

1 **A longitudinal single-cell and spatial multiomic atlas of pediatric high-grade glioma**

2 Jonathan H. Sussman^{1,2,3}, Derek A. Oldridge^{3,4}, Wenbao Yu^{4,5,6}, Chia-Hui Chen⁴, Abigail M.
3 Zellmer³, Jiazhen Rong^{2,6}, Arianne Parvaresh-Rizi⁷, Anusha Thadi⁴, Jason Xu^{1,2}, Shovik
4 Bandyopadhyay^{1,8}, Yusha Sun^{1,9}, David Wu^{1,2}, C. Emerson Hunter^{1,2}, Stephanie Brosius², Kyung
5 Jin Ahn⁴, Amy E. Baxter³, Mateusz P. Koptyra¹⁰, Rami S. Vanguri³, Stephanie McGrory⁴, Adam
6 C. Resnick¹⁰, Phillip B. Storm¹⁰, Nduka M. Amankulor¹¹, Mariarita Santi³, Angela N. Viaene³,
7 Nancy Zhang⁶, Thomas De Raedt^{3,4}, Kristina Cole^{4,5}, Kai Tan^{4,5,12*}

8

9 ¹Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania,
10 Philadelphia, PA

11 ²Graduate Group in Genomics and Computational Biology, Perelman School of Medicine,
12 University of Pennsylvania, Philadelphia, PA

13 ³Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the
14 University of Pennsylvania, Philadelphia, PA

15 ⁴Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA

16 ⁵Department of Pediatrics, University of Pennsylvania Perelman School of Medicine,
17 Philadelphia, PA

18 ⁶Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA

19 ⁷Department of Biomedical Engineering, University of Rhode Island, Kingston, RI

20 ⁸Cellular and Molecular Biology Graduate Group, Perelman School of Medicine, University of
21 Pennsylvania, PA

22 ⁹Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, PA

23 ¹⁰Department of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA

24 ¹¹Department of Neurosurgery, Perelman School of Medicine, Philadelphia, PA

25 ¹²Center for Single Cell Biology, Children's Hospital of Philadelphia, Philadelphia, PA

26

27 [#]These authors contributed equally: Jonathan H. Sussman, Derek A. Oldridge, Wenbao Yu

28

29 ***Corresponding Author Contact:**

30 Kai Tan, tank1@chop.edu

31 4004 CTRB

32 3501 Civic Center Blvd

33 Philadelphia, PA, 19104

34 (267) 425-0050

35

36 **Summary**

37 Pediatric high-grade glioma (pHGG) is an incurable central nervous system malignancy that is a
38 leading cause of pediatric cancer death. While pHGG shares many similarities to adult glioma, it
39 is increasingly recognized as a molecularly distinct, yet highly heterogeneous disease. In this
40 study, we longitudinally profiled a molecularly diverse cohort of 16 pHGG patients before and
41 after standard therapy through single-nucleus RNA and ATAC sequencing, whole-genome
42 sequencing, and CODEX spatial proteomics to capture the evolution of the tumor
43 microenvironment during progression following treatment. We found that the canonical
44 neoplastic cell phenotypes of adult glioblastoma are insufficient to capture the range of tumor
45 cell states in a pediatric cohort and observed differential tumor-myeloid interactions between
46 malignant cell states. We identified key transcriptional regulators of pHGG cell states and did
47 not observe the marked proneural to mesenchymal shift characteristic of adult glioblastoma. We
48 showed that essential neuromodulators and the interferon response are upregulated post-therapy
49 along with an increase in non-neoplastic oligodendrocytes. Through *in vitro* pharmacological
50 perturbation, we demonstrated novel malignant cell-intrinsic targets. This multiomic atlas of
51 longitudinal pHGG captures the key features of therapy response that support distinction from its
52 adult counterpart and suggests therapeutic strategies which are targeted to pediatric gliomas.

53

54

55 Main

56 Pediatric high-grade glioma (pHGG) is a devastating brain malignancy accounting for
57 approximately 11% of central nervous system (CNS) tumors in children from infants to
58 adolescents¹. Although the incidence of this tumor is relatively low (1.78 per 100,000
59 population)², pHGG holds an exceptionally dismal prognosis, with a median overall survival of
60 14 to 20 months.³ Despite decades of research and over 1,500 clinical trials, there remains no
61 cure for pHGG. Standard therapy includes maximal safe resection, high-dose radiotherapy, and
62 chemotherapy⁴, yet this multimodal therapy does little to change the course of the disease⁵.
63 Although childhood and adult HGG, including glioblastoma multiforme (GBM), share many
64 histopathological and clinical features, the advent of genomic, transcriptomic, and epigenomic
65 profiling has led pHGG to be recognized as a distinct disease entity with substantial differences
66 in its molecular characteristics^{2,6-10}. Most prominently, mutations in the histone H3 gene (*H3F3A*
67 and *HIST1H3B*) define important anatomically-distinct subtypes of pediatric gliomas⁶. The
68 H3K27M mutation occurs frequently in tumors arising in the brainstem and other midline
69 structures including the thalamus and cerebellum, while the H3G34R/V mutation is found most
70 frequently in adolescent pHGGs of the cerebral cortex^{2,7}. Other mutations in genes such as *BRAF*
71 and *ACVR1* are found predominantly in pediatric, rather than adult gliomas, yet their
72 implications for diagnosis and treatment have not been established^{7,11}. However, despite
73 advances in delineating genomic subtypes, pHGG remains extremely heterogeneous with a
74 desperate need for improved therapeutic options.

75 Recent advances in single-cell multiomics and spatial profiling have greatly informed our
76 understanding of the intra-tumoral and inter-tumoral heterogeneity of adult and pediatric brain
77 tumors¹²⁻²³. Collectively, these studies have identified patterns of neoplastic cell differentiation

78 states and metabolic programs, proposed detailed models for tumor initiation and oncogenesis,
79 characterized the tumor immune microenvironment (TIME), and identified actionable avenues
80 for targeted chemotherapeutic and immunotherapeutic strategies. Importantly, recent studies
81 using bulk and single-cell transcriptomics have identified key cellular and microenvironmental
82 changes during adult glioma progression under standard therapy, such as a shift in neoplastic cell
83 states from a proneural to mesenchymal phenotype^{23,24}, which has been implicated in glioma
84 treatment resistance²⁵. However, current single-cell characterization of pHGG is largely limited
85 to the neoplastic cell compartment^{17,12,16,20,22}, and the extent to which pHGG progression under
86 therapy differs from that of adult HGG is unknown. To address this, we present an integrated
87 multimodal analysis of matched primary-recurrent patient specimens (16 patients) across
88 histologic and molecular subtypes using single-nucleus RNA-sequencing (snRNA-Seq), single-
89 nucleus assay for transposase-accessible chromatin via sequencing (snATAC-Seq), whole
90 genome sequencing (WGS), and Co-Detection by Indexing (CODEX) spatial proteomics.
91 Overall, this longitudinal multiomic atlas of pHGG captures key features of therapy response that
92 support its distinction from adult HGG and suggests therapeutic strategies which are targeted to
93 pediatric gliomas.

94

95 **Results**

96 **Single-cell profiling of longitudinal pHGG specimens**

97 We profiled pHGG samples obtained through the Children's Brain Tumor Network
98 (CBTN)²⁶ from 16 patients across therapeutic time points via snRNA-Seq (15 pairs) and
99 snATAC-Seq (11 pairs) (**Figure 1a-c**). All patients received radiotherapy and surgical resection,
100 and some received pharmacological treatment including temozolomide, immunotherapy (e.g.,

101 pembrolizumab), and cytotoxic chemotherapy (**Extended Data Fig. 1a, Supplementary Fig. 1,**
102 **Supplementary Table 1**). Patients in the cohort ranged from 4 to 24 years in age, had a male-to-
103 female ratio of 2.2, and tumors included a range of genomic alterations (**Extended Data Fig.**
104 **1b**). The tumor specimens were resected from multiple anatomic locations including cortical
105 lobes and midline structures including the thalamus and cerebellum. The cohort included three
106 H3K27M-mutated cases, one H3G34V-mutated case, and one IDH1-mutated case; the remainder
107 were IDH1/H3 wildtype (WT) (**Figure 1d**). Post-therapy time points were further delineated as
108 progressive/recurrence, where samples were obtained through a secondary resection, and
109 autopsy, where samples were collected post-mortem. Collectively, over 400,000 cells were
110 profiled via snRNA-Seq, and over 110,000 cells were profiled via snATAC-Seq after quality
111 assessment and filtering, capturing a mean of 2,280 genes and 19,094 unique chromatin
112 fragments per cell respectively (**Extended Data Fig. 2a, Extended Data Fig. 3a**). Samples were
113 integrated to remove batch effects and cell types were annotated (**Extended Data Fig. 2b-e,**
114 **Extended Data Fig. 3b-e, Supplementary Fig. 1, 2, Methods**). We captured the major cell
115 types present in gliomas, including normal mature neurons and oligodendrocytes, myeloid cells
116 (macrophages/microglia), T cells, endothelial cells, mural cells, and a diverse population that we
117 have termed “other neural and glial cells,” including a mix of inferred neoplastic and non-
118 neoplastic subpopulations. (**Figure 1b-c**). There was significant heterogeneity between patients
119 and time points (**Figure 1d, Extended Data Figure 2f-g, Extended Data Figure 3f-h**). Notably,
120 the majority of mural cells were captured within two patients, and T cells were captured largely
121 in a single patient (**Figure 1d**). Examining the longitudinal shifts in cell type composition in the
122 snRNA-Seq data revealed a significant increase in non-neoplastic oligodendrocytes ($p=0.0067$)
123 and mature neurons ($p=0.029$) within patient-matched pairs (**Figure 1e**). Oligodendrocytes were

124 concordantly enriched post-therapy in the snATAC-Seq data ($p=0.019$) (**Figure 1f**), consistent
125 with prior observations of oligodendrocyte expansion in adult glioblastoma multiforme (GBM)²³.
126 This trend occurred primarily in the secondary resection samples, suggesting this is not simply
127 an artifact of wider normal margins in autopsy specimens (**Extended Data Fig. 2f, Extended**
128 **Data Fig. 3f**).

129

130 **Pediatric gliomas exhibit distinct neoplastic cell states**

131 We sought to characterize the neoplastic cell compartment and assess how these cell
132 states change during progression and therapy. After identifying putative neoplastic cells via copy
133 number variation (CNV) inference (**Supplementary Figure 3a-b, Methods**), we reintegrated
134 these populations (**Extended Data Figure 4a-d**) and then examined whether the canonical cell
135 states established by Neftel *et al.*¹² in a cohort of IDH-wild-type adult and pediatric glioblastoma
136 (GBM) can be applied to a molecularly diverse cohort of pHGG using the snRNA-Seq data.
137 Assessing the gene signatures of these four states (astrocyte (AC)-like, mesenchymal (MES)-
138 like, oligodendrocyte-progenitor (OPC)-like, neural-progenitor (NPC)-like) yielded several key
139 observations. First, we identified two distinct AC-like populations (**Figure 2a-d**). These
140 populations both expressed the astrocyte-defining marker, *GFAP*, and were most enriched in the
141 AC-like gene signature (**Figure 2c, Extended Data Figure 4e**). Next, we identified a definitive
142 MES-like state which expressed established mesenchymal marker genes (e.g., *CD44*, *VIM*,
143 *ANXA1*, *NDRG1*) and angiogenesis genes (i.e., *VEGFA*) and was enriched in hypoxia response
144 signatures (**Figure 2d-e, Supplementary Table 2**). Interestingly, while the mesenchymal cell
145 state has only recently been identified in H3K27M-mutant glioma²⁰, which these findings further

146 support, we observe a low-frequency MES-like state in our single pediatric IDH-mutant glioma
147 case (**Extended Data Fig. 4i**).

148 We identified a population with high expression of both OPC-like and NPC-like gene
149 signatures that we refer to as OPC/NPC-like, and a distinct population expressing neural genes
150 (**Figure 2c-e**) that was restricted to IDH/H3-WT tumors (**Extended Data Fig. 4i**). Projecting the
151 cells onto an atlas of the developing human fetal brain revealed that this population most closely
152 resembled fetal excitatory neurons, rather than earlier neural progenitor phenotypes (**Extended**
153 **Data Fig. 4f**), and pathway analysis supported the expression of neuronal pathways (**Figure 2e**),
154 thus this population was annotated as neuronal (NEU)-like. OPC/NPC-like cells expressed both
155 known OPC-like genes (e.g., *FGF12*) and NPC-like genes (e.g., *TNR*), and NEU-like cells
156 expressed some NPC-like marker genes (e.g., *SOX4*, *CD24*) (**Figure 2d**). Lastly, we identified
157 three distinct intermediate cell states that lack specific enrichment of the canonical markers and
158 identified a mixed population of cycling cells (**Extended Data Fig. 4e**). An analysis of
159 neoplastic lineages via CytoTRACE²⁷, which leverages transcriptional diversity to predict
160 differentiation trajectories, supported the proneural to mesenchymal differentiation hierarchy^{14,23},
161 and suggested that the two AC-like states lie on either ends of the differentiation spectrum
162 (**Figure 2f**). The AC-like 1 population is the least differentiated neoplastic cell state while the
163 AC-like 2 population is the most differentiated cell state and was found to also express some
164 mesenchymal markers (e.g., *VIM*, *APOE*) in addition to canonical AC-like markers (e.g., *S100B*,
165 *SPARC*) (**Figure 2d**).

166 The proportions of these cell states across samples were highly heterogeneous, with
167 significant variation between patients and across time points (**Extended Data Fig. 4g-i**).
168 However, examining neoplastic cell state proportions per-patient revealed no significant shifts in

169 cell type composition across therapeutic time points (**Figure 2g**). This finding is in contrast with
170 recent findings in adult IDH-WT GBM in which a significant increase in mesenchymal cells was
171 observed after treatment and progression.²³

172

173 **Transcription factors jointly regulate pHGG neoplastic cell states**

174 We then sought to extend our characterization of these cell states via our single-cell
175 chromatin accessibility data. After reintegrating and annotating the putative neoplastic
176 population in our snATAC-Seq data (**Extended Data Fig. 5a-c, Supplementary Fig. 4a-d,**
177 **Methods**), we captured all the cell states defined transcriptionally in the snRNA-Seq data and
178 confirmed enrichment of chromatin accessibility for cell state-defining genes and significant
179 concordance with snRNA-Seq (**Figure 3a-b, Supplementary Fig 4e-f**). Of note, we did not
180 identify a distinct population of cycling cells in the snATAC-Seq data (**Supplementary Fig. 4c**).
181 As expected, we observed significant heterogeneity between patients and therapeutic time points,
182 and no significant shifts in neoplastic cell state post-therapy (**Extended Data Fig. 4d-f, Figure**
183 **3c**). However, we observed a decreasing trend in the AC-like 2 population in the majority of
184 patient-matched pairs with borderline significance ($p=0.054$) (**Figure 3c**).

185 We then aimed to identify the transcription factors that regulate each cell state, first by
186 using chromVAR²⁸ to assess differential accessibility of transcription factor motifs
187 (**Supplementary Table 3**). Consistent with previous reports^{23,29}, motifs for the AP1 family of
188 transcription factors (e.g., FOSL2, JUN) were enriched in the mesenchymal state, along with
189 SMARCC1, JDP2, and BACH1 (**Figure 3d**). Notably, these motifs were also enriched in the
190 Intermediate 1 and AC-like 1 states. Both AC-like states were enriched for RFX factor motifs,

191 and the OPC/NPC-like and NEU-like states were enriched for proneural transcription factors
192 (e.g., ASCL2, NHLH1, LHX4) (**Figure 3d**).

193 Next, we constructed a transcriptional regulatory network (TRN) for each cell state by
194 integrating our snRNA-Seq and snATAC-Seq data to predict state-specific enhancer-promoter
195 interactions and transcription factor-target gene pairs (**Supplementary Table 4, Methods**).
196 These TRNs revealed substantial cooperativity between transcription factors in regulating cell
197 state-specific gene expression (**Figure 3e-g, Extended Data Fig. 4g-j**). This analysis nominated
198 known and novel transcription factors. The RFX factors were predicted to regulate both AC-like
199 cell states³⁰. SOX4 was predicted to regulate both the NEU-like and OPC/NPC-like states
200 through cooperation with other transcription factors including LHX1 and KLF12 respectively
201 (**Figure 3e-f**). The AP1 factors²³ and RUNX1 were predicted to jointly regulate the MES-like
202 state. RUNX1 was predicted to target the top differentially expressed genes in the MES-like state
203 and *RUNX1* expression was upregulated in MES-like neoplastic cells post-therapy (**Figure 3f**).
204 While RUNX1 has been recognized as a contributor to mesenchymal GBM³¹, this analysis
205 suggests that the RUNX1 transcription factor is a central regulator of the MES-like state.
206 Interestingly, we observed that 39% of genes in the MES-like TRN were significantly
207 upregulated within that population post-therapy (versus 9.3% downregulated), while 49% of
208 genes within the OPC/NPC-like TRN were significantly downregulated (versus 1.4%
209 upregulated). This suggests that although there is no population shift, the MES-like state
210 phenotype may be strengthened post-therapy. Overall, this analysis revealed the overlapping
211 transcriptional regulatory interplay underlying the spectrum of neoplastic phenotypes.

212

213 **Tumor-immune microenvironment is dominated by diverse myeloid populations**

214 After defining the neoplastic cell states in pHGG, we next sought to characterize the
215 immune microenvironment. T cells comprised ~2% of the cells captured via snRNA-Seq and
216 were primarily found in two post-therapy specimens (**Figure 1b-d**). The progressive H3G34V-
217 mutant case was a notable outlier, with T cells representing ~22% of cells captured (**Figure 1d**).
218 A low T cell abundance with outliers up to ~20% of total cell composition is consistent with
219 adult GBM²³. Myeloid cells comprised ~9% of the snRNA-Seq data and were captured in each
220 patient, so we selected this population for further analysis. After reintegration (**Extended Data**
221 **Fig. 6a-c, Methods**), we identified 11 distinct myeloid populations that were manually annotated
222 based on their differentially expressed genes and transcriptional regulons and demonstrated
223 extensive heterogeneity between patients and therapeutic time points (**Figure 4a-c, Extended**
224 **Data Fig. 6d-h, Supplementary Table 5**). Most samples contained a distribution of myeloid
225 subpopulations, while a few samples were dominated by a single subtype (**Extended Data Fig.**
226 **6h**). Additionally, these cells formed a continuous phenotypic spectrum, including resident
227 microglia and bone marrow-derived macrophage ontogenies (**Extended Data Fig. 6d**).

228 The myeloid subpopulations included tissue-resident microglia, dendritic cells, and
229 multiple tumor-associated macrophage (TAM) subsets that have been previously characterized
230 across multiple solid tumor types including adult glioma³². This includes pro-angiogenic TAMs
231 differentially expressing *VEGFA* and glycolytic enzymes (i.e., *HK2*, *ENO2*), lipid-associated
232 TAMs (*PPARG* and *LPL*), inflammatory TAMs (*NFKB1* and *IL1B*), interferon (IFN)-responsive
233 TAMs (*IFIT2*, *IFIT3*, and *ISG15*), as well as two additional populations of putative bone
234 marrow-derived macrophages, BMD TAM 1 (*F13A1*, *TMEM163*, *MS4A4E*) and BMD TAM 2
235 (*TGFBI*, *MALTI*, *RGS2*). Microglia were primarily stratified into pre-active microglia (*CCL3*,
236 *EGR3*, *NFKBID*) and homeostatic microglia (*P2RY12*, *TMEM119*) (**Figure 4a-c**). Both pre-

237 active and homeostatic microglia populations exhibited a trend of decreasing frequency post
238 therapy in the majority of the samples, while bone-marrow derived macrophages tended to
239 increase post therapy (**Figure 4d**). This is consistent with observations in adult GBM, in which a
240 microglia to macrophage shift post therapy has been reported²³. Given that myeloid population
241 shifts were highly variable between patients, we applied a generalized linear mixed model
242 approach (**Supplementary Table 6, Methods**) to identify pathway-level changes in pseudobulk
243 myeloid cells during tumor progression. We observed upregulation of interferon and
244 inflammatory response pathways, and downregulation of pathways related to proliferation and
245 cellular metabolism (e.g., oxidative phosphorylation, E2F targets) (**Figure 4e**).

246 Glioma-associated macrophages have been previously demonstrated to differentially
247 interact with neoplastic cell states, altering their activity and differentiation status³³. Indeed, we
248 observed differential correlations in frequency between neoplastic cell states and myeloid
249 subtypes across tumor regions. The MES-like state was associated with pro-angiogenic TAMs,
250 while the OPC/NPC-like state was associated with homeostatic microglia (**Figure 4f**).
251 Consequently, we aimed to elucidate how these pHGG-associated myeloid subpopulations
252 interact with our newly defined pHGG-specific neoplastic cell states through an analysis of
253 inferred ligand-receptor interactions (**Figure 4g, Supplementary Table 7, Methods**). We
254 observed a broad and heterogeneous set of bidirectional cellular interactions. Importantly,
255 myeloid cells were predicted to mediate multiple neoplastic cell functions both through direct
256 contact and secreted factors. These interactions included processes involved in regulating growth
257 and proliferation (e.g., SPP1-CD44, HBEGF-EGFR/ERBB2), cell adhesion and migration (e.g.,
258 FN1-ITGA3/ITGB1), and modulation of electrochemical or synaptic properties (e.g., NLGN1-
259 NRXN3) (**Supplementary Fig. 5**). The AC-like 1 and Intermediate 1 cell states were predicted

260 to receive intercellular signals most broadly across myeloid subtypes with receptors including
261 FGFR1, IGF1R, and CD44, which is specifically known to interact with a range of ligands (e.g.,
262 HBEGF, PSEN1, SPP1, VEGFA) and has a critical role in adult glioma³⁴⁻³⁶. In contrast, the AC-
263 like 2 and Intermediate 2 populations were the most inert neoplastic populations (**Figure 4g**).
264 Additionally, the NEU-like population was predicted to be a significant ligand source for intra-
265 neoplastic interactions with OPC/NPC-like and NEU-like cells (**Figure 4g**). Taken together, this
266 analysis is the first comprehensive characterization of pHGG myeloid subtypes and suggests that
267 TAM populations can differentially interact with neoplastic cell states and modulate multiple
268 neoplastic cell intrinsic functions.

269

270 **Mapping the spatial landscape of pHGG**

271 Gliomas are not only highly heterogeneous in terms of cell types and states, but complex
272 topographic localization of neoplastic and immune populations yields spatial niches with distinct
273 molecular functions and therapeutic vulnerabilities³⁷⁻⁴¹. To characterize the spatial landscape of
274 pHGG, we employed Co-Detection by Indexing (CODEX) spatial proteomics with a 52-plex
275 panel (51 antibodies + DAPI) on 11 whole-slide formalin-fixed paraffin-embedded (FFPE)
276 samples that had paired snRNA-Seq data, including three patient-matched longitudinal pairs
277 (**Figure 5a, Supplementary Table 8, 9**). First, we confirmed appropriate antibody staining
278 morphology and co-localization, and we manually removed areas with staining artifact
279 (**Supplementary Fig. 6**). Then, we confirmed that our CODEX panel was able to resolve gross
280 anatomical compartments including bulk tumor, gray matter, and white matter (**Figure 5b**).
281 Finally, after segmenting single cells, computational integration, and clustering, we annotated
282 over 7.5 million single cells (**Figure 5c-d, Supplementary Figure 7, Extended Data Fig. 7a-c**,

283 **Methods).** We captured the primary axis of neoplastic cell states from proneural (high
284 expression of SOX2, OLIG1, OLIG2) to mesenchymal/astrocytic (high expression of CD44,
285 VIM, GFAP). Interestingly, we observed two distinct MES (mesenchymal)-like tumor
286 populations. MES-like-1 tumor cells expressed the additional mesenchymal markers APOE,
287 SPP1, and GLUT1, and were predominantly identified in peri-necrotic regions (**Supplementary**
288 **Figure 7e**), and MES-like-2 tumor cells had the highest expression of the canonical marker
289 **CD44 (Extended Data Fig. 7b-c)**). Neoplastic cell states were distributed heterogeneously both
290 between and within samples with regions of the tumor predominated by patches of either
291 proneural or mesenchymal tumor cells (**Figure 5e**).

292 The immune populations were predominated by myeloid cells, consistent with the
293 sequencing data, and similarly formed a continuous phenotypic distribution including microglia
294 and macrophages (**Figure 5c, f**). We identified a macrophage population that strongly co-
295 expressed classically immune suppressive markers CD163 and CD206, a second macrophage
296 population characterized by high HLA-DR expression, and a large population of MPO⁺ myeloid
297 cells (**Figure 5c, Extended Data Fig. 7b**). This MPO⁺ population had a high expression of HIF-
298 1A and was primarily found as large infiltrates in necrotic regions in several samples
299 (**Supplementary Figure 8a, Extended Data Fig. 7b**). While we identified small populations of
300 CD4⁺ and CD8⁺ T cells, inspection of the images revealed that T cells were predominantly
301 located within vessels or concentrated in areas of hemorrhage. This demonstrates that blood
302 contaminants in tissue may confound analysis of single-cell sequencing of rare immune
303 populations (**Supplementary Fig. 8b**). Lastly, we observed spatially restricted expression of
304 immune checkpoint molecules including CD47 and PD-L1 (**Supplementary Fig. 8c**).

305

306 **Myeloid cells are spatially colocalized with distinct tumor states**

307 To systematically identify recurrent spatial patterns, we performed unsupervised
308 neighborhood analysis and identified 15 cellular neighborhoods (CNs) which we manually
309 annotated based on their relative enrichment of cell types (**Figure 5g**). These neighborhoods
310 were heterogeneously distributed across samples and captured expected anatomic compartments
311 including gray matter (CN2, predominantly mature neurons), white matter (CN6, mature
312 oligodendrocytes), and infiltrating tumor regions (CN7, normal oligodendrocytes and tumor
313 cells) (**Figure 5h, Supplementary Fig. 8**). Additionally, this analysis highlighted localized
314 regions predominated by different tumor cell states (i.e., proneural, intermediate, and
315 mesenchymal neighborhoods), as well as MPO⁺ infiltrates, and a vascular neighborhood (**Figure**
316 **5h**). Tumor cells tended to co-localize with cells sharing the same phenotype, such as proneural
317 tumor cells localizing with other proneural tumor cells. (**Figure 5e, g**). Notably, each
318 mesenchymal tumor cell type was primarily enriched in its own cellular neighborhood (CN3,
319 CN15) with a relative depletion of proneural or intermediate tumor cells, suggesting that
320 mesenchymal tumor cells form localized niches that are distinct from other regions of bulk tumor
321 (**Figure 5g**).

322 Immune cells were differentially localized across cellular neighborhoods. Microglia were
323 enriched in areas of normal brain, primarily gray matter (**Figure 5g**), and were observed to be
324 concentrated at the tumor-normal boundary (**Supplementary Fig. 8d**). Macrophages and T cells
325 were jointly enriched in an immune-predominant neighborhood (CN1), a perivascular
326 neighborhood (CN5), a vascular tumor neighborhood (CN11), and a tumor/immune
327 neighborhood (CN9). Outside of these neighborhoods, unclassified macrophages were most
328 enriched in the MES-like-1 neighborhood (CN15). Immune cells were relatively depleted in all

329 neighborhoods that had a significant enrichment of proneural tumor cells (**Figure 5h**). Together,
330 this is consistent with previous reports that macrophages are most enriched in the vicinity of
331 MES-like glioma cells³³, but further suggests that this is specific to some TAM subpopulations.
332 This was supported by examining distances from tumor cells to myeloid cells, which revealed
333 that MES-like-1 tumor cells were consistently enriched near MPO+ myeloid cells and
334 unclassified macrophages, while MES-like-2 tumor cells and proneural tumor cells were both
335 enriched near HLA-hi macrophages (**Extended Data Fig. 8a-e**). This analysis also revealed that
336 MES-like-1 tumor cells were the furthest population from vasculature, while MES-like-2 tumor
337 cells were closest to vasculature after immune cells, supporting a hypoxia-dependent
338 stratification of mesenchymal cell states (**Extended Data Fig. 8a, f**)¹².

339

340 **Tumor subclone dynamics reveal recurrent genomic alterations**

341 We next aimed to apply our longitudinal data to identify mechanisms of therapeutic
342 resistance. We first utilized large-scale copy number variations (CNVs) to trace tumor subclones
343 across patient-matched samples with Clonalscope⁴² which integrates snRNA-Seq and matched
344 WGS data. Neoplastic subclones were defined at the earliest time point for each patient and
345 traced to the later therapeutic time points to assess populations that have expanded or regressed
346 during treatment and progression (**Methods**). Through this approach we identified lineage-traced
347 neoplastic subclones on 14 patients, ranging from 4 to 9 subclones per patient, with variable
348 clonal dynamics across time points (**Extended Data Fig. 9a**). We identified recurrent CNVs
349 including copy number gains on chromosomes 1q, 7p/7q, 8q, 19p/19q, and 20p and copy number
350 losses on chromosomes 5p/5q, 6q, 10p/10q, and 14q (**Figure 6a**). Clustering of gene-level CNVs
351 across tumor subclones revealed recurrent modules of highly correlated CNVs across patients,

352 indicating that similar patterns of chromosome alterations dynamics occur during disease
353 progression (**Extended Data Fig. 9b**). Notably, some alterations occurred more frequently on
354 expanded subclones (e.g., gain on chr18p and chr19q, loss on chr14q), suggesting that these
355 alterations may confer a survival advantage (**Extended Data Fig. 9c, Supplementary Table**
356 **S10**).

357

358 **Longitudinal analysis uncovers tumor cell-intrinsic targets**

359 We then applied an analogous generalized linear model approach (**Methods**) to identify
360 genes and pathways that were upregulated across therapeutic time points over all neoplastic cells,
361 accounting for individual patient variability. Despite not observing population-level cell state
362 shifts in the neoplastic compartment, this analysis yielded 627 significantly upregulated genes
363 and 1,551 significantly downregulated genes (adjusted $p < 0.05$) (**Supplementary Table 11,**
364 **Figure 6b**). Examining pathway-level changes revealed an upregulation of type I and type II
365 interferon response pathways and the neuroactive ligand-receptor interactions gene set as well as
366 downregulation of pathways related to cell proliferation and metabolism, primarily oxidative
367 phosphorylation (**Figure 6c**).

368 We then aimed to utilize this neoplastic cell-specific longitudinal analysis to identify and
369 validate tumor cell intrinsic drug targets for pHGG, assuming that consistently upregulated genes
370 are related to therapy resistance. To prioritize gene targets, we screened differentially
371 upregulated genes against multiple drug target databases and the Cancer Dependency Map
372 (DepMap) as well considered their roles as receptors in the tumor microenvironment (**Extended**
373 **Data Fig. 10a-c, Supplementary Tables 7, 12, 13, Methods**). After curating targets to validate,
374 we screened over 20 pharmacological compounds to assess their impact on cell proliferation in a

375 pHGG post-therapy cell line. Cell proliferation and viability were assessed via a fluorescent
376 reporter 72 hours after drug treatment as a fold change of fluorescence intensity from the time of
377 drug treatment and compared to the growth fold change of DMSO controls (**Methods**). We
378 verified a cytotoxic effect of panobinostat (non-selective HDAC inhibitor), AZD4547 (FGFR
379 inhibitor), and temozolomide (alkylating chemotherapy agent). Multiple genes related to
380 apoptosis, pyroptosis, and inflammasome activation were upregulated including caspases
381 (*CASP1*, *CASP4*), *BCL2L1*, and *BCL6*. Indeed, inhibition of *CASP1* with belnacasan and
382 inhibition of BCL-2 with ABT-263 reduced proliferation *in vitro* compared to DMSO controls
383 (**Figure 6d**). Consistent with our pathway analysis, we observed significant upregulation of
384 multiple genes involved in electrochemical and synaptic communication, which has been shown
385 to support glioma progression and invasion^{43,44}. This includes receptors for neurotransmitters
386 (e.g., the top predicted target, CHRM3) as well as solute and ion (sodium and potassium)
387 channels. Modulating their functions *in vitro* with small molecule antagonists and agonists
388 confirmed the significance of electrochemical signaling in regulating pediatric glioma cell
389 growth and survival. The selective CHRM3 antagonist, J-104129, resulted in significant cell
390 death, although the cholinergic agonist, cevimeline, had no effect on proliferation. The selective
391 GABA_A receptor antagonist, gabazine, and to a lesser extent, the selective GABA_B receptor
392 antagonist, CGP52432, had a mild antiproliferative effect (**Figure 6d**). Interestingly, activating
393 KCNQ potassium channels with retigabine significantly stimulated cell proliferation, while
394 inhibiting KCNQ channels (4-aminopyridine) had no effect. Lastly, our screening nominated
395 secretory phospholipase A2 (sPLA2) as a novel therapeutic target in pediatric glioma, with a
396 dose-dependent cytotoxic response upon treatment with the PLA2-inhibitor varespladib (**Figure**
397 **6d**).

398

399 **Discussion**

400 In this study, we profiled the single-cell transcriptional, chromatin-accessibility, and
401 spatial landscape of pediatric high-grade glioma (pHGG) longitudinally under standard therapy.
402 We defined a set of pediatric neoplastic cell states and identified their transcriptional regulatory
403 networks. Similarly, we characterized the tumor immune microenvironment and identified a
404 diverse spectrum of tumor-associated macrophage (TAM) subtypes and employed a 51-marker
405 CODEX panel that revealed differential tumor-immune co-localization.

406 The longitudinal patient-matched samples provide critical insight into the molecular
407 mechanisms of tumor progression and therapy. Mesenchymal transformation has been described
408 as a hallmark of progressive GBM, analogous to epithelial-to-mesenchymal transition in
409 carcinomas^{23,25,45,46}. In pHGG, we indeed observed a spectrum of proneural to mesenchymal
410 differentiation states that resembled those characterized in adult glioma. Interestingly, we also
411 observed distinct astrocyte-like states on each end of the differentiation hierarchy, suggesting
412 that astrocytic programs are maintained in a subset of stem-like pHGG neoplastic cells.
413 Additionally, we did not identify any significant shifts in neoplastic cell states, suggesting an
414 important distinction from adult GBM.

415 Our framework for identifying tumor cell-intrinsic drug targets implicated several
416 mechanisms of therapy resistance and uncovered novel targets. Synaptic electrochemical
417 signaling through multiple receptors has been increasingly implicated in adult and pediatric
418 glioma progression⁴⁴, including acetylcholine⁴⁷⁻⁴⁹, dopamine⁵⁰⁻⁵², and GABA⁵³⁻⁵⁵. We found that
419 neuroactive signaling is broadly upregulated in pHGG, suggesting that tumor cells may become
420 increasingly dependent on synaptic activity over time. We also identified sPLA2 as a novel

421 target in pHGG. Phospholipases are enzymes that hydrolyze phospholipids into precursor fatty
422 acids, which have roles in cell signaling, metabolism, and inflammation. Phospholipase A2 has
423 been implicated in multiple cancer types including colorectal cancer⁵⁶, skin cancer⁵⁷, and adult
424 glioblastoma^{58,59}, in which it has been shown to inhibit apoptosis and activate EGFR signaling⁶⁰.

425 Overall, our study sheds light onto the molecular mechanisms of pHGG, but there are
426 important limitations. Primarily, the small size and frequent inoperability of these tumors
427 necessitate a relatively small and heterogeneous cohort with some samples collected post-
428 mortem. Thus, additional profiling is necessary to elucidate the specific effects of different
429 molecular subtypes and chemotherapeutic agents on longitudinal changes. Crucially, further *in*
430 *vitro* and *in vivo* studies are expected to elucidate microenvironment-dependent mechanisms of
431 resistance.

432

433 **Statistics and reproducibility**

434 No statistical method was used to predetermine sample size. All available longitudinal specimens
435 at the Children's Hospital of Philadelphia meeting the inclusion criteria were profiled, and all
436 data meeting standard QC thresholds were included. The two-sided Wilcoxon signed-rank test
437 for paired samples was used to compare percentages of cell initial resection and post-therapy
438 specimens. A two-sided Student's *t* test was used to compare cell growth for *in vitro*
439 experiments. The Fisher's exact test was used to assess for recurring copy number alterations in
440 the tumor subclone analysis, and a hypergeometric test was used to assess cell type enrichment in
441 spatial neighborhoods. Both were adjusted for multiple hypothesis testing via the Benjamini-
442 Hochberg method. A logistic regression model was used to identify differentially expressed
443 genes in tumor cells across cell states and time points, and the Wilcoxon rank-sum test was used

444 to identify differentially accessible transcription factor motifs in tumor cells and differentially
445 expressed genes and regulons across myeloid cell types and adjusted using the Bonferroni
446 correction. Distance analysis in CODEX data was conducted using a one-sided permutation test
447 (**Methods**).

448

449 **Methods**

450 **Human biospecimens**

451 Primary samples were obtained from patients with high-grade glioma banked at the Children's
452 Hospital of Philadelphia (CHOP) Childhood Cancer Research (CCCR) Registry. The patient
453 selection was built based on specimen availability. Biorepositories were obtained with parent
454 informed consent according to the Declaration of Helsinki and Institutional Review Board
455 approval from all participating centers. All patients underwent an initial tumor resection after
456 histopathological diagnosis of high-grade glioma before receiving treatment, followed by a
457 secondary surgical resection or sample acquisition at autopsy. Germline DNA from either blood
458 or skin samples were acquired from the Children's Brain Tumor Network (CBTN) at CHOP.
459 Patient sample information and relevant clinical metadata is provided in **Supplemental Table 1**.

460

461 **Single-nucleus RNA sequencing (snRNA-Seq)**

462 Single nuclei suspensions immediately underwent library preparation using the Chromium Single
463 Cell 3' Reagent Kit v3 or V3.1 (10x Genomics) according to the manufacturer's instructions.
464 Library quality was assessed using the Bioanalyzer Agilent 2100 with the High Sensitivity DNA
465 chip (Agilent Technologies, 5067-4626). Indexed libraries were pooled and sequenced on an

466 Illumina NovaSeq 6000 using sequencing parameters 28:8:0:87 (read1:i5:i7:read2, bp) with an
467 average sequencing depth of 50,000 read pairs per nucleus.

468

469 **Single-nucleus assay for transposase-accessible chromatin using sequencing (snATAC-Seq)**

470 Single nuclei suspensions immediately underwent library preparation with the Chromium Next
471 GEM Single Cell ATAC Reagent kit V1.1 (10x Genomics) as per manufacturer's user manual.
472 Library quality was assessed using the Bioanalyzer Agilent 2100 with a High Sensitivity DNA
473 chip (Agilent Technologies, 5067-4626). Indexed libraries were pooled and sequenced on an
474 Illumina NovaSeq 6000 using sequencing parameters 49:8:16:49 (read1:i5:i7:read2, bp) with an
475 average sequencing depth of 50,000 read pairs per nucleus.

476

477 **Processing and quality control filtering of snRNA-Seq data**

478 Read count matrices for snRNA-Seq data were generated from raw FASTQ files using Cell
479 Ranger v3.1.0. Reads were aligned to the GENCODE Release 34 (GRCh38.p13) transcriptome
480 reference. The resulting count matrices were processed and analyzed using Seurat v4⁶¹. Quality
481 control filtering was applied to each cell, using filters of 500 < nFeature_RNA < 8000 and
482 mitochondrial read percentage < 10%. Poor quality samples containing fewer than 500 cells
483 passing quality control thresholds were excluded from downstream analysis. For three samples
484 of borderline but passable quality (7316-339, 7316-7545, and 7316-7559) we instead used filters
485 of 300 < nFeature_RNA < 8000 and mitochondrial read percentage < 20%. Doublets were called
486 and removed using the DoubletFinder package (v3)⁶² using a doublet proportion estimate of
487 7.5%.

488

489 **Sample integration, clustering, and cell type annotation of snRNA-Seq data**

490 Initial snRNA-Seq data processing was performed using the Seurat v4 package. To aid in
491 identification of malignant and non-malignant cell populations, two published high-grade glioma
492 snRNA-Seq datasets^{22,63} were included with snRNA-Seq data from the present study in the
493 following integration and annotation protocol. Due to memory constraints in Seurat v4, data
494 were randomly downsampled so as not to exceed 200,000 total cells, preferentially
495 downsampling cells from samples with a higher cell count to preserve cells in samples with
496 lower cell counts. Cell cycle scores were computed using the *CellCycleScoring* method with
497 annotated cell cycle genes (2019 update). Integration was performed by reciprocal principal
498 component analysis (RPCA) at a patient level. In detail, each patient was normalized by
499 *SCTtransform* (v2) with regression of mitochondrial percentage, S score, and G2M score by
500 Gamma-Poisson generalized linear model. A total of 3,000 features were chosen by
501 *SelectIntegrationFeatures* followed by PCA. The *FindIntegrationAnchors* function was run
502 using top 30 PCs. Following integration, PCA was repeated on integrated features with
503 *RunUMAP* and *FindNeighbors* computed using the top 30 PCs. Louvain clustering was
504 performed by *FindClusters* at a resolution of 0.6. Cluster annotation was performed by manual
505 review of canonical cell type-defining genes, allowing for identification of normal cell type
506 populations including immune and stromal cells as well as a heterogenous and admixed
507 population of other neural and glial cells whose neoplastic versus normal status was inferred by
508 downstream copy number alteration analysis.

509 As increased computational capacity became possible, after annotation using the
510 downsampled data, the remaining cells were added to the downsampled dataset. These cells were
511 first normalized with *SCTtransform* and integrated through projection with Seurat v5⁶⁴ using

512 *FindTransferAnchors* with *dims* = 1:50, followed by *MapQuery* using the integrated PCA and
513 integrated assay with default parameters. To support the cell type annotations in the full dataset,
514 we projected the entire dataset onto an integrated reference atlas of adult glioblastoma⁶⁵. Briefly,
515 the reference atlas was log normalized, and a PCA was recomputed using the published variable
516 features. The data was projected using the *FindTransferAnchors* function with *dims* = 1:50,
517 followed by the *TransferData* function with default parameters in Seurat v5.

518

519 **Inference of neoplastic versus normal cells by copy number alteration analysis**

520 Neoplastic versus normal cell annotation was inferred by the presence or absence, respectively,
521 of copy number alterations (CNA) detected from snRNA-Seq data using a dockerized
522 implementation of InferCNV⁶⁶ (<https://hub.docker.com/r/trinityctat/infercnv>, version tag 1.11.1).
523 Due to computational constraints, the downsampled dataset as described above was used for all
524 analysis of neoplastic cells in the snRNA-Seq data. Input parameters included *cutoff* = 0.1
525 (recommended for 10x Genomics snRNA-Seq data), as well as *cluster_by_groups* = FALSE and
526 *analysis_mode* = "subclusters" in order to cluster cells by distinct copy number profiles. All
527 samples for a given patient were run together in order to capture CNA clusters that may be
528 shared between different tumor regions or timepoints. Unambiguous normal cell clusters
529 identified during the Seurat integrated analysis of snRNA-Seq data were aggregated into three
530 separate normal cell categories (specifically, mature neuron/glial, white blood cells, and vascular
531 cells) which were then used as normal reference populations for InferCNV. Note that
532 aggregation was required in order to meet the minimum cell count requirement for InferCNV
533 across all patients. The remaining non-reference cells were annotated as "neoplastic" if the CNA
534 profile of their corresponding InferCNV cluster matched CNAs detected by WGS from the same

535 patient and were considered to be “normal” otherwise. This comparison with WGS data,
536 performed manually, was an additional quality control step to ensure that putative CNAs inferred
537 from snRNA-Seq match true CNAs detected by WGS of DNA.

538

539 **snATAC-Seq data processing**

540 snATAC-Seq data for each sample was first demultiplexed using CellRanger-ATAC v.1.1.0 (10x
541 Genomics). The fastq files were then processed using the *process* module of scATAC-pro
542 (v1.4.4)⁶⁷ with the default parameters. Briefly, the raw reads were aligned to the hg38 genome
543 assembly. Peaks were called using MACS2⁶⁸. Barcodes with more than 2,000 total fragments, <
544 20% mitochondrial reads, and >25% fraction of reads in peaks (FRiP) were identified as cells.
545 The peak-by-cell count matrix was constructed and used for downstream analyses.

546

547 **snATAC-Seq data integration**

548 To integrate data from all patients, we first merged the peaks from different samples if two peaks
549 are within 500bp of each other by the *mergePeaks* module of scATAC-pro. The peak-by-cell
550 count matrix was then reconstructed based on the merged peaks using the *reConstMtx* module of
551 scATAC-pro. Matrices from all samples were concatenated and loaded into Seurat with an extra
552 *ChromatinAssay* added. The data was processed using Signac⁶⁹ as follows: The Seurat object
553 was split by sample ID and each sample was then processed through *FindTopFeatures* (with the
554 minimum cutoff equal to 1% the number of cells present in the subset), *RunTFIDF* and *RunSVD*
555 of Signac. *FindIntegrationAnchors* function was run with parameters *reduction=rlsi* and *dims* =
556 2:30 with samples 4036 and 4037 as reference, which were from the patient with the greatest
557 number of immune cells as found in the snRNA-Seq data. The anchor features were defined as

558 peaks that are accessible in more than 3% of cells in at least one of the patients. Then, Signac
559 *IntegrateEmbedding* function was run with default parameters. The cells were further clustered
560 with the *FindNeighbors* and *FindClusters* (with *resolution* = 0.8) functions in Seurat. For
561 visualization, the UMAP was constructed using *RunUMAP* with *reduction* = “integrated_lsi” and
562 *dims* = 2:30.

563

564 **Construction of transcriptional regulatory network**

565 The transcriptional regulatory network for each neoplastic cell state was constructed as
566 previously described⁷⁰ with minor modifications. We first co-embedded the snATAC-Seq and
567 snRNA-Seq data per sample using the standard Seurat pipeline. Then we identified metacells
568 using hdWGCNA⁷¹ with parameters *k*=20, *max_shared* = 5, *min_cells* = 50, *reduction* = “pca”
569 and *ident.group* = “seurat_clusters.” Metacells containing between 4-16 snRNA-Seq cells were
570 kept for further analysis. The gene-by-metacell expression matrix and the peak-by-metacell
571 accessibility matrix were calculated as the average normalized expression and normalized
572 accessibility of all cells within the metacell, respectively. Metacells from different samples were
573 then combined and the Enhancer-Promoter (EP) interactions were predicted using a linear
574 regression model for each gene on metacells, with the gene expression in each metacell as the
575 dependent variable, and the accessibility of the peaks within +/- 500kb of the gene promoter as
576 the independent variables. Significant EP interactions were defined based on a peak regression
577 coefficient > 0.1 and Benjamini-Hochberg-adjusted p-value < 0.05. Predicted TF-target genes
578 pairs were defined if the TF motif was present at the enhancer of a predicted EP interaction and
579 both the TF and target gene were expressed in at least 20% of the cells within a given cell state.

580

581 **Cell-cell communication analysis**

582 To assess ligand-receptor interactions between cell populations in the tumor microenvironment,
583 we implemented the Ligand-Receptor Analysis Framework (LIANA) v0.1.12⁷², which infers
584 cell-cell communication using a consensus of 16 cell signaling database resources and 5 CCC
585 methods (Natmi⁷³, Connectome⁷⁴, LogFC Mean, SingleCellSignalR⁷⁵, CellphoneDB⁷⁶) with
586 default parameters. The neoplastic cell states and myeloid subpopulations as annotated above
587 along with the remaining non-neoplastic populations were included. We considered the
588 consensus rank generated via Roust Rank Aggregation as the significance p value to predict the
589 intercellular crosstalk between each pair based on the expression level of known receptors and
590 ligands in the respective clusters and filtered interactions to those with p-value < 0.05. The
591 number of significant interactions between cell populations was quantified, and the most relevant
592 interactions were manually selected to plot.

593

594 **Malignant subclone analysis**

595 To study the evolution of malignant subclones in the patient-matched longitudinal samples, we
596 applied Clonalscope (v1.0.0)⁴², which utilizes both snRNA-Seq data and paired WGS data.
597 Clonalscope identifies copy number variation (CNV) segments with a Hidden Markov Model
598 (HMM) from the paired WGS data, and then estimates the fold change of CNV segments at a
599 single cell level using the snRNA-Seq data with a Poisson model. Then, it identifies tumor
600 subclones through a Bayesian non-parametric clustering process based on the estimated CNVs.
601 Clonalscope was run with default parameters on 14 of the 16 patients. Patient C70848 was

602 excluded due to having a single time point and patient C1060383 was excluded due to an
603 insufficient amount of non-neoplastic cells for the Clonalscope algorithm. The required
604 normal/reference cells were defined by manual inspection of the inferCNV profiles as described
605 above. Paired WGS data augments identification of CNV segments, improving malignant
606 subclone delineation. WGS data was first analyzed by CNVkit as described and iteratively
607 refined by (1) merging continuous segments that share the same copy number state
608 (amplification, neutral, or loss) and (2) merging each with neighboring segments if its size is <5%
609 of both neighboring segments and if both neighboring segments share the same copy number
610 state. This process denoises the WGS-defined CNV segments for use with Clonalscope.

611 Clonalscope was then applied to estimate CNV profiles of single cells at the earliest time
612 point for each patient, through a non-parametric clustering process. The estimated mean CNV
613 profile of each subclone is utilized as a prior to trace similar subclones or discover new
614 subclones from subsequent time points. For each patient, the shifts in malignant subclone
615 proportions were visualized using clevRvis (v0.99.6)⁷⁷, with the *fishPlot* function using a spline
616 fit. Clones were defined as having expanded if their percentages increased over time and
617 comprised at least 10% of the malignant population at the latest time point. The average values
618 of estimated CNVs were summarized for each chromosome arm. CNV gain or loss was binarized
619 as follows: average CNV >1.25 was defined as a copy number gain and <0.75 as a copy number
620 loss. For each chromosome arm, a Fisher's exact test was used to assess for recurring copy
621 number alterations comparing the gain or loss of each chromosome segment relative to the gain
622 or loss of all other segments and adjusted using the Benjamini-Hochberg method.

623

624 **CODEX staining**

625 CODEX staining was done using the sample kit for PhenoCycler-Fusion (Akoya, 7000017)
626 according to Akoya's PhenoCycler-Fusion user guide with modifications to include a
627 photobleaching step and overnight incubation with antibodies at 4°C. FFPE samples were
628 sectioned at 5 μ m thickness and mounted onto charged slides (Leica, 3800080). Sample slides
629 were baked overnight at 60°C and allowed to cool to room temperature. Sample slides were
630 deparaffinized in Xylenes (Sigma, 534056) twice and rehydrated in a graded series of ethanol
631 concentrations (2 times 100%, 90%, 70%, 50%, 30% and 4 times ddH₂O). Antigen retrieval was
632 performed in 1x Dako Target Retrieval Solution, pH 9 (Dako, S2367) with a pressure cooker for
633 20 minutes. After equilibrating to room temperature, sample slides were washed 2 times with
634 ddH₂O and once with 1x PBS before being submerged in a four-well plate containing 4.5%
635 H₂O₂ and 20mM NaOH in PBS (bleaching solution) for photobleaching. The four-well plate
636 was sandwiched between two broad-spectrum LED light sources for 45 minutes at 4°C. After 45
637 minutes, sample slides were transferred to a new four-well plate with freshly-made bleaching
638 solution and photobleached for another 45 minutes at 4°C. Sample slides were washed 3 times in
639 PBS and then 2 times in hydration buffer. Sample slides were equilibrated in staining buffer for
640 30 minutes and incubated in the antibodies (Supplemental Table S5) diluted in staining buffer
641 plus N Blocker, G Blocker, J Blocker, and S Blocker overnight at 4°C. After antibody
642 incubation, sample slides were washed 2 times in Staining Buffer and fixed for 10 minutes in
643 1.6% paraformaldehyde (Electron Microscopy Sciences, 15710) storage buffer. Sample slides
644 were washed 3 times in PBS and incubated in ice cold methanol for 5 minutes. After incubation
645 in methanol, sample slides were washed 3 times in PBS and incubated in final fixative solution
646 (1000uL of PBS + 20uL of Akoya's final fixation reagent) for 20 minutes at room temperature.

647 The sample slides were then washed 3 times in PBS and stored in storage buffer prior to
648 imaging.

649

650 **CODEX imaging**

651 CODEX reporters were prepared according to Akoya's PhenoCycler-Fusion user guide and
652 added to a 96-well plate. The PhenoCycler-Fusion experimental template was set up for a
653 CODEX Run using Akoya's PhenoCycler Experiment Designer software according to Akoya's
654 PhenoCycler-Fusion user guide. Details on the order of fluorescent CODEX Barcodes and
655 microscope exposure times can be found in **Supplemental Table S3**. The PhenoCycler-Fusion
656 experimental run was performed using Akoya's Fusion 1.0.8 software according to Akoya's
657 PhenoImager Fusion user guide. Images were taken and pre-processed (stitching, registration,
658 background subtraction) with Akoya's PhenoImager Fusion microscope using default settings.
659 Final images were evaluated, and selected samples were reimaged with adjusted exposure times
660 based on manual review. After imaging, slides were stained with hematoxylin and eosin (H&E)
661 and imaged at 40x resolution.

662

663 **CODEX data segmentation**

664 Nuclear segmentation with a fixed pixel expansion of 4 pixels (equivalent to 2 μ m) was
665 performed using Mesmer⁷⁸ for each image to enable the capture of cytoplasmic and membrane
666 markers while limiting lateral spillover. Maxima threshold and interior threshold were each set to
667 0.3. To generate the necessary input of a two-channel TIFF, we used DAPI for the nuclear
668 channel and a composite channel of GLUT1, CD3e, CD14, and CD68 for the membrane channel
669 although the nuclear segmentation was used. Mean pixel intensity was extracted from each cell

670 segmentation mask, yielding a cell by protein matrix which was carried forward for analysis in
671 Seurat v5⁷⁹. Cells with very low or high raw DAPI expression (<10 or >250 on a UINT8 scale)
672 were removed. Each image was manually cropped to exclude large areas of artifact including
673 tissue folding and detachment, debris, and edge artifact. All marker channels including DAPI,
674 but not blank channels, were retained in the cell by protein matrix of each Seurat object for each
675 sample.

676

677 **Cellular neighborhood analysis**

678 Neighborhood analysis was performed as previously described⁸⁰ using the final cell type
679 annotations, and as implemented by the imcRtools package⁸¹. Briefly, a k-nearest neighbors
680 graph from all cells was constructed using the *buildSpatialGraph* function in imcRtools with k =
681 20, which calculates the neighborhood composition of each cell with a sliding window. These
682 windows are clustered using k-means clustering with respect to their proportions of cell types
683 with 15 clusters. Statistical significance of cell type enrichment within each neighborhood was
684 calculated using a hypergeometric test. The p-value was calculated based on the following four
685 numbers: (1) the number of cells of a given type in the neighborhood; (2) the total number of
686 cells in the neighborhood; (3) the number of cells of a given type in the CODEX dataset; and (4)
687 the total number of cells in the CODEX dataset. P-values were adjusted for multiple hypothesis
688 testing using the Benjamini-Hochberg method and significance was defined as p-adjusted <
689 0.001.

690

691 ***In vitro* drug screening**

692 Pediatric high-grade glioma cell line 7316-913 was obtained through the Children's Brain Tumor
693 Network and underwent histopathologic, molecular, and genomic characterization as previously
694 described⁸². Glioma cells were stably transduced with a lentiviral nuclear red fluorescent protein
695 under the EF1a promotor (Sartorius, cat. 4476, Göttingen, Germany) for visualization in live
696 imaging assays. Spheroid cultures were maintained in DMEM/F-12 medium supplemented with
697 1% glutaMAX (Gibco, cat. 35050061), 100 U/mL penicillin-streptomycin (cat. 15140122), 1X
698 B-27 supplement minus vitamin A (Gibco, Cat. 12587010), 1X N-2 supplement (Gibco, cat.
699 1752001), 2.5 ng/mL human epidermal growth factor (PeproTech, cat. AF-100-15-B), 2.5 ng/mL
700 human basic fibroblast growth factor (PeproTech, cat. 100-18B), and 0.5µg/mL heparin
701 (StemCell, cat. 07980). Glioma cells were plated at 500 cells per well in 384 well ultra-low
702 attachment plates (S-Bio, cat. MS-9384UZ) in 50µL of media and allowed to form spheroids
703 overnight. Plated cells were subsequently treated with pharmacological compounds in duplicate.
704 Compounds were obtained from the following sources: Selleckchem (Abt263, cat. S1001;
705 Panobinostat, cat. S1030; AZD4547, cat. S2801; Belnacasan, cat. S2228; Temozolomide, cat.
706 S1237; Cevimeline, cat. S6432; Dalfampridine, cat. S5028; CGP52432, cat. S0303; Gabazine,
707 cat. E1247; Retigabine, cat. S4734; Varespladib, cat. S1110), R&D Systems (J-104129, cat.
708 2507), Thermo Scientific Pierce (DMSO, cat. 20688). Compounds were added as 20µL of a 3.5x
709 working solution for each drug/dilution. Drug concentrations were selected based on prior
710 literature characterizing these compounds in cell line models. Cellular proliferation and viability
711 were monitored via Incucyte Live Imaging technology with imaging every 8 hours.

712

713 **Data availability**

714 Data from this study have been deposited at the Human Tumor Atlas Network (HTAN) data
715 portal: <https://data.humantumoratlas.org/>. For the snRNA-Seq, snATAC-Seq and WGS data this
716 includes sequencing reads and processed data including read alignments, gene-by-cell or peak-
717 by-cell matrices, and variant call files. For the CODEX data, this includes multi-channel images,
718 segmentation masks, and marker-by-cell matrix. For all data types, Seurat objects with
719 annotations and reductions are provided for each data type (shown in **Figures 1, 5**) and subset
720 analyses (shown in **Figures 2, 3, 4**). The linkage between HTAN patient IDs and sample IDs is
721 provided in **Supplementary Table 1**.

722

723 **Code availability**

724 Source code will be made public upon publication, and any code can be made available to the
725 reviewers upon request.

726

727 **Acknowledgements**

728 The authors acknowledge the Children's Brain Tumor Network for collecting tissue and curating
729 clinical information used in this study and the Children's Hospital of Philadelphia Pathology
730 Core, Flow Cytometry Core, High-Throughput Sequencing Core, and Research Information
731 Services for providing technical support. We are grateful to all the patients and their families
732 who volunteered to participate in this study.

733

734 **Funding**

735 This work was supported by the National Cancer Institute (NCI) Human Tumor Atlas Network
736 grant under award #U2C CA233285 (K.T.). Additional support includes National Institutes of

737 Health (NIH) grants U54HL165442 (K.T.), NIH grant F30-CA-268782 (J.X.), NIH Medical
738 Scientist Training Program T32 GM07170, NIH grant F30-CA-277965 (S.B.), National Heart,
739 Lung, and Blood Institute R38 HL143613 (D.A.O.), and NCI T32 CA009140 (D.A.O.).
740 Additional funding was provided by the Parker Institute for Cancer Immunotherapy and V
741 Foundation for Cancer Research, co-sponsoring a Parker Bridge Fellow Award (D.A.O.).

742

743 **Author contributions**

744 J.H.S., D.A.O., W.Y., N.A., T.D.R., K.C., K.T., K.C. conceived and designed the study. S.M.,
745 M.S., M.K., A.R., P.B.S., K.C., provided patient samples, J.H.S., D.A.O., W.Y., J.R., A.P.R,
746 J.X., S.B., Y.S., D.W., C.E.H. performed computational and statistical analyses. J.H.S., C.H.C,
747 A.M.Z., A.T., C.E.H., S.B., K.J.A., T.D.R performed experiments. J.H.S., D.A.O., W.Y., J.R.,
748 J.X., S.B., A.E.B., R.S.V., C.E.H., N.M.A. performed data interpretation and biological analysis.
749 D.A.O., N.Z., T.D.R., A.N.V., K.C., K.T. provided funding and supervised the study. J.H.S,
750 D.A.O., W.Y., K.T. wrote the manuscript with input from all authors.

751

752 **Competing interests**

753 The authors declare no competing interests.

754

755 **Additional Information**

756 Supplementary information is available for this paper.

757 Correspondence and requests for materials should be addressed to Kai Tan (tank1@chop.edu).

758 Reprints and permissions information is available at www.nature.com/reprints

759 **Figure Legends**

760 **Figure 1. Longitudinal single-cell RNA and ATAC atlas of pediatric high grade glioma**
761 **(pHGG)**

762 **a)** Overview of the multiomics studies on patient-matched longitudinal pHGG specimens.

763 **b-c)** Uniform manifold approximation and projection (UMAP) of **(b)** snRNA-Seq data (401,253
764 cells) and **(c)** snATAC-Seq data (118,736 cells) annotated by major cell type category (left)
765 and stacked bar plot of cell type proportions across dataset comparing initially resected
766 pHGG samples with post-therapy samples.

767 **d)** Cell type proportions in snRNA-Seq data across each patient and therapeutic time point,
768 along with a summary of patient demographics and molecular subtype.

769 **e-f)** Shifts in cell type proportions for each patient between initial resection and post-therapy
770 time points in **(e)** snRNA-Seq and **(f)** snATAC-Seq; $n = 15$ paired samples profiled by
771 snRNA-Seq and $n = 11$ paired samples profiled by snATAC-Seq, including an initial
772 resection and at least one post-therapy sample. Post-therapy samples were merged for one
773 patient with three longitudinal samples. A two-sided Wilcoxon signed-rank test for paired
774 samples was used.

775

776 **Figure 2. Transcriptional states of pHGG neoplastic cells**

777 **a)** UMAP projection of inferred neoplastic cells from snRNA-Seq (102,061 cells) after
778 integration and annotation of cell states; AC, astrocyte; MES, mesenchymal; OPC,
779 oligodendrocyte progenitor cell; NPC, neural progenitor cell; NEU, neural.

780 **b)** Barplot of cell type proportions of neoplastic cells across dataset comparing initial resection
781 and post-therapy samples.

782 **c)** Gene signatures of GBM cell states¹² overlaid on UMAP of neoplastic cells. Colors truncated
783 at 1st and 99th percentiles for visualization.

784 **d)** Expression of representative differentially expressed genes across neoplastic cell states in
785 snRNA-Seq data.

786 **e)** Gene set enrichment of top differentially expressed genes in each neoplastic cell state using
787 biological process terms from the Gene Ontology database.

788 **f)** CytoTRACE scores of inferred differentiation states on the UMAP projection of snRNA-Seq
789 data (left) and across each cell state (right). Higher values indicate a more
790 undifferentiated/stem-like state and lower values indicate a more differentiated state.

791 **g)** Shifts in neoplastic cell state proportions for each patient between initial resection and post-
792 therapy time points in snRNA-Seq ($n = 15$ paired samples). Post-therapy samples were
793 merged for one patient with three longitudinal samples. A two-sided Wilcoxon signed-rank
794 test for paired samples was used.

795

796 **Figure 3. Transcriptional regulation of pHGG neoplastic cell states**

797 **a)** UMAP projection of inferred neoplastic cells from snATAC-Seq (95,451 cells) after
798 integration and identification of cell states defined in the snRNA-Seq data; AC, astrocyte;
799 MES, mesenchymal; OPC, oligodendrocyte progenitor cell; NPC, neural progenitor cell;
800 NEU, neural.

801 **b)** Stacked barplot of cell type proportions of neoplastic cell states across dataset comparing
802 initial resection and post-therapy samples.

803 c) Shifts in neoplastic cell state proportions for each patient between initial resection and post-
804 therapy time points in snATAC-Seq ($n = 11$ paired samples). Post-therapy samples were
805 merged for one patient with three longitudinal samples. A two-sided Wilcoxon signed-rank
806 test for paired samples was used.

807 d) Heatmap of differential transcription factor (TF) motif accessibility in each pHGG neoplastic
808 cell state. Values are z-score-normalized deviation scores calculated using chromVAR. The
809 differential TF accessibility analysis was performed by a Wilcoxon rank-sum test, comparing
810 chromVAR deviation score between each cell state and the other cell states. The top 20
811 differential TFs are displayed for each state.

812 e) Overview of top 15 significant transcriptional regulators for each neoplastic cell state based
813 on predicted enhancer-promoter interactions and TF-target gene pairs. The size of the dot
814 indicates the fraction of the total gene targets in the network regulated by each TF. Color
815 indicates chromVAR deviation z-score as in (d).

816 f-g) Transcriptional regulatory networks (TRNs) for (f) MES-like state and (g) OPC/NPC-like
817 state, showing top 50 upregulated genes and top 15 TFs in each TRN. Diamond nodes
818 represent TFs and circle nodes represent target genes. Node size is proportional to the
819 average gene expression for target genes and average chromVAR z-score for TFs. Node
820 color is proportional to the average \log_2 fold change of the gene in that cell state post-therapy
821 across all cells. Edge line thickness is proportional to the linear regression coefficient for the
822 predicted enhancer-promoter interaction and the fraction of cells with chromatin accessibility
823 at the enhancer peak.

824

825 **Figure 4. The myeloid response to progression and therapy.**

826 **a)** UMAP projection of annotated tumor-associated myeloid cell populations identified in
827 integrated longitudinal pHGG snRNA-Seq atlas (24,551 cells). BMD, bone marrow-derived;
828 MG, microglia.

829 **b)** Stacked barplot of myeloid cell type composition across dataset comparing initial resection
830 and post-therapy samples.

831 **c)** Expression of representative genes across myeloid populations in snRNA-Seq data
832 highlighting top differentially expressed genes.

833 **d)** Shifts in myeloid cell type proportions for each patient between initial resection and post-
834 therapy time points in snRNA-Seq ($n = 15$ paired samples). Post-therapy samples were
835 merged for one patient with three longitudinal samples. A two-sided Wilcoxon signed-rank
836 test for paired samples was used.

837 **e)** Gene set enrichment analysis (GSEA) of Hallmark pathways comparing pathway-level
838 differences in gene expression within myeloid cells overall between initial resection and
839 post-therapy time points. A linear mixed model was used to identify differentially expressed
840 genes between time points while accounting for individual patient variability.

841 **f)** Heatmap of Spearman correlation coefficients between frequency of neoplastic cell states in
842 the malignant population and frequency of TAM subtypes in the myeloid population across
843 region-stratified samples in the snRNA-Seq data ($n = 63$). P-values are adjusted using the
844 Benjamini-Hochberg method; *** $p < 0.001$, ** $p < 0.01$, * $p < 0.05$.

845 **g)** Heatmap showing number of significant interactions between myeloid and neoplastic cell
846 populations across dataset. Interactions were inferred using LIANA⁷² and filtered for
847 aggregated consensus rank (adjusted p-value < 0.05). Bars above the heatmap represent total
848 number of significant interactions received (down columns) and bars to the right of the

849 heatmap represent total number of significant interactions sent (across rows) for each cell
850 type, with black lines indicating subset of interactions between myeloid and neoplastic cells.
851 Box highlights interactions from myeloid cells to neoplastic cells.
852

853 **Figure 5. CODEX imaging reveals the spatial landscape of pHGG.**

854 **a)** Diagram showing the 51-antibody CODEX panel split by target cell population or cellular
855 function.
856 **b)** Representative CODEX image highlighting tumor mass and substructures of the normal
857 brain. DAPI (blue), Collagen IV (yellow), Neu (cyan), SOX2 (magenta), MOG (white).
858 **c)** UMAP projection of all 7.5 million cells in the pHGG CODEX dataset across 11 samples
859 after annotation and filtering.
860 **d)** CODEX image with selected fluorescent markers (left) paired with cell phenotype map
861 (right). Segmentation masks of individual cells are colored by their identity.
862 **e)** Representative CODEX image demonstrating spatially restricted tumor cell state populations.
863 Proneural tumor cells are stained by CD133 (red) and SOX2 (white) and mesenchymal tumor
864 cells stained by CD44 (green).
865 **f)** Cell type proportions in each CODEX sample, indicating patient, therapeutic time point, and
866 molecular subtype.
867 **g)** Heatmap showing relative enrichment of the cell types present in neighborhoods, normalized
868 across neighborhoods (by column). Significant positive cell type enrichments in each
869 neighborhood were calculated using a hypergeometric test, adjusted using the Benjamini-
870 Hochberg method. * p-adjusted <0.001.

871 **h)** Neighborhood proportions in each CODEX sample, indicating patient, therapeutic time
872 point, and molecular subtype.

873

874 **Figure 6. Identifying resistance mechanisms through *in vitro* drug screening**

875 **a)** Left, heatmap of average CNVs within each tumor subclone at the chromosome arm level
876 across 14 patients using Clonalscope. Clone color (top row) corresponds to the patient-
877 specific subclone shown in **Extended Data Figure 9a**. Right, ratio of binarized copy number
878 gain or loss for each chromosome arm, defined as having an average CNV >1.25 or average
879 CNV <0.75 respectively. For each chromosome arm, a Fisher's exact test was used to assess
880 for recurrent copy number alterations, adjusted using the Benjamini-Hochberg method. ***
881 p<0.001; ** p<0.01, * p<0.05.

882 **b)** A linear mixed model was used to identify differentially expressed genes within neoplastic
883 cells overall between initial resection and post-therapy time points accounting for individual
884 patient variability. Volcano plot shows the log fold change and adjusted p-value for each
885 gene included in the model, with selected genes labeled.

886 **c)** Gene set enrichment analysis (GSEA) of Hallmark and KEGG pathways across all genes in
887 (b) ranked by log fold change.

888 **d)** Selected results from *in vitro* drug screening in human pHGG cell lines. Cells were treated
889 with drugs at indicated concentrations, and growth was monitored using a fluorescent
890 reporter 72 hours after drug treatment ($n = 24$ control, 2 drug-treated replicates each).
891 Positive values indicate a net proliferation, while negative values indicate net cell death.
892 Gene target or mechanism of action is indicated above the drugs. Significance is assessed via
893 a two-sided Student's *t* test for each condition compared to DMSO controls and adjusted for

894 multiple hypothesis testing using the Benjamini-Hochberg method, with mean \pm SD shown.

895 *** p<0.0001; ** p<0.01, * p<0.05.

896 **Extended Data Figure Legends**

897 **Extended Data Figure 1. Overview of longitudinal patient cohort.**

898 **a)** Timeline of specimen collection and patient treatments if available. Patients were between 4
899 and 24 years of age. All patients received radiation therapy. Some patients received
900 chemotherapy including temozolomide, bevacizumab, pembrolizumab, vemurafenib, and
901 irinotecan. Samples were collected from an initial resection after histologic diagnosis of
902 high-grade glioma, and then through a secondary post-therapy resection or at autopsy.
903 **b)** Copy number alterations assessed through whole genome sequencing (WGS) for each patient
904 at all available therapeutic time points. Average sequencing depth is 91x per sample.

905

906 **Extended Data Figure 2. Generation and integration of snRNA-Seq pHGG atlas.**

907 **a)** Violin plots of quality control (QC) metrics for each of specimen in the integrated snRNA-
908 Seq dataset. Most specimens were sequenced at two regions, yielding 63 total samples. QC
909 metrics include number of unique molecular identifiers (UMIs), number of unique genes
910 captured after quantitation, and percent of reads originating from mitochondrial genes.

911 **b-d)** Integrated UMAP projection of snRNA-Seq data colored by **(b)** patient, **(c)** time point, and
912 **(d)** molecular subtype.

913 **e)** Expression of marker genes on UMAP of snRNA-Seq data supporting annotation of major
914 cell types. Colors truncated at 1st and 99th percentiles for visualization.

915 **f-g)** Stacked bar plots of cell type proportions across dataset stratified by **(f)** time points
916 separated by initial resection, recurrence/progression (secondary surgical resection), or post-

917 mortem acquisition at autopsy, and (g) molecular subtypes defined by driver mutations in IDH or
918 core histone proteins.

919

920 **Extended Data Figure 3. Generation and integration of snATAC-Seq pHGG atlas.**

921 **a)** Violin plots of quality control (QC) metrics for each of specimen in the integrated snATAC-
922 Seq dataset (32 total samples). QC metrics include number of unique fragments,
923 mitochondrial genes, and transcription start site (TSS) enrichment of fragment reads in each
924 cell.

925 **b-d)** Integrated UMAP projection of snATAC-Seq data colored by **(b)** patient, **(c)** time point,
926 and **(d)** molecular subtype.

927 **e)** Confidence scores of label transfer predictions using snRNA-Seq to annotate the major cell
928 types in the snATAC-Seq, demonstrating high concordance between the two data modalities.

929 **f)** Cell type proportions in snATAC-Seq data across each patient and therapeutic time point,
930 along with the molecular subtype.

931 **g-h)** Stacked bar plots of cell type proportions across dataset stratified by **(g)** time points
932 separated by initial resection, recurrence/progression (secondary surgical resection), or post-
933 mortem acquisition at autopsy, and **(h)** molecular subtype defined by driving mutations in
934 IDH or core histone proteins.

935

936 **Extended Data Figure 4. Integration and distribution of transcriptionally-defined**
937 **neoplastic cell states in pHGG.**

938 **a-c)** Integrated UMAP projection of inferred neoplastic cells in snRNA-Seq data colored by **(a)**
939 patient, **(b)** time point, and **(c)** molecular subtype.

940 **d)** UMAP of inferred neoplastic cells colored by predicted cell cycle phase.

941 **e)** Predicted neoplastic cell state identity based on canonical cell state modules previously
942 defined by Neftel *et al.*¹² Cells are assigned to the highest scoring cell state. AC, astrocyte;
943 MES, mesenchymal; NPC, neural progenitor cell; OPC, oligodendrocyte progenitor cell.

944 **f)** Neoplastic cells were computationally projected onto a dataset of the developing fetal human
945 brain¹⁴. Barplot shows projected cell type proportions for each cell state. tRG, truncated
946 radial glia; uRG, unknown radial glia; IPC, inhibitory neuronal progenitor cell; RG, radial
947 glia; EN, excitatory neuron; IN, interneuron; Astro, astrocyte; GPC, glial progenitor
948 cell; OLC, oligo-lineage cells.

949 **g)** Neoplastic cell state proportions in snRNA-Seq across each patient and therapeutic time
950 point, along with the molecular subtype.

951 **h-i)** Stacked bar plots of cell type proportions across dataset stratified by **(h)** time points
952 separated by initial resection, recurrence/progression (secondary surgical resection), or post-
953 mortem acquisition at autopsy, and **(i)** molecular subtype defined by driving mutations in
954 IDH or core histone proteins.

955

956 **Extended Data Figure 5. Integration and regulatory network analysis of malignant cell**
957 **states**

958 **using snATAC-Seq data.**

959 **a-c)** Integrated UMAP projection of inferred neoplastic cells in snATAC-Seq data colored by **(a)**
960 patient, **(b)** time point, and **(c)** molecular subtype class.

961 **d)** Neoplastic cell state proportions in snATAC-Seq across each patient and therapeutic time
962 point, along with the molecular subtype.

963 **e-f)** Stacked bar plots of cell type proportions across dataset stratified by **(e)** time points
964 separated by initial resection, recurrence/progression (secondary surgical resection), or post-
965 mortem acquisition at autopsy, and **(f)** molecular subtype defined by driving mutations in
966 IDH or core histone proteins.

967 **g-j)** Transcriptional regulatory networks for **(g)** AC-like 1 state, **(h)** NEU-like state, **(i)** Interim 3
968 state, and **(j)** Interim 1 state, showing top 50 upregulated genes and top 15 TFs in each state.
969 Diamond nodes represent transcription factors and circle nodes represent target genes. Node
970 size is proportional to the average gene expression for target genes and average chromVAR
971 z-score for TFs. Node color is proportional to the average \log_2 fold change of the gene in that
972 cell state post-therapy across all cells. Edge line thickness is proportional to the linear
973 regression coefficient for the predicted enhancer-promoter interaction and the fraction of
974 cells with chromatin accessibility at the enhancer peak. The AC-like 2 and Interim 2 state
975 networks are not shown as they include less than 5 significant TF-gene pairs.

976

977 **Extended Data Figure 6. Integration and distribution of myeloid populations in snRNA-
978 Seq.**

979 **a-c)** Integrated UMAP projection of myeloid cells in snRNA-Seq data colored by **(a)** patient, **(b)**
980 time point, and **(c)** molecular subtype class.

981 **d)** UMAP colored by signature scores for bone marrow-derived (BMD) macrophages (left) and
982 microglia (right) as previously defined⁸³. Colors truncated at 1st and 99th percentiles for
983 visualization.

984 e) Transcription factor regulon activity calculated by SCENIC⁸⁴. Heatmap shows average
985 regulon AUC value for top differentially active regulons in each myeloid subpopulation.

986 f-g) Stacked bar plots of cell type proportions across dataset stratified by (f) time points
987 separated by initial resection, recurrence/progression (secondary surgical resection), or post-
988 mortem acquisition at autopsy, and (g) molecular subtype defined by driver mutations in IDH
989 or core histone proteins.

990 h) Myeloid cell type proportions in snRNA-Seq across each patient and therapeutic time point,
991 along with the molecular subtype. BMD, bone marrow derived. MG, microglia.

992

993 **Extended Data Figure 7. Integration and annotation of CODEX data.**

994 a) Left, integrated UMAP projection of all 7.5 million cells in pHGG CODEX atlas colored by
995 sample identifier. Right, pie chart showing the contribution of each sample to the dataset.

996 b) Heatmap showing the average centered log ratio (CLR)-normalized expression of each
997 marker per cell type scaled by marker (across rows) and clustered by marker and cell type.
998 Marker names listed in yellow indicate antibodies that had high quality staining on the
999 majority of samples and were subsequently used for integration and clustering.

1000 c) CODEX images (left) with selected markers and corresponding cell phenotype masks (right)
1001 showing appropriate co-labeling of certain markers and examples of annotated cell types.
1002 Grey cell masks refer to all other segmented cells in the final analysis (after removal of
1003 imaging artifacts and clusters of red blood cells).

1004 **Extended Data Figure 8. Tumor cell states are differentially localized near myeloid
1005 subtypes.**

1006 **a)** Heatmap tabulating number of samples (out of 11 total) in which there is a significant
1007 proximity of the source cell (rows) to the target cell (columns). Significance was assessed by
1008 a one-sided permutation test. Black box highlights proximity from tumor cell states to
1009 myeloid subtypes.

1010 **b-f)** Median distances in each sample from source cell type (x-axis label) to **(b)** MPO+ myeloid
1011 cells, **(c)** unclassified macrophages, **(d)** CD163⁺CD206⁺ macrophages, **(e)** HLA-hi macrophages,
1012 and **(f)** endothelial cells.

1013

1014 **Extended Data Figure 9. Tumor subclone dynamics across patients.**

1015 **a)** Fishtail plots showing shifts in tumor subclone populations across longitudinal time points
1016 for 14 patients.

1017 **b)** Correlation heatmap of subclones based on estimated copy number variation (CNV) at the
1018 gene level. The CNV states of chromosome segments in each subclone were used to infer
1019 gene-level CNVs for comparison across the cohort. Clone colors indicate subclones
1020 identified in **(a)**. Expanded subclones are indicated.

1021 **c)** Ratio of binarized copy number alteration (gain or loss) at the chromosome arm level
1022 comparing expanded and non-expanded clones. The ratio represents the number of subclones
1023 with copy number gain or loss among all 84 subclones identified across patients. Expanded
1024 subclones were defined if they increased in proportion across time points and comprise at
1025 least 10% of the tumor population at the latest time point.

1026

1027 **Extended Data Figure 10. Drug target selection**

1028 **a)** Representative drug mechanisms nominated by LINCS1000 using top upregulated and
1029 downregulated time point-specific genes (**Methods**). Perturbation results were filtered for
1030 false discovery rate <0.25 and normalized connectivity score >0.6 .

1031 **b)** Top glioma-specific targets predicted from DepMap screening. Dependency scores in glioma
1032 versus non-glioma cell lines were ranked by fold change (mean dependency in glioma / mean
1033 dependency in non-glioma cell lines). Color indicates log fold change of expression post-
1034 therapy using the generalized linear mixed model analysis.

1035 **c)** Top gene targets by aggregate ranking score (**Methods**). Criteria includes screening against 3
1036 drug databases, LINCS1000 compound perturbations, and DepMap ,as well as two
1037 orthogonal methods of differential expression analysis (time point-specific generalized linear
1038 mixed model and per-patient meta-analysis) and participation in ligand-receptor signaling as
1039 a receptor target.

1040 **References**

1041 1. Ostrom QT, de Blank PM, Kruchko C, et al. Alex's Lemonade Stand Foundation Infant and
1042 Childhood Primary Brain and Central Nervous System Tumors Diagnosed in the United
1043 States in 2007–2011. *Neuro-Oncol.* 2015;16(suppl_10):x1-x36. doi:10.1093/neuonc/nou327

1044 2. Mackay A, Burford A, Carvalho D, et al. Integrated Molecular Meta-Analysis of 1,000
1045 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma. *Cancer Cell.* 2017;32(4):520-
1046 537.e5. doi:10.1016/j.ccr.2017.08.017

1047 3. Hatoum R, Chen JS, Lavergne P, et al. Extent of Tumor Resection and Survival in Pediatric
1048 Patients With High-Grade Gliomas: A Systematic Review and Meta-analysis. *JAMA Netw
1049 Open.* 2022;5(8):e2226551. doi:10.1001/jamanetworkopen.2022.26551

1050 4. Wang Y, Jiang T. Understanding high grade glioma: Molecular mechanism, therapy and
1051 comprehensive management. *Cancer Lett.* 2013;331(2):139-146.
1052 doi:10.1016/j.canlet.2012.12.024

1053 5. He X, Zhao W, Huang J, et al. Characteristics and trends of globally registered glioma
1054 clinical trials in the past 16 years. *Ther Adv Neurol Disord.* 2022;15:17562864221114355.
1055 doi:10.1177/17562864221114355

1056 6. Louis DN, Perry A, Wesseling P, et al. The 2021 WHO Classification of Tumors of the
1057 Central Nervous System: a summary. *Neuro-Oncol.* 2021;23(8):1231-1251.
1058 doi:10.1093/neuonc/noab106

1059 7. Wu G, Diaz AK, Paugh BS, et al. The genomic landscape of diffuse intrinsic pontine glioma
1060 and pediatric non-brainstem high-grade glioma. *Nat Genet.* 2014;46(5):444-450.
1061 doi:10.1038/ng.2938

1062 8. Jones C, Karajannis MA, Jones DTW, et al. Pediatric high-grade glioma: biologically and
1063 clinically in need of new thinking. *Neuro-Oncol.* 2017;19(2):153-161.
1064 doi:10.1093/neuonc/now101

1065 9. Bax DA, Mackay A, Little SE, et al. A Distinct Spectrum of Copy Number Aberrations in
1066 Pediatric High-Grade Gliomas. *Clin Cancer Res.* 2010;16(13):3368-3377. doi:10.1158/1078-
1067 0432.CCR-10-0438

1068 10. Wang J, Huang TYT, Hou Y, et al. Epigenomic landscape and 3D genome structure in
1069 pediatric high-grade glioma. *Sci Adv.* 2021;7(23):eabg4126. doi:10.1126/sciadv.abg4126

1070 11. Rosenberg T, Yeo KK, Mauguen A, et al. Upfront molecular targeted therapy for the
1071 treatment of BRAF-mutant pediatric high-grade glioma. *Neuro-Oncol.* 2022;24(11):1964-
1072 1975. doi:10.1093/neuonc/noac096

1073 12. Neftel C, Laffy J, Filbin MG, et al. An Integrative Model of Cellular States, Plasticity, and
1074 Genetics for Glioblastoma. *Cell.* 2019;178(4):835-849.e21. doi:10.1016/j.cell.2019.06.024

1075 13. Gojo J, Englinger B, Jiang L, et al. Single-Cell RNA-Seq Reveals Cellular Hierarchies and
1076 Impaired Developmental Trajectories in Pediatric Ependymoma. *Cancer Cell.*
1077 2020;38(1):44-59.e9. doi:10.1016/j.ccr.2020.06.004

1078 14. Couturier CP, Ayyadhyury S, Le PU, et al. Single-cell RNA-seq reveals that glioblastoma
1079 recapitulates a normal neurodevelopmental hierarchy. *Nat Commun.* 2020;11(1):3406.
1080 doi:10.1038/s41467-020-17186-5

1081 15. Jessa S, Blanchet-Cohen A, Krug B, et al. Stalled developmental programs at the root of
1082 pediatric brain tumors. *Nat Genet.* 2019;51(12):1702-1713. doi:10.1038/s41588-019-0531-7

1083 16. Jessa S, Mohammadnia A, Harutyunyan AS, et al. K27M in canonical and noncanonical H3
1084 variants occurs in distinct oligodendroglial cell lineages in brain midline gliomas. *Nat Genet.*
1085 2022;54(12):1865-1880. doi:10.1038/s41588-022-01205-w

1086 17. Filbin MG, Tirosh I, Hovestadt V, et al. Developmental and oncogenic programs in H3K27M
1087 gliomas dissected by single-cell RNA-seq. *Science.* 2018;360(6386):331-335.
1088 doi:10.1126/science.aoa4750

1089 18. Harpaz N, Mittelman T, Beresh O, et al. Single-cell epigenetic analysis reveals principles of
1090 chromatin states in H3.3-K27M gliomas. *Mol Cell.* 2022;82(14):2696-2713.e9.
1091 doi:10.1016/j.molcel.2022.05.023

1092 19. Garofano L, Migliozzi S, Oh YT, et al. Pathway-based classification of glioblastoma
1093 uncovers a mitochondrial subtype with therapeutic vulnerabilities. *Nat Cancer.*
1094 2021;2(2):141-156. doi:10.1038/s43018-020-00159-4

1095 20. Liu I, Jiang L, Samuelsson ER, et al. The landscape of tumor cell states and spatial
1096 organization in H3-K27M mutant diffuse midline glioma across age and location. *Nat Genet.*
1097 2022;54(12):1881-1894. doi:10.1038/s41588-022-01236-3

1098 21. Karimi E, Yu MW, Maritan SM, et al. Single-cell spatial immune landscapes of primary and
1099 metastatic brain tumours. *Nature.* 2023;614(7948):555-563. doi:10.1038/s41586-022-05680-
1100 3

1101 22. Chen CCL, Deshmukh S, Jessa S, et al. Histone H3.3G34-Mutant Interneuron Progenitors
1102 Co-opt PDGFRA for Gliomagenesis. *Cell.* 2020;183(6):1617-1633.e22.
1103 doi:10.1016/j.cell.2020.11.012

1104 23. Wang L, Jung J, Babikir H, et al. A single-cell atlas of glioblastoma evolution under therapy
1105 reveals cell-intrinsic and cell-extrinsic therapeutic targets. *Nat Cancer*. 2022;3(12):1534-
1106 1552. doi:10.1038/s43018-022-00475-x

1107 24. Varn FS, Johnson KC, Martinek J, et al. Glioma progression is shaped by genetic evolution
1108 and microenvironment interactions. *Cell*. 2022;185(12):2184-2199.e16.
1109 doi:10.1016/j.cell.2022.04.038

1110 25. Wang Q, Hu B, Hu X, et al. Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes
1111 Associates with Immunological Changes in the Microenvironment. *Cancer Cell*.
1112 2017;32(1):42-56.e6. doi:10.1016/j.ccr.2017.06.003

1113 26. Lilly JV, Rokita JL, Mason JL, et al. The children's brain tumor network (CBTN) -
1114 Accelerating research in pediatric central nervous system tumors through collaboration and
1115 open science. *Neoplasia*. 2023;35:100846. doi:10.1016/j.neo.2022.100846

1116 27. Gulati GS, Sikandar SS, Wesche DJ, et al. Single-cell transcriptional diversity is a hallmark
1117 of developmental potential. *Science*. 2020;367(6476):405-411. doi:10.1126/science.aax0249

1118 28. Schep AN, Wu B, Buenrostro JD, Greenleaf WJ. chromVAR: inferring transcription-factor-
1119 associated accessibility from single-cell epigenomic data. *Nat Methods*. 2017;14(10):975-
1120 978. doi:10.1038/nmeth.4401

1121 29. Marques C, Unterkircher T, Kroon P, et al. NF1 regulates mesenchymal glioblastoma
1122 plasticity and aggressiveness through the AP-1 transcription factor FOSL1. *eLife*. 10:e64846.
1123 doi:10.7554/eLife.64846

1124 30. Aubin RG, Troisi EC, Montelongo J, et al. Pro-inflammatory cytokines mediate the
1125 epithelial-to-mesenchymal-like transition of pediatric posterior fossa ependymoma. *Nat
1126 Commun*. 2022;13:3936. doi:10.1038/s41467-022-31683-9

1127 31. Zhao K, Cui X, Wang Q, et al. RUNX1 contributes to the mesenchymal subtype of
1128 glioblastoma in a TGF β pathway-dependent manner. *Cell Death Dis.* 2019;10(12):1-15.
1129 doi:10.1038/s41419-019-2108-x

1130 32. Ma RY, Black A, Qian BZ. Macrophage diversity in cancer revisited in the era of single-cell
1131 omics. *Trends Immunol.* 2022;43(7):546-563. doi:10.1016/j.it.2022.04.008

1132 33. Hara T, Chanoch-Myers R, Mathewson ND, et al. Interactions between cancer cells and
1133 immune cells drive transitions to mesenchymal-like states in glioblastoma. *Cancer Cell.*
1134 2021;39(6):779-792.e11. doi:10.1016/j.ccr.2021.05.002

1135 34. Kolliopoulos C, Ali MM, Castillejo-Lopez C, Heldin CH, Heldin P. CD44 Depletion in
1136 Glioblastoma Cells Suppresses Growth and Stemness and Induces Senescence. *Cancers.*
1137 2022;14(15):3747. doi:10.3390/cancers14153747

1138 35. Mooney KL, Choy W, Sidhu S, et al. The role of CD44 in glioblastoma multiforme. *J Clin*
1139 *Neurosci.* 2016;34:1-5. doi:10.1016/j.jocn.2016.05.012

1140 36. Xiao Y, Yang K, Wang Z, et al. CD44-Mediated Poor Prognosis in Glioma Is Associated
1141 With M2-Polarization of Tumor-Associated Macrophages and Immunosuppression. *Front*
1142 *Surg.* 2022;8:775194. doi:10.3389/fsurg.2021.775194

1143 37. Ren Y, Huang Z, Zhou L, et al. Spatial transcriptomics reveals niche-specific enrichment and
1144 vulnerabilities of radial glial stem-like cells in malignant gliomas. *Nat Commun.*
1145 2023;14(1):1028. doi:10.1038/s41467-023-36707-6

1146 38. Shekarian T, Zinner CP, Bartoszek EM, et al. Immunotherapy of glioblastoma explants
1147 induces interferon- γ responses and spatial immune cell rearrangements in tumor center, but
1148 not periphery. *Sci Adv.* 2022;8(26):eabn9440. doi:10.1126/sciadv.abn9440

1149 39. Zheng Y, Carrillo-Perez F, Pizurica M, Heiland DH, Gevaert O. Spatial cellular architecture
1150 predicts prognosis in glioblastoma. *Nat Commun.* 2023;14:4122. doi:10.1038/s41467-023-
1151 39933-0

1152 40. Ravi VM, Will P, Kueckelhaus J, et al. Spatially resolved multi-omics deciphers bidirectional
1153 tumor-host interdependence in glioblastoma. *Cancer Cell.* 2022;40(6):639-655.e13.
1154 doi:10.1016/j.ccr.2022.05.009

1155 41. Klemm F, Maas RR, Bowman RL, et al. Interrogation of the Microenvironmental Landscape
1156 in Brain Tumors Reveals Disease-Specific Alterations of Immune Cells. *Cell.*
1157 2020;181(7):1643-1660.e17. doi:10.1016/j.cell.2020.05.007

1158 42. Wu CY, Sathe A, Rong J, et al. Cancer subclone detection based on DNA copy number in
1159 single cell and spatial omic sequencing data. Published online July 8,
1160 2022:2022.07.05.498882. doi:10.1101/2022.07.05.498882

1161 43. Venkatesh HS, Morishita W, Geraghty AC, et al. Electrical and synaptic integration of
1162 glioma into neural circuits. *Nature.* 2019;573(7775):539-545. doi:10.1038/s41586-019-1563-
1163 y

1164 44. Taylor KR, Barron T, Hui A, et al. Glioma synapses recruit mechanisms of adaptive
1165 plasticity. *Nature.* 2023;623(7986):366-374. doi:10.1038/s41586-023-06678-1

1166 45. Segerman A, Niklasson M, Haglund C, et al. Clonal Variation in Drug and Radiation
1167 Response among Glioma-Initiating Cells Is Linked to Proneural-Mesenchymal Transition.
1168 *Cell Rep.* 2016;17(11):2994-3009. doi:10.1016/j.celrep.2016.11.056

1169 46. Phillips HS, Kharbanda S, Chen R, et al. Molecular subclasses of high-grade glioma predict
1170 prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis.
1171 *Cancer Cell.* 2006;9(3):157-173. doi:10.1016/j.ccr.2006.02.019

1172 47. Sun MA, Yang R, Liu H, et al. Repurposing Clemastine to Target Glioblastoma Cell
1173 Stemness. *Cancers*. 2023;15(18):4619. doi:10.3390/cancers15184619

1174 48. Thompson EG, Sontheimer H. Acetylcholine Receptor Activation as a Modulator of
1175 Glioblastoma Invasion. *Cells*. 2019;8(10):1203. doi:10.3390/cells8101203

1176 49. ZHANG B, ZHAO J, WANG Y, et al. CHRM3 is a novel prognostic factor of poor prognosis
1177 and promotes glioblastoma progression via activation of oncogenic invasive growth factors.
1178 *Oncol Res*. 31(6):917-927. doi:10.32604/or.2023.030425

1179 50. Caragher SP, Shireman JM, Huang M, et al. Activation of Dopamine Receptor 2 Prompts
1180 Transcriptomic and Metabolic Plasticity in Glioblastoma. *J Neurosci*. 2019;39(11):1982-
1181 1993. doi:10.1523/JNEUROSCI.1589-18.2018

1182 51. Jeon HM, Oh YT, Shin YJ, et al. Dopamine receptor D2 regulates glioblastoma survival and
1183 death through MET and death receptor 4/5. *Neoplasia*. 2023;39:100894.
1184 doi:10.1016/j.neo.2023.100894

1185 52. Liu B, Shi Y, Qin B, et al. Sertindole inhibits autophagic flux and glioma progression.
1186 *MedComm – Oncol*. 2023;2(2):e41. doi:10.1002/mog2.41

1187 53. Barron T, Yalçın B, Mochizuki A, et al. GABAergic neuron-to-glioma synapses in diffuse
1188 midline gliomas. Published online November 9, 2022:2022.11.08.515720.
1189 doi:10.1101/2022.11.08.515720

1190 54. Blanchart A, Fernando R, Häring M, et al. Endogenous GABA receptor activity suppresses
1191 glioma growth. *Oncogene*. 2017;36(6):777-786. doi:10.1038/onc.2016.245

1192 55. Smits A, Jin Z, Elsir T, et al. GABA-A Channel Subunit Expression in Human Glioma
1193 Correlates with Tumor Histology and Clinical Outcome. *PLoS ONE*. 2012;7(5):e37041.
1194 doi:10.1371/journal.pone.0037041

1195 56. Murase R, Taketomi Y, Miki Y, et al. Group III phospholipase A2 promotes colitis and
1196 colorectal cancer. *Sci Rep.* 2017;7(1):12261. doi:10.1038/s41598-017-12434-z

1197 57. Miki Y, Kidoguchi Y, Sato M, et al. Dual Roles of Group IID Phospholipase A2 in
1198 Inflammation and Cancer. *J Biol Chem.* 2016;291(30):15588-15601.
1199 doi:10.1074/jbc.M116.734624

1200 58. Yi K, Zhan Q, Wang Q, et al. PTRF/cavin-1 remodels phospholipid metabolism to promote
1201 tumor proliferation and suppress immune responses in glioblastoma by stabilizing cPLA2.
1202 *Neuro-Oncol.* 2021;23(3):387-399. doi:10.1093/neuonc/noaa255

1203 59. Zhang H, Zhao H, Wang H, Yin Z, Huang K, Yu M. High PLA2 level is correlated with
1204 glioblastoma progression via regulating DNA replication. *J Cell Mol Med.* 2022;26(5):1466-
1205 1472. doi:10.1111/jcmm.17140

1206 60. Hernández M, Martín R, García-Cubillas MD, Maeso-Hernández P, Nieto ML. Secreted
1207 PLA2 induces proliferation in astrocytoma through the EGF receptor: another inflammation-
1208 cancer link. *Neuro-Oncol.* 2010;12(10):1014-1023. doi:10.1093/neuonc/noq078

1209 61. Hao Y, Hao S, Andersen-Nissen E, et al. Integrated analysis of multimodal single-cell data.
1210 *Cell.* 2021;184(13):3573-3587.e29. doi:10.1016/j.cell.2021.04.048

1211 62. McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: Doublet Detection in Single-Cell
1212 RNA Sequencing Data Using Artificial Nearest Neighbors. *Cell Syst.* 2019;8(4):329-337.e4.
1213 doi:10.1016/j.cels.2019.03.003

1214 63. Wang L, Babikir H, Müller S, et al. The Phenotypes of Proliferating Glioblastoma Cells
1215 Reside on a Single Axis of Variation. *Cancer Discov.* 2019;9(12):1708-1719.
1216 doi:10.1158/2159-8290.CD-19-0329

1217 64. Hao Y, Stuart T, Kowalski MH, et al. Dictionary learning for integrative, multimodal and
1218 scalable single-cell analysis. *Nat Biotechnol.* Published online May 25, 2023:1-12.
1219 doi:10.1038/s41587-023-01767-y

1220 65. Ruiz-Moreno C, Salas SM, Samuelsson E, et al. Harmonized single-cell landscape,
1221 intercellular crosstalk and tumor architecture of glioblastoma. Published online August 27,
1222 2022:2022.08.27.505439. doi:10.1101/2022.08.27.505439

1223 66. Tirosh I, Venteicher AS, Hebert C, et al. Single-cell RNA-seq supports a developmental
1224 hierarchy in human oligodendrogloma. *Nature.* 2016;539(7628):309-313.
1225 doi:10.1038/nature20123

1226 67. Yu W, Uzun Y, Zhu Q, Chen C, Tan K. scATAC-pro: a comprehensive workbench for
1227 single-cell chromatin accessibility sequencing data. *Genome Biol.* 2020;21(1):94.
1228 doi:10.1186/s13059-020-02008-0

1229 68. Zhang Y, Liu T, Meyer CA, et al. Model-based Analysis of ChIP-Seq (MACS). *Genome*
1230 *Biol.* 2008;9(9):R137. doi:10.1186/gb-2008-9-9-r137

1231 69. Stuart T, Srivastava A, Madad S, Lareau CA, Satija R. Single-cell chromatin state analysis
1232 with Signac. *Nat Methods.* 2021;18(11):1333-1341. doi:10.1038/s41592-021-01282-5

1233 70. Chen C, Yu W, Alikarami F, et al. Single-cell multiomics reveals increased plasticity,
1234 resistant populations, and stem-cell-like blasts in KMT2A-rearranged leukemia. *Blood.*
1235 2022;139(14):2198-2211. doi:10.1182/blood.2021013442

1236 71. Morabito S, Reese F, Rahimzadeh N, Miyoshi E, Swarup V. hdWGCNA identifies co-
1237 expression networks in high-dimensional transcriptomics data. *Cell Rep Methods.*
1238 2023;3(6):100498. doi:10.1016/j.crmeth.2023.100498

1239 72. Dimitrov D, Türei D, Garrido-Rodriguez M, et al. Comparison of methods and resources for
1240 cell-cell communication inference from single-cell RNA-Seq data. *Nat Commun.*
1241 2022;13(1):3224. doi:10.1038/s41467-022-30755-0

1242 73. Hou R, Denisenko E, Ong HT, Ramilowski JA, Forrest ARR. Predicting cell-to-cell
1243 communication networks using NATMI. *Nat Commun.* 2020;11(1):5011.
1244 doi:10.1038/s41467-020-18873-z

1245 74. Raredon MSB, Yang J, Garritano J, et al. Computation and visualization of cell-cell
1246 signaling topologies in single-cell systems data using Connectome. *Sci Rep.*
1247 2022;12(1):4187. doi:10.1038/s41598-022-07959-x

1248 75. Cabello-Aguilar S, Alame M, Kon-Sun-Tack F, Fau C, Lacroix M, Colinge J.
1249 SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics.
1250 *Nucleic Acids Res.* 2020;48(10):e55. doi:10.1093/nar/gkaa183

1251 76. Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. CellPhoneDB: inferring
1252 cell-cell communication from combined expression of multi-subunit ligand-receptor
1253 complexes. *Nat Protoc.* 2020;15(4):1484-1506. doi:10.1038/s41596-020-0292-x

1254 77. Sandmann S, Inserte C, Varghese J. clevRvis: visualization techniques for clonal evolution.
1255 *GigaScience.* 2023;12:giad020. doi:10.1093/gigascience/giad020

1256 78. Greenwald NF, Miller G, Moen E, et al. Whole-cell segmentation of tissue images with
1257 human-level performance using large-scale data annotation and deep learning. *Nat
1258 Biotechnol.* 2022;40(4):555-565. doi:10.1038/s41587-021-01094-0

1259 79. Hao Y, Stuart T, Kowalski M, et al. Dictionary learning for integrative, multimodal, and
1260 scalable single-cell analysis. Published online February 26, 2022:2022.02.24.481684.
1261 doi:10.1101/2022.02.24.481684

1262 80. Schürch CM, Bhate SS, Barlow GL, et al. Coordinated Cellular Neighborhoods Orchestrate
1263 Antitumoral Immunity at the Colorectal Cancer Invasive Front. *Cell.* 2020;182(5):1341-
1264 1359.e19. doi:10.1016/j.cell.2020.07.005

1265 81. Windhager J, Bodenmiller B, Eling N. An end-to-end workflow for multiplexed image
1266 processing and analysis. Published online November 13, 2021:2021.11.12.468357.
1267 doi:10.1101/2021.11.12.468357

1268 82. Ijaz H, Koptyra M, Gaonkar KS, et al. Pediatric high-grade glioma resources from the
1269 Children's Brain Tumor Tissue Consortium. *Neuro-Oncol.* 2020;22(1):163-165.
1270 doi:10.1093/neuonc/noz192

1271 83. Müller S, Kohanbash G, Liu SJ, et al. Single-cell profiling of human gliomas reveals
1272 macrophage ontogeny as a basis for regional differences in macrophage activation in the
1273 tumor microenvironment. *Genome Biol.* 2017;18(1):234. doi:10.1186/s13059-017-1362-4

1274 84. Aibar S, González-Blas CB, Moerman T, et al. SCENIC: single-cell regulatory network
1275 inference and clustering. *Nat Methods.* 2017;14(11):1083-1086. doi:10.1038/nmeth.4463

1276

Figure 1

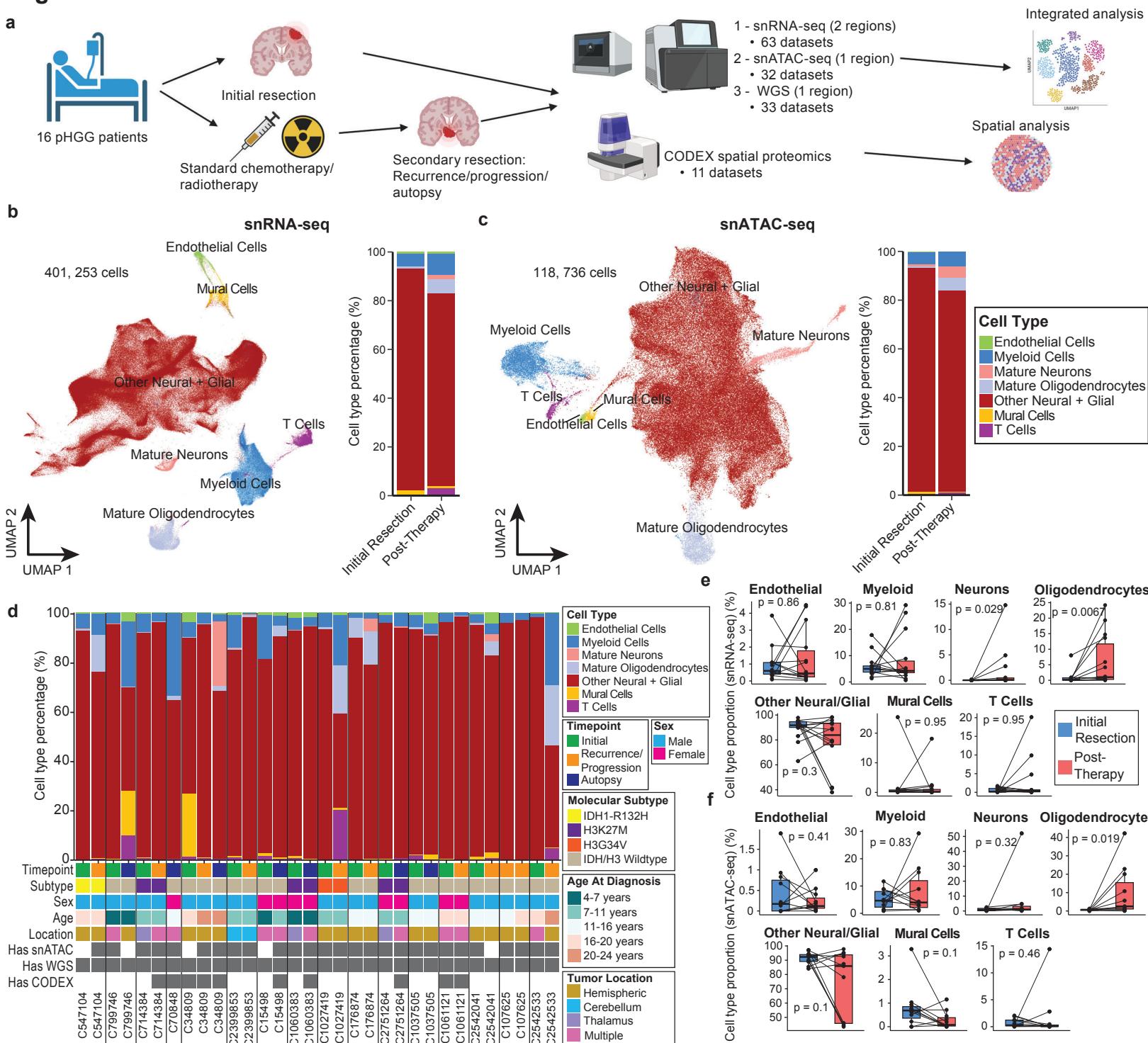


Figure 2

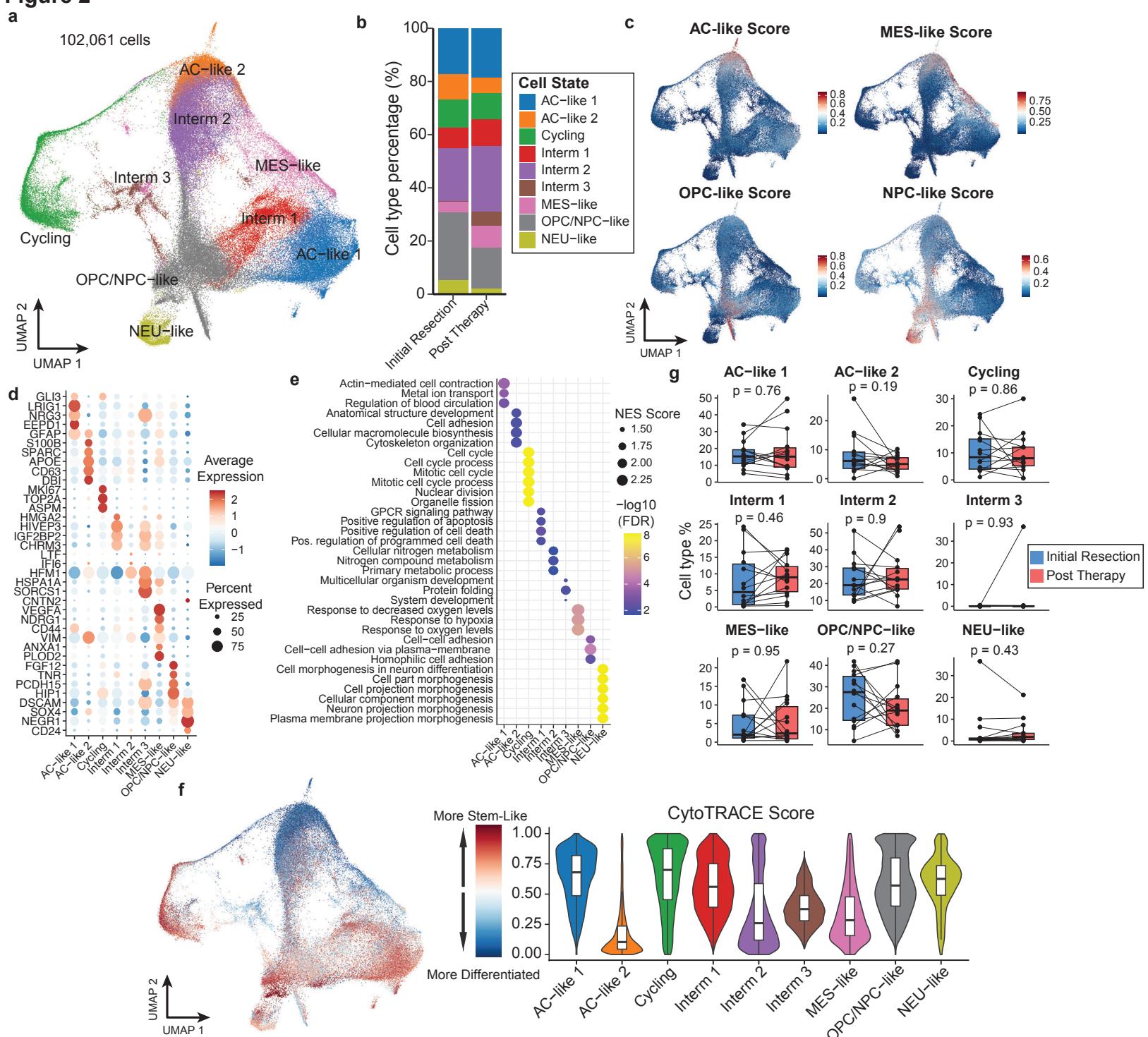


Figure 3

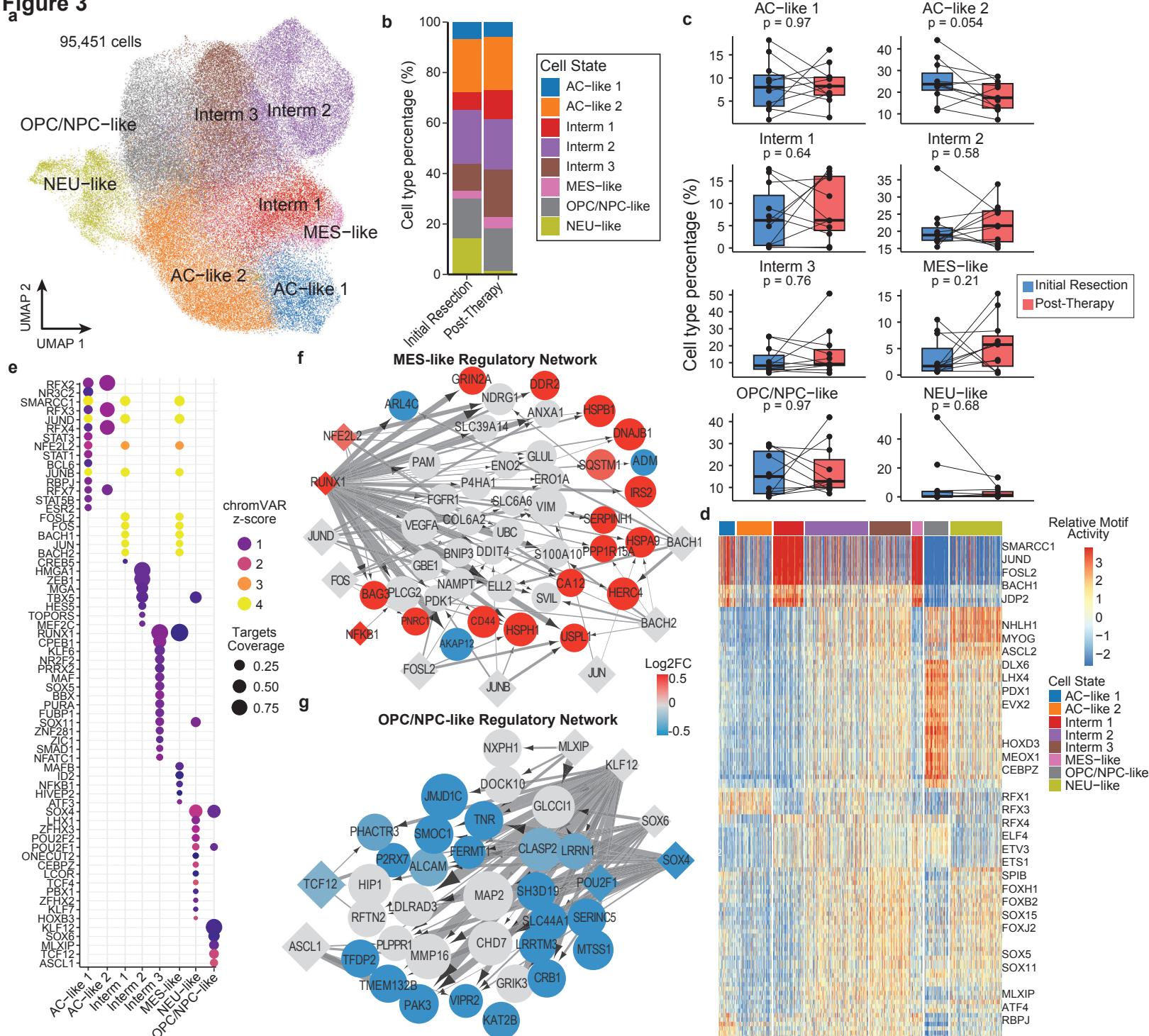


Figure 4

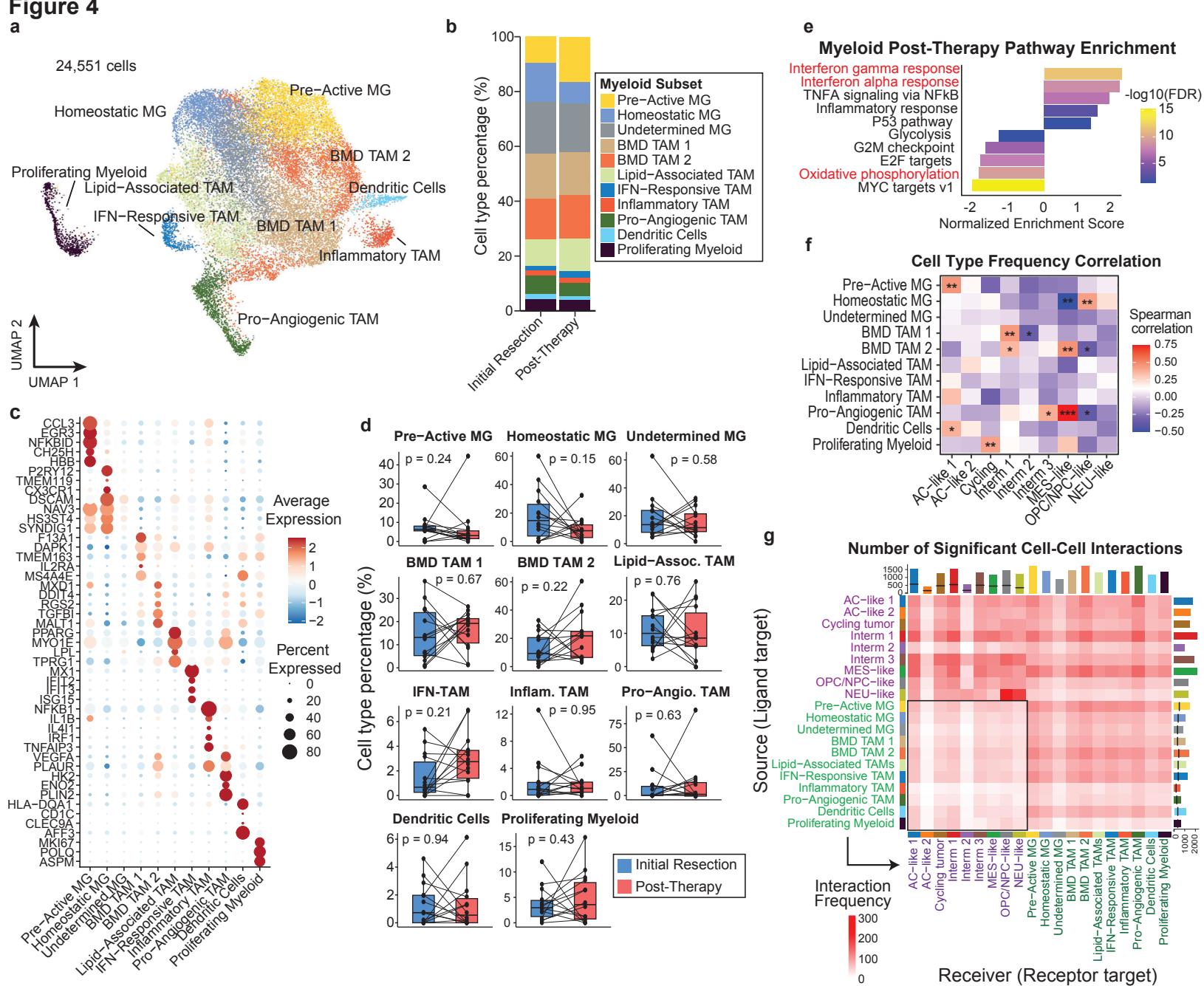


Figure 5

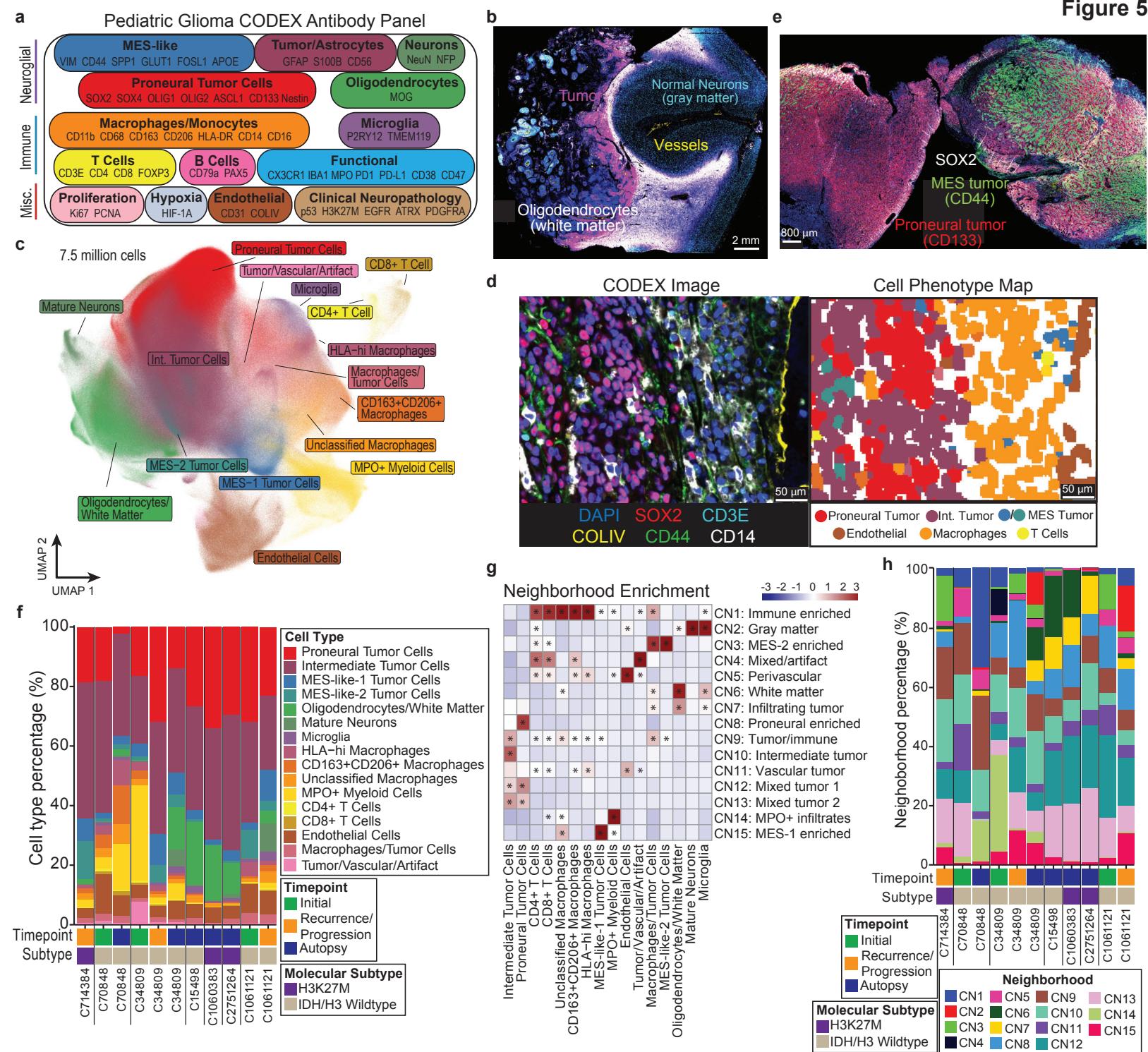
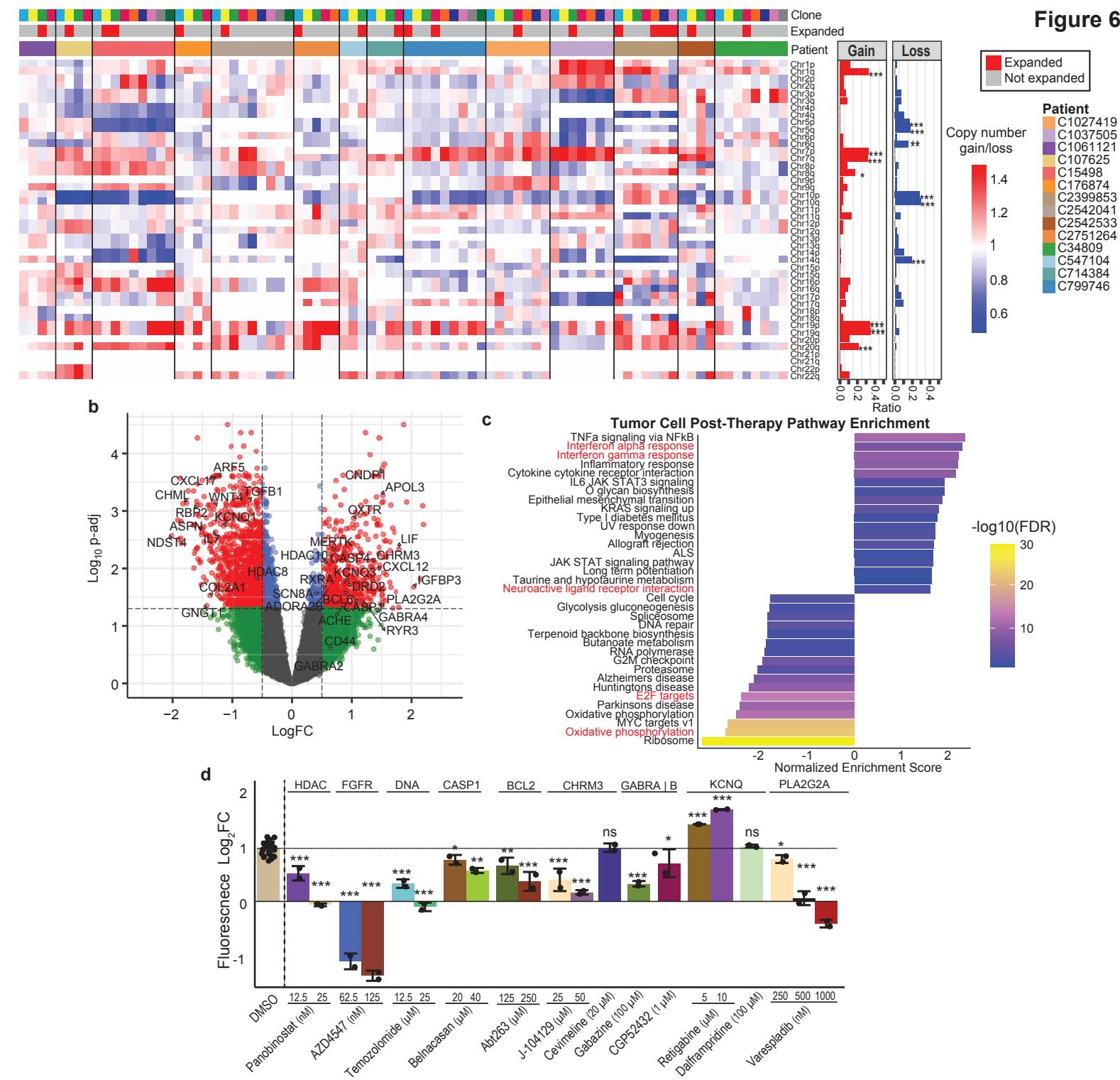
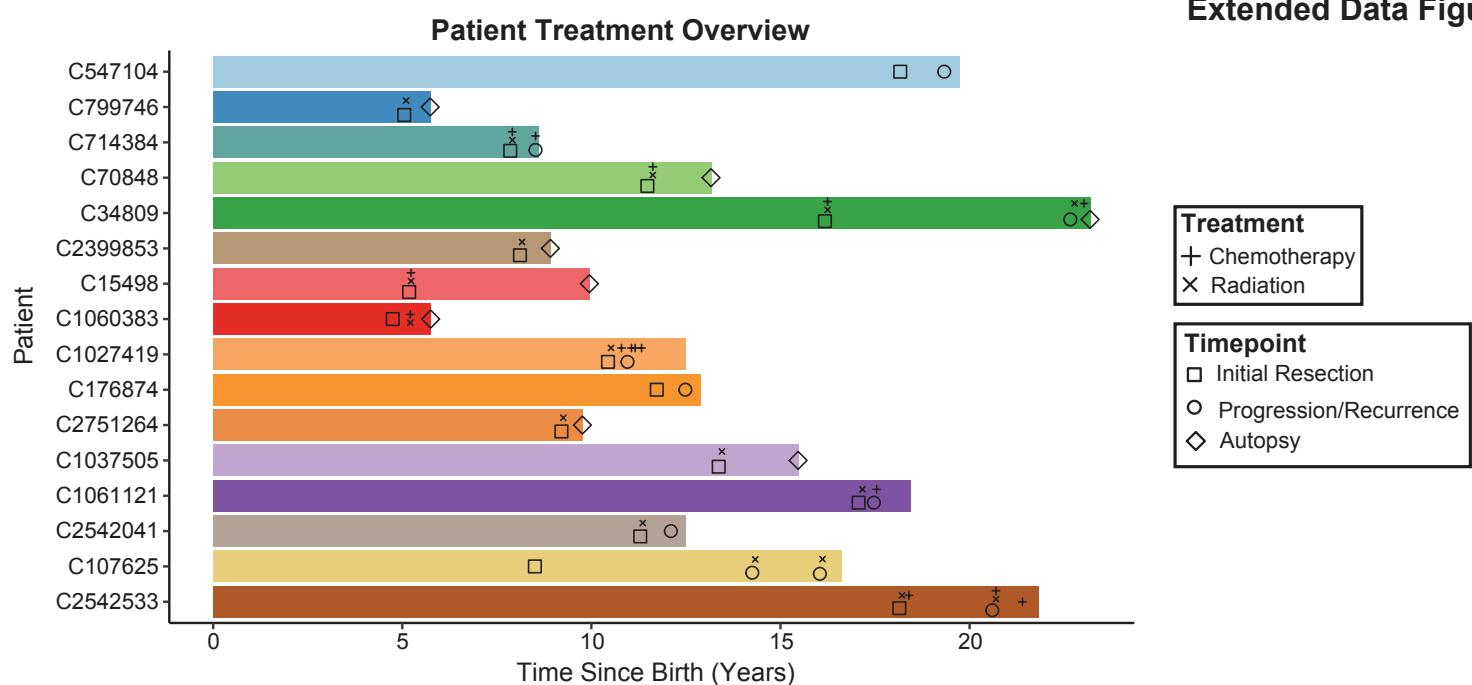


Figure 6

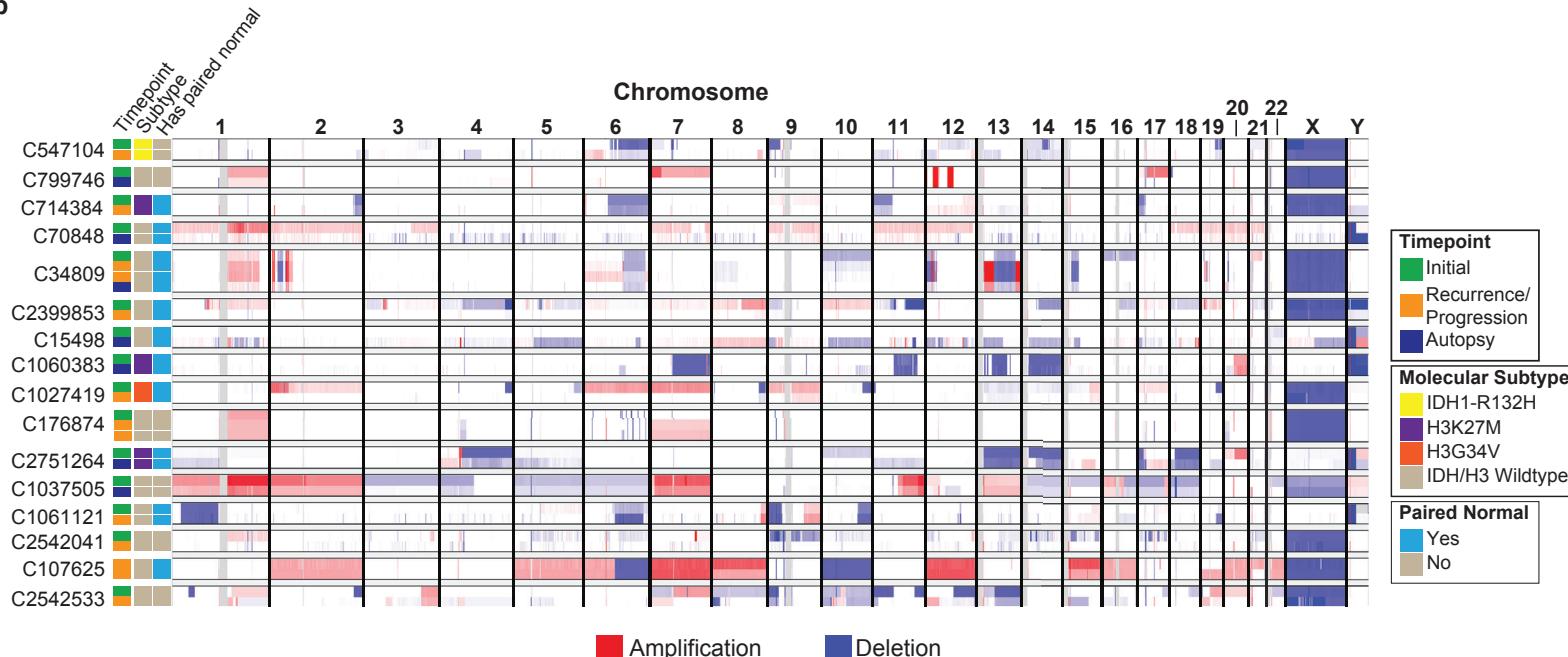


Extended Data Figure 1

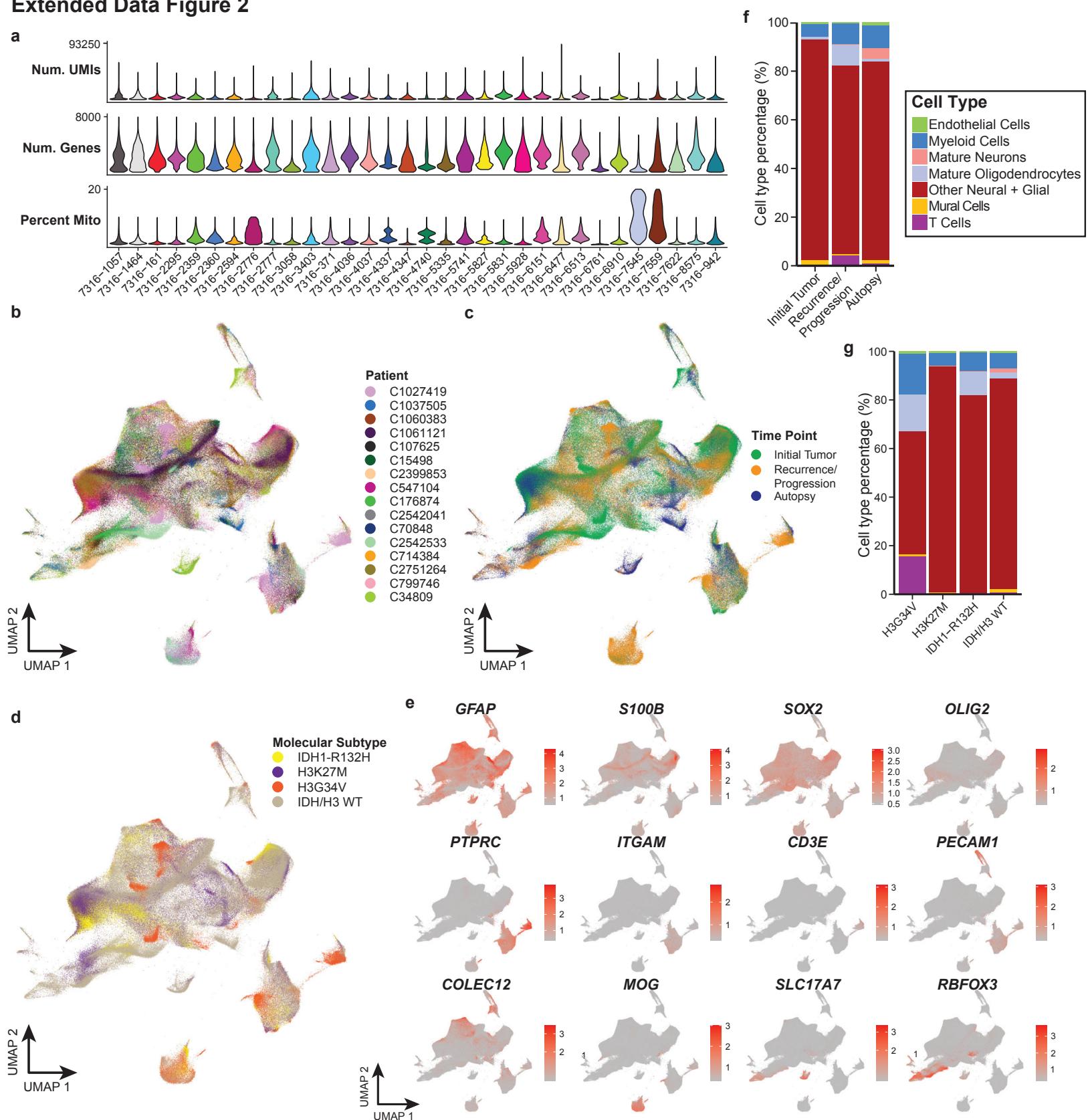
a



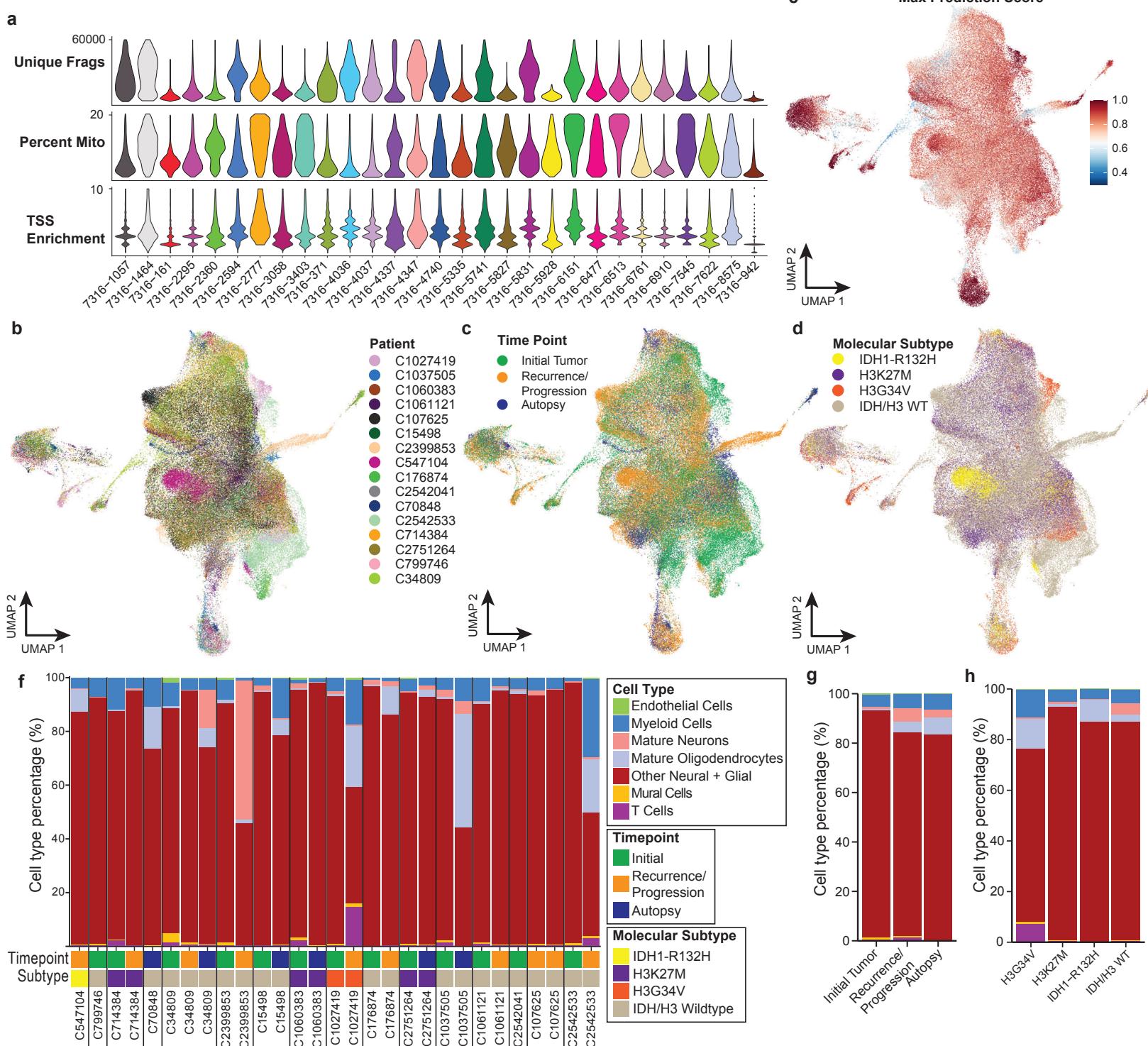
b



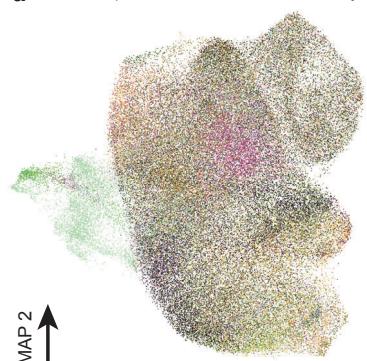
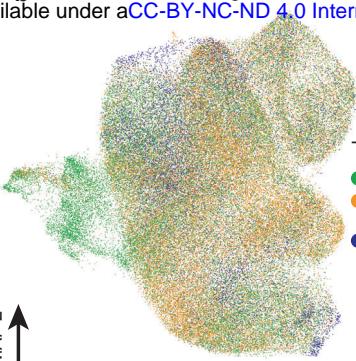
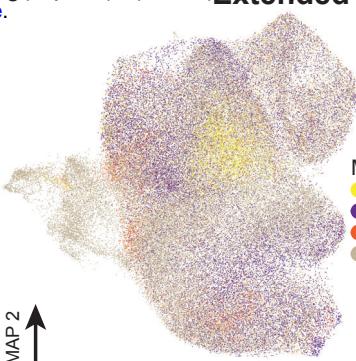
Extended Data Figure 2



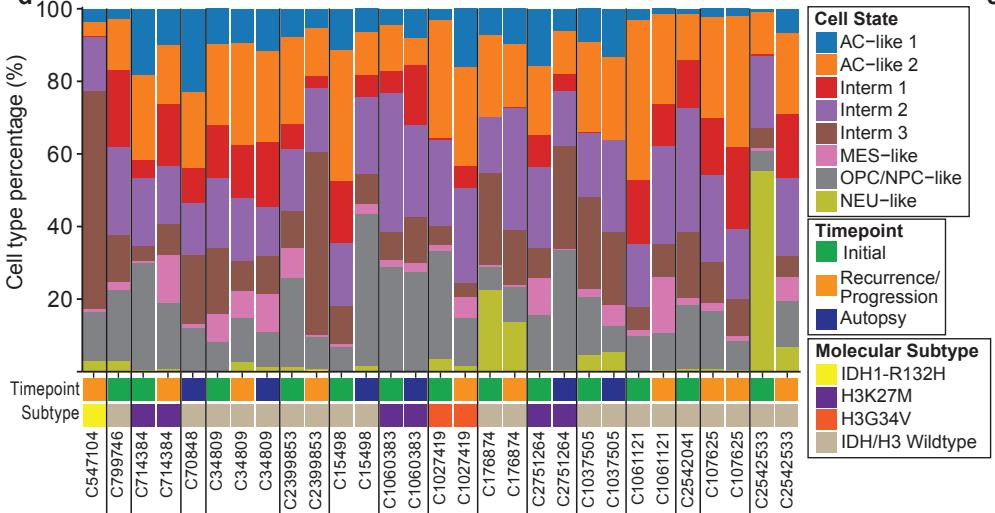
Extended Data Figure 3



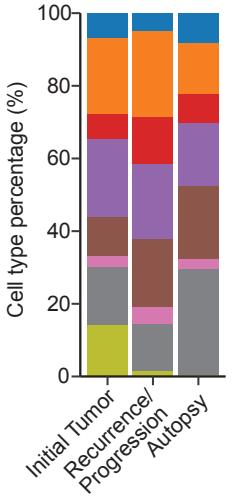
a



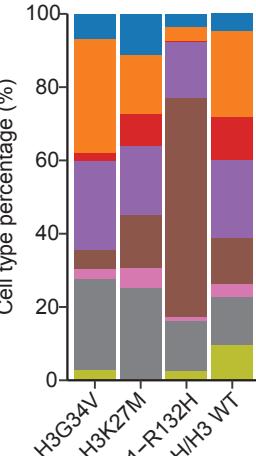
d



e

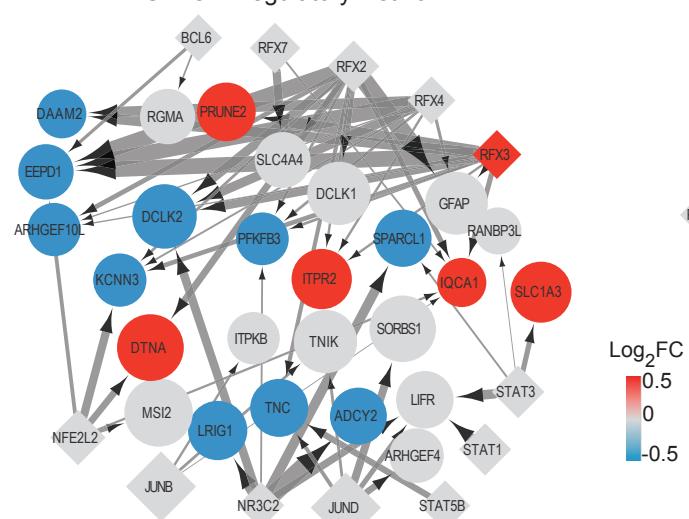


f



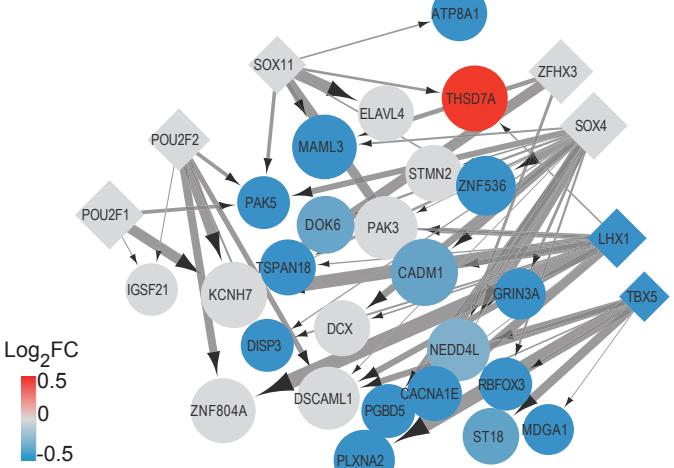
g

AC-like 1 Regulatory Network



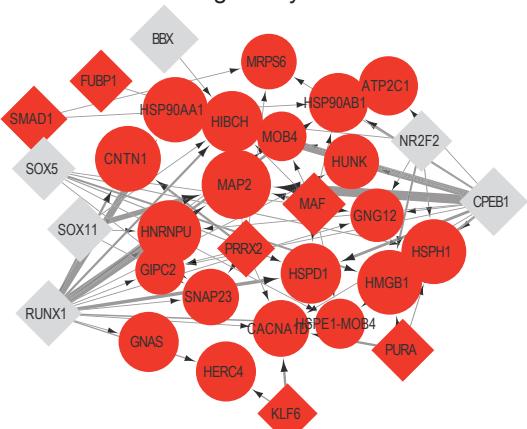
h

NEU-like Regulatory Network



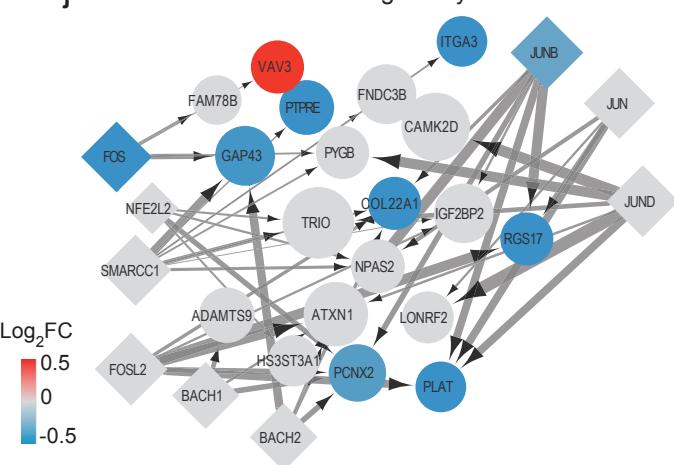
i

Interm 3 Regulatory Network

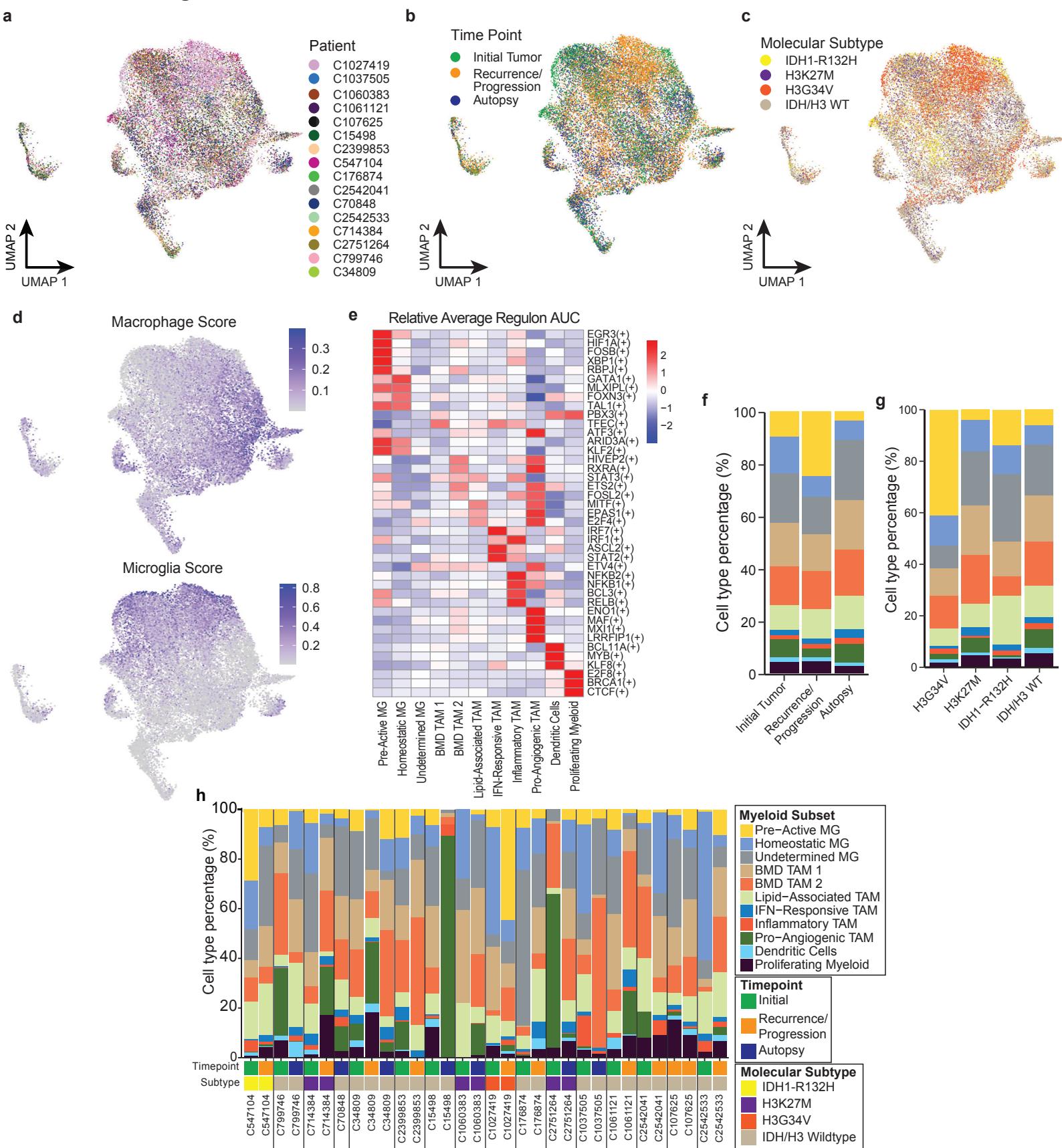


j

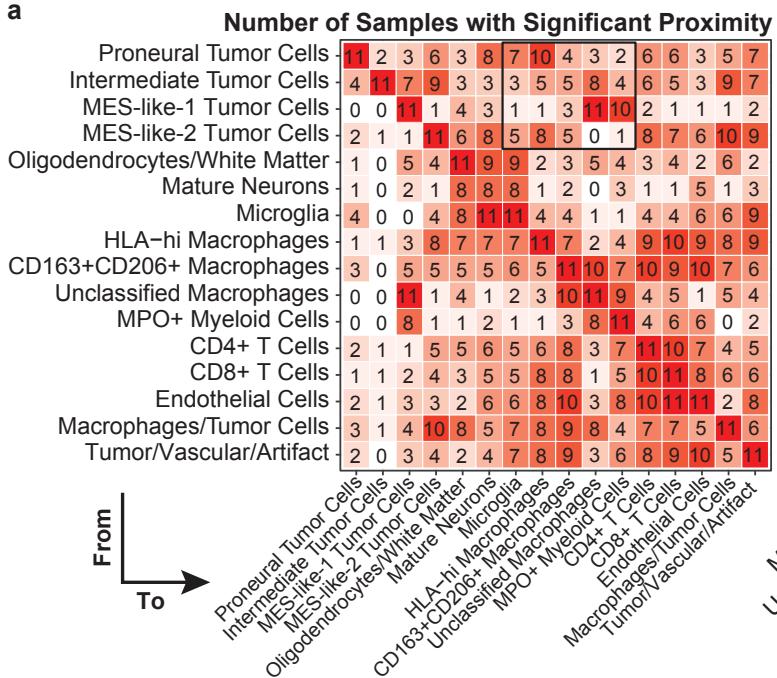
Interm 1 Regulatory Network



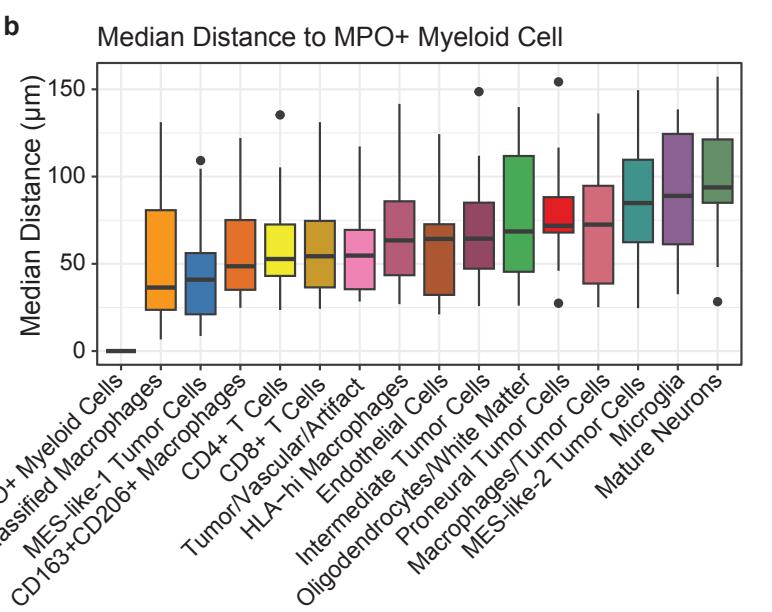
Extended Data Figure 6



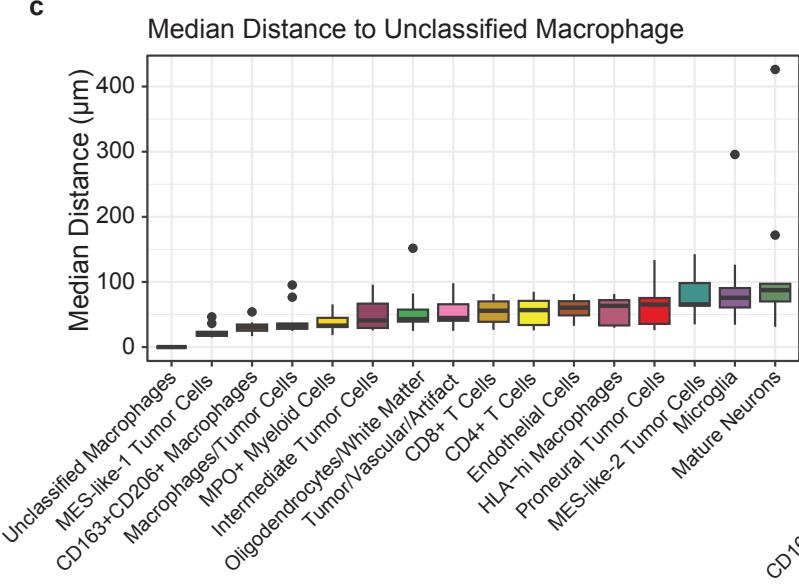
a



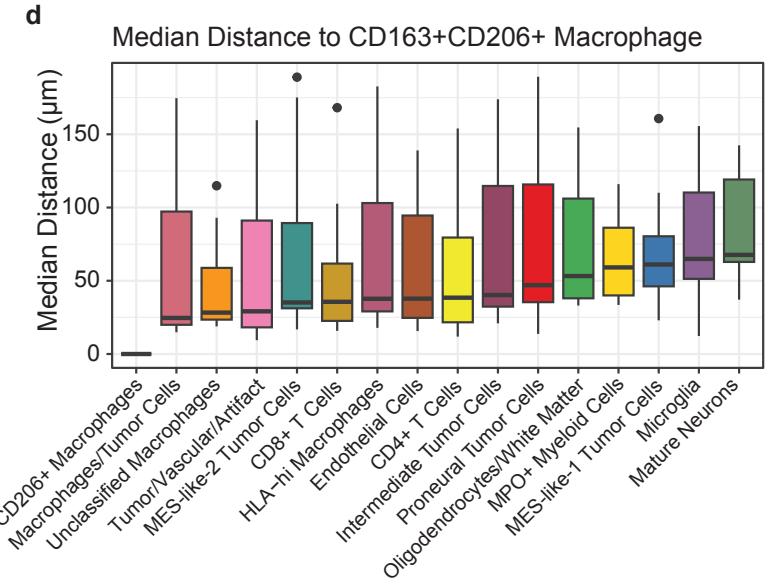
Extended Data Figure 8



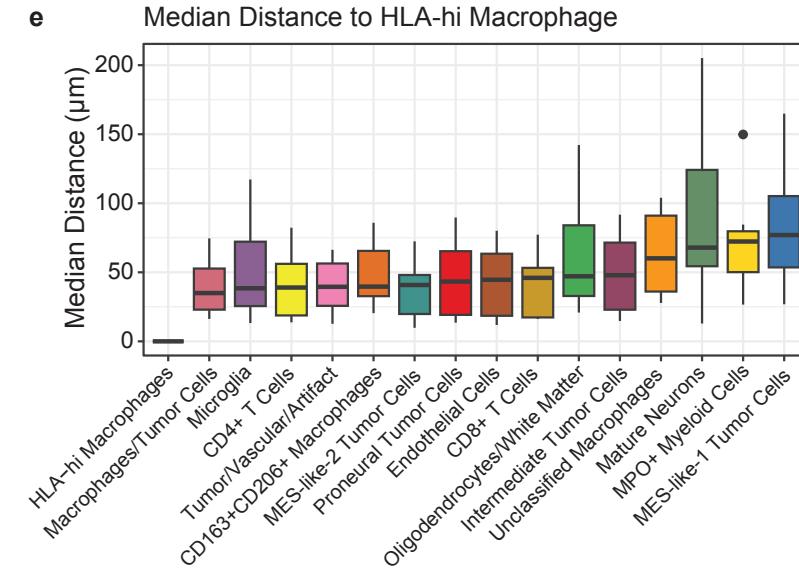
c



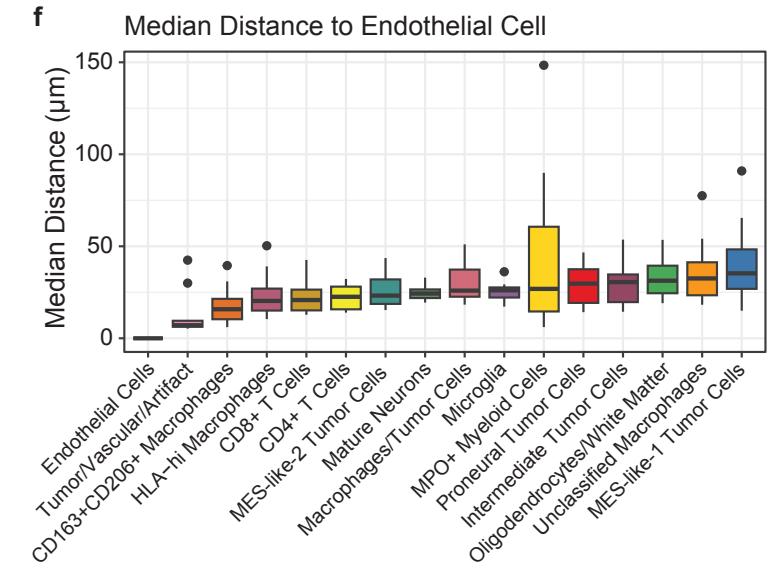
d



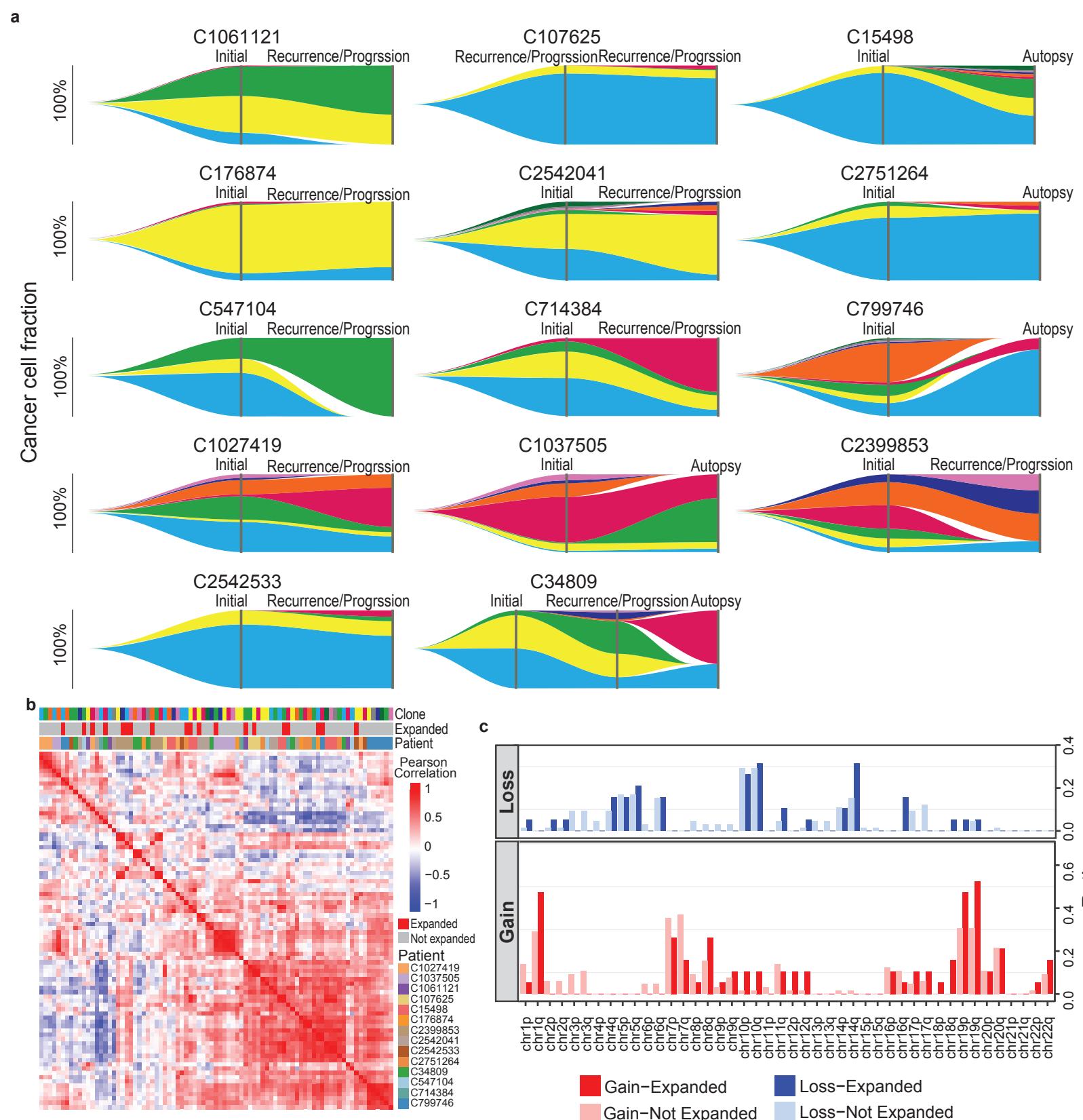
e



f



Extended Data Figure 9



Extended Data Figure 10

