABA) through individual synapses as in [25, 27, 28]. These 748 

conductances are defined as decaying exponential functions. Finally, gK is a delayed rectifier potassium 749 

current, gNa a transient inactivating sodium current, gCa a high-threshold non-inactivating calcium current, 750 

gL a leak current, and gM a muscarinic receptor suppressed potassium current.  The dynamics evolution of 751 

each gating variable (n, h, c, and M) can be computed using Eq 15. Where x indicates the variables n, h, c, 752 

and M. Gating variables are defined in [27] . 753 

E. Synaptic Plasticity 754 

The overall input-output function of the cerebellar network model incorporated two STDP mechanisms at 755 

different sites, which balanced long-term potentiation (LTP) and long-term depression (LTD). For a more 756 

detailed review of the implemented synaptic mechanisms, refer to [25, 27, 28, 35].  757 

1. PF–PC synaptic plasticity:  758 

The LTD/LTP balance at PF–PC synapses is based on:  759 

   
spike

spike

j i spike

CF

CF

PF PC PF

LTD

t t
LTD w t k t dt 







 

 
 
 


    (28) 760 

   
j i spike

PF PC PF
LTP w t t dt 


 

     (29) 761 
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where ∆WPFj–PCi(t) denotes the weight change between the jth PF and the target ith PC; τLTD = 100 ms 762 

denotes the time constant that compensates for the sensorimotor delay; δPF is the Dirac delta function 763 

corresponding to an afferent spike from a PF; α = -0.0304 nS is the synaptic efficacy decrement; β  = 764 

0.0184 nS is the synaptic efficacy increment; and the kernel function k(x) [25, 27-29] is defined as: 765 

   
10

sin
x

k x e x



     (30) 766 

The STDP mechanism, as described in (Luque, et al., 2016), results in synaptic efficacy decrement (LTD) 767 

when a spike from the CF reaches the target PC neuron. The extent of this synaptic decrement is determined 768 

by the activity arriving via PFs, which is convolved with an integrative kernel defined in Eq. (30) and then 769 

scaled by the synaptic decrement factor α. This effect on the presynaptic spikes arriving through PFs is 770 

most pronounced within a 100 ms window preceding the arrival of the postsynaptic CF spike. This temporal 771 

window compensates for the sensorimotor pathway delay [70, 77-79] .On the other hand, the amount of 772 

LTP at PF-PC synapses remains fixed, with each spike arriving through a PF to the targeted PC resulting 773 

in an increase in synaptic efficacy equal to β. In the simulated loop, The sensory-motor pathway delay [80], 774 

with a duration of 100 milliseconds, was modelled using two circular temporal buffers, each lasting 50 775 

milliseconds and having 2-millisecond taps. The first buffer was positioned between the cerebellar output 776 

and the r-VOR plan, whilst the second buffer was situated between the output of the r-VOR plant and the 777 

error signal used as the cerebellar instructive signal (retinal slips) [25]. 778 

2. MF–MVN synaptic plasticity: 779 

 The LTD/LTP dynamics at MF – MVN synapses are based on: 780 

   
spike

spike

j i spike

PC

PC

MF MVN MF

MF MVN

t t
LTD w t k t 




 


 

 
 
 

     (31) 781 

   
j i spike

MF MVN MF
LTP w t t 


       (32) 782 
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with ∆WMFj–MVNi(t) denoting the weight change between the jth MF and the target ith MVN; τMF-MVN  = 5 ms 783 

standing for the time width of the kernel; δMF representing the Dirac delta function that defines a MF spike; 784 

α = -0.002048 nS is the synaptic efficacy decrement; β = 0.000792 nS is the synaptic efficacy increment; 785 

and the integrative kernel function k(x) [25, 27-29, 35] defined as: 786 

   
2

cos
x

k x e x



      (33) 787 

The STDP results in a synaptic efficacy decrease (LTD) when a spike from the PC reaches the targeted 788 

MVN neuron. The extent of this synaptic decrement is influenced by the activity arriving via MFs, which 789 

is convolved with the integrative kernel defined in Eq. (33) and then scaled by the synaptic decrement factor 790 

α. This LTD mechanism takes into account presynaptic/postsynaptic MF spikes that arrive before/after the 791 

postsynaptic/presynaptic PC spike within the time window defined by the kernel (τMF-MVN). Conversely, the 792 

amount of LTP at MF-MVN synapses remains constant, with each spike arriving through an MF to the 793 

targeted MVN resulting in an increase in synaptic efficacy defined as β. 794 

The code for the Neuron Simulator and EDLUT Simulator will be made publicly available upon acceptance of the article. The Neuron 795 
code includes HH PC model and HH IO model operating in isolation, whilst the EDLUT code encompasses the r-VOR setup in closed 796 
loop with both phase-free and phase-locked configurations. We kindly request the reviewers to consider this note and, if necessary, 797 
contact the authors for any additional information, granted code access and/or clarification regarding the code. 798 

https://github.com/EduardoRosLab/NEURON_NEURAL_MODELS 799 
https://github.com/EduardoRosLab/OLIVARY-PHASE-LOCKING-OSCILLATIONS 800 
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