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Transcranial magnetic stimulation (TMS) is a non-invasive, FDA-cleared treatment for neuropsychiatric
disorders with broad potential for new applications, but the neural circuits that are engaged during TMS
are still poorly understood. Recordings of neural activity from the corticospinal tract provide a direct
readout of the response of motor cortex to TMS, and therefore a new opportunity to model neural
circuit dynamics. The study goal was to use epidural recordings from the cervical spine of human
subjects to develop a computational model of a motor cortical macrocolumn through which the
mechanisms underlying the response to TMS, including direct and indirect waves, could be investigated.
An in-depth sensitivity analysis was conducted to identify important pathways, and machine learning

was used to identify common circuit features among these pathways.

Sensitivity analysis identified neuron types that preferentially contributed to single corticospinal waves.
Single wave preference could be predicted using the average connection probability of all possible paths
between the activated neuron type and L5 pyramidal tract neurons (PTNs). For these activations, the
total conduction delay of the shortest path to L5 PTNs determined the latency of the corticospinal wave.
Finally, there were multiple neuron type activations that could preferentially modulate a particular

corticospinal wave.

The results support the hypothesis that different pathways of circuit activation contribute to different
corticospinal waves with participation of both excitatory and inhibitory neurons. Moreover, activation of
both afferents to the motor cortex as well as specific neuron types within the motor cortex initiated
different I-waves, and the results were interpreted to propose the cortical origins of afferents that may
give rise to certain I-waves. The methodology provides a workflow for performing computationally
tractable sensitivity analyses on complex models and relating the results to the network structure to

both identify and understand mechanisms underlying the response to acute stimulation.


https://doi.org/10.1101/2024.03.05.583549
http://creativecommons.org/licenses/by/4.0/

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.05.583549; this version posted March 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Understanding circuit mechanisms underlying the response to transcranial magnetic stimulation remains
a significant challenge for translational and clinical research. Computational models can reconstruct
network activity in response to stimulation, but basic sensitivity analyses are insufficient to identify the
fundamental circuit properties that underly an evoked response. We developed a data-driven neuronal
network model of motor cortex, constrained with human recordings, that reproduced the corticospinal
response to magnetic stimulation. The model supported several hypotheses, e.g., the importance of
stimulating incoming fibers as well as neurons within the cortical column and the relevance of both
excitatory and inhibitory neurons. Following a sensitivity analysis, we conducted a secondary structural
analysis that linked the results of the sensitivity analysis to the network using machine learning. The
structural analysis pointed to anatomical mechanisms that contributed to specific peaks in the response.
Generally, given the anatomy and circuit of a neural region, identifying strongly connected paths in the
network and the conduction delays of these paths can screen for important contributors to response
peaks. This work supports and expands on hypotheses explaining the response to transcranial magnetic

stimulation and adds a novel method for identifying generalizable neural circuit mechanisms.
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Transcranial magnetic stimulation (TMS) can non-invasively activate superficial cortical regions to study
brain functions, treat psychiatric and neurological disorders, and collect diagnostic biomarkers [1].
However, improving methodologies and developing new applications remain slow and challenging due
to the uncertainties about what is activated by TMS and how this activation courses through the circuits
within and beyond the stimulated region [2]. One approach to understanding these network effects in
the motor cortex is via descending volleys of activity that propagate to the spinal cord in response to
TMS and can be recorded epidurally as transient corticospinal waves (Fig 1). The corticospinal waves
represent the activity of layer 5b pyramidal tract neurons (PTNs) that send axons into the spinal cord [3].
The shortest latency direct wave (D-wave) is widely agreed to represent the direct activation of PTNs [4].
Subsequent waves are called indirect waves (I-waves) and likely represent transsynaptic activations of
PTNs resulting from the initial direct activation of PTNS, axons of afferents, and other neuron types.
Understanding the neurons and circuits that produce the I-waves would provide insight into patterns of

neuron activation and the circuit connections that mediate the cortical response to TMS [5].
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Fig 1. Descending volleys of spinal waves provide a window into motor cortical responses to TMS.

A) TMS coil with electric field (E) induced in the posterior—anterior (P-A) orientation over the motor
cortex. L5 PTNs send axons into the spinal cord (corticospinal tract), and their activity is recorded
epidurally at levels C1—C5. B) Epidural recordings of corticospinal waves in two human subjects.

Individual trials are plotted with colored lines. The solid black lines are trial averages.

Current understanding of I-waves arises from epidural recordings combined with pharmacological
interventions that identified the synaptic receptors involved in |-wave generation and broadly suggested
excitatory and inhibitory mechanisms that contribute to I-waves [5,6]. These and other experimental
findings were organized into conceptual frameworks to propose mechanisms that give rise to the
corticospinal waves [5,6]. Two broad categories of these frameworks are I-wave generation through
circuit activations and I-wave generation via intrinsic neuronal mechanisms (neural oscillator
hypothesis). With circuit activation, corticocortical afferents are thought to initiate activations in
different neuronal populations that propagate through the cortical circuit to L5 PTNs. Intrinsic neuronal

mechanisms have also been hypothesized to allow L5 PTNs to behave as neural oscillators such that the
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91 I-waves result from repeated spiking from the same neuron due to the dynamics following initial

92  excitation by TMS.

93  Computational neuronal network models have been developed that integrate anatomical and
94  electrophysiological details to investigate TMS-induced corticospinal waves. A model by Esser et al.
95 represented the major layers of motor cortex using spiking point neurons and homogeneous activation
96  of a proportion of fiber terminals across all layers to represent activation by single TMS pulses [7]. Rusu
97 et al. developed a network model of layer 2/3 and layer 5 pyramidal neurons with realistic dendritic
98 morphologies to investigate the effect of somatodendritic conduction and integration on I-wave
99  generation [8]. These models generated |-wave activity that qualitatively resembled experimental
100 findings. However, the models were not directly constrained by experimental recordings and lacked an
101 exhaustive sensitivity analysis to investigate, among other variables, the effects of inhomogeneous

102  activation across different neuron types.

103  To determine the TMS activations and neuron-to-neuron projections that contribute to I-waves, we
104  used experimental recordings of the corticospinal response to TMS to constrain a computational model
105 of a motor cortical macrocolumn. Starting from a reduced version of the Esser model, that could

106  produce I-waves and is mathematically compact, we established a spiking neuronal network model of
107  motor cortex that reproduced the features of D-waves and I-waves recorded epidurally in the cervical
108  spine of human subjects. Next, a unified model was developed that generated responses with and

109  without a D-wave with a change in a single parameter. A sensitivity analysis of the unified model was
110  conducted using the two-variable-at-a-time (TVAT) method. Finally, machine learning and graph

111  theoretical measures were used to relate the connectivity of the model to the results of TVAT analysis
112  and identify general mechanisms producing |-waves at the circuit level. A high-level representation of

113  the methodology is summarized in Fig 2.
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115  Fig 2. High level diagram of methodology.

116 A network model was defined, and particle swarm optimization was used to constrain parameters using
117  experimental data. A TVAT sensitivity analysis was conducted on the optimized model, and finally the
118  network graph was used to identify structural patterns that predict the sensitivity analysis. E: Excitatory

119  neuron. I: Inhibitory neuron.

120

121  The neuronal network model used to simulate the effects of TMS represents a human cortical

122 macrocolumn within the motor cortex and included layer (L) 2/3, L5 and L6 and is based on a model

123 developed in Esser et al., 2005 [7] (Fig 3A). Each layer contained excitatory neurons representing

124  pyramidal neurons and inhibitory neurons representing fast-spiking parvalbumin-positive basket cells
125  (BC). More specifically, the layer 2/3 and layer 6 pyramidal neurons were intratelencephalic (IT) neurons
126  with corticocortical projections, while the layer 5 pyramidal neurons were PTNs. Inhibition was

127  mediated only by parvalbumin-positive BCs because they provide the strongest inhibition compared to
128  somatostatin and vasoactive intestinal protein expressing interneurons [9]. Excitatory afferents (AFF)
129  wereincluded that targeted each of the neuron types in the motor cortical column model. The afferents

130 non-specifically represented activity that may arise from other cortical/sub-cortical areas. Direct
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activation due to TMS was represented using an input—output approach. Given a stimulus intensity as
input, the output was the proportion of the population that fired an action potential in response to the

TMS pulse. Both neurons and afferents could be activated, and the effect of direct activation was

defined separately for each neuron and afferent type. Simulations were performed using NEURON
8.2.0+ and scripted in Python 3.8.13 [10].
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Fig 3. Overview of motor cortical macrocolumn model.

A) Block diagram of cortical connectivity. Arrowheads denote excitatory connections mediated by AMPA
and NMDA receptors. Round heads denote inhibitory connections mediated by GABAA and GABAs
receptors. B) Three-dimensional representation of neuron locations. (Left) Side view showing laminar
distribution. (Right) Top view depicting microcolumn organization within macrocolumn. IT:

Intratelencephalic neuron. PTN: Pyramidal tract neuron. BC: Basket cell.

Particle swarm optimization was used to identify parameters for models that responded with (D+) or
without a D-wave (D-). The objective function included the firing rate of the network prior to stimulation
(i.e., no stimulation) and several properties of the corticospinal response after stimulation (see Methods

for a detailed description of the experimental data) including the timings and amplitudes of the peaks
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148  and troughs. The parameters being optimized included the synaptic weights of each projection, the
149  proportion of neurons activated by TMS, the conduction velocities for each neuron type, and the
150  propagation delay due to stimulation of afferents. The total number of optimized parameters was 98,

151 and the total list of parameters and their optimization ranges are described in Methods.

152  The final selected models had average corticospinal wave errors of 10.3% and 15.4% for the D+ and D-
153 models, respectively (Fig 4A). The corticospinal tract activity generated by the individually optimized

154 models captured many of the features of the experimental data (Fig 4C). The spiking responses of the
155 models are represented using raster plots in Fig 4D, and it can be observed how the spiking activity of L5
156 PTNs produce the corticospinal responses in Fig 4C. The final parameter values for each of the optimized
157 models are presented in S1 Appendix Fig A-C. To increase coverage of the parameter space and avoid
158 local minima, multiple optimizations were executed. The convergences of total error, the distances

159  among their solutions, and simplified Pareto front are shown in S1 Appendix Fig D-E.
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161  Fig 4. Optimization results and unified model.

162  A) Distribution of relative errors across corticospinal wave objectives for the individual best D+ and D-
163  models and the unified D- model. Average error is plotted on the right side. B) Identification of the

164  unified model. Weighted combinations of the parameters for the D+ and D- solutions were tested. Cost
165  represents the sum of total error and error difference. A unified model that used the D+ parameters
166  resulted in the lowest error across models and between models. C) Simulated epidural corticospinal

167  activity for optimized models (dashed colored lines) compared to experimental data (solid black line). The

10
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168  unified model exhibiting a D-wave (left, D+) used the same parameters as its individual best, so only a
169  single simulation output is shown. The case without a D-wave (right, D-) has the individual best and
170  unified model results. D) Spike raster plots for all motor cortical neuron types. A band-pass filter was

171 applied to the activity of the Layer 5 PTN (orange) to represent the corticospinal responses shown in C.

172

173 Despite being separately optimized, there were similarities among many of the parameters of D+ and D-
174  models, but one of the largest differences was for direct activation of L5 PTNs (S1 Appendix Fig A), which
175  generated the D-wave. Given the similarity between the remaining parameter values, we pursued a

176  parsimonious model that had identical values for all parameters except the direct activation of L5 PTNs.

177  The unified model was generated by creating weighted combinations of the parameters of the D-wave
178  and non-D-wave models (Fig 4B). All parameters were identical between models except direct activation
179  of L5 PTNs, which used the respective individual optimal values. The best unified model was selected
180  based on the total error across both models as well as the absolute difference of total error between
181 both models to identify a model that reproduced both response types without favoring one response
182  type over the other. The model representing the subject exhibiting a D-wave had the best

183  generalizability to the subject without a D-wave compared to any of the weighted combinations of the
184  model parameters, and the resulting unified D- model had average relative errors of 19.9% (compared
185  to 10.3% for the individually optimized D- model) while the error for the unified D+ model remained
186  unchanged (Fig 4A). The parameter values of the unified model were then used as the fixed pointin a

187 sensitivity analysis.

11
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188

189

190 Due to the high dimensionality of the parameter space (98 parameters), total grid search, random, or
191 guasi-random sampling would require a prohibitively large number of simulations to characterize fully
192 the relationships between the parameters and the corticospinal response. To reduce the computational
193  cost, a two-variable-at-a-time (TVAT) sensitivity analysis was conducted. TVAT is a form of fixed-point
194 analysis that varies two parameters simultaneously in a grid-search with the remaining parameters fixed
195 at their original values. TVAT analysis is more computationally intensive than the widely used one-

196 variable-at-a-time method, but allows characterization of pairwise interactions between variables

197  [11,12].

198  TVAT analysis was performed using direct activation parameters and synaptic weights. All unique

199  parameter pairs were varied in a grid search spanning the entire parameter range used in the

200  optimization. The amplitudes of the simulated corticospinal waves were measured to construct

201  amplitude maps as a function of the parameter pair involved, and polynomial regressions were used to
202  characterize the amplitude maps. The effect sizes of a parameter for each corticospinal wave were

203  computed using their polynomial regression coefficients if the regressions had an r? > 0.5 (see Methods).
204 Fig 5A-B show examples of good and poor fits of the polynomial regressions that comprise the sensitivity
205 analysis. The total effect sizes, computed as the sum of effect sizes across all corticospinal waves, for the
206 20 most influential parameters are shown in Fig 5C. Activation of L5 PTNs (TMS-L5 PTN) had the largest
207 effect size followed by activation of afferents to L5 PTN (TMS-L5 PTN AFF). Activation of L2/3 ITs and L6
208 ITs had large effect sizes. Important projections included the L2/3 IT projection to L5 PTN and L2/3 IT, L5

209 BC projection to L5 PTN and L5 PTN to L5 PTN. All effect sizes are shown in S1 Appendix Fig F.

12
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Fig 5. TVAT sensitivities, effect sizes, and their relative contributions across corticospinal waves.

A) Examples of TVAT surfaces with polynomial regressions that fit the data well. Simulation
measurements are displayed on the top row; regressions are below. B) Same as A but with regressions
resulting in poor fits. C) Rank sorted total effect sizes across all waves. Only the 20 largest effect sizes are
shown for legibility; the full results are shown in S1 Appendix Fig F. C and D share the same x-axis. D)
Relative effect sizes normalized across all waves by parameter. Parameter names were shortened and
hyphenated such that the label before the hyphen corresponds to the presynaptic source and the label

after the hyphen corresponds to the postsynaptic target, e.g. TMS-L6 BC indicates the activation of L6

13
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219  basket cells via TMS and L2/3 BC-L5 PTN indicates the projection of L2/3 basket cells to L5 pyramidal
220  tract neurons. E-H) Effect sizes were divided based on their contribution to a specific corticospinal wave
221  and then grouped based on various categories. The averages within the groups are plotted. E) Compares
222 sensitivity to activation vs. synaptic parameters. F) Sensitivity to activation of afferents vs. activation of
223 neurons within the cortical column. G) Sensitivity to synaptic parameters related to afferents vs. neurons
224 within the cortical column. H) Sensitivity to excitatory vs inhibitory neurons. IT: Intratelencephalic

225 neuron. PTN: Pyramidal tract neuron. BC: Basket cell. AFF: Afferent.

226  Theinfluence of the parameters on each individual corticospinal wave relative to the total are

227  summarized in Fig 5D. This plot reveals that while activation of L5 PTNs substantially affected D-waves,
228  this parameter made minimal contributions to I-waves. The activation of afferents to L5 PTNs most
229 substantially affected the I1-wave. This analysis led to a subsequent grouping of parameters that

230  preferentially influenced a single corticospinal wave versus parameters that affected multiple waves.

231 Different groupings of the total effect sizes were made to compare the average effect sizes of broader
232 categories. The effect sizes were further subdivided based on corticospinal wave to quantify the

233 sensitivity of the waves to the different groupings. First, the sensitivity to direct activation was

234  compared to the sensitivity to the synaptic strengths of the network (Fig 5E). The D-wave and 11-12
235  waves were highly sensitive to direct activation, and the 13-wave had an overall lower but similar

236 sensitivity to both direct activation and synaptic strengths. Next the activation and circuit parameters
237  were each divided between extracolumnar afferents and intracolumnar neurons (Fig 5F). The I1-wave
238  was sensitive to activation of afferents while the D-wave and 12-wave were sensitive to activation of
239  neurons within the column. Sensitivity levels were similar across |-waves for the synaptic effects of
240 afferents and cortical neurons (Fig 5G). The 13-wave was more sensitive to afferents while the |1-wave
241 was more sensitive to intracortical synaptic effects. The D-wave was not sensitive to synaptic

242 parameters. Finally, corticospinal waves were similarly sensitive to excitatory and inhibitory neurons (Fig

14


https://doi.org/10.1101/2024.03.05.583549
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.05.583549; this version posted March 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

243  5H). Sensitivities were relatively similar for 11-13 waves to excitatory neurons while the I11-wave had the

244  greatest sensitivity to inhibitory neurons.

245  Separating the effect sizes for each corticospinal wave revealed that the individual parameters could
246  preferentially affect one wave over others (Fig 5D). A parameter was defined as having a preferential
247  effect if the parameter’s largest effect size on a corticospinal wave was at least 50% larger than its

248  second largest effect size. The activation parameters that preferentially affected each corticospinal wave
249 were verified by visualizing the simulations performed for the TVAT analysis (Fig 6). These visualizations
250 demonstrate that the sensitivity analysis was consistent with the actual simulations. The analysis

251 identified that: the D-wave was most sensitive to the activation of L5 PTNs, the I11-wave was most

252 sensitive to direct activation of afferents to L5 PTNs, the 12-wave was most sensitive to activation of L6

253 Its, and the 13-wave was most sensitive to direct activation of afferents to L6 ITs.

254

255
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Fig 6. Effect sizes for parameters that preferentially affected a single I-wave.

For each corticospinal wave, effect sizes for parameters that preferentially affected the wave were
normalized and rank sorted and visualized as bar plots. The I11-wave had 9 preferential parameters, and
only 5 parameters are shown here for legibility. The remaining waves show the full numbers of
preferential parameters. The full set of I11-wave preferential parameters are shown in S1 Appendix Fig G.
To the right of the bar plots, the TVAT simulations involving the activation parameters with the largest
effect size are shown as colored traces. The solid black line represents responses for which the parameter
was set to zero. The disappearance of a wave on the solid black lines indicates that the parameter was
important to the generation of that wave. The waves are labelled in the plots. IT: Intratelencephalic

neuron. PTN: Pyramidal tract neuron. BC: Basket cell. AFF: Afferent.

Structural Parameters that Determine Preferential Influence

The sensitivity analysis predicted that multiple parameters could preferentially influence each I-wave. To
identify any shared features that may predict preferential influence on the same corticospinal wave, a
secondary analysis was conducted (Fig 7). The properties of the structure of the macrocolumn, such as
the distances between neurons and connection probabilities, remained invariant during optimization.

These invariant properties were quantified using a graph theoretical analysis, and machine learning was

16
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used to identify patterns in the network structure that contributed to corticospinal wave generation.
Because only the L5 PTNs contributed to the signal recorded in the corticospinal tract, the relationships
between neuron types to the L5 PTNs were characterized by deconstructing the network graph into
simple paths, i.e., paths with non-repeating nodes. All directed simple paths for all neuron types leading
to L5 PTNs were characterized for analysis. See Methods for detailed descriptions of the graph

characterizations.

Logistic regression with Lasso regularization was used to identify features that classified parameters
with preferential versus non-preferential influence (Fig 7A). The key properties for this classification
were a strong average connection probability to L5 PTNs and whether the overall effect on the L5 PTNs
was excitatory or inhibitory with a validation classification accuracy of 94.6% (Fig 7B). Recursive feature
elimination and support vector classification were used to identify properties of the preferential
parameters that predicted which corticospinal wave they affected (Fig 7C-D). The key property was the
conduction delay of the shortest path between the starting neuron and the L5 PTNs, and the validation

accuracy was 87.2%.

Although the sensitivity analysis identified important circuit mechanisms (i.e., activations and
projections) involved in corticospinal wave generation, the subsequent machine learning analysis
identified the anatomical bases that explained how and why the circuit mechanisms had a preferential
effect. This secondary structural analysis provides a method for identifying fundamental principles

involved in the neural response to acute stimulation.
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Fig 7. Classification of network features for effect size types.

A) The sum of the absolute value of the coefficients was plotted against regularization strength to
identify the best parameters that classify preferential versus non-preferential parameters. Parameters
that remain nonzero as regularization strength increases have better classification performance. Only
the top 10 best features are shown for legibility. B) Logistic regression decision boundary for preferential
parameters (dark) versus non-preferential parameters (light) using the best classification features

identified in A. Dark filled dots indicate data that were preferential, and light filled dots indicate data

18
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304  that were not preferential. C) Recursive feature elimination was performed to classify corticospinal wave
305 preference for preferential parameters. The higher probabilities of remaining after elimination indicated
306  better classification accuracy. Only 10 features are shown for legibility. D) Corticospinal wave

307  probabilities obtained by support vector classification using the single best classification feature from C.

308 The dashed lines represent the conduction delays of the data being classified.

309

310 We developed an experimentally-constrained model of a human motor cortical macrocolumn that

311 generated realistic D-waves and |-waves in response to single pulse TMS. The model reproduced

312 responses that included or excluded a D-wave by changing the direct activation of L5 PTNs, which is

313 consistent with the mechanisms of D-wave generation [4]. TVAT sensitivity analysis, which lies between
314  alocal and global sensitivity analysis, identified the circuit pathways and TMS activations important to I-

315 wave generation.

316  The results of the sensitivity analysis support the hypothesis that direct activation of the terminals of
317  afferents to motor cortex are an important mechanism for I-wave generation but are not consistent with
318 the hypothesis that I-waves are generated by repetitive firing of single neurons (neural oscillator

319  hypothesis). The analysis also supports the involvement of both excitatory and inhibitory neuron types
320 in modulating I-waves [5]. In addition, the sensitivity analysis identified afferents and neuron types

321  endogenous to the motor cortex that can be directly activated to generate corticospinal waves.

322  Subsequently, structural analysis identified general structural principles that allowed these activations
323  to preferentially generate corticospinal waves. Direct activation of afferents and neuron types can

324  preferentially contribute to single I-waves if they have a highly connected path to L5 PTNs, relative to all
325  other paths between the activated neuron type and L5 PTNs. Finally, the latency of the I-wave that is

326  affected by a path can be predicted by its total conduction delay to L5 PTNs.

19


https://doi.org/10.1101/2024.03.05.583549
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.05.583549; this version posted March 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

327

328 The leading hypothesis for I-wave generation proposes that 1) separate activation pathways exist for
329 early versus late I-waves, and 2) activated pathways include both excitatory and inhibitory neurons

330 [6,13]. The sensitivity analysis identified neural activations that preferentially modulated specific I-

331  waves, revealed preferential activation pathways for all three I-waves, and showed that silencing their
332 activation greatly suppressed a particular I-wave (Fig 6). The sensitivity analysis was grouped to compare
333  the total effect sizes of excitatory and inhibitory neurons on I-wave generation and revealed that

334  corticospinal waves exhibited comparable sensitivities to both excitatory and inhibitory neurons and

335 that inhibitory neurons are involved in I-wave modulation (Fig 5H).

336 Most inhibitory neurons had non-preferential effects, i.e., affected multiple I-waves, which is consistent
337 with experimental findings that various anesthetics, which act as allosteric modulators of GABAAR,

338 generally reduce I-wave amplitudes [6]. However, the sensitivity analysis showed that the I1-wave was
339 most sensitive to inhibitory neurons with decreasing sensitivity for later I-waves (Fig 5H), and this is not
340  consistent with experimental findings that show GABA, agonists affect later I-waves but not the I1-wave
341  [14-16]. One possibility for this disagreement is the lack of inhibitory afferents in the model that could
342  arise from adjacent cortical macrocolumns. These afferents would provide inhibition at longer latencies
343  that would affect later I-waves. The Model Limitations and Future Directions subsection discusses this

344 further.

345

346  The prior conceptual frameworks assumed that I-waves are initiated by activation of corticocortical fiber
347  afferents, and the sensitivity analysis supports that the corticospinal response is most sensitive to
348 activation of terminals of afferents. However, this analysis revealed that activation of the motor cortical

349  circuit itself can initiate I-waves. Activation of ITs in L2/3 and L6 preferentially activated I12- and 13-waves
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350 (Fig 6). Although designing in vivo TMS experiments that control for contributions of endogenous circuit
351 elements to I-waves is difficult, the modeling results suggest activation of the endogenous circuit as
352 another mechanism for I-wave generation, in addition to activation of afferents. Intracortical

353 microstimulation (ICMS) studies can provide some insight into intracortical TMS effects and are further

354 discussed below in the Comparison to Intracortical Microstimulation subsection.

355

356

357 Given that multiple mechanisms can preferentially contribute to the same I-wave, the structural analysis
358 sought to identify the commonalities among mechanisms that yielded this response. A neuron type

359  within the circuit could have multiple paths leading to L5 PTN with different properties for each path.
360 Neuron types with a single path that had a high connection probability to L5 PTNs, relative to other

361 paths starting from the same neuron type, could preferentially affect a single I-wave (Fig 7A-B). For

362 neuron types where such a path exists, the primary mechanism for determining early versus late I-wave
363  activation was the conduction delay of the path between the activated population and L5 PTNs (Fig 7C-
364 D). The conduction delay defined in this study represents the combined contributions of action potential
365 propagation along the axon, synaptic transmission, and somatodendritic propagation of the resulting
366  postsynaptic potential. This is supported by the computational work of Rusu and colleagues who

367  controlled conduction delay based on synaptic location within dendrites [8].

368 To generalize, the results of the structural analysis suggest that if the generator of a signal within a
369 network is known, and the connection probabilities and conduction delays of the network are known,
370 then the network elements that preferentially contribute to singular peaks of a system’s impulse

371 response can be screened by performing the following: for each neuron type 1) identify all possible

372 paths from the neuron type to the signal generator, 2) compute the ratios of the log of the connection
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373 probability between the most highly connected path and the remaining paths normalized by the sum of
374  all log probabilities, and 3) obtain the latency of effect for the most highly connected path. Neuron types
375 that have a path that is more highly connected than the remaining paths will have a preferential

376 influence on peaks that occur during their latency of effect.

377

378  Another category of hypotheses for I-wave generation is the concept of the neural oscillator. These

379 theories were motivated by the fact that L5 PTNs can achieve firing rates that match the frequency of I-
380 waves and led to exploration of cellular mechanisms for I-wave generation [6]. A histogram was

381  constructed of the spike counts for each L5 PTN during the different I-waves (S1 Appendix Fig H), and L5
382 PTNs were most likely to contribute to a single I-wave during the corticospinal response. However, at
383  the population level excitatory recurrent connections exist between L5 PTNs, and the sensitivity analysis
384  demonstrated that the recurrent connections are involved in I-wave modulation as seen in Fig 5D and
385 Fig 6. Therefore, the modeling results do not support that I-waves are generated or sustained at the

386  neuronal level; rather, their generation appears to be a population level effect.

387

388 Direct cortical recordings to investigate I-waves are currently limited due to the technical challenges of
389  suppressing the TMS artifact, which saturates recordings and prevents recovery of the activity during
390 the period when the D-wave and I-waves occur [17,18]. ICMS in animals can generate high frequency
391 multiunit activity with frequencies comparable to I-waves [19-21]. The results of ICMS studies can

392 contribute to understanding the TMS response, but due to the differences in the spatial distribution and

393  gradient of the electric field, ICMS studies cannot be used to explain fully TMS evoked I-waves [22].

394 ICMS applied to the primary motor cortex (M1) hand area in nonhuman primates showed that earlier
395 peaks were elicited if the stimulation was closer to the recording site [21]. The study hypothesized that
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396 the stimuli were activating horizontal fibers within M1, and these results support conduction delay as a
397  mechanism determining the latencies of peaks. The horizontal fibers further represent afferents,

398 relative to a macrocolumn, that are endogenous to M1. Single unit activity from a similar ICMS study
399  that stimulated and recorded from M1 found minimal, sparse spiking within the time window relevant
400 for I-waves and supports that single L5 PTNs contribute to few I-waves, if at all [19]. This corroborates
401 the modeling predictions that I-waves represent a population response comprised of heterogeneous,
402 sparse spiking rather than a synchronized rapid spiking response across neurons (S1 Appendix Fig H).
403 Another ICMS study stimulated a region of the ventral premotor area F5 that sends afferents to the
404 hand knob area of M1 [20]. Stimulation of F5 at lower intensities recruited the I1-wave first, and higher
405 intensities eventually recruited later I-waves. Although it is known that F5 projects to M1, the laminar
406 distribution of the terminals of F5 afferents in M1 are unknown. Nonetheless, these results are

407  consistent with the modeling prediction that the 11-wave is most sensitive to activation of afferents.
408 Maier and colleagues also stimulated M1 directly and found that D-waves are much less likely to be
409 elicited than I1-waves. This finding is in line with the TMS literature [23], and the sensitivity analysis (Fig
410  6C) is also consistent with these experimental observations in that the |1-wave is most sensitive to

411 stimulation of afferents compared to the D-wave, which is least sensitive.

412

413 In the present model, afferents were represented as spiking inputs that were specific for each neuron
414  type in the model, and the effect of TMS was represented by activation of the axon terminals of these
415 afferents within the motor cortical macrocolumn. The sensitivity analysis predicted that activation of
416  afferents for specific neuron types could have a preferential effect on specific I-waves, so the results of
417  the sensitivity analysis were compared to the laminar distribution of terminals of corticocortical

418  afferents in mouse motor cortex [24] to predict the anatomical origin of afferents with preferential |-

419  wave effects. Afferents originating from the secondary (supplementary) motor area (M2) have a high
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420  density of terminals in the deep portion of L5 where the somata of L5 PTNs lie, and activation of M2
421  afferents may be a candidate for I11-wave generation. Afferents from the primary somatosensory cortex
422 have a high density of axon terminals in L2/3 and superficial L5 and could be important for 12-wave

423 generation. The axon terminals of the orbital cortex primarily target L6 and may contribute to 13-waves.
424  The axon terminal distributions for lateral and anterior ventral thalamus within motor cortex were also
425  characterized [24], but prior studies showed that lesions in those areas do not affect I-wave generation

426 [25].

427  The laminar distribution of horizontal connections between columns within motor cortex have not been
428 directly characterized. However, Narayanan and colleagues reported the laminar distribution of axon
429  terminals endogenous to rat primary somatosensory cortex [26]. The horizontal connections of L2/3 and
430 L5 pyramidal neurons are most dense in L2/3, which may contribute to the 12-wave. The horizontal

431  connections of L6 pyramidal neurons are most dense in deep L5 and L6 which may contribute to 11- and

432 I13-waves.

433

434  Animportant design criterion for the modeling work was computational efficiency to enable the
435 parameter explorations necessary for optimization and sensitivity analysis to be conducted in a
436  reasonable time. In general, computational gains came at the expense of biological details and
437  constraints. However, the simplified model enabled more specific and in-depth computational

438 experiments.

439 Point neuron representations precluded any analyses involving dendritic processes, spatial integration
440  of postsynaptic potentials, or ephaptic coupling. Spatially extended, i.e., morphologically realistic,

441 neuron models [22] could accommodate these mechanisms and enable the exploration of their
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442  contributions to modulation of I-waves but would increase execution times by a factor of approximately

443 1800.

444  Afferents were represented as spiking processes that targeted specific neuron types. More realistic
445 representations of afferents with distributions and connectivities that matched anatomical data would
446  more directly address the effect of specific fibers on I-waves. Nonetheless, allowing afferents to be

447  separately variable for each neuron type provided a basis to understand their contributions.

448 Traditionally, L4 in motor cortex has been described as either nonexistent or very thin, which led motor
449  cortex models to exclude L4 or represent it with inhibitory neurons only [7,27,8]. Recent evidence has
450 identified excitatory IT neurons in L4 with projections to L2/3 [28-30] leading to more complex models
451 of M1 [31]. The present modeling results predict that, while not included, L4 IT neurons would

452 participate in later I-waves due to their strong projection into L2/3; therefore, future work should add L4

453 explicitly to the model.

454 A single macrocolumn comprising multiple microcolumns was modeled in this work. Communications
455 across adjacent macrocolumns, i.e., intracortical afferents, could alter the corticospinal response to TMS
456  asthey represent “afferent” inputs to macrocolumns that arise within the motor cortex. Their

457  interactions could further modulate I-waves through both excitatory and direct inhibitory projections,
458  and the latencies of the feedback will likely cause adjacent macrocolumns to contribute toward late I-

459 waves.

460  This work represented TMS stimulation using an input—output approach, i.e., a given stimulus intensity
461 resulted in some proportion of neurons of a particular type to fire an action potential. The spatial

462  distribution of activation could be constrained by modeling the induced electric field using finite

463 element modeling [32]. However, by separating the neuron type activations from the spatial constraint,

464  the basic properties underlying the responses to activation could be investigated with greater control.
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465 Furthermore, the optimization included only a single stimulus intensity as a constraint. Incorporating
466  corticospinal recordings in response to multiple stimulus intensities from the same subject would

467  provide better constraints and allow analysis of recruitment orders for neuron types.

468  The predictions from the model are limited to the single pulse response and are not readily extendable
469  to paired pulse or repetitive pulse paradigms. This is partly due to GABAgR parameters being

470  underconstrained. GABAgR conductance was partially constrained by the baseline firing rate objective
471 but has been shown to have no effect on I-waves [33]. However, GABAgR is important for the cortical
472 silent period [34] and paired pulse responses [35], and these data can be incorporated as optimization

473 constraints in future work.

474 Finally, experimental data from only two subjects was used with responses from a single TMS intensity.
475  The data were representative of the two qualitative types of responses—with and without D-wave. The
476 small dataset allowed for more rapid model development due to fewer optimization constraints, and

477  the methods established in this work can be applied in the future to extended data from more subjects

478  and more recordings within subject.

479

480 To understand the mechanisms and principles underlying a biological process, sensitivity analysis is a
481 powerful tool. However, as the number of relevant variables increases, the analysis can become

482  overwhelming, and conclusions become diluted. At these large numbers, degeneracy in the sensitivity
483  analysis is possible as many mechanisms can be identified to be significant to the phenomenon of

484  interest. However, there is also the possibility that subsets of these mechanisms share certain properties
485  that represent a more fundamental mechanism or at least a lower-level mechanism that was previously
486  unclear or unaccounted for. In this case, a secondary analysis can reveal more fundamental mechanisms

487  that underly the variables that explain the phenomenon of interest. For this work, the lower-level
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488 mechanisms were model parameters that described the anatomical structure of the network, i.e., the
489  wiring diagram and the latencies that resulted from these anatomical constraints. The insights on how
490 the wiring diagram and the conduction latencies affect peaks in an evoked response can be generalized

491  and applied to areas outside the motor cortex and to stimulation modalities beyond TMS.

492

493

494

495  The motor cortical macrocolumn model was based on the equations and parameters published by Esser
496 et al., 2005, which specified the connectivity, somatic biophysics, and synaptic properties [7]. The model
497 contained L2/3 ITs and BCs, L5 PTNs and BCs, L6 ITs and BCs and excitatory afferents that targeted each
498 neuron type (i.e., six groups of afferents). The circuit describing the connectivity is shown in Fig 3A. The
499 Esser model was chosen as a starting point due to its ability to generate I-waves and the low

500 computational complexity of its leaky-integrate-and-fire, point neuron models. The spiking activities of
501 the afferents were generated by a Poisson process with a mean firing rate of 0.25 Hz [36]. Noise was
502  added to the neuron models that was independent of the synaptic drive provided by the afferents and
503 unaffected by TMS to ensure proper baseline firing rates and reduce network synchronization. Each
504  neuron received its own noise in the form of short, suprathreshold current injections with Poisson-

505 distributed intervals. Although the Esser model included the thalamus and thalamocortical projections,
506  the thalamus was omitted from the present work to further reduce computational time because it does

507 not affect I-wave generation [25].

508 The macrocolumn encompassed a cylinder with a diameter of 500 um (Fig 3B) based on anatomical
509  studies [37]. The height of the cylinder was 2700 um based on measurements made on human motor

510 cortex from ex vivo brain [38]. This study also informed the total vertical thickness (i.e., depth) of the
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511 layers within the macrocolumn. The cortical depth location of a neuron was uniformly and randomly
512  generated within the appropriate layer bounds. The macrocolumn was comprised of microcolumns that
513  were arranged in a triangular lattice with a spacing of 50 um [39] resulting in 79 microcolumns and

514 matched the range of microcolumns per macrocolumn [37,40]. The microcolumns were synonymous
515  with the “topographical elements” described in the Esser model and contained 2 excitatory neurons and
516 1 inhibitory neuron per layer. With 3 neurons per layer, 3 layers per microcolumn, and 79 microcolumns

517  inthe macrocolumn, there was a total of 711 neurons (Table 1).

518

519

520

521
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528

529

530
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Table 1. Total numbers of neurons in model.

Neuron type Number
L2/31T 158
L2/3 BC 79
L5 PTN 158
L5 BC 79
L6 IT 158
L6 BC 79
L2/3 IT AFF 79
L2/3 BC AFF 79
LS5 PTN AFF 79
L5 BC AFF 79
L6 IT AFF 79
L6 BC AFF 79

The conduction delay, defined as the time between the onset of an action potential and the start of the
postsynaptic potential at the soma of the postsynaptic neuron, was calculated from the distance
between the presynaptic and postsynaptic neuron pair and conduction velocity. The conduction velocity
measured from non-human primates (570 um/ms) was used as human measurements were not

available [41].

TMS activation included only suprathreshold effects. Each stimulus activated a specified proportion of a
neuron/afferent type, and neurons/afferents were randomly selected for each presentation of the
stimulus. No effect was applied to neurons/afferents that were not selected. Direct activation of
neurons resulted in an injection of a short suprathreshold current to elicit an action potential that was

propagated orthodromically to all postsynaptically connected neurons using all relevant conduction
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543  delays. Direct activation of the terminals of afferents resulted in the activation of all connected synapses

544  with the appropriate conduction delays.

545 Connectivity parameters, neuron parameters, and synaptic parameters were identical to those reported
546  in [7] with the following exceptions. Orientation selectivity-based connectivity was not included, so the
547  connectivity rules for all microcolumns were identical. Because the geometric area of the model was
548  reduced from the original, the overall synaptic drive was decreased. The subsequent optimization

549 allowed larger synaptic weights to compensate.

550

551  Simulations were designed to ensure that the network achieved steady state before measurements

552  were made. To reduce synchronization of the network due to simultaneous activation of afferent inputs,
553  the onsets of the Poisson spike trains of the afferents were randomly and uniformly selected between 0
554 and 200 ms. Baseline properties were measured between 500 and 2000 ms. TMS stimuli were applied at
555 2000 ms with inter-trial intervals of 200 ms with a total of five trials. This interval was selected based on
556  population averages of trials which showed no longer-term effects beyond 150 ms. Furthermore, the
557  model did not implement synaptic plasticity and thalamic connections. Analysis of the TMS response

558  was performed on the trial average. The total simulated time was 3000 ms.

559

560  The time-step was decreased from the value originally used in Esser et al., 2005, from 0.1 ms to 0.025
561 ms due to instabilities in the network during these longer simulations. The time-step was selected by
562 running single neuron simulations while log-linearly varying the time-step from 0.001 to 0.2 ms. Each
563  simulation had a length of 20 seconds, and the models received a random Poisson input with a mean
564  firing rate of 1000 Hz. The response at 0.001 ms was used as the baseline response, and the model

565 behavior were characterized using the following metrics: Number of spikes generated, mean inter-spike
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566 interval (ISl), coefficient of variation of the ISI, normalized root mean square error (NRMSE) of the

567 membrane potential, and the van Rossum spike distance [42]. A time constant of 500 ms was used for
568  the spike distance because the 0.001 ms time-step case had a mean ISI of approximately 500 ms. For
569  each time-step, 50 simulations/trials were conducted. Each trial used a different random seed to change
570 the Poisson input, and the sequence of random seeds for the trials was identical across time-steps. The

571 mean of the metrics across trials for each time-step was calculated for further analysis.

572  The knee-finding Python package Kneed [43] was used to identify the largest time-step at which further
573  time-step increases would provide diminishing returns on the differences in metrics relative to the 0.001
574  ms time-step (Fig 8). A 5" order polynomial function was fitted to the metrics as a function of the log of
575  the time-step size to provide a continuous curve to identify the knee. The smallest time-step across all
576  metrics was 0.03 ms for both mean ISI and the coefficient of variation of ISI, and a final time-step of

577  0.025 ms was conservatively selected.

578

579

580

581

582
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584  Fig 8. Analysis to select a time-step that both minimizes computation time and is numerically stable.

585  Each pair of plots shows the mean of a metric as a function of the time-step size in the logio scale on the
586 left. The right plot of the pair shows the normalized curve and difference curve used to identify the knee-
587  point. The vertical dashed line in the pair of plots denotes the ideal time-step. On the lower right, the
588  membrane potentials of the neuron model for different time-steps are shown. Offsets were added for the
589  y-axis to allow all lines to be distinctly seen. The plots depict a key behavior that differentiates

590 simulations at larger time steps. A pronounced afterhyperpolarization is seen with a 0.2 ms time-step
591 that is absent from other time-steps. Additionally, spikes are generated at larger time-steps (0.1 and 0.2
592  ms) that are absent for smaller time-steps. These dynamics contribute to the larger numbers of spikes,

593 lower mean ISls, larger NRMSE, and larger spike distance observed for larger time-steps.
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594

595 Experimental data were obtained from human subjects who had spinal cord stimulators implanted to
596  treat drug-resistant dorso-lumbar pain. Data was collected in accordance with an experimental protocol
597  that was approved by the Ethics Committee of Campus Bio-Medico University of Rome. Use of the data

598 in this study was approved by the Institutional Review Board of the Duke University Health System.

599  The experimental setup is summarized in Fig 1A. For each subject, an electrode array was implanted
600 percutaneously in the cervical epidural space, with the recording sites aligned vertically along the

601  dorsum of the cord. Spinal potentials were recorded differentially between proximal-distal pairs of
602  contacts (with the distal contact connected to the reference input of the amplifier), amplified and

603 filtered (gain: 10000; bandwidth: 3 Hz to 3 kHz) by a Digitimer D360 amplifier (Digitimer Ltd., Welwyn
604  Garden City, UK), and sampled at 10 kHz by means of a CED 1401 A/D converter (Cambridge Electronic

605 Design Ltd., Cambridge, UK).

606 A figure-of-eight coil with external loop diameter of 70 mm was held over the right motor cortex at the
607  optimal scalp position to elicit motor responses in the contralateral first dorsal interosseous (FDI) muscle
608  with the induced current flowing in a posterior—anterior direction across the central sulcus. TMS was
609  delivered at 120% of the resting motor threshold (RMT). Monophasic pulses were applied with a

610 Magstim 2002 stimulator (The Magstim Company Ltd., Whitland, UK) once every 5 seconds.

611  Two subjects were included in this study (Fig 1B). Subject 1 was female, 64 years old, and had a cervical
612  epidural electrode implanted at C3—C5 level; the RMT of TMS was 34% of maximum stimulator output.
613  Subject 2 was male, 68 years old, and had a cervical epidural electrode implanted at C1-C2 level; the
614 RMT was 55% of maximum stimulator output. Subject 1 did not exhibit a D-wave in response to TMS
615 (D-), while Subject 2 exhibited a D-wave (D+). Each subject received at least 30 pulses. For analysis, the

616  responses were truncated to begin 2 ms after the TMS pulse to remove stimulation artifact. An

33


https://doi.org/10.1101/2024.03.05.583549
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.05.583549; this version posted March 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

617  additional noncausal bandpass filter (second-order Butterworth, 200 Hz to 1500 Hz) was applied to
618 remove residual stimulus artifact, potential motor artifacts, and higher frequency activity that is
619 unrelated to the corticospinal waves. Measurements of the corticospinal response were performed on

620 the filtered, trial-averaged signal.

621

622

623 Particle swarm optimization (PSO) is a metaheuristic algorithm for parameter exploration with the goal
624 of finding parameters that satisfy one or more constraints. The particle’s position represents the

625 parameter values for the model, and a velocity term updates the position using a weighted combination
626 of the best solution found by itself (cognitive best) and the best solution found among a particle’s

627 neighbors (social best). PSO was implemented by modifying the inspyred Python software package [44].

628 Neighborhoods were constructed using a star topology with each particle’s neighborhood size being 5%
629  of the total number of particles. There were 2048 particles and 300 iterations before the optimization
630  was terminated. The optimization was repeated for each model four times to increase coverage of the
631 parameter space and the likelihood of locating a global best solution. Each optimization used a different
632 random seed that controlled the initial particle positions and their updated positions after each iteration

633 as detailed below.

634 At the beginning of the optimization procedure, particle positions were initialized using Sobol sampling.
635 Sobol sampling generates a low-dispersion quasi Monte-Carlo sequence that exhibits better coverage of
636  the parameter space than uniform random sampling for high-dimensional spaces and has been shown

637  to improve optimization convergence [45].
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638 Particle behavior was guided by inertial velocity, cognitive velocity, social velocity, gain factor, and noise
639 [46]. Inertial weight corresponded to a particle’s resistance to movement and results in a particle

640  moving towards its previous position. The cognitive weight determined a particle’s preference towards
641 the position of the best solution it had found. The social weight determined a particle’s preference

642 towards the position of the best solution its neighborhood had found. The cognitive and social velocities
643 were also separately modified using scalars drawn from a uniform distribution between 0 and 1. The
644  velocity was then computed as the weighted average using the inertial, cognitive, and social weights.
645 Finally, the velocity was scaled by the gain factor. For each particle coordinate, noise was sampled from
646  azero-mean Gaussian distribution with the standard deviation controlling the strength of the noise.

647  Optimization noise is also known as mutation and was shown to be necessary for theoretical global

648  convergence of PSOs [47]. Finally, the particle position was updated using both velocity and noise.

Evolution of Weights

2.5 4
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1.5 4 === Cognitive Weights
& Social Weights
.g === |nertia Weights
= Gain Weights

1.01 Noise Weights

0.5 1 =

0.0 A

0 50 100 150 200 250
649 Generation

650 Fig 9. Change in particle swarm optimization weights across successive iterations.

651  For approximately 100 iterations, optimization is exploratory with large cognitive, inertial, and gain

652 weights before favoring convergence with high social weights for the final 150 iterations.
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653  These optimization parameters were updated during optimization to switch from an initial stage of
654  exploration to a final stage of convergence (Fig 9). During exploration, inertial weight, cognitive weight,
655  gain factor, and noise were high, and the social weight was low. During convergence, the social weight
656  was high, and the remaining terms were low. The progression of the parameters followed a sigmoidal

657 function

658 yx) =4+ 1 + e@x-bN)/N

659  where x is the current iteration of the optimization, N is the total number of iterations for the algorithm,
660  Ais the offset, K is the amplitude and direction of the sigmoid, a controls the steepness of the transition,
661  and b controls the midpoint of the transition. The parameters for the sigmoidal function are reported in

662 Table 2.

663  Table 2. Sigmoid function constants underlying evolution of optimization metaparameters.

Parameter A (Minimum) K (Amplitude/Direction) | a (Slope) b (midpoint)

Cognitive Weight 2.5 -2.4 20 7.2

Social Weight 0.1 2.4 20 7.2

Inertial Weight 0.5 2 15 4.2

Gain Weight 0.5 1.5 10 2.4

Noise Weight 0.005 0.195 15 4.2
664
665 A damped, reflecting boundary condition was implemented on the parameter search space [48]. If a
666  particle’s position exceeded a boundary, then the particle was reflected back into the valid parameter
667 space using the difference between the original, non-valid position and the boundary. The reflection was
668  damped by multiplying the difference with a scalar sampled from a uniform distribution between 0 and
669 1.
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There were four main categories of constraints: baseline activity, TMS response, synchrony, and well-
behaved. The relative error was computed for each constraint except when the constraint was zero, in
which case the absolute error was computed. The sum of the relative and absolute errors was used to
represent the total error of a particle. Table 3 lists all constraints.
Table 3. List of Optimization Constraints

Constraints

1. D-wave peak 18.L2/3 IT ISl 35. L5 PTN baseline CV

2. D-wave time-to-peak 19. L2/3 BC firing rate 36. L5 BC baseline CV

3. D-wave trough 20.L2/3 BCISI 37. L6 IT baseline CV

4. D-wave time-to-trough 21. L5 PTN firing rate 38. L6 BC baseline CV

5. 11-wave peak 22. L5 PTN ISI 39. L2/3 IT population ISl std.

6. I1-wave time-to-peak 23. L5 BC firing rate 40. L2/3 BC population IS std.

7. 11-wave trough 24. 15 BCISI 41. L5 PTN population ISI std.

8. I1-wave time-to-trough 25. L6 IT firing rate 42. L5 BC population ISl std.

9. I2-wave peak 26. L6 IT ISI 43. L6 IT population ISI std.

10. 12-wave time-to-peak 27.12/3 IT peak/mean ratio 44. L6 BC population ISl std.

1
1
1

14.

1
1
1

1. 12-wave trough

2. 12-wave time-to-trough
3. I3-wave peak

I3-wave time-to-peak
5. I3-wave trough

6. I3-wave time-to-trough

7.12/3 IT firing rate

28.
29.
30.
31.
32.
33.
34.

L2/3 BC peak/mean ratio
L5 PTN peak/mean ratio
L5 BC peak/mean ratio
L6 IT peak/mean ratio

L6 BC peak/mean ratio
L2/3 IT baseline CV

L2/3 BC baseline CV

45.
46.
47.
48.
49.
50.

51.

L2/3 IT noise weight
L2/3 BC noise weight
L5 PTN noise weight
L5 BC noise weight
L6 IT noise weight

L6 BC noise weight

Amplitude after I3-wave

The baseline state constraints included both the mean population inter-spike interval (I1SI) and the mean

population firing rate for the different neuron types. Both objectives were important to constrain the
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679  network activity due to the nature of their calculations. Firing rate was evaluated as the number of

680  spikes elicited within a time-window. However, there was a possibility that the ISls within the window
681  were very small due to bursting behavior. Therefore, the mean ISI was added as an additional constraint.
682 Mean ISl alone was not a good constraint for overall activity because the calculation of relative error
683 resulted in lower error for small ISIs as opposed to large ISls, which skewed the optimization to prefer
684 smaller ISls and therefore higher firing rates. Including both constraints balanced the difference in bias

685 between them.

686 Experimental recordings from the epidural space of the cervical spine of human subjects during single
687 pulses of TMS were used to provide constraints for the corticospinal response to TMS. The peaks,
688  troughs, and latencies (time-to-peak and time-to-minimum) for each of the corticospinal waves—D-
689 wave (if available), I11-wave, 12-wave, and I3-wave—were measured and used as constraints. An

690  additional constraint minimized the peak of the model output beyond the time-window during which
691  the I3-wave should occur to prevent additional corticospinal waves, which were not present in the

692 recordings.

693  To reduce population synchrony, the population spiking density for a neuron type was constructed and
694  smoothed with a Gaussian kernel. The ratio between the maximum and the average value and the
695  coefficient of variation of the smoothed population spiking density were used as constraints with target

696  values of one and zero, respectively.

697 A possible aberrant network behavior resulted in spiking activity of the network being dominated by
698 large firing rates in a few neurons with the remaining neurons being silent. To avoid this, the standard
699 deviation of the mean population ISl within a neuron type was minimized to prevent highly skewed

700  distributions of activity.
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There were 98 open parameters for optimization. They can be divided into the following categories:
Synaptic weights scalars, conduction velocity scalars, afferent delay mean, afferent delay standard
deviation, proportion activated, noise amplitude, and noise rate. These categories and their bounds for
optimization are summarized in Table 4. The specific names of all parameters are listed in S1 Appendix
Table A-B.
Table 4. Categories of optimized parameters.
Name Description Range
Synaptic Weight Scalar (N. A.) Scalar multiplied to base synaptic weights 0.1, 10]

38 parameter)

Conduction Velocity Scalar (N. A.)  Scalar multiplied to conduction velocity

0.25,2

24 parameters [ 2]
Afferent Delay Mean (ms) Mean conduction delay between afferent and 0.2, 2]
6 parameters postsynaptic neuron -
Afferent Delay Stdev. (ms) Standard deviation of conduction delay between 0.1, 1]
6 parameters afferent and postsynaptic neuron Y
Proportion Activated (N. A.) Proportion of population made suprathreshold due to

- [0, 1]
12 parameters application of TMS
Noise Amplitude (nA) Amplitude of current to generate spiking activity due (1, 50]
6 parameters to independent noise !
Noise Rate (N. A.) Scalar multiplied with the desired firing rate to
6 parameters determine the mean of the Poisson process used to [0, 1]

generate noise

The optimization was repeated four times with different random seeds to increase coverage of the
parameter space and avoid local minimum solutions. Optimizations approached similar total error (S1
Appendix Fig D). To quantify the similarity of best solutions (i.e., lowest total error) found for each

optimization run, the distance among parameters for the best solutions were computed using Euclidean
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714  distance, normalized by the maximal possible distance (S1 Appendix Fig D) with overall distances being
715 17.4 to 19.6% from each other for D+ and D-, respectively. The relatively low distance (i.e., large

716  similarity) indicated that solutions lie within similar regions of the parameter space.

717  When identifying a dominating front, the large number of constraints resulted in every solution being
718  considered dominating. Therefore, the constraints were grouped by category and summed together to
719  reduce the dimensionality of the dominating front to four dimensions. The categories and the

720 corresponding objectives (based on the numbering from Table 3) are the following: Corticospinal wave
721  (1-16), spiking activity (17-26), synchrony (27-38), and well-behaved (39-51). The Pareto front is

722  visualized in S1 Appendix Fig E. The category error is plotted as a function of total error and showed that
723 corticospinal wave and baseline activity objectives were opposed. Generally, a solution that better

724  matched the experimentally-recorded corticospinal waves had a worse match with the desired baseline

725 activity.

726

727  The TVAT analysis investigated the synaptic weight and activation parameters for 42 total parameters
728  with 21 equally spaced values between 0 and the maximum boundary resulting in 861 unique

729  parameter-pairs with 441 values per pair. The total number of simulations for the sensitivity analysis
730  was 344,400. For each pair, the relationships between the two parameters and the amplitudes for each
731  corticospinal wave were approximated using linear regression with elastic net regularization and a third-
732 order polynomial model that included third-order interaction terms. Prior to the linear regression, the
733 corticospinal wave amplitudes were standardized, i.e., the mean was subtracted, and the variance

734 normalized to one. Because they were uniformly distributed across a grid, the parameters were

735 normalized, i.e., the minimum was subtracted, and the values divided by the parameter boundary range.

736 Regularization is a method of embedded feature selection that determines feature importance during
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737  coefficient estimation and prevents overfitting. The optimal regularization parameters were determined
738  using 10-fold cross-validation. The open-source scikit-learn Python package was used to conduct the

739 regression and cross-validation [49].

740  The partial effect size of a parameter for a corticospinal wave was represented as the sum of the

741  absolute values of the coefficients of the polynomial models that involved the parameter. The total

742  effect size for a corticospinal wave was calculated as the sum of the effect sizes across all polynomial
743 models, i.e., across all pair-wise interactions, that included the parameter. Poor polynomial fits,

744  indicating that there may be little or no correlation between the parameters and the corticospinal wave
745 amplitude, were excluded from the summation. Only models with a coefficient of determination greater

746  than or equal to 0.5 were included.

747

748  The cortical column circuit at the neuron population level can be represented as a weighted directed
749  graph with neuron types as nodes and connection between neuron types as edges. Given the effect sizes
750 revealed by the TVAT analysis, classifiers were used to identify any similarities in graph properties that
751 may exist to explain groupings of effect sizes, i.e., preferential versus non-preferential and corticospinal
752  wave preference. The goal was to identify the minimum set of features that would separate preferential
753  vs non-preferential nodes and then identify the corticospinal wave to which a preferential node had the

754  greatest effect.

755

756 Edge weights were specified using a variety of properties such as conduction delay and the log of the
757  connection probability. Because the relevant output of the network model was generated by the L5
758 PTNs, graph analysis was conducted using these neurons as a target or reference node. Graph analysis

759  was performed using the open-source networkx Python package [50]. All simple paths between a
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760  starting node and the target node (L5 PTNs) were identified. Simple paths were defined as the sequence
761  of nodes between the start and target that do not include repeat nodes along the path. The total

762  conduction delay from a node to the target was computed as the sum of all conduction delays between
763 nodes along the simple path, including synaptic transmission delays (0.2 ms). The total connection

764  probability was computed as the sum of the logs of all connection probabilities between nodes along
765 the simple path. Averages and standard deviations were also computed for these metrics. The out-

766 degree (divergence), in-degree (convergence), and three centrality measures were calculated as well.
767 Finally, the overall functional effect of the simple path was computed by first determining whether the
768  simple path would have an overall excitatory effect (+1) or inhibitory effect (-1) on the L5 PTNs by

769  multiplying successive functional effects along the simple path. The functional effects of each simple
770  path were then weighted by the log of the path connection probability to compute the weighted

771  average used to represent the overall functional effect of a node to the L5 PTNs. A summary and

772  description of these metrics are in Table 5.

773

774  Two types of classifiers were used. Logistic regression was used to identify preferential vs non-

775 preferential nodes. Support vector classification (SVC) with a radial basis function was used to perform a
776  multiclass prediction to identify the corticospinal wave to which a preferential node had the greatest
777  effect [51]. Classification, cross-fold validation, and regularization were performed using the scikit-learn

778 Python package [49].

779 Input data consisted of the graph metrics described in Table 5. The inputs were standardized, i.e., the
780 means were removed, and the variance was normalized to one. This was necessary for regularization

781  during model estimation.
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782 Due to the low numbers of samples for each class, the data was augmented by concatenating noisy
783  versions of the original data. Noise was drawn from a normal distribution with zero mean and a

784 standard deviation of 0.3, which represents 30% of the standard deviation of the standardized data.

785  Stratified 10-fold validation with 5 repeats was used to generate training and test sets for validation of
786  the models. Stratified k-fold validation was chosen to allow for a balanced sampling of classes. The

787  model performance was quantified using accuracy, computed as the number of true positives and true
788 negatives divided by the total number of predictions. This validation strategy was performed for all the

789 model evaluations described below.

790 Feature selection was performed using different methods for logistic regression versus SVC. Logistic

791 regression used an embedded method, Lasso regularization, to eliminate non-predictive features. Lasso
792 regularization minimizes the sum of the absolute value of all coefficients in addition to the mean

793 squared error during model estimation which can result in the elimination of features as their

794 coefficients drop to zero [52]. The weight of the Lasso regularization term was determined by grid-

795  search and cross-validation. The remaining features were then used with Ridge regularization to

796  perform the final classification. The weight of the Ridge regularization term was also determined by grid-

797 search and cross-validation.

798

799

800

801

802

803
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804  Table 5. Description of graph metrics used to characterize the network.

Name Description
Convergence In-degree of nodes / number of connected presynaptic neuron types.
Divergence Out-degree of nodes / number of connected postsynaptic neuron types.

Total Simple Paths

Total number of unique simple paths for a node to L5 PTN.

Shortest Path Delay

Conduction delay of shortest path from node to L5 PTN.

Average Path Delay

Average path delay of all simple paths from a node to L5 PTN.

Weighted Average Path
Delay

Weighted average of path delay of all simple paths from a node to L5
PTN using the log of the connection probability of the simple paths as
weights.

Standard Deviation Path
Delay

Standard deviation of path delays of all simple paths from a node to L5
PTN.

Weighted Standard
Deviation Path Delay

Weighted standard deviation of path delays of all simple paths from a
node to L5 PTN using the log of the connection probability of the simple
paths as weights.

Connection Probability of
Shortest Path

Connection probability of shortest path from a node to L5 PTN.

Average Connection
Probability (Log)

Average of the log of the connection probabilities of all simple paths
from a node to L5 PTN.

Standard Deviation
Connection Probability

(Log)

Standard deviation of the log of the connection probabilities of all
simple paths from a node to L5 PTN.

Functional Effect

Overall excitatory/inhibitory effect of node on L5 PTN. For each simple
path the excitatory/inhibitory effect of a node on the next node was
represented as a +1 or -1. The effects of successive nodes were
multiplied.

Weighted Functional Effect

Weighted average of the functional effect using the log of the
connection probability of the simple paths as weights.

Closeness Centrality

Reciprocal of the average distance of the shortest paths between the
node and all other nodes.

Betweenness Centrality

Ratio of the total number of shortest paths in the network to the
number of paths that include node but do not end on the node.

Harmonic Centrality

Sum of the reciprocal of the sum of the shortest path distances
between the node and all other nodes.
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805

806  SVC does not support Lasso regularization, so recursive feature elimination was performed to identify
807  the most predictive features [51]. During this procedure, an initial random sample of features was

808 chosen, and the model was trained and evaluated. Then, models were trained while leaving one feature
809  out. The model with the smallest decrease in performance indicated that the removed feature was not
810  predictive and was eliminated from the feature set. This process was repeated with the remaining

811  features until a single feature remained. Features were ranked by the number of times a feature was the
812 sole remainder after the elimination process and divided by the total number of times the feature was
813 included in the initial random sample. Recursive feature elimination was repeated 100 times with 5

814 random features chosen for each iteration. The regularization weight and the scale factor for the radial
815 basis functions were determined using grid search and cross-validation. The final classifier was trained

816  using Ridge regularization.

817

818  The authors thank Dr. Aman Aberra for preliminary work on the I-wave model, and the Duke Compute

819  Cluster team for computational support.

820

821 1. Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, et al. Evidence-based
822 guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An

823 update (2014-2018). Clinical Neurophysiology. 2020 Feb 1;131(2):474-528.

824 2. Siebner HR, Funke K, Aberra AS, Antal A, Bestmann S, Chen R, et al. Transcranial magnetic
825 stimulation of the brain: What is stimulated? — A consensus and critical position paper. Clinical

826 Neurophysiology. 2022 Aug 1;140:59-97.

45


https://doi.org/10.1101/2024.03.05.583549
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.05.583549; this version posted March 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

827 3. Nudo RJ, Masterton RB. Descending pathways to the spinal cord, lll: Sites of origin of the

828 corticospinal tract. Journal of Comparative Neurology. 1990;296(4):559-83.

829 4. DilazzaroV, Ziemann U, Lemon RN. State of the art: Physiology of transcranial motor cortex

830 stimulation. Brain Stimulation. 2008;1(4):345—-62.

831 5. Di Lazzaro V, Profice P, Ranieri F, Capone F, Dileone M, Oliviero A. I-wave origin and modulation.

832 Brain Stimulation. 2012;5(4):512-25.

833 6. Ziemann U. I-waves in motor cortex revisited. Exp Brain Res. 2020 Aug 1;238(7):1601-10.

834 7. Esser SK, Hill SL, Tononi G. Modeling the Effects of Transcranial Magnetic Stimulation on Cortical

835 Circuits. Journal of Neurophysiology. 2005 Jul;94(1):622-39.

836 8. Rusu CV, Murakami M, Ziemann U, Triesch J. A Model of TMS-induced I-waves in Motor Cortex.

837 Brain Stimulation. 2014 May;7(3):401-14.

838 9. Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M. Inhibition of inhibition in visual cortex: the logic of

839 connections between molecularly distinct interneurons. Nat Neurosci. 2013 Aug;16(8):1068-76.

840 10. Carnevale NT, Hines ML. The NEURON Book [Internet]. Cambridge: Cambridge University Press;
841 2006 [cited 2023 Aug 15]. Available from: https://www.cambridge.org/core/books/neuron-

842 book/7C8D9BD861D288E658BEB652F593F273

843 11. Saltelli A. Sensitivity analysis: Could better methods be used? Journal of Geophysical Research:

844 Atmospheres. 1999;104(D3):3789-93.

845 12. Saltelli A, Annoni P. How to avoid a perfunctory sensitivity analysis. Environmental Modelling &

846 Software. 2010 Dec 1;25(12):1508-17.

46


https://doi.org/10.1101/2024.03.05.583549
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.05.583549; this version posted March 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

847 13. Ziemann U, Rothwell JC. I-Waves in Motor Cortex. Journal of Clinical Neurophysiology. 2000

848 Jul;17(4):397.

849 14. Woodforth 1), Hicks RG, Crawford MR, Stephen JPH, Burke D. Depression of | Waves in
850 Corticospinal Volleys by Sevoflurane, Thiopental, and Propofol. Anesthesia & Analgesia. 1999

851 Nov;89(5):1182.

852 15. DilLazzaro V, Oliviero A, Meglio M, Cioni B, Tamburrini G, Tonali P, et al. Direct demonstration of
853 the effect of lorazepam on the excitability of the human motor cortex. Clinical Neurophysiology.

854 2000 May 1;111(5):794-9.

855 16. Dilazzaro V, Rothwell J, Capogna M. Noninvasive Stimulation of the Human Brain: Activation of

856 Multiple Cortical Circuits. Neuroscientist. 2018 Jun 1;24(3):246-60.

857 17. LiB, Virtanen JP, Oeltermann A, Schwarz C, Giese MA, Ziemann U, et al. Lifting the veil on the
858 dynamics of neuronal activities evoked by transcranial magnetic stimulation. Rotenberg A, editor.

859 elLife. 2017 Nov 22;6:e30552.

860 18. Mueller JK, Grigsby EM, Prevosto V, Petraglia FW, Rao H, Deng ZD, et al. Simultaneous transcranial
861 magnetic stimulation and single-neuron recording in alert non-human primates. Nat Neurosci.

862 2014 Aug;17(8):1130-6.

863 19. HaoY, Riehle A, Brochier TG. Mapping Horizontal Spread of Activity in Monkey Motor Cortex Using
864 Single Pulse Microstimulation. Frontiers in Neural Circuits [Internet]. 2016 [cited 2023 Aug 15];10.

865 Available from: https://www.frontiersin.org/articles/10.3389/fncir.2016.00104

47


https://doi.org/10.1101/2024.03.05.583549
http://creativecommons.org/licenses/by/4.0/

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.05.583549; this version posted March 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

20.

21.

22.

23.

24,

25.

26.

27.

available under aCC-BY 4.0 International license.

Maier MA, Kirkwood PA, Brochier T, Lemon RN. Responses of single corticospinal neurons to
intracortical stimulation of primary motor and premotor cortex in the anesthetized macaque

monkey. Journal of Neurophysiology. 2013 Jun 15;109(12):2982-98.

Yun R, Mishler JH, Perlmutter SI, Rao RPN, Fetz EE. Responses of Cortical Neurons to Intracortical
Microstimulation in Awake Primates. eNeuro [Internet]. 2023 Apr 1 [cited 2023 Jul 3];10(4).

Available from: https://www.eneuro.org/content/10/4/ENEURO.0336-22.2023

Aberra AS, Peterchev AV, Grill WM. Biophysically realistic neuron models for simulation of cortical

stimulation. J Neural Eng. 2018 Oct;15(6):066023.

Di Lazzaro V, Rothwell JC. Corticospinal activity evoked and modulated by non-invasive stimulation

of the intact human motor cortex. The Journal of Physiology. 2014;592(19):4115-28.

Hooks BM, Mao T, Gutnisky DA, Yamawaki N, Svoboda K, Shepherd GMG. Organization of cortical
and thalamic input to pyramidal neurons in mouse motor cortex. Journal of Neuroscience. 2013

Jan 9;33(2):748-60.

Amassian VE, Stewart M, Quirk GJ, Rosenthal JL. Physiological basis of motor effects of a transient

stimulus to cerebral cortex. Neurosurgery. 1987 Jan 1;20(1):74-93.

Narayanan RT, Egger R, Johnson AS, Mansvelder HD, Sakmann B, de Kock CPJ, et al. Beyond
Columnar Organization: Cell Type- and Target Layer-Specific Principles of Horizontal Axon

Projection Patterns in Rat Vibrissal Cortex. Cerebral Cortex. 2015 Nov 1;25(11):4450-68.

Chadderdon GL, Mohan A, Suter BA, Neymotin SA, Kerr CC, Francis JT, et al. Motor Cortex
Microcircuit Simulation Based on Brain Activity Mapping. Neural Computation. 2014 Jul

1;26(7):1239-62.

48


https://doi.org/10.1101/2024.03.05.583549
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.05.583549; this version posted March 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

887  28. Garcia-Cabezas MA, Barbas H. Area 4 has layer IV in adult primates. European Journal of

888 Neuroscience. 2014;39(11):1824-34.

889 29. Yamawaki N, Borges K, Suter BA, Harris KD, Shepherd GMG. A genuine layer 4 in motor cortex with

890 prototypical synaptic circuit connectivity. Nelson SB, editor. eLife. 2014 Dec 19;3:e05422.

891 30. Callaway EM, Dong HW, Ecker JR, Hawrylycz MJ, Huang ZJ, Lein ES, et al. A multimodal cell census

892 and atlas of the mammalian primary motor cortex. Nature. 2021 Oct 6;598(7879):86—102.

893 31. Dura-Bernal S, Neymotin SA, Suter BA, Dacre J, Moreira JVS, Urdapilleta E, et al. Multiscale model
894 of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent

895 dynamics. Cell Reports. 2023 Jun 27;42(6):112574.

896 32. Aberra AS, Wang B, Grill WM, Peterchev AV. Simulation of transcranial magnetic stimulation in
897 head model with morphologically-realistic cortical neurons. Brain Stimulation. 2020 Jan

898 1;13(1):175-89.

899 33. Ziemann U, Tergau F, Wischer S, Hildebrandt J, Paulus W. Pharmacological control of facilitatory I-

900 wave interaction in the human motor cortex. A paired transcranial magnetic stimulation study.
901 Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control. 1998
902 Aug 1;109(4):321-30.

903 34. Paulus W, Classen J, Cohen LG, Large CH, Di Lazzaro V, Nitsche M, et al. State of the art:
904 Pharmacologic effects on cortical excitability measures tested by transcranial magnetic

905 stimulation. Brain Stimulation. 2008 Jul 1;1(3):151-63.

49


https://doi.org/10.1101/2024.03.05.583549
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.05.583549; this version posted March 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

906 35. Premolil, Rivolta D, Espenhahn S, Castellanos N, Belardinelli P, Ziemann U, et al. Characterization
907 of GABAB-receptor mediated neurotransmission in the human cortex by paired-pulse TMS—EEG.

908 Neurolmage. 2014 Dec 1;103:152-62.

909 36. Yamashita T, Pala A, Pedrido L, Kremer Y, Welker E, Petersen CCH. Membrane Potential Dynamics
910 of Neocortical Projection Neurons Driving Target-Specific Signals. Neuron. 2013 Dec

911 18;80(6):1477-90.

912  37. Mountcastle VB. The columnar organization of the neocortex. Brain. 1997 Apr 1;120(4):701-22.

913 38. Wagstyl K, Larocque S, Cucurull G, Lepage C, Cohen JP, Bludau S, et al. BigBrain 3D atlas of cortical
914 layers: Cortical and laminar thickness gradients diverge in sensory and motor cortices. PLOS

915 Biology. 2020 Apr 3;18(4):e3000678.

916  39. Peters A. The Morphology of Minicolumns. In: Blatt GJ, editor. The Neurochemical Basis of Autism:
917 From Molecules to Minicolumns [Internet]. Boston, MA: Springer US; 2010 [cited 2023 Jun 22]. p.

918 45-68. Available from: https://doi.org/10.1007/978-1-4419-1272-5 4

919 40. Favorov OV, Diamond ME. Demonstration of discrete place-defined columns—segregates—in the

920 cat Sl. Journal of Comparative Neurology. 1990;298(1):97-112.

921  41. Muller L, Reynaud A, Chavane F, Destexhe A. The stimulus-evoked population response in visual

922 cortex of awake monkey is a propagating wave. Nat Commun. 2014 Apr 28;5(1):3675.

923  42. Houghton C, Kreuz T. On the efficient calculation of van Rossum distances. Network: Computation

924 in Neural Systems. 2012 Mar 1;23(1-2):48-58.

925  43. SatopaaV, Albrecht J, Irwin D, Raghavan B. Finding a “Kneedle” in a Haystack: Detecting Knee

926 Points in System Behavior. In: 2011 31st International Conference on Distributed Computing

50


https://doi.org/10.1101/2024.03.05.583549
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.05.583549; this version posted March 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

927 Systems Workshops [Internet]. 2011 [cited 2023 Nov 16]. p. 166—71. Available from:

928 https://ieeexplore.ieee.org/abstract/document/5961514

929  44. Tonda A. Inspyred: Bio-inspired algorithms in Python. Genet Program Evolvable Mach. 2020 Jun

930 1;21(1):269-72.

931 45. Kucherenko S, Albrecht D, Saltelli A. Exploring multi-dimensional spaces: a Comparison of Latin
932 Hypercube and Quasi Monte Carlo Sampling Techniques [Internet]. arXiv; 2015 [cited 2023 Aug

933 15]. Available from: http://arxiv.org/abs/1505.02350

934  46. Gad AG. Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review. Arch

935 Computat Methods Eng. 2022 Aug 1;29(5):2531-61.

936 47. XuG, LuoK, lJing G, Yu X, Ruan X, Song J. On convergence analysis of multi-objective particle swarm

937 optimization algorithm. European Journal of Operational Research. 2020 Oct 1;286(1):32-8.

938  48. Xu'S, Rahmat-Samii Y. Boundary Conditions in Particle Swarm Optimization Revisited. IEEE

939 Transactions on Antennas and Propagation. 2007 Mar;55(3):760-5.

940 49. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine

941 Learning in Python. ) Mach Learn Res. 2011 Nov 1;12(null):2825-30.

942  50. Hagberg A, Swart PJ, Schult DA. Exploring network structure, dynamics, and function using

943 NetworkX [Internet]. Los Alamos National Laboratory (LANL), Los Alamos, NM (United States);
944 2008 Jan [cited 2023 Aug 15]. Report No.: LA-UR-08-05495; LA-UR-08-5495. Available from:
945 https://www.osti.gov/biblio/960616

946 51. Guyon I, Weston J, Barnhill S, Vapnik V. Gene Selection for Cancer Classification using Support

947 Vector Machines. Machine Learning. 2002 Jan 1;46(1):389-422.

51


https://doi.org/10.1101/2024.03.05.583549
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.05.583549; this version posted March 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

948 52. Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models via

949 Coordinate Descent. J Stat Softw. 2010;33(1):1-22.

950

951

952

953

954

955

52


https://doi.org/10.1101/2024.03.05.583549
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.05.583549; this version posted March 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

956 S1 APPENDIX

957 FigA
Strength Parameters
. . s D+
Activation Parameters L2/3 IT-L2/3 IT-AMPA-NMDA -
L2/3 T-L5 PTN-AMPA-NMDA - ™= D-
L2/3 T-L6 IT-AMPA-NMDA s
T L2/3 11-L2/3 BC-AMPA-NMDA
L2/3 IT AFF L2/3 [T-L5 BC-AMPA-NMDA
L2/3 IT-L6 BC-AMPA-NMDA
B L5 PTN-L2/3 IT-AMPA-NMDA
L2/3 1T . L5 PTN-L5 PTN-AMPA-NMDA
— LS BTN-LD/5 BC-AMPA-NMDA
Lel3 BCAFF 12 PTN-L2 BC-AMPA-NMDA
— L6 IT-L5 PTN-AMPA-NMDA
L3 Be (Lo L AP MDA
= —— - - -
L6 IT-L6 BC-AMPA-NMDA
oA La/3 Bty EGARAA
LS PTN . 153 BE.L PTN-GABAB
L2/3 BC-L6 IT-GABAA
L5 BC AFF — L2/3 BC-L6 IT-GABAB
12/3 BC-L2/3 BC-GABAA
L5 BC T m L213 BC-L2/3 BC-GABAB
L5 BC-L5 PTN-GABAA
e et Rl e
o p— 5 8013 BCSAns
L6 IT L6 BC-L6 IT-GABAB
(£ B -G
L6 BC AFF h—l L2/3 IT AFF-L2/3 IT-AMPA-NMDA
. W D+ L5 PTN AFF-L5 PTN-AMPA-NMDA
L6 BC - L6 IT AFF-L6 IT-AMPA-NMDA
m D- L2/3 BC AFF-L2/3 BC-AMPA-NMDA
R S B AR B A NRA
0 20 40 60 80 100 ) ) i

Percent Activated (%)

0 5
Strength Factor

958

959  Fig A. Activation and synaptic weight scalar parameters for best D+ and D- models.

960  IT: Intratelencephalic neuron. PTN: Pyramidal tract neuron. BC: Basket cell. AFF: Afferent.
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964  Fig B. Afferent activation delay and conduction velocity scalars for best D+ and D- models.

965  IT: Intratelencephalic neuron. PTN: Pyramidal tract neuron. BC: Basket cell. AFF: Afferent.
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974  Fig C. Synaptic noise weight and synaptic noise firing rates for best D+ and D- models.

975  IT: Intratelencephalic neuron. PTN: Pyramidal tract neuron. BC: Basket cell. AFF: Afferent.
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982 Fig D. Characterizations of convergence from optimization.
983  A) The cumulative lowest total error is plotted as a function of optimization iteration. Four evolution
984  seeds were run for each responder type (D* and D~). All seeds converged to errors of similar magnitude.
985  B) The normalized distances of the parameters of the best solutions for each optimization run. The
986  Euclidean distance of the best solutions was normalized by the maximum possible distance given the
987  bounds of the explored parameter space. The diagonals of the matrix are zero because they represent
988  the distance between a solution and itself. The overall normalized distances were 17.4 to 19.6% for D+
989  and D-, respectively.
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Fig E. Visualization of reduced pareto front.

Objectives were grouped into categories, and their combined error was plotted against the total error.
Red dots indicate particles that were pareto dominant, and yellow particles indicate the remaining
particles. The correlation between the category error and the total error is a representation of the pareto

front and how the category error changes as total error is minimized.
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999  FigF. Effect sizes for all parameters and all waves.

1000  Effect size was calculated as the integrals of the absolute values of the partial derivatives of the
1001  polynomial fits to the TVAT surfaces. Effect sizes were not normalized, and the x-axis maximum was
1002  chosen to allow visualization of the smaller effect sizes. Effect sizes that are greater than the x-axis
1003  maximum have their values listed above their corresponding bars. Y-axis labels are shared across
1004  subplots. IT: Intratelencephalic neuron. PTN: Pyramidal tract neuron. BC: Basket cell. AFF: Afferent.
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1007  Fig G. Effect size ranking for all parameters that preferentially affected 11-wave amplitude.
1008  IT: Intratelencephalic neuron. PTN: Pyramidal tract neuron. BC: Basket cell. AFF: Afferent.
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1013 Fig H
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1015 Fig H. Histogram of number of waves for which L5 PTNs contributed a spike.

1016 For each stimulus presentation, the spikes generated by each L5 PTN were divided based on the time
1017  windows for each corticospinal wave, and the total number of wave time windows during which spiking

1018 occurred was counted.
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1025
1026  Table A. List of Optimized Synaptic Weight Parameters
Synaptic Weight Parameters
L2/3 IT to L2/3 IT (AMPAR/NMDAR) L2/3 BC to L5 PTN (GABAgR)
L2/3 IT to L5 PTN (AMPAR/NMDAR) L2/3 BC to L6 IT (GABA4R)
L2/3 IT to L6 IT (AMPAR/NMDAR) L2/3 BC to L6 IT (GABAgR)
L2/3 IT to L2/3 BC (AMPAR/NMDAR) L2/3 BC to L2/3 BC (GABA&R)
L2/3 IT to L5 BC (AMPAR/NMDAR) L2/3 BCto L2/3 BC (GABAgR)
L2/3 IT to L6 BC (AMPAR/NMDAR) L5 BC to L5 PTN (GABAA&R)
L5 PTN to L2/3 IT (AMPAR/NMDAR) L5 BC to L5 PTN (GABAgR)
L5 PTN to L5 PTN (AMPAR/NMDAR) L5 BC to L5 BC (GABA4R)
L5 PTN to L6 IT (AMPAR/NMDAR) L5 BC to L5 BC (GABAgR)
L5 PTN to L2/3 BC (AMPAR/NMDAR) L6 BC to L6 IT (GABAAR)
L5 PTN to L5 BC (AMPAR/NMDAR) L6 BC to L6 IT (GABAgR)
L5 PTN to L6 BC (AMPAR/NMDAR) L6 BC to L6 BC (GABA4R)
L6 IT to L5 PTN (AMPAR/NMDAR) L6 BC to L6 BC (GABAGR)
L6 IT to L6 IT (AMPAR/NMDAR) L2/3 IT AFF to L2/3 IT (AMPAR/NMDAR)
L6 IT to L5 BC (AMPAR/NMDAR) L2/3 BC AFF to L2/3 BC (AMPAR/NMDAR)
L6 IT to L6 BC (AMPAR/NMDAR) L5 PTN AFF to L5 PTN (AMPAR/NMDAR)
L2/3 BC to L2/3 IT (GABAR) L5 BC AFF to L5 BC (AMPAR/NMDAR)
L2/3 BC to L2/3 IT (GABAgR) L6 IT AFF to L6 IT (AMPAR/NMDAR)
L2/3 BC to L5 PTN (GABA4R) L6 BC AFF to L6 BC (AMPAR/NMDAR)
1027
1028 IT: Intratelencephalic neuron. PTN: Pyramidal tract neuron. BC: Basket cell. AFF: Afferent.
1029
1030
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1033
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Table B. List of Optimized Delay, Activation, and Noise Parameters

Parameters
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Conduction velocity scalar L2/3 IT to L2/3 IT
Conduction velocity scalar L2/3 IT to L5 PTN
Conduction velocity scalar L2/3 ITto L6 IT
Conduction velocity scalar L2/3 IT to L2/3 BC
Conduction velocity scalar L2/3 IT to L5 BC
Conduction velocity scalar L2/3 IT to L6 BC
Conduction velocity scalar L5 PTN to L2/3 IT
Conduction velocity scalar L5 PTN to L5 PTN
Conduction velocity scalar L5 PTN to L6 IT
Conduction velocity scalar L5 PTN to L2/3 BC
Conduction velocity scalar L5 PTN to L5 BC
Conduction velocity scalar L5 PTN to L6 BC
Conduction velocity scalar L6 IT to L5 PTN
Conduction velocity scalar L6 IT to L6 IT
Conduction velocity scalar L6 IT to L5 BC
Conduction velocity scalar L6 IT to L6 BC
Conduction velocity scalar L2/3 BC to L2/3 IT
Conduction velocity scalar L2/3 BC to L5 PTN
Conduction velocity scalar L2/3 BCto L6 IT
Conduction velocity scalar L2/3 BC to L2/3 BC
Conduction velocity scalar L5 BC to L5 PTN
Conduction velocity scalar L5 BC to L5 BC
Conduction velocity scalar L6 BCto L6 IT
Conduction velocity scalar L6 BC to L6 BC
Activation propagation delay L2/3 IT AFF

Activation propagation delay mean L2/3 BC AFF

Activation propagation delay stdev.
Activation propagation delay stdev.
Activation propagation delay stdev.
Activation propagation delay stdev.
Activation propagation delay stdev.

Activation propagation delay stdev.

Proportion activated L2/3 IT
Proportion activated L2/3 BC
Proportion activated L5 PTN
Proportion activated L5 BC
Proportion activated L6 IT
Proportion activated L6 BC
Proportion activated L2/3 IT AFF
Proportion activated L2/3 BC AFF
Proportion activated L5 PTN AFF
Proportion activated L5 BC AFF
Proportion activated L6 IT AFF
Proportion activated L6 BC AFF
Noise weight L2/3 IT

Noise weight L2/3 BC

Noise weight L5 PTN

Noise weight L5 BC

Noise weight L6 IT

Noise weight L6 BC

Noise rate L2/3 IT

Noise rate L2/3 BC

L2/3 IT AFF
L2/3 BC AFF
L5 PTN AFF
L5 BC AFF
L6 IT AFF
L6 BC AFF
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Activation propagation delay mean L5 PTN AFF Noise rate L5 PTN

Activation propagation delay mean L5 BC AFF Noise rate L5 BC
Activation propagation delay mean L6 IT AFF Noise rate L6 IT
Activation propagation delay mean L6 BC AFF Noise rate L6 BC

IT: Intratelencephalic neuron. PTN: Pyramidal tract neuron. BC: Basket cell. AFF: Afferent.
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