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Abstract

Seed traits, such as seed color and seed size, directly impact seed quality, affecting the
marketability and value of dry peas [1]. Assessing seed quality is integral to a plant breeding
programs to ensure optimal seed standards. This research introduced a phenotyping tool to
assess seed quality traits specifically tailored for pulse crops, which integrates image process-
ing with cutting-edge deep learning models. The proposed method is designed for automation,
seamlessly processing a sequence of images while minimizing human intervention. The pipeline
standardized red-green-blue (RGB) images captured from a color light box and used deep learn-
ing models to segment and detect seed features. Our method extracted up to 86 distinct seed
characteristics, ranging from basic size metrics to intricate texture details and color nuances.
Compared to traditional methods, our pipeline demonstrated a 95 percent similarity in seed
quality assessment and increased time efficiency (from 2 weeks to 30 minutes for processing
time). Specifically, we observed an improvement in the accuracy of seed trait identification by
simply using an RGB value instead of a categorical, non-standard description, which allowed for
an increase in the range of detectable seed quality characteristics. By integrating conventional
image processing techniques with foundational deep learning models, this approach emerges as
a pivotal instrument in pulse breeding programs, guaranteeing the maintenance of superior seed

quality standards.
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1 Introduction

Dry pea (Pisum sativum L., 2n = 14) belongs to the Leguminosae (or Fabaceae) family, is the
second most important grain legume in the world after common bean (Phaseolus vulgaris L.) and
is considered one of the most genetically diverse crop species. [2—4]. It is currently grown in most
temperate regions of the world for human consumption, livestock feed, and the pet food market [5].
It is capable of fixing atmospheric nitrogen through association with specialized soil bacteria called
rhizobia that act as a natural fertilizer, thus greatly reducing the dependency on synthetic fertilizers
[6-9].

Dry pea is also a valuable source of dietary proteins, mineral nutrients, complex starch and
fibers [10], and its nutritional profile complements that of cereals [11]. To date, dry pea remains a
nongenetically modified organism (non-GMO), which is appealing to consumers, and has contributed
to this crop emerging as a leader in the plant-based protein product market. Beyond Meat has
released a burger that contains approximately 20 grams of pea protein per burger [12], and Ripple
has created a niche in the market for non-dairy milk with its Ripptein-made pea milk [13]. As the
demand for dry pea products increases, it is important to further improve the yield and quality of
the seed to meet these needs [14].

The quality of pulse crop seed is an important determining factor for the marketability and value
of the crop in both domestic and global plant markets [15]. The quality of dry pea seed is mainly
judged by its visual appearance, which includes the size, shape, and color of the seed. According
to the Dry Pea and Lentil Council of the US, these criteria remain primary requirements to obtain
a premium price in the current market for dry pea. Furthermore, seed quality traits tend to be
associated with seedling vigor [16], and a significant positive correlation has been observed between
seed size and grain yield [17]. Thus, the pulse crop breeding program routinely evaluates seed quality
traits such as seed size, color, and shape to ensure the marketability of any cultivar released through
the program.

The conventional method of evaluating seed quality in dry pea requires visual inspection of color
and sieve analysis to estimate seed size and 100 seeds weight. This method can be subjective,
laborious, and time-consuming, while generating a limited amount of data to be used in making
an effective selection. Therefore, the conventional method of assessing quality can take months
when screening over a thousand new breeding lines, creating a selection bottleneck in the breeding
pipeline. The development of a rapid and accurate evaluation tool to collect accurate, interpretable,
and biologically meaningful seed quality traits on a large scale is key to supporting rapid breeding
decisions to meet consumer preferences.

Computer vision techniques have emerged as a promising alternative to manual methods in ad-
dressing this phenotyping bottleneck. Numerous academic and industrial approaches have used
image analysis and machine learning to characterize seed traits. However, many current method-
ologies require extensive calibration for precise seed segmentation or positioning [18-35], and some
advanced industrial solutions like the VideometerLab [36], and the advanced platform for executing
such analyses, can be cost prohibitive for public breeding programs.

To address these phenotyping challenges, our goal was to develop an accessible high-throughput
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seed phenotyping pipeline suitable for pulse crop breeding applications. This open source method
combines image processing with deep learning models to enable automated large-scale seed phenotyp-
ing. By standardizing image capture conditions and using deep learning for robust seed detection and
trait quantification, our pipeline can significantly increase the accuracy and efficiency of phenotyp-
ing compared to manual techniques. This document provides a detailed overview of the end-to-end
pipeline that we created to alleviate the phenotyping bottleneck [37] and accelerate genetic gain for

critical consumer preferences, such as seed quality traits in pulse crops.

2 Materials and Methods

2.1 Plant Materials

In total, 287 USDA germplasm accessions (including 191 from the Pea Single Plant Plus Collection
PSP [38]) were used for data capture and pipeline design. This germplasm represents the different
regions and taxonomies of the species and reflects the morphological diversity of the seed. Accessions
were collected from 64 geographical origins and are now kept and distributed by the Western Regional
Plant Introduction Station, USDA, Agricultural Research Service (ARS), Pullman, WA.

2.2 Field Experiments

All NDSU lines were planted in an augmented row-column design with five repeated checks [39, 40]
during the 2021 and 2022 growing seasons at the North Dakota Agricultural Experiment Station in
Prosper (47°00°N, 97°11’W) and the North Central Research Extension Center in Minot (27'29°N,
109’56’W), North Dakota, United States. Seeds were treated with fungicide and insecticide before
planting. At planting, 30 seeds were planted on 152 x 60 cm plot size with 30 cm spacing between
the plots. The plots were harvested at physiological maturity (90-120 days after planting) and dried

to a moisture content of 15 percent.

2.3 Color Light Box Capturing Building

While commercial color light boxes [41, 42] are available, most lack an integrated and stable structure
to position a phone camera directly above the imaging area. Furthermore, existing commercial
solutions can be prohibitively expensive for multi-research station use. Consequently, we developed
an affordable Do It Yourself (DIY) light box design optimized for top-down seed imaging using
widely accessible materials [43]. The Color Light Box was constructed using a standard 18x18x18-
inch cardboard box sourced from common shipping stores [44], which provides an enclosed imaging
area painted matte black to minimize light reflections. A Pringles potato chip can cap [45, 46] was
modified into a Petri dish- shaped insert 4 inch in diameter to hold seed samples. This insert was
fixed adjacent to a United States quarter coin glued to the box floor, providing a size reference in
the images. The phone camera was mounted on top of the box. Detailed building instructions are
provided in the Supplementary Materials (Appendix 1). The basic construction materials used are

inexpensive and available internationally, and the quarter coin size reference allows adaptation with
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local coinage of similar dimensions where needed. Alternative boxes have been developed using a

similar approach but require more tools and effort [47].

2.4 Imaging pre-processing and General Pipeline Overview Description

After setting up a color lightbox as described in Appendix 1, we captured high-resolution images of
seeds. These images were taken under controlled lighting conditions to ensure consistency. We used
a dark, non-reflective background to enhance the contrast between the seeds and their surroundings,
making it easier to analyze the images (see Figure 1A). To prepare the images for analysis, we used
an algorithm from the Pliman R package. This tool helped us in several ways: it located a reference
object (the coin) in the image, rotated the image to a standard orientation, and adjusted for any
distortions caused by the camera lens or variations in color. This was important to make sure that all
images were consistent and comparable (see Figure 1B). Initially, we experimented with traditional
image processing methods using OpenCV [48] and Pliman [49], but we found these methods to be
lacking. They required many manual adjustments to correctly identify and segment (or separate)
objects in the images, which was time consuming and prone to errors. In spring 2023, our approach
took a significant turn with the release of Meta AT’s Segment Anything Model (SAM) [50], a highly
advanced tool trained on over a billion examples. SAM’s Blue Box, depicted in Figure 2, was a
game changer for us. Its strength lies in its ability to automatically and accurately segment various
objects in an image, including the seeds of interest. This meant that SAM could identify and isolate
each seed from the rest of the image with high precision. The final step in our process was to train
a model called YOLOvVS8 [51] to automatically recognize and label seeds in new images. YOLOvVS
is an object detection model designed to identify specific objects within an image and understand
their characteristics. By training YOLOv8 with the images we had prepared and processed through

SAM, we could automate the task of annotating new images with high accuracy (see Figure 1D).

2.5 Seeds Segmentation using Segment Anything Model SAM

A well-annotated data set is crucial before training an object detection model such as YOLOvS [51].
For seeds, this process involves precise segmentation to distinguish individual seeds and accurate
annotation to provide the model with the necessary information about the location of each seed.
This was achieved using the Segment Anything Model (SAM) of Meta AI [50] for efficient and
accurate seed segmentation. SAM is a foundation model for segmentation, trained on a vast dataset
(more than a billion masked annotations), making it capable of segmenting a wide range of objects,
including seeds and coins. Its architecture comprises three primary modules: an image encoder, a
prompt encoder, and a mask decoder (see Figure2 Blue Box).

SAM processes the images and returns segmentation masks, effectively separating the seeds from
the background. For each segmented seed, a bounding box is drawn around it defined by its top
left and bottom right coordinates. This rectangular box encapsulates the seed, providing the spatial
information necessary for YOLOv8 (You Ounly Look Once) training. The output is formatted as
JSON, which was chosen for its compatibility and ease of integration with our training process. In

particular, the decision to exclude data augmentation from our methodology was informed by the
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Figure 1: Image Processing Pipeline for Image Processing, Annotation and Segmentation for Dry
Pea images: (a) Image Acquisition; (b) Image Processing; (¢) SAM Annotation and (d) YOLOvS
Segmentation Model

controlled conditions within our lightbox setup and the consistent positioning of the seeds, ensuring

uniformity and precision in our data collection.

2.6 Seeds Detection using Yolov8

After labeling our seed images, we trained them using a deep learning model based on the YOLO
version 8 architecture. YOLO models are known for their speed and accuracy in detecting objects,
and they work by analyzing an entire image in one go, unlike traditional methods that scan parts
of an image separately. For our study, we used Python’s Tensorflow 2 [52] library to run YOLOvS8
on our specially annotated data set. This involved tasks such as segmenting and detecting specific
objects in new images. YOLO architecture [53] takes the entire image and divides it into a grid of
squares of equal sizes (SxS grid).

Each square in this grid is like a mini version of the whole picture. By breaking the image into
smaller areas, YOLO can focus on specific parts of the image one at a time, making it easier and

faster to find and recognize objects. This is like looking closely at each small section of a map to
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understand what is there, rather than trying to take in the whole map at once. Each cell of the grid
predicts multiple bounding boxes and their associated class probabilities. For seed detection, the
classes would be different types of seeds or seed-related anomalies. The input layer typically takes
an image of size 416x416x3 (height, width, channels).

The YOLO architecture uses several convolutional layers to extract features from the input image
[53] (see Figure 3). In our case, these layers capture spatial hierarchies and patterns, essential for
distinguishing between different types of seed, the coin, the background, and the Petri dish. Each
grid cell in the detection layer predicts two key metrics: first, the bounding box coordinates that
determine the object location and size within the image and second, the confidence score that reflects
the model level of certainty regarding the presence of an object in the box and accuracy of prediction.
Additionally, the YOLO architecture incorporates class probabilities that determine the likelihood
that the detected object belongs to a particular class. To reduce the number of boxes that overlap,
YOLO uses a technique known as 'nonmax suppression’. This technique retains the bounding box
with the highest confidence score while suppressing other boxes with significant overlap. The YOLO
architecture further employs a multipart loss function that takes into account: Classification loss
(pertaining to the detection of an object in the box), localization loss (relating to the accuracy of the
bounding box coordinates), and confidence loss (relating to boxes with and without objects). The
backbone of YOLOvVS is built on the CSPDarknet53 architecture, which includes 53 convolutional
layers. These layers are designed to extract features from the images, allowing the model to identify
subtle differences within the seeds. The Head section of YOLOvVS8 consists of multiple convolutional
layers followed by fully connected layers. The primary function of a convolutional layer is to predict
the bounding boxes and associated probabilities. The inclusion of a self-attention mechanism allows
the model to assign varying levels of importance to different features in the seed images (see Figure
3 for a visual representation of the described operation and architecture).

We conducted two sets of experiments with our model, one with 50 epochs and the other with
300, to see how well the model learned over time. Our results showed that running 50 epochs
was sufficient for our needs. In these experiments, YOLOvS8 was trained to recognize four different
objects: the coin, the background, the seeds and the Petri dish. Our dataset for this included 198
training images, 28 for testing, and 57 for validation. It is worth noting that four of these images
were controls that did not contain seeds. To address concerns about whether our data set was large
enough to train and evaluate the YOLOv8 model, we considered the following: ¢YOLOvS8 Efficiency:
This particular model is effective at learning from smaller datasets thanks to its unique approach of
analyzing images in one pass. This means that it can generalize from limited data more effectively.

e Data quality and germplasm diversity: Although our data set was not large, it was diverse and
contained a wide range of seed types (accessions). This variety, spread over 198 training images, 28
tests, and 57 validation images, allowed for thorough learning and application to new data.

e Controlled Experiment Design: Our experiments, particularly the one with 50 epochs, showed
that the model could learn effectively from the dataset we provided.

e Cross-Validation Methodology: We used cross-validation in our study, which is a technique to
maximize the use of a dataset for training. It involves rotating different subsets of data for training

and evaluation, improving the accuracy and reliability of the model.
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e Inclusion of Control Images: By including images without seeds, we improved the model’s
ability to accurately identify the presence of seeds.

Although a larger dataset could improve the performance of the model, our current dataset was
sufficient for the objectives of our study. Future research could build on this foundation, using more

data to potentially further improve the model performance.
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Figure 2: ”Featured is a detailed close-up of the Segment Anything Model (SAM) Annotation
Model. Central to this display is the ”"Blue Box”, which contains an in-depth description of the
model’s architecture. This architecture is crucial in understanding how SAM operates to distinguish
and annotate various objects in an image. Within this Blue Box, the SAM model is delineated
into four distinct classes for annotation, each designed to recognize and categorize different objects
within an image. These classes are: 1) Coin: This class is trained to identify coins in the image.
The coin serves as a reference object, aiding in the standardization of the image scale and providing
a basis for comparative analysis. 2) Background: The background class focuses on distinguishing
the non-essential parts of the image, effectively separating the background from the main objects of
interest. This helps isolate the seeds, the Petri dish, and the coin from their surroundings, ensuring
a more precise segmentation. 3) Seeds: This class is dedicated to identifying and annotating seeds.
It accurately pinpoints each seed, regardless of its position or overlap with other seeds, allowing a
detailed analysis of individual seed characteristics. 4) Petri dish: The Petri dish class is tasked with
recognizing and delineating the Petri dish in the image. This is crucial for context, as it helps to
establish the spatial relationship between the seeds and their container. Each class plays a vital role
in the comprehensive analysis and annotation process, contributing to the ability of the SAM model
to accurately segment and identify various objects within a single image.
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Figure 3: The YOLOvVS architecture, tailored for seed anomaly detection, operates on an input im-
age of dimensions 416x416x3. Its backbone (a), CSPDarknet53, consists of 53 convolutional layers
designed to extract intricate features from images, enabling the model to discern subtle variations
in seeds. The head section (b) integrates multiple convolutional layers followed by fully connected
layers, primarily predicting bounding boxes and their associated probabilities. Each cell in the detec-
tion layer (c,d) provides bounding box coordinates and a confidence score. To minimize overlapping
boxes, YOLO employs 'nonmax suppression’ (e). Additionally, the architecture computes class prob-
abilities and incorporates a multi-part loss function. A unique self-attention mechanism within the
model assigns varied importance levels to different characteristics of the seed image, enhancing its
detection capabilities. (f) show some of the convolutional operations on the image
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2.7 Infrastructure and Hyperparameters Tuning

In our experimental setup, we used two distinct computational resources. Nvidia V100 GPU, as
detailed by Yang et al. [54] was sourced from Google Colaboratory [55] and was instrumental for
the 50-epoch run. In contrast, for the more extensive 300-epoch run, we leveraged the Nvidia A100
(2nd Gen) GPU [56] available at the Local Cluster CCAST [57] . During the training phase of the
YoloV8 model, we opted for the Adam optimizer, renowned for its superior stochastic optimization
capabilities. A critical parameter, the learning rate, which dictates the extent of weight adjustments
during the training process, was set at 0.001. Our training regimen processed samples in groups,
with each batch containing 64 samples. Several specific parameters were integral to the model’s
architecture and functioning. The model was designed to accept input images with dimensions
of 608 x 608 pixels. For object detection, it employed three unique shapes of bounding boxes,
called anchors. A detection is deemed valid when its associated confidence score exceeds the 0.25
mark. To manage overlapping bounding boxes, we implemented a Non-Max Suppression (NMS)
mechanism with a threshold set at 0.45. Additionally, the degree of overlap between bounding
boxes was ascertained using an intersection-over-union (IOU) metric, with a threshold value of 0.5.
Delving deeper into the model architecture, each convolutional layer was equipped with 64 filters.
In total, the model encompassed 53 such convolutional layers. We also incorporated the LeakyReLLU

activation function to introduce nonlinearity into the model.

2.8 Feature Engineering

In our study, we identified 86 unique traits to describe germplasm. These traits can be subsequently
employed for inferential genomics in subsequent laboratory analyses.

The features span several domains:

Color (15 features): These metrics include the mean (mean), spread (standard deviation), and
asymmetry (skewness) of the color intensities for each BGR (Blue-Green-Red) channel of the image.
In simpler terms, the mean represents the average color intensity, the standard deviation gauges the
range of color intensities, and the skewness measures the tilt of the color distribution.

Shape (10 features): This category includes geometric properties [58, 59] of the seed such as its
area, perimeter, convexity, solidity, minor and major axis lengths, orientation, eccentricity, circu-
larity, and aspect ratio. The area measures the seed size, while the perimeter defines its boundary
length. Convexity assesses the alignment of the seed’s boundary with its convex outline, and solidity
compares the area of the seed to that of its convex outline.

Texture (15 features):

Texture Base Metrics (2 features): These metrics include skewness and kurtosis.

Haralick Texture Descriptors[60, 61] (13 features): Derived from a Gray Level Cooccurrence
Matrix (GLCM), these descriptors capture the texture characteristics, patterns, and variations in
each seed image’s appearance. The GLCM is essentially a matrix that represents the frequency
of occurrence of pixel pairs with specific gray levels at a particular spatial relationship. From this
matrix, various statistical measures are extracted, such as the Angular Second Moment (indicating

image uniformity), contrast (measuring local variations), correlation (evaluating linear dependency

10
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of pixel pairs), and several others. Each of these measures provides information about different
aspects of the image’s texture.

Elliptical Fourier Descriptors[58, 59] (EFD) (20 features): These descriptors offer a precise
way to describe the contours of seed images. They are based on the contour coordinates of the seed
image and allow the decomposition of a contour into a series of ellipses. This decomposition aids in
analyzing and classifying the shapes of seeds according to their morphological characteristics.

LBP histogram[62] (26 features): The Local Binary Pattern Histogram Texture Descriptors
(LBP) is a set of 26 texture descriptors that characterize the spatial structure of local image textures.
The LBP method involves comparing each pixel in the image with its neighbors and encoding the
result as a binary number. The histogram of these numbers then serves as a texture descriptor,
useful for texture classification. In essence, the LBP histogram provides a way to analyze the

texture properties of the image by accumulating the occurrences of each LBP code in the image.

2.9 Statistical Analysis

To evaluate the precision and robustness of a deep learning framework to extract seed traits from
pulse crops, specifically dry peas, the primary objective was to observe the relationship between man-
ual ground-truth observations from 67 accessions (measured), focusing on the lengths of the major
and minor axes and measurements computed using image processing. Linear regression and correla-
tion analysis explored the potential relationships between the observed seed sizes and those derived
by the model and the other extracted descriptors. Additionally, the average colors extracted from
the images were visually verified to ensure accuracy. The potential descriptors identified through

these analyses will be used in future genomic research.
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3 Results

3.1 SAM and Yolov8 Model’s Performance

The Segment Anything Model (SAM) demonstrated a notable proficiency in segmentation and la-
beling tasks within our dataset, achieving a threshold that surpasses the rate of 96.11 percent. This
performance is indicative of SAM’s robust capabilities in accurately segmenting and identifying dis-
tinct elements within the dataset. Further evaluation of the YOLOvS8 model was performed using
our seed data set from Pisum sativum L. The model achieved a precision metric of 0.977, reflecting
its high precision in correctly identifying and classifying seeds. This level of precision is significant,
particularly considering the potential applications of YOLOvVS in automated analysis for agricultural
quality control, specifically seeds. The findings of this study suggest that YOLOv8 holds promise as
a reliable model for seed analysis and classification tasks. The successful application of this model in
our research could serve as a basis for future investigations into the use of advanced object detection
models in agricultural studies. In particular, the ability of YOLOvS8 to extract and utilize diverse
features could be instrumental in advancing research in seed diversity and related fields. (see Figures
4, 5). In reference to Figure 6, it’s important to clarify the process and outcomes related to the
detection of the Petri dish in our study. Initially, our model attempted to detect the entire Petri
dish during the extraction phase, but it encountered challenges in achieving high precision. This
led us to explore an alternative method aimed at enhancing the detection accuracy. However, even
with this modified approach, the precision in detecting the entire Petri dish did not meet our desired
threshold. Consequently, after careful consideration, we decided to exclude the Petri dish class from
our final model analysis. This decision was made to maintain the overall accuracy and reliability of
our results, acknowledging that the detection of the Petri dish did not achieve the high precision we
aimed for in our study.

An important observation is that the detection of the Petri dish class is not achieved with high
precision on the whole dish, so we wanted to use it for Region of Interest (ROI) detection; however,

we can remove the class for simplicity. See Figure 6.
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Figure 4: Performance of Yolov8 on Pisum sativum L. accessions dataset: Confusion Matrix with
classification classes, background, coin, Petri dish and seeds
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Figure 5: AUC performance curve with precision per class and overall 0.977.
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Figure 6: Validation Results with Petri dish detected but not covering the whole region, these are
different accessions
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3.2 Model Ground Truth Validation

In our study, we conducted size comparisons between manual observations and measurements derived
from a deep learning model on 67 dry pea accessions. For each accession, two seeds were meticulously
measured for their major and minor axis lengths using a caliper. These seeds were then subjected
to analysis via a deep learning model to determine the lengths of their major and minor axes.

A notable correlation coefficient of 0.95 emerged between the manual measurements and those
obtained from the model. This robust correlation underscores the effectiveness of the deep learning
approach in accurately extracting seed traits from image data.

We used linear regression to further investigate the relationship between the manually observed
seed sizes and those determined by image processing. The analysis yielded an R? value of 0.85,
indicating that the measurements obtained from image processing can account for 85 percent of the
variability in the observed seed sizes. The closeness of this value to 1 reinforces the deep learning
model’s proficiency in mirroring manual measurements of seed traits.

The combined evidence from the high correlation coefficient and the value of R? accentuates the
potential of the deep learning framework as an efficient tool for the extraction of high-throughput
seed traits, especially in pulse crops. Although our focus in this study was on the major and minor
axes, the model demonstrated the ability to extract other seed descriptors. Future studies will delve
into these descriptors in a deeper sense, as preliminary correlation analyzes have identified several
promising seed trait indicators. Detailed summaries of the regression models can be found in Figure

7 and Appendix 2.
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Figure 7: Linear Regression Comparison for Seed Size Validation Results, see appendix 2 for statis-
tical summaries
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3.2.1 Color comparison

In our analysis, we focused on comparing the colors between the original images and those extracted
from individual seeds, as depicted in Figure 8. Although our standard methodology for color com-
parison is primarily categorical, limiting our ability to validate the colors statistically, we employed
a qualitative approach to ensure color accuracy. To validate the color consistency, we conducted a
detailed visual examination in which experts compared the color hues, saturation, and brightness be-
tween the original images and the extracted colors. This figure is crucial as it visually demonstrates
the effectiveness of our color extraction technique, highlighting the fidelity of the colors extracted
from the seeds compared to their original counterparts. The primary objective of including this
figure and analysis in our model was to ensure that the color representation of the seeds is accu-
rate and consistent, which is vital for the precise identification and classification in our study. By
demonstrating the color equivalence, we aim to reinforce the reliability of our model in handling
color-sensitive tasks, which is essential in applications where color accuracy is paramount, such as

in quality control or phenotypic analysis in agricultural studies.

Figure 8: Color Validation Results, (a) Original Images and (b) Histograms of Red Blue Green
Colors for each seed captured from the images
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4 Discussion

The development and implementation of a pipeline for automated analysis of seed traits, especially
through deep learning models, presents a multitude of advantages, including efficiency, scalability,
data integration, accuracy, and a controlled environment over more conventional methods. Auto-
mated processes, by design, tend to reduce manual intervention, which can lead to faster results,
especially when analyzing large datasets. Unlike manual measurements, which may carry individual
biases, an automated pipeline ensures data processing and measurement extraction consistency. As
data sets grow or the need for increased resolution arises, automated pipelines can be easily scaled to
accommodate larger data volumes without proportionally increasing time or labor resources. Auto-
mated systems often allow seamless integration with other digital platforms or datasets, paving the
way for more holistic analyses. The value of R? achieved in our regression model not only indicates
the robustness of the model, but also emphasizes the precision of our deep learning approach. This
high coefficient of determination suggests that the extracted image characteristics provide a reliable
representation of the true traits of the seeds. Further strengthening this observation is the statistical
significance of the model, as evidenced by a p-value of less than 0.05. This ensures confidence in de-
ploying the model for practical applications and extrapolating its results. Operating in a controlled
environment minimizes external variability, ensuring that the data obtained are predominantly in-
fluenced by the subject (in this case, seed traits) rather than extraneous factors. This improves the
reliability of the results and ensures that the observed variations are due to intrinsic traits of the
seeds and not environmental factors.

Our setup currently does not include a barcode system, which is a limitation. Barcodes are
essential to provide unique identifiers for individual samples or batches, facilitating easy tracking,
data retrieval, and integration. Without it, there is a potential risk of mislabeling or data mismatch,
especially when handling large data sets. In addition, although the model performs well under
controlled conditions, its efficacy in diverse real-world settings (for example, in the field with a cell-
phone application) needs validation. Model refinement might be needed when introduced to varied
environments and multiple backgrounds, and additional deep learning models are needed to account
for these problems. In conclusion, while our deep learning framework offers promising results in seed
trait extraction, continual refinement and addressing the existing limitations will further enhance

its utility and application breadth.
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