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ABSTRACT

Scaling laws suggest that more than a trillion species inhabit our planet but only a miniscule and
unrepresentative fraction (less than 0.00001%) have been studied or sequenced to date. Deep learn-
ing models, including those applied to tasks in the life sciences, depend on the quality and size of
training or reference datasets. Given the large knowledge gap we experience when it comes to life
on earth, we present a data-centric approach to improving deep learning models in Biology: We
built partnerships with nature parks and biodiversity stakeholders across 5 continents covering 50%
of global biomes, establishing a global metagenomics and biological data supply chain. With higher
protein sequence diversity captured in this dataset compared to existing public data, we apply this
data advantage to the protein folding problem by MSA supplementation during inference of Al-
phaFold2. Our model, BaseFold, exceeds traditional AlphaFold2 performance across targets from
the CASP15 and CAMEO, 60% of which show improved pLDDT scores and RMSD values being
reduced by up to 80%. On top of this, the improved quality of the predicted structures can yield bet-
ter docking results. By sharing benefits with the stakeholders this data originates from, we present a
way of simultaneously improving deep learning models for biology and incentivising protection of
our planet’s biodiversity.

1 Introduction

In the last several years we have experienced the rise of a plethora of deep learning models applied to a wide range of
biological tasks [1], [2]. Of particular prominence is the protein folding problem, given its impact on structural biology
and drug discovery, for which AlphaFold2, RoseTTAFold, and ESMFold, for example, are providing promising and
often highly accurate predictions [3], [4], [S]. A lot of research and effort has been put into optimising the architecture
of these models to improve performance [6]. However, given that these models depend on the protein sequence and
structure datasets available for training, we deployed a data-centric approach towards improving deep learning models
in biology, exemplified on the protein folding problem for the purpose of this study.

Previous studies have shown that with improved data quality and quantity, the error loss of transformers while training
would no longer follow a power law, but rather an exponential relationship [7]. When looking at the public sequence
databases available for deep learning in biology, such as UniProt, NCBI, or MGnify, scaling laws suggest that these
datasets represent less than 0.000001% of life on earth [8], [9], [10]. A significant portion of sequences deposited in
these databases originate from human, mammals, and model organisms that are cultivated in narrow laboratory condi-
tions [11], [12]. Furthermore, for environmentally collected sequence data, these resources lack consistent geolocation
and environmental metadata. The latter point not only precludes us from inferring how comprehensively life on earth
is represented in these databases, but also raises questions relating to the governance of biological sequence data.

In the case of environmentally collected biological samples for genomic (or other -omic) purposes, ethical compliance
to Access and Benefit Sharing (ABS) agreements is contingent on both explicit prior informed consent (PIC) and
mutually agreed terms (MAT) that speak to the potential for commercialization, and consistent traceability from a
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sequence to its sampling origin. Regulatory frameworks ensuring ethical ABS upon commercialization of biological
resources have been driven on an international level by the United Nations Convention on Biological Diversity (CBD)
and are documented in the 2011 Nagoya Protocol [13]. The inclusion of digital sequence information as part of ABS
frameworks is an area of significant development in this context [14]. Historically, there are many instances where
materials analyzed for research purposes have contributed to commercial assets of unexpectedly high value without
due reconsideration of the original agreements under which the samples were accessed and what fair benefit sharing
should look like, leading to controversies around biopiracy and impediments to the development of assets that could
have been transformative for industry and human health [15], [16], [17], [18].

Here we describe a global metagenomics and biological data supply chain that simultaneously addresses both the issue
of equitable benefit sharing of digital sequence information and the large knowledge gap we experience regarding
genomic sequence diversity of life on earth with the aim to improve biological deep learning models. The genome
and protein sequences as well as consistently collected metadata derived from metagenomic sampling expeditions are
captured in a knowledge graph that counts 6 billion relationships at the time of writing. In the context of knowing that
models like AlphaFold2 perform less well on orphan proteins for which deep multiple sequence alignments (MSAs)
cannot be generated [19], we show that the performance of AlphaFold2 can be improved when MSAs are supplemented
with diverse sequences from our knowledge graph. Assessing confidence and accuracy of the predicted structure, we
observe the root mean squared deviation (RMSD) compared to ground-truth crystal structures being reduced by up to
80% . We display improved structure predictions for a wide range of CASP15 and CAMEO competition targets [20],
[21], and demonstrate that docking performance can be improved as a result, too.

2 A global metagenomic and biological data supply chain addresses the knowledge gap of
biological sequence diversity
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Figure 1: Strategy for accessing and organising data derived from a global metagenomic and bilogical data supply chain. A.
Biological and metagenomic sequence collection strategy covering ABS agreements & Nagoya compliance; global expeditions
covering 5 continents; and organisation of this data into a knowledge graph (data resource hereforth referred to as BRD). B.
Metagenomic assembly length distribution as measured by the N50 value for MGnify and BRD. C. Examples of metadata and
features captured in BRD that other resources lack or do not consistently display. D. Protein sequence diversity of MGnify, UniProt,
and BRD, as shown by clustering the sequence content.

In order to curate genomic and biological data that are more representative of the true diversity of life on earth, we
entered Access Benefit Sharing (ABS) agreements following prior informed consent (PIC) of relevant landowners
and stakeholders across 23 nations on 5 continents before conducting environmental metagenomic sampling alongside
geological, geographic, and chemical metadata collection (Figure 1 A). The sampling sites cover 50% of global biomes
according to the WWF Ecoregion defintion [22]. Methods pertaining to the sampling, sequencing, and bioinformatic
assembly and annotation following these expeditions are described in Supplementary Section Al.

We organised all genome and protein sequences alongside chemical and environmental metadata into a knowledge
graph counting 6 billion relationships at the time of writing. With the downstream application of MSA generation for
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AlphaFold2 predictions in mind, we wanted to ensure that the sequences for such application are derived from high-
quality and long (meta)genomic assemblies. The reasoning for this is that a large portion of the sequence database
content that AlphaFold2 currently derives MSAs from is MGnify, and a significant portion of the metagenomic as-
semblies found in MGnify are fragmented and not long enough to cover entire open-reading frames (ORF) for larger
proteins [10]. The length distributions of metagenomic assemblies in MGnify and our database (from hereon referred
to as BRD, Basecamp Research Data) are displayed in Figure 1B. With consistent metadata collection we were able
to sample a wide range of geological and chemical environments, spanning a temperature range of -9 to 99°C (15.8
to 210°F), and a pH range of 1 to 12, as shown in Figure 1C. We then assess the diversity of the protein sequences
deposited in BRD compared to MGnify and UniProt by comparing how the size of the databases collapses when
clustered at 90%, 50%, and 10% (Figure 1D).

3 Improving AlphaFold2 through MSA augmentation

To leverage the sequence diversity captured in BRD for MSA supplementation during inference without sacrificing
too much speed for sequence search, we clustered both MGnify and BRD at a 50% identity threshold using MMseqs2
Linclust [23]. The resulting combined metagenomic sequence dataset contained approximately 1 billion sequences. To
assess whether the addition of sequences through MSA supplementation would improve AlphaFold2, we performed
structural analysis on sequences from the CASP15 and CAMEQO targets.

3.1 CASPI1S targets

CASP (Critical Assessment of Structure Prediction) is a biennial global experiment designed to advance the state of the
art in modeling the three-dimensional structure of a protein from its amino acid sequence. Organized by the scientific
community, it invites participants to present their modeling predictions for a selection of proteins whose experimental
structures are yet to be deposited in the Protein Data Bank (PDB) [24].
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Figure 2: MSA supplementation improves AlphaFold2 performance across CASP15 targets. A. Table of targets where MSA
supplementation improves both pLDDT score (shown in B) and RMSD scores (shown in C).

We predicted the structures of 49 CASP15 regular targets, among which single monomeric protein crystal structures
were available in the PDB, establishing a benchmark for our comparative study. The structural predictions were
evaluated using the predicted Local Distance Difference Test (pLDDT) scores, providing a per-residue confidence
metric ranging from 10 to 100 [25]. Among the 49 targets analyzed, 61.22% demonstrated an improvement in pLDDT
scores, with increases ranging from 0.08 to 24. The scores of these targets are provided in Supplementary Information
Table 1. For the subset of targets where we did not observe an increase in pLDDT the average percentage difference
was 3.1%.

Subsequently, we calculated the Root Mean Square Deviation (RMSD), which quantifies the mean distance between
corresponding atoms of superimposed protein structures [26]. RMSD is a critical metric in CASP competitions for
gauging the congruence of predicted protein structures with their experimentally determined counterparts. An RMSD
value ranging from O to 3 Angstroms denotes a high level of structural similarity, particularly in the protein backbone,
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indicative of a more accurate prediction. For all targets that had an increased pLDDT score the RMSD score was
computed using the SwissModel server [27] which revealed an RMSD score reduction ranging from 0.02 to 3.33. We
show an overview of targets from CASP15 where MSA supplementation both improves the pLDDT and reduces the
RMSD score in Figure 2. We visualized two specific examples with structural superimposition and corresponding
MSA visualization as phylogenetic trees in Figure 3A and 3B.
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Figure 3: Structural superimposition and corresponding phylogenetic trees derived from MSAs for CASP15 targets T1147 (A) and
T1131 (B). Significant discrepancies between the AlphaFold2 prediction and the crystal structure are indicated with a white arrow.
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Figure 4: MSA supplementation improves AlphaFold2 performance across a range of CAMEO targets. A. Table of targets where
MSA supplementation improves both pLDDT score (shown in B) and RMSD scores (shown in C).

Continuous Automated Model Evaluation (CAMEOQ) is an online platform that offers automated assessments of 3D
protein prediction models, providing weekly updates based on sequences awaiting deposition in the PDB[28]. Expand-
ing to address the structural bioinformatics community’s evolving needs, CAMEO features a variety of assessment
categories, including prediction coverage, local accuracy, and completeness, while maintaining a focus on evaluating
quality estimates for protein structure predictions.

In this study, we predicted the structures of 26 CAMEO targets, predominantly comprising medium to hard difficulty
levels. Notably, 57% of these targets demonstrated an increase in pLDDT scores ranging from 0.03 to 10.04. We
show an overview of targets from CAMEO where MSA supplementation both improves the pLDDT and reduces the
RMSD score in Figure 4 and visualized two specific examples with structural superimposition and corresponding
MSA visualization as phylogenetic trees in Figure SA and 5B.
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Figure 5: Structural superimposition and corresponding phylogenetic trees derived from MSAs for CAMEO targets 8SSD (A) and
8U00 (B). Significant discrepancies between the AlphaFold2 prediction and the crystal structure are indicated with a white arrow.

3.3 Improving the scale of BaseFold

Building diverse MSAs requires large compute capabilities and is time consuming. To ensure quicker iterations and
greater scalability in structure predictions we refined the MSA generation step. We implemented the same strategy
implemented by ColabFold [29] for the database preparation in addition to creating two environmental databases to
search against which contained BRD clustered at 50% and 90% respectively. More information on the clustering of
the respective BRD databases can be found in Supplementary Section A2. We ran these versions of BaseFold using
the default settings and predicted the structure of 395 medium and hard CAMEO targets between 2023-02-25 to 2024-
02-27 setting the template date to 2023-01-01. We visualise this in Figure 6, where we see that optimisation for speed
at lower clustering thresholds does not impact performance significantly.
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Figure 6: pLDDT distribution of CAMEO targets at 50% and 90% suggest that optimisation for speed at lower clustering thresholds
does not impact performance significantly.

3.4 Molecular Docking

Across the structure prediction improvements shown above, we noticed a particularly significant improvement for
CASP15 target T1124 (an L- and D-tyrosine O-methyltransferase, MFnG). Using this example, we wanted to as-
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Figure 7: Docking of SAH to MFnG (an L- and D-tyrosine O-methyltransferase, T1124) is improved significantly by MSA-
supplemented structure prediction Predicted structure, superimposed to the ground-truth crystal with docked substrates are shown
for traditional AlphaFold2 (A) and the MSA-supplemented version (B). Active site residues are highlighted and docking scores
indicated in respective tables.

sess the impact of the structural prediction methods on substrate conformation and binding affinity. We performed
molecular docking on the MSA-augmented and AlphaFold2-derived structure of MFnG to its substrate S-adenosyl-L-
homocysteine (SAH). Docking was performed using AutoDock Vina [30], more information of the docking protocol
can be found in Supplementary Section A7. The MSA-augmented structure, when bound to SAH, achieved the lowest
binding score of -6.6 kcal/mol, in comparison to the AF2 structure bound to SAH, which yielded a docking score of
-3.9 kcal/mol. Further analysis of the docked complexes was assessed using DockRMSD [31]. This tool measures the
RMSD between two poses of the same ligand molecule docked onto the same protein structure, without presuming a
known atomic order between the two files. The DockRMSD score for the MSA-augmented structure bound to SAH
was 2.85 Angstroms, while for the AF2 structure bound to SAH, it was 9.12 Angstroms.

4 Discussion

Relative to the magnitude of diversity of life on earth — whether taxonomically or with respect to genomic or protein se-
quence space — everything that has been captured in public data to date still only represents a tiny fraction. By building
a data supply chain in partnership with biodiversity stakeholders we aim to leverage this data to continuously improve
deep learning models in biology. Specifically for protein folding, we have demonstrated that by supplementing MSAs
with diverse sequences from this supply chain, we can improve AlphaFold2 predictions for a range of targets from the
CASP15 and CAMEO competitions. Depending on the protein family and breakdown of the sequence composition
of the corresponding MSAs generated during inference, our supplementation approach can improve AlphaFold2 pre-
dictions substantially, with some RMSD values (deviation from the ground-truth crystal) decreasing by over 80%. We
show that improvements as significant as this can also improve substrate/ligand docking performance. We envision
this will positively impact enzyme engineering and drug discovery efforts.

Regarding further work, we foresee additional analysis on the sequence composition of reference databases and what
the ideal breakdown of sequence space should look like, in a way that balances both inference speed and accuracy of
the predicted structure. Moreover, with further data collection in alignment with the United Nations’ ABS principles,
we aim to continue unifying the goal of biodiversity conservation efforts with the goal of improving deep learning
models in the life sciences in a data-centric manner.
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A Methods

A.1 Global Sampling & Knowledge Graph Construction

Environmental samples subjected to metagenomic sequencing were collected after
receiving landowner’s permission and entering access-benefit-sharing agreements
with the relevant local or national authority, following Nagoya protocol guidelines.
All samples were sequenced with both long-read and short-read sequencing
methods applied after extraction. Alongside sample collection, we captured
consistent metadata collection that include chemical, physical, weather, and
geological measurements.

sample Genomic Assembly  ORF/Protein Other
Geolocation CRISPR Arrays PFAMs, InterPro Non-coding RNAs
Biomes Biosynthetic Gene EC Numbers
Clusters

Chemical elements & Taxonomy* Taxonomy*
compound measurements

Geological & physical  Gene neighborhoods KEGG & COG
measurements

Mobile Genetic Elements,
Phage Insertions

Figure 1: Visual representation of the data model for the Knowledge graph described
in this study shown on the left. On the right we show a selection of information,
measurements, and annotations associated with the entities in the graph. Taxonomies
(*) are annotated both on the genomic assembly as well as the open reading frame
(ORF) level.

We applied a custom assembly and annotation pipeline to the sequencing
data which performs standard QC of sequencing reads and joint assembly of
short and long reads to optimise for both low error rate and high assembly
length. Open reading frames and non-coding RNAs are annotated on the
genomic assemblies, along with CRISPR arrays, biosynthetic gene clusters, gene
neighborhoods, mobile genetic elements, and phage integration events. The open-
reading frames were translated into amino acid sequences which were subjected
to comprehensive in silico annotations, including PFAM [1], KEGG [2], COG [3],


https://doi.org/10.1101/2024.03.06.583325
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.06.583325; this version posted March 6, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

InterPro [4], and EC Numbers [6]. Functional annotations were performed with
custom Hidden-Markov-Model-based and Deep Learning based models. Multiple
custom taxonomic annotation methods were performed both on the ORF and
the genomic assembly level. For an overview of these annotations and how they
relate to the data model of the knowledge graph, see Figure 1.

For knowledge graph construction, we ingested all measurements, annotations,
and information into a neo4j graph database.

A.2 Clustering

To assess the redundancy of protein sequence data across the Uniprot [1], [2],
Mgnify [3], and Basecamp databases, we apply a hierarchical clustering strategy
utilizing MMSeqs2 [4]. We initially cluster the Mgnify and Basecamp databases
to a sequence identity threshold of 90%. Subsequently, we further refine the
clustering of these databases down to 50% and 10% sequence identity thresholds.
This stepwise reduction approach was chosen for its computational efficiency
and reduced time consumption.

For the Uniprot database, we leverage the existing clustered datasets Uniref100,
Uniref90, and Uniref50. These datasets provide a basis for our analysis, from
which we identify the number of clusters at each identity threshold. Further,
we utilize the Uniref50 clustered dataset to further cluster sequences down to a
10% identity threshold. This was achieved by adhering to the same clustering
protocol used for the other datasets, which involves clustering sequences based
on a 10% sequence identity and an 80% overlap with the longest sequence in the
cluster.

A.3 Database Reduction For Efficient Search

To facilitate efficient searching within the environmental databases BRD v.2023.10
and Mgnify v.2022.05, we employed a database reduction strategy. This involved
using the Linclust algorithm in Mmseqs2 to cluster both databases with a min-
imum sequence identity of 50% (—min-seq-id 0.5). This approach effectively
reduced the combined database size to 239GB. After selecting cluster representa-
tives, this process resulted in a total of 1.01 billion sequences used for the MSA
supplemented flavour of AlphaFold2.

A.4 Template Search

AlphaFold2 [5] employs HHsearch [6] to scan a clustered version of the PDB
(PDB70) for identifying the top 20 ranked templates. To maintain consistency
with the original AlphaFold submissions for CASP15 targets, we configured the
template search cutoff date to January 1, 2022. This setup was crucial to avoid
any influence from newly deposited targets that might affect the predictions
when using BRD.
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A.5 Running BaseFold for Structural Comparison

To evaluate the full impact of the BRD on AlphaFold2 performance, we utilized
AlphaFold’s default settings changing only the environmental database and
template search date when computing the BaseFold structures. This approach
aimed to directly compare the structural predictions under standard conditions.
The CASP15 AlphaFold2 structures were downloaded from the AlphaFold2
Github repository and the AlphaFold2 structures for the CAMEQ targets were
downloaded directly from the CAMEO website. All BaseFold model inference
was run on 8 NVIDIA A100 Tensor Core GPUs with 80GB of memory.

ID AlphaFold2 BaseFold Difference
T1176 69.94 94.61 24.67
T1113 69.83 90.64 20.81
T1147 73.50 92.15 18.64
T1114s1 62.72 78.22 15.50
T1137s7 71.48 82.15 10.68
T1134s2 77.90 88.43 10.53
T1106s1 69.24 79.41 10.17
T1115 75.16 85.02 9.85
T1119 66.97 72.45 5.48
T1170 90.57 94.24 3.67
T1137s8 83.33 86.92 3.59
T1124 88.89 91.13 2.24
T1137s9 84.69 86.89 2.19
T1139 89.52 91.40 1.88
T1155 79.62 81.43 1.81
T1150 92.90 94.57 1.67
T1114s2 86.56 88.11 1.55
T1109 94.48 95.94 1.46
T1153 86.36 87.82 1.46
T1133 83.97 85.23 1.27
T1120 92.24 93.45 1.21
T1157s2 89.17 90.29 1.12
T1110 94.87 95.95 1.08
T1106s2 94.48 95.30 0.82
T1134s1 95.08 95.88 0.81
T1145 95.07 95.83 0.76
T1158 82.79 83.43 0.64
T1127 93.01 93.28 0.27
T1157s1 84.40 84.49 0.09

Table 1: CASP15 targets that display an increase in the pLDDT scores for BaseFold
predictions compared to AlphaFold2
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Target Mgnify BRD

T1158 163 337
T1145 426 74
T1134s1 307 193
T1106s2 163 121
T1133 101 399
T1124 149 351
T1137s8 108 397
T1106s1 19 12
T1137s2 44 456
T1147 104 396
T1113 1 7
T1176 12 3
SHWI 291 209
8SSD 174 326
8U00 105 395
8JYT 80 420
8DYD 404 96

Table 2: Sequence contributions by MGnify and BRD to the MSAs of the following
CASP15 and CAMEO targets

A.6 Molecular Docking

In preparation for docking, compound SAH was supplemented with Gasteiger
charges followed by the addition of non polar hydrogen atoms [7]. Docking was
performed using the default setting of AutoDock Vina [8] with a random seed
of 42 and exhaustiveness set to 32. The box was defined using USCF Chimera
[9] based on the crystal structure MFnG (PDB:7UXS8). The defined dimensions
of the box were 9.64 x 14.86 x 7.69 with a grid spacing of 1 A, centered at
coordinates x = 21.83, y = 38.56, z = 14.30 to maximize the precision of the
substrate positioning within the active site. In the docking process, both the
protein and ligands are treated as rigid entities. Results with a positional root-
mean-square deviation (RMSD) below 1.0 A were grouped, with each cluster
represented by the most favorable binding free energy. The pose with the lowest
binding affinity was then selected and aligned with the receptor structure for
further analysis.
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