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Summary

Pediatric high-grade glioma (pHGG) is an incurable central nervous system malignancy that is a
leading cause of pediatric cancer death. While pHGG shares many similarities to adult glioma, it
is increasingly recognized as a molecularly distinct, yet highly heterogeneous disease. In this
study, we longitudinally profiled a molecularly diverse cohort of 16 pHGG patients before and
after standard therapy through single-nucleus RNA and ATAC sequencing, whole-genome
sequencing, and CODEX spatial proteomics to capture the evolution of the tumor
microenvironment during progression following treatment. We found that the canonical
neoplastic cell phenotypes of adult glioblastoma are insufficient to capture the range of tumor
cell states in a pediatric cohort and observed differential tumor-myeloid interactions between
malignant cell states. We identified key transcriptional regulators of pHGG cell states and did
not observe the marked proneural to mesenchymal shift characteristic of adult glioblastoma. We
showed that essential neuromodulators and the interferon response are upregulated post-therapy
along with an increase in non-neoplastic oligodendrocytes. Through in vitro pharmacological
perturbation, we demonstrated novel malignant cell-intrinsic targets. This multiomic atlas of
longitudinal pHGG captures the key features of therapy response that support distinction from its

adult counterpart and suggests therapeutic strategies which are targeted to pediatric gliomas.


https://doi.org/10.1101/2024.03.06.583588
http://creativecommons.org/licenses/by-nc-nd/4.0/

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.06.583588; this version posted March 8, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Main

Pediatric high-grade glioma (pHGG) is a devastating brain malignancy accounting for
approximately 11% of central nervous system (CNS) tumors in children from infants to
adolescents’. Although the incidence of this tumor is relatively low (1.78 per 100,000
population)?, pHGG holds an exceptionally dismal prognosis, with a median overall survival of
14 to 20 months.® Despite decades of research and over 1,500 clinical trials, there remains no
cure for pHGG. Standard therapy includes maximal safe resection, high-dose radiotherapy, and
chemotherapy”, yet this multimodal therapy does little to change the course of the disease”.
Although childhood and adult HGG, including glioblastoma multiforme (GBM), share many
histopathological and clinical features, the advent of genomic, transcriptomic, and epigenomic
profiling has led pHGG to be recognized as a distinct disease entity with substantial differences
in its molecular characteristics*®™°. Most prominently, mutations in the histone H3 gene (H3F3A
and HIST1H3B) define important anatomically-distinct subtypes of pediatric gliomas®. The
H3K27M mutation occurs frequently in tumors arising in the brainstem and other midline
structures including the thalamus and cerebellum, while the H3G34R/V mutation is found most
frequently in adolescent pHGGs of the cerebral cortex?’. Other mutations in genes such as BRAF
and ACVR1 are found predominantly in pediatric, rather than adult gliomas, yet their

implications for diagnosis and treatment have not been established”*

. However, despite
advances in delineating genomic subtypes, pHGG remains extremely heterogeneous with a
desperate need for improved therapeutic options.

Recent advances in single-cell multiomics and spatial profiling have greatly informed our

understanding of the intra-tumoral and inter-tumoral heterogeneity of adult and pediatric brain

tumors'?2%. Collectively, these studies have identified patterns of neoplastic cell differentiation
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78  states and metabolic programs, proposed detailed models for tumor initiation and oncogenesis,
79  characterized the tumor immune microenvironment (TIME), and identified actionable avenues
80 for targeted chemotherapeutic and immunotherapeutic strategies. Importantly, recent studies
81 using bulk and single-cell transcriptomics have identified key cellular and microenvironmental
82  changes during adult glioma progression under standard therapy, such as a shift in neoplastic cell

23,24

83  states from a proneural to mesenchymal phenotype™ <", which has been implicated in glioma

84  treatment resistance”. However, current single-cell characterization of pHGG is largely limited

85  to the neoplastic cell compartment!’*21620.22

, and the extent to which pHGG progression under
86 therapy differs from that of adult HGG is unknown. To address this, we present an integrated
87 multimodal analysis of matched primary-recurrent patient specimens (16 patients) across
88 histologic and molecular subtypes using single-nucleus RNA-sequencing (SnRNA-Seq), single-
89 nucleus assay for transposase-accessible chromatin via sequencing (snATAC-Seq), whole
90 genome sequencing (WGS), and Co-Detection by Indexing (CODEX) spatial proteomics.
91  Overall, this longitudinal multiomic atlas of pHGG captures key features of therapy response that
92  support its distinction from adult HGG and suggests therapeutic strategies which are targeted to

93  pediatric gliomas.

94

95 Results

96 Single-cell profiling of longitudinal pHGG specimens

97 We profiled pHGG samples obtained through the Children’s Brain Tumor Network
98 (CBTN)® from 16 patients across therapeutic time points via snRNA-Seq (15 pairs) and
99 snATAC-Seq (11 pairs) (Figure 1a-c). All patients received radiotherapy and surgical resection,

100 and some received pharmacological treatment including temozolomide, immunotherapy (e.g.,


https://doi.org/10.1101/2024.03.06.583588
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.06.583588; this version posted March 8, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

101  pembrolizumab), and cytotoxic chemotherapy (Extended Data Fig. 1a, Supplementary Fig. 1,
102  Supplementary Table 1). Patients in the cohort ranged from 4 to 24 years in age, had a male-to-
103  female ratio of 2.2, and tumors included a range of genomic alterations (Extended Data Fig.
104  1b). The tumor specimens were resected from multiple anatomic locations including cortical
105 lobes and midline structures including the thalamus and cerebellum. The cohort included three
106  H3K27M-mutated cases, one H3G34V-mutated case, and one IDH1-mutated case; the remainder
107  were IDH1/H3 wildtype (WT) (Figure 1d). Post-therapy time points were further delineated as
108  progressive/recurrence, where samples were obtained through a secondary resection, and
109 autopsy, where samples were collected post-mortem. Collectively, over 400,000 cells were
110  profiled via sSnRNA-Seq, and over 110,000 cells were profiled via snATAC-Seq after quality
111  assessment and filtering, capturing a mean of 2,280 genes and 19,094 unique chromatin
112 fragments per cell respectively (Extended Data Fig. 2a, Extended Data Fig. 3a). Samples were
113  integrated to remove batch effects and cell types were annotated (Extended Data Fig. 2b-e,
114 Extended Data Fig. 3b-e, Supplementary Fig. 1, 2, Methods). We captured the major cell
115  types present in gliomas, including normal mature neurons and oligodendrocytes, myeloid cells
116  (macrophages/microglia), T cells, endothelial cells, mural cells, and a diverse population that we
117 have termed “other neural and glial cells,” including a mix of inferred neoplastic and non-
118 neoplastic subpopulations. (Figure 1b-c). There was significant heterogeneity between patients
119  and time points (Figure 1d, Extended Data Figur e 2f-g, Extended Data Figur e 3f-h). Notably,
120  the majority of mural cells were captured within two patients, and T cells were captured largely
121  in asingle patient (Figure 1d). Examining the longitudinal shifts in cell type composition in the
122 snRNA-Seq data revealed a significant increase in non-neoplastic oligodendrocytes (p=0.0067)

123 and mature neurons (p=0.029) within patient-matched pairs (Figure 1€). Oligodendrocytes were
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124  concordantly enriched post-therapy in the sSnATAC-Seq data (p=0.019) (Figure 1f), consistent
125  with prior observations of oligodendrocyte expansion in adult glioblastoma multiforme (GBM)*,
126 This trend occurred primarily in the secondary resection samples, suggesting this is not simply
127  an artifact of wider normal margins in autopsy specimens (Extended Data Fig. 2f, Extended
128 DataFig. 3f).

129

130 Pediatric gliomas exhibit distinct neoplastic cell states

131 We sought to characterize the neoplastic cell compartment and assess how these cell
132  states change during progression and therapy. After identifying putative neoplastic cells via copy
133 number variation (CNV) inference (Supplementary Figure 3a-b, Methods), we reintegrated
134  these populations (Extended Data Figure 4a-d) and then examined whether the canonical cell
135  states established by Neftel et al." in a cohort of IDH-wild-type adult and pediatric glioblastoma
136  (GBM) can be applied to a molecularly diverse cohort of pHGG using the snRNA-Seq data.
137  Assessing the gene signatures of these four states (astrocyte (AC)-like, mesenchymal (MES)-
138 like, oligodendrocyte-progenitor (OPC)-like, neural-progenitor (NPC)-like) yielded several key
139  observations. First, we identified two distinct AC-like populations (Figure 2a-d). These
140  populations both expressed the astrocyte-defining marker, GFAP, and were most enriched in the
141  AC-like gene signature (Figure 2c, Extended Data Figure 4€). Next, we identified a definitive
142  MES-like state which expressed established mesenchymal marker genes (e.g., CD44, VIM,
143  ANXAL, NDRGL1) and angiogenesis genes (i.e., VEGFA) and was enriched in hypoxia response
144  signatures (Figure 2d-e, Supplementary Table 2). Interestingly, while the mesenchymal cell

145  state has only recently been identified in H3K27M-mutant glioma®, which these findings further
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146  support, we observe a low-frequency MES-like state in our single pediatric IDH-mutant glioma
147  case (Extended Data Fig. 4i).

148 We identified a population with high expression of both OPC-like and NPC-like gene
149  signatures that we refer to as OPC/NPC-like, and a distinct population expressing neural genes
150 (Figure 2c-€) that was restricted to IDH/H3-WT tumors (Extended Data Fig. 4i). Projecting the
151  cells onto an atlas of the developing human fetal brain revealed that this population most closely
152  resembled fetal excitatory neurons, rather than earlier neural progenitor phenotypes (Extended
153  Data Fig. 4f), and pathway analysis supported the expression of neuronal pathways (Figure 2e),
154  thus this population was annotated as neuronal (NEU)-like. OPC/NPC-like cells expressed both
155  known OPC-like genes (e.g., FGF12) and NPC-like genes (e.g., TNR), and NEU-like cells
156  expressed some NPC-like marker genes (e.g., SOX4, CD24) (Figure 2d). Lastly, we identified
157  three distinct intermediate cell states that lack specific enrichment of the canonical markers and
158 identified a mixed population of cycling cells (Extended Data Fig. 4e). An analysis of
159 neoplastic lineages via CytoTRACE?’, which leverages transcriptional diversity to predict
160  differentiation trajectories, supported the proneural to mesenchymal differentiation hierarchy**?*,
161 and suggested that the two AC-like states lie on either ends of the differentiation spectrum
162  (Figure 2f). The AC-like 1 population is the least differentiated neoplastic cell state while the
163  AC-like 2 population is the most differentiated cell state and was found to also express some
164  mesenchymal markers (e.g., VIM, APOE) in addition to canonical AC-like markers (e.g., S100B,
165 SPARC) (Figure 2d).

166 The proportions of these cell states across samples were highly heterogeneous, with
167  significant variation between patients and across time points (Extended Data Fig. 4g-i).

168  However, examining neoplastic cell state proportions per-patient revealed no significant shifts in
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169  cell type composition across therapeutic time points (Figure 2g). This finding is in contrast with
170  recent findings in adult IDH-WT GBM in which a significant increase in mesenchymal cells was
171  observed after treatment and progression.?

172

173  Transcription factorsjointly regulate pHGG neoplastic cell states

174 We then sought to extend our characterization of these cell states via our single-cell
175 chromatin accessibility data. After reintegrating and annotating the putative neoplastic
176  population in our snATAC-Seq data (Extended Data Fig. 5a-c, Supplementary Fig. 4a-d,
177 Methods), we captured all the cell states defined transcriptionally in the snRNA-Seq data and
178  confirmed enrichment of chromatin accessibility for cell state-defining genes and significant
179  concordance with snRNA-Seq (Figure 3a-b, Supplementary Fig 4e-f). Of note, we did not
180 identify a distinct population of cycling cells in the sSnATAC-Seq data (Supplementary Fig. 4c).
181  As expected, we observed significant heterogeneity between patients and therapeutic time points,
182  and no significant shifts in neoplastic cell state post-therapy (Extended Data Fig. 4d-f, Figure
183  3c). However, we observed a decreasing trend in the AC-like 2 population in the majority of
184  patient-matched pairs with borderline significance (p=0.054) (Figure 3c).

185 We then aimed to identify the transcription factors that regulate each cell state, first by
186 using chromVAR?® to assess differential accessibility of transcription factor motifs
187  (Supplementary Table 3). Consistent with previous reports**?°, motifs for the AP1 family of
188  transcription factors (e.g., FOSL2, JUN) were enriched in the mesenchymal state, along with
189 SMARCCI1, JDP2, and BACH1 (Figure 3d). Notably, these motifs were also enriched in the

190 Intermediate 1 and AC-like 1 states. Both AC-like states were enriched for RFX factor motifs,
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191 and the OPC/NPC-like and NEU-like states were enriched for proneural transcription factors
192 (e.g., ASCL2, NHLH1, LHX4) (Figure 3d).

193 Next, we constructed a transcriptional regulatory network (TRN) for each cell state by
194  integrating our SnRNA-Seq and snATAC-Seq data to predict state-specific enhancer-promoter
195 interactions and transcription factor-target gene pairs (Supplementary Table 4, Methods).
196 These TRNs revealed substantial cooperativity between transcription factors in regulating cell
197  state-specific gene expression (Figure 3e-g, Extended Data Fig. 4g-j). This analysis nominated
198  known and novel transcription factors. The RFX factors were predicted to regulate both AC-like
199  cell states®®. SOX4 was predicted to regulate both the NEU-like and OPC/NPC-like states
200 through cooperation with other transcription factors including LHX1 and KLF12 respectively
201  (Figure 3ef). The AP1 factors®® and RUNX1 were predicted to jointly regulate the MES-like
202  state. RUNX1 was predicted to target the top differentially expressed genes in the MES-like state
203 and RUNXI expression was upregulated in MES-like neoplastic cells post-therapy (Figure 3f).
204  While RUNX1 has been recognized as a contributor to mesenchymal GBM®, this analysis
205 suggests that the RUNX1 transcription factor is a central regulator of the MES-like state.
206 Interestingly, we observed that 39% of genes in the MES-like TRN were significantly
207  upregulated within that population post-therapy (versus 9.3% downregulated), while 49% of
208 genes within the OPC/NPC-like TRN were significantly downregulated (versus 1.4%
209  upregulated). This suggests that although there is no population shift, the MES-like state
210 phenotype may be strengthened post-therapy. Overall, this analysis revealed the overlapping
211  transcriptional regulatory interplay underlying the spectrum of neoplastic phenotypes.

212

213 Tumor-immune microenvironment is dominated by diver se myeloid populations
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214 After defining the neoplastic cell states in pHGG, we next sought to characterize the
215  immune microenvironment. T cells comprised ~2% of the cells captured via sSnRNA-Seq and
216  were primarily found in two post-therapy specimens (Figure 1b-d). The progressive H3G34V-
217  mutant case was a notable outlier, with T cells representing ~22% of cells captured (Figure 1d).
218 A low T cell abundance with outliers up to ~20% of total cell composition is consistent with
219  adult GBM®. Myeloid cells comprised ~9% of the snRNA-Seq data and were captured in each
220  patient, so we selected this population for further analysis. After reintegration (Extended Data
221  Fig. 6a-c, Methods), we identified 11 distinct myeloid populations that were manually annotated
222 based on their differentially expressed genes and transcriptional regulons and demonstrated
223 extensive heterogeneity between patients and therapeutic time points (Figure 4a-c, Extended
224  Data Fig. 6d-h, Supplementary Table 5). Most samples contained a distribution of myeloid
225  subpopulations, while a few samples were dominated by a single subtype (Extended Data Fig.
226  6h). Additionally, these cells formed a continuous phenotypic spectrum, including resident
227  microglia and bone marrow-derived macrophage ontogenies (Extended Data Fig. 6d).

228 The myeloid subpopulations included tissue-resident microglia, dendritic cells, and
229  multiple tumor-associated macrophage (TAM) subsets that have been previously characterized
230  across multiple solid tumor types including adult glioma®. This includes pro-angiogenic TAMs
231  differentially expressing VEGFA and glycolytic enzymes (i.e., HK2, ENO2), lipid-associated
232  TAMs (PPARG and LPL), inflammatory TAMs (NFKB1 and IL1B), interferon (IFN)-responsive
233  TAMs (IFIT2, IFIT3, and 1SG15), as well as two additional populations of putative bone
234  marrow-derived macrophages, BMD TAM 1 (F13Al, TMEM163, MHAA4E) and BMD TAM 2
235 (TGFBI, MALT1, RGS2). Microglia were primarily stratified into pre-active microglia (CCL3,

236 EGR3, NFKBID) and homeostatic microglia (P2RY12, TMEM119) (Figure 4a-c). Both pre-

10
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237  active and homeostatic microglia populations exhibited a trend of decreasing frequency post
238 therapy in the majority of the samples, while bone-marrow derived macrophages tended to
239 increase post therapy (Figure 4d). This is consistent with observations in adult GBM, in which a
240  microglia to macrophage shift post therapy has been reported®. Given that myeloid population
241  shifts were highly variable between patients, we applied a generalized linear mixed model
242 approach (Supplementary Table 6, Methods) to identify pathway-level changes in pseudobulk
243  myeloid cells during tumor progression. We observed upregulation of interferon and
244  inflammatory response pathways, and downregulation of pathways related to proliferation and
245  cellular metabolism (e.g., oxidative phosphorylation, E2F targets) (Figur e 4e).

246 Glioma-associated macrophages have been previously demonstrated to differentially
247  interact with neoplastic cell states, altering their activity and differentiation status®. Indeed, we
248  observed differential correlations in frequency between neoplastic cell states and myeloid
249  subtypes across tumor regions. The MES-like state was associated with pro-angiogenic TAMs,
250 while the OPC/NPC-like state was associated with homeostatic microglia (Figure 4f).
251  Consequently, we aimed to elucidate how these pHGG-associated myeloid subpopulations
252  interact with our newly defined pHGG-specific neoplastic cell states through an analysis of
253 inferred ligand-receptor interactions (Figure 4g, Supplementary Table 7, Methods). We
254  observed a broad and heterogeneous set of bidirectional cellular interactions. Importantly,
255 myeloid cells were predicted to mediate multiple neoplastic cell functions both through direct
256  contact and secreted factors. These interactions included processes involved in regulating growth
257  and proliferation (e.g., SPP1-CD44, HBEGF-EGFR/ERBB2), cell adhesion and migration (e.g.,
258 FN1-ITGA3/ITGB1), and modulation of electrochemical or synaptic properties (e.g., NLGN1-

259  NRXNB3) (Supplementary Fig. 5). The AC-like 1 and Intermediate 1 cell states were predicted

11
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260  to receive intercellular signals most broadly across myeloid subtypes with receptors including
261 FGFR1, IGF1R, and CD44, which is specifically known to interact with a range of ligands (e.g.,
262 HBEGF, PSEN1, SPP1, VEGFA) and has a critical role in adult glioma®. In contrast, the AC-
263  like 2 and Intermediate 2 populations were the most inert neoplastic populations (Figure 4g).
264  Additionally, the NEU-like population was predicted to be a significant ligand source for intra-
265  neoplastic interactions with OPC/NPC-like and NEU-like cells (Figure 4g). Taken together, this
266  analysis is the first comprehensive characterization of pHGG myeloid subtypes and suggests that
267 TAM populations can differentially interact with neoplastic cell states and modulate multiple
268  neoplastic cell intrinsic functions.

269

270  Mapping the spatial landscape of pHGG

271 Gliomas are not only highly heterogeneous in terms of cell types and states, but complex
272 topographic localization of neoplastic and immune populations yields spatial niches with distinct
273 molecular functions and therapeutic vulnerabilites*’*!. To characterize the spatial landscape of
274  pHGG, we employed Co-Detection by Indexing (CODEX) spatial proteomics with a 52-plex
275 panel (51 antibodies + DAPI) on 11 whole-slide formalin-fixed paraffin-embedded (FFPE)
276  samples that had paired snRNA-Seq data, including three patient-matched longitudinal pairs
277  (Figure 5a, Supplementary Table 8, 9). First, we confirmed appropriate antibody staining
278 morphology and co-localization, and we manually removed areas with staining artifact
279  (Supplementary Fig. 6). Then, we confirmed that our CODEX panel was able to resolve gross
280 anatomical compartments including bulk tumor, gray matter, and white matter (Figure 5b).
281  Finally, after segmenting single cells, computational integration, and clustering, we annotated

282  over 7.5 million single cells (Figure 5c-d, Supplementary Figure 7, Extended Data Fig. 7a-c,

12
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283 Methods). We captured the primary axis of neoplastic cell states from proneural (high
284  expression of SOX2, OLIG1, OLIG2) to mesenchymal/astrocytic (high expression of CD44,
285 VIM, GFAP). Interestingly, we observed two distinct MES (mesenchymal)-like tumor
286  populations. MES-like-1 tumor cells expressed the additional mesenchymal markers APOE,
287  SPP1, and GLUT1, and were predominantly identified in peri-necrotic regions (Supplementary
288 Figure 7e), and MES-like-2 tumor cells had the highest expression of the canonical marker
289 CD44 (Extended Data Fig. 7b-c). Neoplastic cell states were distributed heterogeneously both
290  between and within samples with regions of the tumor predominated by patches of either
291  proneural or mesenchymal tumor cells (Figure 5e).

292 The immune populations were predominated by myeloid cells, consistent with the
293  sequencing data, and similarly formed a continuous phenotypic distribution including microglia
294 and macrophages (Figure 5c, f). We identified a macrophage population that strongly co-
295  expressed classically immune suppressive markers CD163 and CD206, a second macrophage
296  population characterized by high HLA-DR expression, and a large population of MPO™ myeloid
297  cells (Figure 5¢, Extended Data Fig. 7b). This MPO" population had a high expression of HIF-
298 1A and was primarily found as large infiltrates in necrotic regions in several samples
299  (Supplementary Figure 8a, Extended Data Fig. 7b). While we identified small populations of
300 CD4" and CD8" T cells, inspection of the images revealed that T cells were predominantly
301 located within vessels or concentrated in areas of hemorrhage. This demonstrates that blood
302 contaminants in tissue may confound analysis of single-cell sequencing of rare immune
303 populations (Supplementary Fig. 8b). Lastly, we observed spatially restricted expression of
304  immune checkpoint molecules including CD47 and PD-L1 (Supplementary Fig. 8c).

305

13


https://doi.org/10.1101/2024.03.06.583588
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.06.583588; this version posted March 8, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

306 Myeoid cellsare spatially colocalized with distinct tumor states

307 To systematically identify recurrent spatial patterns, we performed unsupervised
308 neighborhood analysis and identified 15 cellular neighborhoods (CNs) which we manually
309 annotated based on their relative enrichment of cell types (Figure 5g). These neighborhoods
310  were heterogeneously distributed across samples and captured expected anatomic compartments
311 including gray matter (CN2, predominantly mature neurons), white matter (CN6, mature
312  oligodendrocytes), and infiltrating tumor regions (CN7, normal oligodendrocytes and tumor
313  cells) (Figure 5h, Supplementary Fig. 8). Additionally, this analysis highlighted localized
314 regions predominated by different tumor cell states (i.e., proneural, intermediate, and
315  mesenchymal neighborhoods), as well as MPO™ infiltrates, and a vascular neighborhood (Figure
316  5h). Tumor cells tended to co-localize with cells sharing the same phenotype, such as proneural
317 tumor cells localizing with other proneural tumor cells. (Figure 5e, g). Notably, each
318 mesenchymal tumor cell type was primarily enriched in its own cellular neighborhood (CN3,
319 CN15) with a relative depletion of proneural or intermediate tumor cells, suggesting that
320 mesenchymal tumor cells form localized niches that are distinct from other regions of bulk tumor
321 (Figurebg).

322 Immune cells were differentially localized across cellular neighborhoods. Microglia were
323  enriched in areas of normal brain, primarily gray matter (Figure 5g), and were observed to be
324  concentrated at the tumor-normal boundary (Supplementary Fig. 8d). Macrophages and T cells
325 were jointly enriched in an immune-predominant neighborhood (CN1), a perivascular
326 neighborhood (CN5), a wvascular tumor neighborhood (CN11), and a tumor/immune
327 neighborhood (CN9). Outside of these neighborhoods, unclassified macrophages were most

328 enriched in the MES-like-1 neighborhood (CN15). Immune cells were relatively depleted in all
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329 neighborhoods that had a significant enrichment of proneural tumor cells (Figure 5h). Together,
330 this is consistent with previous reports that macrophages are most enriched in the vicinity of
331 MES-like glioma cells®, but further suggests that this is specific to some TAM subpopulations.
332  This was supported by examining distances from tumor cells to myeloid cells, which revealed
333 that MES-like-1 tumor cells were consistently enriched near MPO+ myeloid cells and
334  unclassified macrophages, while MES-like-2 tumor cells and proneural tumor cells were both
335 enriched near HLA-hi macrophages (Extended Data Fig. 8a-€). This analysis also revealed that
336 MES-like-1 tumor cells were the furthest population from vasculature, while MES-like-2 tumor
337 cells were closest to vasculature after immune cells, supporting a hypoxia-dependent
338 stratification of mesenchymal cell states (Extended Data Fig. 8a, f)*2.

339

340 Tumor subclonedynamicsreveal recurrent genomic alterations

341 We next aimed to apply our longitudinal data to identify mechanisms of therapeutic
342  resistance. We first utilized large-scale copy number variations (CNVSs) to trace tumor subclones
343 across patient-matched samples with Clonalscope*? which integrates snRNA-Seq and matched
344  WGS data. Neoplastic subclones were defined at the earliest time point for each patient and
345 traced to the later therapeutic time points to assess populations that have expanded or regressed
346  during treatment and progression (Methods). Through this approach we identified lineage-traced
347 neoplastic subclones on 14 patients, ranging from 4 to 9 subclones per patient, with variable
348 clonal dynamics across time points (Extended Data Fig. 9a). We identified recurrent CNVs
349 including copy number gains on chromosomes 1q, 7p/7q, 8q, 19p/19q, and 20p and copy number
350 losses on chromosomes 5p/5q, 6q, 10p/10q, and 14q (Figure 6a). Clustering of gene-level CNVs

351  across tumor subclones revealed recurrent modules of highly correlated CNVs across patients,
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352 indicating that similar patterns of chromosome alterations dynamics occur during disease
353  progression (Extended Data Fig. 9b). Notably, some alterations occurred more frequently on
354 expanded subclones (e.g., gain on chrl8p and chrl9q, loss on chrl4q), suggesting that these
355 alterations may confer a survival advantage (Extended Data Fig. 9c, Supplementary Table
356 S10).

357

358 Longitudinal analysis uncoverstumor cél-intrinsic targets

359 We then applied an analogous generalized linear model approach (Methods) to identify
360 genes and pathways that were upregulated across therapeutic time points over all neoplastic cells,
361 accounting for individual patient variability. Despite not observing population-level cell state
362 shifts in the neoplastic compartment, this analysis yielded 627 significantly upregulated genes
363 and 1,551 significantly downregulated genes (adjusted p <0.05) (Supplementary Table 11,
364  Figure 6b). Examining pathway-level changes revealed an upregulation of type | and type Il
365 interferon response pathways and the neuroactive ligand-receptor interactions gene set as well as
366 downregulation of pathways related to cell proliferation and metabolism, primarily oxidative
367  phosphorylation (Figure 6c).

368 We then aimed to utilize this neoplastic cell-specific longitudinal analysis to identify and
369 validate tumor cell intrinsic drug targets for pHGG, assuming that consistently upregulated genes
370 are related to therapy resistance. To prioritize gene targets, we screened differentially
371  upregulated genes against multiple drug target databases and the Cancer Dependency Map
372  (DepMap) as well considered their roles as receptors in the tumor microenvironment (Extended
373 Data Fig. 10a-c, Supplementary Tables 7, 12, 13, Methods). After curating targets to validate,

374  we screened over 20 pharmacological compounds to assess their impact on cell proliferation in a
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375 pHGG post-therapy cell line. Cell proliferation and viability were assessed via a fluorescent
376  reporter 72 hours after drug treatment as a fold change of fluorescence intensity from the time of
377  drug treatment and compared to the growth fold change of DMSO controls (Methods). We
378  verified a cytotoxic effect of panobinostat (non-selective HDAC inhibitor), AZD4547 (FGFR
379 inhibitor), and temozolomide (alkylating chemotherapy agent). Multiple genes related to
380 apoptosis, pyroptosis, and inflammasome activation were upregulated including caspases
381 (CASP1, CASP4), BCL2L1, and BCL6. Indeed, inhibition of CASP1 with belnacasan and
382 inhibition of BCL-2 with ABT-263 reduced proliferation in vitro compared to DMSO controls
383 (Figure 6d). Consistent with our pathway analysis, we observed significant upregulation of
384  multiple genes involved in electrochemical and synaptic communication, which has been shown
385 to support glioma progression and invasion****. This includes receptors for neurotransmitters
386 (e.g., the top predicted target, CHRM3) as well as solute and ion (sodium and potassium)
387 channels. Modulating their functions in vitro with small molecule antagonists and agonists
388 confirmed the significance of electrochemical signaling in regulating pediatric glioma cell
389 growth and survival. The selective CHRM3 antagonist, J-104129, resulted in significant cell
390 death, although the cholinergic agonist, cevimeline, had no effect on proliferation. The selective
391 GABAA receptor antagonist, gabazine, and to a lesser extent, the selective GABAg receptor
392  antagonist, CGP52432, had a mild antiproliferative effect (Figure 6d). Interestingly, activating
393 KCNQ potassium channels with retigabine significantly stimulated cell proliferation, while
394 inhibiting KCNQ channels (4-aminopyridine) had no effect. Lastly, our screening nominated
395  secretory phospholipase A2 (sPLA2) as a novel therapeutic target in pediatric glioma, with a
396  dose-dependent cytotoxic response upon treatment with the PLA2-inhibitor varespladib (Figure

397  6d).
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398

399 Discussion

400 In this study, we profiled the single-cell transcriptional, chromatin-accessibility, and
401  spatial landscape of pediatric high-grade glioma (pHGG) longitudinally under standard therapy.
402  We defined a set of pediatric neoplastic cell states and identified their transcriptional regulatory
403  networks. Similarly, we characterized the tumor immune microenvironment and identified a
404  diverse spectrum of tumor-associated macrophage (TAM) subtypes and employed a 51-marker
405 CODEX panel that revealed differential tumor-immune co-localization.

406 The longitudinal patient-matched samples provide critical insight into the molecular
407  mechanisms of tumor progression and therapy. Mesenchymal transformation has been described
408 as a hallmark of progressive GBM, analogous to epithelial-to-mesenchymal transition in

409  carcinomas®2>#>4

. In pHGG, we indeed observed a spectrum of proneural to mesenchymal
410 differentiation states that resembled those characterized in adult glioma. Interestingly, we also
411  observed distinct astrocyte-like states on each end of the differentiation hierarchy, suggesting
412  that astrocytic programs are maintained in a subset of stem-like pHGG neoplastic cells.
413  Additionally, we did not identify any significant shifts in neoplastic cell states, suggesting an
414  important distinction from adult GBM.

415 Our framework for identifying tumor cell-intrinsic drug targets implicated several
416  mechanisms of therapy resistance and uncovered novel targets. Synaptic electrochemical
417  signaling through multiple receptors has been increasingly implicated in adult and pediatric
418  glioma progression**, including acetylcholine* ™, dopamine®®>? and GABA>*>*. We found that

419  neuroactive signaling is broadly upregulated in pHGG, suggesting that tumor cells may become

420 increasingly dependent on synaptic activity over time. We also identified SPLA2 as a novel
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421  target in pHGG. Phospholipases are enzymes that hydrolyze phospholipids into precursor fatty
422  acids, which have roles in cell signaling, metabolism, and inflammation. Phospholipase A2 has
423 been implicated in multiple cancer types including colorectal cancer®®, skin cancer®’, and adult

*839 in which it has been shown to inhibit apoptosis and activate EGFR signaling®.

424  glioblastoma
425 Overall, our study sheds light onto the molecular mechanisms of pHGG, but there are
426  important limitations. Primarily, the small size and frequent inoperability of these tumors
427  necessitate a relatively small and heterogeneous cohort with some samples collected post-
428 mortem. Thus, additional profiling is necessary to elucidate the specific effects of different
429  molecular subtypes and chemotherapeutic agents on longitudinal changes. Crucially, further in
430 vitro and in vivo studies are expected to elucidate microenvironment-dependent mechanisms of
431  resistance.

432

433  Statisticsand reproducibility

434  No statistical method was used to predetermine sample size. All available longitudinal specimens
435  at the Children’s Hospital of Philadelphia meeting the inclusion criteria were profiled, and all
436  data meeting standard QC thresholds were included. The two-sided Wilcoxon signed-rank test
437  for paired samples was used to compare percentages of cell initial resection and post-therapy
438  specimens. A two-sided Student’s t test was used to compare cell growth for in vitro
439  experiments. The Fisher’s exact test was used to assess for recurring copy number alterations in
440 the tumor subclone analysis, and a hypergeometric test was used to assess cell type enrichment in
441  spatial neighborhoods. Both were adjusted for multiple hypothesis testing via the Benjamini-

442  Hochberg method. A logistic regression model was used to identify differentially expressed

443  genes in tumor cells across cell states and time points, and the Wilcoxon rank-sum test was used
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444 to identify differentially accessible transcription factor motifs in tumor cells and differentially
445  expressed genes and regulons across myeloid cell types and adjusted using the Bonferroni
446  correction. Distance analysis in CODEX data was conducted using a one-sided permutation test
447  (Methods).

448

449 Methods

450 Human biospecimens

451  Primary samples were obtained from patients with high-grade glioma banked at the Children’s
452  Hospital of Philadelphia (CHOP) Childhood Cancer Research (CCCR) Registry. The patient
453  selection was built based on specimen availability. Biorepositories were obtained with parent
454  informed consent according to the Declaration of Helsinki and Institutional Review Board
455  approval from all participating centers. All patients underwent an initial tumor resection after
456  histopathological diagnosis of high-grade glioma before receiving treatment, followed by a
457  secondary surgical resection or sample acquisition at autopsy. Germline DNA from either blood
458  or skin samples were acquired from the Children’s Brain Tumor Network (CBTN) at CHOP.
459  Patient sample information and relevant clinical metadata is provided in Supplemental Table 1.
460

461  Single-nucleus RNA sequencing (SnRNA-Seq)

462  Single nuclei suspensions immediately underwent library preparation using the Chromium Single
463  Cell 3’ Reagent Kit v3 or V3.1 (10x Genomics) according to the manufacturer’s instructions.
464  Library quality was assessed using the Bioanalyzer Agilent 2100 with the High Sensitivity DNA

465  chip (Agilent Technologies, 5067-4626). Indexed libraries were pooled and sequenced on an
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466  Illumina NovaSeq 6000 using sequencing parameters 28:8:0:87 (readl:i5:i7:read2, bp) with an
467  average sequencing depth of 50,000 read pairs per nucleus.

468

469  Single-nucleusassay for transposase-accessible chromatin using sequencing (SnATAC-Seq)
470  Single nuclei suspensions immediately underwent library preparation with the Chromium Next
471  GEM Single Cell ATAC Reagent kit V1.1 (10x Genomics) as per manufacturer’s user manual.
472  Library quality was assessed using the Bioanalyzer Agilent 2100 with a High Sensitivity DNA
473  chip (Agilent Technologies, 5067-4626). Indexed libraries were pooled and sequenced on an
474  Illumina NovaSeq 6000 using sequencing parameters 49:8:16:49 (readl:i5:i7:read2, bp) with an
475  average sequencing depth of 50,000 read pairs per nucleus.

476

477  Processing and quality control filtering of sShRNA-Seq data

478 Read count matrices for sSnRNA-Seq data were generated from raw FASTQ files using Cell
479  Ranger v3.1.0. Reads were aligned to the GENCODE Release 34 (GRCh38.p13) transcriptome
480 reference. The resulting count matrices were processed and analyzed using Seurat v4°®!. Quality
481  control filtering was applied to each cell, using filters of 500 < nFeature_ RNA < 8000 and
482  mitochondrial read percentage < 10%. Poor quality samples containing fewer than 500 cells
483  passing quality control thresholds were excluded from downstream analysis. For three samples
484  of borderline but passable quality (7316-339, 7316-7545, and 7316-7559) we instead used filters
485  of 300 < nFeature_RNA < 8000 and mitochondrial read percentage < 20%. Doublets were called
486 and removed using the DoubletFinder package (v3)** using a doublet proportion estimate of
487  7.5%.

488
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489  Sampleintegration, clustering, and cell type annotation of sSnRNA-Seq data

490 Initial snRNA-Seq data processing was performed using the Seurat v4 package. To aid in
491 identification of malignant and non-malignant cell populations, two published high-grade glioma
492  snRNA-Seq datasets”*®® were included with snRNA-Seq data from the present study in the
493  following integration and annotation protocol. Due to memory constraints in Seurat v4, data
494  were randomly downsampled so as not to exceed 200,000 total cells, preferentially
495  downsampling cells from samples with a higher cell count to preserve cells in samples with
496 lower cell counts. Cell cycle scores were computed using the CellCycleScoring method with
497 annotated cell cycle genes (2019 update). Integration was performed by reciprocal principal
498 component analysis (RPCA) at a patient level. In detail, each patient was normalized by
499  SCTransform (v2) with regression of mitochondrial percentage, S score, and G2M score by
500 Gamma-Poisson generalized linear model. A total of 3,000 features were chosen by
501 SdectintegrationFeatures followed by PCA. The FindintegrationAnchors function was run
502 using top 30 PCs. Following integration, PCA was repeated on integrated features with
503 RunUMAP and FindNeighbors computed using the top 30 PCs. Louvain clustering was
504 performed by FindClusters at a resolution of 0.6. Cluster annotation was performed by manual
505 review of canonical cell type-defining genes, allowing for identification of normal cell type
506 populations including immune and stromal cells as well as a heterogenous and admixed
507 population of other neural and glial cells whose neoplastic versus normal status was inferred by
508 downstream copy number alteration analysis.

509 As increased computational capacity became possible, after annotation using the
510 downsampled data, the remaining cells were added to the downsampled dataset. These cells were

511  first normalized with SCTransform and integrated through projection with Seurat v5%* using
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512  FindTransferAnchors with dims = 1:50, followed by MapQuery using the integrated PCA and
513  integrated assay with default parameters. To support the cell type annotations in the full dataset,
514  we projected the entire dataset onto an integrated reference atlas of adult glioblastoma®. Briefly,
515 the reference atlas was log normalized, and a PCA was recomputed using the published variable
516 features. The data was projected using the FindTransferAnchors function with dims = 1:50,
517  followed by the TransferData function with default parameters in Seurat v5.

518

519 Inferenceof neoplastic ver sus normal cellsby copy number alteration analysis

520 Neoplastic versus normal cell annotation was inferred by the presence or absence, respectively,
521 of copy number alterations (CNA) detected from snRNA-Seq data using a dockerized
522  implementation of InferCNV®® (https://hub.docker.com/r/trinityctat/infercnv, version tag 1.11.1).
523  Due to computational constraints, the downsampled dataset as described above was used for all
524 analysis of neoplastic cells in the snRNA-Seq data. Input parameters included cutoff = 0.1
525  (recommended for 10x Genomics SnRNA-Seq data), as well as cluster_by groups= FALSE and
526 analysis mode = "subclusters” in order to cluster cells by distinct copy number profiles. All
527 samples for a given patient were run together in order to capture CNA clusters that may be
528 shared between different tumor regions or timepoints. Unambiguous normal cell clusters
529 identified during the Seurat integrated analysis of ShnRNA-Seq data were aggregated into three
530 separate normal cell categories (specifically, mature neuron/glial, white blood cells, and vascular
531 cells) which were then used as normal reference populations for InferCNV. Note that
532  aggregation was required in order to meet the minimum cell count requirement for InferCNV
533  across all patients. The remaining non-reference cells were annotated as “neoplastic” if the CNA

534  profile of their corresponding InferCNV cluster matched CNAs detected by WGS from the same
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535 patient and were considered to be “normal” otherwise. This comparison with WGS data,
536 performed manually, was an additional quality control step to ensure that putative CNAs inferred
537  from snRNA-Seq match true CNAs detected by WGS of DNA.

538

539 snATAC-Seq data processing

540 sSnATAC-Seq data for each sample was first demultiplexed using CellRanger-ATAC v.1.1.0 (10x
541  Genomics). The fastq files were then processed using the process module of scATAC-pro
542  (v1.4.4)%" with the default parameters. Briefly, the raw reads were aligned to the hg38 genome
543  assembly. Peaks were called using MACS2%. Barcodes with more than 2,000 total fragments, <
544  20% mitochondrial reads, and >25% fraction of reads in peaks (FRiP) were identified as cells.
545  The peak-by-cell count matrix was constructed and used for downstream analyses.

546

547 snATAC-Seq data integration

548 To integrate data from all patients, we first merged the peaks from different samples if two peaks
549 are within 500bp of each other by the mergePeaks module of sSCATAC-pro. The peak-by-cell
550 count matrix was then reconstructed based on the merged peaks using the reConstMtx module of
551  SCATAC-pro. Matrices from all samples were concatenated and loaded into Seurat with an extra
552  ChromatinAssay added. The data was processed using Signac®® as follows: The Seurat object
553  was split by sample ID and each sample was then processed through FindTopFeatures (with the
554  minimum cutoff equal to 1% the number of cells present in the subset), RunTFIDF and RunSVD
555  of Signac. FindintegrationAnchors function was run with parameters reduction=rlsi and dims =
556  2:30 with samples 4036 and 4037 as reference, which were from the patient with the greatest

557  number of immune cells as found in the ShnRNA-Seq data. The anchor features were defined as
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558  peaks that are accessible in more than 3% of cells in at least one of the patients. Then, Signac
559 IntegrateEmbedding function was run with default parameters. The cells were further clustered
560 with the FindNeighbors and FindClusters (with resolution = 0.8) functions in Seurat. For
561  visualization, the UMAP was constructed using RunUMAP with reduction = “integrated_Isi”” and
562 dims=2:30.

563

564  Construction of transcriptional regulatory network

565 The transcriptional regulatory network for each neoplastic cell state was constructed as
566  previously described™ with minor modifications. We first co-embedded the snATAC-Seq and
567 snRNA-Seq data per sample using the standard Seurat pipeline. Then we identified metacells
568  using hdWGCNA™ with parameters k=20, max_shared = 5, min_cells = 50, reduction = “pca”
569 and ident.group = “seurat_clusters.” Metacells containing between 4-16 snRNA-Seq cells were
570 kept for further analysis. The gene-by-metacell expression matrix and the peak-by-metacell
571  accessibility matrix were calculated as the average normalized expression and normalized
572  accessibility of all cells within the metacell, respectively. Metacells from different samples were
573 then combined and the Enhancer-Promoter (EP) interactions were predicted using a linear
574  regression model for each gene on metacells, with the gene expression in each metacell as the
575 dependent variable, and the accessibility of the peaks within +/- 500kb of the gene promoter as
576  the independent variables. Significant EP interactions were defined based on a peak regression
577  coefficient > 0.1 and Benjamini-Hochberg-adjusted p-value < 0.05. Predicted TF-target genes
578  pairs were defined if the TF motif was present at the enhancer of a predicted EP interaction and

579 both the TF and target gene were expressed in at least 20% of the cells within a given cell state.
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580

581 Cell-cell communication analysis

582  To assess ligand-receptor interactions between cell populations in the tumor microenvironment,
583 we implemented the Ligand-Receptor Analysis Framework (LIANA) v0.1.12% which infers
584  cell-cell communication using a consensus of 16 cell signaling database resources and 5 CCC
585 methods (Natmi’®, Connectome™, LogFC Mean, SingleCellSignalR™, CellphoneDB™) with
586 default parameters. The neoplastic cell states and myeloid subpopulations as annotated above
587 along with the remaining non-neoplastic populations were included. We considered the
588  consensus rank generated via Roust Rank Aggregation as the significance p value to predict the
589 intercellular crosstalk between each pair based on the expression level of known receptors and
590 ligands in the respective clusters and filtered interactions to those with p-value < 0.05. The
591  number of significant interactions between cell populations was quantified, and the most relevant

592 interactions were manually selected to plot.

593

594 Malignant subclone analysis

595 To study the evolution of malignant subclones in the patient-matched longitudinal samples, we
596  applied Clonalscope (v1.0.0)*, which utilizes both snRNA-Seq data and paired WGS data.
597  Clonalscope identifies copy number variation (CNV) segments with a Hidden Markov Model
598 (HMM) from the paired WGS data, and then estimates the fold change of CNV segments at a
599 single cell level using the snRNA-Seq data with a Poisson model. Then, it identifies tumor
600 subclones through a Bayesian non-parametric clustering process based on the estimated CNVs.

601  Clonalscope was run with default parameters on 14 of the 16 patients. Patient C70848 was
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602 excluded due to having a single time point and patient C1060383 was excluded due to an
603 insufficient amount of non-neoplastic cells for the Clonalscope algorithm. The required
604  normal/reference cells were defined by manual inspection of the inferCNV profiles as described
605 above. Paired WGS data augments identification of CNV segments, improving malignant
606  subclone delineation. WGS data was first analyzed by CNVKkit as described and iteratively
607 refined by (1) merging continuous segments that share the same copy number state
608  (amplification, neutral, or loss) and (2) merging each with neighboring segments if its size is <5%
609  of both neighboring segments and if both neighboring segments share the same copy number
610  state. This process denoises the WGS-defined CNV segments for use with Clonalscope.

611 Clonalscope was then applied to estimate CNV profiles of single cells at the earliest time
612  point for each patient, through a non-parametric clustering process. The estimated mean CNV
613  profile of each subclone is utilized as a prior to trace similar subclones or discover new
614  subclones from subsequent time points. For each patient, the shifts in malignant subclone
615  proportions were visualized using clevRvis (v0.99.6)”’, with the fishPlot function using a spline
616  fit. Clones were defined as having expanded if their percentages increased over time and
617 comprised at least 10% of the malignant population at the latest time point. The average values
618  of estimated CNVs were summarized for each chromosome arm. CNV gain or loss was binarized
619 as follows: average CNV >1.25 was defined as a copy number gain and <0.75 as a copy number
620 loss. For each chromosome arm, a Fisher’s exact test was used to assess for recurring copy
621  number alterations comparing the gain or loss of each chromosome segment relative to the gain

622  or loss of all other segments and adjusted using the Benjamini-Hochberg method.

623

624 CODEX staining
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625 CODEX staining was done using the sample kit for PhenoCycler-Fusion (Akoya, 7000017)
626 according to Akoya’s PhenoCycler-Fusion user guide with modifications to include a
627  photobleaching step and overnight incubation with antibodies at 4°C. FFPE samples were
628  sectioned at 5 um thickness and mounted onto charged slides (Leica, 3800080). Sample slides
629  were baked overnight at 60°C and allowed to cool to room temperature. Sample slides were
630  deparaffinized in Xylenes (Sigma, 534056) twice and rehydrated in a graded series of ethanol
631  concentrations (2 times 100%, 90%, 70%, 50%, 30% and 4 times ddH20O). Antigen retrieval was
632  performed in 1x Dako Target Retrieval Solution, pH 9 (Dako, S2367) with a pressure cooker for
633 20 minutes. After equilibrating to room temperature, sample slides were washed 2 times with
634 ddH20 and once with 1x PBS before being submerged in a four-well plate containing 4.5%
635 H202 and 20mM NaOH in PBS (bleaching solution) for photobleaching. The four-well plate
636  was sandwiched between two broad-spectrum LED light sources for 45 minutes at 4°C. After 45
637  minutes, sample slides were transferred to a new four-well plate with freshly-made bleaching
638  solution and photobleached for another 45 minutes at 4°C. Sample slides were washed 3 times in
639  PBS and then 2 times in hydration buffer. Sample slides were equilibrated in staining buffer for
640 30 minutes and incubated in the antibodies (Supplemental Table S5) diluted in staining buffer
641 plus N Blocker, G Blocker, J Blocker, and S Blocker overnight at 4°C. After antibody
642  incubation, sample slides were washed 2 times in Staining Buffer and fixed for 10 minutes in
643  1.6% paraformaldehyde (Electron Microscopy Sciences, 15710) storage buffer. Sample slides
644  were washed 3 times in PBS and incubated in ice cold methanol for 5 minutes. After incubation
645 in methanol, sample slides were washed 3 times in PBS and incubated in final fixative solution

646  (1000uL of PBS + 20uL of Akoya’s final fixation reagent) for 20 minutes at room temperature.
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647  The sample slides were then washed 3 times in PBS and stored in storage buffer prior to
648  imaging.

649

650 CODEX imaging

651 CODEX reporters were prepared according to Akoya’s PhenoCycler-Fusion user guide and
652 added to a 96-well plate. The PhenoCycler-Fusion experimental template was set up for a
653 CODEX Run using Akoya’s PhenoCycler Experiment Designer software according to Akoya’s
654  PhenoCycler-Fusion user guide. Details on the order of fluorescent CODEX Barcodes and
655  microscope exposure times can be found in Supplemental Table S3. The PhenoCycler-Fusion
656  experimental run was performed using Akoya’s Fusion 1.0.8 software according to Akoya’s
657  Phenolmager Fusion user guide. Images were taken and pre-processed (stitching, registration,
658  background subtraction) with Akoya’s Phenolmager Fusion microscope using default settings.
659  Final images were evaluated, and selected samples were reimaged with adjusted exposure times
660  based on manual review. After imaging, slides were stained with hematoxylin and eosin (H&E)
661 and imaged at 40x resolution.

662

663 CODEX data segmentation

664  Nuclear segmentation with a fixed pixel expansion of 4 pixels (equivalent to 2 um) was
665  performed using Mesmer™ for each image to enable the capture of cytoplasmic and membrane
666  markers while limiting lateral spillover. Maxima threshold and interior threshold were each set to
667 0.3. To generate the necessary input of a two-channel TIFF, we used DAPI for the nuclear
668  channel and a composite channel of GLUT1, CD3e, CD14, and CD68 for the membrane channel

669  although the nuclear segmentation was used. Mean pixel intensity was extracted from each cell
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670 segmentation mask, yielding a cell by protein matrix which was carried forward for analysis in
671  Seurat v5'°. Cells with very low or high raw DAPI expression (<10 or >250 on a UINT8 scale)
672  were removed. Each image was manually cropped to exclude large areas of artifact including
673  tissue folding and detachment, debris, and edge artifact. All marker channels including DAPI,
674  but not blank channels, were retained in the cell by protein matrix of each Seurat object for each
675 sample.

676

677  Cédlular neighborhood analysis

678  Neighborhood analysis was performed as previously described® using the final cell type
679  annotations, and as implemented by the imcRtools package®™. Briefly, a k-nearest neighbors
680  graph from all cells was constructed using the buildSpatial Graph function in imcRtools with k =
681 20, which calculates the neighborhood composition of each cell with a sliding window. These
682  windows are clustered using k-means clustering with respect to their proportions of cell types
683  with 15 clusters. Statistical significance of cell type enrichment within each neighborhood was
684  calculated using a hypergeometric test. The p-value was calculated based on the following four
685 numbers: (1) the number of cells of a given type in the neighborhood; (2) the total number of
686  cells in the neighborhood; (3) the number of cells of a given type in the CODEX dataset; and (4)
687  the total number of cells in the CODEX dataset. P-values were adjusted for multiple hypothesis
688  testing using the Benjamini-Hochberg method and significance was defined as p-adjusted <
689  0.001.

690

691  Invitrodrug screening
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692  Pediatric high-grade glioma cell line 7316-913 was obtained through the Children’s Brain Tumor
693  Network and underwent histopathologic, molecular, and genomic characterization as previously
694  described®. Glioma cells were stably transduced with a lentiviral nuclear red fluorescent protein
695 under the EFla promotor (Sartorius, cat. 4476, Gottingen, Germany) for visualization in live
696  imaging assays. Spheroid cultures were maintained in DMEM/F-12 medium supplemented with
697 1% glutaMAX (Gibco, cat. 35050061), 100 U/mL penicillin-streptomycin (cat. 15140122), 1X
698  B-27 supplement minus vitamin A (Gibco, Cat. 12587010), 1X N-2 supplement (Gibco, cat.
699  1752001), 2.5 ng/mL human epidermal growth factor (PeproTech, cat. AF-100-15-B), 2.5 ng/mL
700 human basic fibroblast growth factor (PeproTech, cat. 100-18B), and 0.5pg/mL heparin
701 (StemCell, cat. 07980). Glioma cells were plated at 500 cells per well in 384 well ultra-low
702  attachment plates (S-Bio, cat. MS-9384UZ) in 50uL of media and allowed to form spheroids
703  overnight. Plated cells were subsequently treated with pharmacological compounds in duplicate.
704  Compounds were obtained from the following sources: Selleckchem (Abt263, cat. S1001;
705  Panobinostat, cat. S1030; AZD4547, cat. S2801; Belnacasan, cat. S2228; Temozolomide, cat.
706  S1237; Cevimeline, cat. S6432; Dalfampridine, cat. S5028; CGP52432, cat. S0303; Gabazine,
707 cat. E1247; Retigabine, cat. S4734; Varespladib, cat. S1110), R&D Systems (J-104129, cat.
708  2507), Thermo Scientific Pierce (DMSO, cat. 20688). Compounds were added as 20ul of a 3.5x
709  working solution for each drug/dilution. Drug concentrations were selected based on prior
710 literature characterizing these compounds in cell line models. Cellular proliferation and viability
711 were monitored via Incucyte Live Imaging technology with imaging every 8 hours.

712

713  Dataavailability

31


https://doi.org/10.1101/2024.03.06.583588
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.06.583588; this version posted March 8, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

714  Data from this study have been deposited at the Human Tumor Atlas Network (HTAN) data
715  portal: https://data.humantumoratlas.org/. For the SnRNA-Seq, SnATAC-Seq and WGS data this
716  includes sequencing reads and processed data including read alignments, gene-by-cell or peak-
717  by-cell matrices, and variant call files. For the CODEX data, this includes multi-channel images,
718 segmentation masks, and marker-by-cell matrix. For all data types, Seurat objects with
719  annotations and reductions are provided for each data type (shown in Figures 1, 5) and subset
720 analyses (shown in Figures 2, 3, 4). The linkage between HTAN patient IDs and sample IDs is
721  provided in Supplementary Table 1.

722

723  Codeavailability

724  Source code will be made public upon publication, and any code can be made available to the
725  reviewers upon request.
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Figure Legends

Figure 1. Longitudinal single-cell RNA and ATAC atlas of pediatric high grade glioma

(PHGG)
a) Overview of the multiomics studies on patient-matched longitudinal pHGG specimens.

b-c) Uniform manifold approximation and projection (UMAP) of (b) snRNA-Seq data (401,253
cells) and (c) snATAC-Seq data (118,736 cells) annotated by major cell type category (left)
and stacked bar plot of cell type proportions across dataset comparing initially resected

pHGG samples with post-therapy samples.

d) Cell type proportions in SnRNA-Seq data across each patient and therapeutic time point,

along with a summary of patient demographics and molecular subtype.

e-f) Shifts in cell type proportions for each patient between initial resection and post-therapy
time points in () sSnRNA-Seq and (f) sSnATAC-Seq; n = 15 paired samples profiled by
SnRNA-Seq and n = 11 paired samples profiled by snATAC-Seq, including an initial
resection and at least one post-therapy sample. Post-therapy samples were merged for one
patient with three longitudinal samples. A two-sided Wilcoxon signed-rank test for paired

samples was used.

Figure 2. Transcriptional states of pHGG neoplastic cells

a) UMAP projection of inferred neoplastic cells from snRNA-Seq (102,061 cells) after
integration and annotation of cell states; AC, astrocyte; MES, mesenchymal; OPC,

oligodendrocyte progenitor cell; NPC, neural progenitor cell; NEU, neural.
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780 b) Barplot of cell type proportions of neoplastic cells across dataset comparing initial resection
781 and post-therapy samples.

782 c) Gene signatures of GBM cell states* overlaid on UMAP of neoplastic cells. Colors truncated
783 at 1 and 99" percentiles for visualization.

784 d) Expression of representative differentially expressed genes across neoplastic cell states in
785 SnRNA-Seq data.

786 €) Gene set enrichment of top differentially expressed genes in each neoplastic cell state using
787 biological process terms from the Gene Ontology database.

788 f) CytoTRACE scores of inferred differentiation states on the UMAP projection of SnRNA-Seq
789 data (left) and across each cell state (right). Higher values indicate a more
790 undifferentiated/stem-like state and lower values indicate a more differentiated state.

791 @) Shifts in neoplastic cell state proportions for each patient between initial resection and post-

792 therapy time points in snRNA-Seq (n = 15 paired samples). Post-therapy samples were
793 merged for one patient with three longitudinal samples. A two-sided Wilcoxon signed-rank
794 test for paired samples was used.

795

796 Figure3. Transcriptional regulation of pHGG neoplastic cell states

797 a) UMAP projection of inferred neoplastic cells from snATAC-Seq (95,451 cells) after

798 integration and identification of cell states defined in the ShnRNA-Seq data; AC, astrocyte;
799 MES, mesenchymal; OPC, oligodendrocyte progenitor cell; NPC, neural progenitor cell;
800 NEU, neural.

801 b) Stacked barplot of cell type proportions of neoplastic cell states across dataset comparing

802 initial resection and post-therapy samples.
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803 ¢) Shifts in neoplastic cell state proportions for each patient between initial resection and post-

804 therapy time points in SnATAC-Seq (n = 11 paired samples). Post-therapy samples were
805 merged for one patient with three longitudinal samples. A two-sided Wilcoxon signed-rank
806 test for paired samples was used.

807 d) Heatmap of differential transcription factor (TF) motif accessibility in each pHGG neoplastic

808 cell state. Values are z-score-normalized deviation scores calculated using chromVVAR. The
809 differential TF accessibility analysis was performed by a Wilcoxon rank-sum test, comparing
810 chromVAR deviation score between each cell state and the other cell states. The top 20
811 differential TFs are displayed for each state.

812 €) Overview of top 15 significant transcriptional regulators for each neoplastic cell state based

813 on predicted enhancer-promoter interactions and TF-target gene pairs. The size of the dot
814 indicates the fraction of the total gene targets in the network regulated by each TF. Color
815 indicates chromVVAR deviation z-score as in (d).

816  f-g) Transcriptional regulatory networks (TRNs) for (f) MES-like state and (g) OPC/NPC-like

817 state, showing top 50 upregulated genes and top 15 TFs in each TRN. Diamond nodes
818 represent TFs and circle nodes represent target genes. Node size is proportional to the
819 average gene expression for target genes and average chromVVAR z-score for TFs. Node
820 color is proportional to the average log, fold change of the gene in that cell state post-therapy
821 across all cells. Edge line thickness is proportional to the linear regression coefficient for the
822 predicted enhancer-promoter interaction and the fraction of cells with chromatin accessibility
823 at the enhancer peak.

824

825 Figure4. The myeloid responseto progression and ther apy.
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826 a) UMAP projection of annotated tumor-associated myeloid cell populations identified in
827 integrated longitudinal pHGG snRNA-Seq atlas (24,551 cells). BMD, bone marrow-derived;
828 MG, microglia.

829 b) Stacked barplot of myeloid cell type composition across dataset comparing initial resection
830 and post-therapy samples.

831 c) Expression of representative genes across myeloid populations in snRNA-Seq data
832 highlighting top differentially expressed genes.

833 d) Shifts in myeloid cell type proportions for each patient between initial resection and post-

834 therapy time points in sSnRNA-Seq (n = 15 paired samples). Post-therapy samples were
835 merged for one patient with three longitudinal samples. A two-sided Wilcoxon signed-rank
836 test for paired samples was used.

837 e) Gene set enrichment analysis (GSEA) of Hallmark pathways comparing pathway-level

838 differences in gene expression within myeloid cells overall between initial resection and
839 post-therapy time points. A linear mixed model was used to identify differentially expressed
840 genes between time points while accounting for individual patient variability.

841 f) Heatmap of Spearman correlation coefficients between frequency of neoplastic cell states in

842 the malignant population and frequency of TAM subtypes in the myeloid population across
843 region-stratified samples in the SnRNA-Seq data (n = 63). P-values are adjusted using the
844 Benjamini-Hochberg method; *** p <0.001, ** p <0.01, * p <0.05.

845 @) Heatmap showing number of significant interactions between myeloid and neoplastic cell

846 populations across dataset. Interactions were inferred using LIANA™ and filtered for
847 aggregated consensus rank (adjusted p-value < 0.05). Bars above the heatmap represent total
848 number of significant interactions received (down columns) and bars to the right of the
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heatmap represent total number of significant interactions sent (across rows) for each cell
type, with black lines indicating subset of interactions between myeloid and neoplastic cells.

Box highlights interactions from myeloid cells to neoplastic cells.

Figure 5. CODEX imaging revealsthe spatial landscape of pHGG.

a) Diagram showing the 51-antibody CODEX panel split by target cell population or cellular
function.

b) Representative CODEX image highlighting tumor mass and substructures of the normal
brain. DAPI (blue), Collagen IV (yellow), Neu (cyan), SOX2 (magenta), MOG (white).

c¢) UMAP projection of all 7.5 million cells in the pHGG CODEX dataset across 11 samples
after annotation and filtering.

d) CODEX image with selected fluorescent markers (left) paired with cell phenotype map
(right). Segmentation masks of individual cells are colored by their identity.

€) Representative CODEX image demonstrating spatially restricted tumor cell state populations.
Proneural tumor cells are stained by CD133 (red) and SOX2 (white) and mesenchymal tumor
cells stained by CD44 (green).

f) Cell type proportions in each CODEX sample, indicating patient, therapeutic time point, and
molecular subtype.

g) Heatmap showing relative enrichment of the cell types present in neighborhoods, normalized
across neighborhoods (by column). Significant positive cell type enrichments in each
neighborhood were calculated using a hypergeometric test, adjusted using the Benjamini-

Hochberg method. * p-adjusted <0.001.
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871 h) Neighborhood proportions in each CODEX sample, indicating patient, therapeutic time
872 point, and molecular subtype.

873

874  Figure6. I dentifying resistance mechanismsthrough in vitro drug screening

875 a) Left, heatmap of average CNVs within each tumor subclone at the chromosome arm level

876 across 14 patients using Clonalscope. Clone color (top row) corresponds to the patient-
877 specific subclone shown in Extended Data Figure 9a. Right, ratio of binarized copy number
878 gain or loss for each chromosome arm, defined as having an average CNV >1.25 or average
879 CNV <0.75 respectively. For each chromosome arm, a Fisher’s exact test was used to assess
880 for recurrent copy number alterations, adjusted using the Benjamini-Hochberg method. ***
881 p<0.001; ** p<0.01, * p<0.05.

882 Db) A linear mixed model was used to identify differentially expressed genes within neoplastic

883 cells overall between initial resection and post-therapy time points accounting for individual
884 patient variability. Volcano plot shows the log fold change and adjusted p-value for each
885 gene included in the model, with selected genes labeled.

886 ) Gene set enrichment analysis (GSEA) of Hallmark and KEGG pathways across all genes in
887 (b) ranked by log fold change.

888 d) Selected results from in vitro drug screening in human pHGG cell lines. Cells were treated

889 with drugs at indicated concentrations, and growth was monitored using a fluorescent
890 reporter 72 hours after drug treatment (n = 24 control, 2 drug-treated replicates each).
891 Positive values indicate a net proliferation, while negative values indicate net cell death.
892 Gene target or mechanism of action is indicated above the drugs. Significance is assessed via
893 a two-sided Student’s t test for each condition compared to DMSO controls and adjusted for
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894 multiple hypothesis testing using the Benjamini-Hochberg method, with mean = SD shown.

895 *** n<0,0001; ** p<0.01, * p<0.05.
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Extended Data Figure L egends

Extended Data Figure 1. Overview of longitudinal patient cohort.

a) Timeline of specimen collection and patient treatments if available. Patients were between 4
and 24 years of age. All patients received radiation therapy. Some patients received
chemotherapy including temozolomide, bevacizumab, pembrolizumab, vemurafenib, and
irinotecan. Samples were collected from an initial resection after histologic diagnosis of
high-grade glioma, and then through a secondary post-therapy resection or at autopsy.

b) Copy number alterations assessed through whole genome sequencing (WGS) for each patient

at all available therapeutic time points. Average sequencing depth is 91x per sample.

Extended Data Figure 2. Gener ation and integration of sShDRNA-Seq pHGG atlas.

a) Violin plots of quality control (QC) metrics for each of specimen in the integrated sSnRNA-
Seq dataset. Most specimens were sequenced at two regions, yielding 63 total samples. QC
metrics include number of unique molecular identifiers (UMIs), number of unique genes

captured after quantitation, and percent of reads originating from mitochondrial genes.

b-d) Integrated UMAP projection of sSnRNA-Seq data colored by (b) patient, (c) time point, and

(d) molecular subtype.

€) Expression of marker genes on UMAP of snRNA-Seq data supporting annotation of major

cell types. Colors truncated at 1% and 99™ percentiles for visualization.

f-g) Stacked bar plots of cell type proportions across dataset stratified by (f) time points

separated by initial resection, recurrence/progression (secondary surgical resection), or post-
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917  mortem acquisition at autopsy, and (g) molecular subtypes defined by driver mutations in IDH or
918  core histone proteins.
919

920 Extended Data Figure 3. Generation and integration of SnATAC-Seq pHGG atlas.

921 a) Violin plots of quality control (QC) metrics for each of specimen in the integrated SnATAC-

922 Seq dataset (32 total samples). QC metrics include number of unique fragments,
923 mitochondrial genes, and transcription start site (TSS) enrichment of fragment reads in each
924 cell.

925  Db-d) Integrated UMAP projection of SnATAC-Seq data colored by (b) patient, (c) time point,

926 and (d) molecular subtype.

927 €) Confidence scores of label transfer predictions using ShnRNA-Seq to annotate the major cell
928 types in the snATAC-Seq, demonstrating high concordance between the two data modalities.
929 f) Cell type proportions in SnATAC-Seq data across each patient and therapeutic time point,

930 along with the molecular subtype.

931 g-h) Stacked bar plots of cell type proportions across dataset stratified by (g) time points

932 separated by initial resection, recurrence/progression (secondary surgical resection), or post-
933 mortem acquisition at autopsy, and (h) molecular subtype defined by driving mutations in
934 IDH or core histone proteins.

935

936 Extended Data Figure 4. Integration and distribution of transcriptionally-defined

937 neoplastic cdl statesin pHGG.
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938 a-c) Integrated UMAP projection of inferred neoplastic cells in ShARNA-Seq data colored by (a)

939 patient, (b) time point, and (c) molecular subtype.

940 d) UMAP of inferred neoplastic cells colored by predicted cell cycle phase.

941 e) Predicted neoplastic cell state identity based on canonical cell state modules previously
942 defined by Neftel et al.*? Cells are assigned to the highest scoring cell state. AC, astrocyte;
943 MES, mesenchymal; NPC, neural progenitor cell; OPC, oligodendrocyte progenitor cell.

944 f) Neoplastic cells were computationally projected onto a dataset of the developing fetal human

945 brain'®. Barplot shows projected cell type proportions for each cell state. tRG, truncated
946 radial glia; uRG, unknown radial glia; IPC, inhibitory neuronal progenitor cell; RG, radial
947 glia; EN, excitatory neuron; IN, interneuron; Astro, astrocyte; GPC; glial progenitor
948 cell; OLC, oligo-lineage cells.

949 g) Neoplastic cell state proportions in SnRNA-Seq across each patient and therapeutic time

950 point, along with the molecular subtype.

951 h-i) Stacked bar plots of cell type proportions across dataset stratified by (h) time points

952 separated by initial resection, recurrence/progression (secondary surgical resection), or post-
953 mortem acquisition at autopsy, and (i) molecular subtype defined by driving mutations in
954 IDH or core histone proteins.

955

956 Extended Data Figure 5. Integration and regulatory network analysis of malignant cell
957 states

958 using snATAC-Seq data.

959 a-c) Integrated UMAP projection of inferred neoplastic cells in SnATAC-Seq data colored by (a)

960 patient, (b) time point, and (c) molecular subtype class.
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d) Neoplastic cell state proportions in SNnATAC-Seq across each patient and therapeutic time

point, along with the molecular subtype.

e-f) Stacked bar plots of cell type proportions across dataset stratified by (e€) time points
separated by initial resection, recurrence/progression (secondary surgical resection), or post-
mortem acquisition at autopsy, and (f) molecular subtype defined by driving mutations in
IDH or core histone proteins.

g-j) Transcriptional regulatory networks for (g) AC-like 1 state, (h) NEU-like state, (i) Interm 3
state, and (j) Interm 1 state, showing top 50 upregulated genes and top 15 TFs in each state.
Diamond nodes represent transcription factors and circle nodes represent target genes. Node
size is proportional to the average gene expression for target genes and average chromVAR
z-score for TFs. Node color is proportional to the average log, fold change of the gene in that
cell state post-therapy across all cells. Edge line thickness is proportional to the linear
regression coefficient for the predicted enhancer-promoter interaction and the fraction of
cells with chromatin accessibility at the enhancer peak. The AC-like 2 and Interm 2 state

networks are not shown as they include less than 5 significant TF-gene pairs.

Extended Data Figure 6. Integration and distribution of myeloid populations in snRNA-
Seqg.
a-c) Integrated UMAP projection of myeloid cells in ShnRNA-Seq data colored by (a) patient, (b)

time point, and (c) molecular subtype class.

d) UMAP colored by signature scores for bone marrow-derived (BMD) macrophages (left) and
microglia (right) as previously defined®. Colors truncated at 1% and 99" percentiles for

visualization.
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984 €) Transcription factor regulon activity calculated by SCENIC®. Heatmap shows average

985 regulon AUC value for top differentially active regulons in each myeloid subpopulation.

986 f-g) Stacked bar plots of cell type proportions across dataset stratified by (f) time points

987 separated by initial resection, recurrence/progression (secondary surgical resection), or post-
988 mortem acquisition at autopsy, and (g) molecular subtype defined by driver mutations in IDH
989 or core histone proteins.

990 h) Myeloid cell type proportions in SnRNA-Seq across each patient and therapeutic time point,
991 along with the molecular subtype. BMD, bone marrow derived. MG, microglia.

992

993 Extended Data Figure 7. Integration and annotation of CODEX data.

994 a) Left, integrated UMAP projection of all 7.5 million cells in pHGG CODEX atlas colored by
995 sample identifier. Right, pie chart showing the contribution of each sample to the dataset.

996 b) Heatmap showing the average centered log ratio (CLR)-normalized expression of each

997 marker per cell type scaled by marker (across rows) and clustered by marker and cell type.
998 Marker names listed in yellow indicate antibodies that had high quality staining on the
999 majority of samples and were subsequently used for integration and clustering.

1000 c¢) CODEX images (left) with selected markers and corresponding cell phenotype masks (right)

1001 showing appropriate co-labeling of certain markers and examples of annotated cell types.
1002 Grey cell masks refer to all other segmented cells in the final analysis (after removal of
1003 imaging artifacts and clusters of red blood cells).

1004 Extended Data Figure 8. Tumor cel staters are differentially localized near myeloid

1005  subtypes.
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a) Heatmap tabulating number of samples (out of 11 total) in which there is a significant
proximity of the source cell (rows) to the target cell (columns). Significance was assessed by
a one-sided permutation test. Black box highlights proximity from tumor cell states to

myeloid subtypes.

b-f) Median distances in each sample from source cell type (x-axis label) to (b) MPO+ myeloid
cells, (c) unclassified macrophages, (d) CD163"CD206" macrophages, (€) HLA-hi macrophages,

and (f) endothelial cells.

Extended Data Figure 9. Tumor subclone dynamics acr oss patients.

a) Fishtail plots showing shifts in tumor subclone populations across longitudinal time points
for 14 patients.

b) Correlation heatmap of subclones based on estimated copy number variation (CNV) at the
gene level. The CNV states of chromosome segments in each subclone were used to infer
gene-level CNVs for comparison across the cohort. Clone colors indicate subclones
identified in (a). Expanded subclones are indicated.

¢) Ratio of binarized copy number alteration (gain or loss) at the chromosome arm level
comparing expanded and non-expanded clones. The ratio represents the number of subclones
with copy number gain or loss among all 84 subclones identified across patients. Expanded
subclones were defined if they increased in proportion across time points and comprise at

least 10% of the tumor population at the latest time point.

Extended Data Figure 10. Drug target selection
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1028 a) Representative drug mechanisms nominated by LINCS1000 using top upregulated and
1029 downregulated time point-specific genes (Methods). Perturbation results were filtered for
1030 false discovery rate <0.25 and normalized connectivity score >0.6.

1031 b) Top glioma-specific targets predicted from DepMap screening. Dependency scores in glioma

1032 versus non-glioma cell lines were ranked by fold change (mean dependency in glioma / mean
1033 dependency in non-glioma cell lines). Color indicates log fold change of expression post-
1034 therapy using the generalized linear mixed model analysis.

1035 c¢) Top gene targets by aggregate ranking score (M ethods). Criteria includes screening against 3

1036 drug databases, LINCS1000 compound perturbations, and DepMap ,as well as two
1037 orthogonal methods of differential expression analysis (time point-specific generalized linear
1038 mixed model and per-patient meta-analysis) and participation in ligand-receptor signaling as
1039 a receptor target.
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Extended Data Figure 10
Drug Targets by Aggregate Score
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