

1 **Distinct regions within SAP25 recruit O-linked glycosylation, DNA
2 demethylation, and ubiquitin ligase and hydrolase activities to the
3 Sin3/HDAC complex**

6 Pratik Goswami^{1*}, Charles A.S. Banks^{2*}, Janet Thornton¹, Bethany Bengs³, Mihaela E. Sardiu³,
7 Laurence Florens², Michael P. Washburn^{1#}

8 1. Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160,
9 USA

10 2. Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.

11 3. Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City,
12 Kansas, USA.

13 * Co-First Authors

14 # To whom correspondence should be addressed:

15 Michael P. Washburn, Ph.D.
16 Department of Cancer Biology
17 University of Kansas Medical Center
18 Kansas City, KS, 66160, USA
19 mwashburn4@kumc.edu

21
22
23 **Keywords:**

24 SAP25, Sin3/HDAC, O-GlcNAc transferase, E3 ubiquitin ligase, SCF(FBXO3), quantitative
25 proteomics, topological scoring, and protein interaction network.

27 **Summary:** Epigenetic control of gene expression is crucial for maintaining gene regulation.
28 Sin3 is an evolutionarily conserved repressor protein complex mainly associated with histone
29 deacetylase (HDAC) activity. A large number of proteins are part of Sin3/HDAC complexes, and
30 the function of most of these members remains poorly understood. SAP25, a previously
31 identified Sin3A associated protein of 25 kDa, has been proposed to participate in regulating
32 gene expression programs involved in the immune response but the exact mechanism of this
33 regulation is unclear. SAP25 is not expressed in HEK293 cells, which hence serve as a natural
34 knockout system to decipher the molecular functions uniquely carried out by this Sin3/HDAC
35 subunit. Using molecular, proteomic, protein engineering, and interaction network approaches,
36 we show that SAP25 interacts with distinct enzymatic and regulatory protein complexes in
37 addition to Sin3/HDAC. While the O-GlcNAc transferase (OGT) and the TET1 /TET2/TET3
38 methylcytosine dioxygenases have been previously linked to Sin3/HDAC, in HEK293 cells,
39 these interactions were only observed in the affinity purification in which an exogenously
40 expressed SAP25 was the bait. Additional proteins uniquely recovered from the Halo-SAP25
41 pull-downs included the SCF E3 ubiquitin ligase complex SKP1/FBXO3/CUL1 and the
42 ubiquitin carboxyl-terminal hydrolase 11 (USP11), which have not been previously associated
43 with Sin3/HDAC. Finally, we use mutational analysis to demonstrate that distinct regions of
44 SAP25 participate in its interaction with USP11, OGT/TETs, and SCF(FBXO3).) These results
45 suggest that SAP25 may function as an adaptor protein to coordinate the assembly of different
46 enzymatic complexes to control Sin3/HDAC-mediated gene expression.

47

48

49 INTRODUCTION

50 SIN3A acts as a scaffolding protein, forming a framework upon which Sin3 complexes are
51 assembled. Sin3 co-repressors bind with histone deacetylases (HDACs), enabling Sin3-mediated
52 transcriptional repression (1). The Sin3/HDAC family of complexes is associated with
53 differentiation, apoptosis, proliferation, tumorigenesis and has a role in the development of
54 cancers (2). The integrity of the Sin/HDAC complex is crucial for central nervous system
55 development (1), methionine catabolism, and glycolysis/gluconeogenesis (3). It also plays a
56 significant role in breast cancer metastasis (4), activating autophagy (5), contributing to
57 pulmonary arterial hypertension (6), and influencing triple-negative breast cancer (7). In addition
58 to the SIN3A/B paralogues, several proteins bind with the Sin/HDAC complexes including
59 RBBP4/RBBP7 and HDAC1/2, which are shared with other transcriptional repressor complexes,
60 and the Sin3-associated proteins SAP30/SAP30L, SUDS3, BRMS1/BRMS1L, ING1/2,
61 ARID4A/B, SAP18, FAM60A, and SAP25 (8-11). While SIN3/HDAC/Sin3/HDAC complexes
62 mainly regulate gene transcription (12), several by deacetylating histone tails and altering the
63 chromatin environment, components of the Sin3/HDAC complex interact with proteins carrying
64 various enzymatic activities (11, 13, 14). Specifically, SIN3A has been linked to OGT, an O-
65 linked N-acetylglucosamine transferase (12) and the TET DNA demethylases (13, 14).

66 First reported in 2006, The SIN3A-associated protein of 25 kDa SAP25 was first described
67 associated with mouse mSIN3/SIN3/HDAC complex and shown to participate in transcriptional
68 repression (11). More recently, we showed that human SAP25 captured complexes containing
69 the Sin3 subunits SUDS3 and SAP30 (15). SAP25 has also been associated with various
70 additional components of epigenetic-modifying complexes, such as OGT and TET2 (11, 14, 16),
71 with an L254F-OGT variant upregulating SAP25 in X-linked intellectual disability (17).
72 Furthermore, Tet2 purified complexes were found to contain both OGT and Sin3 complex
73 components SAP25, SIN3A, and SAP30 (14). In addition, John and coworkers recently proposed
74 that IFIT1 regulates gene expression programs of the immune response by coordinating the
75 removal of Sin3 repressor complexes containing SAP25 from the IFNB1, IRF7, and IRF8
76 promoters (18). Finally, a genome-wide DNA methylation study listed the SAP25 gene in the top
77 10 positions with differentially methylated CpG sites in patients with active inflammatory bowel
78 diseases (19), while altered expression of SAP25 was observed in microglia (20), contributing to
79 Alzheimer's disease (21).

80 In this study, we focus on the SAP25 protein to elucidate its protein interaction network and role
81 within the Sin3/HDAC complex. Mapping networks of protein interactions helps us to
82 understand the structure of protein complexes, how they might regulate biological processes, and
83 the impact of the aberrant function of protein complexes in different diseases (22). Affinity
84 Purification Mass Spectrometry (AP-MS) is one of the main approaches to map protein
85 interaction and involves using an exogenously expressed affinity-tagged bait to capture
86 endogenous prey proteins. Proteins copurifying with the bait are identified and quantified using
87 mass spectrometry (15, 23). AP-MS data provides significant information regarding protein-
88 protein interactions under physiological conditions (24).

89 First, we conducted affinity purifications of proteins from Flp-In™-293293 cells stably
90 expressing Halo-Tag SAP25 and analyzed purified proteins using mass spectrometry. Our
91 analysis of proteins associated with SAP25 revealed its involvement not only with the
92 Sin3/HDAC complex, but also with additional proteins with enzymatic function. These included
93 the previously observed O-linked N-acetylglucosamine transferase and methylcytosine
94 dioxygenases, but also novel associations with the SCF(FBXO3) E3 ubiquitin ligase and the
95 ubiquitin carboxyl-terminal hydrolase 11, USP11. Next, since it had been previously observed
96 that the C-terminal region of mouse SAP25 has an LXXLL motif required for interacting with
97 the PAH1 domain of mSinA (11, 25), we generated a series of mutant proteins to determine
98 whether these additional complexes could associate with SAP25 independently of Sin3/HDAC.
99 In addition to showing that mutations within the LXXLL motif of human SAP25 disrupts its
100 interaction with human Sin3/HDAC, we further defined additional regions of SAP25 that are
101 necessary and sufficient for its interaction with different enzymatic complexes.

102 Overall, our results highlight the involvement of SAP25 as an adaptor protein capable of
103 independently recruiting enzymatic activities to the Sin3/HDAC, potentially deploying a range of
104 activities involved in chromatin modification and remodeling, beyond histone deacetylation.
105 Taken together, these findings propose a broader role for SAP25 within the Sin3/HDAC complex
106 and provide a foundation for future explorations into its function.

107

108

109 RESULTS

110 SAP25 captures both the Sin3 complex and additional enzymatic and 111 regulatory protein complexes

112 To determine SAP25 interacting partners, we first constructed a cell line stably expressing a
113 recombinant version of SAP25 (NP_001335606.1) fused with an N-terminal Halo-tag (Halo-
114 SAP25) in Flp-In™-293 cells. We used the weaker CMVd2 promoter in our Sin3 complex cell
115 lines to express the bait proteins at a level that more closely reflects endogenous protein
116 expression levels, even though SAP25 is not endogenously expressed in HEK293 cells (15). The
117 resulting cell extracts were subjected to Halo affinity purification and the isolated proteins
118 identified using Multidimensional Protein Identification Technology (MudPIT) (15, 26). We next
119 used QPROT statistical analysis (27) to compare enrichment of proteins detected in Halo-SAP25
120 samples with proteins detected in controls (Fig. 1A). This analysis defined a set of 143 Halo-
121 SAP25 enriched proteins with $\log_2FC > 2$ and Z statistic > 3 (Fig. 1A and Table S1A, rows 5-
122 148).

123 As expected, a GO term enrichment analysis of these SAP25 associated proteins using ClueGO
124 ($pV < 0.01$) identified a highly enriched ($pV < 0.0005$) cluster of GO terms related to “Sin3-type
125 complex” (Figure S1, pink nodes). Among the proteins identified in this cluster were the 9 Sin3
126 subunits we had previously identified as core Sin3 complex subunits (SIN3A, SIN3B, SUDS3,
127 SAP30, SAP30L, HDAC1, HDAC2, RBBP4 and RBBP7) (15). In total, in addition to SAP25,

128 we identified all 17 Sin3 complex subunits that we had previously identified copurifying with
129 Halo-SAP30 (15) in our SAP25 purifications with relatively high abundance (dNSAF values >
130 0.0003) and reproducibly across biological replicates (Table S1B). This association of human
131 SAP25 with the Sin3 complex was consistent both with a previous study in which exogenously
132 expressed mouse SAP25 was recognized as an integral component of the mSin3 complex (11,
133 15), and with our previous observation by Western blotting that exogenously expressed human
134 SAP25 captured the Sin3 subunits SUDS3 and SAP30 (15).

135 In addition to the Sin3 complex, we also identified the components of several protein complexes
136 that had not previously been found to copurify with SAP25. Importantly, we identified three
137 types of proteins with enzymatic functions: 1) components of the E3 ubiquitin ligase complex
138 SCF(FBXO3), 2) the O-Linked N-Acetylglucosamine (GlcNAc) transferase OGT together with
139 its established binding partners TET2 and TET3, and 3) the deubiquitinase USP11 (Fig. 1A).
140 These proteins have previously been shown to regulate gene transcription (12, 16, 28, 29). The
141 observation of OGT with SAP25 is also consistent with several investigations that suggest that
142 Sin3 complex, SAP25, OGT, and TET family proteins (TET1, TET2, and TET3) collaborate in
143 regulating transcription (12, 14, 16, 30)..

144

145 **A subset of the SAP25 interactome does not copurify with the Sin3 complex in 146 the absence of SAP25**

147 Next, we wanted to understand whether these complexes were copurifying with the Sin3
148 complex in the absence of SAP25. We had previously determined that SAP25 is not expressed in
149 HEK293 cells (15), which hence serve as a natural “knockout” system to decipher interactions in
150 the presence or absence of SAP25 (Fig. 1B). Therefore, we expanded our proteomic profiling
151 and compared the Halo-SAP25 purification with purifications using other Sin3 subunits as baits.
152 For this, we used eleven Sin3in3 complex-associated baits previously studied in our lab (31).
153 These include: SIN3A, SUDS3, SAP30, SAP30L, ARID4A, ARID4B, BRMS1, BRMS1L,
154 ING1, ING2, and SAP130 (Tables S1C-M). These proteins were stably expressed in Flp-InTM-
155 293 cells with an N-terminal Halo-tag. Proteins copurifying with the Sin3 subunit baits were
156 again identified by MudPIT, and their enrichment compared with controls ($\log_2\text{FC}$) calculated
157 using the QPROT algorithm (Table S1A).

158 Having determined enrichment values, we compared these values for Sin3 complex subunits,
159 SCF(FBXO3), OGT/TET, and USP11 across the different Sin3 complex baits (Fig. 1C).
160 Specifically, we used hierarchical clustering performed with Euclidean distance as a metric and
161 average linkage as a method. First, we observed that all baits purified Sin3 complex as we
162 expected. Second, we found that enzymatic complexes SCF(FBXO3) and OGT/TET2/3 were not
163 observed with any other Sin3 complex baits, suggesting that their association with SAP25 is
164 independent of the Sin3 complex. Similarly, USP11 was also present in SAP25 purifications and
165 absent from most other Sin3 complex purifications, although we detected USP11 with Halo-
166 SAP30L and to a lesser extent with Halo-SAP130. Interestingly, although we had previously
167 failed to detect SAP18 in purified Sin3 complexes (15), here we also observed that Halo-

168 ARID4A and Halo-SUDS3 each captured modest amounts of SAP18. We next checked that by
169 expressing Halo-SAP25 we were not simply switching on expression of the new interactors
170 making them available for copurification with SAP25/Sin3. For this we looked at RNAseq data
171 for HEK293 cells (in the absence of exogenous protein expression) that we had generated in a
172 previous study (32). This confirmed that although SAP25 is not expressed in HEK293 cells,
173 SCF(FBXO3) subunits, USP11, OGT and TET proteins are all robustly expressed (Fig 1B).
174 Thus, they are potentially available in cells in the absence of SAP25. In conclusion, the
175 hierarchical clustering analysis supports a model in which SAP25 associates with several
176 complexes independently of the Sin3 complex.

177

178 **Distinct SAP25 regions are responsible for its interactions with Sin3A or with 179 other enzymatic complexes**

180 Having determined that a subset of proteins appeared to associate uniquely with Halo-SAP25,
181 and not with other Sin3 subunit baits in the absence of SAP25, we hypothesized that this set of
182 proteins might bind to one or more regions within SAP25 distinct from the region that interacts
183 with the Sin3 complex. To investigate this, we transiently expressed different mutant versions of
184 Halo-SAP25 in 293T cells for AP-MS analysis. Analysis of transiently expressed proteins is
185 advantageous as it allows faster screenings of different mutants (33, 34).

186 First, we expressed wild type SAP25 fused to an N-terminal Halo tag in 293T cells (Halo-SAP25)
187 and tested expression by fluorescence confocal microscopy and by SDS-PAGE analysis of
188 purified complexes (Fig. 2A). The presence of SAP25 in the nucleus was consistent with its
189 association with Sin3 complex proteins, which are known to participate in transcription
190 repression. In addition, we also observed a pool of Halo-SAP25 in the cytoplasm. This
191 cytoplasmic fraction is consistent with the observation by Shiio et al.(11) of a cytoplasmic pool
192 of recombinant mouse SAP25.

193 Next, we asked whether different regions of SAP25 might be important for recruiting different
194 complexes, or alternatively, whether one region in SAP25 was responsible for capturing multiple
195 complexes. We examined the ability of mutant versions of Halo-SAP25 to enrich subunits of the
196 different complexes compared with controls. Initially, we tested: 1) two deletion mutants (SAP25
197 Δ21-40 and SAP25 Δ110-119), 2) two substitution mutants (SAP25 LL149/150AA and SAP25
198 P114-117A), and 3) three truncation mutants covering N-terminal, middle and C-terminal
199 regions within SAP25 (Fig. 2B). We used the QPROT algorithm (27) to calculate \log_2FC values
200 for enriched proteins based on spectral count values (Table S2A, with the detailed lists of
201 SAP25-associated proteins for each SAP25 construct AP-MS analysis provided in Tables S2B-I).
202 We performed hierarchical clustering on the subset of proteins we were interested in (Fig. 2C).

203 First, we noticed that the components of the unique Sin3 subunits (excluding the core subunits
204 RBBP4/7 and HDAC1/2 – which are shared with other complexes such as NuRD) clustered
205 separately as did OGT/TET2/3 and USP11. Second, we noticed that each of our truncated
206 versions of SAP25 enriched for a different complex: Halo-SAP25 16-30 enriches for

207 SCF(FBXO3), but not OGT or Sin3 (Fig. 2C, lane 7); Halo-SAP25 50-130 enriches for
208 OGT/TET and USP11 but not FBXO3 or Sin3 (Fig. 2C, lane 8); and SAP25 131-168 enriches
209 for Sin3 subunits but not SCF(FBXO3) or OGT/TET (Fig. 2C, lane 5). Third, we noticed that our
210 deletion mutants lost binding with components of one specific complex but not the others. For
211 example, Halo-SAP25 Δ21-40 loses binding to FBXO3 and CUL1 but retains binding to Sin3,
212 OGT/TET, and USP11 (Fig. 2C, lane 1). Halo-SAP25 Δ110-119 loses binding to OGT/TET but
213 retains binding to Sin3, SCF(FBXO3), and USP11 (Fig. 2C, lane 3). Fourth, we noticed that the
214 substitution mutant Halo-SAP25 LL149/150AA, which we generated based on a mutant of
215 mouse SAP25 which was previously shown to lose binding to Sin3 complex (11), similarly lost
216 binding to Sin3 complex in our experiments (Fig. 2C, lane 6). Remarkably, this mutant was still
217 able to capture SCF(FBXO3), OGT, and USP11.

218 For further confirmation that the different mutant versions of SAP25 were able to capture
219 different subsets of proteins, we also calculated TopS values (23) for Sin3 complex subunits,
220 SCF(FBXO3), OGT/TET, and USP11 (Fig. 2D). TopS generates positive or negative scores
221 (Table S3) for proteins based on spectral counts and these scores indicate whether the proteins
222 are over or underrepresented in one purification compared with others (23). For the truncation
223 mutants, we found that Sin3 complex subunits were overrepresented in Halo-SAP25 131-168
224 purifications (dark red segments), that USP11 was overrepresented in Halo-SAP25 50-130
225 purifications, and that SCF(FBXO3) was overrepresented in Halo-SAP25 16-30 purifications. In
226 addition, we found that both SCF(FBXO3) and OGT were overrepresented in the Halo-SAP25
227 LL149/150AA purification, that is, their binding to SAP25 was not compromised by the
228 substitution of these two leucine residues.

229 In summary, our initial analyses of these different mutant versions of Halo-SAP25 supported our
230 hypothesis that different regions of SAP25 were likely involved in recruitment of Sin3 complex,
231 SCF(FBXO3), USP11, and OGT/TET. Having made these observations, we next performed
232 follow-up analyses to examine dNSAF (quantitative) values for each complex in turn and
233 perform additional experiments to further examine the association of each complex with SAP25.

234

235 **A SAP25 C-terminal region associates with the Sin3 complex**

236 Having determined that the region important for Sin3 recruitment was likely in the C-terminal
237 half of SAP25, we evaluated the presence of the Sin3 complex by examining the dNSAF
238 (abundance) values for Sin3 subunits detected in Halo-SAP25 WT, Halo-SAP25 131-168, and
239 Halo-SAP25 LL149/150AA purifications (Fig. 3A). We found that Sin3 subunits were present in
240 both Halo-SAP25-WT and Halo-SAP25 131-168 purifications (dark blue and light blue bars). In
241 contrast, the majority of Sin3 subunits were not detected in Halo-SAP25 LL149-50AA
242 purifications (Fig. 3A – absence of pink bars). Interestingly, small amounts of the subunits
243 HDAC1/2 and RBBP4/7, which are shared among a number of HDAC complexes, were still
244 detected in these SAP25 LL149/150AA mutant purifications. The increased abundance of Sin3
245 in the Halo-SAP25 131-168 compared with Halo-SAP25 WT purifications is likely due to the

246 increase in bait abundance. The complete lists of proteins copurifying with these mutants are
247 provided in [Tables S2B, S2F, and S2H](#).

248 Next, to support our initial findings, we again expressed Halo-control, Halo-SAP25, and Halo-
249 SAP25 LL149/150AA in 293T cells and this time analyzed the eluates from the resulting
250 purifications by SDS-PAGE followed by Western blotting. We detected Sin3 complex proteins
251 SIN3A, HDAC1, and SAP30 as copurifying with Halo SAP25 but not with Halo-SAP25
252 LL149/150AA ([Fig 3B](#) - compare the last 2 lanes). This supports that the SAP25 leucine residues
253 149 and 150 are required for its interaction with Sin3 complex proteins ([Fig. 3C](#).)

254

255 **The SCF(FBXO3) complex interacts with an N-terminal region of SAP25**

256 In addition to the Sin3 complex, our AP-MS studies had indicated several potential unique
257 interacting partners for SAP25 ([Fig. 1A](#)). Among these, we found that SAP25 captures
258 components of the E3 ubiquitin ligase SCF(FBXO3), which promotes ubiquitination (29).
259 SCF(FBXO3) is built from the substrate recognition protein FBXO3, the adaptor protein SKP1,
260 the cullin CUL1, and a small (12 kDa) ring-box protein RBX1 (29). Previously, SCF(FBXO3)
261 has been shown to target the autoimmune regulator AIRE for ubiquitination, increasing an
262 association between AIRE and the transcription elongation factor pTEFb, and promoting proper
263 expression of AIRE regulated genes (35). The association between SCF(FBXO3) and
264 transcriptional regulator Sin3 was intriguing as SCF(FBXO3) had not previously copurified with
265 any of the other Sin3 complex proteins studied by our group ([Fig. 1C](#)) (31).

266 To confirm that SCF(FBXO3) was recruited to SAP25 independently of the Sin3 complex, we
267 asked which region of SAP25 might be important for the association between SCF(FBXO3) and
268 SAP25. For this, we compared mean dNSAF values of SCF(FBXO3) complex proteins purified
269 using the Halo tagged baits SAP25 WT, SAP25 16-30 and SAP25 Δ21-40 ([Fig. 4A](#)). We
270 observed that both SAP25 WT and SAP25 16-30 capture three of the SCF(FBXO3) subunits,
271 FBXO3, SKP1, and CUL1 ([Fig. 4A](#), dark and light blue bars). We did not detect the smaller
272 RBX1 protein. It is possible that the smaller size of this protein compromised its detection, or
273 alternatively that SAP25 only binds SCF(FBXO3) lacking this subunit. In contrast, Halo-SAP25
274 Δ21-40 failed to capture the FBXO3 and CUL1 subunits of SCF(FBXO3) and captured
275 substantially less of the SKP1 subunit, but this mutant could still capture SIN3A ([Fig. 4A](#), pink
276 bars). This is consistent with a model in which the SCF(FBXO3) complex binds SAP25
277 independently of the Sin3 complex.

278 To provide additional evidence that SCF(FBXO3) does not interact directly with the Sin3
279 complex, we built a recombinant version of FBXO3 with an N-terminal SNAP tag and tested its
280 ability to capture either SAP25 or Sin3 complex components SIN3A or HDAC2 ([Fig 4B](#)). We
281 transfected 293T cells with SNAP-FLAG-FBXO3 and either Halo-SAP25, HDAC2-Halo or
282 Halo-SIN3A and subjected the resulting cell lysates to SNAP affinity purification. After
283 purification, as expected, we detected the presence of Halo-SAP25 in cells transfected with
284 SNAPS-NAP-FLAG-FBXO3. In contrast, SNAP-FLAG-FBXO3 could not capture HDAC2-Halo
285 or Halo-SIN3A in the absence of SAP25 ([Fig. 4B](#)). To further support that the region including

286 amino acids 21-40 of SAP25 is important for recruitment of FBXO3, we used FBXO3 used a
287 Halo-SAP25 S26/27/40D T35E mutant, which contains four point-mutations within the SAP25
288 region 21-40. These amino acid substitutions are designed to mimic possible phosphorylation of
289 these serine/threonine residues. The resulting Western blot analysis shows that endogenous
290 FBXO3 copurifies with Halo-SAP25 WT but not with the Halo-SAP25 S26/27/40D T35E
291 mutant (Fig. 4C). This supports that SAP25 amino acids within region 21-40 are important for
292 controlling the association between SAP25 and FBXO3 (Fig. 4D).

293

294 **OGT interacts with a central region of SAP25 not required for recruitment of 295 either the SCF(FBXO3) or Sin3 complexes**

296 Transcription factors can be modified on serine or threonine residues by O-linked N-
297 acetylglucosamine (O-GlcNAc) monosaccharides (36-39). Previous evidence suggests that the
298 enzyme responsible for catalyzing this reaction, O-GlcNAc transferase (OGT), is associated with
299 murine Sin3 complexes. Specifically, in vitro translated mSin3A was captured by GST-OGT,
300 and HA-OGT coimmunoprecipitated mSin3A in Cos-7 cells (12). In addition, direct interaction
301 of TET2 and TET3 with OGT has also been observed and linked with transcription regulation
302 (16, 40). However, we had not previously detected OGT in our Sin3 purifications (Tables S1C-
303 M) and the mechanism of recruitment of OGT to the Sin3 complex is still not fully understood.

304 Following our initial observation that Halo-SAP25 Δ110-119 could enrich Sin3 complex but not
305 OGT (Fig. 2C), we considered whether OGT might be recruited to SAP25 independently of the
306 Sin3 complex via a central region within SAP25. To examine whether SAP25 could capture
307 OGT independently of the other complexes, we plotted dNSAF values for several representative
308 proteins of these complexes for the SAP25 WT, SAP25 50-130, and SAP25 Δ110-119
309 purifications (Fig. 5A). We found that while SAP25 WT and SAP25 50-130 could both capture
310 OGT and OGT binding partner TET2, the mutant with a disrupted central region (SAP25 Δ110-
311 119) failed to capture OGT and TET2. The interaction between SAP25 50-130 and OGT was
312 unlikely to be via either Sin3 or SCF(FBXO3) complexes as neither representative subunits
313 SIN3A nor FBXO3 were detected in SAP25-50-130 purifications. Interestingly, USP11 was
314 detected in all purifications, suggesting a different binding mechanism between SAP25 and
315 USP11.

316 Finally, we made further mutations in the vicinity of the SAP25 110-119 region and tested the
317 ability of two new versions of SAP25, Halo-SAP25 LL112/113AA and SLK109-111AAA to
318 capture recombinant FLAG-OGT. Having confirmed that Halo-SAP25 WT could capture
319 FLAG-OGT as expected (Fig. 5B), we observed that, although we captured negligible FLAG-
320 OGT with Halo-SAP25 P114-117A (Fig. 5C), mutations just before this region (SLK109-
321 111AAA and LL112-113AA) did not abrogate SAP25 capture of OGT. Thus, although some
322 changes to the SAP25 110-119 region disrupt the SAP25/OGT interaction, other modest changes
323 do not.

324 In conclusion, both our AP-MS data Western blot analysis support that OGT can be recruited to
325 SAP25 independently of the Sin3 complex. We consistently identified OGT in SAP25
326 purifications (Fig. 1, Fig. 2C) together with the OGT binding partners TET2 and TET3 (14, 16),,
327 but did not identify OGT copurifying with any other Sin3 complex baits, including Halo-SIN3A,
328 in the absence of SAP25 (Fig. 1B). We mapped SAP25 region 110-119 as necessary for
329 recruitment of OGT but not the Sin3 complex, and we determined that SAP25 50-130 is
330 sufficient for OGT capture but not for Sin3 complex capture (Fig. 5). These results suggest that
331 SAP25 may play a vital role in recruiting OGT to the Sin3 complex to participate in modulating
332 post-translational modifications through O-linkage of the monosaccharide, N-acetylglucosamine
333 (O-GlcNAc).

334

335

336 DISCUSSION

337 *HEK293 cells as a natural knock-out line for SAP25.* We have previously published several
338 studies to characterize the interaction network between Sin3 complex components (31) using a
339 robust AP-MS approach combining Halo affinity purification with multidimensional protein
340 identification technology (MudPIT). Although SAP25 had been reported as a *bona fide*
341 component of Sin3 by Shiio et al. in 2006 (11), we were never able to detect endogenous SAP25
342 in Sin3 complexes isolated via other Sin3 subunits. However, exogenously expressed Halo-
343 SAP25 did capture Sin3 components (15). RNASeq analysis revealed that SAP25 was not
344 expressed in the HEK293 cells we used for these affinity purifications (15). Intriguingly, the O-
345 GlcNAc transferase OGT and TET1/2/3 DNA methylases, which are known to be associated
346 with Sin3/HDAC (12-14), were also never detected from these various purifications from Flp-
347 InTM-293 cells, except in the Halo-SAP25 dataset. Therefore, SAP25 appears to be necessary for
348 the recruitment of these enzymatic complexes to Sin3/HDAC. To test this hypothesis further, we
349 used 293T cells as a natural SAP25 knockout cell line to identify interaction partners uniquely
350 pulled down by SAP25 and dissect how truncations, deletions, and point-mutations within
351 SAP25 sequence affect these interactions without the competition for interaction from
352 endogenous full-length SAP25.

353 To SAP25 To identify SAP25 unique interactors, we compared the Halo-SAP25 copurified
354 proteins with the ones identified from AP-MS analysis of eleven Halo-tagged Sin3Sin3 complex
355 baits (Fig.1). In addition to the recovery of OGT and TET1/2/3 only in the presence of
356 exogenous SAP25, two additional proteins/protein complexes with established enzymatic
357 activities captured our attention: an FBXO3 based SCF ubiquitin ligase and a deubiquitinase
358 (USP11), both of which have yet to be linked to the Sin3/HDAC complex. Having established
359 that Halo-SAP25 captures unique interactors, we considered the mechanisms that might explain
360 this. One possibility was that SAP25 facilitates binding of these other complexes to other Sin3
361 complex subunits. A second possibility was that SAP25 functions as an adaptor protein that
362 provides a platform for the recruitment of different complexes via different regions of SAP25.

363 To test the possibility that SAP25 functions as an adaptor protein, we set out to map the regions
364 of SAP25 responsible for capturing the different protein complexes. Consistent with previous
365 observations with mouse SAP25 (11), we demonstrate that human SAP25 interacts with the Sin3
366 complex at via amino acids 149-150 positioned near the C-terminus of SAP25. Although we
367 observed that this C-terminal region determines the capture of all Sin3 complex subunits (Fig. 2),
368 it is possible that the interaction is mediated via the SIN3A scaffold subunit. Shiio and coworkers
369 had previously established that GST-tagged mouse SAP25 could capture in vitro translated
370 mSin3A in the absence of other Sin3 subunits. We therefore propose that human SAP25 recruits
371 Sin3 complexes, likely via SIN3A, through a region in the SAP25 C terminus with SAP25 amino
372 acids LL149/150 required and 131-168 sufficient for the interaction (Fig. 3).

373 We next investigated whether other protein complexes with enzymatic enzymatic activities dock
374 with different regions of SAP25. We show that the N-terminus of SAP25 associates with three
375 components of SCF(FBXO3). Deletion of AAs 21-40 results in loss of association, while
376 expression of a much shorter SAP25 (AAs 16-30) is sufficient for SCF(FBXO3) capture (Fig. 4).

377 Finally, we found that a central region of SAP25 (AAs 50-130) captures both OGT/TET and
378 USP11 protein without capturing the Sin3 or SCF(FBXO3) complexes (Fig. 5). USP11
379 recruitment likely does not depend on OGT/TET as deleting SAP25 amino acids 110-119 results
380 in the loss of OGT but not USP11 (Fig. 5). Therefore, we have established a model in which
381 distinct discrete regions of SAP25 are responsible for docking with Sin3, SCF(FBXO3),
382 OGT/TET, and USP11 (Fig. 6). Taken together, these findings establish a distinct role for SAP25
383 as an adaptor protein that can separately recruit SCF(FBXO3), USP11, and OGT/TET to the
384 theSin3 complex.

385 Having established that SAP25 likely provides a platform for various complexes to assemble
386 independently but in proximity, we now consider the possible roles these complexes might play
387 while docked to SAP25. Four of these complexes are involved in protein post-translational
388 modification – ubiquitination (SCF(FBXO3), deubiquitination (USP11), O-GlcNAcylation
389 (OGT), or deacetylation (Sin3/HDAC) – while the TET proteins are DNA demethylases (Fig. 6).
390 Although it is well established that the Sin3 complex represses gene transcription by
391 deacetylating histones, the targets of the other complexes when recruited to Sin3/HDACs by
392 SAP25 are not known.

393 *Association of SAP25/Sin3 with USP11.* USP11 is a ubiquitin hydrolase that post-translationally
394 modifies target proteins by removing ubiquitin. Proteins can be ubiquitinated through
395 conjugation to either the N-terminus or to one of the seven lysines within ubiquitin. Although
396 K48 linked ubiquitination is well known for targeting proteins for destruction by the proteosome,
397 cleavage assays have indicated that USP11 favors targeting K6, K11, K33, and K63 linked
398 ubiquitin chains (41). Of these, K63 ubiquitination has been well characterized and is thought to
399 coordinate a variety of processes including DNA repair (reviewed in (42)). Timely
400 transcriptional repression is important for initiating DNA repair and several lines of evidence
401 have also linked USP11 to transcriptional repressor complexes.

402 First, USP11 was shown to physically interact with the components MTA2, MBD3, and HDAC2
403 of the transcriptional repressor NuRD (28). The HDAC1/2 histone deacetylases and RBBP4/7
404 subunits form a core complex shared between NuRD and Sin3/HDAC complexes (Fig. 6A-B –
405 green ribbons). In the same study, NuRD and USP11 were also recruited together to UV laser
406 induced sites of DNA damage where USP11 was shown to deubiquitinate histones H2A
407 (K119Ub) and H2B (K120Ub). Ting and co-workers proposed that USP11 might be influencing
408 the DNA repair process by helping to remove repair factors during the later periods of DNA
409 damage response (28). In addition to NuRD, USP11 was found to interact with the PCGF2
410 (MEL18) subunit of the polycomb repressive complex PRC1 (43). PRC1 complex acts as an E3
411 ubiquitin ligase to ubiquitinate histone H2AK119. In this context, USP11 was not seen to affect
412 H2A ubiquitination, but rather to target PRC1 complex subunits (MEL18, BMI1, and RING1)
413 for deubiquitination. Maertens and coworkers proposed that here, USP11 was modulating the
414 degradation of these PRC1 subunits, and hence the availability of PRC1 for repression of target
415 genes such as *INK4a*. Finally, USP11 targets and stabilize the promyelocytic protein PML (44).
416 PML interacts directly with the Sin3 complex components mSin3A and HDAC1 (45) and a pool
417 of SAP25 has also been found colocalized with PML in PML nuclear bodies (11) consistent with

418 a possible role for SAP25 in recruiting USP11 to the Sin3 complex for targeting Sin3-bound
419 PML. To conclude, USP11 has been accompanying several complexes involved in
420 transcriptional repression including NuRD, PRC1 and PML, and may target either complex
421 subunits or histones (H2A/B) for deubiquitination.

422 *Association of SAP25/Sin3 with SCF(FBXO3).* In contrast to USP11, the SCF(FBXO3) complex
423 functions as an E3 ubiquitin ligase, but like USP11, SCF(FBXO3) has also been observed to
424 interact with PML via the FBXO3 subunit (46). Shima and coworkers proposed that
425 SCF(FBXO3) does not target PML itself, but rather targets transcriptional coactivators (p300 and
426 HIPK2) for ubiquitination and degradation. PML interaction with SCF(FBXO3) inhibits this
427 degradation of coactivators, stabilizing transcription. This raises the possibility that SAP25 also
428 controls SCF(FBXO3) targeting of coactivators. SCF(FBXO3) also targets the transcription
429 factor AIRE via the FBXO3 subunit (35). Shao and coworkers found that although SCF(FBXO3)
430 does appear to target the transcription factor for degradation, ubiquitination of AIRE also
431 increases its binding to transcription elongation factor P-TEFb, ensuring proper transcription
432 elongation of AIRE regulated genes. Finally, SCF(FBXO3) may play a role in controlling
433 inflammation. Specifically, FBXO3 targets another F box protein FBX12 for degradation,
434 stimulating inflammation (47). Similarly, SAP25 has also been proposed to help control
435 expression of inflammatory genes (18).

436 *Association of SAP25/Sin3 with OGT and TET proteins.* OGT, an enzyme that catalyzes the
437 addition of O-linked N-acetylglucosamine (O-GlcNAc) monosaccharides (12), is essential for
438 cell survival (48), and is enriched in the nucleus where it plays a functional role in regulating
439 transcription (reviewed in (49)). Nuclear OGT may target histones. Specifically, O-
440 GlcNAcylation of histone H2B by OGT promotes its monoubiquitination at K120 (the same
441 residue deubiquitinated by USP11) (50), possibly to create an anchor to recruit the E3 ubiquitin
442 ligase RNF20/40.

443 Several lines of evidence have previously suggested that OGT can act cooperatively with the
444 Sin3 complex. Initially, Yang et al. tested the ability of OGT to capture *in vitro* translated murine
445 Sin3A and determined that OGT contacts the mSin3A PAH4 domain. By recruiting Gal4-Sin3A
446 to promoters with or without exogenous OGT, they then demonstrated that OGT and mSin3A act
447 synergistically to repress transcription (12). Although they found that OGT and Sin3A interact *in*
448 *vitro*, the exact mechanism of OGT recruitment to the Sin3 complex in cells might be more
449 complex as we needed SAP25 for capture of OGT together with SIN3A (Fig. 1B). Later studies
450 also confirmed a role for murine Sin3A in functioning cooperatively with OGT. Having
451 characterized TET1 and TET2 as OGT interactors in mouse ES cell nuclei, Vella et al. purified
452 complexes via OGT and found them to contain mSin3A, HDAC1 and TET1/2 (51). After
453 showing that OGT and TET colocalize at transcription start sites, with TET being required for
454 OGT recruitment to promoters, they confirmed O-GlcNAcylation of both TET and mSin3A and
455 proposed them as OGT targets.

456 Other lines of evidence have focused on the interplay between the Sin3 complex and the TET
457 family of demethylases. Using mouse ES cells (which do express SAP25), mouse TET2 was
458 recently found copurifying with Sin3, SAP25, and OGT, with evidence suggesting a role for

459 TET2 (unrelated to its catalytic activity) in recruiting Sin3 complex to active enhancers (14). In
460 contrast to mouse ES cell experiments, and in line with our observations, Chen et al (52) detected
461 OGT but not Sin3 complex subunits copurifying with either tagged TET2 or TET3 purified from
462 293T cells (which we have shown lack SAP25 (15)). Our finding that SAP25 acts as a bridge
463 between OGT and Sin3 explains the absence of Sin3 proteins in these TET2/3 purifications. It is
464 possible that a different recruitment mechanism governs the association of TET1 with Sin3.
465 TET1, OGT and Sin3 complex subunits do copurify (53), but recently, TET1 was shown to
466 interact with the SIN3A PAH1 domain (the same domain that interacts with SAP25) (13). A
467 separate recruitment mechanism for TET1 might explain why we find TET2/3 but not TET1
468 copurifying with SAP25 (Fig. 1B).

469 *Mining the Halo-SAP25 datasets for additional unique associations.* We have shown that the
470 combination of statistical analysis with deleted/mutated/truncated versions of SAP25 yielded
471 biologically relevant and unique interaction partners. We filtered the full-length and mutant
472 datasets for proteins that were significantly enriched in pull-downs from cells stably expressing
473 Halo-SAP25 WT (Table S1A), not detected with other Sin3/HDAC subunits in the absence of
474 SAP25 (Table S1A), and significantly depleted in specific deletions or mutation and/or
475 recovered by pull-down with the corresponding region (Table S2A). Two additional proteins
476 passed this filtering criteria and, intriguingly, both are LIM domain proteins belonging to the
477 zyxin/ajuba family: the Wilms tumor protein 1-interacting protein (WTIP, NP_001073905.1) and
478 the LIM domain-containing protein ajuba isoform 1 (NP_116265.1). Both proteins reproducibly
479 interacted with full-length Halo-SAP25 purified from stable cell lines and neither were detected
480 in any of the 43 independent AP-MS analyses using 11 Sin3 subunits as baits (Table S1A, ranks
481 27-28); neither were detected in the Δ110-119 and P114-117A SAP25 mutants but both were
482 recovered from the corresponding affinity purification using region 50-130 as bait (Table S2A,
483 ranks 27-28), identifying this region of SAP25 as sufficient for this interaction. WTIP (54) and
484 Ajuba (55) contain 3 LIM domains in their C-terminal region and have been shown to interact
485 with each other and another LIM domain protein LIMD1 (56), which was detected at low levels
486 in the Halo-SAP25 transient affinity-purifications and exhibited the same pattern of
487 depletion/recovery in the SAP25 mutant analyses (Table S2A, ranks 29), which suggests that
488 Halo-SAP25 pulled them down as a complex.

489 LIM domains are made of two zing fingers loops separated by a short hydrophobic linker of two
490 amino acids (as reviewed in (57)). LIM domain proteins are considered scaffolds in the assembly
491 of multiple complexes. As such, WTIP, Ajuba, and LIMD1 have been involved in many cellular
492 processes such as cell proliferation (58-61) and fate determination (59); cytoskeletal organization
493 (62, 63); gene silencing through microRNA (56) and repression of gene transcription (64-67);
494 mitosis (63, 68); cell differentiation (66) and migration (69). One of the main characteristics of
495 LIM domain proteins of the zyxin/ajuba family is their ability to shuffle between the cytoplasm
496 and the nucleus (59, 64), hence carrying signaling cues from external stimuli and sites of cell-cell
497 adhesion on the plasma membrane to the nucleus where they function as co-repressors of specific
498 genes. In this context, their association with SAP25 is intriguing because of the existence of a
499 pool of cytosolic SAP25 (Fig. 2A). Another interesting observation is that the nuclear
500 localization of xzytin, Ajuba orthologue in mouse, requires its O-GlcNAcylation by OGT (70),

501 another protein we have shown here to interact with the same middle region of SAP25. Finally,
502 Ajuba has been linked previously to histone deacetylase activity by co-immunoprecipitation and
503 size exclusion chromatography of nuclear extracts from Jurkat T-cells followed by Western
504 blots. Because of the antibody-based approach to characterize these interactions, whether
505 specific HDAC1/2/3-containing complexes were involved could not be determined then. Since
506 SAP25 is highly expressed in Jurkat cells (clone E6-1; from (71)), SAP25 could serve as the link
507 between Ajuba and Sin3 complexes containing HDAC1/2.

508 *Conclusions.* Our work reveals the interplay between SAP25, several complexes with enzymatic
509 and regulatory functions, and the Sin3 complex. We hypothesize that SAP25 is acting as an
510 adaptor protein and recruits these complexes to the Sin3 complex, possibly to regulate
511 transcription by modulating post-translational and DNA modifications. Evidence from previous
512 studies suggests that SAP25 may act as a docking protein as it does not display any recognizable
513 DNA-binding motifs (11). Our topological and comparative proteomics analysis of Sin3 complex
514 baits supports our hypothesis. Recently, SAP25 and HDAC were linked with the expression of
515 inflammation and antiviral response genes (18). Furthermore, FBXO3, a distinctive interacting
516 partner of SAP25, is associated with breast cancer metastasis induced by PI3K and is associated
517 with USP4 stabilization (72). The presence of USP11 in SAP25 purifications could indicate a
518 role for SAP25 in coordinating transcriptional repression by Sin3/HDAC with DNA damage
519 repair. These results suggest promising directions for further research into the function of
520 SAP25, which could help to determine whether SAP25 functions to recruit these enzymatic
521 activities to the Sin3 complex to regulate transcriptional repression.

522

523 **Acknowledgements:** The research presented here was supported by the Stowers Institute for
524 Medical Research and the National Institute of General Medical Sciences of the National
525 Institutes of and R35GM145240 (M.P.W.). The content is solely the responsibility of the authors
526 and does not necessarily represent the official views of the National Institutes of Health.
527

528 **Author Contributions:**

529 Conceptualization: CAB, PG, MPW
530 Investigation: PG, CAB, BB, MS
531 Formal Analysis: PG, CAB, BB, MS, LF
532 Resources: CAB, JT
533 Data Curation: CAB, PG, BB, MS, LF
534 Writing: PG, CAB, LF, MPW
535 Supervision: LF, MPW
536 Funding acquisition: MPW
537

538 **Declaration of Interests:** The authors declare that they have no conflicts of interest related to
539 the work presented here.

540

541 **Figure Legends:**

542 **Figure 1: SAP25SAP25 captures a distinct subset of proteins that are not part of the Sin3**
543 **complex.** (73) **A.** Significance plot showing proteins enriched by stably expressed Halo-SAP25
544 (Flp-In™-293 cells) compared with controls ($\log_2\text{FC} > 2$, Z statistic > 3). Significantly enriched
545 proteins include subunits of the Sin3 complex, as well as an O-linked glycosylase (OGT), DNA
546 demethylases (TET2/3), an E3 ubiquitin ligase complex (FBXO3, SKP1, CUL1), and ubiquitin
547 hydrolase USP11 (Table S1A). **B.** Expression of SAP25 associated proteins in HEK293 cells in
548 the absence of Halo-SAP25. FPKM for the indicated transcripts are taken from our previously
549 published RNAseq dataset (32) available from the NCBI GEO repository under accession
550 number GSE79656. Values are the mean of three biological replicates and error bars represent
551 standard deviation. **C.** Hin3other enzymatic and regulatory proteins observed in purifications
552 from Halo-SAP25 or from 1111 other stable cell lines expressing Halo-tagged Sin3 complex
553 subunits. Values are $\log_2\text{FC}$ (enrichment compared with Flp-In™-293 cell control purifications)
554 (Table S1A). The comparative heatmap was generated using the Morpheus online tool
555 (<https://software.broadinstitute.org/morpheus>). Clustering was performed with Euclidean
556 distance and average linkage.

557 **Figure 2: Different2Different regions of SAP25 are important for capture of either the Sin3**
558 **complex or the other enzymatic and regulatory proteins.** **A.** Localization and purification of
559 Halo-SAP25 in 293T cells. Left: Halo-SAP25 is labeled with HaloTag® TMRDirect™
560 fluorescent ligand (red) with DNA (nuclei) stained with Hoechst dye (blue). Right: SDSSDS-
561 PAGE/silver stain analysis of proteins captured by Halo-SAP25 transiently expressed in 293T
562 cells. **B.** Halo-tagged mutant versions of SAP25 were constructed as indicated for expression in
563 293T cells prior to AP-MS analysis. **C.** Hierarchical clustering of Sin3 complex proteins and
564 other enzymatic and regulatory proteins observed in purifications using wild-type and mutant
565 versions of SAP25 baits expressed in 293T cells. Values are $\log_2\text{FC}$ with negative and missing
566 values set to zero (Table S2A). The comparative heatmap was generated using the Morpheus
567 online tool (<https://software.broadinstitute.org/morpheus>).53). Clustering was performed with
568 Euclidean distance and average linkage. **D.** Topological analysis of SAP25 mutants. TopS scores
569 are calculated from spectral counts assigned to proteins detected in the purifications indicated
570 (Table S3).

571 **Figure 3: A SAP25 C-terminal region captures the Sin3 complex.** **A.** SAP25 region 131-168
572 is sufficient and amino acids 149-150 are required for interaction with the Sin3 complex.
573 Quantitative (dNSAF) values are shown for Sin3 complex proteins identified in Halo-SAP25
574 WT, Halo-SAP25 131-168, and Halo-SAP25 LL149-150AA purifications. Bait proteins were
575 transiently expressed in 293T cells. Values are averages of at least three biological replicates and
576 error bars represent standard deviation. **B.** Sin3 complex proteins interact with Halo-SAP25 but
577 not Halo-SAP25 LL149-150AA. 293T cell lysates transfected with either Halo control, Halo-
578 SAP25 or Halo-SAP25 LL149-150AA were subjected to Halo affinity capture. Copurified
579 proteins were resolved by SDS-PAGE and identified by Western blotting using the indicated
580 antibodies. **C.** Inferred position of SAP25-Sin3 complex binding. complex binding.

581 **Figure 4: 4Association between SCF(FBXO3) and an N-terminal region of SAP25. A.**
582 SAP25 region 16-30 is sufficient and region 21-40 is required for interaction with SCF(FBXO3).
583 Quantitative (dNSAF) values for SAP25, SCF(FBXO3) complex subunits, and SIN3A are shown
584 for Halo-SAP25 WT Halo-SAP25 16-30 and Halo-SAP25 Δ21-40purifications. Bait proteins
585 were transiently expressed in 293T cells. Values are the average of at least three biological
586 replicates and error bars represent standard deviation. **B.** FBXO3captures SAP25 but no other
587 Sin3 complex subunits. SNAP-FLAG-FBXO3 was co-expressed with the indicated Halo-tagged
588 proteins and the resulting lysates subjected to SNAP affinity purification. Copurified proteins
589 were identified by SDS-PAGE followed by Western blotting using the indicated antibodies. **C.**
590 Amino acid positions within SAP25 region 16-30 are important for FBXO3 capture Proteins
591 captured by either Halo-SAP25or Halo-SAP25 S26/27/40D T35E were resolved by SDS-PAGE
592 and detected by Western blotting using the indicated antibodies. Mutated amino acids within an
593 N-terminal region are highlighted in red. **D.** Inferred position within SAP25 required for FBXO3
594 binding. Possible abrogation of SAP25/FBXO3 interaction by modified residues within the
595 binding region are indicated by red Ps.

596 **Figure 5: 5OGT/TET interacts with a central SAP25 region. A.** SAP25 region 50-130 is
597 sufficient and region 110-119 is required for OGT/TET capture. Quantitative (dNSAF) values
598 are shown for selected proteins identified in purifications prepared using the indicated Halo-
599 tagged versions of SAP25. Values are averages of at least three biological replicates and error
600 bars represent standard deviation. **B.** Halo-SAP25 captures FLAG-OGT. FLAG-OGT was
601 expressed with or without Halo-SAP25 in 293T cells. Proteins identified in the resulting Halo-
602 affinity purifications (eluted by TEV cleavage of Halo) were identified by SDS-PAGE followed
603 by Western blot analysis using the indicated antibodies. **C.** Effect of disrupting sub-regions
604 within Halo-SAP25 110-119 on OGT. FLAG-OGT was on OGT capture was co-expressed with
605 the indicated versions of SAP25, and the resulting Halo purifications analyzed by SDS-PAGE
606 followed by Western blotting using the indicated antibodies. **D.** SAP25 region required for OGT
607 binding.

608 **Figure 6. Overview of the regions of SAP25 required or sufficient for capture of**
609 **SCFSCF(FBXO3), OGT, or the Sin3 complex. A-B.** Quantitative comparison of Sin3 complex,
610 SCF(FBXO3) complex, USP11, and OGT captured by the indicated versions of SAP25
611 expressed in 293T cells. Values on the Circos diagrams (74) are mean dNSAF x 100,000
612 (calculated from a minimum of three biological replicates). Subunits shared between the Sin3
613 and NuRD complexes are indicated by green ribbons. **C.** Predicted structure of SAP25
614 (AlphaFold AF-Q8TEE9-F1) with regions 16-30 (yellow), 50-130 (red), 131-168 (blue) and
615 lysines 149/150 (blue atoms) indicated. indicated

616

617

618 Materials and Methods

619 Materials

620 Magne® HaloTag® beads (G7281), HaloTag® polyclonal antibody (G9281) and TMRDirect™
621 fluorescent ligand (G2991) were purchased from Promega. AcTEV protease (#12575015) was
622 from Thermo Fisher Scientific. Rabbit anti-SAP30 (ab125187) and rabbit anti-SIN3A (ab3479)
623 polyclonal antibodies were from Abcam (Cambridge, United Kingdom). SNAP-Capture
624 magnetic beads (S9145S) were from NEB (Ipswich, MA). Salt Active Nuclease (SAN) was from
625 ArcticZymes (Tromso, Norway). Rabbit anti-FBXO3 (HPA002467) was from Atlas Antibodies.
626 Rabbit anti-HDAC1 (10197-1-AP) was from Proteintech. Rabbit anti-SAP25 (HPA062610-
627 100UL), and mouse anti-FLAG (F3165-2MG) were from Sigma. IRDye® 800CW labeled goat
628 anti-Rabbit (926-3211) and IRDye® 680LT labeled goat anti-Mouse (926-68020) secondary
629 antibodies were from LI-COR Biosciences. FLAG-OGT in pcDNA5FRT (75) was a gift from
630 the laboratory of Joan and Ron Conaway.

631 Cloning sequences to express Halo affinity tagged versions of SAP25 and Sin3 632 complex subunits

633 A codon optimized synthetic sequence (SAP25 in pIDTSmart (Amp)) coding for a 199 aa
634 sequence matching SAP25 (originally annotated as NP_001162153.1) was used to amplify
635 various sequences coding for different versions of SAP25 using the primers listed in
636 [Supplementary Data](#) (cloning of full-length SAP25 in pFN21A was described previously (15)).
637 This 199 AA sequence also matches the more recently annotated version NP_001335606.1
638 (SAP25 isoform 3). For transient expression, the resulting PCR products were subcloned into
639 either pFN21A (Promega) or Halo pcDNA5/FRT PacI PmeI (described previously (76)). The
640 construction of all stable cell lines except for Halo-SIN3A and Halo-SAP25 has been described
641 previously (15, 31). Halo-SIN3A was cloned from ORF Clone # FHC11647 (Promega) by first
642 mutating the codon for amino acid 109 from GCT (A) to GTT (V) to match the translated
643 sequence to NP_056292. The resulting sequence was then cloned into CMVd2 pcDNA5 PacI
644 PmeI (described previously (77)) using the primers listed in [Supplementary Data](#). Stable cell line
645 construction is described in Banks et al. (2018) (15). Halo-SAP25 was also cloned into CMVd2
646 pcDNA5 PacI PmeI for construction of a stable cell line. For expression of FLAG-OGT, the
647 mutations in the OGT1 insert (N764D and K1010E) in the original plasmid were corrected using
648 site directed mutagenesis. For expression of FBXO3, an FBXO3(NM_012175) ORF Clone was
649 purchased from GenScript (Cat. #OHU25332D), and the open reading frame amplified using the
650 [primers listed in Supplementary Data](#). The resulting PCR product was subcloned into SNAP-
651 FLAG-pcDNA5 (15).

652 Preparation of whole cell extracts

653 For transient expression of mutant versions of SAP25, whole cell lysates were prepared from
654 approximately 1×10^7 293T cells transiently transfected with the constructs indicated in the
655 figure legends as described previously (76). Cells were harvested 48 hours after transfection and
656 washed twice with ice-cold PBS. Cell pellets were frozen, thawed, and resuspended in

657 approximately 300 μ l lysis buffer containing 50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1%
658 Triton® X-100, 0.1% sodium deoxycholate, 0.1 mM benzamidine HCl, 55 μ M phenanthroline,
659 10 μ M bestatin, 20 μ M leupeptin, 5 μ M pepstatin A and 1 mM PMSF. The resulting lysate was
660 passed through a 26-gauge needle 10 times and centrifuged at 21, 000 x g for 30 minutes at 4°C.
661 The supernatant was diluted with 700 μ l of TBS (25 mM Tris-HCl pH 7.4, 137 mM NaCl, 2.7
662 mM KCl). Extracts were prepared from Flp-In™-293 stable cell lines as described previously
663 (76).

664 **Purification of recombinant protein complexes**

665 Lysates were incubated overnight at 4°C with Magne® HaloTag® beads prepared from 0.1 ml
666 bead slurry (transiently transfected cells) or 0.2 ml of bead slurry (stable cell lines). The beads
667 were isolated using a DynaMag-2 Magnet and the supernatant discarded. Beads were washed 4
668 times in buffer containing TBS (25 mM Tris-HCl (pH 7.4), 137 mM NaCl, 2.7 mM KCl) and
669 0.05% Nonidet® P40. To elute bound proteins, beads were incubated in 100 μ l elution buffer (25
670 mM Tris-HCl (pH 8.0), 0.5 mM EDTA, 1 mM DTT, and 2 Units AcTEV) for 2h at 25°C. To
671 purify SNAP-tagged proteins, cell lysates were allowed to incubate overnight at 4 °C with
672 SNAP-Capture magnetic beads followed by washing with wash buffer as described above.
673 Elution of bound proteins was accomplished by incubating the beads with a buffer containing 50
674 mM Tris-HCl pH 8.0, 0.5 mM EDTA, 1 mM DTT, and 1 Unit of PreScission Protease at 4 °C
675 overnight.

676 **Digestion of proteins for mass spectrometry**

677 HaloTag® purified protein complexes were TCA precipitated and resuspended in buffer
678 containing 100 mM Tris-HCl, pH 8.5 and 8 M urea. Disulfide bonds were reduced with 5 mM
679 TCEP (tris (2-carboxyethyl) phosphine) for 30 minutes at room temperature and bond
680 reformation prevented by alkylation with 10 mM chloroacetamide for 30 minutes at room
681 temperature in the dark. Proteins were initially digested with the addition of 0.1 μ g of Lys-C
682 followed by incubation in a ThermoMixer® (Eppendorf) for 6 hours at 37°C with shaking.
683 Samples were diluted to 2 M urea by the addition of an appropriate volume of 100 mM Tris-HCl,
684 pH 8.5. Proteins were further digested with the addition of 2 mM CaCl₂ and 0.5 μ g trypsin, and
685 subsequent incubation in a ThermoMixer® at 37°C overnight. Reactions were quenched with the
686 addition of formic acid (5% final concentration) prior to mass spectrometry analysis.

687 **Liquid chromatography mass spectrometry analysis**

688 Digested peptides were analyzed using an LTQ Linear Ion Trap mass spectrometer (Thermo
689 Scientific) run in positive ion mode connected to an Agilent 1100 HPLC system. Samples were
690 first loaded offline onto 3-phase microcapillary MudPIT columns as described previously (78)
691 and eluted into the mass spectrometer using a series of 10 ~2-hour MudPIT steps.
692 Chromatography gradients used a combination of Buffer A (5% acetonitrile, 0.1% formic acid),
693 Buffer B (80% acetonitrile, 0.1% formic acid), and Buffer C (500 mM ammonium acetate, 5%
694 acetonitrile, 0.1% formic acid).

695 **Processing of tandem mass spectrometry data**

696 Resulting .raw files were converted to .ms2 files using RAWDistiller v. 1.0. The ProLuCID
697 algorithm version 1.3.5 was used for searching. Spectra from stable cell line experiments were
698 matched to a database containing 48080 human protein sequences downloaded from the National
699 Center for Biotechnology Information (NCBI) (2022-04-12 release), together with 427 common
700 contaminant sequences and shuffled versions of all sequences to estimate false discovery rates
701 (FDRs). The total number of sequences searched was 97014. Spectra from transient transfection
702 experiments were searched with the same database, but with the addition of 8 sequences for
703 recombinant mutant versions of SAP25 (together with 8 further shuffled sequences). Data were
704 searched for peptides with a static modification of 57.0215 on cysteine residues
705 (carbamidomethylation) and a variable modification of 15.9949 on methionine residues
706 (oxidation). A mass tolerance of 500 ppm was used for both precursor and fragment ions. Only
707 fully tryptic peptides were considered.

708 The entire in-house software suite (kite), used for the processing and analysis of the mass
709 spectrometry datasets, is available in Zenodo (79). We used the in-house software program
710 swallow in combination with DTASelect v. 1.9 (80) to filter peptide spectrum matches (PSMs)
711 resulting in mean spectrum, peptide, and protein FDRs below 5% (Tables S1B-M and S2B-I).
712 The mean spectral FDR for the 36 MudPIT runs (transient transfection experiments) was $0.714\% \pm 0.263\%$ (standard deviation), and the mean protein FDR was $3.958\% \pm 1.838\%$ (standard
713 deviation). For stable cell line experiments, the mean spectral FDR for the 54 MudPIT runs was
714 $0.468\% \pm 0.173\%$ (standard deviation), and the mean protein FDR was $2.133\% \pm 1.139\%$
715 (standard deviation). The minimum peptide length was 7 amino acids. Proteins identified in
716 different runs were compared using sandmartin (79), Contrast (80), and NSAF7 software. The
717 parsimony option in Contrast was used to remove proteins that were subsets of others.
718

719 Experimental design and statistical rationale

720 AP-MS analyses required at least three biological replicates (Tables S1-S2). The number of
721 biological replicates for analyses involving a stable cell line was: 5 (Halo-control); 5 (Halo-
722 SAP25). For analyses using transient cells the number of biological replicates employed was: 9
723 (Halo-control); 4 (Halo-SAP25); 4 (Halo-SAP25 Δ 21-40); 4 (Halo-SAP25 Δ 110-119); 3 (Halo-
724 SAP25 P114-117A); 3 (Halo-SAP25 LL149-150AA); 3 (Halo-SAP25 16-30); 3 (Halo-SAP25 50-
725 130); 3 (Halo-SAP25 131-168). We employed QPROT, for analyzing differential protein
726 expression which is based on protein intensity data (27). A high-confidence interaction was
727 confirmed when the interaction parameters satisfied the conditions of $\log_2\text{FC} > 2$ and Z-statistic
728 > 3 .

729 Fluorescence microscopy

730 HEK293T cells were seeded to 40% confluence in MatTek culture dishes and incubated at 37 °C
731 in 5% CO₂ for 24 hours. Cells were then subsequently transfected with plasmid expressing Halo-
732 SAP25. HaloTag® TMRDirect™ was introduced to the culture medium at a concentration of 20
733 nm to label Halo-tagged proteins. The cells were then incubated overnight at 37 °C in 5% CO₂.
734 Next day, cells were stained with Hoechst dye for 1 hour to label nuclei followed by washing

735 with Opti-MEM® reduced serum medium. The cells were then visualized using an LSM-700
736 Falcon confocal microscope.

737 **Topological scoring**

738 Topological scoring was performed for each protein as described previously (23, 81). Proteins
739 significantly enriched with $\log_2\text{FC} > 2$ and Z-statistics > 3 were selected as input to the TopS
740 Shiny application, available at <https://github.com/WashburnLab/Topological-score-TopS>. This
741 application uses the mean spectral counts for each bait across all baits to derive TopS score,
742 signifying a probability of binding. Proteins were filtered out based on TopS value greater than
743 10 (Table S3).

744 **Data availability**

745 We have reported some of the raw mass spectrometry data used in this study previously (all
746 searches are new to this study). A summary of the runs used here, together with details of where
747 they were first reported is provided in Table S4. Mass spectrometry data has been deposited in
748 the MassIVE repository (<http://massive.ucsd.edu>) with the data identifiers MSV000093553
749 (transient transfection data) and MSV000093576 (stable cell line data). Original data underlying
750 this manuscript generated at the Stowers Institute can be accessed after publication from the
751 Stowers Original Data Repository at <http://www.stowers.org/research/publications/libpb-2438>.

752

753

754

755 **References**

- 756 1. Latypova, X., Vincent, M., Mollé, A., Adebambo, O. A., Fourgeux, C., Khan, T. N. *et al.*
757 (2021) Haploinsufficiency of the Sin3/HDAC corepressor complex member SIN3B
758 causes a syndromic intellectual disability/autism spectrum disorder *Am J Hum Genet*
759 **108**, 929-941 10.1016/j.ajhg.2021.03.017
- 760 2. Verza, F. A., Das, U., Fachin, A. L., Dimmock, J. R., and Marins, M. (2020) Roles of
761 Histone Deacetylases and Inhibitors in Anticancer Therapy *Cancers (Basel)* **12**,
762 10.3390/cancers12061664
- 763 3. Liu, M., Saha, N., Gajan, A., Saadat, N., Gupta, S. V., and Pile, L. A. (2020) A complex
764 interplay between SAM synthetase and the epigenetic regulator SIN3 controls
765 metabolism and transcription *J Biol Chem* **295**, 375-389 10.1074/jbc.RA119.010032
- 766 4. Li, W., Zhang, Z., Liu, X., Cheng, X., Zhang, Y., Han, X. *et al.* (2017) The FOXN3-
767 NEAT1-SIN3A repressor complex promotes progression of hormonally responsive breast
768 cancer *J Clin Invest* **127**, 3421-3440 10.1172/jci94233
- 769 5. Wu, J., Huang, X., Li, X., Zhou, H., Chen, X., Chen, Y. *et al.* (2024) Suppression of the
770 long non-coding RNA LINC01279 triggers autophagy and apoptosis in lung cancer by
771 regulating FAK and SIN3A *Discov Oncol* **15**, 3 10.1007/s12672-023-00855-4
- 772 6. Jankowski, K., Jagana, V., Bisserier, M., and Hadri, L. (2023) Switch-Independent 3A:
773 An Epigenetic Regulator in Cancer with New Implications for Pulmonary Arterial
774 Hypertension *Biomedicines* **12**, 10.3390/biomedicines12010010
- 775 7. Kwon, Y. J., Petrie, K., Leibovitch, B. A., Zeng, L., Mezei, M., Howell, L. *et al.* (2015)
776 Selective Inhibition of SIN3 Corepressor with avermectins as a Novel Therapeutic
777 Strategy in Triple-Negative Breast Cancer *Mol Cancer Ther* **14**, 1824-1836
778 10.1158/1535-7163.MCT-14-0980-t
- 779 8. Buljan, M., Banaei-Esfahani, A., Blattmann, P., Meier-Abt, F., Shao, W., Vitek, O. *et al.*
780 (2023) A computational framework for the inference of protein complex remodeling from
781 whole-proteome measurements *Nat Methods* **20**, 1523-1529 10.1038/s41592-023-02011-
782 w
- 783 9. Marcum, R. D., Hsieh, J., Giljen, M., Justice, E., Daffern, N., Zhang, Y. *et al.* (2022) A
784 capped Tudor domain within a core subunit of the Sin3L/Rpd3L histone deacetylase
785 complex binds to nucleic acid G-quadruplexes *J Biol Chem* **298**, 101558
786 10.1016/j.jbc.2021.101558
- 787 10. Kumari, S., Rehman, A., Chandra, P., and Singh, K. K. (2023) Functional role of SAP18
788 protein: From transcriptional repression to splicing regulation *Cell Biochem Funct*
789 10.1002/cbf.3830
- 790 11. Shioi, Y., Rose, D. W., Aur, R., Donohoe, S., Aebersold, R., and Eisenman, R. N. (2006)
791 Identification and characterization of SAP25, a novel component of the mSin3
792 corepressor complex *Mol Cell Biol* **26**, 1386-1397 10.1128/MCB.26.4.1386-1397.2006
- 793 12. Yang, X., Zhang, F., and Kudlow, J. E. (2002) Recruitment of O-GlcNAc Transferase to
794 Promoters by Corepressor mSin3A: Coupling Protein O-GlcNAcylation to
795 Transcriptional Repression *Cell* **110**, 69-80 [https://doi.org/10.1016/S0092-8674\(02\)00810-3](https://doi.org/10.1016/S0092-8674(02)00810-3)
- 797 13. Chandru, A., Bate, N., Vuister, G. W., and Cowley, S. M. (2018) Sin3A recruits Tet1 to
798 the PAH1 domain via a highly conserved Sin3-Interaction Domain *Sci Rep* **8**, 14689
799 10.1038/s41598-018-32942-w

800 14. Flores, J. C., Sidoli, S., and Dawlaty, M. M. (2023) Tet2 regulates Sin3a recruitment at
801 active enhancers in embryonic stem cells *iScience* **26**, 107170 10.11016/j.isci.2023.107170
802 15. Banks, C. A. S., Thornton, J. L., Eubanks, C. G., Adams, M. K., Miah, S., Boanca, G. *et*
803 *al.* (2018) A Structured Workflow for Mapping Human Sin3 Histone Deacetylase
804 Complex Interactions Using Halo-MudPIT Affinity-Purification Mass Spectrometry *Mol*
805 *Cell Proteomics* **17**, 1432-1447 10.1074/mcp.TIR118.000661
806 16. Deplus, R., Delatte, B., Schwinn, M. K., Defrance, M., Méndez, J., Murphy, N. *et al.*
807 (2013) TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT
808 and SET1/COMPASS *Embo j* **32**, 645-655 10.1038/emboj.2012.357
809 17. Vaidyanathan, K., Niranjan, T., Selvan, N., Teo, C. F., May, M., Patel, S. *et al.* (2017)
810 Identification and characterization of a missense mutation in the O-linked β -N-
811 acetylglucosamine (O-GlcNAc) transferase gene that segregates with X-linked
812 intellectual disability *J Biol Chem* **292**, 8948-8963 10.1074/jbc.M116.771030
813 18. John, S. P., Sun, J., Carlson, R. J., Cao, B., Bradfield, C. J., Song, J. *et al.* (2018) IFIT1
814 Exerts Opposing Regulatory Effects on the Inflammatory and Interferon Gene Programs
815 in LPS-Activated Human Macrophages *Cell Rep* **25**, 95-106.e106
816 10.1016/j.celrep.2018.09.002
817 19. McDermott, E., Ryan, E. J., Tosetto, M., Gibson, D., Burrage, J., Keegan, D. *et al.* (2016)
818 DNA Methylation Profiling in Inflammatory Bowel Disease Provides New Insights into
819 Disease Pathogenesis *J Crohns Colitis* **10**, 77-86 10.1093/ecco-jcc/jjv176
820 20. Hunter, M., Spiller, K. J., Dominique, M. A., Xu, H., Hunter, F. W., Fang, T. C. *et al.*
821 (2021) Microglial transcriptome analysis in the rNLS8 mouse model of TDP-43
822 proteinopathy reveals discrete expression profiles associated with neurodegenerative
823 progression and recovery *Acta Neuropathol Commun* **9**, 140 10.1186/s40478-021-01239-
824 x
825 21. Torrealba, E., Aguilar-Zerpa, N., Garcia-Morales, P., and Díaz, M. (2023) Compensatory
826 Mechanisms in Early Alzheimer's Disease and Clinical Setting: The Need for Novel
827 Neuropsychological Strategies *J Alzheimers Dis Rep* **7**, 513-525 10.3233/adr-220116
828 22. Morris, J. H., Knudsen, G. M., Verschueren, E., Johnson, J. R., Cimermancic, P.,
829 Greninger, A. L. *et al.* (2014) Affinity purification-mass spectrometry and network
830 analysis to understand protein-protein interactions *Nat Protoc* **9**, 2539-2554
831 10.1038/nprot.2014.164
832 23. Sardiu, M. E., Gilmore, J. M., Groppe, B. D., Dutta, A., Florens, L., and Washburn, M. P.
833 (2019) Topological scoring of protein interaction networks *Nat Commun* **10**, 1118
834 10.1038/s41467-019-09123-y
835 24. Meyer, K., and Selbach, M. (2015) Quantitative affinity purification mass spectrometry: a
836 versatile technology to study protein-protein interactions *Front Genet* **6**, 237
837 10.3389/fgene.2015.00237
838 25. Sahu, S. C., Swanson, K. A., Kang, R. S., Huang, K., Brubaker, K., Ratcliff, K. *et al.*
839 (2008) Conserved themes in target recognition by the PAH1 and PAH2 domains of the
840 Sin3 transcriptional corepressor *J Mol Biol* **375**, 1444-1456 10.1016/j.jmb.2007.11.079
841 26. Wolters, D. A., Washburn, M. P., and Yates, J. R., 3rd (2001) An automated
842 multidimensional protein identification technology for shotgun proteomics *Anal Chem*
843 **73**, 5683-5690 10.1021/ac010617e

844 27. Choi, H., Kim, S., Fermin, D., Tsou, C. C., and Nesvizhskii, A. I. (2015) QPROT: Statistical method for testing differential expression using protein-level intensity data in label-free quantitative proteomics *J Proteomics* **129**, 121-126 10.1016/j.jprot.2015.07.036

845 28. Ting, X., Xia, L., Yang, J., He, L., Si, W., Shang, Y. *et al.* (2019) USP11 acts as a histone deubiquitinase functioning in chromatin reorganization during DNA repair *Nucleic Acids Res* **47**, 9721-9740 10.1093/nar/gkz726

846 29. Zhang, Z., Bao, Z., Gao, P., Yao, J., Wang, P., and Chai, D. (2021) Diverse Roles of F-BoxProtein3 in Regulation of Various Cellular Functions *Front Cell Dev Biol* **9**, 802204 10.3389/fcell.2021.802204

847 30. Ito, R., Katsura, S., Shimada, H., Tsuchiya, H., Hada, M., Okumura, T. *et al.* (2014) TET3-OGT interaction increases the stability and the presence of OGT in chromatin *Genes Cells* **19**, 52-65 10.1111/gtc.12107

848 31. Adams, M. K., Banks, C. A. S., Thornton, J. L., Kempf, C. G., Zhang, Y., Miah, S. *et al.* (2020) Differential Complex Formation via Paralogs in the Human Sin3 Protein Interaction Network *Mol Cell Proteomics* **19**, 1468-1484 10.1074/mcp.RA120.002078

849 32. Banks, C. A., Boanca, G., Lee, Z. T., Eubanks, C. G., Hattem, G. L., Peak, A. *et al.* (2016) TNIP2 is a Hub Protein in the NF- κ B Network with Both Protein and RNA Mediated Interactions *Mol Cell Proteomics* **15**, 3435-3449 10.1074/mcp.M116.060509

850 33. Banks, C. A., Boanca, G., Lee, Z. T., Eubanks, C. G., Hattem, G. L., Peak, A. *et al.* (2016) TNIP2 is a Hub Protein in the NF- κ B Network with Both Protein and RNA Mediated Interactions *Mol Cell Proteomics* **15**, 3435-3449 10.1074/mcp.M116.060509

851 34. Wright, J. F. (2009) Transient transfection methods for clinical adeno-associated viral vector production *Hum Gene Ther* **20**, 698-706 10.1089/hum.2009.064

852 35. Shao, W., Zumer, K., Fujinaga, K., and Peterlin, B. M. (2016) FBXO3 Protein Promotes Ubiquitylation and Transcriptional Activity of AIRE (Autoimmune Regulator) *J Biol Chem* **291**, 17953-17963 10.1074/jbc.M116.724401

853 36. Ozcan, S., Andrali, S. S., and Cantrell, J. E. (2010) Modulation of transcription factor function by O-GlcNAc modification *Biochim Biophys Acta* **1799**, 353-364 10.1016/j.bbaram.2010.02.005

854 37. Constable, S., Lim, J. M., Vaidyanathan, K., and Wells, L. (2017) O-GlcNAc transferase regulates transcriptional activity of human Oct4 *Glycobiology* **27**, 927-937 10.1093/glycob/cwx055

855 38. Li, H., Wang, Y., Feng, S., Chang, K., Yu, X., Yang, F. *et al.* (2023) Reciprocal regulation of TWIST1 and OGT determines the decitabine efficacy in MDS/AML Cell Commun Signal **21**, 255 10.1186/s12964-023-01278-y

856 39. Whisenhunt, T. R., Yang, X., Bowe, D. B., Paterson, A. J., Van Tine, B. A., and Kudlow, J. E. (2006) Disrupting the enzyme complex regulating O-GlcNAcylation blocks signaling and development *Glycobiology* **16**, 551-563 10.1093/glycob/cwj096

857 40. Adams, G. E., Chandru, A., and Cowley, S. M. (2018) Co-repressor, co-activator and general transcription factor: the many faces of the Sin3 histone deacetylase (HDAC) complex *Biochem J* **475**, 3921-3932 10.1042/bcj20170314

858 41. Harper, S., Gratton, H. E., Cornaciu, I., Oberer, M., Scott, D. J., Emsley, J. *et al.* (2014) Structure and catalytic regulatory function of ubiquitin specific protease 11 N-terminal and ubiquitin-like domains *Biochemistry* **53**, 2966-2978 10.1021/bi500116x

859 42. Lee, B. L., Singh, A., Mark Glover, J. N., Hendzel, M. J., and Spyropoulos, L. (2017) Molecular Basis for K63-Linked Ubiquitination Processes in Double-Strand DNA Break

890 Repair: A Focus on Kinetics and Dynamics J Mol Biol **429**, 3409-3429
891 10.1016/j.jmb.2017.05.029

892 43. Maertens, G. N., El Messaoudi-Aubert, S., Elderkin, S., Hiom, K., and Peters, G. (2010)
893 Ubiquitin-specific proteases 7 and 11 modulate Polycomb regulation of the INK4a
894 tumour suppressor EMBO J **29**, 2553-2565 10.1038/emboj.2010.129

895 44. Wu, H. C., Lin, Y. C., Liu, C. H., Chung, H. C., Wang, Y. T., Lin, Y. W. *et al.* (2014)
896 USP11 regulates PML stability to control Notch-induced malignancy in brain tumours
897 Nat Commun **5**, 3214 10.1038/ncomms4214

898 45. Khan, M. M., Nomura, T., Kim, H., Kaul, S. C., Wadhwa, R., Shinagawa, T. *et al.* (2001)
899 Role of PML and PML-RARalpha in Mad-mediated transcriptional repression Mol Cell
900 **7**, 1233-1243 10.1016/s1097-2765(01)00257-x

901 46. Shima, Y., Shima, T., Chiba, T., Irimura, T., Pandolfi, P. P., and Kitabayashi, I. (2008)
902 PML activates transcription by protecting HIPK2 and p300 from SCFFbx3-mediated
903 degradation Mol Cell Biol **28**, 7126-7138 10.1128/mcb.00897-08

904 47. Chen, B. B., Coon, T. A., Glasser, J. R., McVerry, B. J., Zhao, J., Zhao, Y. *et al.* (2013)
905 A combinatorial F box protein directed pathway controls TRAF adaptor stability to
906 regulate inflammation Nat Immunol **14**, 470-479 10.1038/ni.2565

907 48. Shafi, R., Iyer, S. P., Ellies, L. G., O'Donnell, N., Marek, K. W., Chui, D. *et al.* (2000)
908 The O-GlcNAc transferase gene resides on the X chromosome and is essential for
909 embryonic stem cell viability and mouse ontogeny Proc Natl Acad Sci U S A **97**, 5735-
910 5739 10.1073/pnas.100471497

911 49. Yang, X., and Qian, K. (2017) Protein O-GlcNAcylation: emerging mechanisms and
912 functions Nat Rev Mol Cell Biol **18**, 452-465 10.1038/nrm.2017.22

913 50. Fujiki, R., Hashiba, W., Sekine, H., Yokoyama, A., Chikanishi, T., Ito, S. *et al.* (2011)
914 GlcNAcylation of histone H2B facilitates its monoubiquitination Nature **480**, 557-560
915 10.1038/nature10656

916 51. Vella, P., Scelfo, A., Jammula, S., Chiacchiera, F., Williams, K., Cuomo, A. *et al.* (2013)
917 Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in
918 embryonic stem cells Mol Cell **49**, 645-656 10.1016/j.molcel.2012.12.019

919 52. Chen, Q., Chen, Y., Bian, C., Fujiki, R., and Yu, X. (2013) TET2 promotes histone O-
920 GlcNAcylation during gene transcription Nature **493**, 561-564 10.1038/nature11742

921 53. Shi, F. T., Kim, H., Lu, W., He, Q., Liu, D., Goodell, M. A. *et al.* (2013) Ten-eleven
922 translocation 1 (Tet1) is regulated by O-linked N-acetylglucosamine transferase (Ogt) for
923 target gene repression in mouse embryonic stem cells J Biol Chem **288**, 20776-20784
924 10.1074/jbc.M113.460386

925 54. Srichai, M. B., Konieczkowski, M., Padiyar, A., Konieczkowski, D. J., Mukherjee, A.,
926 Hayden, P. S. *et al.* (2004) A WT1 co-regulator controls podocyte phenotype by shuttling
927 between adhesion structures and nucleus J Biol Chem **279**, 14398-14408
928 10.1074/jbc.M314155200

929 55. Goyal, R. K., Lin, P., Kanungo, J., Payne, A. S., Muslin, A. J., and Longmore, G. D.
930 (1999) Ajuba, a novel LIM protein, interacts with Grb2, augments mitogen-activated
931 protein kinase activity in fibroblasts, and promotes meiotic maturation of Xenopus
932 oocytes in a Grb2- and Ras-dependent manner Mol Cell Biol **19**, 4379-4389
933 10.1128/MCB.19.6.4379

934 56. James, V., Zhang, Y., Foxler, D. E., de Moor, C. H., Kong, Y. W., Webb, T. M. *et al.*
935 (2010) LIM-domain proteins, LIMD1, Ajuba, and WTIP are required for microRNA-

936 mediated gene silencing Proc Natl Acad Sci U S A **107**, 12499-12504
937 10.1073/pnas.0914987107

938 57. Kadrmas, J. L., and Beckerle, M. C. (2004) The LIM domain: from the cytoskeleton to the
939 nucleus Nat Rev Mol Cell Biol **5**, 920-931 10.1038/nrm1499

940 58. Hao, Q., Zong, X., Sun, Q., Lin, Y. C., Song, Y. J., Hashemikhbir, S. *et al.* (2020) The
941 S-phase-induced lncRNA SUNO1 promotes cell proliferation by controlling
942 YAP1/Hippo signaling pathway Elife **9**, 10.7554/elife.55102

943 59. Kanungo, J., Pratt, S. J., Marie, H., and Longmore, G. D. (2000) Ajuba, a cytosolic LIM
944 protein, shuttles into the nucleus and affects embryonal cell proliferation and fate
945 decisions Mol Biol Cell **11**, 3299-3313 10.1091/mbc.11.10.3299

946 60. Wu, Z., Qiu, M., Mi, Z., Meng, M., Guo, Y., Jiang, X. *et al.* (2019) WT1-interacting
947 protein inhibits cell proliferation and tumorigenicity in non-small-cell lung cancer via the
948 AKT/FOXO1 axis Mol Oncol **13**, 1059-1074 10.1002/1878-0261.12462

949 61. Zhu, Y., Tong, X., Wang, Y., and Lu, X. (2021) WTIP upregulates FOXO3a and induces
950 apoptosis through PUMA in acute myeloid leukemia Cell Death Dis **13**, 18
951 10.1038/s41419-021-04467-0

952 62. Marie, H., Billups, D., Bedford, F. K., Dumoulin, A., Goyal, R. K., Longmore, G. D. *et al.*
953 (2002) The amino terminus of the glial glutamate transporter GLT-1 interacts with the
954 LIM protein Ajuba Mol Cell Neurosci **19**, 152-164 10.1006/mcne.2001.1066

955 63. Abe, Y., Ohsugi, M., Haraguchi, K., Fujimoto, J., and Yamamoto, T. (2006) LATS2-
956 Ajuba complex regulates gamma-tubulin recruitment to centrosomes and spindle
957 organization during mitosis FEBS Lett **580**, 782-788 10.1016/j.febslet.2005.12.096

958 64. Montoya-Durango, D. E., Velu, C. S., Kazanjian, A., Rojas, M. E., Jay, C. M.,
959 Longmore, G. D. *et al.* (2008) Ajuba functions as a histone deacetylase-dependent co-
960 repressor for autoregulation of the growth factor-independent-1 transcription factor J Biol
961 Chem **283**, 32056-32065 10.1074/jbc.M802320200

962 65. Ayyanathan, K., Peng, H., Hou, Z., Fredericks, W. J., Goyal, R. K., Langer, E. M. *et al.*
963 (2007) The Ajuba LIM domain protein is a corepressor for SNAG domain mediated
964 repression and participates in nucleocytoplasmic Shutting Cancer Res **67**, 9097-9106
965 10.1158/0008-5472.CAN-07-2987

966 66. Langer, E. M., Feng, Y., Zhaoyuan, H., Rauscher, F. J., 3rd, Kroll, K. L., and Longmore,
967 G. D. (2008) Ajuba LIM proteins are snail/slug corepressors required for neural crest
968 development in Xenopus Dev Cell **14**, 424-436 10.1016/j.devcel.2008.01.005

969 67. Das Thakur, M., Feng, Y., Jagannathan, R., Seppa, M. J., Skeath, J. B., and Longmore, G.
970 D. (2010) Ajuba LIM proteins are negative regulators of the Hippo signaling pathway
971 Curr Biol **20**, 657-662 10.1016/j.cub.2010.02.035

972 68. Hirota, T., Kunitoku, N., Sasayama, T., Marumoto, T., Zhang, D., Nitta, M. *et al.* (2003)
973 Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic
974 commitment in human cells Cell **114**, 585-598 10.1016/s0092-8674(03)00642-1

975 69. Kim, J. H., Konieczkowski, M., Mukherjee, A., Schechtman, S., Khan, S., Schelling, J.
976 R. *et al.* (2010) Podocyte injury induces nuclear translocation of WTIP via microtubule-
977 dependent transport J Biol Chem **285**, 9995-10004 10.1074/jbc.M109.061671

978 70. Zhao, Y., Yue, S., Zhou, X., Guo, J., Ma, S., and Chen, Q. (2022) O-GlcNAc transferase
979 promotes the nuclear localization of the focal adhesion-associated protein Zyxin to
980 regulate UV-induced cell death J Biol Chem **298**, 101776 10.1016/j.jbc.2022.101776

981 71. Klijn, C., Durinck, S., Stawiski, E. W., Haverty, P. M., Jiang, Z., Liu, H. *et al.* (2015) A
982 comprehensive transcriptional portrait of human cancer cell lines *Nat Biotechnol* **33**, 306-
983 312 10.1038/nbt.3080

984 72. Xu, J., Guo, R., Wen, N., Li, L., Yi, Y., Chen, J. *et al.* (2023) FBXO3 stabilizes USP4
985 and Twist1 to promote PI3K-mediated breast cancer metastasis *PLoS Biol* **21**, e3002446
986 10.1371/journal.pbio.3002446

987 73. Sherman, B. T., Hao, M., Qiu, J., Jiao, X., Baseler, M. W., Lane, H. C. *et al.* (2022)
988 DAVID: a web server for functional enrichment analysis and functional annotation of
989 gene lists (2021 update) *Nucleic Acids Research* **50**, W216-W221 10.1093/nar/gkac194

990 74. Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D. *et al.* (2009)
991 Circos: an information aesthetic for comparative genomics *Genome Res* **19**, 1639-1645
992 10.1101/gr.092759.109

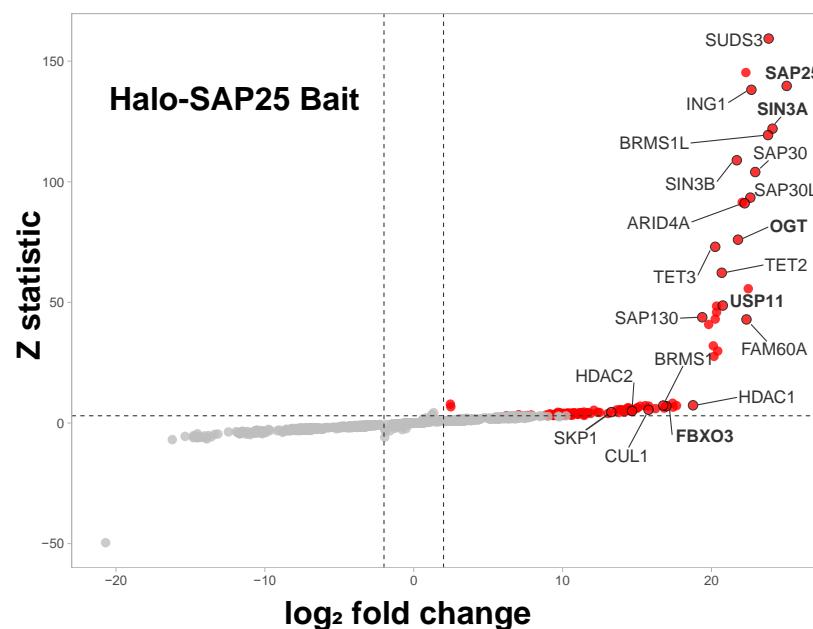
993 75. Cai, Y., Jin, J., Swanson, S. K., Cole, M. D., Choi, S. H., Florens, L. *et al.* (2010) Subunit
994 composition and substrate specificity of a MOF-containing histone acetyltransferase
995 distinct from the male-specific lethal (MSL) complex *J Biol Chem* **285**, 4268-4272
996 10.1074/jbc.C109.087981

997 76. Banks, C. A., Lee, Z. T., Boanca, G., Lakshminarasimhan, M., Groppe, B. D., Wen, Z. *et*
998 *al.* (2014) Controlling for gene expression changes in transcription factor protein
999 networks *Mol Cell Proteomics* **13**, 1510-1522 10.1074/mcp.M113.033902

1000 77. Banks, C. A., Boanca, G., Lee, Z. T., Florens, L., and Washburn, M. P. (2015) Proteins
1001 interacting with cloning scars: a source of false positive protein-protein interactions *Sci
1002 Rep* **5**, 8530 10.1038/srep08530

1003 78. Swanson, S. K., Florens, L., and Washburn, M. P. (2009) Generation and analysis of
1004 multidimensional protein identification technology datasets *Methods Mol Biol* **492**, 1-20
1005 10.1007/978-1-59745-493-3_1

1006 79. Wen, Z. (2022) kite: a software suite for processing and analysis of tandem mass
1007 spectrometry data. *Zenodo*


1008 80. Tabb, D. L., McDonald, W. H., and Yates, J. R., 3rd (2002) DTSelect and Contrast:
1009 tools for assembling and comparing protein identifications from shotgun proteomics *J
1010 Proteome Res* **1**, 21-26 10.1021/pr015504q

1011 81. Sardiu, M. E., Florens, L., and Washburn, M. P. (2020) Generating topological protein
1012 interaction scores and data visualization with TopS *Methods* **184**, 13-18
1013 10.1016/j.ymeth.2019.08.010

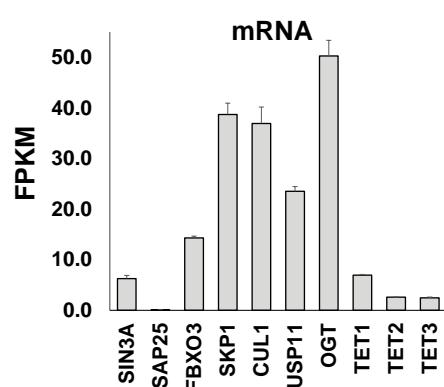
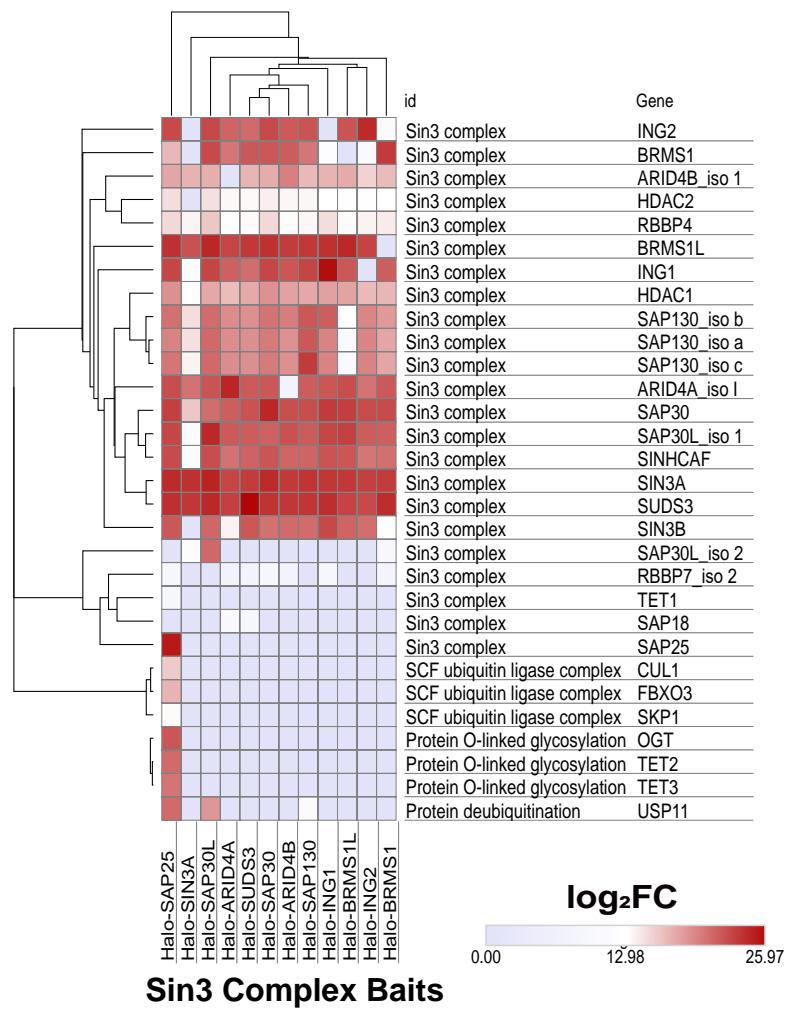
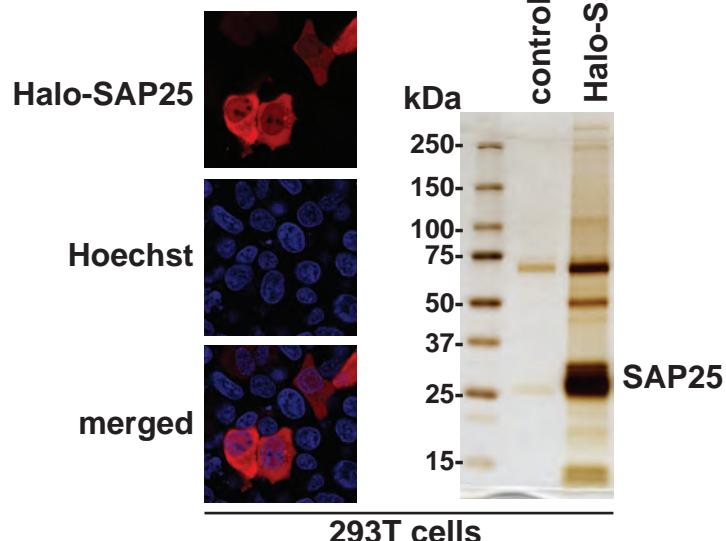

1014

Figure 1


A

B



C

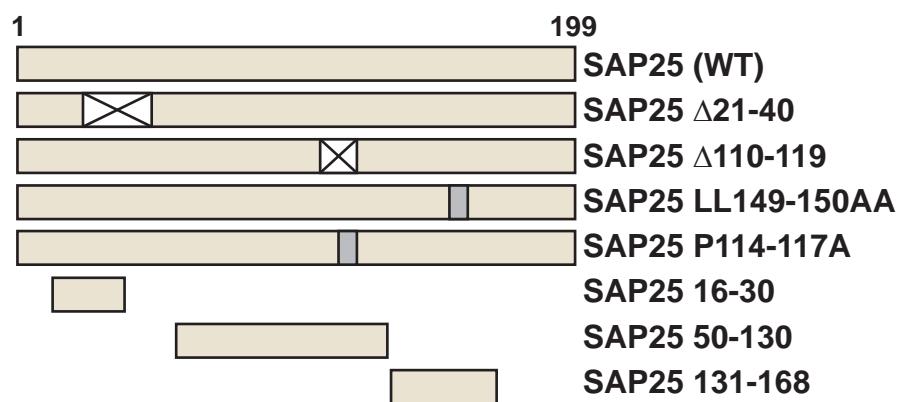
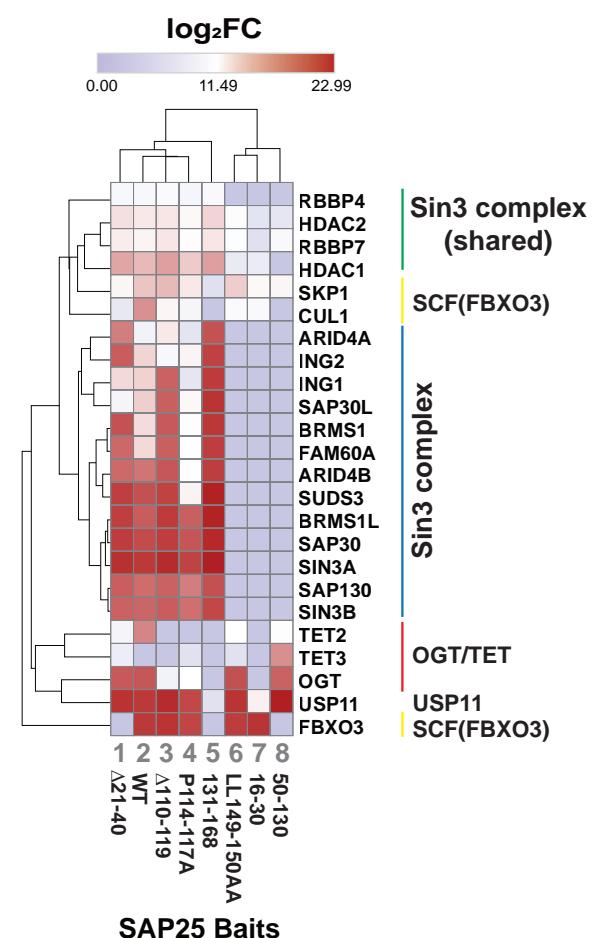


Figure 2


A

B

C

D

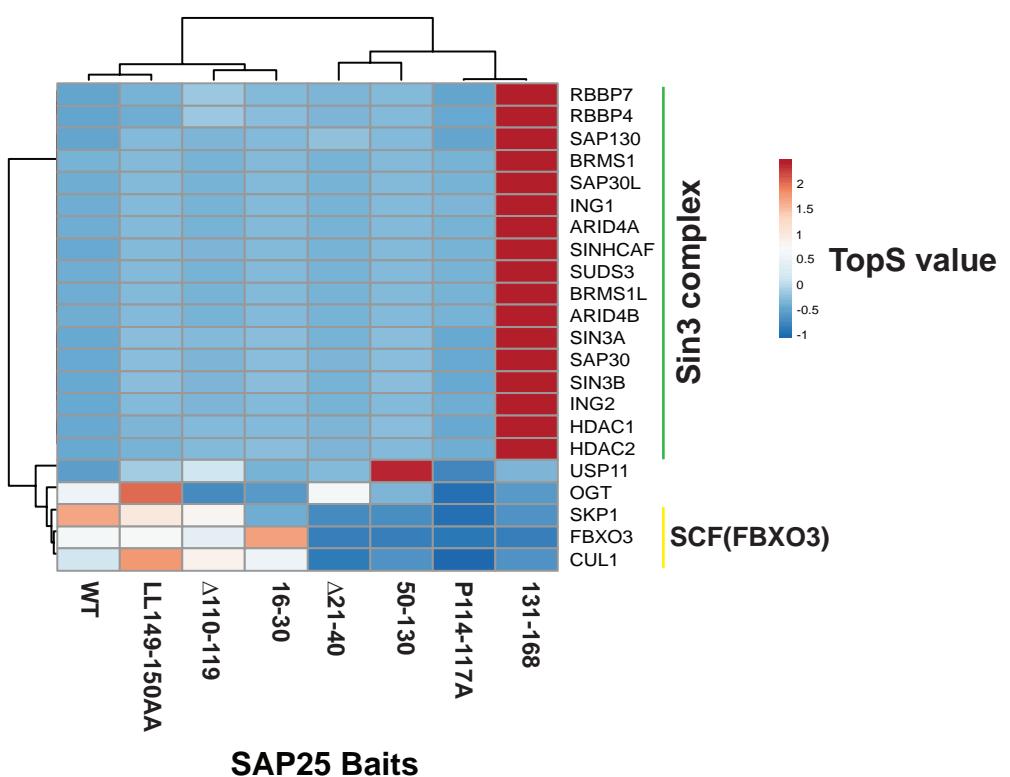
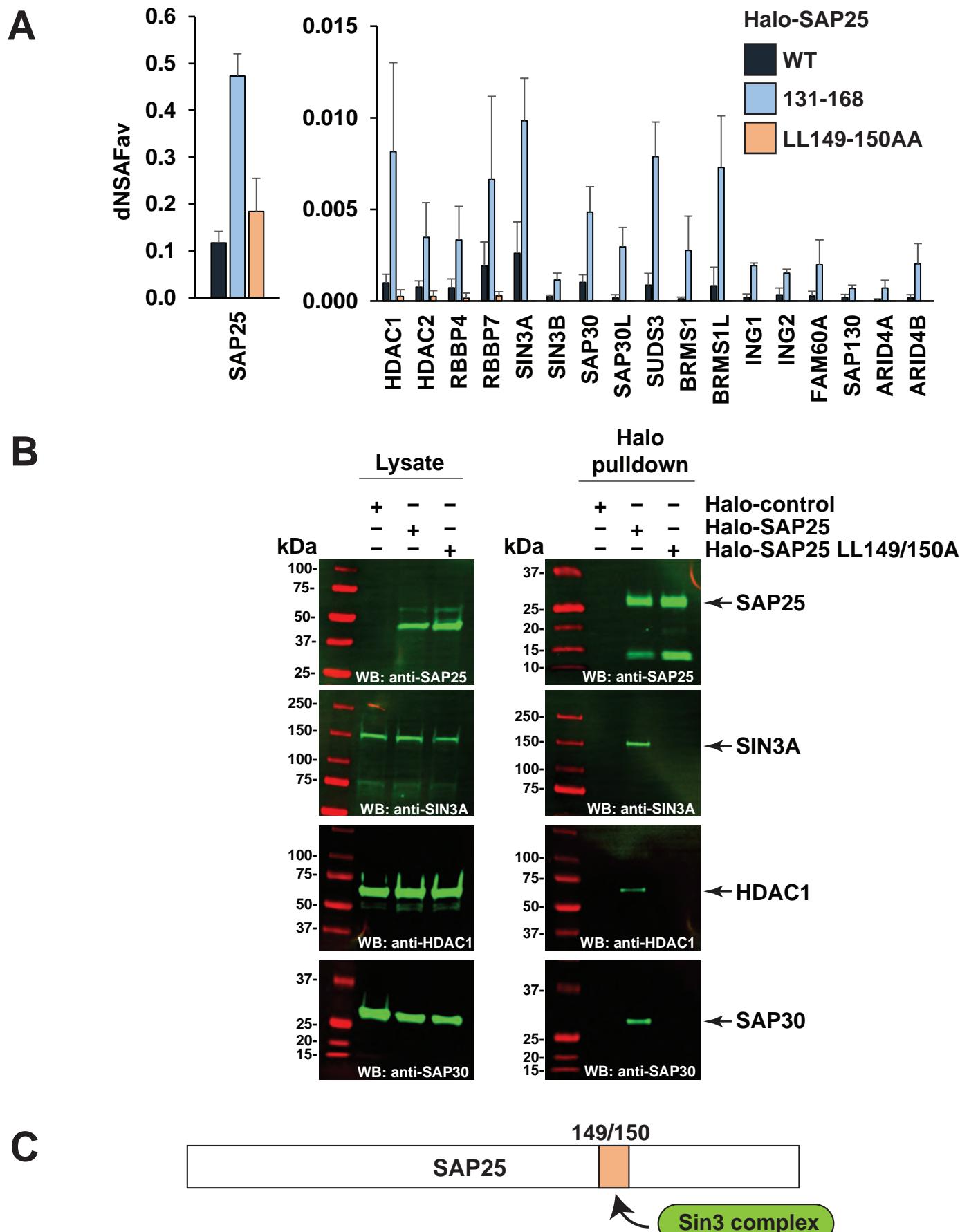
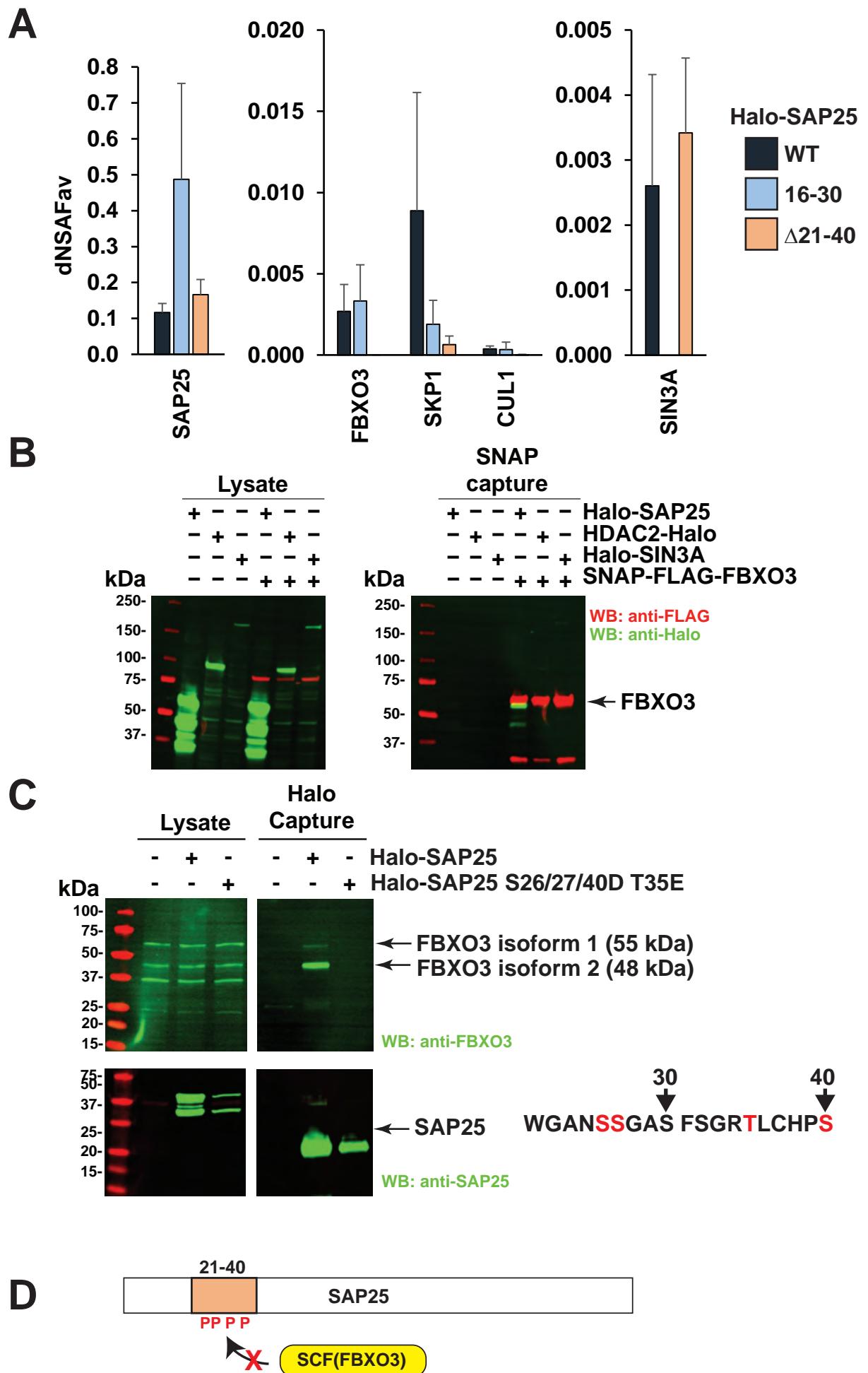




Figure 3

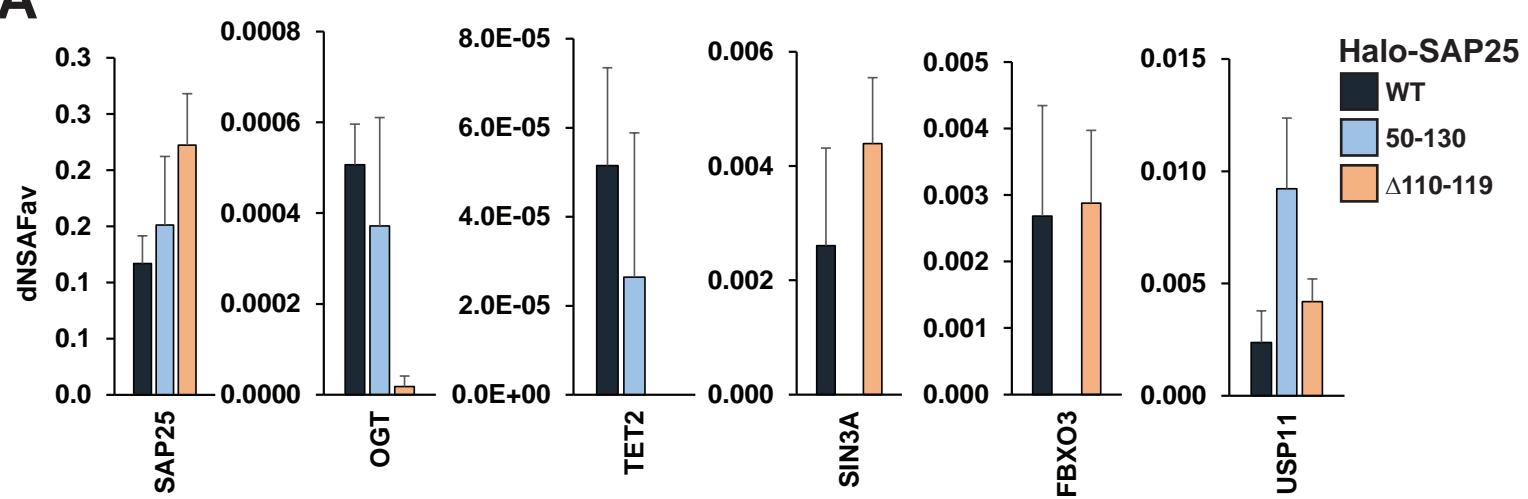


Figure 4

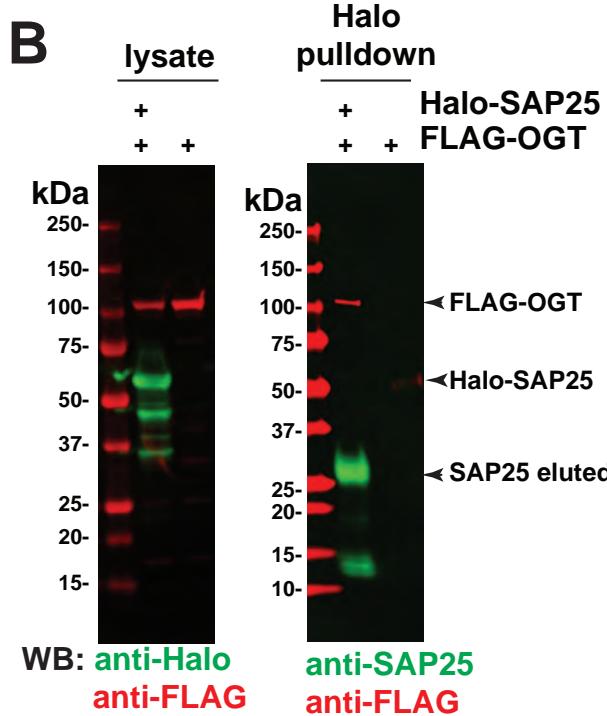
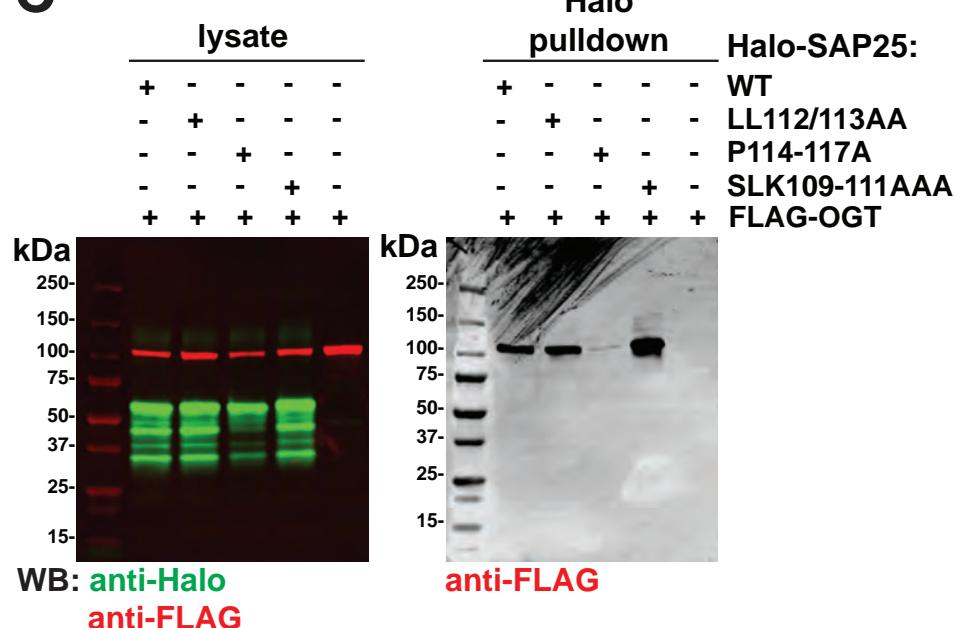
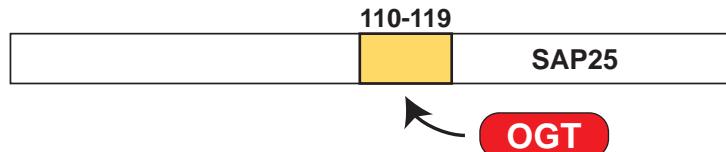
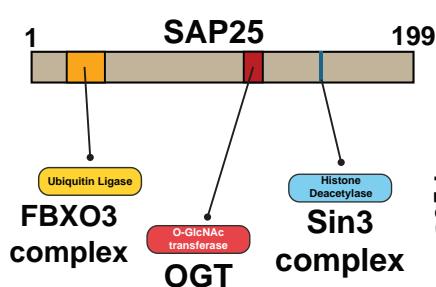


Figure 5

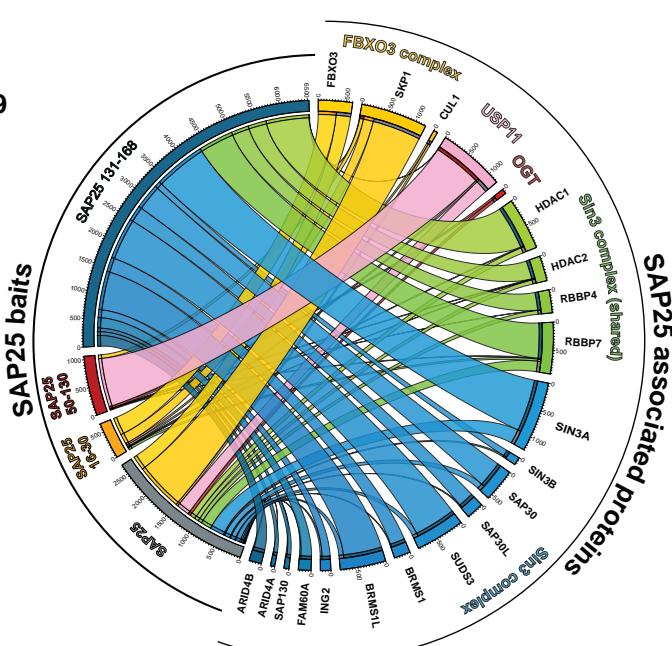
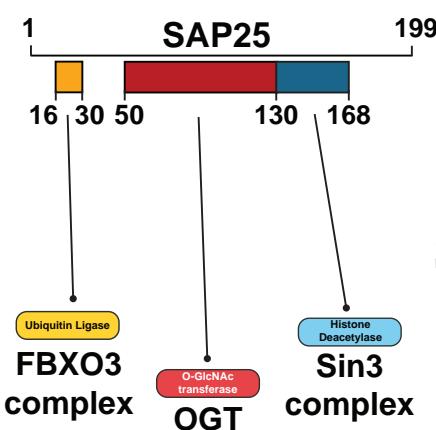

A


B

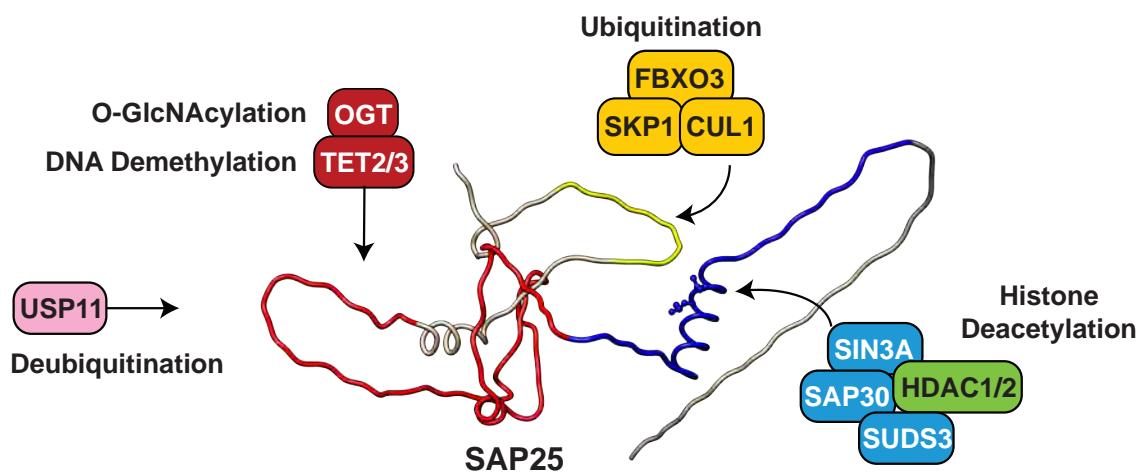
C



D

bioRxiv preprint doi: <https://doi.org/10.1101/2023.09.04.553212>; this version posted September 4, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [aCC-BY-ND 4.0 International license](https://creativecommons.org/licenses/by-nd/4.0/).



A

Required for interaction



B

Sufficient for interaction

C

