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ABSTRACT 17 

Transcranial magnetic stimulation (TMS) is a non-invasive, FDA-cleared treatment for neuropsychiatric 18 

disorders with broad potential for new applications, but the neural circuits that are engaged during TMS 19 

are still poorly understood. Recordings of neural activity from the corticospinal tract provide a direct 20 

readout of the response of motor cortex to TMS, and therefore a new opportunity to model neural 21 

circuit dynamics. The study goal was to use epidural recordings from the cervical spine of human 22 

subjects to develop a computational model of a motor cortical macrocolumn through which the 23 

mechanisms underlying the response to TMS, including direct and indirect waves, could be investigated. 24 

An in-depth sensitivity analysis was conducted to identify important pathways, and machine learning 25 

was used to identify common circuit features among these pathways. 26 

Sensitivity analysis identified neuron types that preferentially contributed to single corticospinal waves. 27 

Single wave preference could be predicted using the average connection probability of all possible paths 28 

between the activated neuron type and L5 pyramidal tract neurons (PTNs). For these activations, the 29 

total conduction delay of the shortest path to L5 PTNs determined the latency of the corticospinal wave. 30 

Finally, there were multiple neuron type activations that could preferentially modulate a particular 31 

corticospinal wave.  32 

The results support the hypothesis that different pathways of circuit activation contribute to different 33 

corticospinal waves with participation of both excitatory and inhibitory neurons. Moreover, activation of 34 

both afferents to the motor cortex as well as specific neuron types within the motor cortex initiated 35 

different I-waves, and the results were interpreted to propose the cortical origins of afferents that may 36 

give rise to certain I-waves. The methodology provides a workflow for performing computationally 37 

tractable sensitivity analyses on complex models and relating the results to the network structure to 38 

both identify and understand mechanisms underlying the response to acute stimulation.  39 
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AUTHOR SUMMARY 40 

Understanding circuit mechanisms underlying the response to transcranial magnetic stimulation remains 41 

a significant challenge for translational and clinical research. Computational models can reconstruct 42 

network activity in response to stimulation, but basic sensitivity analyses are insufficient to identify the 43 

fundamental circuit properties that underly an evoked response. We developed a data-driven neuronal 44 

network model of motor cortex, constrained with human recordings, that reproduced the corticospinal 45 

response to magnetic stimulation. The model supported several hypotheses, e.g., the importance of 46 

stimulating incoming fibers as well as neurons within the cortical column and the relevance of both 47 

excitatory and inhibitory neurons. Following a sensitivity analysis, we conducted a secondary structural 48 

analysis that linked the results of the sensitivity analysis to the network using machine learning. The 49 

structural analysis pointed to anatomical mechanisms that contributed to specific peaks in the response. 50 

Generally, given the anatomy and circuit of a neural region, identifying strongly connected paths in the 51 

network and the conduction delays of these paths can screen for important contributors to response 52 

peaks. This work supports and expands on hypotheses explaining the response to transcranial magnetic 53 

stimulation and adds a novel method for identifying generalizable neural circuit mechanisms. 54 

 55 

 56 

 57 

 58 

 59 
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INTRODUCTION 60 

Transcranial magnetic stimulation (TMS) can non-invasively activate superficial cortical regions to study 61 

brain functions, treat psychiatric and neurological disorders, and collect diagnostic biomarkers [1]. 62 

However, improving methodologies and developing new applications remain slow and challenging due 63 

to the uncertainties about what is activated by TMS and how this activation courses through the circuits 64 

within and beyond the stimulated region [2]. One approach to understanding these network effects in 65 

the motor cortex is via descending volleys of activity that propagate to the spinal cord in response to 66 

TMS and can be recorded epidurally as transient corticospinal waves (Fig 1). The corticospinal waves 67 

represent the activity of layer 5b pyramidal tract neurons (PTNs) that send axons into the spinal cord [3]. 68 

The shortest latency direct wave (D-wave) is widely agreed to represent the direct activation of PTNs [4]. 69 

Subsequent waves are called indirect waves (I-waves) and likely represent transsynaptic activations of 70 

PTNs resulting from the initial direct activation of PTNS, axons of afferents, and other neuron types. 71 

Understanding the neurons and circuits that produce the I-waves would provide insight into patterns of 72 

neuron activation and the circuit connections that mediate the cortical response to TMS [5].  73 

 74 

 75 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2024.03.05.583549doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.05.583549
http://creativecommons.org/licenses/by/4.0/


 

5 
 

 76 

Fig 1. Descending volleys of spinal waves provide a window into motor cortical responses to TMS.  77 

A) TMS coil with electric field (E) induced in the posterior–anterior (P–A) orientation over the motor 78 

cortex. L5 PTNs send axons into the spinal cord (corticospinal tract), and their activity is recorded 79 

epidurally at levels C1–C5. B) Epidural recordings of corticospinal waves in two human subjects. 80 

Individual trials are plotted with colored lines. The solid black lines are trial averages.  81 

Current understanding of I-waves arises from epidural recordings combined with pharmacological 82 

interventions that identified the synaptic receptors involved in I-wave generation and broadly suggested 83 

excitatory and inhibitory mechanisms that contribute to I-waves [5,6]. These and other experimental 84 

findings were organized into conceptual frameworks to propose mechanisms that give rise to the 85 

corticospinal waves [5,6]. Two broad categories of these frameworks are I-wave generation through 86 

circuit activations and I-wave generation via intrinsic neuronal mechanisms (neural oscillator 87 

hypothesis). With circuit activation, corticocortical afferents are thought to initiate activations in 88 

different neuronal populations that propagate through the cortical circuit to L5 PTNs. Intrinsic neuronal 89 

mechanisms have also been hypothesized to allow L5 PTNs to behave as neural oscillators such that the 90 
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I-waves result from repeated spiking from the same neuron due to the dynamics following initial 91 

excitation by TMS.  92 

Computational neuronal network models have been developed that integrate anatomical and 93 

electrophysiological details to investigate TMS-induced corticospinal waves. A model by Esser et al. 94 

represented the major layers of motor cortex using spiking point neurons and homogeneous activation 95 

of a proportion of fiber terminals across all layers to represent activation by single TMS pulses [7].  Rusu 96 

et al. developed a network model of layer 2/3 and layer 5 pyramidal neurons with realistic dendritic 97 

morphologies to investigate the effect of somatodendritic conduction and integration on I-wave 98 

generation [8]. These models generated I-wave activity that qualitatively resembled experimental 99 

findings. However, the models were not directly constrained by experimental recordings and lacked an 100 

exhaustive sensitivity analysis to investigate, among other variables, the effects of inhomogeneous 101 

activation across different neuron types.  102 

To determine the TMS activations and neuron-to-neuron projections that contribute to I-waves, we 103 

used experimental recordings of the corticospinal response to TMS to constrain a computational model 104 

of a motor cortical macrocolumn. Starting from a reduced version of the Esser model, that could 105 

produce I-waves and is mathematically compact, we established a spiking neuronal network model of 106 

motor cortex that reproduced the features of D-waves and I-waves recorded epidurally in the cervical 107 

spine of human subjects. Next, a unified model was developed that generated responses with and 108 

without a D-wave with a change in a single parameter. A sensitivity analysis of the unified model was 109 

conducted using the two-variable-at-a-time (TVAT) method. Finally, machine learning and graph 110 

theoretical measures were used to relate the connectivity of the model to the results of TVAT analysis 111 

and identify general mechanisms producing I-waves at the circuit level. A high-level representation of 112 

the methodology is summarized in Fig 2. 113 
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 114 

Fig 2. High level diagram of methodology.  115 

A network model was defined, and particle swarm optimization was used to constrain parameters using 116 

experimental data. A TVAT sensitivity analysis was conducted on the optimized model, and finally the 117 

network graph was used to identify structural patterns that predict the sensitivity analysis. E: Excitatory 118 

neuron. I: Inhibitory neuron. 119 

RESULTS 120 

The neuronal network model used to simulate the effects of TMS represents a human cortical 121 

macrocolumn within the motor cortex and included layer (L) 2/3, L5 and L6 and is based on a model 122 

developed in Esser et al., 2005 [7] (Fig 3A). Each layer contained excitatory neurons representing 123 

pyramidal neurons and inhibitory neurons representing fast-spiking parvalbumin-positive basket cells 124 

(BC). More specifically, the layer 2/3 and layer 6 pyramidal neurons were intratelencephalic (IT) neurons 125 

with corticocortical projections, while the layer 5 pyramidal neurons were PTNs. Inhibition was 126 

mediated only by parvalbumin-positive BCs because they provide the strongest inhibition compared to 127 

somatostatin and vasoactive intestinal protein expressing interneurons [9]. Excitatory afferents (AFF) 128 

were included that targeted each of the neuron types in the motor cortical column model. The afferents 129 

non-specifically represented activity that may arise from other cortical/sub-cortical areas. Direct 130 
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activation due to TMS was represented using an input–output approach. Given a stimulus intensity as 131 

input, the output was the proportion of the population that fired an action potential in response to the 132 

TMS pulse. Both neurons and afferents could be activated, and the effect of direct activation was 133 

defined separately for each neuron and afferent type. Simulations were performed using NEURON 134 

8.2.0+ and scripted in Python 3.8.13 [10]. 135 

 136 

Fig 3. Overview of motor cortical macrocolumn model.  137 

A) Block diagram of cortical connectivity. Arrowheads denote excitatory connections mediated by AMPA 138 

and NMDA receptors. Round heads denote inhibitory connections mediated by GABAA and GABAB 139 

receptors. B) Three-dimensional representation of neuron locations. (Left) Side view showing laminar 140 

distribution. (Right) Top view depicting microcolumn organization within macrocolumn. IT: 141 

Intratelencephalic neuron. PTN: Pyramidal tract neuron. BC: Basket cell. 142 

Optimized Models Reproduce Experimental Data 143 

Particle swarm optimization was used to identify parameters for models that responded with (D+) or 144 

without a D-wave (D-). The objective function included the firing rate of the network prior to stimulation 145 

(i.e., no stimulation) and several properties of the corticospinal response after stimulation (see Methods 146 

for a detailed description of the experimental data) including the timings and amplitudes of the peaks 147 
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and troughs. The parameters being optimized included the synaptic weights of each projection, the 148 

proportion of neurons activated by TMS, the conduction velocities for each neuron type, and the 149 

propagation delay due to stimulation of afferents. The total number of optimized parameters was 98, 150 

and the total list of parameters and their optimization ranges are described in Methods.  151 

The final selected models had average corticospinal wave errors of 10.3% and 15.4% for the D+ and D− 152 

models, respectively (Fig 4A). The corticospinal tract activity generated by the individually optimized 153 

models captured many of the features of the experimental data (Fig 4C). The spiking responses of the 154 

models are represented using raster plots in Fig 4D, and it can be observed how the spiking activity of L5 155 

PTNs produce the corticospinal responses in Fig 4C. The final parameter values for each of the optimized 156 

models are presented in S1 Appendix Fig A-C. To increase coverage of the parameter space and avoid 157 

local minima, multiple optimizations were executed. The convergences of total error, the distances 158 

among their solutions, and simplified Pareto front are shown in S1 Appendix Fig D-E. 159 
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 160 

Fig 4. Optimization results and unified model.  161 

A) Distribution of relative errors across corticospinal wave objectives for the individual best D+ and D− 162 

models and the unified D− model. Average error is plotted on the right side. B) Identification of the 163 

unified model. Weighted combinations of the parameters for the D+ and D− solutions were tested. Cost 164 

represents the sum of total error and error difference. A unified model that used the D+ parameters 165 

resulted in the lowest error across models and between models. C) Simulated epidural corticospinal 166 

activity for optimized models (dashed colored lines) compared to experimental data (solid black line). The 167 
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unified model exhibiting a D-wave (left, D+) used the same parameters as its individual best, so only a 168 

single simulation output is shown. The case without a D-wave (right, D-) has the individual best and 169 

unified model results. D) Spike raster plots for all motor cortical neuron types. A band-pass filter was 170 

applied to the activity of the Layer 5 PTN (orange) to represent the corticospinal responses shown in C. 171 

Unified Model Accommodates Both Response Types 172 

Despite being separately optimized, there were similarities among many of the parameters of D+ and D- 173 

models, but one of the largest differences was for direct activation of L5 PTNs (S1 Appendix Fig A), which 174 

generated the D-wave. Given the similarity between the remaining parameter values, we pursued a 175 

parsimonious model that had identical values for all parameters except the direct activation of L5 PTNs.  176 

The unified model was generated by creating weighted combinations of the parameters of the D-wave 177 

and non-D-wave models (Fig 4B). All parameters were identical between models except direct activation 178 

of L5 PTNs, which used the respective individual optimal values. The best unified model was selected 179 

based on the total error across both models as well as the absolute difference of total error between 180 

both models to identify a model that reproduced both response types without favoring one response 181 

type over the other. The model representing the subject exhibiting a D-wave had the best 182 

generalizability to the subject without a D-wave compared to any of the weighted combinations of the 183 

model parameters, and the resulting unified D- model had average relative errors of 19.9% (compared 184 

to 10.3% for the individually optimized D- model) while the error for the unified D+ model remained 185 

unchanged (Fig 4A). The parameter values of the unified model were then used as the fixed point in a 186 

sensitivity analysis. 187 
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Sensitivity Analysis Reveals Parameters that Preferentially Contribute to 188 

Corticospinal Waves 189 

Due to the high dimensionality of the parameter space (98 parameters), total grid search, random, or 190 

quasi-random sampling would require a prohibitively large number of simulations to characterize fully 191 

the relationships between the parameters and the corticospinal response. To reduce the computational 192 

cost, a two-variable-at-a-time (TVAT) sensitivity analysis was conducted. TVAT is a form of fixed-point 193 

analysis that varies two parameters simultaneously in a grid-search with the remaining parameters fixed 194 

at their original values. TVAT analysis is more computationally intensive than the widely used one-195 

variable-at-a-time method, but allows characterization of pairwise interactions between variables 196 

[11,12].  197 

TVAT analysis was performed using direct activation parameters and synaptic weights. All unique 198 

parameter pairs were varied in a grid search spanning the entire parameter range used in the 199 

optimization. The amplitudes of the simulated corticospinal waves were measured to construct 200 

amplitude maps as a function of the parameter pair involved, and polynomial regressions were used to 201 

characterize the amplitude maps. The effect sizes of a parameter for each corticospinal wave were 202 

computed using their polynomial regression coefficients if the regressions had an r2 ≥ 0.5 (see Methods). 203 

Fig 5A-B show examples of good and poor fits of the polynomial regressions that comprise the sensitivity 204 

analysis. The total effect sizes, computed as the sum of effect sizes across all corticospinal waves, for the 205 

20 most influential parameters are shown in Fig 5C. Activation of L5 PTNs (TMS-L5 PTN) had the largest 206 

effect size followed by activation of afferents to L5 PTN (TMS-L5 PTN AFF). Activation of L2/3 ITs and L6 207 

ITs had large effect sizes. Important projections included the L2/3 IT projection to L5 PTN and L2/3 IT, L5 208 

BC projection to L5 PTN and L5 PTN to L5 PTN. All effect sizes are shown in S1 Appendix Fig F. 209 
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 210 

Fig 5. TVAT sensitivities, effect sizes, and their relative contributions across corticospinal waves.  211 

A) Examples of TVAT surfaces with polynomial regressions that fit the data well. Simulation 212 

measurements are displayed on the top row; regressions are below. B) Same as A but with regressions 213 

resulting in poor fits. C) Rank sorted total effect sizes across all waves. Only the 20 largest effect sizes are 214 

shown for legibility; the full results are shown in S1 Appendix Fig F. C and D share the same x-axis. D) 215 

Relative effect sizes normalized across all waves by parameter. Parameter names were shortened and 216 

hyphenated such that the label before the hyphen corresponds to the presynaptic source and the label 217 

after the hyphen corresponds to the postsynaptic target, e.g. TMS-L6 BC indicates the activation of L6 218 
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basket cells via TMS and L2/3 BC-L5 PTN indicates the projection of L2/3 basket cells to L5 pyramidal 219 

tract neurons. E-H) Effect sizes were divided based on their contribution to a specific corticospinal wave 220 

and then grouped based on various categories. The averages within the groups are plotted. E) Compares 221 

sensitivity to activation vs. synaptic parameters. F) Sensitivity to activation of afferents vs. activation of 222 

neurons within the cortical column. G) Sensitivity to synaptic parameters related to afferents vs. neurons 223 

within the cortical column. H) Sensitivity to excitatory vs inhibitory neurons. IT: Intratelencephalic 224 

neuron. PTN: Pyramidal tract neuron. BC: Basket cell. AFF: Afferent. 225 

The influence of the parameters on each individual corticospinal wave relative to the total are 226 

summarized in Fig 5D. This plot reveals that while activation of L5 PTNs substantially affected D-waves, 227 

this parameter made minimal contributions to I-waves. The activation of afferents to L5 PTNs most 228 

substantially affected the I1-wave. This analysis led to a subsequent grouping of parameters that 229 

preferentially influenced a single corticospinal wave versus parameters that affected multiple waves. 230 

Different groupings of the total effect sizes were made to compare the average effect sizes of broader 231 

categories. The effect sizes were further subdivided based on corticospinal wave to quantify the 232 

sensitivity of the waves to the different groupings. First, the sensitivity to direct activation was 233 

compared to the sensitivity to the synaptic strengths of the network (Fig 5E). The D-wave and I1-I2 234 

waves were highly sensitive to direct activation, and the I3-wave had an overall lower but similar 235 

sensitivity to both direct activation and synaptic strengths. Next the activation and circuit parameters 236 

were each divided between extracolumnar afferents and intracolumnar neurons (Fig 5F). The I1-wave 237 

was sensitive to activation of afferents while the D-wave and I2-wave were sensitive to activation of 238 

neurons within the column. Sensitivity levels were similar across I-waves for the synaptic effects of 239 

afferents and cortical neurons (Fig 5G). The I3-wave was more sensitive to afferents while the I1-wave 240 

was more sensitive to intracortical synaptic effects. The D-wave was not sensitive to synaptic 241 

parameters. Finally, corticospinal waves were similarly sensitive to excitatory and inhibitory neurons (Fig 242 
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5H). Sensitivities were relatively similar for I1-I3 waves to excitatory neurons while the I1-wave had the 243 

greatest sensitivity to inhibitory neurons. 244 

Separating the effect sizes for each corticospinal wave revealed that the individual parameters could 245 

preferentially affect one wave over others (Fig 5D). A parameter was defined as having a preferential 246 

effect if the parameter’s largest effect size on a corticospinal wave was at least 50% larger than its 247 

second largest effect size. The activation parameters that preferentially affected each corticospinal wave 248 

were verified by visualizing the simulations performed for the TVAT analysis (Fig 6). These visualizations 249 

demonstrate that the sensitivity analysis was consistent with the actual simulations. The analysis 250 

identified that: the D-wave was most sensitive to the activation of L5 PTNs, the I1-wave was most 251 

sensitive to direct activation of afferents to L5 PTNs, the I2-wave was most sensitive to activation of L6 252 

Its, and the I3-wave was most sensitive to direct activation of afferents to L6 ITs.  253 

 254 

 255 

 256 

 257 

 258 
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 259 

Fig 6. Effect sizes for parameters that preferentially affected a single I-wave. 260 

For each corticospinal wave, effect sizes for parameters that preferentially affected the wave were 261 

normalized and rank sorted and visualized as bar plots. The I1-wave had 9 preferential parameters, and 262 

only 5 parameters are shown here for legibility. The remaining waves show the full numbers of 263 

preferential parameters. The full set of I1-wave preferential parameters are shown in S1 Appendix Fig G. 264 

To the right of the bar plots, the TVAT simulations involving the activation parameters with the largest 265 

effect size are shown as colored traces. The solid black line represents responses for which the parameter 266 

was set to zero. The disappearance of a wave on the solid black lines indicates that the parameter was 267 

important to the generation of that wave. The waves are labelled in the plots. IT: Intratelencephalic 268 

neuron. PTN: Pyramidal tract neuron. BC: Basket cell. AFF: Afferent. 269 

Structural Parameters that Determine Preferential Influence 270 

The sensitivity analysis predicted that multiple parameters could preferentially influence each I-wave. To 271 

identify any shared features that may predict preferential influence on the same corticospinal wave, a 272 

secondary analysis was conducted (Fig 7). The properties of the structure of the macrocolumn, such as 273 

the distances between neurons and connection probabilities, remained invariant during optimization. 274 

These invariant properties were quantified using a graph theoretical analysis, and machine learning was 275 
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used to identify patterns in the network structure that contributed to corticospinal wave generation. 276 

Because only the L5 PTNs contributed to the signal recorded in the corticospinal tract, the relationships 277 

between neuron types to the L5 PTNs were characterized by deconstructing the network graph into 278 

simple paths, i.e., paths with non-repeating nodes. All directed simple paths for all neuron types leading 279 

to L5 PTNs were characterized for analysis. See Methods for detailed descriptions of the graph 280 

characterizations. 281 

Logistic regression with Lasso regularization was used to identify features that classified parameters 282 

with preferential versus non-preferential influence (Fig 7A). The key properties for this classification 283 

were a strong average connection probability to L5 PTNs and whether the overall effect on the L5 PTNs 284 

was excitatory or inhibitory with a validation classification accuracy of 94.6% (Fig 7B). Recursive feature 285 

elimination and support vector classification were used to identify properties of the preferential 286 

parameters that predicted which corticospinal wave they affected (Fig 7C-D). The key property was the 287 

conduction delay of the shortest path between the starting neuron and the L5 PTNs, and the validation 288 

accuracy was 87.2%. 289 

Although the sensitivity analysis identified important circuit mechanisms (i.e., activations and 290 

projections) involved in corticospinal wave generation, the subsequent machine learning analysis 291 

identified the anatomical bases that explained how and why the circuit mechanisms had a preferential 292 

effect. This secondary structural analysis provides a method for identifying fundamental principles 293 

involved in the neural response to acute stimulation. 294 

 295 
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 296 

Fig 7. Classification of network features for effect size types. 297 

A) The sum of the absolute value of the coefficients was plotted against regularization strength to 298 

identify the best parameters that classify preferential versus non-preferential parameters. Parameters 299 

that remain nonzero as regularization strength increases have better classification performance. Only 300 

the top 10 best features are shown for legibility. B) Logistic regression decision boundary for preferential 301 

parameters (dark) versus non-preferential parameters (light) using the best classification features 302 

identified in A. Dark filled dots indicate data that were preferential, and light filled dots indicate data 303 
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that were not preferential. C) Recursive feature elimination was performed to classify corticospinal wave 304 

preference for preferential parameters. The higher probabilities of remaining after elimination indicated 305 

better classification accuracy. Only 10 features are shown for legibility. D) Corticospinal wave 306 

probabilities obtained by support vector classification using the single best classification feature from C. 307 

The dashed lines represent the conduction delays of the data being classified. 308 

DISCUSSION 309 

We developed an experimentally-constrained model of a human motor cortical macrocolumn that 310 

generated realistic D-waves and I-waves in response to single pulse TMS. The model reproduced 311 

responses that included or excluded a D-wave by changing the direct activation of L5 PTNs, which is 312 

consistent with the mechanisms of D-wave generation [4]. TVAT sensitivity analysis, which lies between 313 

a local and global sensitivity analysis, identified the circuit pathways and TMS activations important to I-314 

wave generation.  315 

The results of the sensitivity analysis support the hypothesis that direct activation of the terminals of 316 

afferents to motor cortex are an important mechanism for I-wave generation but are not consistent with 317 

the hypothesis that I-waves are generated by repetitive firing of single neurons (neural oscillator 318 

hypothesis). The analysis also supports the involvement of both excitatory and inhibitory neuron types 319 

in modulating I-waves [5]. In addition, the sensitivity analysis identified afferents and neuron types 320 

endogenous to the motor cortex that can be directly activated to generate corticospinal waves. 321 

Subsequently, structural analysis identified general structural principles that allowed these activations 322 

to preferentially generate corticospinal waves. Direct activation of afferents and neuron types can 323 

preferentially contribute to single I-waves if they have a highly connected path to L5 PTNs, relative to all 324 

other paths between the activated neuron type and L5 PTNs. Finally, the latency of the I-wave that is 325 

affected by a path can be predicted by its total conduction delay to L5 PTNs.  326 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2024.03.05.583549doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.05.583549
http://creativecommons.org/licenses/by/4.0/


 

20 
 

Separate Pathways for Activation that Include Excitatory and Inhibitory Neurons 327 

The leading hypothesis for I-wave generation proposes that 1) separate activation pathways exist for 328 

early versus late I-waves, and 2) activated pathways include both excitatory and inhibitory neurons 329 

[6,13]. The sensitivity analysis identified neural activations that preferentially modulated specific I-330 

waves, revealed preferential activation pathways for all three I-waves, and showed that silencing their 331 

activation greatly suppressed a particular I-wave (Fig 6). The sensitivity analysis was grouped to compare 332 

the total effect sizes of excitatory and inhibitory neurons on I-wave generation and revealed that 333 

corticospinal waves exhibited comparable sensitivities to both excitatory and inhibitory neurons and 334 

that inhibitory neurons are involved in I-wave modulation (Fig 5H).  335 

Most inhibitory neurons had non-preferential effects, i.e., affected multiple I-waves, which is consistent 336 

with experimental findings that various anesthetics, which act as allosteric modulators of GABAAR, 337 

generally reduce I-wave amplitudes [6]. However, the sensitivity analysis showed that the I1-wave was 338 

most sensitive to inhibitory neurons with decreasing sensitivity for later I-waves (Fig 5H), and this is not 339 

consistent with experimental findings that show GABAA agonists affect later I-waves but not the I1-wave 340 

[14–16]. One possibility for this disagreement is the lack of inhibitory afferents in the model that could 341 

arise from adjacent cortical macrocolumns. These afferents would provide inhibition at longer latencies 342 

that would affect later I-waves. The Model Limitations and Future Directions subsection discusses this 343 

further. 344 

Direct Activations of the Endogenous Circuit Contribute to I-Waves 345 

The prior conceptual frameworks assumed that I-waves are initiated by activation of corticocortical fiber 346 

afferents, and the sensitivity analysis supports that the corticospinal response is most sensitive to 347 

activation of terminals of afferents. However, this analysis revealed that activation of the motor cortical 348 

circuit itself can initiate I-waves. Activation of ITs in L2/3 and L6 preferentially activated I2- and I3-waves 349 
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(Fig 6). Although designing in vivo TMS experiments that control for contributions of endogenous circuit 350 

elements to I-waves is difficult, the modeling results suggest activation of the endogenous circuit as 351 

another mechanism for I-wave generation, in addition to activation of afferents. Intracortical 352 

microstimulation (ICMS) studies can provide some insight into intracortical TMS effects and are further 353 

discussed below in the Comparison to Intracortical Microstimulation subsection. 354 

Connectivity and Conduction Delay as Mechanisms for Preferential I-Wave 355 

Generation 356 

Given that multiple mechanisms can preferentially contribute to the same I-wave, the structural analysis 357 

sought to identify the commonalities among mechanisms that yielded this response. A neuron type 358 

within the circuit could have multiple paths leading to L5 PTN with different properties for each path. 359 

Neuron types with a single path that had a high connection probability to L5 PTNs, relative to other 360 

paths starting from the same neuron type, could preferentially affect a single I-wave (Fig 7A-B). For 361 

neuron types where such a path exists, the primary mechanism for determining early versus late I-wave 362 

activation was the conduction delay of the path between the activated population and L5 PTNs (Fig 7C-363 

D). The conduction delay defined in this study represents the combined contributions of action potential 364 

propagation along the axon, synaptic transmission, and somatodendritic propagation of the resulting 365 

postsynaptic potential. This is supported by the computational work of Rusu and colleagues who 366 

controlled conduction delay based on synaptic location within dendrites [8].  367 

To generalize, the results of the structural analysis suggest that if the generator of a signal within a 368 

network is known, and the connection probabilities and conduction delays of the network are known, 369 

then the network elements that preferentially contribute to singular peaks of a system’s impulse 370 

response can be screened by performing the following: for each neuron type 1) identify all possible 371 

paths from the neuron type to the signal generator, 2) compute the ratios of the log of the connection 372 
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probability between the most highly connected path and the remaining paths normalized by the sum of 373 

all log probabilities, and 3) obtain the latency of effect for the most highly connected path. Neuron types 374 

that have a path that is more highly connected than the remaining paths will have a preferential 375 

influence on peaks that occur during their latency of effect. 376 

L5 PTNs as Population Oscillators but Not Neural Oscillators 377 

Another category of hypotheses for I-wave generation is the concept of the neural oscillator. These 378 

theories were motivated by the fact that L5 PTNs can achieve firing rates that match the frequency of I-379 

waves and led to exploration of cellular mechanisms for I-wave generation [6]. A histogram was 380 

constructed of the spike counts for each L5 PTN during the different I-waves (S1 Appendix Fig H), and L5 381 

PTNs were most likely to contribute to a single I-wave during the corticospinal response. However, at 382 

the population level excitatory recurrent connections exist between L5 PTNs, and the sensitivity analysis 383 

demonstrated that the recurrent connections are involved in I-wave modulation as seen in Fig 5D and 384 

Fig 6. Therefore, the modeling results do not support that I-waves are generated or sustained at the 385 

neuronal level; rather, their generation appears to be a population level effect. 386 

Comparison to Intracortical Microstimulation (ICMS) Studies 387 

Direct cortical recordings to investigate I-waves are currently limited due to the technical challenges of 388 

suppressing the TMS artifact, which saturates recordings and prevents recovery of the activity during 389 

the period when the D-wave and I-waves occur [17,18]. ICMS in animals can generate high frequency 390 

multiunit activity with frequencies comparable to I-waves [19–21]. The results of ICMS studies can 391 

contribute to understanding the TMS response, but due to the differences in the spatial distribution and 392 

gradient of the electric field, ICMS studies cannot be used to explain fully TMS evoked I-waves [22].  393 

ICMS applied to the primary motor cortex (M1) hand area in nonhuman primates showed that earlier 394 

peaks were elicited if the stimulation was closer to the recording site [21]. The study hypothesized that 395 
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the stimuli were activating horizontal fibers within M1, and these results support conduction delay as a 396 

mechanism determining the latencies of peaks. The horizontal fibers further represent afferents, 397 

relative to a macrocolumn, that are endogenous to M1. Single unit activity from a similar ICMS study 398 

that stimulated and recorded from M1 found minimal, sparse spiking within the time window relevant 399 

for I-waves and supports that single L5 PTNs contribute to few I-waves, if at all [19]. This corroborates 400 

the modeling predictions that I-waves represent a population response comprised of heterogeneous, 401 

sparse spiking rather than a synchronized rapid spiking response across neurons (S1 Appendix Fig H).  402 

Another ICMS study stimulated a region of the ventral premotor area F5 that sends afferents to the 403 

hand knob area of M1 [20]. Stimulation of F5 at lower intensities recruited the I1-wave first, and higher 404 

intensities eventually recruited later I-waves. Although it is known that F5 projects to M1, the laminar 405 

distribution of the terminals of F5 afferents in M1 are unknown. Nonetheless, these results are 406 

consistent with the modeling prediction that the I1-wave is most sensitive to activation of afferents. 407 

Maier and colleagues also stimulated M1 directly and found that D-waves are much less likely to be 408 

elicited than I1-waves. This finding is in line with the TMS literature [23], and the sensitivity analysis (Fig 409 

6C) is also consistent with these experimental observations in that the I1-wave is most sensitive to 410 

stimulation of afferents compared to the D-wave, which is least sensitive. 411 

Putative Afferents for I-Wave Generation 412 

In the present model, afferents were represented as spiking inputs that were specific for each neuron 413 

type in the model, and the effect of TMS was represented by activation of the axon terminals of these 414 

afferents within the motor cortical macrocolumn. The sensitivity analysis predicted that activation of 415 

afferents for specific neuron types could have a preferential effect on specific I-waves, so the results of 416 

the sensitivity analysis were compared to the laminar distribution of terminals of corticocortical 417 

afferents in mouse motor cortex [24] to predict the anatomical origin of afferents with preferential I-418 

wave effects. Afferents originating from the secondary (supplementary) motor area (M2) have a high 419 
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density of terminals in the deep portion of L5 where the somata of L5 PTNs lie, and activation of M2 420 

afferents may be a candidate for I1-wave generation. Afferents from the primary somatosensory cortex 421 

have a high density of axon terminals in L2/3 and superficial L5 and could be important for I2-wave 422 

generation. The axon terminals of the orbital cortex primarily target L6 and may contribute to I3-waves. 423 

The axon terminal distributions for lateral and anterior ventral thalamus within motor cortex were also 424 

characterized [24], but prior studies showed that lesions in those areas do not affect I-wave generation 425 

[25]. 426 

The laminar distribution of horizontal connections between columns within motor cortex have not been 427 

directly characterized. However, Narayanan and colleagues reported the laminar distribution of axon 428 

terminals endogenous to rat primary somatosensory cortex [26]. The horizontal connections of L2/3 and 429 

L5 pyramidal neurons are most dense in L2/3, which may contribute to the I2-wave. The horizontal 430 

connections of L6 pyramidal neurons are most dense in deep L5 and L6 which may contribute to I1- and 431 

I3-waves. 432 

Model Limitations and Future Directions 433 

An important design criterion for the modeling work was computational efficiency to enable the 434 

parameter explorations necessary for optimization and sensitivity analysis to be conducted in a 435 

reasonable time. In general, computational gains came at the expense of biological details and 436 

constraints. However, the simplified model enabled more specific and in-depth computational 437 

experiments.  438 

Point neuron representations precluded any analyses involving dendritic processes, spatial integration 439 

of postsynaptic potentials, or ephaptic coupling. Spatially extended, i.e., morphologically realistic, 440 

neuron models [22] could accommodate these mechanisms and enable the exploration of their 441 
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contributions to modulation of I-waves but would increase execution times by a factor of approximately 442 

1800.  443 

Afferents were represented as spiking processes that targeted specific neuron types. More realistic 444 

representations of afferents with distributions and connectivities that matched anatomical data would 445 

more directly address the effect of specific fibers on I-waves. Nonetheless, allowing afferents to be 446 

separately variable for each neuron type provided a basis to understand their contributions.  447 

Traditionally, L4 in motor cortex has been described as either nonexistent or very thin, which led motor 448 

cortex models to exclude L4 or represent it with inhibitory neurons only [7,27,8]. Recent evidence has 449 

identified excitatory IT neurons in L4 with projections to L2/3 [28–30] leading to more complex models 450 

of M1 [31]. The present modeling results predict that, while not included, L4 IT neurons would 451 

participate in later I-waves due to their strong projection into L2/3; therefore, future work should add L4 452 

explicitly to the model. 453 

A single macrocolumn comprising multiple microcolumns was modeled in this work. Communications 454 

across adjacent macrocolumns, i.e., intracortical afferents, could alter the corticospinal response to TMS 455 

as they represent “afferent” inputs to macrocolumns that arise within the motor cortex. Their 456 

interactions could further modulate I-waves through both excitatory and direct inhibitory projections, 457 

and the latencies of the feedback will likely cause adjacent macrocolumns to contribute toward late I-458 

waves. 459 

This work represented TMS stimulation using an input–output approach, i.e., a given stimulus intensity 460 

resulted in some proportion of neurons of a particular type to fire an action potential. The spatial 461 

distribution of activation could be constrained by modeling the induced electric field using finite 462 

element modeling [32]. However, by separating the neuron type activations from the spatial constraint, 463 

the basic properties underlying the responses to activation could be investigated with greater control. 464 
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Furthermore, the optimization included only a single stimulus intensity as a constraint. Incorporating 465 

corticospinal recordings in response to multiple stimulus intensities from the same subject would 466 

provide better constraints and allow analysis of recruitment orders for neuron types. 467 

The predictions from the model are limited to the single pulse response and are not readily extendable 468 

to paired pulse or repetitive pulse paradigms. This is partly due to GABABR parameters being 469 

underconstrained. GABABR conductance was partially constrained by the baseline firing rate objective 470 

but has been shown to have no effect on I-waves [33]. However, GABABR is important for the cortical 471 

silent period [34] and paired pulse responses [35], and these data can be incorporated as optimization 472 

constraints in future work. 473 

Finally, experimental data from only two subjects was used with responses from a single TMS intensity. 474 

The data were representative of the two qualitative types of responses—with and without D-wave. The 475 

small dataset allowed for more rapid model development due to fewer optimization constraints, and 476 

the methods established in this work can be applied in the future to extended data from more subjects 477 

and more recordings within subject. 478 

Conclusions 479 

To understand the mechanisms and principles underlying a biological process, sensitivity analysis is a 480 

powerful tool. However, as the number of relevant variables increases, the analysis can become 481 

overwhelming, and conclusions become diluted. At these large numbers, degeneracy in the sensitivity 482 

analysis is possible as many mechanisms can be identified to be significant to the phenomenon of 483 

interest. However, there is also the possibility that subsets of these mechanisms share certain properties 484 

that represent a more fundamental mechanism or at least a lower-level mechanism that was previously 485 

unclear or unaccounted for. In this case, a secondary analysis can reveal more fundamental mechanisms 486 

that underly the variables that explain the phenomenon of interest. For this work, the lower-level 487 
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mechanisms were model parameters that described the anatomical structure of the network, i.e., the 488 

wiring diagram and the latencies that resulted from these anatomical constraints. The insights on how 489 

the wiring diagram and the conduction latencies affect peaks in an evoked response can be generalized 490 

and applied to areas outside the motor cortex and to stimulation modalities beyond TMS.  491 

METHODS 492 

Motor Cortical Column Simulations 493 

Neuronal Network Model 494 

The motor cortical macrocolumn model was based on the equations and parameters published by Esser 495 

et al., 2005, which specified the connectivity, somatic biophysics, and synaptic properties [7]. The model 496 

contained L2/3 ITs and BCs, L5 PTNs and BCs, L6 ITs and BCs and excitatory afferents that targeted each 497 

neuron type (i.e., six groups of afferents). The circuit describing the connectivity is shown in Fig 3A. The 498 

Esser model was chosen as a starting point due to its ability to generate I-waves and the low 499 

computational complexity of its leaky-integrate-and-fire, point neuron models. The spiking activities of 500 

the afferents were generated by a Poisson process with a mean firing rate of 0.25 Hz [36]. Noise was 501 

added to the neuron models that was independent of the synaptic drive provided by the afferents and 502 

unaffected by TMS to ensure proper baseline firing rates and reduce network synchronization. Each 503 

neuron received its own noise in the form of short, suprathreshold current injections with Poisson-504 

distributed intervals. Although the Esser model included the thalamus and thalamocortical projections, 505 

the thalamus was omitted from the present work to further reduce computational time because it does 506 

not affect I-wave generation [25]. 507 

The macrocolumn encompassed a cylinder with a diameter of 500 μm (Fig 3B) based on anatomical 508 

studies [37]. The height of the cylinder was 2700 μm based on measurements made on human motor 509 

cortex from ex vivo brain [38]. This study also informed the total vertical thickness (i.e., depth) of the 510 
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layers within the macrocolumn. The cortical depth location of a neuron was uniformly and randomly 511 

generated within the appropriate layer bounds. The macrocolumn was comprised of microcolumns that 512 

were arranged in a triangular lattice with a spacing of 50 μm [39] resulting in 79 microcolumns and 513 

matched the range of microcolumns per macrocolumn [37,40]. The microcolumns were synonymous 514 

with the “topographical elements” described in the Esser model and contained 2 excitatory neurons and 515 

1 inhibitory neuron per layer. With 3 neurons per layer, 3 layers per microcolumn, and 79 microcolumns 516 

in the macrocolumn, there was a total of 711 neurons (Table 1).   517 

 518 

 519 

 520 

 521 

 522 

 523 

 524 

 525 

 526 

 527 

 528 

 529 

 530 
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Table 1. Total numbers of neurons in model. 531 

Neuron type Number 

L2/3 IT 158 

L2/3 BC 79 

L5 PTN 158 

L5 BC 79 

L6 IT 158 

L6 BC 79 

L2/3 IT AFF 79 

L2/3 BC AFF 79 

L5 PTN AFF 79 

L5 BC AFF 79 

L6 IT AFF 79 

L6 BC AFF 79 

 532 

The conduction delay, defined as the time between the onset of an action potential and the start of the 533 

postsynaptic potential at the soma of the postsynaptic neuron, was calculated from the distance 534 

between the presynaptic and postsynaptic neuron pair and conduction velocity. The conduction velocity 535 

measured from non-human primates (570 μm/ms) was used as human measurements were not 536 

available [41]. 537 

TMS activation included only suprathreshold effects. Each stimulus activated a specified proportion of a 538 

neuron/afferent type, and neurons/afferents were randomly selected for each presentation of the 539 

stimulus. No effect was applied to neurons/afferents that were not selected. Direct activation of 540 

neurons resulted in an injection of a short suprathreshold current to elicit an action potential that was 541 

propagated orthodromically to all postsynaptically connected neurons using all relevant conduction 542 
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delays. Direct activation of the terminals of afferents resulted in the activation of all connected synapses 543 

with the appropriate conduction delays. 544 

Connectivity parameters, neuron parameters, and synaptic parameters were identical to those reported 545 

in [7] with the following exceptions. Orientation selectivity-based connectivity was not included, so the 546 

connectivity rules for all microcolumns were identical. Because the geometric area of the model was 547 

reduced from the original, the overall synaptic drive was decreased. The subsequent optimization 548 

allowed larger synaptic weights to compensate. 549 

Simulation Paradigm 550 

Simulations were designed to ensure that the network achieved steady state before measurements 551 

were made. To reduce synchronization of the network due to simultaneous activation of afferent inputs, 552 

the onsets of the Poisson spike trains of the afferents were randomly and uniformly selected between 0 553 

and 200 ms. Baseline properties were measured between 500 and 2000 ms. TMS stimuli were applied at 554 

2000 ms with inter-trial intervals of 200 ms with a total of five trials. This interval was selected based on 555 

population averages of trials which showed no longer-term effects beyond 150 ms. Furthermore, the 556 

model did not implement synaptic plasticity and thalamic connections. Analysis of the TMS response 557 

was performed on the trial average. The total simulated time was 3000 ms.  558 

Selecting an Appropriate Time-Step 559 

The time-step was decreased from the value originally used in Esser et al., 2005, from 0.1 ms to 0.025 560 

ms due to instabilities in the network during these longer simulations. The time-step was selected by 561 

running single neuron simulations while log-linearly varying the time-step from 0.001 to 0.2 ms. Each 562 

simulation had a length of 20 seconds, and the models received a random Poisson input with a mean 563 

firing rate of 1000 Hz. The response at 0.001 ms was used as the baseline response, and the model 564 

behavior were characterized using the following metrics: Number of spikes generated, mean inter-spike 565 
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interval (ISI), coefficient of variation of the ISI, normalized root mean square error (NRMSE) of the 566 

membrane potential, and the van Rossum spike distance [42]. A time constant of 500 ms was used for 567 

the spike distance because the 0.001 ms time-step case had a mean ISI of approximately 500 ms. For 568 

each time-step, 50 simulations/trials were conducted. Each trial used a different random seed to change 569 

the Poisson input, and the sequence of random seeds for the trials was identical across time-steps. The 570 

mean of the metrics across trials for each time-step was calculated for further analysis.  571 

The knee-finding Python package Kneed [43] was used to identify the largest time-step at which further 572 

time-step increases would provide diminishing returns on the differences in metrics relative to the 0.001 573 

ms time-step (Fig 8). A 5th order polynomial function was fitted to the metrics as a function of the log of 574 

the time-step size to provide a continuous curve to identify the knee. The smallest time-step across all 575 

metrics was 0.03 ms for both mean ISI and the coefficient of variation of ISI, and a final time-step of 576 

0.025 ms was conservatively selected. 577 

 578 

 579 

 580 

 581 

 582 
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 583 

Fig 8. Analysis to select a time-step that both minimizes computation time and is numerically stable. 584 

Each pair of plots shows the mean of a metric as a function of the time-step size in the log10 scale on the 585 

left. The right plot of the pair shows the normalized curve and difference curve used to identify the knee-586 

point. The vertical dashed line in the pair of plots denotes the ideal time-step. On the lower right, the 587 

membrane potentials of the neuron model for different time-steps are shown. Offsets were added for the 588 

y-axis to allow all lines to be distinctly seen. The plots depict a key behavior that differentiates 589 

simulations at larger time steps. A pronounced afterhyperpolarization is seen with a 0.2 ms time-step 590 

that is absent from other time-steps. Additionally, spikes are generated at larger time-steps (0.1 and 0.2 591 

ms) that are absent for smaller time-steps. These dynamics contribute to the larger numbers of spikes, 592 

lower mean ISIs, larger NRMSE, and larger spike distance observed for larger time-steps. 593 
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Experimental Data 594 

Experimental data were obtained from human subjects who had spinal cord stimulators implanted to 595 

treat drug-resistant dorso-lumbar pain. Data was collected in accordance with an experimental protocol 596 

that was approved by the Ethics Committee of Campus Bio-Medico University of Rome. Use of the data 597 

in this study was approved by the Institutional Review Board of the Duke University Health System.  598 

The experimental setup is summarized in Fig 1A. For each subject, an electrode array was implanted 599 

percutaneously in the cervical epidural space, with the recording sites aligned vertically along the 600 

dorsum of the cord. Spinal potentials were recorded differentially between proximal-distal pairs of 601 

contacts (with the distal contact connected to the reference input of the amplifier), amplified and 602 

filtered (gain: 10000; bandwidth: 3 Hz to 3 kHz) by a Digitimer D360 amplifier (Digitimer Ltd., Welwyn 603 

Garden City, UK), and sampled at 10 kHz by means of a CED 1401 A/D converter (Cambridge Electronic 604 

Design Ltd., Cambridge, UK). 605 

A figure-of-eight coil with external loop diameter of 70 mm was held over the right motor cortex at the 606 

optimal scalp position to elicit motor responses in the contralateral first dorsal interosseous (FDI) muscle 607 

with the induced current flowing in a posterior–anterior direction across the central sulcus. TMS was 608 

delivered at 120% of the resting motor threshold (RMT). Monophasic pulses were applied with a 609 

Magstim 2002 stimulator (The Magstim Company Ltd., Whitland, UK) once every 5 seconds. 610 

Two subjects were included in this study (Fig 1B). Subject 1 was female, 64 years old, and had a cervical 611 

epidural electrode implanted at C3–C5 level; the RMT of TMS was 34% of maximum stimulator output. 612 

Subject 2 was male, 68 years old, and had a cervical epidural electrode implanted at C1–C2 level; the 613 

RMT was 55% of maximum stimulator output. Subject 1 did not exhibit a D-wave in response to TMS 614 

(D-), while Subject 2 exhibited a D-wave (D+). Each subject received at least 30 pulses. For analysis, the 615 

responses were truncated to begin 2 ms after the TMS pulse to remove stimulation artifact. An 616 
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additional noncausal bandpass filter (second-order Butterworth, 200 Hz to 1500 Hz) was applied to 617 

remove residual stimulus artifact, potential motor artifacts, and higher frequency activity that is 618 

unrelated to the corticospinal waves. Measurements of the corticospinal response were performed on 619 

the filtered, trial-averaged signal.  620 

Optimization of Network Model 621 

Particle swarm optimization 622 

Particle swarm optimization (PSO) is a metaheuristic algorithm for parameter exploration with the goal 623 

of finding parameters that satisfy one or more constraints. The particle’s position represents the 624 

parameter values for the model, and a velocity term updates the position using a weighted combination 625 

of the best solution found by itself (cognitive best) and the best solution found among a particle’s 626 

neighbors (social best). PSO was implemented by modifying the inspyred Python software package [44].  627 

Neighborhoods were constructed using a star topology with each particle’s neighborhood size being 5% 628 

of the total number of particles. There were 2048 particles and 300 iterations before the optimization 629 

was terminated. The optimization was repeated for each model four times to increase coverage of the 630 

parameter space and the likelihood of locating a global best solution. Each optimization used a different 631 

random seed that controlled the initial particle positions and their updated positions after each iteration 632 

as detailed below. 633 

At the beginning of the optimization procedure, particle positions were initialized using Sobol sampling. 634 

Sobol sampling generates a low-dispersion quasi Monte-Carlo sequence that exhibits better coverage of 635 

the parameter space than uniform random sampling for high-dimensional spaces and has been shown 636 

to improve optimization convergence [45]. 637 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2024.03.05.583549doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.05.583549
http://creativecommons.org/licenses/by/4.0/


 

35 
 

Particle behavior was guided by inertial velocity, cognitive velocity, social velocity, gain factor, and noise 638 

[46]. Inertial weight corresponded to a particle’s resistance to movement and results in a particle 639 

moving towards its previous position. The cognitive weight determined a particle’s preference towards 640 

the position of the best solution it had found. The social weight determined a particle’s preference 641 

towards the position of the best solution its neighborhood had found. The cognitive and social velocities 642 

were also separately modified using scalars drawn from a uniform distribution between 0 and 1. The 643 

velocity was then computed as the weighted average using the inertial, cognitive, and social weights. 644 

Finally, the velocity was scaled by the gain factor. For each particle coordinate, noise was sampled from 645 

a zero-mean Gaussian distribution with the standard deviation controlling the strength of the noise. 646 

Optimization noise is also known as mutation and was shown to be necessary for theoretical global 647 

convergence of PSOs [47]. Finally, the particle position was updated using both velocity and noise.  648 

 649 

Fig 9. Change in particle swarm optimization weights across successive iterations. 650 

For approximately 100 iterations, optimization is exploratory with large cognitive, inertial, and gain 651 

weights before favoring convergence with high social weights for the final 150 iterations. 652 
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These optimization parameters were updated during optimization to switch from an initial stage of 653 

exploration to a final stage of convergence (Fig 9). During exploration, inertial weight, cognitive weight, 654 

gain factor, and noise were high, and the social weight was low. During convergence, the social weight 655 

was high, and the remaining terms were low. The progression of the parameters followed a sigmoidal 656 

function 657 

𝑦(𝑥) = 𝐴 +
𝐾

1 +  𝑒(𝑎𝑥−𝑏𝑁)/𝑁 
 658 

where x is the current iteration of the optimization, N is the total number of iterations for the algorithm, 659 

A is the offset, K is the amplitude and direction of the sigmoid, a controls the steepness of the transition, 660 

and b controls the midpoint of the transition. The parameters for the sigmoidal function are reported in 661 

Table 2. 662 

Table 2. Sigmoid function constants underlying evolution of optimization metaparameters. 663 

Parameter A (Minimum) K (Amplitude/Direction) a (Slope) b (midpoint) 

Cognitive Weight 2.5 -2.4 20 7.2 

Social Weight 0.1 2.4 20 7.2 

Inertial Weight 0.5 2 15 4.2 

Gain Weight 0.5 1.5 10 2.4 

Noise Weight 0.005 0.195 15 4.2 

 664 

A damped, reflecting boundary condition was implemented on the parameter search space [48]. If a 665 

particle’s position exceeded a boundary, then the particle was reflected back into the valid parameter 666 

space using the difference between the original, non-valid position and the boundary. The reflection was 667 

damped by multiplying the difference with a scalar sampled from a uniform distribution between 0 and 668 

1. 669 
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Optimization constraints 670 

There were four main categories of constraints: baseline activity, TMS response, synchrony, and well-671 

behaved. The relative error was computed for each constraint except when the constraint was zero, in 672 

which case the absolute error was computed. The sum of the relative and absolute errors was used to 673 

represent the total error of a particle. Table 3 lists all constraints. 674 

Table 3. List of Optimization Constraints 675 

Constraints 

1. D-wave peak 18. L2/3 IT ISI 35. L5 PTN baseline CV 

2. D-wave time-to-peak 19. L2/3 BC firing rate 36. L5 BC baseline CV 

3. D-wave trough 20. L2/3 BC ISI 37. L6 IT baseline CV 

4. D-wave time-to-trough 21. L5 PTN firing rate 38. L6 BC baseline CV 

5. I1-wave peak 22. L5 PTN ISI 39. L2/3 IT population ISI std. 

6. I1-wave time-to-peak 23. L5 BC firing rate 40. L2/3 BC population ISI std. 

7. I1-wave trough 24. L5 BC ISI 41. L5 PTN population ISI std. 

8. I1-wave time-to-trough 25. L6 IT firing rate 42. L5 BC population ISI std. 

9. I2-wave peak 26. L6 IT ISI 43. L6 IT population ISI std. 

10. I2-wave time-to-peak 27. L2/3 IT peak/mean ratio 44. L6 BC population ISI std. 

11. I2-wave trough 28. L2/3 BC peak/mean ratio 45. L2/3 IT noise weight 

12. I2-wave time-to-trough 29. L5 PTN peak/mean ratio 46. L2/3 BC noise weight 

13. I3-wave peak 30. L5 BC peak/mean ratio 47. L5 PTN noise weight  

14. I3-wave time-to-peak 31. L6 IT peak/mean ratio 48. L5 BC noise weight 

15. I3-wave trough 32. L6 BC peak/mean ratio 49. L6 IT noise weight  

16. I3-wave time-to-trough 33. L2/3 IT baseline CV 50. L6 BC noise weight 

17. L2/3 IT firing rate 34. L2/3 BC baseline CV 51. Amplitude after I3-wave 

 676 

The baseline state constraints included both the mean population inter-spike interval (ISI) and the mean 677 

population firing rate for the different neuron types. Both objectives were important to constrain the 678 
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network activity due to the nature of their calculations. Firing rate was evaluated as the number of 679 

spikes elicited within a time-window. However, there was a possibility that the ISIs within the window 680 

were very small due to bursting behavior. Therefore, the mean ISI was added as an additional constraint. 681 

Mean ISI alone was not a good constraint for overall activity because the calculation of relative error 682 

resulted in lower error for small ISIs as opposed to large ISIs, which skewed the optimization to prefer 683 

smaller ISIs and therefore higher firing rates. Including both constraints balanced the difference in bias 684 

between them.  685 

Experimental recordings from the epidural space of the cervical spine of human subjects during single 686 

pulses of TMS were used to provide constraints for the corticospinal response to TMS. The peaks, 687 

troughs, and latencies (time-to-peak and time-to-minimum) for each of the corticospinal waves—D-688 

wave (if available), I1-wave, I2-wave, and I3-wave—were measured and used as constraints. An 689 

additional constraint minimized the peak of the model output beyond the time-window during which 690 

the I3-wave should occur to prevent additional corticospinal waves, which were not present in the 691 

recordings.  692 

To reduce population synchrony, the population spiking density for a neuron type was constructed and 693 

smoothed with a Gaussian kernel. The ratio between the maximum and the average value and the 694 

coefficient of variation of the smoothed population spiking density were used as constraints with target 695 

values of one and zero, respectively. 696 

A possible aberrant network behavior resulted in spiking activity of the network being dominated by 697 

large firing rates in a few neurons with the remaining neurons being silent. To avoid this, the standard 698 

deviation of the mean population ISI within a neuron type was minimized to prevent highly skewed 699 

distributions of activity. 700 
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Optimized Parameters 701 

There were 98 open parameters for optimization. They can be divided into the following categories: 702 

Synaptic weights scalars, conduction velocity scalars, afferent delay mean, afferent delay standard 703 

deviation, proportion activated, noise amplitude, and noise rate. These categories and their bounds for 704 

optimization are summarized in Table 4. The specific names of all parameters are listed in S1 Appendix 705 

Table A-B. 706 

Table 4. Categories of optimized parameters. 707 

Name Description Range 

Synaptic Weight Scalar (N. A.) 
38 parameter) 

Scalar multiplied to base synaptic weights 
[0.1, 10] 

Conduction Velocity Scalar (N. A.) 
24 parameters 

Scalar multiplied to conduction velocity 
[0.25, 2] 

Afferent Delay Mean (ms) 
6 parameters 

Mean conduction delay between afferent and 
postsynaptic neuron 

[0.2, 2] 

Afferent Delay Stdev. (ms) 
6 parameters 

Standard deviation of conduction delay between 
afferent and postsynaptic neuron 

[0.1, 1] 

Proportion Activated (N. A.) 
12 parameters 

Proportion of population made suprathreshold due to 
application of TMS 

[0, 1] 

Noise Amplitude  (nA) 
6 parameters 

Amplitude of current to generate spiking activity due 
to independent noise 

[1, 50] 

Noise Rate (N. A.) 
6 parameters 

Scalar multiplied with the desired firing rate to 
determine the mean of the Poisson process used to 
generate noise 

[0, 1] 

 708 

Characterizing Optimization Robustness 709 

The optimization was repeated four times with different random seeds to increase coverage of the 710 

parameter space and avoid local minimum solutions. Optimizations approached similar total error (S1 711 

Appendix Fig D). To quantify the similarity of best solutions (i.e., lowest total error) found for each 712 

optimization run, the distance among parameters for the best solutions were computed using Euclidean 713 
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distance, normalized by the maximal possible distance (S1 Appendix Fig D) with overall distances being 714 

17.4 to 19.6% from each other for D+ and D-, respectively. The relatively low distance (i.e., large 715 

similarity) indicated that solutions lie within similar regions of the parameter space. 716 

When identifying a dominating front, the large number of constraints resulted in every solution being 717 

considered dominating. Therefore, the constraints were grouped by category and summed together to 718 

reduce the dimensionality of the dominating front to four dimensions. The categories and the 719 

corresponding objectives (based on the numbering from Table 3) are the following: Corticospinal wave 720 

(1–16), spiking activity (17–26), synchrony (27–38), and well-behaved (39–51). The Pareto front is 721 

visualized in S1 Appendix Fig E. The category error is plotted as a function of total error and showed that 722 

corticospinal wave and baseline activity objectives were opposed. Generally, a solution that better 723 

matched the experimentally-recorded corticospinal waves had a worse match with the desired baseline 724 

activity. 725 

Sensitivity Analysis between Model Parameters and Corticospinal Waves 726 

The TVAT analysis investigated the synaptic weight and activation parameters for 42 total parameters 727 

with 21 equally spaced values between 0 and the maximum boundary resulting in 861 unique 728 

parameter-pairs with 441 values per pair. The total number of simulations for the sensitivity analysis 729 

was 344,400. For each pair, the relationships between the two parameters and the amplitudes for each 730 

corticospinal wave were approximated using linear regression with elastic net regularization and a third-731 

order polynomial model that included third-order interaction terms. Prior to the linear regression, the 732 

corticospinal wave amplitudes were standardized, i.e., the mean was subtracted, and the variance 733 

normalized to one. Because they were uniformly distributed across a grid, the parameters were 734 

normalized, i.e., the minimum was subtracted, and the values divided by the parameter boundary range. 735 

Regularization is a method of embedded feature selection that determines feature importance during 736 
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coefficient estimation and prevents overfitting. The optimal regularization parameters were determined 737 

using 10-fold cross-validation. The open-source scikit-learn Python package was used to conduct the 738 

regression and cross-validation [49]. 739 

The partial effect size of a parameter for a corticospinal wave was represented as the sum of the 740 

absolute values of the coefficients of the polynomial models that involved the parameter. The total 741 

effect size for a corticospinal wave was calculated as the sum of the effect sizes across all polynomial 742 

models, i.e., across all pair-wise interactions, that included the parameter. Poor polynomial fits, 743 

indicating that there may be little or no correlation between the parameters and the corticospinal wave 744 

amplitude, were excluded from the summation. Only models with a coefficient of determination greater 745 

than or equal to 0.5 were included.  746 

Structural Analysis between Model Circuit and Corticospinal Wave Sensitivity 747 

The cortical column circuit at the neuron population level can be represented as a weighted directed 748 

graph with neuron types as nodes and connection between neuron types as edges. Given the effect sizes 749 

revealed by the TVAT analysis, classifiers were used to identify any similarities in graph properties that 750 

may exist to explain groupings of effect sizes, i.e., preferential versus non-preferential and corticospinal 751 

wave preference. The goal was to identify the minimum set of features that would separate preferential 752 

vs non-preferential nodes and then identify the corticospinal wave to which a preferential node had the 753 

greatest effect.  754 

Graph Metrics 755 

Edge weights were specified using a variety of properties such as conduction delay and the log of the 756 

connection probability. Because the relevant output of the network model was generated by the L5 757 

PTNs, graph analysis was conducted using these neurons as a target or reference node. Graph analysis 758 

was performed using the open-source networkx Python package [50]. All simple paths between a 759 
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starting node and the target node (L5 PTNs) were identified. Simple paths were defined as the sequence 760 

of nodes between the start and target that do not include repeat nodes along the path. The total 761 

conduction delay from a node to the target was computed as the sum of all conduction delays between 762 

nodes along the simple path, including synaptic transmission delays (0.2 ms). The total connection 763 

probability was computed as the sum of the logs of all connection probabilities between nodes along 764 

the simple path. Averages and standard deviations were also computed for these metrics. The out-765 

degree (divergence), in-degree (convergence), and three centrality measures were calculated as well. 766 

Finally, the overall functional effect of the simple path was computed by first determining whether the 767 

simple path would have an overall excitatory effect (+1) or inhibitory effect (−1) on the L5 PTNs by 768 

multiplying successive functional effects along the simple path. The functional effects of each simple 769 

path were then weighted by the log of the path connection probability to compute the weighted 770 

average used to represent the overall functional effect of a node to the L5 PTNs. A summary and 771 

description of these metrics are in Table 5. 772 

Training Classifiers 773 

Two types of classifiers were used. Logistic regression was used to identify preferential vs non-774 

preferential nodes. Support vector classification (SVC) with a radial basis function was used to perform a 775 

multiclass prediction to identify the corticospinal wave to which a preferential node had the greatest 776 

effect [51]. Classification, cross-fold validation, and regularization were performed using the scikit-learn 777 

Python package [49]. 778 

Input data consisted of the graph metrics described in Table 5. The inputs were standardized, i.e., the 779 

means were removed, and the variance was normalized to one. This was necessary for regularization 780 

during model estimation. 781 
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Due to the low numbers of samples for each class, the data was augmented by concatenating noisy 782 

versions of the original data. Noise was drawn from a normal distribution with zero mean and a 783 

standard deviation of 0.3, which represents 30% of the standard deviation of the standardized data. 784 

Stratified 10-fold validation with 5 repeats was used to generate training and test sets for validation of 785 

the models. Stratified k-fold validation was chosen to allow for a balanced sampling of classes. The 786 

model performance was quantified using accuracy, computed as the number of true positives and true 787 

negatives divided by the total number of predictions. This validation strategy was performed for all the 788 

model evaluations described below. 789 

Feature selection was performed using different methods for logistic regression versus SVC. Logistic 790 

regression used an embedded method, Lasso regularization, to eliminate non-predictive features. Lasso 791 

regularization minimizes the sum of the absolute value of all coefficients in addition to the mean 792 

squared error during model estimation which can result in the elimination of features as their 793 

coefficients drop to zero [52]. The weight of the Lasso regularization term was determined by grid-794 

search and cross-validation. The remaining features were then used with Ridge regularization to 795 

perform the final classification. The weight of the Ridge regularization term was also determined by grid-796 

search and cross-validation. 797 

 798 

 799 

 800 

 801 

 802 

 803 
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Table 5. Description of graph metrics used to characterize the network. 804 

Name Description 

Convergence In-degree of nodes / number of connected presynaptic neuron types. 

Divergence Out-degree of nodes / number of connected postsynaptic neuron types. 

Total Simple Paths Total number of unique simple paths for a node to L5 PTN. 

Shortest Path Delay Conduction delay of shortest path from node to L5 PTN. 

Average Path Delay Average path delay of all simple paths from a node to L5 PTN. 

Weighted Average Path 
Delay 

Weighted average of path delay of all simple paths from a node to L5 
PTN using the log of the connection probability of the simple paths as 
weights. 

Standard Deviation Path 
Delay 

Standard deviation of path delays of all simple paths from a node to L5 
PTN. 

Weighted Standard 
Deviation Path Delay 

Weighted standard deviation of path delays of all simple paths from a 
node to L5 PTN using the log of the connection probability of the simple 
paths as weights. 

Connection Probability of 
Shortest Path 

Connection probability of shortest path from a node to L5 PTN. 

Average Connection 
Probability (Log) 

Average of the log of the connection probabilities of all simple paths 
from a node to L5 PTN. 

Standard Deviation 
Connection Probability 
(Log) 

Standard deviation of the log of the connection probabilities of all 
simple paths from a node to L5 PTN. 

Functional Effect Overall excitatory/inhibitory effect of node on L5 PTN. For each simple 
path the excitatory/inhibitory effect of a node on the next node was 
represented as a +1 or -1. The effects of successive nodes were 
multiplied.  

Weighted Functional Effect Weighted average of the functional effect using the log of the 
connection probability of the simple paths as weights. 

Closeness Centrality Reciprocal of the average distance of the shortest paths between the 
node and all other nodes. 

Betweenness Centrality Ratio of the total number of shortest paths in the network to the 
number of paths that include node but do not end on the node. 

Harmonic Centrality Sum of the reciprocal of the sum of the shortest path distances 
between the node and all other nodes. 
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 805 

SVC does not support Lasso regularization, so recursive feature elimination was performed to identify 806 

the most predictive features [51]. During this procedure, an initial random sample of features was 807 

chosen, and the model was trained and evaluated. Then, models were trained while leaving one feature 808 

out. The model with the smallest decrease in performance indicated that the removed feature was not 809 

predictive and was eliminated from the feature set. This process was repeated with the remaining 810 

features until a single feature remained. Features were ranked by the number of times a feature was the 811 

sole remainder after the elimination process and divided by the total number of times the feature was 812 

included in the initial random sample. Recursive feature elimination was repeated 100 times with 5 813 

random features chosen for each iteration. The regularization weight and the scale factor for the radial 814 

basis functions were determined using grid search and cross-validation. The final classifier was trained 815 

using Ridge regularization. 816 
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S1 APPENDIX 956 

Fig A 957 

 958 

Fig A. Activation and synaptic weight scalar parameters for best D+ and D− models. 959 

IT: Intratelencephalic neuron. PTN: Pyramidal tract neuron. BC: Basket cell. AFF: Afferent. 960 

 961 
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Fig B 962 

 963 

Fig B. Afferent activation delay and conduction velocity scalars for best D+ and D− models. 964 

IT: Intratelencephalic neuron. PTN: Pyramidal tract neuron. BC: Basket cell. AFF: Afferent. 965 

 966 

 967 

 968 

 969 

 970 
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Fig C 971 

 972 

 973 

Fig C. Synaptic noise weight and synaptic noise firing rates for best D+ and D− models. 974 

IT: Intratelencephalic neuron. PTN: Pyramidal tract neuron. BC: Basket cell. AFF: Afferent. 975 
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Fig D 980 

 981 

Fig D. Characterizations of convergence from optimization. 982 

A) The cumulative lowest total error is plotted as a function of optimization iteration. Four evolution 983 

seeds were run for each responder type (D+ and D−). All seeds converged to errors of similar magnitude. 984 

B) The normalized distances of the parameters of the best solutions for each optimization run. The 985 

Euclidean distance of the best solutions was normalized by the maximum possible distance given the 986 

bounds of the explored parameter space. The diagonals of the matrix are zero because they represent 987 

the distance between a solution and itself. The overall normalized distances were 17.4 to 19.6% for D+ 988 

and D-, respectively. 989 
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Fig E 990 

 991 

Fig E. Visualization of reduced pareto front.  992 

Objectives were grouped into categories, and their combined error was plotted against the total error. 993 

Red dots indicate particles that were pareto dominant, and yellow particles indicate the remaining 994 

particles. The correlation between the category error and the total error is a representation of the pareto 995 

front and how the category error changes as total error is minimized. 996 
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Fig F 997 

 998 

Fig F. Effect sizes for all parameters and all waves.  999 

Effect size was calculated as the integrals of the absolute values of the partial derivatives of the 1000 

polynomial fits to the TVAT surfaces. Effect sizes were not normalized, and the x-axis maximum was 1001 

chosen to allow visualization of the smaller effect sizes. Effect sizes that are greater than the x-axis 1002 

maximum have their values listed above their corresponding bars. Y-axis labels are shared across 1003 

subplots. IT: Intratelencephalic neuron. PTN: Pyramidal tract neuron. BC: Basket cell. AFF: Afferent. 1004 
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Fig G 1005 

 1006 

Fig G. Effect size ranking for all parameters that preferentially affected I1-wave amplitude. 1007 

IT: Intratelencephalic neuron. PTN: Pyramidal tract neuron. BC: Basket cell. AFF: Afferent. 1008 

 1009 

 1010 

 1011 
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Fig H 1013 

 1014 

Fig H. Histogram of number of waves for which L5 PTNs contributed a spike.  1015 

For each stimulus presentation, the spikes generated by each L5 PTN were divided based on the time 1016 

windows for each corticospinal wave, and the total number of wave time windows during which spiking 1017 

occurred was counted.  1018 

 1019 

 1020 

 1021 

 1022 

 1023 
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Table A 1025 

Table A. List of Optimized Synaptic Weight Parameters 1026 

Synaptic Weight Parameters 

L2/3 IT to L2/3 IT (AMPAR/NMDAR) L2/3 BC to L5 PTN (GABABR) 

L2/3 IT to L5 PTN (AMPAR/NMDAR) L2/3 BC to L6 IT (GABAAR) 

L2/3 IT to L6 IT (AMPAR/NMDAR) L2/3 BC to L6 IT (GABABR) 

L2/3 IT to L2/3 BC (AMPAR/NMDAR) L2/3 BC to L2/3 BC (GABAAR) 

L2/3 IT to L5 BC (AMPAR/NMDAR) L2/3 BC to L2/3 BC (GABABR) 

L2/3 IT to L6 BC (AMPAR/NMDAR) L5 BC to L5 PTN (GABAAR) 

L5 PTN to L2/3 IT (AMPAR/NMDAR) L5 BC to L5 PTN (GABABR) 

L5 PTN to L5 PTN (AMPAR/NMDAR) L5 BC to L5 BC (GABAAR) 

L5 PTN to L6 IT (AMPAR/NMDAR) L5 BC to L5 BC (GABABR) 

L5 PTN to L2/3 BC (AMPAR/NMDAR) L6 BC to L6 IT (GABAAR) 

L5 PTN to L5 BC (AMPAR/NMDAR) L6 BC to L6 IT (GABABR) 

L5 PTN to L6 BC (AMPAR/NMDAR) L6 BC to L6 BC (GABAAR) 

L6 IT to L5 PTN (AMPAR/NMDAR) L6 BC to L6 BC (GABABR) 

L6 IT to L6 IT (AMPAR/NMDAR) L2/3 IT AFF to L2/3 IT (AMPAR/NMDAR) 

L6 IT to L5 BC (AMPAR/NMDAR) L2/3 BC AFF to L2/3 BC (AMPAR/NMDAR) 

L6 IT to L6 BC (AMPAR/NMDAR) L5 PTN AFF to L5 PTN (AMPAR/NMDAR) 

L2/3 BC to L2/3 IT (GABAAR) L5 BC AFF to L5 BC (AMPAR/NMDAR) 

L2/3 BC to L2/3 IT (GABABR) L6 IT AFF to L6 IT (AMPAR/NMDAR) 

L2/3 BC to L5 PTN (GABAAR) L6 BC AFF to L6 BC (AMPAR/NMDAR) 

 1027 

IT: Intratelencephalic neuron. PTN: Pyramidal tract neuron. BC: Basket cell. AFF: Afferent. 1028 

 1029 

 1030 

 1031 
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Table B 1032 

Table B. List of Optimized Delay, Activation, and Noise Parameters 1033 

Parameters 

Conduction velocity scalar L2/3 IT to L2/3 IT Activation propagation delay stdev. L2/3 IT AFF 

Conduction velocity scalar L2/3 IT to L5 PTN Activation propagation delay stdev. L2/3 BC AFF 

Conduction velocity scalar L2/3 IT to L6 IT Activation propagation delay stdev. L5 PTN AFF 

Conduction velocity scalar L2/3 IT to L2/3 BC Activation propagation delay stdev. L5 BC AFF 

Conduction velocity scalar L2/3 IT to L5 BC Activation propagation delay stdev. L6 IT AFF 

Conduction velocity scalar L2/3 IT to L6 BC Activation propagation delay stdev. L6 BC AFF 

Conduction velocity scalar L5 PTN to L2/3 IT Proportion activated L2/3 IT 

Conduction velocity scalar L5 PTN to L5 PTN Proportion activated L2/3 BC 

Conduction velocity scalar L5 PTN to L6 IT Proportion activated L5 PTN 

Conduction velocity scalar L5 PTN to L2/3 BC Proportion activated L5 BC 

Conduction velocity scalar L5 PTN to L5 BC Proportion activated L6 IT 

Conduction velocity scalar L5 PTN to L6 BC Proportion activated L6 BC 

Conduction velocity scalar L6 IT to L5 PTN Proportion activated L2/3 IT AFF 

Conduction velocity scalar L6 IT to L6 IT Proportion activated L2/3 BC AFF 

Conduction velocity scalar L6 IT to L5 BC Proportion activated L5 PTN AFF 

Conduction velocity scalar L6 IT to L6 BC Proportion activated L5 BC AFF 

Conduction velocity scalar L2/3 BC to L2/3 IT Proportion activated L6 IT AFF 

Conduction velocity scalar L2/3 BC to L5 PTN  Proportion activated L6 BC AFF 

Conduction velocity scalar L2/3 BC to L6 IT Noise weight L2/3 IT 

Conduction velocity scalar L2/3 BC to L2/3 BC Noise weight L2/3 BC 

Conduction velocity scalar L5 BC to L5 PTN Noise weight L5 PTN 

Conduction velocity scalar L5 BC to L5 BC Noise weight L5 BC 

Conduction velocity scalar L6 BC to L6 IT Noise weight L6 IT 

Conduction velocity scalar L6 BC to L6 BC Noise weight L6 BC 

Activation propagation delay L2/3 IT AFF Noise rate L2/3 IT 

Activation propagation delay mean L2/3 BC AFF Noise rate L2/3 BC 
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Activation propagation delay mean L5 PTN AFF Noise rate L5 PTN 

Activation propagation delay mean L5 BC AFF Noise rate L5 BC 

Activation propagation delay mean L6 IT AFF Noise rate L6 IT 

Activation propagation delay mean L6 BC AFF Noise rate L6 BC 

 1034 

IT: Intratelencephalic neuron. PTN: Pyramidal tract neuron. BC: Basket cell. AFF: Afferent. 1035 

 1036 

 1037 
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