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Summary 36 

Pediatric high-grade glioma (pHGG) is an incurable central nervous system malignancy that is a 37 

leading cause of pediatric cancer death. While pHGG shares many similarities to adult glioma, it 38 

is increasingly recognized as a molecularly distinct, yet highly heterogeneous disease. In this 39 

study, we longitudinally profiled a molecularly diverse cohort of 16 pHGG patients before and 40 

after standard therapy through single-nucleus RNA and ATAC sequencing, whole-genome 41 

sequencing, and CODEX spatial proteomics to capture the evolution of the tumor 42 

microenvironment during progression following treatment. We found that the canonical 43 

neoplastic cell phenotypes of adult glioblastoma are insufficient to capture the range of tumor 44 

cell states in a pediatric cohort and observed differential tumor-myeloid interactions between 45 

malignant cell states. We identified key transcriptional regulators of pHGG cell states and did 46 

not observe the marked proneural to mesenchymal shift characteristic of adult glioblastoma. We 47 

showed that essential neuromodulators and the interferon response are upregulated post-therapy 48 

along with an increase in non-neoplastic oligodendrocytes. Through in vitro pharmacological 49 

perturbation, we demonstrated novel malignant cell-intrinsic targets. This multiomic atlas of 50 

longitudinal pHGG captures the key features of therapy response that support distinction from its 51 

adult counterpart and suggests therapeutic strategies which are targeted to pediatric gliomas.  52 

 53 

  54 
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Main 55 

 Pediatric high-grade glioma (pHGG) is a devastating brain malignancy accounting for 56 

approximately 11% of central nervous system (CNS) tumors in children from infants to 57 

adolescents1. Although the incidence of this tumor is relatively low (1.78 per 100,000 58 

population)2, pHGG holds an exceptionally dismal prognosis, with a median overall survival of 59 

14 to 20 months.3 Despite decades of research and over 1,500 clinical trials, there remains no 60 

cure for pHGG. Standard therapy includes maximal safe resection, high-dose radiotherapy, and 61 

chemotherapy4, yet this multimodal therapy does little to change the course of the disease5. 62 

Although childhood and adult HGG, including glioblastoma multiforme (GBM), share many 63 

histopathological and clinical features, the advent of genomic, transcriptomic, and epigenomic 64 

profiling has led pHGG to be recognized as a distinct disease entity with substantial differences 65 

in its molecular characteristics2,6–10. Most prominently, mutations in the histone H3 gene (H3F3A 66 

and HIST1H3B) define important anatomically-distinct subtypes of pediatric gliomas6. The 67 

H3K27M mutation occurs frequently in tumors arising in the brainstem and other midline 68 

structures including the thalamus and cerebellum, while the H3G34R/V mutation is found most 69 

frequently in adolescent pHGGs of the cerebral cortex2,7. Other mutations in genes such as BRAF 70 

and ACVR1 are found predominantly in pediatric, rather than adult gliomas, yet their 71 

implications for diagnosis and treatment have not been established7,11. However, despite 72 

advances in delineating genomic subtypes, pHGG remains extremely heterogeneous with a 73 

desperate need for improved therapeutic options.  74 

Recent advances in single-cell multiomics and spatial profiling have greatly informed our 75 

understanding of the intra-tumoral and inter-tumoral heterogeneity of adult and pediatric brain 76 

tumors12–23. Collectively, these studies have identified patterns of neoplastic cell differentiation 77 
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states and metabolic programs, proposed detailed models for tumor initiation and oncogenesis, 78 

characterized the tumor immune microenvironment (TIME), and identified actionable avenues 79 

for targeted chemotherapeutic and immunotherapeutic strategies. Importantly, recent studies 80 

using bulk and single-cell transcriptomics have identified key cellular and microenvironmental 81 

changes during adult glioma progression under standard therapy, such as a shift in neoplastic cell 82 

states from a proneural to mesenchymal phenotype23,24, which has been implicated in glioma 83 

treatment resistance25. However, current single-cell characterization of pHGG is largely limited 84 

to the neoplastic cell compartment17,12,16,20,22, and the extent to which pHGG progression under 85 

therapy differs from that of adult HGG is unknown. To address this, we present an integrated 86 

multimodal analysis of matched primary-recurrent patient specimens (16 patients) across 87 

histologic and molecular subtypes using single-nucleus RNA-sequencing (snRNA-Seq), single-88 

nucleus assay for transposase-accessible chromatin via sequencing (snATAC-Seq), whole 89 

genome sequencing (WGS), and Co-Detection by Indexing (CODEX) spatial proteomics. 90 

Overall, this longitudinal multiomic atlas of pHGG captures key features of therapy response that 91 

support its distinction from adult HGG and suggests therapeutic strategies which are targeted to 92 

pediatric gliomas.  93 

 94 

Results 95 

Single-cell profiling of longitudinal pHGG specimens 96 

 We profiled pHGG samples obtained through the Children’s Brain Tumor Network 97 

(CBTN)26 from 16 patients across therapeutic time points via snRNA-Seq (15 pairs) and 98 

snATAC-Seq (11 pairs) (Figure 1a-c). All patients received radiotherapy and surgical resection, 99 

and some received pharmacological treatment including temozolomide, immunotherapy (e.g., 100 
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pembrolizumab), and cytotoxic chemotherapy (Extended Data Fig. 1a, Supplementary Fig. 1, 101 

Supplementary Table 1). Patients in the cohort ranged from 4 to 24 years in age, had a male-to-102 

female ratio of 2.2, and tumors included a range of genomic alterations (Extended Data Fig. 103 

1b). The tumor specimens were resected from multiple anatomic locations including cortical 104 

lobes and midline structures including the thalamus and cerebellum. The cohort included three 105 

H3K27M-mutated cases, one H3G34V-mutated case, and one IDH1-mutated case; the remainder 106 

were IDH1/H3 wildtype (WT) (Figure 1d). Post-therapy time points were further delineated as 107 

progressive/recurrence, where samples were obtained through a secondary resection, and 108 

autopsy, where samples were collected post-mortem. Collectively, over 400,000 cells were 109 

profiled via snRNA-Seq, and over 110,000 cells were profiled via snATAC-Seq after quality 110 

assessment and filtering, capturing a mean of 2,280 genes and 19,094 unique chromatin 111 

fragments per cell respectively (Extended Data Fig. 2a, Extended Data Fig. 3a). Samples were 112 

integrated to remove batch effects and cell types were annotated (Extended Data Fig. 2b-e, 113 

Extended Data Fig. 3b-e, Supplementary Fig. 1, 2, Methods). We captured the major cell 114 

types present in gliomas, including normal mature neurons and oligodendrocytes, myeloid cells 115 

(macrophages/microglia), T cells, endothelial cells, mural cells, and a diverse population that we 116 

have termed “other neural and glial cells,” including a mix of inferred neoplastic and non-117 

neoplastic subpopulations. (Figure 1b-c). There was significant heterogeneity between patients 118 

and time points (Figure 1d, Extended Data Figure 2f-g, Extended Data Figure 3f-h). Notably, 119 

the majority of mural cells were captured within two patients, and T cells were captured largely 120 

in a single patient (Figure 1d). Examining the longitudinal shifts in cell type composition in the 121 

snRNA-Seq data revealed a significant increase in non-neoplastic oligodendrocytes (p=0.0067) 122 

and mature neurons (p=0.029) within patient-matched pairs (Figure 1e). Oligodendrocytes were 123 
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concordantly enriched post-therapy in the snATAC-Seq data (p=0.019) (Figure 1f), consistent 124 

with prior observations of oligodendrocyte expansion in adult glioblastoma multiforme (GBM)23. 125 

This trend occurred primarily in the secondary resection samples, suggesting this is not simply 126 

an artifact of wider normal margins in autopsy specimens (Extended Data Fig. 2f, Extended 127 

Data Fig. 3f).  128 

 129 

Pediatric gliomas exhibit distinct neoplastic cell states  130 

 We sought to characterize the neoplastic cell compartment and assess how these cell 131 

states change during progression and therapy. After identifying putative neoplastic cells via copy 132 

number variation (CNV) inference (Supplementary Figure 3a-b, Methods), we reintegrated 133 

these populations (Extended Data Figure 4a-d) and then examined whether the canonical cell 134 

states established by Neftel et al.12 in a cohort of IDH-wild-type adult and pediatric glioblastoma 135 

(GBM) can be applied to a molecularly diverse cohort of pHGG using the snRNA-Seq data. 136 

Assessing the gene signatures of these four states (astrocyte (AC)-like, mesenchymal (MES)-137 

like, oligodendrocyte-progenitor (OPC)-like, neural-progenitor (NPC)-like) yielded several key 138 

observations. First, we identified two distinct AC-like populations (Figure 2a-d). These 139 

populations both expressed the astrocyte-defining marker, GFAP, and were most enriched in the 140 

AC-like gene signature (Figure 2c, Extended Data Figure 4e). Next, we identified a definitive 141 

MES-like state which expressed established mesenchymal marker genes (e.g., CD44, VIM, 142 

ANXA1, NDRG1) and angiogenesis genes (i.e., VEGFA) and was enriched in hypoxia response 143 

signatures (Figure 2d-e, Supplementary Table 2). Interestingly, while the mesenchymal cell 144 

state has only recently been identified in H3K27M-mutant glioma20, which these findings further 145 
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support, we observe a low-frequency MES-like state in our single pediatric IDH-mutant glioma 146 

case (Extended Data Fig. 4i). 147 

We identified a population with high expression of both OPC-like and NPC-like gene 148 

signatures that we refer to as OPC/NPC-like, and a distinct population expressing neural genes 149 

(Figure 2c-e) that was restricted to IDH/H3-WT tumors (Extended Data Fig. 4i). Projecting the 150 

cells onto an atlas of the developing human fetal brain revealed that this population most closely 151 

resembled fetal excitatory neurons, rather than earlier neural progenitor phenotypes (Extended 152 

Data Fig. 4f), and pathway analysis supported the expression of neuronal pathways (Figure 2e), 153 

thus this population was annotated as neuronal (NEU)-like. OPC/NPC-like cells expressed both  154 

known OPC-like genes (e.g., FGF12) and NPC-like genes (e.g., TNR), and NEU-like cells 155 

expressed some NPC-like marker genes (e.g., SOX4, CD24) (Figure 2d). Lastly, we identified 156 

three distinct intermediate cell states that lack specific enrichment of the canonical markers and 157 

identified a mixed population of cycling cells (Extended Data Fig. 4e). An analysis of 158 

neoplastic lineages via CytoTRACE27, which leverages transcriptional diversity to predict 159 

differentiation trajectories, supported the proneural to mesenchymal differentiation hierarchy14,23, 160 

and suggested that the two AC-like states lie on either ends of the differentiation spectrum 161 

(Figure 2f). The AC-like 1 population is the least differentiated neoplastic cell state while the 162 

AC-like 2 population is the most differentiated cell state and was found to also express some 163 

mesenchymal markers (e.g., VIM, APOE) in addition to canonical AC-like markers (e.g., S100B, 164 

SPARC) (Figure 2d). 165 

The proportions of these cell states across samples were highly heterogeneous, with 166 

significant variation between patients and across time points (Extended Data Fig. 4g-i). 167 

However, examining neoplastic cell state proportions per-patient revealed no significant shifts in 168 
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cell type composition across therapeutic time points (Figure 2g). This finding is in contrast with 169 

recent findings in adult IDH-WT GBM in which a significant increase in mesenchymal cells was 170 

observed after treatment and progression.23 171 

 172 

Transcription factors jointly regulate pHGG neoplastic cell states  173 

 We then sought to extend our characterization of these cell states via our single-cell 174 

chromatin accessibility data. After reintegrating and annotating the putative neoplastic 175 

population in our snATAC-Seq data (Extended Data Fig. 5a-c, Supplementary Fig. 4a-d, 176 

Methods), we captured all the cell states defined transcriptionally in the snRNA-Seq data and 177 

confirmed enrichment of chromatin accessibility for cell state-defining genes and significant 178 

concordance with snRNA-Seq (Figure 3a-b, Supplementary Fig 4e-f). Of note, we did not 179 

identify a distinct population of cycling cells in the snATAC-Seq data (Supplementary Fig. 4c). 180 

As expected, we observed significant heterogeneity between patients and therapeutic time points, 181 

and no significant shifts in neoplastic cell state post-therapy (Extended Data Fig. 4d-f, Figure 182 

3c). However, we observed a decreasing trend in the AC-like 2 population in the majority of 183 

patient-matched pairs with borderline significance (p=0.054) (Figure 3c).  184 

We then aimed to identify the transcription factors that regulate each cell state, first by 185 

using chromVAR28 to assess differential accessibility of transcription factor motifs 186 

(Supplementary Table 3). Consistent with previous reports23,29, motifs for the AP1 family of 187 

transcription factors (e.g., FOSL2, JUN) were enriched in the mesenchymal state, along with 188 

SMARCC1, JDP2, and BACH1 (Figure 3d). Notably, these motifs were also enriched in the 189 

Intermediate 1 and AC-like 1 states. Both AC-like states were enriched for RFX factor motifs, 190 
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and the OPC/NPC-like and NEU-like states were enriched for proneural transcription factors 191 

(e.g., ASCL2, NHLH1, LHX4) (Figure 3d).  192 

Next, we constructed a transcriptional regulatory network (TRN) for each cell state by 193 

integrating our snRNA-Seq and snATAC-Seq data to predict state-specific enhancer-promoter 194 

interactions and transcription factor-target gene pairs (Supplementary Table 4, Methods). 195 

These TRNs revealed substantial cooperativity between transcription factors in regulating cell 196 

state-specific gene expression (Figure 3e-g, Extended Data Fig. 4g-j). This analysis nominated 197 

known and novel transcription factors. The RFX factors were predicted to regulate both AC-like 198 

cell states30. SOX4 was predicted to regulate both the NEU-like and OPC/NPC-like states 199 

through cooperation with other transcription factors including LHX1 and KLF12 respectively 200 

(Figure 3e-f). The AP1 factors23 and RUNX1 were predicted to jointly regulate the MES-like 201 

state. RUNX1 was predicted to target the top differentially expressed genes in the MES-like state 202 

and RUNX1 expression was upregulated in MES-like neoplastic cells post-therapy (Figure 3f). 203 

While RUNX1 has been recognized as a contributor to mesenchymal GBM31, this analysis 204 

suggests that the RUNX1 transcription factor is a central regulator of the MES-like state. 205 

Interestingly, we observed that 39% of genes in the MES-like TRN were significantly 206 

upregulated within that population post-therapy (versus 9.3% downregulated), while 49% of 207 

genes within the OPC/NPC-like TRN were significantly downregulated (versus 1.4% 208 

upregulated). This suggests that although there is no population shift, the MES-like state 209 

phenotype may be strengthened post-therapy. Overall, this analysis revealed the overlapping 210 

transcriptional regulatory interplay underlying the spectrum of neoplastic phenotypes.  211 

 212 

Tumor-immune microenvironment is dominated by diverse myeloid populations 213 
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 After defining the neoplastic cell states in pHGG, we next sought to characterize the 214 

immune microenvironment. T cells comprised ~2% of the cells captured via snRNA-Seq and 215 

were primarily found in two post-therapy specimens (Figure 1b-d). The progressive H3G34V-216 

mutant case was a notable outlier, with T cells representing ~22% of cells captured (Figure 1d). 217 

A low T cell abundance with outliers up to ~20% of total cell composition is consistent with 218 

adult GBM23. Myeloid cells comprised ~9% of the snRNA-Seq data and were captured in each 219 

patient, so we selected this population for further analysis. After reintegration (Extended Data 220 

Fig. 6a-c, Methods), we identified 11 distinct myeloid populations that were manually annotated 221 

based on their differentially expressed genes and transcriptional regulons and demonstrated 222 

extensive heterogeneity between patients and therapeutic time points (Figure 4a-c, Extended 223 

Data Fig. 6d-h, Supplementary Table 5). Most samples contained a distribution of myeloid 224 

subpopulations, while a few samples were dominated by a single subtype (Extended Data Fig. 225 

6h). Additionally, these cells formed a continuous phenotypic spectrum, including resident 226 

microglia and bone marrow-derived macrophage ontogenies (Extended Data Fig. 6d).  227 

 The myeloid subpopulations included tissue-resident microglia, dendritic cells, and 228 

multiple tumor-associated macrophage (TAM) subsets that have been previously characterized 229 

across multiple solid tumor types including adult glioma32. This includes pro-angiogenic TAMs 230 

differentially expressing VEGFA and glycolytic enzymes (i.e., HK2, ENO2), lipid-associated 231 

TAMs (PPARG and LPL), inflammatory TAMs (NFKB1 and IL1B), interferon (IFN)-responsive 232 

TAMs (IFIT2, IFIT3, and ISG15), as well as two additional populations of putative bone 233 

marrow-derived macrophages, BMD TAM 1 (F13A1, TMEM163, MS4A4E) and BMD TAM 2 234 

(TGFBI, MALT1, RGS2). Microglia were primarily stratified into pre-active microglia (CCL3, 235 

EGR3, NFKBID) and homeostatic microglia (P2RY12, TMEM119) (Figure 4a-c). Both pre-236 
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active and homeostatic microglia populations exhibited a trend of decreasing frequency post 237 

therapy in the majority of the samples, while bone-marrow derived macrophages tended to 238 

increase post therapy (Figure 4d). This is consistent with observations in adult GBM, in which a 239 

microglia to macrophage shift post therapy has been reported23. Given that myeloid population 240 

shifts were highly variable between patients, we applied a generalized linear mixed model 241 

approach (Supplementary Table 6, Methods) to identify pathway-level changes in pseudobulk 242 

myeloid cells during tumor progression. We observed upregulation of interferon and 243 

inflammatory response pathways, and downregulation of pathways related to proliferation and 244 

cellular metabolism (e.g., oxidative phosphorylation, E2F targets) (Figure 4e).  245 

 Glioma-associated macrophages have been previously demonstrated to differentially 246 

interact with neoplastic cell states, altering their activity and differentiation status33. Indeed, we 247 

observed differential correlations in frequency between neoplastic cell states and myeloid 248 

subtypes across tumor regions. The MES-like state was associated with pro-angiogenic TAMs, 249 

while the OPC/NPC-like state was associated with homeostatic microglia (Figure 4f). 250 

Consequently, we aimed to elucidate how these pHGG-associated myeloid subpopulations 251 

interact with our newly defined pHGG-specific neoplastic cell states through an analysis of 252 

inferred ligand-receptor interactions (Figure 4g, Supplementary Table 7, Methods). We 253 

observed a broad and heterogeneous set of bidirectional cellular interactions. Importantly, 254 

myeloid cells were predicted to mediate multiple neoplastic cell functions both through direct 255 

contact and secreted factors. These interactions included processes involved in regulating growth 256 

and proliferation (e.g., SPP1-CD44, HBEGF-EGFR/ERBB2), cell adhesion and migration (e.g., 257 

FN1-ITGA3/ITGB1), and modulation of electrochemical or synaptic properties (e.g., NLGN1-258 

NRXN3) (Supplementary Fig. 5). The AC-like 1 and Intermediate 1 cell states were predicted 259 
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to receive intercellular signals most broadly across myeloid subtypes with receptors including 260 

FGFR1, IGF1R, and CD44, which is specifically known to interact with a range of ligands (e.g., 261 

HBEGF, PSEN1, SPP1, VEGFA) and has a critical role in adult glioma34–36. In contrast, the AC-262 

like 2 and Intermediate 2 populations were the most inert neoplastic populations (Figure 4g). 263 

Additionally, the NEU-like population was predicted to be a significant ligand source for intra-264 

neoplastic interactions with OPC/NPC-like and NEU-like cells (Figure 4g). Taken together, this 265 

analysis is the first comprehensive characterization of pHGG myeloid subtypes and suggests that 266 

TAM populations can differentially interact with neoplastic cell states and modulate multiple 267 

neoplastic cell intrinsic functions.  268 

 269 

Mapping the spatial landscape of pHGG 270 

 Gliomas are not only highly heterogeneous in terms of cell types and states, but complex 271 

topographic localization of neoplastic and immune populations yields spatial niches with distinct 272 

molecular functions and therapeutic vulnerabilites37–41. To characterize the spatial landscape of 273 

pHGG, we employed Co-Detection by Indexing (CODEX) spatial proteomics with a 52-plex 274 

panel (51 antibodies + DAPI) on 11 whole-slide formalin-fixed paraffin-embedded (FFPE) 275 

samples that had paired snRNA-Seq data, including three patient-matched longitudinal pairs  276 

(Figure 5a, Supplementary Table 8, 9). First, we confirmed appropriate antibody staining 277 

morphology and co-localization, and we manually removed areas with staining artifact 278 

(Supplementary Fig. 6). Then, we confirmed that our CODEX panel was able to resolve gross 279 

anatomical compartments including bulk tumor, gray matter, and white matter (Figure 5b). 280 

Finally, after segmenting single cells, computational integration, and clustering, we annotated 281 

over 7.5 million single cells (Figure 5c-d, Supplementary Figure 7, Extended Data Fig. 7a-c, 282 
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Methods). We captured the primary axis of neoplastic cell states from proneural (high 283 

expression of SOX2, OLIG1, OLIG2) to mesenchymal/astrocytic (high expression of CD44, 284 

VIM, GFAP). Interestingly, we observed two distinct MES (mesenchymal)-like tumor 285 

populations. MES-like-1 tumor cells expressed the additional mesenchymal markers APOE, 286 

SPP1, and GLUT1, and were predominantly identified in peri-necrotic regions (Supplementary 287 

Figure 7e), and  MES-like-2 tumor cells had the highest expression of the canonical marker 288 

CD44 (Extended Data Fig. 7b-c). Neoplastic cell states were distributed heterogeneously both 289 

between and within samples with regions of the tumor predominated by patches of either 290 

proneural or mesenchymal tumor cells (Figure 5e).  291 

 The immune populations were predominated by myeloid cells, consistent with the 292 

sequencing data, and similarly formed a continuous phenotypic distribution including microglia 293 

and macrophages (Figure 5c, f). We identified a macrophage population that strongly co-294 

expressed classically immune suppressive markers CD163 and CD206, a second macrophage 295 

population characterized by high HLA-DR expression, and a large population of MPO+ myeloid 296 

cells (Figure 5c, Extended Data Fig. 7b). This MPO+ population had a high expression of HIF-297 

1A and was primarily found as large infiltrates in necrotic regions in several samples 298 

(Supplementary Figure 8a, Extended Data Fig. 7b). While we identified small populations of 299 

CD4+ and CD8+ T cells, inspection of the images revealed that T cells were predominantly 300 

located within vessels or concentrated in areas of hemorrhage. This demonstrates that blood 301 

contaminants in tissue may confound analysis of single-cell sequencing of rare immune 302 

populations (Supplementary Fig. 8b). Lastly, we observed spatially restricted expression of 303 

immune checkpoint molecules including CD47 and PD-L1 (Supplementary Fig. 8c).  304 

 305 
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Myeloid cells are spatially colocalized with distinct tumor states 306 

 To systematically identify recurrent spatial patterns, we performed unsupervised 307 

neighborhood analysis and identified 15 cellular neighborhoods (CNs) which we manually 308 

annotated based on their relative enrichment of cell types (Figure 5g). These neighborhoods 309 

were heterogeneously distributed across samples and captured expected anatomic compartments 310 

including gray matter (CN2, predominantly mature neurons), white matter (CN6, mature 311 

oligodendrocytes), and infiltrating tumor regions (CN7, normal oligodendrocytes and tumor 312 

cells) (Figure 5h, Supplementary Fig. 8). Additionally, this analysis highlighted localized 313 

regions predominated by different tumor cell states (i.e., proneural, intermediate, and 314 

mesenchymal neighborhoods), as well as MPO+ infiltrates, and a vascular neighborhood (Figure 315 

5h). Tumor cells tended to co-localize with cells sharing the same phenotype, such as proneural 316 

tumor cells localizing with other proneural tumor cells. (Figure 5e, g). Notably, each 317 

mesenchymal tumor cell type was primarily enriched in its own cellular neighborhood (CN3, 318 

CN15) with a relative depletion of proneural or intermediate tumor cells, suggesting that 319 

mesenchymal tumor cells form localized niches that are distinct from other regions of bulk tumor 320 

(Figure 5g).  321 

Immune cells were differentially localized across cellular neighborhoods. Microglia were 322 

enriched in areas of normal brain, primarily gray matter (Figure 5g), and were observed to be 323 

concentrated at the tumor-normal boundary (Supplementary Fig. 8d). Macrophages and T cells 324 

were jointly enriched in an immune-predominant neighborhood (CN1), a perivascular 325 

neighborhood (CN5), a vascular tumor neighborhood (CN11), and a tumor/immune 326 

neighborhood (CN9). Outside of these neighborhoods, unclassified macrophages were most 327 

enriched in the  MES-like-1 neighborhood (CN15). Immune cells were relatively depleted in all 328 
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neighborhoods that had a significant enrichment of proneural tumor cells (Figure 5h). Together, 329 

this is consistent with previous reports that macrophages are most enriched in the vicinity of 330 

MES-like glioma cells33, but further suggests that this is specific to some TAM subpopulations. 331 

This was supported by examining distances from tumor cells to myeloid cells, which revealed 332 

that  MES-like-1 tumor cells were consistently enriched near MPO+ myeloid cells and 333 

unclassified macrophages, while  MES-like-2 tumor cells and proneural tumor cells were both 334 

enriched near HLA-hi macrophages (Extended Data Fig. 8a-e). This analysis also revealed that 335 

MES-like-1 tumor cells were the furthest population from vasculature, while  MES-like-2 tumor 336 

cells were closest to vasculature after immune cells, supporting a hypoxia-dependent 337 

stratification of mesenchymal cell states (Extended Data Fig. 8a, f)12.  338 

 339 

Tumor subclone dynamics reveal recurrent genomic alterations 340 

 We next aimed to apply our longitudinal data to identify mechanisms of therapeutic 341 

resistance. We first utilized large-scale copy number variations (CNVs) to trace tumor subclones 342 

across patient-matched samples with Clonalscope42 which integrates snRNA-Seq and matched 343 

WGS data. Neoplastic subclones were defined at the earliest time point for each patient and 344 

traced to the later therapeutic time points to assess populations that have expanded or regressed 345 

during treatment and progression (Methods). Through this approach we identified lineage-traced 346 

neoplastic subclones on 14 patients, ranging from 4 to 9 subclones per patient, with variable 347 

clonal dynamics across time points (Extended Data Fig. 9a). We identified recurrent CNVs 348 

including copy number gains on chromosomes 1q, 7p/7q, 8q, 19p/19q, and 20p and copy number 349 

losses on chromosomes 5p/5q, 6q, 10p/10q, and 14q (Figure 6a). Clustering of gene-level CNVs 350 

across tumor subclones revealed recurrent modules of highly correlated CNVs across patients, 351 
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indicating that similar patterns of chromosome alterations dynamics occur during disease 352 

progression (Extended Data Fig. 9b). Notably, some alterations occurred more frequently on 353 

expanded subclones (e.g., gain on chr18p and chr19q, loss on chr14q), suggesting that these 354 

alterations may confer a survival advantage (Extended Data Fig. 9c, Supplementary Table 355 

S10).  356 

 357 

Longitudinal analysis uncovers tumor cell-intrinsic targets 358 

 We then applied an analogous generalized linear model approach (Methods) to identify 359 

genes and pathways that were upregulated across therapeutic time points over all neoplastic cells, 360 

accounting for individual patient variability. Despite not observing population-level cell state 361 

shifts in the neoplastic compartment, this analysis yielded 627 significantly upregulated genes 362 

and 1,551 significantly downregulated genes (adjusted p <0.05) (Supplementary Table 11, 363 

Figure 6b). Examining pathway-level changes revealed an upregulation of type I and type II 364 

interferon response pathways and the neuroactive ligand-receptor interactions gene set as well as 365 

downregulation of pathways related to cell proliferation and metabolism, primarily oxidative 366 

phosphorylation (Figure 6c).  367 

We then aimed to utilize this neoplastic cell-specific longitudinal analysis to identify and 368 

validate tumor cell intrinsic drug targets for pHGG, assuming that consistently upregulated genes 369 

are related to therapy resistance. To prioritize gene targets, we screened differentially 370 

upregulated genes against multiple drug target databases and the Cancer Dependency Map 371 

(DepMap) as well considered their roles as receptors in the tumor microenvironment (Extended 372 

Data Fig. 10a-c, Supplementary Tables 7, 12, 13, Methods). After curating targets to validate, 373 

we screened over 20 pharmacological compounds to assess their impact on cell proliferation in a 374 
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pHGG post-therapy cell line. Cell proliferation and viability were assessed via a fluorescent 375 

reporter 72 hours after drug treatment as a fold change of fluorescence intensity from the time of 376 

drug treatment and compared to the growth fold change of DMSO controls (Methods). We 377 

verified a cytotoxic effect of panobinostat (non-selective HDAC inhibitor), AZD4547 (FGFR 378 

inhibitor), and temozolomide (alkylating chemotherapy agent). Multiple genes related to 379 

apoptosis, pyroptosis, and inflammasome activation were upregulated including caspases 380 

(CASP1, CASP4), BCL2L1, and BCL6. Indeed, inhibition of CASP1 with belnacasan and 381 

inhibition of BCL-2 with ABT-263 reduced proliferation in vitro compared to DMSO controls 382 

(Figure 6d). Consistent with our pathway analysis, we observed significant upregulation of 383 

multiple genes involved in electrochemical and synaptic communication, which has been shown 384 

to support glioma progression and invasion43,44. This includes receptors for neurotransmitters 385 

(e.g., the top predicted target, CHRM3) as well as solute and ion (sodium and potassium) 386 

channels. Modulating their functions in vitro with small molecule antagonists and agonists 387 

confirmed the significance of electrochemical signaling in regulating pediatric glioma cell 388 

growth and survival. The selective CHRM3 antagonist, J-104129, resulted in significant cell 389 

death, although the cholinergic agonist, cevimeline, had no effect on proliferation. The selective 390 

GABAA receptor antagonist, gabazine, and to a lesser extent, the selective GABAB receptor 391 

antagonist, CGP52432, had a mild antiproliferative effect (Figure 6d). Interestingly, activating 392 

KCNQ potassium channels with retigabine significantly stimulated cell proliferation, while 393 

inhibiting KCNQ channels (4-aminopyridine) had no effect. Lastly, our screening nominated 394 

secretory phospholipase A2 (sPLA2) as a novel therapeutic target in pediatric glioma, with a 395 

dose-dependent cytotoxic response upon treatment with the PLA2-inhibitor varespladib (Figure 396 

6d).  397 
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 398 

Discussion 399 

 In this study, we profiled the single-cell transcriptional, chromatin-accessibility, and 400 

spatial landscape of pediatric high-grade glioma (pHGG) longitudinally under standard therapy. 401 

We defined a set of pediatric neoplastic cell states and identified their transcriptional regulatory 402 

networks. Similarly, we characterized the tumor immune microenvironment and identified a 403 

diverse spectrum of tumor-associated macrophage (TAM) subtypes and employed a 51-marker 404 

CODEX panel that revealed differential tumor-immune co-localization.  405 

 The longitudinal patient-matched samples provide critical insight into the molecular 406 

mechanisms of tumor progression and therapy. Mesenchymal transformation has been described 407 

as a hallmark of progressive GBM, analogous to epithelial-to-mesenchymal transition in 408 

carcinomas23,25,45,46. In pHGG, we indeed observed a spectrum of proneural to mesenchymal 409 

differentiation states that resembled those characterized in adult glioma. Interestingly, we also 410 

observed distinct astrocyte-like states on each end of the differentiation hierarchy, suggesting 411 

that astrocytic programs are maintained in a subset of stem-like pHGG neoplastic cells. 412 

Additionally, we did not identify any significant shifts in neoplastic cell states, suggesting an 413 

important distinction from adult GBM.  414 

 Our framework for identifying tumor cell-intrinsic drug targets implicated several 415 

mechanisms of therapy resistance and uncovered novel targets. Synaptic electrochemical 416 

signaling through multiple receptors has been increasingly implicated in adult and pediatric 417 

glioma progression44, including acetylcholine47–49, dopamine50–52, and GABA53–55. We found that 418 

neuroactive signaling is broadly upregulated in pHGG, suggesting that tumor cells may become 419 

increasingly dependent on synaptic activity over time. We also identified sPLA2 as a novel 420 
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target in pHGG. Phospholipases are enzymes that hydrolyze phospholipids into precursor fatty 421 

acids, which have roles in cell signaling, metabolism, and inflammation. Phospholipase A2 has 422 

been implicated in multiple cancer types including colorectal cancer56, skin cancer57, and adult 423 

glioblastoma58,59, in which it has been shown to inhibit apoptosis and activate EGFR signaling60.  424 

 Overall, our study sheds light onto the molecular mechanisms of pHGG, but there are 425 

important limitations. Primarily, the small size and frequent inoperability of these tumors 426 

necessitate a relatively small and heterogeneous cohort with some samples collected post-427 

mortem. Thus, additional profiling is necessary to elucidate the specific effects of different 428 

molecular subtypes and chemotherapeutic agents on longitudinal changes. Crucially, further in 429 

vitro and in vivo studies are expected to elucidate microenvironment-dependent mechanisms of 430 

resistance. 431 

  432 

Statistics and reproducibility 433 

No statistical method was used to predetermine sample size. All available longitudinal specimens 434 

at the Children’s Hospital of Philadelphia meeting the inclusion criteria were profiled, and all 435 

data meeting standard QC thresholds were included. The two-sided Wilcoxon signed-rank test 436 

for paired samples was used to compare percentages of cell initial resection and post-therapy 437 

specimens. A two-sided Student’s t test was used to compare cell growth for in vitro 438 

experiments. The Fisher’s exact test was used to assess for recurring copy number alterations in 439 

the tumor subclone analysis, and a hypergeometric test was used to assess cell type enrichment in 440 

spatial neighborhoods. Both were adjusted for multiple hypothesis testing via the Benjamini-441 

Hochberg method. A logistic regression model was used to identify differentially expressed 442 

genes in tumor cells across cell states and time points, and the Wilcoxon rank-sum test was used 443 
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to identify differentially accessible transcription factor motifs in tumor cells and differentially 444 

expressed genes and regulons across myeloid cell types and adjusted using the Bonferroni 445 

correction. Distance analysis in CODEX data was conducted using a one-sided permutation test 446 

(Methods).  447 

 448 

Methods 449 

Human biospecimens 450 

Primary samples were obtained from patients with high-grade glioma banked at the Children’s 451 

Hospital of Philadelphia (CHOP) Childhood Cancer Research (CCCR) Registry. The patient 452 

selection was built based on specimen availability. Biorepositories were obtained with parent 453 

informed consent according to the Declaration of Helsinki and Institutional Review Board 454 

approval from all participating centers. All patients underwent an initial tumor resection after 455 

histopathological diagnosis of high-grade glioma before receiving treatment, followed by a 456 

secondary surgical resection or sample acquisition at autopsy. Germline DNA from either blood 457 

or skin samples were acquired from the Children’s Brain Tumor Network (CBTN) at CHOP. 458 

Patient sample information and relevant clinical metadata is provided in Supplemental Table 1. 459 

 460 

Single-nucleus RNA sequencing (snRNA-Seq) 461 

Single nuclei suspensions immediately underwent library preparation using the Chromium Single 462 

Cell 3’ Reagent Kit v3 or V3.1 (10x Genomics) according to the manufacturer’s instructions. 463 

Library quality was assessed using the Bioanalyzer Agilent 2100 with the High Sensitivity DNA 464 

chip (Agilent Technologies, 5067-4626). Indexed libraries were pooled and sequenced on an 465 
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Illumina NovaSeq 6000 using sequencing parameters 28:8:0:87 (read1:i5:i7:read2, bp) with an 466 

average sequencing depth of 50,000 read pairs per nucleus. 467 

 468 

Single-nucleus assay for transposase-accessible chromatin using sequencing (snATAC-Seq) 469 

Single nuclei suspensions immediately underwent library preparation with the Chromium Next 470 

GEM Single Cell ATAC Reagent kit V1.1 (10x Genomics) as per manufacturer’s user manual. 471 

Library quality was assessed using the Bioanalyzer Agilent 2100 with a High Sensitivity DNA 472 

chip (Agilent Technologies, 5067-4626). Indexed libraries were pooled and sequenced on an 473 

Illumina NovaSeq 6000 using sequencing parameters 49:8:16:49 (read1:i5:i7:read2, bp) with an 474 

average sequencing depth of 50,000 read pairs per nucleus. 475 

 476 

Processing and quality control filtering of snRNA-Seq data 477 

Read count matrices for snRNA-Seq data were generated from raw FASTQ files using Cell 478 

Ranger v3.1.0. Reads were aligned to the GENCODE Release 34 (GRCh38.p13) transcriptome 479 

reference. The resulting count matrices were processed and analyzed using Seurat v461. Quality 480 

control filtering was applied to each cell, using filters of 500 < nFeature_RNA < 8000 and 481 

mitochondrial read percentage < 10%. Poor quality samples containing fewer than 500 cells 482 

passing quality control thresholds were excluded from downstream analysis. For three samples 483 

of borderline but passable quality (7316-339, 7316-7545, and 7316-7559) we instead used filters 484 

of 300 < nFeature_RNA < 8000 and mitochondrial read percentage < 20%. Doublets were called 485 

and removed using the DoubletFinder package (v3)62 using a doublet proportion estimate of 486 

7.5%. 487 

 488 
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Sample integration, clustering, and cell type annotation of snRNA-Seq data 489 

Initial snRNA-Seq data processing was performed using the Seurat v4 package. To aid in 490 

identification of malignant and non-malignant cell populations, two published high-grade glioma 491 

snRNA-Seq datasets22,63 were included with snRNA-Seq data from the present study in the 492 

following integration and annotation protocol. Due to memory constraints in Seurat v4, data 493 

were randomly downsampled so as not to exceed 200,000 total cells, preferentially 494 

downsampling cells from samples with a higher cell count to preserve cells in samples with 495 

lower cell counts. Cell cycle scores were computed using the CellCycleScoring method with 496 

annotated cell cycle genes (2019 update). Integration was performed by reciprocal principal 497 

component analysis (RPCA) at a patient level. In detail, each patient was normalized by 498 

SCTransform (v2) with regression of mitochondrial percentage, S score, and G2M score by 499 

Gamma-Poisson generalized linear model. A total of 3,000 features were chosen by 500 

SelectIntegrationFeatures followed by PCA. The FindIntegrationAnchors function was run 501 

using top 30 PCs. Following integration, PCA was repeated on integrated features with 502 

RunUMAP and FindNeighbors computed using the top 30 PCs. Louvain clustering was 503 

performed by FindClusters at a resolution of 0.6. Cluster annotation was performed by manual 504 

review of canonical cell type-defining genes, allowing for identification of normal cell type 505 

populations including immune and stromal cells as well as a heterogenous and admixed 506 

population of other neural and glial cells whose neoplastic versus normal status was inferred by 507 

downstream copy number alteration analysis. 508 

As increased computational capacity became possible, after annotation using the 509 

downsampled data, the remaining cells were added to the downsampled dataset. These cells were 510 

first normalized with SCTransform and integrated through projection with Seurat v564 using 511 
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FindTransferAnchors with dims = 1:50, followed by MapQuery using the integrated PCA and 512 

integrated assay with default parameters. To support the cell type annotations in the full dataset, 513 

we projected the entire dataset onto an integrated reference atlas of adult glioblastoma65. Briefly, 514 

the reference atlas was log normalized, and a PCA was recomputed using the published variable 515 

features. The data was projected using the FindTransferAnchors function with dims = 1:50, 516 

followed by the TransferData function with default parameters in Seurat v5.  517 

 518 

Inference of neoplastic versus normal cells by copy number alteration analysis 519 

Neoplastic versus normal cell annotation was inferred by the presence or absence, respectively, 520 

of copy number alterations (CNA) detected from snRNA-Seq data using a dockerized 521 

implementation of InferCNV66 (https://hub.docker.com/r/trinityctat/infercnv, version tag 1.11.1). 522 

Due to computational constraints, the downsampled dataset as described above was used for all 523 

analysis of neoplastic cells in the snRNA-Seq data. Input parameters included cutoff = 0.1 524 

(recommended for 10x Genomics snRNA-Seq data), as well as cluster_by_groups = FALSE and 525 

analysis_mode = "subclusters'' in order to cluster cells by distinct copy number profiles. All 526 

samples for a given patient were run together in order to capture CNA clusters that may be 527 

shared between different tumor regions or timepoints. Unambiguous normal cell clusters 528 

identified during the Seurat integrated analysis of snRNA-Seq data were aggregated into three 529 

separate normal cell categories (specifically, mature neuron/glial, white blood cells, and vascular 530 

cells) which were then used as normal reference populations for InferCNV. Note that 531 

aggregation was required in order to meet the minimum cell count requirement for InferCNV 532 

across all patients. The remaining non-reference cells were annotated as “neoplastic” if the CNA 533 

profile of their corresponding InferCNV cluster matched CNAs detected by WGS from the same 534 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2024. ; https://doi.org/10.1101/2024.03.06.583588doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.06.583588
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

24 
 

patient and were considered to be “normal” otherwise. This comparison with WGS data, 535 

performed manually, was an additional quality control step to ensure that putative CNAs inferred 536 

from snRNA-Seq match true CNAs detected by WGS of DNA. 537 

 538 

snATAC-Seq data processing 539 

snATAC-Seq data for each sample was first demultiplexed using CellRanger-ATAC v.1.1.0 (10x 540 

Genomics). The fastq files were then processed using the process module of scATAC-pro 541 

(v1.4.4)67 with the default parameters. Briefly, the raw reads were aligned to the hg38 genome 542 

assembly. Peaks were called using MACS268. Barcodes with more than 2,000 total fragments, < 543 

20% mitochondrial reads, and >25% fraction of reads in peaks (FRiP) were identified as cells. 544 

The peak-by-cell count matrix was constructed and used for downstream analyses. 545 

  546 

snATAC-Seq data integration 547 

To integrate data from all patients, we first merged the peaks from different samples if two peaks 548 

are within 500bp of each other by the mergePeaks module of scATAC-pro. The peak-by-cell 549 

count matrix was then reconstructed based on the merged peaks using the reConstMtx module of 550 

scATAC-pro. Matrices from all samples were concatenated and loaded into Seurat with an extra 551 

ChromatinAssay added. The data was processed using Signac69 as follows: The Seurat object 552 

was split by sample ID and each sample was then processed through FindTopFeatures (with the 553 

minimum cutoff equal to 1% the number of cells present in the subset), RunTFIDF and RunSVD 554 

of Signac. FindIntegrationAnchors function was run with parameters reduction=rlsi and dims = 555 

2:30 with samples 4036 and 4037 as reference, which were from the patient with the greatest 556 

number of immune cells as found in the snRNA-Seq data. The anchor features were defined as 557 
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peaks that are accessible in more than 3% of cells in at least one of the patients. Then, Signac 558 

IntegrateEmbedding function was run with default parameters. The cells were further clustered 559 

with the FindNeighbors and FindClusters (with resolution = 0.8) functions in Seurat. For 560 

visualization, the UMAP was constructed using RunUMAP with reduction = “integrated_lsi” and 561 

dims = 2:30. 562 

 563 

Construction of transcriptional regulatory network  564 

The transcriptional regulatory network for each neoplastic cell state was constructed as 565 

previously described70 with minor modifications. We first co-embedded the snATAC-Seq and 566 

snRNA-Seq data per sample using the standard Seurat pipeline. Then we identified metacells 567 

using hdWGCNA71 with parameters k=20, max_shared = 5, min_cells = 50, reduction = “pca” 568 

and ident.group = “seurat_clusters.” Metacells containing between 4-16 snRNA-Seq cells were 569 

kept for further analysis. The gene-by-metacell expression matrix and the peak-by-metacell 570 

accessibility matrix were calculated as the average normalized expression and normalized 571 

accessibility of all cells within the metacell, respectively. Metacells from different samples were 572 

then combined and the Enhancer-Promoter (EP) interactions were predicted using a linear 573 

regression model for each gene on metacells, with the gene expression in each metacell as the 574 

dependent variable, and the accessibility of the peaks within +/- 500kb of the gene promoter as 575 

the independent variables. Significant EP interactions were defined based on a peak regression 576 

coefficient > 0.1 and Benjamini-Hochberg-adjusted p-value < 0.05. Predicted TF-target genes 577 

pairs were defined if the TF motif was present at the enhancer of a predicted EP interaction and 578 

both the TF and target gene were expressed in at least 20% of the cells within a given cell state.  579 
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 580 

Cell-cell communication analysis  581 

To assess ligand-receptor interactions between cell populations in the tumor microenvironment, 582 

we implemented the Ligand-Receptor Analysis Framework (LIANA) v0.1.1272, which infers 583 

cell-cell communication using a consensus of 16 cell signaling database resources and 5 CCC 584 

methods (Natmi73, Connectome74, LogFC Mean, SingleCellSignalR75, CellphoneDB76) with 585 

default parameters. The neoplastic cell states and myeloid subpopulations as annotated above 586 

along with the remaining non-neoplastic populations were included. We considered the 587 

consensus rank generated via Roust Rank Aggregation as the significance p value to predict the 588 

intercellular crosstalk between each pair based on the expression level of known receptors and 589 

ligands in the respective clusters and filtered interactions to those with p-value < 0.05. The 590 

number of significant interactions between cell populations was quantified, and the most relevant 591 

interactions were manually selected to plot.  592 

 593 

Malignant subclone analysis  594 

To study the evolution of malignant subclones in the patient-matched longitudinal samples, we 595 

applied Clonalscope (v1.0.0)42, which utilizes both snRNA-Seq data and paired WGS data. 596 

Clonalscope identifies copy number variation (CNV) segments with a Hidden Markov Model 597 

(HMM) from the paired WGS data, and then estimates the fold change of CNV segments at a 598 

single cell level using the snRNA-Seq data with a Poisson model. Then, it identifies tumor 599 

subclones through a Bayesian non-parametric clustering process based on the estimated CNVs. 600 

Clonalscope was run with default parameters on 14 of the 16 patients. Patient C70848 was 601 
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excluded due to having a single time point and patient C1060383 was excluded due to an 602 

insufficient amount of non-neoplastic cells for the Clonalscope algorithm. The required 603 

normal/reference cells were defined by manual inspection of the inferCNV profiles as described 604 

above. Paired WGS data augments identification of CNV segments, improving malignant 605 

subclone delineation. WGS data was first analyzed by CNVkit as described and iteratively 606 

refined by (1) merging continuous segments that share the same copy number state 607 

(amplification, neutral, or loss) and (2) merging each with neighboring segments if its size is <5% 608 

of both neighboring segments and if both neighboring segments share the same copy number 609 

state. This process denoises the WGS-defined CNV segments for use with Clonalscope.  610 

Clonalscope was then applied to estimate CNV profiles of single cells at the earliest time 611 

point for each patient, through a non-parametric clustering process. The estimated mean CNV 612 

profile of each subclone is utilized as a prior to trace similar subclones or discover new 613 

subclones from subsequent time points. For each patient, the shifts in malignant subclone 614 

proportions were visualized using clevRvis (v0.99.6)77, with the fishPlot function using a spline 615 

fit. Clones were defined as having expanded if their percentages increased over time and 616 

comprised at least 10% of the malignant population at the latest time point. The average values 617 

of estimated CNVs were summarized for each chromosome arm. CNV gain or loss was binarized 618 

as follows: average CNV >1.25 was defined as a copy number gain and <0.75 as a copy number 619 

loss. For each chromosome arm, a Fisher’s exact test was used to assess for recurring copy 620 

number alterations comparing the gain or loss of each chromosome segment relative to the gain 621 

or loss of all other segments and adjusted using the Benjamini-Hochberg method.  622 

 623 

CODEX staining 624 
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CODEX staining was done using the sample kit for PhenoCycler-Fusion (Akoya, 7000017) 625 

according to Akoya’s PhenoCycler-Fusion user guide with modifications to include a 626 

photobleaching step and overnight incubation with antibodies at 4°C. FFPE samples were 627 

sectioned at 5 μm thickness and mounted onto charged slides (Leica, 3800080). Sample slides 628 

were baked overnight at 60°C and allowed to cool to room temperature. Sample slides were 629 

deparaffinized in Xylenes (Sigma, 534056) twice and rehydrated in a graded series of ethanol 630 

concentrations (2 times 100%, 90%, 70%, 50%, 30% and 4 times ddH2O). Antigen retrieval was 631 

performed in 1x Dako Target Retrieval Solution, pH 9 (Dako, S2367) with a pressure cooker for 632 

20 minutes. After equilibrating to room temperature, sample slides were washed 2 times with 633 

ddH2O and once with 1x PBS before being submerged in a four-well plate containing 4.5% 634 

H2O2 and 20mM NaOH in PBS (bleaching solution) for photobleaching. The four-well plate 635 

was sandwiched between two broad-spectrum LED light sources for 45 minutes at 4°C. After 45 636 

minutes, sample slides were transferred to a new four-well plate with freshly-made bleaching 637 

solution and photobleached for another 45 minutes at 4°C. Sample slides were washed 3 times in 638 

PBS and then 2 times in hydration buffer. Sample slides were equilibrated in staining buffer for 639 

30 minutes and incubated in the antibodies (Supplemental Table S5) diluted in staining buffer 640 

plus N Blocker, G Blocker, J Blocker, and S Blocker overnight at 4°C. After antibody 641 

incubation, sample slides were washed 2 times in Staining Buffer and fixed for 10 minutes in 642 

1.6% paraformaldehyde (Electron Microscopy Sciences, 15710) storage buffer. Sample slides 643 

were washed 3 times in PBS and incubated in ice cold methanol for 5 minutes. After incubation 644 

in methanol, sample slides were washed 3 times in PBS and incubated in final fixative solution 645 

(1000uL of PBS + 20uL of Akoya’s final fixation reagent) for 20 minutes at room temperature. 646 
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The sample slides were then washed 3 times in PBS and stored in storage buffer prior to 647 

imaging. 648 

 649 

CODEX imaging 650 

CODEX reporters were prepared according to Akoya’s PhenoCycler-Fusion user guide and 651 

added to a 96-well plate. The PhenoCycler-Fusion experimental template was set up for a 652 

CODEX Run using Akoya’s PhenoCycler Experiment Designer software according to Akoya’s 653 

PhenoCycler-Fusion user guide. Details on the order of fluorescent CODEX Barcodes and 654 

microscope exposure times can be found in Supplemental Table S3. The PhenoCycler-Fusion 655 

experimental run was performed using Akoya’s Fusion 1.0.8 software according to Akoya’s 656 

PhenoImager Fusion user guide. Images were taken and pre-processed (stitching, registration, 657 

background subtraction) with Akoya’s PhenoImager Fusion microscope using default settings. 658 

Final images were evaluated, and selected samples were reimaged with adjusted exposure times 659 

based on manual review. After imaging, slides were stained with hematoxylin and eosin (H&E) 660 

and imaged at 40x resolution.  661 

 662 

CODEX data segmentation 663 

Nuclear segmentation with a fixed pixel expansion of 4 pixels (equivalent to 2 µm) was 664 

performed using Mesmer78 for each image to enable the capture of cytoplasmic and membrane 665 

markers while limiting lateral spillover. Maxima threshold and interior threshold were each set to 666 

0.3. To generate the necessary input of a two-channel TIFF, we used DAPI for the nuclear 667 

channel and a composite channel of GLUT1, CD3e, CD14, and CD68 for the membrane channel 668 

although the nuclear segmentation was used. Mean pixel intensity was extracted from each cell 669 
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segmentation mask, yielding a cell by protein matrix which was carried forward for analysis in 670 

Seurat v579. Cells with very low or high raw DAPI expression (<10 or >250 on a UINT8 scale) 671 

were removed. Each image was manually cropped to exclude large areas of artifact including 672 

tissue folding and detachment, debris, and edge artifact. All marker channels including DAPI, 673 

but not blank channels, were retained in the cell by protein matrix of each Seurat object for each 674 

sample.  675 

 676 

Cellular neighborhood analysis  677 

Neighborhood analysis was performed as previously described80 using the final cell type 678 

annotations, and as implemented by the imcRtools package81. Briefly, a k-nearest neighbors 679 

graph from all cells was constructed using the buildSpatialGraph function in imcRtools with k = 680 

20, which calculates the neighborhood composition of each cell with a sliding window. These 681 

windows are clustered using k-means clustering with respect to their proportions of cell types 682 

with 15 clusters. Statistical significance of cell type enrichment within each neighborhood was 683 

calculated using a hypergeometric test. The p-value was calculated based on the following four 684 

numbers: (1) the number of cells of a given type in the neighborhood; (2) the total number of 685 

cells in the neighborhood; (3) the number of cells of a given type in the CODEX dataset; and (4) 686 

the total number of cells in the CODEX dataset. P-values were adjusted for multiple hypothesis 687 

testing using the Benjamini-Hochberg method and significance was defined as p-adjusted < 688 

0.001. 689 

 690 

In vitro drug screening  691 
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Pediatric high-grade glioma cell line 7316-913 was obtained through the Children’s Brain Tumor 692 

Network and underwent histopathologic, molecular, and genomic characterization as previously 693 

described82. Glioma cells were stably transduced with a lentiviral nuclear red fluorescent protein 694 

under the EF1a promotor (Sartorius, cat. 4476, Göttingen, Germany) for visualization in live 695 

imaging assays. Spheroid cultures were maintained in DMEM/F-12 medium supplemented with 696 

1% glutaMAX (Gibco, cat. 35050061), 100 U/mL penicillin-streptomycin (cat. 15140122), 1X 697 

B-27 supplement minus vitamin A (Gibco, Cat. 12587010), 1X N-2 supplement (Gibco, cat. 698 

1752001), 2.5 ng/mL human epidermal growth factor (PeproTech, cat. AF-100-15-B), 2.5 ng/mL 699 

human basic fibroblast growth factor (PeproTech, cat. 100-18B), and 0.5μg/mL heparin 700 

(StemCell, cat. 07980). Glioma cells were plated at 500 cells per well in 384 well ultra-low 701 

attachment plates (S-Bio, cat. MS-9384UZ) in 50μL of media and allowed to form spheroids 702 

overnight. Plated cells were subsequently treated with pharmacological compounds in duplicate. 703 

Compounds were obtained from the following sources: Selleckchem (Abt263, cat. S1001; 704 

Panobinostat, cat. S1030; AZD4547, cat. S2801; Belnacasan, cat. S2228; Temozolomide, cat. 705 

S1237; Cevimeline, cat. S6432; Dalfampridine, cat. S5028; CGP52432, cat. S0303; Gabazine, 706 

cat. E1247; Retigabine, cat. S4734; Varespladib, cat. S1110), R&D Systems (J-104129, cat. 707 

2507), Thermo Scientific Pierce (DMSO, cat. 20688). Compounds were added as 20μl of a 3.5x 708 

working solution for each drug/dilution. Drug concentrations were selected based on prior 709 

literature characterizing these compounds in cell line models. Cellular proliferation and viability 710 

were monitored via Incucyte Live Imaging technology with imaging every 8 hours.  711 

 712 

Data availability  713 
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Data from this study have been deposited at the Human Tumor Atlas Network (HTAN) data 714 

portal: https://data.humantumoratlas.org/. For the snRNA-Seq, snATAC-Seq and WGS data this 715 

includes sequencing reads and processed data including read alignments, gene-by-cell or peak-716 

by-cell matrices, and variant call files. For the CODEX data, this includes multi-channel images, 717 

segmentation masks, and marker-by-cell matrix. For all data types, Seurat objects with 718 

annotations and reductions are provided for each data type (shown in Figures 1, 5) and subset 719 

analyses (shown in Figures 2, 3, 4). The linkage between HTAN patient IDs and sample IDs is 720 

provided in Supplementary Table 1. 721 

 722 

Code availability  723 

Source code will be made public upon publication, and any code can be made available to the 724 

reviewers upon request.  725 
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Figure Legends  759 

Figure 1. Longitudinal single-cell RNA and ATAC atlas of pediatric high grade glioma 760 

(pHGG) 761 

a) Overview of the multiomics studies on patient-matched longitudinal pHGG specimens.  762 

b-c) Uniform manifold approximation and projection (UMAP) of (b) snRNA-Seq data (401,253 763 

cells) and (c) snATAC-Seq data (118,736 cells) annotated by major cell type category (left) 764 

and stacked bar plot of cell type proportions across dataset comparing initially resected 765 

pHGG samples with post-therapy samples.  766 

d) Cell type proportions in snRNA-Seq data across each patient and therapeutic time point, 767 

along with a summary of patient demographics and molecular subtype. 768 

e-f) Shifts in cell type proportions for each patient between initial resection and post-therapy 769 

time points in (e) snRNA-Seq and (f) snATAC-Seq; n = 15 paired samples profiled by 770 

snRNA-Seq and n = 11 paired samples profiled by snATAC-Seq, including an initial 771 

resection and at least one post-therapy sample. Post-therapy samples were merged for one 772 

patient with three longitudinal samples. A two-sided Wilcoxon signed-rank test for paired 773 

samples was used. 774 

 775 

Figure 2. Transcriptional states of pHGG neoplastic cells  776 

a) UMAP projection of inferred neoplastic cells from snRNA-Seq (102,061 cells) after 777 

integration and annotation of cell states; AC, astrocyte; MES, mesenchymal; OPC, 778 

oligodendrocyte progenitor cell; NPC, neural progenitor cell; NEU, neural.  779 
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b) Barplot of cell type proportions of neoplastic cells across dataset comparing initial resection 780 

and post-therapy samples.  781 

c) Gene signatures of GBM cell states12 overlaid on UMAP of neoplastic cells. Colors truncated 782 

at 1st and 99th percentiles for visualization. 783 

d) Expression of representative differentially expressed genes across neoplastic cell states in 784 

snRNA-Seq data. 785 

e) Gene set enrichment of top differentially expressed genes in each neoplastic cell state using 786 

biological process terms from the Gene Ontology database.  787 

f) CytoTRACE scores of inferred differentiation states on the UMAP projection of snRNA-Seq 788 

data (left) and across each cell state (right). Higher values indicate a more 789 

undifferentiated/stem-like state and lower values indicate a more differentiated state. 790 

g) Shifts in neoplastic cell state proportions for each patient between initial resection and post-791 

therapy time points in snRNA-Seq (n = 15 paired samples). Post-therapy samples were 792 

merged for one patient with three longitudinal samples. A two-sided Wilcoxon signed-rank 793 

test for paired samples was used. 794 

 795 

Figure 3. Transcriptional regulation of pHGG neoplastic cell states  796 

a) UMAP projection of inferred neoplastic cells from snATAC-Seq (95,451 cells) after 797 

integration and identification of cell states defined in the snRNA-Seq data; AC, astrocyte; 798 

MES, mesenchymal; OPC, oligodendrocyte progenitor cell; NPC, neural progenitor cell; 799 

NEU, neural.  800 

b) Stacked barplot of cell type proportions of neoplastic cell states across dataset comparing 801 

initial resection and post-therapy samples.  802 
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c) Shifts in neoplastic cell state proportions for each patient between initial resection and post-803 

therapy time points in snATAC-Seq (n = 11 paired samples). Post-therapy samples were 804 

merged for one patient with three longitudinal samples. A two-sided Wilcoxon signed-rank 805 

test for paired samples was used. 806 

d) Heatmap of differential transcription factor (TF) motif accessibility in each pHGG neoplastic 807 

cell state. Values are z-score-normalized deviation scores calculated using chromVAR. The 808 

differential TF accessibility analysis was performed by a Wilcoxon rank-sum test, comparing 809 

chromVAR deviation score between each cell state and the other cell states. The top 20 810 

differential TFs are displayed for each state.  811 

e) Overview of top 15 significant transcriptional regulators for each neoplastic cell state based 812 

on predicted enhancer-promoter interactions and TF-target gene pairs. The size of the dot 813 

indicates the fraction of the total gene targets in the network regulated by each TF. Color 814 

indicates chromVAR deviation z-score as in (d).  815 

f-g) Transcriptional regulatory networks (TRNs) for (f) MES-like state and (g) OPC/NPC-like 816 

state, showing top 50 upregulated genes and top 15 TFs in each TRN. Diamond nodes 817 

represent TFs and circle nodes represent target genes. Node size is proportional to the 818 

average gene expression for target genes and average chromVAR z-score for TFs. Node 819 

color is proportional to the average log2 fold change of the gene in that cell state post-therapy 820 

across all cells. Edge line thickness is proportional to the linear regression coefficient for the 821 

predicted enhancer-promoter interaction and the fraction of cells with chromatin accessibility 822 

at the enhancer peak.  823 

 824 

Figure 4. The myeloid response to progression and therapy.  825 
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a) UMAP projection of annotated tumor-associated myeloid cell populations identified in 826 

integrated longitudinal pHGG snRNA-Seq atlas (24,551 cells). BMD, bone marrow-derived; 827 

MG, microglia. 828 

b) Stacked barplot of myeloid cell type composition across dataset comparing initial resection 829 

and post-therapy samples.  830 

c) Expression of representative genes across myeloid populations in snRNA-Seq data 831 

highlighting top differentially expressed genes. 832 

d) Shifts in myeloid cell type proportions for each patient between initial resection and post-833 

therapy time points in snRNA-Seq (n = 15 paired samples). Post-therapy samples were 834 

merged for one patient with three longitudinal samples. A two-sided Wilcoxon signed-rank 835 

test for paired samples was used. 836 

e) Gene set enrichment analysis (GSEA) of Hallmark pathways comparing pathway-level 837 

differences in gene expression within myeloid cells overall between initial resection and 838 

post-therapy time points. A linear mixed model was used to identify differentially expressed 839 

genes between time points while accounting for individual patient variability.  840 

f) Heatmap of Spearman correlation coefficients between frequency of neoplastic cell states in 841 

the malignant population and frequency of TAM subtypes in the myeloid population across 842 

region-stratified samples in the snRNA-Seq data (n = 63). P-values are adjusted using the 843 

Benjamini-Hochberg method; *** p <0.001, ** p <0.01, * p <0.05.  844 

g) Heatmap showing number of significant interactions between myeloid and neoplastic cell 845 

populations across dataset. Interactions were inferred using LIANA72 and filtered for 846 

aggregated consensus rank (adjusted p-value < 0.05). Bars above the heatmap represent total 847 

number of significant interactions received (down columns) and bars to the right of the 848 
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heatmap represent total number of significant interactions sent (across rows) for each cell 849 

type, with black lines indicating subset of interactions between myeloid and neoplastic cells. 850 

Box highlights interactions from myeloid cells to neoplastic cells.  851 

 852 

Figure 5. CODEX imaging reveals the spatial landscape of pHGG.  853 

a) Diagram showing the 51-antibody CODEX panel split by target cell population or cellular 854 

function.  855 

b) Representative CODEX image highlighting tumor mass and substructures of the  normal 856 

brain. DAPI  (blue), Collagen IV (yellow), Neu (cyan), SOX2 (magenta), MOG (white).  857 

c) UMAP projection of all 7.5 million cells in the pHGG CODEX dataset across 11 samples 858 

after annotation and filtering.  859 

d) CODEX image with selected fluorescent markers (left) paired with cell phenotype map 860 

(right). Segmentation masks of individual cells are colored by their identity. 861 

e) Representative CODEX image demonstrating spatially restricted tumor cell state populations. 862 

Proneural tumor cells are stained by CD133 (red) and SOX2 (white) and mesenchymal tumor 863 

cells stained by CD44 (green).  864 

f) Cell type proportions in each CODEX sample, indicating patient, therapeutic time point, and 865 

molecular subtype.  866 

g) Heatmap showing relative enrichment of the cell types present in neighborhoods, normalized 867 

across neighborhoods (by column). Significant positive cell type enrichments in each 868 

neighborhood were calculated using a hypergeometric test, adjusted using the Benjamini-869 

Hochberg method. * p-adjusted <0.001. 870 
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h)  Neighborhood proportions in each CODEX sample, indicating patient, therapeutic time 871 

point, and molecular subtype.  872 

 873 

Figure 6. Identifying resistance mechanisms through in vitro drug screening 874 

a) Left, heatmap of average CNVs within each tumor subclone at the chromosome arm level 875 

across 14 patients using Clonalscope. Clone color (top row) corresponds to the patient-876 

specific subclone shown in Extended Data Figure 9a. Right, ratio of binarized copy number 877 

gain or loss for each chromosome arm, defined as having an average CNV >1.25 or average 878 

CNV <0.75 respectively. For each chromosome arm, a Fisher’s exact test was used to assess 879 

for recurrent copy number alterations, adjusted using the Benjamini-Hochberg method. *** 880 

p<0.001; ** p<0.01, * p<0.05.  881 

b) A linear mixed model was used to identify differentially expressed genes within neoplastic 882 

cells overall between initial resection and post-therapy time points accounting for individual 883 

patient variability. Volcano plot shows the log fold change and adjusted p-value for each 884 

gene included in the model, with selected genes labeled.  885 

c) Gene set enrichment analysis (GSEA) of Hallmark and KEGG pathways across all genes in 886 

(b) ranked by log fold change.  887 

d) Selected results from in vitro drug screening in human pHGG cell lines. Cells were treated 888 

with drugs at indicated concentrations, and growth was monitored using a fluorescent 889 

reporter 72 hours after drug treatment (n = 24 control, 2 drug-treated replicates each). 890 

Positive values indicate a net proliferation, while negative values indicate net cell death. 891 

Gene target or mechanism of action is indicated above the drugs. Significance is assessed via 892 

a two-sided Student’s t test for each condition compared to DMSO controls and adjusted for 893 
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multiple hypothesis testing using the Benjamini-Hochberg method, with mean ± SD shown. 894 

*** p<0.0001; ** p<0.01, * p<0.05.  895 
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Extended Data Figure Legends 896 

Extended Data Figure 1. Overview of longitudinal patient cohort.  897 

a) Timeline of specimen collection and patient treatments if available. Patients were between 4 898 

and 24 years of age. All patients received radiation therapy. Some patients received 899 

chemotherapy including temozolomide, bevacizumab, pembrolizumab, vemurafenib, and 900 

irinotecan. Samples were collected from an initial resection after histologic diagnosis of 901 

high-grade glioma, and then through a secondary post-therapy resection or at autopsy.  902 

b) Copy number alterations assessed through whole genome sequencing (WGS) for each patient 903 

at all available therapeutic time points. Average sequencing depth is 91x per sample.  904 

 905 

Extended Data Figure 2. Generation and integration of snRNA-Seq pHGG atlas.  906 

a) Violin plots of quality control (QC) metrics for each of specimen in the integrated snRNA-907 

Seq dataset. Most specimens were sequenced at two regions, yielding 63 total samples. QC 908 

metrics include number of unique molecular identifiers (UMIs), number of unique genes 909 

captured after quantitation, and percent of reads originating from mitochondrial genes.  910 

b-d) Integrated UMAP projection of snRNA-Seq data colored by (b) patient, (c) time point, and 911 

(d) molecular subtype.  912 

e) Expression of marker genes on UMAP of snRNA-Seq data supporting annotation of major 913 

cell types. Colors truncated at 1st and 99th percentiles for visualization. 914 

f-g) Stacked bar plots of cell type proportions across dataset stratified by (f) time points 915 

separated by initial resection, recurrence/progression (secondary surgical resection), or post-916 
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mortem acquisition at autopsy, and (g) molecular subtypes defined by driver mutations in IDH or 917 

core histone proteins.  918 

 919 

Extended Data Figure 3. Generation and integration of snATAC-Seq pHGG atlas.  920 

a)  Violin plots of quality control (QC) metrics for each of specimen in the integrated snATAC-921 

Seq dataset (32 total samples). QC metrics include number of unique fragments, 922 

mitochondrial genes, and transcription start site (TSS) enrichment of fragment reads in each 923 

cell.  924 

b-d) Integrated UMAP projection of snATAC-Seq data colored by (b) patient, (c) time point, 925 

and (d) molecular subtype. 926 

e) Confidence scores of label transfer predictions using snRNA-Seq to annotate the major cell 927 

types in the snATAC-Seq, demonstrating high concordance between the two data modalities.  928 

f) Cell type proportions in snATAC-Seq data across each patient and therapeutic time point, 929 

along with the molecular subtype.  930 

g-h) Stacked bar plots of cell type proportions across dataset stratified by (g) time points 931 

separated by initial resection, recurrence/progression (secondary surgical resection), or post-932 

mortem acquisition at autopsy, and (h) molecular subtype defined by driving mutations in 933 

IDH or core histone proteins. 934 

 935 

Extended Data Figure 4. Integration and distribution of transcriptionally-defined 936 

neoplastic cell states in pHGG. 937 
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a-c) Integrated UMAP projection of inferred neoplastic cells in snRNA-Seq data colored by (a) 938 

patient, (b) time point, and (c) molecular subtype. 939 

d) UMAP of inferred neoplastic cells colored by predicted cell cycle phase.  940 

e) Predicted neoplastic cell state identity based on canonical cell state modules previously 941 

defined by Neftel et al.12 Cells are assigned to the highest scoring cell state. AC, astrocyte; 942 

MES, mesenchymal; NPC, neural progenitor cell; OPC, oligodendrocyte progenitor cell.  943 

f) Neoplastic cells were computationally projected onto a dataset of the developing fetal human 944 

brain14. Barplot shows projected cell type proportions for each cell state. tRG, truncated 945 

radial glia; uRG, unknown radial glia; IPC, inhibitory neuronal progenitor cell; RG, radial 946 

glia; EN, excitatory neuron; IN, interneuron; Astro, astrocyte; GPC; glial progenitor 947 

cell; OLC, oligo-lineage cells. 948 

g) Neoplastic cell state proportions in snRNA-Seq across each patient and therapeutic time 949 

point, along with the molecular subtype.  950 

h-i) Stacked bar plots of cell type proportions across dataset stratified by (h) time points 951 

separated by initial resection, recurrence/progression (secondary surgical resection), or post-952 

mortem acquisition at autopsy, and (i) molecular subtype defined by driving mutations in 953 

IDH or core histone proteins. 954 

 955 

Extended Data Figure 5. Integration and regulatory network analysis of malignant cell 956 

states 957 

using snATAC-Seq data.  958 

a-c) Integrated UMAP projection of inferred neoplastic cells in snATAC-Seq data colored by (a) 959 

patient, (b) time point, and (c) molecular subtype class. 960 
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d) Neoplastic cell state proportions in snATAC-Seq across each patient and therapeutic time 961 

point, along with the molecular subtype.  962 

e-f) Stacked bar plots of cell type proportions across dataset stratified by (e) time points 963 

separated by initial resection, recurrence/progression (secondary surgical resection), or post-964 

mortem acquisition at autopsy, and (f) molecular subtype defined by driving mutations in 965 

IDH or core histone proteins. 966 

g-j) Transcriptional regulatory networks for (g) AC-like 1 state, (h) NEU-like state, (i) Interm 3 967 

state, and (j) Interm 1 state, showing top 50 upregulated genes and top 15 TFs in each state. 968 

Diamond nodes represent transcription factors and circle nodes represent target genes. Node 969 

size is proportional to the average gene expression for target genes and average chromVAR 970 

z-score for TFs. Node color is proportional to the average log2 fold change of the gene in that 971 

cell state post-therapy across all cells. Edge line thickness is proportional to the linear 972 

regression coefficient for the predicted enhancer-promoter interaction and the fraction of 973 

cells with chromatin accessibility at the enhancer peak. The AC-like 2 and Interm 2 state 974 

networks are not shown as they include less than 5 significant TF-gene pairs.  975 

 976 

Extended Data Figure 6. Integration and distribution of myeloid populations in snRNA-977 

Seq.  978 

a-c) Integrated UMAP projection of myeloid cells in snRNA-Seq data colored by (a) patient, (b) 979 

time point, and (c) molecular subtype class. 980 

d) UMAP colored by signature scores for bone marrow-derived (BMD) macrophages (left) and 981 

microglia (right) as previously defined83. Colors truncated at 1st and 99th percentiles for 982 

visualization. 983 
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e) Transcription factor regulon activity calculated by SCENIC84. Heatmap shows average 984 

regulon AUC value for top differentially active regulons in each myeloid subpopulation.  985 

f-g) Stacked bar plots of cell type proportions across dataset stratified by (f) time points 986 

separated by initial resection, recurrence/progression (secondary surgical resection), or post-987 

mortem acquisition at autopsy, and (g) molecular subtype defined by driver mutations in IDH 988 

or core histone proteins. 989 

h) Myeloid cell type proportions in snRNA-Seq across each patient and therapeutic time point, 990 

along with the molecular subtype. BMD, bone marrow derived. MG, microglia. 991 

 992 

Extended Data Figure 7. Integration and annotation of CODEX data.  993 

a) Left, integrated UMAP projection of all 7.5 million cells in pHGG CODEX atlas colored by 994 

sample identifier. Right, pie chart showing the contribution of each sample to the dataset.  995 

b) Heatmap showing the average centered log ratio (CLR)-normalized expression of each 996 

marker per cell type scaled by marker (across rows) and clustered by marker and cell type. 997 

Marker names listed in yellow indicate antibodies that had high quality staining on the 998 

majority of samples and were subsequently used for integration and clustering. 999 

c) CODEX images (left) with selected markers and corresponding cell phenotype masks (right) 1000 

showing appropriate co-labeling of certain markers and examples of annotated cell types. 1001 

Grey cell masks refer to all other segmented cells in the final analysis (after removal of 1002 

imaging artifacts and clusters of red blood cells).  1003 

Extended Data Figure 8. Tumor cell staters are differentially localized near myeloid 1004 

subtypes.  1005 
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a) Heatmap tabulating number of samples (out of 11 total) in which there is a significant 1006 

proximity of the source cell (rows) to the target cell (columns). Significance was assessed by 1007 

a one-sided permutation test. Black box highlights proximity from tumor cell states to 1008 

myeloid subtypes.  1009 

b-f) Median distances in each sample from source cell type (x-axis label) to (b) MPO+ myeloid 1010 

cells, (c) unclassified macrophages, (d) CD163+CD206+ macrophages, (e) HLA-hi macrophages, 1011 

and (f) endothelial cells.  1012 

 1013 

Extended Data Figure 9. Tumor subclone dynamics across patients.  1014 

a) Fishtail plots showing shifts in tumor subclone populations across longitudinal time points 1015 

for 14 patients.  1016 

b) Correlation heatmap of subclones based on estimated copy number variation (CNV) at the 1017 

gene level. The CNV states of chromosome segments in each subclone were used to infer 1018 

gene-level CNVs for comparison across the cohort. Clone colors indicate subclones 1019 

identified in (a). Expanded subclones are indicated.  1020 

c) Ratio of binarized copy number alteration (gain or loss) at the chromosome arm level 1021 

comparing expanded and non-expanded clones. The ratio represents the number of subclones 1022 

with copy number gain or loss among all 84 subclones identified across patients. Expanded 1023 

subclones were defined if they increased in proportion across time points and comprise at 1024 

least 10% of the tumor population at the latest time point.  1025 

 1026 

Extended Data Figure 10. Drug target selection  1027 
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a) Representative drug mechanisms nominated by LINCS1000 using top upregulated and 1028 

downregulated time point-specific genes (Methods). Perturbation results were filtered for 1029 

false discovery rate <0.25 and normalized connectivity score >0.6.  1030 

b) Top glioma-specific targets predicted from DepMap screening. Dependency scores in glioma 1031 

versus non-glioma cell lines were ranked by fold change (mean dependency in glioma / mean 1032 

dependency in non-glioma cell lines). Color indicates log fold change of expression post-1033 

therapy using the generalized linear mixed model analysis.  1034 

c) Top gene targets by aggregate ranking score (Methods). Criteria includes screening against 3 1035 

drug databases, LINCS1000 compound perturbations, and DepMap ,as well as two 1036 

orthogonal methods of differential expression analysis (time point-specific generalized linear 1037 

mixed model and per-patient meta-analysis) and participation in ligand-receptor signaling as 1038 

a receptor target.   1039 
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Extended Data Figure 6
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Extended Data Figure 8
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Extended Data Figure 10
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