

1 Circuits and Mechanisms for TMS-Induced Corticospinal Waves:

2 Connecting Sensitivity Analysis to the Network Graph

3 AUTHORS

4 Gene J. Yu^{1,2}, Federico Ranieri³, Vincenzo Di Lazzaro^{4,5}, Marc A. Sommer¹, Angel V. Peterchev^{1,2,6,7}, and
5 Warren M. Grill^{1,6,7,8}

6 AFFILIATIONS

7 ¹Department of Biomedical Engineering, Duke University, Durham, NC, USA

8 ²Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA

9 ³Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of
10 Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy

11 ⁴Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and
12 Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128 Roma, Italy

13 ⁵Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128 Roma, Italy

14 ⁶Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA

15 ⁷Department of Neurosurgery, Duke University, Durham, NC, USA

16 ⁸Department of Neurobiology, Duke University, Durham, NC, USA

17 ABSTRACT

18 Transcranial magnetic stimulation (TMS) is a non-invasive, FDA-cleared treatment for neuropsychiatric
19 disorders with broad potential for new applications, but the neural circuits that are engaged during TMS
20 are still poorly understood. Recordings of neural activity from the corticospinal tract provide a direct
21 readout of the response of motor cortex to TMS, and therefore a new opportunity to model neural
22 circuit dynamics. The study goal was to use epidural recordings from the cervical spine of human
23 subjects to develop a computational model of a motor cortical macrocolumn through which the
24 mechanisms underlying the response to TMS, including direct and indirect waves, could be investigated.
25 An in-depth sensitivity analysis was conducted to identify important pathways, and machine learning
26 was used to identify common circuit features among these pathways.

27 Sensitivity analysis identified neuron types that preferentially contributed to single corticospinal waves.
28 Single wave preference could be predicted using the average connection probability of all possible paths
29 between the activated neuron type and L5 pyramidal tract neurons (PTNs). For these activations, the
30 total conduction delay of the shortest path to L5 PTNs determined the latency of the corticospinal wave.
31 Finally, there were multiple neuron type activations that could preferentially modulate a particular
32 corticospinal wave.

33 The results support the hypothesis that different pathways of circuit activation contribute to different
34 corticospinal waves with participation of both excitatory and inhibitory neurons. Moreover, activation of
35 both afferents to the motor cortex as well as specific neuron types within the motor cortex initiated
36 different I-waves, and the results were interpreted to propose the cortical origins of afferents that may
37 give rise to certain I-waves. The methodology provides a workflow for performing computationally
38 tractable sensitivity analyses on complex models and relating the results to the network structure to
39 both identify and understand mechanisms underlying the response to acute stimulation.

40 **AUTHOR SUMMARY**

41 Understanding circuit mechanisms underlying the response to transcranial magnetic stimulation remains
42 a significant challenge for translational and clinical research. Computational models can reconstruct
43 network activity in response to stimulation, but basic sensitivity analyses are insufficient to identify the
44 fundamental circuit properties that underly an evoked response. We developed a data-driven neuronal
45 network model of motor cortex, constrained with human recordings, that reproduced the corticospinal
46 response to magnetic stimulation. The model supported several hypotheses, e.g., the importance of
47 stimulating incoming fibers as well as neurons within the cortical column and the relevance of both
48 excitatory and inhibitory neurons. Following a sensitivity analysis, we conducted a secondary structural
49 analysis that linked the results of the sensitivity analysis to the network using machine learning. The
50 structural analysis pointed to anatomical mechanisms that contributed to specific peaks in the response.
51 Generally, given the anatomy and circuit of a neural region, identifying strongly connected paths in the
52 network and the conduction delays of these paths can screen for important contributors to response
53 peaks. This work supports and expands on hypotheses explaining the response to transcranial magnetic
54 stimulation and adds a novel method for identifying generalizable neural circuit mechanisms.

55

56

57

58

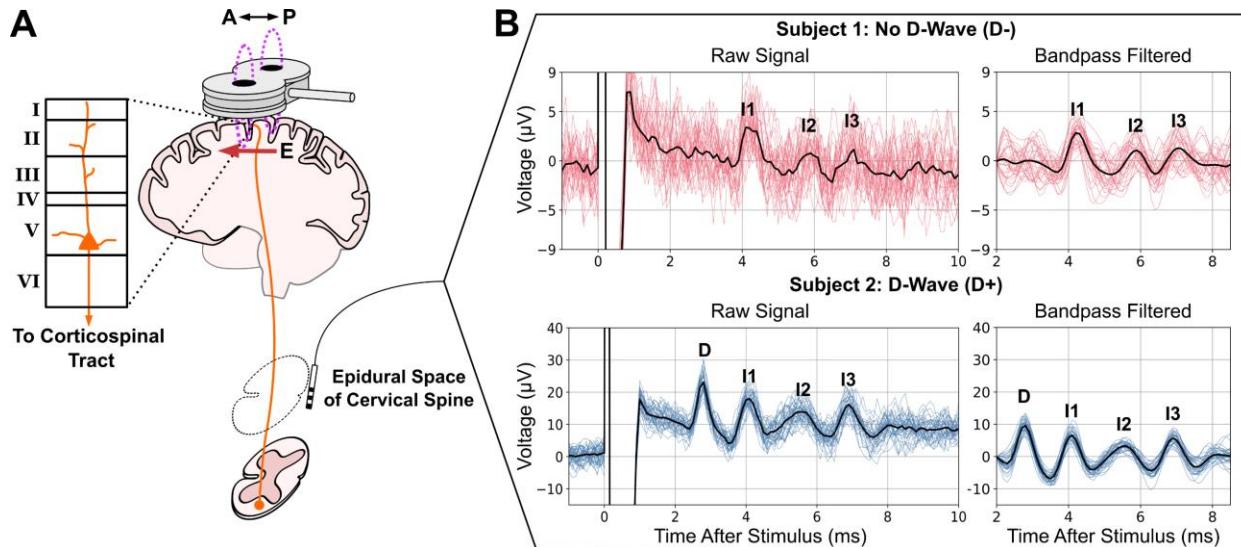
59

60 INTRODUCTION

61 Transcranial magnetic stimulation (TMS) can non-invasively activate superficial cortical regions to study
62 brain functions, treat psychiatric and neurological disorders, and collect diagnostic biomarkers [1].
63 However, improving methodologies and developing new applications remain slow and challenging due
64 to the uncertainties about what is activated by TMS and how this activation courses through the circuits
65 within and beyond the stimulated region [2]. One approach to understanding these network effects in
66 the motor cortex is via descending volleys of activity that propagate to the spinal cord in response to
67 TMS and can be recorded epidurally as transient corticospinal waves (Fig 1). The corticospinal waves
68 represent the activity of layer 5b pyramidal tract neurons (PTNs) that send axons into the spinal cord [3].
69 The shortest latency direct wave (D-wave) is widely agreed to represent the direct activation of PTNs [4].
70 Subsequent waves are called indirect waves (I-waves) and likely represent transsynaptic activations of
71 PTNs resulting from the initial direct activation of PTNs, axons of afferents, and other neuron types.
72 Understanding the neurons and circuits that produce the I-waves would provide insight into patterns of
73 neuron activation and the circuit connections that mediate the cortical response to TMS [5].

74

75



76

77 **Fig 1. Descending volleys of spinal waves provide a window into motor cortical responses to TMS.**

78 A) TMS coil with electric field (E) induced in the posterior–anterior (P–A) orientation over the motor

79 cortex. L5 PTNs send axons into the spinal cord (corticospinal tract), and their activity is recorded

80 epidurally at levels C1–C5. B) Epidural recordings of corticospinal waves in two human subjects.

81 Individual trials are plotted with colored lines. The solid black lines are trial averages.

82 Current understanding of I-waves arises from epidural recordings combined with pharmacological

83 interventions that identified the synaptic receptors involved in I-wave generation and broadly suggested

84 excitatory and inhibitory mechanisms that contribute to I-waves [5,6]. These and other experimental

85 findings were organized into conceptual frameworks to propose mechanisms that give rise to the

86 corticospinal waves [5,6]. Two broad categories of these frameworks are I-wave generation through

87 circuit activations and I-wave generation via intrinsic neuronal mechanisms (neural oscillator

88 hypothesis). With circuit activation, corticocortical afferents are thought to initiate activations in

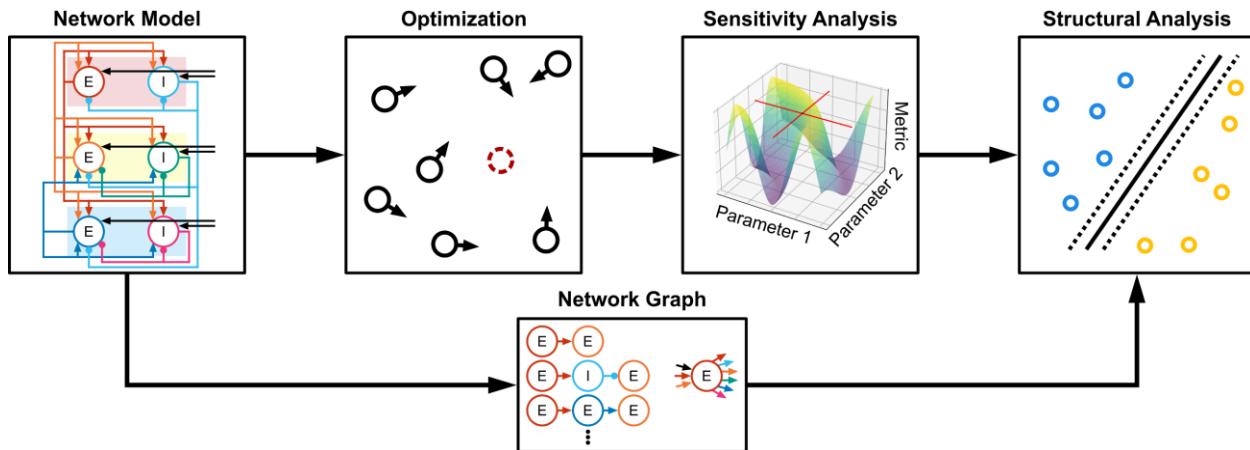
89 different neuronal populations that propagate through the cortical circuit to L5 PTNs. Intrinsic neuronal

90 mechanisms have also been hypothesized to allow L5 PTNs to behave as neural oscillators such that the

91 I-waves result from repeated spiking from the same neuron due to the dynamics following initial
92 excitation by TMS.

93 Computational neuronal network models have been developed that integrate anatomical and
94 electrophysiological details to investigate TMS-induced corticospinal waves. A model by Esser et al.
95 represented the major layers of motor cortex using spiking point neurons and homogeneous activation
96 of a proportion of fiber terminals across all layers to represent activation by single TMS pulses [7]. Rusu
97 et al. developed a network model of layer 2/3 and layer 5 pyramidal neurons with realistic dendritic
98 morphologies to investigate the effect of somatodendritic conduction and integration on I-wave
99 generation [8]. These models generated I-wave activity that qualitatively resembled experimental
100 findings. However, the models were not directly constrained by experimental recordings and lacked an
101 exhaustive sensitivity analysis to investigate, among other variables, the effects of inhomogeneous
102 activation across different neuron types.

103 To determine the TMS activations and neuron-to-neuron projections that contribute to I-waves, we
104 used experimental recordings of the corticospinal response to TMS to constrain a computational model
105 of a motor cortical macrocolumn. Starting from a reduced version of the Esser model, that could
106 produce I-waves and is mathematically compact, we established a spiking neuronal network model of
107 motor cortex that reproduced the features of D-waves and I-waves recorded epidurally in the cervical
108 spine of human subjects. Next, a unified model was developed that generated responses with and
109 without a D-wave with a change in a single parameter. A sensitivity analysis of the unified model was
110 conducted using the two-variable-at-a-time (TVAT) method. Finally, machine learning and graph
111 theoretical measures were used to relate the connectivity of the model to the results of TVAT analysis
112 and identify general mechanisms producing I-waves at the circuit level. A high-level representation of
113 the methodology is summarized in Fig 2.



114

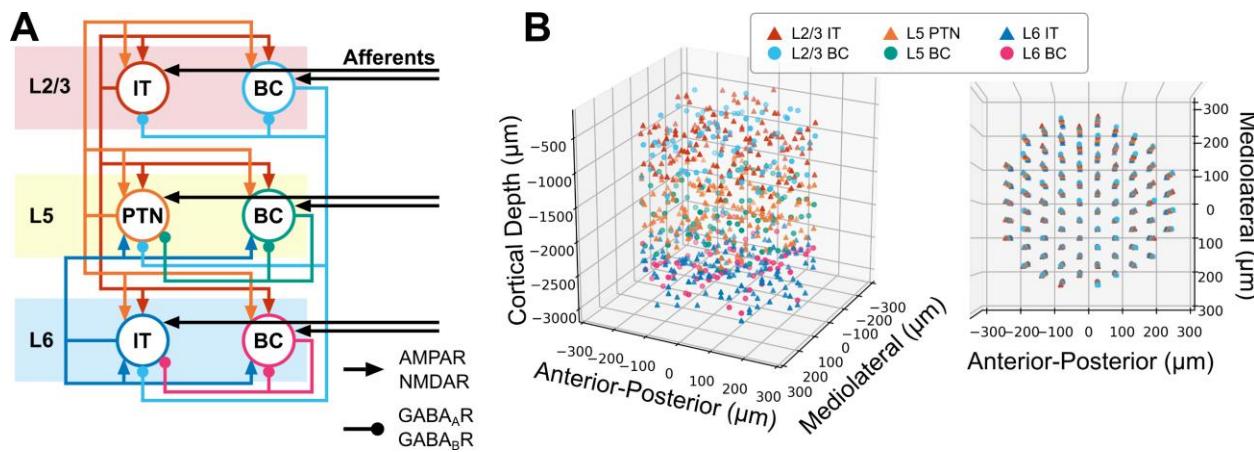
115 **Fig 2. High level diagram of methodology.**

116 A network model was defined, and particle swarm optimization was used to constrain parameters using
117 experimental data. A TVAT sensitivity analysis was conducted on the optimized model, and finally the
118 network graph was used to identify structural patterns that predict the sensitivity analysis. E: Excitatory
119 neuron. I: Inhibitory neuron.

120 RESULTS

121 The neuronal network model used to simulate the effects of TMS represents a human cortical
122 macrocolumn within the motor cortex and included layer (L) 2/3, L5 and L6 and is based on a model
123 developed in Esser et al., 2005 [7] (Fig 3A). Each layer contained excitatory neurons representing
124 pyramidal neurons and inhibitory neurons representing fast-spiking parvalbumin-positive basket cells
125 (BC). More specifically, the layer 2/3 and layer 6 pyramidal neurons were intratelencephalic (IT) neurons
126 with corticocortical projections, while the layer 5 pyramidal neurons were PTNs. Inhibition was
127 mediated only by parvalbumin-positive BCs because they provide the strongest inhibition compared to
128 somatostatin and vasoactive intestinal protein expressing interneurons [9]. Excitatory afferents (AFF)
129 were included that targeted each of the neuron types in the motor cortical column model. The afferents
130 non-specifically represented activity that may arise from other cortical/sub-cortical areas. Direct

131 activation due to TMS was represented using an input–output approach. Given a stimulus intensity as
132 input, the output was the proportion of the population that fired an action potential in response to the
133 TMS pulse. Both neurons and afferents could be activated, and the effect of direct activation was
134 defined separately for each neuron and afferent type. Simulations were performed using NEURON
135 8.2.0+ and scripted in Python 3.8.13 [10].



136

137 **Fig 3. Overview of motor cortical macrocolumn model.**

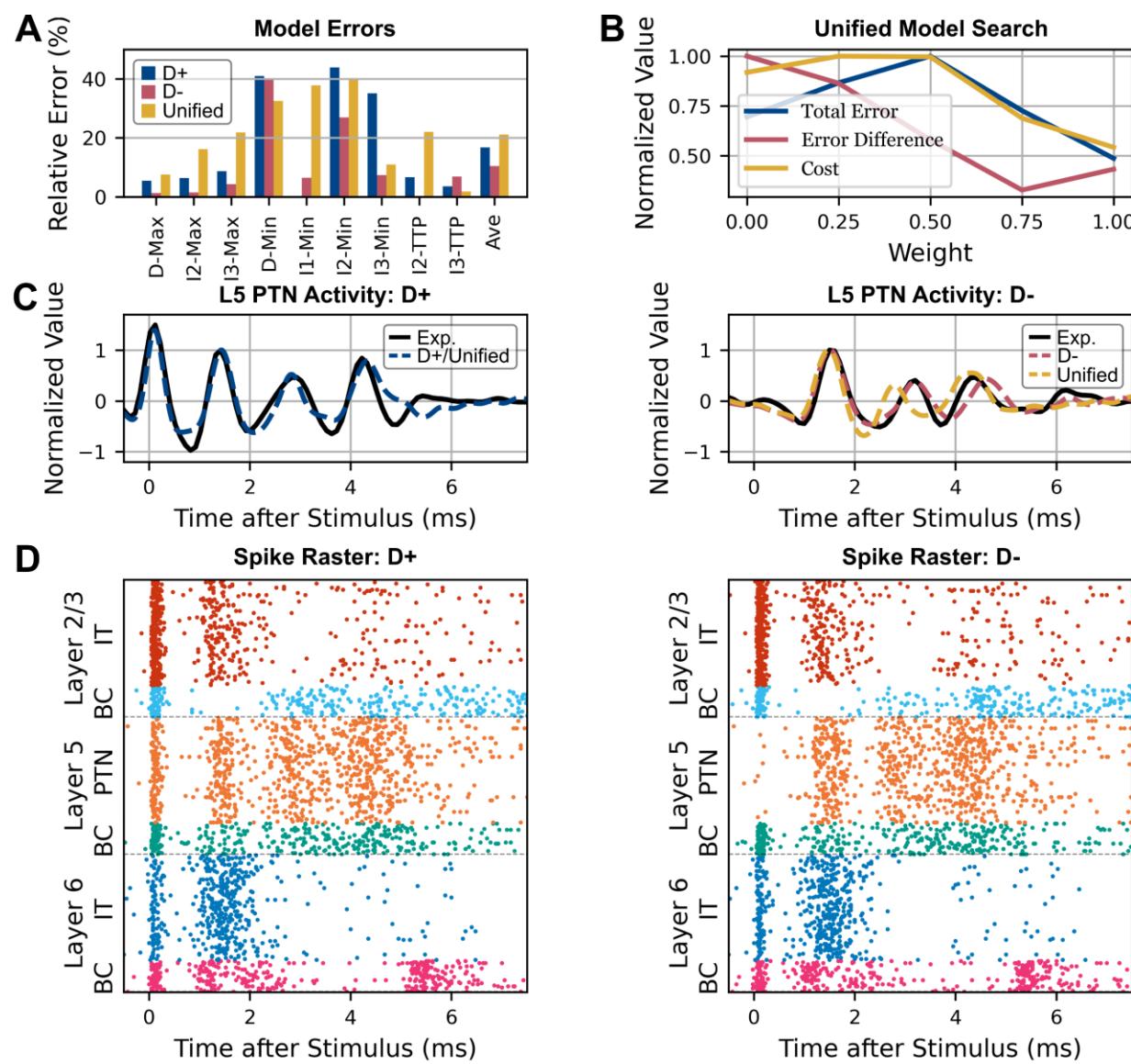
138 A) Block diagram of cortical connectivity. Arrowheads denote excitatory connections mediated by AMPA
139 and NMDA receptors. Round heads denote inhibitory connections mediated by GABA_A and GABA_B
140 receptors. B) Three-dimensional representation of neuron locations. (Left) Side view showing laminar
141 distribution. (Right) Top view depicting microcolumn organization within macrocolumn. IT:
142 Intratelencephalic neuron. PTN: Pyramidal tract neuron. BC: Basket cell.

143 Optimized Models Reproduce Experimental Data

144 Particle swarm optimization was used to identify parameters for models that responded with (D+) or
145 without a D-wave (D-). The objective function included the firing rate of the network prior to stimulation
146 (i.e., no stimulation) and several properties of the corticospinal response after stimulation (see Methods
147 for a detailed description of the experimental data) including the timings and amplitudes of the peaks

148 and troughs. The parameters being optimized included the synaptic weights of each projection, the
149 proportion of neurons activated by TMS, the conduction velocities for each neuron type, and the
150 propagation delay due to stimulation of afferents. The total number of optimized parameters was 98,
151 and the total list of parameters and their optimization ranges are described in Methods.

152 The final selected models had average corticospinal wave errors of 10.3% and 15.4% for the D+ and D-
153 models, respectively (Fig 4A). The corticospinal tract activity generated by the individually optimized
154 models captured many of the features of the experimental data (Fig 4C). The spiking responses of the
155 models are represented using raster plots in Fig 4D, and it can be observed how the spiking activity of L5
156 PTNs produce the corticospinal responses in Fig 4C. The final parameter values for each of the optimized
157 models are presented in S1 Appendix Fig A-C. To increase coverage of the parameter space and avoid
158 local minima, multiple optimizations were executed. The convergences of total error, the distances
159 among their solutions, and simplified Pareto front are shown in S1 Appendix Fig D-E.



160

161 **Fig 4. Optimization results and unified model.**

162 A) Distribution of relative errors across corticospinal wave objectives for the individual best D+ and D-
 163 models and the unified D- model. Average error is plotted on the right side. B) Identification of the
 164 unified model. Weighted combinations of the parameters for the D+ and D- solutions were tested. Cost
 165 represents the sum of total error and error difference. A unified model that used the D+ parameters
 166 resulted in the lowest error across models and between models. C) Simulated epidural corticospinal
 167 activity for optimized models (dashed colored lines) compared to experimental data (solid black line). The

168 *unified model exhibiting a D-wave (left, D+) used the same parameters as its individual best, so only a*
169 *single simulation output is shown. The case without a D-wave (right, D-) has the individual best and*
170 *unified model results. D) Spike raster plots for all motor cortical neuron types. A band-pass filter was*
171 *applied to the activity of the Layer 5 PTN (orange) to represent the corticospinal responses shown in C.*

172 Unified Model Accommodates Both Response Types

173 Despite being separately optimized, there were similarities among many of the parameters of D+ and D-
174 models, but one of the largest differences was for direct activation of L5 PTNs (S1 Appendix Fig A), which
175 generated the D-wave. Given the similarity between the remaining parameter values, we pursued a
176 parsimonious model that had identical values for all parameters except the direct activation of L5 PTNs.

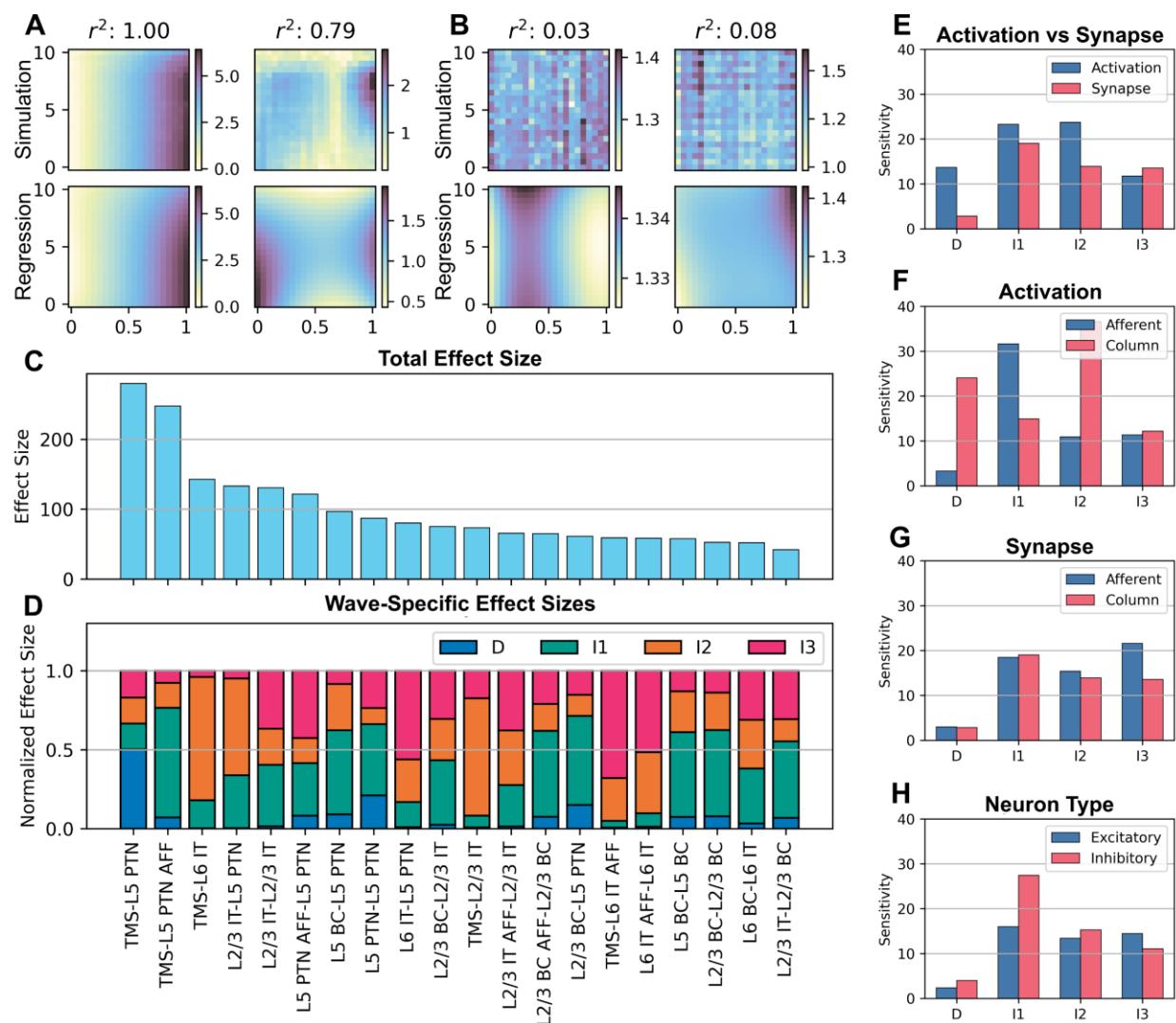
177 The unified model was generated by creating weighted combinations of the parameters of the D-wave
178 and non-D-wave models (Fig 4B). All parameters were identical between models except direct activation
179 of L5 PTNs, which used the respective individual optimal values. The best unified model was selected
180 based on the total error across both models as well as the absolute difference of total error between
181 both models to identify a model that reproduced both response types without favoring one response
182 type over the other. The model representing the subject exhibiting a D-wave had the best
183 generalizability to the subject without a D-wave compared to any of the weighted combinations of the
184 model parameters, and the resulting unified D- model had average relative errors of 19.9% (compared
185 to 10.3% for the individually optimized D- model) while the error for the unified D+ model remained
186 unchanged (Fig 4A). The parameter values of the unified model were then used as the fixed point in a
187 sensitivity analysis.

188 Sensitivity Analysis Reveals Parameters that Preferentially Contribute to

189 Corticospinal Waves

190 Due to the high dimensionality of the parameter space (98 parameters), total grid search, random, or
191 quasi-random sampling would require a prohibitively large number of simulations to characterize fully
192 the relationships between the parameters and the corticospinal response. To reduce the computational
193 cost, a two-variable-at-a-time (TVAT) sensitivity analysis was conducted. TVAT is a form of fixed-point
194 analysis that varies two parameters simultaneously in a grid-search with the remaining parameters fixed
195 at their original values. TVAT analysis is more computationally intensive than the widely used one-
196 variable-at-a-time method, but allows characterization of pairwise interactions between variables
197 [11,12].

198 TVAT analysis was performed using direct activation parameters and synaptic weights. All unique
199 parameter pairs were varied in a grid search spanning the entire parameter range used in the
200 optimization. The amplitudes of the simulated corticospinal waves were measured to construct
201 amplitude maps as a function of the parameter pair involved, and polynomial regressions were used to
202 characterize the amplitude maps. The effect sizes of a parameter for each corticospinal wave were
203 computed using their polynomial regression coefficients if the regressions had an $r^2 \geq 0.5$ (see Methods).
204 Fig 5A-B show examples of good and poor fits of the polynomial regressions that comprise the sensitivity
205 analysis. The total effect sizes, computed as the sum of effect sizes across all corticospinal waves, for the
206 20 most influential parameters are shown in Fig 5C. Activation of L5 PTNs (TMS-L5 PTN) had the largest
207 effect size followed by activation of afferents to L5 PTN (TMS-L5 PTN AFF). Activation of L2/3 ITs and L6
208 ITs had large effect sizes. Important projections included the L2/3 IT projection to L5 PTN and L2/3 IT, L5
209 BC projection to L5 PTN and L5 PTN to L5 PTN. All effect sizes are shown in S1 Appendix Fig F.



210

211 **Fig 5. TVAT sensitivities, effect sizes, and their relative contributions across corticospinal waves.**

212 A) Examples of TVAT surfaces with polynomial regressions that fit the data well. Simulation
 213 measurements are displayed on the top row; regressions are below. B) Same as A but with regressions
 214 resulting in poor fits. C) Rank sorted total effect sizes across all waves. Only the 20 largest effect sizes are
 215 shown for legibility; the full results are shown in S1 Appendix Fig F. C and D share the same x-axis. D)
 216 Relative effect sizes normalized across all waves by parameter. Parameter names were shortened and
 217 hyphenated such that the label before the hyphen corresponds to the presynaptic source and the label
 218 after the hyphen corresponds to the postsynaptic target, e.g. TMS-L6 BC indicates the activation of L6

219 *basket cells via TMS and L2/3 BC-L5 PTN indicates the projection of L2/3 basket cells to L5 pyramidal*
220 *tract neurons. E-H) Effect sizes were divided based on their contribution to a specific corticospinal wave*
221 *and then grouped based on various categories. The averages within the groups are plotted. E) Compares*
222 *sensitivity to activation vs. synaptic parameters. F) Sensitivity to activation of afferents vs. activation of*
223 *neurons within the cortical column. G) Sensitivity to synaptic parameters related to afferents vs. neurons*
224 *within the cortical column. H) Sensitivity to excitatory vs inhibitory neurons. IT: Intratelencephalic*
225 *neuron. PTN: Pyramidal tract neuron. BC: Basket cell. AFF: Afferent.*

226 The influence of the parameters on each individual corticospinal wave relative to the total are
227 summarized in Fig 5D. This plot reveals that while activation of L5 PTNs substantially affected D-waves,
228 this parameter made minimal contributions to I-waves. The activation of afferents to L5 PTNs most
229 substantially affected the I1-wave. This analysis led to a subsequent grouping of parameters that
230 preferentially influenced a single corticospinal wave versus parameters that affected multiple waves.

231 Different groupings of the total effect sizes were made to compare the average effect sizes of broader
232 categories. The effect sizes were further subdivided based on corticospinal wave to quantify the
233 sensitivity of the waves to the different groupings. First, the sensitivity to direct activation was
234 compared to the sensitivity to the synaptic strengths of the network (Fig 5E). The D-wave and I1-I2
235 waves were highly sensitive to direct activation, and the I3-wave had an overall lower but similar
236 sensitivity to both direct activation and synaptic strengths. Next the activation and circuit parameters
237 were each divided between extracolumnar afferents and intracolumnar neurons (Fig 5F). The I1-wave
238 was sensitive to activation of afferents while the D-wave and I2-wave were sensitive to activation of
239 neurons within the column. Sensitivity levels were similar across I-waves for the synaptic effects of
240 afferents and cortical neurons (Fig 5G). The I3-wave was more sensitive to afferents while the I1-wave
241 was more sensitive to intracortical synaptic effects. The D-wave was not sensitive to synaptic
242 parameters. Finally, corticospinal waves were similarly sensitive to excitatory and inhibitory neurons (Fig

243 5H). Sensitivities were relatively similar for I1-I3 waves to excitatory neurons while the I1-wave had the
244 greatest sensitivity to inhibitory neurons.

245 Separating the effect sizes for each corticospinal wave revealed that the individual parameters could
246 preferentially affect one wave over others (Fig 5D). A parameter was defined as having a preferential
247 effect if the parameter's largest effect size on a corticospinal wave was at least 50% larger than its
248 second largest effect size. The activation parameters that preferentially affected each corticospinal wave
249 were verified by visualizing the simulations performed for the TVAT analysis (Fig 6). These visualizations
250 demonstrate that the sensitivity analysis was consistent with the actual simulations. The analysis
251 identified that: the D-wave was most sensitive to the activation of L5 PTNs, the I1-wave was most
252 sensitive to direct activation of afferents to L5 PTNs, the I2-wave was most sensitive to activation of L6
253 Its, and the I3-wave was most sensitive to direct activation of afferents to L6 ITs.

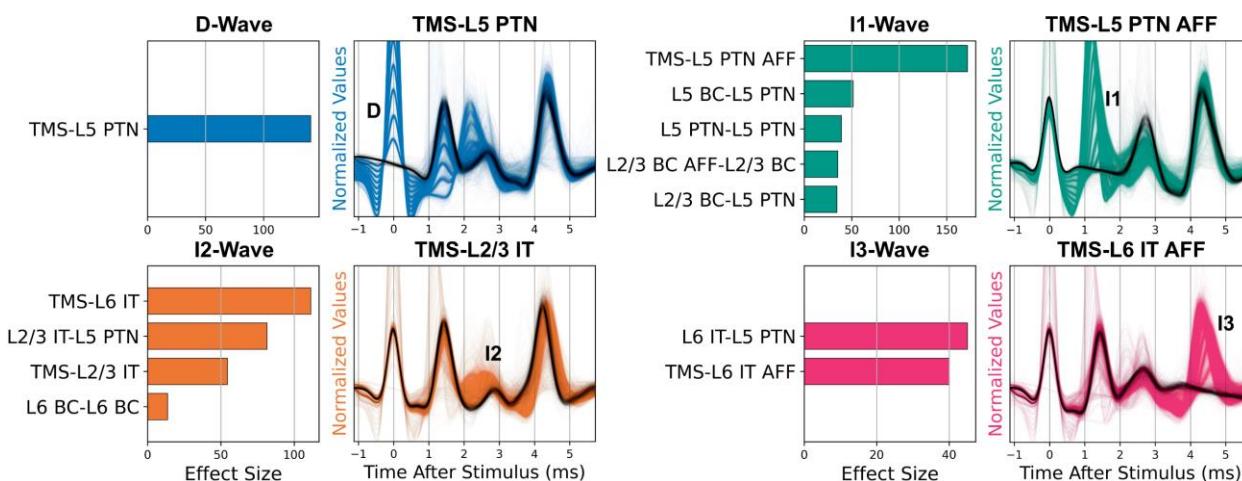
254

255

256

257

258



260 **Fig 6. Effect sizes for parameters that preferentially affected a single I-wave.**

261 For each corticospinal wave, effect sizes for parameters that preferentially affected the wave were
262 normalized and rank sorted and visualized as bar plots. The I1-wave had 9 preferential parameters, and
263 only 5 parameters are shown here for legibility. The remaining waves show the full numbers of
264 preferential parameters. The full set of I1-wave preferential parameters are shown in S1 Appendix Fig G.
265 To the right of the bar plots, the TVAT simulations involving the activation parameters with the largest
266 effect size are shown as colored traces. The solid black line represents responses for which the parameter
267 was set to zero. The disappearance of a wave on the solid black lines indicates that the parameter was
268 important to the generation of that wave. The waves are labelled in the plots. IT: Intratelencephalic
269 neuron. PTN: Pyramidal tract neuron. BC: Basket cell. AFF: Afferent.

270 **Structural Parameters that Determine Preferential Influence**

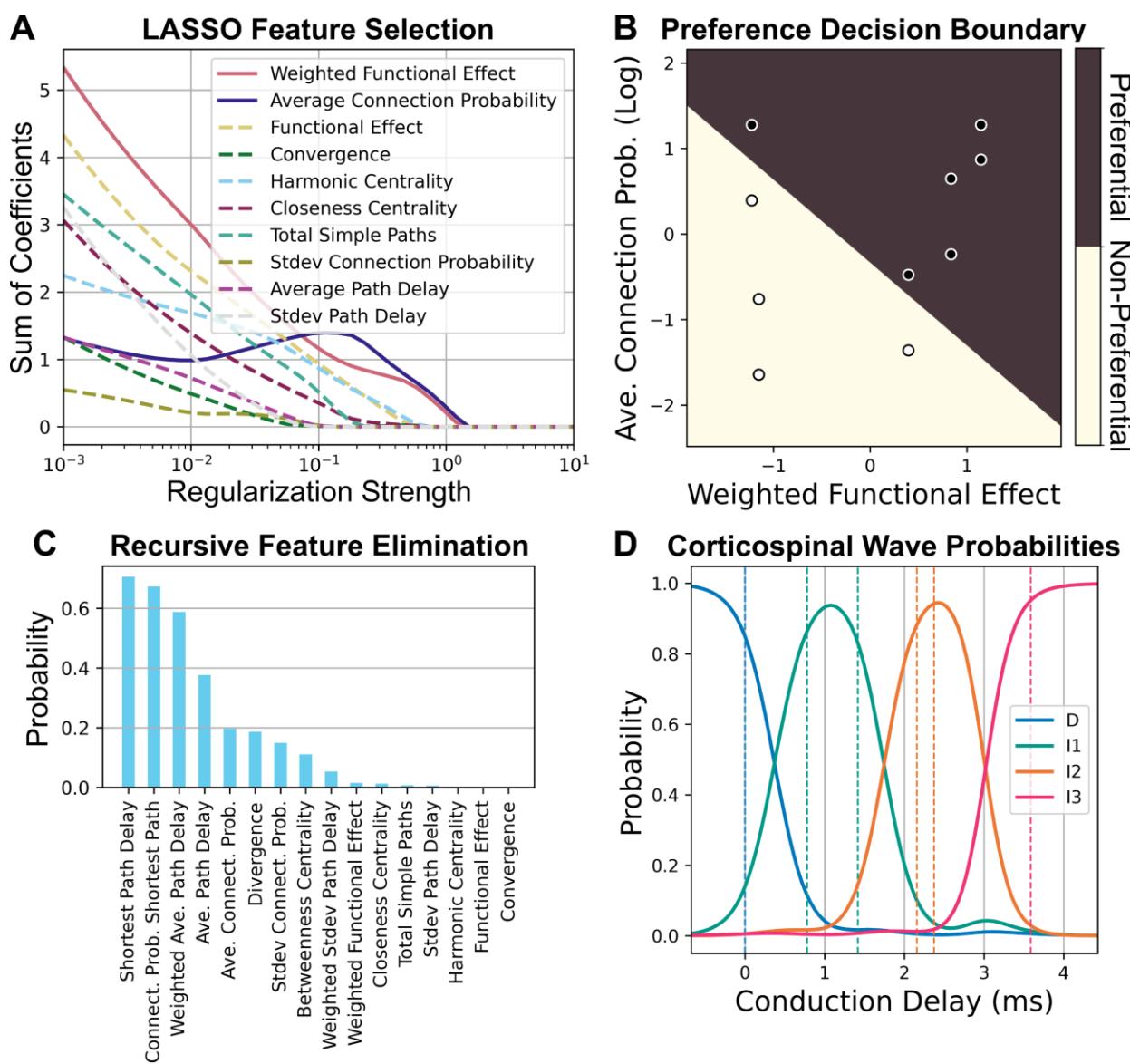
271 The sensitivity analysis predicted that multiple parameters could preferentially influence each I-wave. To
272 identify any shared features that may predict preferential influence on the same corticospinal wave, a
273 secondary analysis was conducted (Fig 7). The properties of the structure of the macrocolumn, such as
274 the distances between neurons and connection probabilities, remained invariant during optimization.
275 These invariant properties were quantified using a graph theoretical analysis, and machine learning was

276 used to identify patterns in the network structure that contributed to corticospinal wave generation.
277 Because only the L5 PTNs contributed to the signal recorded in the corticospinal tract, the relationships
278 between neuron types to the L5 PTNs were characterized by deconstructing the network graph into
279 simple paths, i.e., paths with non-repeating nodes. All directed simple paths for all neuron types leading
280 to L5 PTNs were characterized for analysis. See Methods for detailed descriptions of the graph
281 characterizations.

282 Logistic regression with Lasso regularization was used to identify features that classified parameters
283 with preferential versus non-preferential influence (Fig 7A). The key properties for this classification
284 were a strong average connection probability to L5 PTNs and whether the overall effect on the L5 PTNs
285 was excitatory or inhibitory with a validation classification accuracy of 94.6% (Fig 7B). Recursive feature
286 elimination and support vector classification were used to identify properties of the preferential
287 parameters that predicted which corticospinal wave they affected (Fig 7C-D). The key property was the
288 conduction delay of the shortest path between the starting neuron and the L5 PTNs, and the validation
289 accuracy was 87.2%.

290 Although the sensitivity analysis identified important circuit mechanisms (i.e., activations and
291 projections) involved in corticospinal wave generation, the subsequent machine learning analysis
292 identified the anatomical bases that explained how and why the circuit mechanisms had a preferential
293 effect. This secondary structural analysis provides a method for identifying fundamental principles
294 involved in the neural response to acute stimulation.

295



296

297 **Fig 7. Classification of network features for effect size types.**

298 A) The sum of the absolute value of the coefficients was plotted against regularization strength to
 299 identify the best parameters that classify preferential versus non-preferential parameters. Parameters
 300 that remain nonzero as regularization strength increases have better classification performance. Only
 301 the top 10 best features are shown for legibility. B) Logistic regression decision boundary for preferential
 302 parameters (dark) versus non-preferential parameters (light) using the best classification features
 303 identified in A. Dark filled dots indicate data that were preferential, and light filled dots indicate data

304 *that were not preferential. C) Recursive feature elimination was performed to classify corticospinal wave*
305 *preference for preferential parameters. The higher probabilities of remaining after elimination indicated*
306 *better classification accuracy. Only 10 features are shown for legibility. D) Corticospinal wave*
307 *probabilities obtained by support vector classification using the single best classification feature from C.*
308 *The dashed lines represent the conduction delays of the data being classified.*

309 DISCUSSION

310 We developed an experimentally-constrained model of a human motor cortical macrocolumn that
311 generated realistic D-waves and I-waves in response to single pulse TMS. The model reproduced
312 responses that included or excluded a D-wave by changing the direct activation of L5 PTNs, which is
313 consistent with the mechanisms of D-wave generation [4]. TVAT sensitivity analysis, which lies between
314 a local and global sensitivity analysis, identified the circuit pathways and TMS activations important to I-
315 wave generation.

316 The results of the sensitivity analysis support the hypothesis that direct activation of the terminals of
317 afferents to motor cortex are an important mechanism for I-wave generation but are not consistent with
318 the hypothesis that I-waves are generated by repetitive firing of single neurons (neural oscillator
319 hypothesis). The analysis also supports the involvement of both excitatory and inhibitory neuron types
320 in modulating I-waves [5]. In addition, the sensitivity analysis identified afferents and neuron types
321 endogenous to the motor cortex that can be directly activated to generate corticospinal waves.

322 Subsequently, structural analysis identified general structural principles that allowed these activations
323 to preferentially generate corticospinal waves. Direct activation of afferents and neuron types can
324 preferentially contribute to single I-waves if they have a highly connected path to L5 PTNs, relative to all
325 other paths between the activated neuron type and L5 PTNs. Finally, the latency of the I-wave that is
326 affected by a path can be predicted by its total conduction delay to L5 PTNs.

327 **Separate Pathways for Activation that Include Excitatory and Inhibitory Neurons**

328 The leading hypothesis for I-wave generation proposes that 1) separate activation pathways exist for
329 early versus late I-waves, and 2) activated pathways include both excitatory and inhibitory neurons
330 [6,13]. The sensitivity analysis identified neural activations that preferentially modulated specific I-
331 waves, revealed preferential activation pathways for all three I-waves, and showed that silencing their
332 activation greatly suppressed a particular I-wave (Fig 6). The sensitivity analysis was grouped to compare
333 the total effect sizes of excitatory and inhibitory neurons on I-wave generation and revealed that
334 corticospinal waves exhibited comparable sensitivities to both excitatory and inhibitory neurons and
335 that inhibitory neurons are involved in I-wave modulation (Fig 5H).

336 Most inhibitory neurons had non-preferential effects, i.e., affected multiple I-waves, which is consistent
337 with experimental findings that various anesthetics, which act as allosteric modulators of GABA_{AR},
338 generally reduce I-wave amplitudes [6]. However, the sensitivity analysis showed that the I1-wave was
339 most sensitive to inhibitory neurons with decreasing sensitivity for later I-waves (Fig 5H), and this is not
340 consistent with experimental findings that show GABA_A agonists affect later I-waves but not the I1-wave
341 [14–16]. One possibility for this disagreement is the lack of inhibitory afferents in the model that could
342 arise from adjacent cortical macrocolumns. These afferents would provide inhibition at longer latencies
343 that would affect later I-waves. The Model Limitations and Future Directions subsection discusses this
344 further.

345 **Direct Activations of the Endogenous Circuit Contribute to I-Waves**

346 The prior conceptual frameworks assumed that I-waves are initiated by activation of corticocortical fiber
347 afferents, and the sensitivity analysis supports that the corticospinal response is most sensitive to
348 activation of terminals of afferents. However, this analysis revealed that activation of the motor cortical
349 circuit itself can initiate I-waves. Activation of ITs in L2/3 and L6 preferentially activated I2- and I3-waves

350 (Fig 6). Although designing *in vivo* TMS experiments that control for contributions of endogenous circuit
351 elements to I-waves is difficult, the modeling results suggest activation of the endogenous circuit as
352 another mechanism for I-wave generation, in addition to activation of afferents. Intracortical
353 microstimulation (ICMS) studies can provide some insight into intracortical TMS effects and are further
354 discussed below in the Comparison to Intracortical Microstimulation subsection.

355 **Connectivity and Conduction Delay as Mechanisms for Preferential I-Wave
356 Generation**

357 Given that multiple mechanisms can preferentially contribute to the same I-wave, the structural analysis
358 sought to identify the commonalities among mechanisms that yielded this response. A neuron type
359 within the circuit could have multiple paths leading to L5 PTN with different properties for each path.
360 Neuron types with a single path that had a high connection probability to L5 PTNs, relative to other
361 paths starting from the same neuron type, could preferentially affect a single I-wave (Fig 7A-B). For
362 neuron types where such a path exists, the primary mechanism for determining early versus late I-wave
363 activation was the conduction delay of the path between the activated population and L5 PTNs (Fig 7C-
364 D). The conduction delay defined in this study represents the combined contributions of action potential
365 propagation along the axon, synaptic transmission, and somatodendritic propagation of the resulting
366 postsynaptic potential. This is supported by the computational work of Rusu and colleagues who
367 controlled conduction delay based on synaptic location within dendrites [8].

368 To generalize, the results of the structural analysis suggest that if the generator of a signal within a
369 network is known, and the connection probabilities and conduction delays of the network are known,
370 then the network elements that preferentially contribute to singular peaks of a system's impulse
371 response can be screened by performing the following: for each neuron type 1) identify all possible
372 paths from the neuron type to the signal generator, 2) compute the ratios of the log of the connection

373 probability between the most highly connected path and the remaining paths normalized by the sum of
374 all log probabilities, and 3) obtain the latency of effect for the most highly connected path. Neuron types
375 that have a path that is more highly connected than the remaining paths will have a preferential
376 influence on peaks that occur during their latency of effect.

377 L5 PTNs as Population Oscillators but Not Neural Oscillators

378 Another category of hypotheses for I-wave generation is the concept of the neural oscillator. These
379 theories were motivated by the fact that L5 PTNs can achieve firing rates that match the frequency of I-
380 waves and led to exploration of cellular mechanisms for I-wave generation [6]. A histogram was
381 constructed of the spike counts for each L5 PTN during the different I-waves (S1 Appendix Fig H), and L5
382 PTNs were most likely to contribute to a single I-wave during the corticospinal response. However, at
383 the population level excitatory recurrent connections exist between L5 PTNs, and the sensitivity analysis
384 demonstrated that the recurrent connections are involved in I-wave modulation as seen in Fig 5D and
385 Fig 6. Therefore, the modeling results do not support that I-waves are generated or sustained at the
386 neuronal level; rather, their generation appears to be a population level effect.

387 Comparison to Intracortical Microstimulation (ICMS) Studies

388 Direct cortical recordings to investigate I-waves are currently limited due to the technical challenges of
389 suppressing the TMS artifact, which saturates recordings and prevents recovery of the activity during
390 the period when the D-wave and I-waves occur [17,18]. ICMS in animals can generate high frequency
391 multiunit activity with frequencies comparable to I-waves [19–21]. The results of ICMS studies can
392 contribute to understanding the TMS response, but due to the differences in the spatial distribution and
393 gradient of the electric field, ICMS studies cannot be used to explain fully TMS evoked I-waves [22].
394 ICMS applied to the primary motor cortex (M1) hand area in nonhuman primates showed that earlier
395 peaks were elicited if the stimulation was closer to the recording site [21]. The study hypothesized that

396 the stimuli were activating horizontal fibers within M1, and these results support conduction delay as a
397 mechanism determining the latencies of peaks. The horizontal fibers further represent afferents,
398 relative to a macrocolumn, that are endogenous to M1. Single unit activity from a similar ICMS study
399 that stimulated and recorded from M1 found minimal, sparse spiking within the time window relevant
400 for I-waves and supports that single L5 PTNs contribute to few I-waves, if at all [19]. This corroborates
401 the modeling predictions that I-waves represent a population response comprised of heterogeneous,
402 sparse spiking rather than a synchronized rapid spiking response across neurons (S1 Appendix Fig H).
403 Another ICMS study stimulated a region of the ventral premotor area F5 that sends afferents to the
404 hand knob area of M1 [20]. Stimulation of F5 at lower intensities recruited the I1-wave first, and higher
405 intensities eventually recruited later I-waves. Although it is known that F5 projects to M1, the laminar
406 distribution of the terminals of F5 afferents in M1 are unknown. Nonetheless, these results are
407 consistent with the modeling prediction that the I1-wave is most sensitive to activation of afferents.
408 Maier and colleagues also stimulated M1 directly and found that D-waves are much less likely to be
409 elicited than I1-waves. This finding is in line with the TMS literature [23], and the sensitivity analysis (Fig
410 6C) is also consistent with these experimental observations in that the I1-wave is most sensitive to
411 stimulation of afferents compared to the D-wave, which is least sensitive.

412 Putative Afferents for I-Wave Generation

413 In the present model, afferents were represented as spiking inputs that were specific for each neuron
414 type in the model, and the effect of TMS was represented by activation of the axon terminals of these
415 afferents within the motor cortical macrocolumn. The sensitivity analysis predicted that activation of
416 afferents for specific neuron types could have a preferential effect on specific I-waves, so the results of
417 the sensitivity analysis were compared to the laminar distribution of terminals of corticocortical
418 afferents in mouse motor cortex [24] to predict the anatomical origin of afferents with preferential I-
419 wave effects. Afferents originating from the secondary (supplementary) motor area (M2) have a high

420 density of terminals in the deep portion of L5 where the somata of L5 PTNs lie, and activation of M2
421 afferents may be a candidate for I1-wave generation. Afferents from the primary somatosensory cortex
422 have a high density of axon terminals in L2/3 and superficial L5 and could be important for I2-wave
423 generation. The axon terminals of the orbital cortex primarily target L6 and may contribute to I3-waves.
424 The axon terminal distributions for lateral and anterior ventral thalamus within motor cortex were also
425 characterized [24], but prior studies showed that lesions in those areas do not affect I-wave generation
426 [25].

427 The laminar distribution of horizontal connections between columns within motor cortex have not been
428 directly characterized. However, Narayanan and colleagues reported the laminar distribution of axon
429 terminals endogenous to rat primary somatosensory cortex [26]. The horizontal connections of L2/3 and
430 L5 pyramidal neurons are most dense in L2/3, which may contribute to the I2-wave. The horizontal
431 connections of L6 pyramidal neurons are most dense in deep L5 and L6 which may contribute to I1- and
432 I3-waves.

433 Model Limitations and Future Directions

434 An important design criterion for the modeling work was computational efficiency to enable the
435 parameter explorations necessary for optimization and sensitivity analysis to be conducted in a
436 reasonable time. In general, computational gains came at the expense of biological details and
437 constraints. However, the simplified model enabled more specific and in-depth computational
438 experiments.

439 Point neuron representations precluded any analyses involving dendritic processes, spatial integration
440 of postsynaptic potentials, or ephaptic coupling. Spatially extended, i.e., morphologically realistic,
441 neuron models [22] could accommodate these mechanisms and enable the exploration of their

442 contributions to modulation of I-waves but would increase execution times by a factor of approximately
443 1800.

444 Afferents were represented as spiking processes that targeted specific neuron types. More realistic
445 representations of afferents with distributions and connectivities that matched anatomical data would
446 more directly address the effect of specific fibers on I-waves. Nonetheless, allowing afferents to be
447 separately variable for each neuron type provided a basis to understand their contributions.

448 Traditionally, L4 in motor cortex has been described as either nonexistent or very thin, which led motor
449 cortex models to exclude L4 or represent it with inhibitory neurons only [7,27,8]. Recent evidence has
450 identified excitatory IT neurons in L4 with projections to L2/3 [28–30] leading to more complex models
451 of M1 [31]. The present modeling results predict that, while not included, L4 IT neurons would
452 participate in later I-waves due to their strong projection into L2/3; therefore, future work should add L4
453 explicitly to the model.

454 A single macrocolumn comprising multiple microcolumns was modeled in this work. Communications
455 across adjacent macrocolumns, i.e., intracortical afferents, could alter the corticospinal response to TMS
456 as they represent “afferent” inputs to macrocolumns that arise within the motor cortex. Their
457 interactions could further modulate I-waves through both excitatory and direct inhibitory projections,
458 and the latencies of the feedback will likely cause adjacent macrocolumns to contribute toward late I-
459 waves.

460 This work represented TMS stimulation using an input–output approach, i.e., a given stimulus intensity
461 resulted in some proportion of neurons of a particular type to fire an action potential. The spatial
462 distribution of activation could be constrained by modeling the induced electric field using finite
463 element modeling [32]. However, by separating the neuron type activations from the spatial constraint,
464 the basic properties underlying the responses to activation could be investigated with greater control.

465 Furthermore, the optimization included only a single stimulus intensity as a constraint. Incorporating
466 corticospinal recordings in response to multiple stimulus intensities from the same subject would
467 provide better constraints and allow analysis of recruitment orders for neuron types.

468 The predictions from the model are limited to the single pulse response and are not readily extendable
469 to paired pulse or repetitive pulse paradigms. This is partly due to GABA_BR parameters being
470 underconstrained. GABA_BR conductance was partially constrained by the baseline firing rate objective
471 but has been shown to have no effect on I-waves [33]. However, GABA_BR is important for the cortical
472 silent period [34] and paired pulse responses [35], and these data can be incorporated as optimization
473 constraints in future work.

474 Finally, experimental data from only two subjects was used with responses from a single TMS intensity.
475 The data were representative of the two qualitative types of responses—with and without D-wave. The
476 small dataset allowed for more rapid model development due to fewer optimization constraints, and
477 the methods established in this work can be applied in the future to extended data from more subjects
478 and more recordings within subject.

479 Conclusions

480 To understand the mechanisms and principles underlying a biological process, sensitivity analysis is a
481 powerful tool. However, as the number of relevant variables increases, the analysis can become
482 overwhelming, and conclusions become diluted. At these large numbers, degeneracy in the sensitivity
483 analysis is possible as many mechanisms can be identified to be significant to the phenomenon of
484 interest. However, there is also the possibility that subsets of these mechanisms share certain properties
485 that represent a more fundamental mechanism or at least a lower-level mechanism that was previously
486 unclear or unaccounted for. In this case, a secondary analysis can reveal more fundamental mechanisms
487 that underly the variables that explain the phenomenon of interest. For this work, the lower-level

488 mechanisms were model parameters that described the anatomical structure of the network, i.e., the
489 wiring diagram and the latencies that resulted from these anatomical constraints. The insights on how
490 the wiring diagram and the conduction latencies affect peaks in an evoked response can be generalized
491 and applied to areas outside the motor cortex and to stimulation modalities beyond TMS.

492 **METHODS**

493 **Motor Cortical Column Simulations**

494 **Neuronal Network Model**

495 The motor cortical macrocolumn model was based on the equations and parameters published by Esser
496 et al., 2005, which specified the connectivity, somatic biophysics, and synaptic properties [7]. The model
497 contained L2/3 ITs and BCs, L5 PTNs and BCs, L6 ITs and BCs and excitatory afferents that targeted each
498 neuron type (i.e., six groups of afferents). The circuit describing the connectivity is shown in Fig 3A. The
499 Esser model was chosen as a starting point due to its ability to generate I-waves and the low
500 computational complexity of its leaky-integrate-and-fire, point neuron models. The spiking activities of
501 the afferents were generated by a Poisson process with a mean firing rate of 0.25 Hz [36]. Noise was
502 added to the neuron models that was independent of the synaptic drive provided by the afferents and
503 unaffected by TMS to ensure proper baseline firing rates and reduce network synchronization. Each
504 neuron received its own noise in the form of short, suprathreshold current injections with Poisson-
505 distributed intervals. Although the Esser model included the thalamus and thalamocortical projections,
506 the thalamus was omitted from the present work to further reduce computational time because it does
507 not affect I-wave generation [25].

508 The macrocolumn encompassed a cylinder with a diameter of 500 μm (Fig 3B) based on anatomical
509 studies [37]. The height of the cylinder was 2700 μm based on measurements made on human motor
510 cortex from ex vivo brain [38]. This study also informed the total vertical thickness (i.e., depth) of the

511 layers within the macrocolumn. The cortical depth location of a neuron was uniformly and randomly
512 generated within the appropriate layer bounds. The macrocolumn was comprised of microcolumns that
513 were arranged in a triangular lattice with a spacing of 50 μm [39] resulting in 79 microcolumns and
514 matched the range of microcolumns per macrocolumn [37,40]. The microcolumns were synonymous
515 with the “topographical elements” described in the Esser model and contained 2 excitatory neurons and
516 1 inhibitory neuron per layer. With 3 neurons per layer, 3 layers per microcolumn, and 79 microcolumns
517 in the macrocolumn, there was a total of 711 neurons (Table 1).

518

519

520

521

522

523

524

525

526

527

528

529

530

531 **Table 1. Total numbers of neurons in model.**

Neuron type	Number
L2/3 IT	158
L2/3 BC	79
L5 PTN	158
L5 BC	79
L6 IT	158
L6 BC	79
L2/3 IT AFF	79
L2/3 BC AFF	79
L5 PTN AFF	79
L5 BC AFF	79
L6 IT AFF	79
L6 BC AFF	79

532

533 The conduction delay, defined as the time between the onset of an action potential and the start of the
534 postsynaptic potential at the soma of the postsynaptic neuron, was calculated from the distance
535 between the presynaptic and postsynaptic neuron pair and conduction velocity. The conduction velocity
536 measured from non-human primates (570 µm/ms) was used as human measurements were not
537 available [41].

538 TMS activation included only suprathreshold effects. Each stimulus activated a specified proportion of a
539 neuron/afferent type, and neurons/afferents were randomly selected for each presentation of the
540 stimulus. No effect was applied to neurons/afferents that were not selected. Direct activation of
541 neurons resulted in an injection of a short suprathreshold current to elicit an action potential that was
542 propagated orthodromically to all postsynaptically connected neurons using all relevant conduction

543 delays. Direct activation of the terminals of afferents resulted in the activation of all connected synapses
544 with the appropriate conduction delays.

545 Connectivity parameters, neuron parameters, and synaptic parameters were identical to those reported
546 in [7] with the following exceptions. Orientation selectivity-based connectivity was not included, so the
547 connectivity rules for all microcolumns were identical. Because the geometric area of the model was
548 reduced from the original, the overall synaptic drive was decreased. The subsequent optimization
549 allowed larger synaptic weights to compensate.

550 **Simulation Paradigm**

551 Simulations were designed to ensure that the network achieved steady state before measurements
552 were made. To reduce synchronization of the network due to simultaneous activation of afferent inputs,
553 the onsets of the Poisson spike trains of the afferents were randomly and uniformly selected between 0
554 and 200 ms. Baseline properties were measured between 500 and 2000 ms. TMS stimuli were applied at
555 2000 ms with inter-trial intervals of 200 ms with a total of five trials. This interval was selected based on
556 population averages of trials which showed no longer-term effects beyond 150 ms. Furthermore, the
557 model did not implement synaptic plasticity and thalamic connections. Analysis of the TMS response
558 was performed on the trial average. The total simulated time was 3000 ms.

559 **Selecting an Appropriate Time-Step**

560 The time-step was decreased from the value originally used in Esser et al., 2005, from 0.1 ms to 0.025
561 ms due to instabilities in the network during these longer simulations. The time-step was selected by
562 running single neuron simulations while log-linearly varying the time-step from 0.001 to 0.2 ms. Each
563 simulation had a length of 20 seconds, and the models received a random Poisson input with a mean
564 firing rate of 1000 Hz. The response at 0.001 ms was used as the baseline response, and the model
565 behavior were characterized using the following metrics: Number of spikes generated, mean inter-spike

566 interval (ISI), coefficient of variation of the ISI, normalized root mean square error (NRMSE) of the
567 membrane potential, and the van Rossum spike distance [42]. A time constant of 500 ms was used for
568 the spike distance because the 0.001 ms time-step case had a mean ISI of approximately 500 ms. For
569 each time-step, 50 simulations/trials were conducted. Each trial used a different random seed to change
570 the Poisson input, and the sequence of random seeds for the trials was identical across time-steps. The
571 mean of the metrics across trials for each time-step was calculated for further analysis.

572 The knee-finding Python package *Kneed* [43] was used to identify the largest time-step at which further
573 time-step increases would provide diminishing returns on the differences in metrics relative to the 0.001
574 ms time-step (Fig 8). A 5th order polynomial function was fitted to the metrics as a function of the log of
575 the time-step size to provide a continuous curve to identify the knee. The smallest time-step across all
576 metrics was 0.03 ms for both mean ISI and the coefficient of variation of ISI, and a final time-step of
577 0.025 ms was conservatively selected.

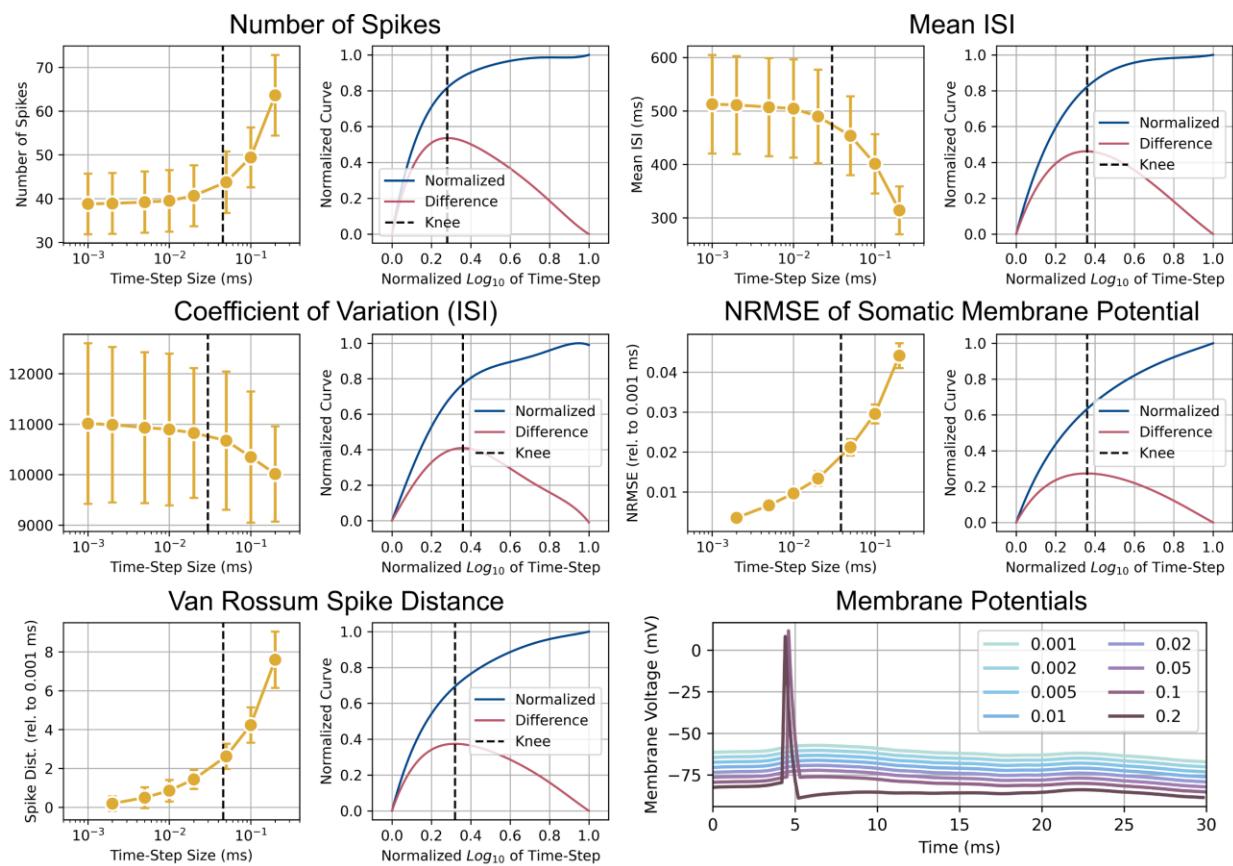
578

579

580

581

582



583

584 **Fig 8. Analysis to select a time-step that both minimizes computation time and is numerically stable.**

585 Each pair of plots shows the mean of a metric as a function of the time-step size in the \log_{10} scale on the
 586 left. The right plot of the pair shows the normalized curve and difference curve used to identify the knee-
 587 point. The vertical dashed line in the pair of plots denotes the ideal time-step. On the lower right, the
 588 membrane potentials of the neuron model for different time-steps are shown. Offsets were added for the
 589 y-axis to allow all lines to be distinctly seen. The plots depict a key behavior that differentiates
 590 simulations at larger time steps. A pronounced afterhyperpolarization is seen with a 0.2 ms time-step
 591 that is absent from other time-steps. Additionally, spikes are generated at larger time-steps (0.1 and 0.2
 592 ms) that are absent for smaller time-steps. These dynamics contribute to the larger numbers of spikes,
 593 lower mean ISIs, larger NRMSE, and larger spike distance observed for larger time-steps.

594 **Experimental Data**

595 Experimental data were obtained from human subjects who had spinal cord stimulators implanted to
596 treat drug-resistant dorso-lumbar pain. Data was collected in accordance with an experimental protocol
597 that was approved by the Ethics Committee of Campus Bio-Medico University of Rome. Use of the data
598 in this study was approved by the Institutional Review Board of the Duke University Health System.

599 The experimental setup is summarized in Fig 1A. For each subject, an electrode array was implanted
600 percutaneously in the cervical epidural space, with the recording sites aligned vertically along the
601 dorsum of the cord. Spinal potentials were recorded differentially between proximal-distal pairs of
602 contacts (with the distal contact connected to the reference input of the amplifier), amplified and
603 filtered (gain: 10000; bandwidth: 3 Hz to 3 kHz) by a Digitimer D360 amplifier (Digitimer Ltd., Welwyn
604 Garden City, UK), and sampled at 10 kHz by means of a CED 1401 A/D converter (Cambridge Electronic
605 Design Ltd., Cambridge, UK).

606 A figure-of-eight coil with external loop diameter of 70 mm was held over the right motor cortex at the
607 optimal scalp position to elicit motor responses in the contralateral first dorsal interosseous (FDI) muscle
608 with the induced current flowing in a posterior–anterior direction across the central sulcus. TMS was
609 delivered at 120% of the resting motor threshold (RMT). Monophasic pulses were applied with a
610 Magstim 200² stimulator (The Magstim Company Ltd., Whitland, UK) once every 5 seconds.

611 Two subjects were included in this study (Fig 1B). Subject 1 was female, 64 years old, and had a cervical
612 epidural electrode implanted at C3–C5 level; the RMT of TMS was 34% of maximum stimulator output.
613 Subject 2 was male, 68 years old, and had a cervical epidural electrode implanted at C1–C2 level; the
614 RMT was 55% of maximum stimulator output. Subject 1 did not exhibit a D-wave in response to TMS
615 (D-), while Subject 2 exhibited a D-wave (D+). Each subject received at least 30 pulses. For analysis, the
616 responses were truncated to begin 2 ms after the TMS pulse to remove stimulation artifact. An

617 additional noncausal bandpass filter (second-order Butterworth, 200 Hz to 1500 Hz) was applied to
618 remove residual stimulus artifact, potential motor artifacts, and higher frequency activity that is
619 unrelated to the corticospinal waves. Measurements of the corticospinal response were performed on
620 the filtered, trial-averaged signal.

621 Optimization of Network Model

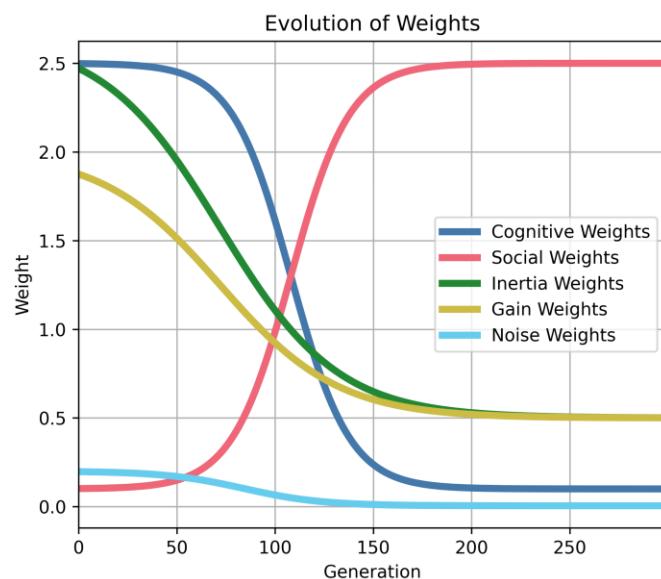
622 Particle swarm optimization

623 Particle swarm optimization (PSO) is a metaheuristic algorithm for parameter exploration with the goal
624 of finding parameters that satisfy one or more constraints. The particle's position represents the
625 parameter values for the model, and a velocity term updates the position using a weighted combination
626 of the best solution found by itself (cognitive best) and the best solution found among a particle's
627 neighbors (social best). PSO was implemented by modifying the *inspyred* Python software package [44].

628 Neighborhoods were constructed using a star topology with each particle's neighborhood size being 5%
629 of the total number of particles. There were 2048 particles and 300 iterations before the optimization
630 was terminated. The optimization was repeated for each model four times to increase coverage of the
631 parameter space and the likelihood of locating a global best solution. Each optimization used a different
632 random seed that controlled the initial particle positions and their updated positions after each iteration
633 as detailed below.

634 At the beginning of the optimization procedure, particle positions were initialized using Sobol sampling.
635 Sobol sampling generates a low-dispersion quasi Monte-Carlo sequence that exhibits better coverage of
636 the parameter space than uniform random sampling for high-dimensional spaces and has been shown
637 to improve optimization convergence [45].

638 Particle behavior was guided by inertial velocity, cognitive velocity, social velocity, gain factor, and noise
639 [46]. Inertial weight corresponded to a particle's resistance to movement and results in a particle
640 moving towards its previous position. The cognitive weight determined a particle's preference towards
641 the position of the best solution it had found. The social weight determined a particle's preference
642 towards the position of the best solution its neighborhood had found. The cognitive and social velocities
643 were also separately modified using scalars drawn from a uniform distribution between 0 and 1. The
644 velocity was then computed as the weighted average using the inertial, cognitive, and social weights.
645 Finally, the velocity was scaled by the gain factor. For each particle coordinate, noise was sampled from
646 a zero-mean Gaussian distribution with the standard deviation controlling the strength of the noise.
647 Optimization noise is also known as mutation and was shown to be necessary for theoretical global
648 convergence of PSOs [47]. Finally, the particle position was updated using both velocity and noise.



649

650 **Fig 9. Change in particle swarm optimization weights across successive iterations.**

651 *For approximately 100 iterations, optimization is exploratory with large cognitive, inertial, and gain
652 weights before favoring convergence with high social weights for the final 150 iterations.*

653 These optimization parameters were updated during optimization to switch from an initial stage of
654 exploration to a final stage of convergence (Fig 9). During exploration, inertial weight, cognitive weight,
655 gain factor, and noise were high, and the social weight was low. During convergence, the social weight
656 was high, and the remaining terms were low. The progression of the parameters followed a sigmoidal
657 function

658

$$y(x) = A + \frac{K}{1 + e^{(ax-bN)/N}}$$

659 where x is the current iteration of the optimization, N is the total number of iterations for the algorithm,
660 A is the offset, K is the amplitude and direction of the sigmoid, a controls the steepness of the transition,
661 and b controls the midpoint of the transition. The parameters for the sigmoidal function are reported in
662 Table 2.

663 **Table 2. Sigmoid function constants underlying evolution of optimization metaparameters.**

Parameter	A (Minimum)	K (Amplitude/Direction)	a (Slope)	b (midpoint)
Cognitive Weight	2.5	-2.4	20	7.2
Social Weight	0.1	2.4	20	7.2
Inertial Weight	0.5	2	15	4.2
Gain Weight	0.5	1.5	10	2.4
Noise Weight	0.005	0.195	15	4.2

664

665 A damped, reflecting boundary condition was implemented on the parameter search space [48]. If a
666 particle's position exceeded a boundary, then the particle was reflected back into the valid parameter
667 space using the difference between the original, non-valid position and the boundary. The reflection was
668 damped by multiplying the difference with a scalar sampled from a uniform distribution between 0 and
669 1.

670 Optimization constraints

671 There were four main categories of constraints: baseline activity, TMS response, synchrony, and well-
672 behaved. The relative error was computed for each constraint except when the constraint was zero, in
673 which case the absolute error was computed. The sum of the relative and absolute errors was used to
674 represent the total error of a particle. Table 3 lists all constraints.

675 **Table 3. List of Optimization Constraints**

Constraints		
1. D-wave peak	18. L2/3 IT ISI	35. L5 PTN baseline CV
2. D-wave time-to-peak	19. L2/3 BC firing rate	36. L5 BC baseline CV
3. D-wave trough	20. L2/3 BC ISI	37. L6 IT baseline CV
4. D-wave time-to-trough	21. L5 PTN firing rate	38. L6 BC baseline CV
5. I1-wave peak	22. L5 PTN ISI	39. L2/3 IT population ISI std.
6. I1-wave time-to-peak	23. L5 BC firing rate	40. L2/3 BC population ISI std.
7. I1-wave trough	24. L5 BC ISI	41. L5 PTN population ISI std.
8. I1-wave time-to-trough	25. L6 IT firing rate	42. L5 BC population ISI std.
9. I2-wave peak	26. L6 IT ISI	43. L6 IT population ISI std.
10. I2-wave time-to-peak	27. L2/3 IT peak/mean ratio	44. L6 BC population ISI std.
11. I2-wave trough	28. L2/3 BC peak/mean ratio	45. L2/3 IT noise weight
12. I2-wave time-to-trough	29. L5 PTN peak/mean ratio	46. L2/3 BC noise weight
13. I3-wave peak	30. L5 BC peak/mean ratio	47. L5 PTN noise weight
14. I3-wave time-to-peak	31. L6 IT peak/mean ratio	48. L5 BC noise weight
15. I3-wave trough	32. L6 BC peak/mean ratio	49. L6 IT noise weight
16. I3-wave time-to-trough	33. L2/3 IT baseline CV	50. L6 BC noise weight
17. L2/3 IT firing rate	34. L2/3 BC baseline CV	51. Amplitude after I3-wave

676

677 The baseline state constraints included both the mean population inter-spike interval (ISI) and the mean
678 population firing rate for the different neuron types. Both objectives were important to constrain the

679 network activity due to the nature of their calculations. Firing rate was evaluated as the number of
680 spikes elicited within a time-window. However, there was a possibility that the ISIs within the window
681 were very small due to bursting behavior. Therefore, the mean ISI was added as an additional constraint.
682 Mean ISI alone was not a good constraint for overall activity because the calculation of relative error
683 resulted in lower error for small ISIs as opposed to large ISIs, which skewed the optimization to prefer
684 smaller ISIs and therefore higher firing rates. Including both constraints balanced the difference in bias
685 between them.

686 Experimental recordings from the epidural space of the cervical spine of human subjects during single
687 pulses of TMS were used to provide constraints for the corticospinal response to TMS. The peaks,
688 troughs, and latencies (time-to-peak and time-to-minimum) for each of the corticospinal waves—D-
689 wave (if available), I1-wave, I2-wave, and I3-wave—were measured and used as constraints. An
690 additional constraint minimized the peak of the model output beyond the time-window during which
691 the I3-wave should occur to prevent additional corticospinal waves, which were not present in the
692 recordings.

693 To reduce population synchrony, the population spiking density for a neuron type was constructed and
694 smoothed with a Gaussian kernel. The ratio between the maximum and the average value and the
695 coefficient of variation of the smoothed population spiking density were used as constraints with target
696 values of one and zero, respectively.

697 A possible aberrant network behavior resulted in spiking activity of the network being dominated by
698 large firing rates in a few neurons with the remaining neurons being silent. To avoid this, the standard
699 deviation of the mean population ISI within a neuron type was minimized to prevent highly skewed
700 distributions of activity.

701 **Optimized Parameters**

702 There were 98 open parameters for optimization. They can be divided into the following categories:

703 Synaptic weights scalars, conduction velocity scalars, afferent delay mean, afferent delay standard

704 deviation, proportion activated, noise amplitude, and noise rate. These categories and their bounds for

705 optimization are summarized in Table 4. The specific names of all parameters are listed in S1 Appendix

706 Table A-B.

707 **Table 4. Categories of optimized parameters.**

Name	Description	Range
Synaptic Weight Scalar (N. A.) 38 parameter	Scalar multiplied to base synaptic weights	[0.1, 10]
Conduction Velocity Scalar (N. A.) 24 parameters	Scalar multiplied to conduction velocity	[0.25, 2]
Afferent Delay Mean (ms) 6 parameters	Mean conduction delay between afferent and postsynaptic neuron	[0.2, 2]
Afferent Delay Stdev. (ms) 6 parameters	Standard deviation of conduction delay between afferent and postsynaptic neuron	[0.1, 1]
Proportion Activated (N. A.) 12 parameters	Proportion of population made suprathreshold due to application of TMS	[0, 1]
Noise Amplitude (nA) 6 parameters	Amplitude of current to generate spiking activity due to independent noise	[1, 50]
Noise Rate (N. A.) 6 parameters	Scalar multiplied with the desired firing rate to determine the mean of the Poisson process used to generate noise	[0, 1]

708

709 **Characterizing Optimization Robustness**

710 The optimization was repeated four times with different random seeds to increase coverage of the

711 parameter space and avoid local minimum solutions. Optimizations approached similar total error (S1

712 Appendix Fig D). To quantify the similarity of best solutions (i.e., lowest total error) found for each

713 optimization run, the distance among parameters for the best solutions were computed using Euclidean

714 distance, normalized by the maximal possible distance (S1 Appendix Fig D) with overall distances being
715 17.4 to 19.6% from each other for D+ and D-, respectively. The relatively low distance (i.e., large
716 similarity) indicated that solutions lie within similar regions of the parameter space.

717 When identifying a dominating front, the large number of constraints resulted in every solution being
718 considered dominating. Therefore, the constraints were grouped by category and summed together to
719 reduce the dimensionality of the dominating front to four dimensions. The categories and the
720 corresponding objectives (based on the numbering from Table 3) are the following: Corticospinal wave
721 (1–16), spiking activity (17–26), synchrony (27–38), and well-behaved (39–51). The Pareto front is
722 visualized in S1 Appendix Fig E. The category error is plotted as a function of total error and showed that
723 corticospinal wave and baseline activity objectives were opposed. Generally, a solution that better
724 matched the experimentally-recorded corticospinal waves had a worse match with the desired baseline
725 activity.

726 Sensitivity Analysis between Model Parameters and Corticospinal Waves

727 The TVAT analysis investigated the synaptic weight and activation parameters for 42 total parameters
728 with 21 equally spaced values between 0 and the maximum boundary resulting in 861 unique
729 parameter-pairs with 441 values per pair. The total number of simulations for the sensitivity analysis
730 was 344,400. For each pair, the relationships between the two parameters and the amplitudes for each
731 corticospinal wave were approximated using linear regression with elastic net regularization and a third-
732 order polynomial model that included third-order interaction terms. Prior to the linear regression, the
733 corticospinal wave amplitudes were *standardized*, i.e., the mean was subtracted, and the variance
734 normalized to one. Because they were uniformly distributed across a grid, the parameters were
735 *normalized*, i.e., the minimum was subtracted, and the values divided by the parameter boundary range.
736 Regularization is a method of embedded feature selection that determines feature importance during

737 coefficient estimation and prevents overfitting. The optimal regularization parameters were determined
738 using 10-fold cross-validation. The open-source *scikit-learn* Python package was used to conduct the
739 regression and cross-validation [49].

740 The partial effect size of a parameter for a corticospinal wave was represented as the sum of the
741 absolute values of the coefficients of the polynomial models that involved the parameter. The total
742 effect size for a corticospinal wave was calculated as the sum of the effect sizes across all polynomial
743 models, i.e., across all pair-wise interactions, that included the parameter. Poor polynomial fits,
744 indicating that there may be little or no correlation between the parameters and the corticospinal wave
745 amplitude, were excluded from the summation. Only models with a coefficient of determination greater
746 than or equal to 0.5 were included.

747 Structural Analysis between Model Circuit and Corticospinal Wave Sensitivity

748 The cortical column circuit at the neuron population level can be represented as a weighted directed
749 graph with neuron types as nodes and connection between neuron types as edges. Given the effect sizes
750 revealed by the TVAT analysis, classifiers were used to identify any similarities in graph properties that
751 may exist to explain groupings of effect sizes, i.e., preferential versus non-preferential and corticospinal
752 wave preference. The goal was to identify the minimum set of features that would separate preferential
753 vs non-preferential nodes and then identify the corticospinal wave to which a preferential node had the
754 greatest effect.

755 Graph Metrics

756 Edge weights were specified using a variety of properties such as conduction delay and the log of the
757 connection probability. Because the relevant output of the network model was generated by the L5
758 PTNs, graph analysis was conducted using these neurons as a target or reference node. Graph analysis
759 was performed using the open-source *networkx* Python package [50]. All simple paths between a

760 starting node and the target node (L5 PTNs) were identified. Simple paths were defined as the sequence
761 of nodes between the start and target that do not include repeat nodes along the path. The total
762 conduction delay from a node to the target was computed as the sum of all conduction delays between
763 nodes along the simple path, including synaptic transmission delays (0.2 ms). The total connection
764 probability was computed as the sum of the logs of all connection probabilities between nodes along
765 the simple path. Averages and standard deviations were also computed for these metrics. The out-
766 degree (divergence), in-degree (convergence), and three centrality measures were calculated as well.
767 Finally, the overall functional effect of the simple path was computed by first determining whether the
768 simple path would have an overall excitatory effect (+1) or inhibitory effect (-1) on the L5 PTNs by
769 multiplying successive functional effects along the simple path. The functional effects of each simple
770 path were then weighted by the log of the path connection probability to compute the weighted
771 average used to represent the overall functional effect of a node to the L5 PTNs. A summary and
772 description of these metrics are in Table 5.

773 Training Classifiers

774 Two types of classifiers were used. Logistic regression was used to identify preferential vs non-
775 preferential nodes. Support vector classification (SVC) with a radial basis function was used to perform a
776 multiclass prediction to identify the corticospinal wave to which a preferential node had the greatest
777 effect [51]. Classification, cross-fold validation, and regularization were performed using the *scikit-learn*
778 Python package [49].

779 Input data consisted of the graph metrics described in Table 5. The inputs were *standardized*, i.e., the
780 means were removed, and the variance was normalized to one. This was necessary for regularization
781 during model estimation.

782 Due to the low numbers of samples for each class, the data was augmented by concatenating noisy
783 versions of the original data. Noise was drawn from a normal distribution with zero mean and a
784 standard deviation of 0.3, which represents 30% of the standard deviation of the standardized data.

785 Stratified 10-fold validation with 5 repeats was used to generate training and test sets for validation of
786 the models. Stratified k-fold validation was chosen to allow for a balanced sampling of classes. The
787 model performance was quantified using accuracy, computed as the number of true positives and true
788 negatives divided by the total number of predictions. This validation strategy was performed for all the
789 model evaluations described below.

790 Feature selection was performed using different methods for logistic regression versus SVC. Logistic
791 regression used an embedded method, Lasso regularization, to eliminate non-predictive features. Lasso
792 regularization minimizes the sum of the absolute value of all coefficients in addition to the mean
793 squared error during model estimation which can result in the elimination of features as their
794 coefficients drop to zero [52]. The weight of the Lasso regularization term was determined by grid-
795 search and cross-validation. The remaining features were then used with Ridge regularization to
796 perform the final classification. The weight of the Ridge regularization term was also determined by grid-
797 search and cross-validation.

798

799

800

801

802

803

804

Table 5. Description of graph metrics used to characterize the network.

Name	Description
Convergence	In-degree of nodes / number of connected presynaptic neuron types.
Divergence	Out-degree of nodes / number of connected postsynaptic neuron types.
Total Simple Paths	Total number of unique simple paths for a node to L5 PTN.
Shortest Path Delay	Conduction delay of shortest path from node to L5 PTN.
Average Path Delay	Average path delay of all simple paths from a node to L5 PTN.
Weighted Average Path Delay	Weighted average of path delay of all simple paths from a node to L5 PTN using the log of the connection probability of the simple paths as weights.
Standard Deviation Path Delay	Standard deviation of path delays of all simple paths from a node to L5 PTN.
Weighted Standard Deviation Path Delay	Weighted standard deviation of path delays of all simple paths from a node to L5 PTN using the log of the connection probability of the simple paths as weights.
Connection Probability of Shortest Path	Connection probability of shortest path from a node to L5 PTN.
Average Connection Probability (Log)	Average of the log of the connection probabilities of all simple paths from a node to L5 PTN.
Standard Deviation Connection Probability (Log)	Standard deviation of the log of the connection probabilities of all simple paths from a node to L5 PTN.
Functional Effect	Overall excitatory/inhibitory effect of node on L5 PTN. For each simple path the excitatory/inhibitory effect of a node on the next node was represented as a +1 or -1. The effects of successive nodes were multiplied.
Weighted Functional Effect	Weighted average of the functional effect using the log of the connection probability of the simple paths as weights.
Closeness Centrality	Reciprocal of the average distance of the shortest paths between the node and all other nodes.
Betweenness Centrality	Ratio of the total number of shortest paths in the network to the number of paths that include node but do not end on the node.
Harmonic Centrality	Sum of the reciprocal of the sum of the shortest path distances between the node and all other nodes.

805

806 SVC does not support Lasso regularization, so recursive feature elimination was performed to identify
807 the most predictive features [51]. During this procedure, an initial random sample of features was
808 chosen, and the model was trained and evaluated. Then, models were trained while leaving one feature
809 out. The model with the smallest decrease in performance indicated that the removed feature was not
810 predictive and was eliminated from the feature set. This process was repeated with the remaining
811 features until a single feature remained. Features were ranked by the number of times a feature was the
812 sole remainder after the elimination process and divided by the total number of times the feature was
813 included in the initial random sample. Recursive feature elimination was repeated 100 times with 5
814 random features chosen for each iteration. The regularization weight and the scale factor for the radial
815 basis functions were determined using grid search and cross-validation. The final classifier was trained
816 using Ridge regularization.

817 ACKNOWLEDGEMENTS

818 The authors thank Dr. Aman Aberra for preliminary work on the I-wave model, and the Duke Compute
819 Cluster team for computational support.

820 REFERENCES

- 821 1. Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, et al. Evidence-based
822 guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An
823 update (2014–2018). *Clinical Neurophysiology*. 2020 Feb 1;131(2):474–528.
- 824 2. Siebner HR, Funke K, Aberra AS, Antal A, Bestmann S, Chen R, et al. Transcranial magnetic
825 stimulation of the brain: What is stimulated? – A consensus and critical position paper. *Clinical
826 Neurophysiology*. 2022 Aug 1;140:59–97.

827 3. Nudo RJ, Masterton RB. Descending pathways to the spinal cord, III: Sites of origin of the
828 corticospinal tract. *Journal of Comparative Neurology*. 1990;296(4):559–83.

829 4. Di Lazzaro V, Ziemann U, Lemon RN. State of the art: Physiology of transcranial motor cortex
830 stimulation. *Brain Stimulation*. 2008;1(4):345–62.

831 5. Di Lazzaro V, Profice P, Ranieri F, Capone F, Dileone M, Oliviero A. I-wave origin and modulation.
832 *Brain Stimulation*. 2012;5(4):512–25.

833 6. Ziemann U. I-waves in motor cortex revisited. *Exp Brain Res*. 2020 Aug 1;238(7):1601–10.

834 7. Esser SK, Hill SL, Tononi G. Modeling the Effects of Transcranial Magnetic Stimulation on Cortical
835 Circuits. *Journal of Neurophysiology*. 2005 Jul;94(1):622–39.

836 8. Rusu CV, Murakami M, Ziemann U, Triesch J. A Model of TMS-induced I-waves in Motor Cortex.
837 *Brain Stimulation*. 2014 May;7(3):401–14.

838 9. Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M. Inhibition of inhibition in visual cortex: the logic of
839 connections between molecularly distinct interneurons. *Nat Neurosci*. 2013 Aug;16(8):1068–76.

840 10. Carnevale NT, Hines ML. The NEURON Book [Internet]. Cambridge: Cambridge University Press;
841 2006 [cited 2023 Aug 15]. Available from: <https://www.cambridge.org/core/books/neuron-book/7C8D9BD861D288E658BEB652F593F273>

843 11. Saltelli A. Sensitivity analysis: Could better methods be used? *Journal of Geophysical Research: Atmospheres*. 1999;104(D3):3789–93.

845 12. Saltelli A, Annoni P. How to avoid a perfunctory sensitivity analysis. *Environmental Modelling &*
846 *Software*. 2010 Dec 1;25(12):1508–17.

847 13. Ziemann U, Rothwell JC. I-Waves in Motor Cortex. *Journal of Clinical Neurophysiology*. 2000
848 Jul;17(4):397.

849 14. Woodforth IJ, Hicks RG, Crawford MR, Stephen JPH, Burke D. Depression of I Waves in
850 Corticospinal Volleys by Sevoflurane, Thiopental, and Propofol. *Anesthesia & Analgesia*. 1999
851 Nov;89(5):1182.

852 15. Di Lazzaro V, Oliviero A, Meglio M, Cioni B, Tamburini G, Tonali P, et al. Direct demonstration of
853 the effect of lorazepam on the excitability of the human motor cortex. *Clinical Neurophysiology*.
854 2000 May 1;111(5):794–9.

855 16. Di Lazzaro V, Rothwell J, Capogna M. Noninvasive Stimulation of the Human Brain: Activation of
856 Multiple Cortical Circuits. *Neuroscientist*. 2018 Jun 1;24(3):246–60.

857 17. Li B, Virtanen JP, Oeltermann A, Schwarz C, Giese MA, Ziemann U, et al. Lifting the veil on the
858 dynamics of neuronal activities evoked by transcranial magnetic stimulation. Rotenberg A, editor.
859 *eLife*. 2017 Nov 22;6:e30552.

860 18. Mueller JK, Grigsby EM, Prevosto V, Petraglia FW, Rao H, Deng ZD, et al. Simultaneous transcranial
861 magnetic stimulation and single-neuron recording in alert non-human primates. *Nat Neurosci*.
862 2014 Aug;17(8):1130–6.

863 19. Hao Y, Riehle A, Brochier TG. Mapping Horizontal Spread of Activity in Monkey Motor Cortex Using
864 Single Pulse Microstimulation. *Frontiers in Neural Circuits* [Internet]. 2016 [cited 2023 Aug 15];10.
865 Available from: <https://www.frontiersin.org/articles/10.3389/fncir.2016.00104>

866 20. Maier MA, Kirkwood PA, Brochier T, Lemon RN. Responses of single corticospinal neurons to
867 intracortical stimulation of primary motor and premotor cortex in the anesthetized macaque
868 monkey. *Journal of Neurophysiology*. 2013 Jun 15;109(12):2982–98.

869 21. Yun R, Mishler JH, Perlmutter SI, Rao RPN, Fetz EE. Responses of Cortical Neurons to Intracortical
870 Microstimulation in Awake Primates. *eNeuro* [Internet]. 2023 Apr 1 [cited 2023 Jul 3];10(4).
871 Available from: <https://www.eneuro.org/content/10/4/ENEURO.0336-22.2023>

872 22. Aberra AS, Peterchev AV, Grill WM. Biophysically realistic neuron models for simulation of cortical
873 stimulation. *J Neural Eng*. 2018 Oct;15(6):066023.

874 23. Di Lazzaro V, Rothwell JC. Corticospinal activity evoked and modulated by non-invasive stimulation
875 of the intact human motor cortex. *The Journal of Physiology*. 2014;592(19):4115–28.

876 24. Hooks BM, Mao T, Gutnisky DA, Yamawaki N, Svoboda K, Shepherd GMG. Organization of cortical
877 and thalamic input to pyramidal neurons in mouse motor cortex. *Journal of Neuroscience*. 2013
878 Jan 9;33(2):748–60.

879 25. Amassian VE, Stewart M, Quirk GJ, Rosenthal JL. Physiological basis of motor effects of a transient
880 stimulus to cerebral cortex. *Neurosurgery*. 1987 Jan 1;20(1):74–93.

881 26. Narayanan RT, Egger R, Johnson AS, Mansvelder HD, Sakmann B, de Kock CPJ, et al. Beyond
882 Columnar Organization: Cell Type- and Target Layer-Specific Principles of Horizontal Axon
883 Projection Patterns in Rat Vibrissal Cortex. *Cerebral Cortex*. 2015 Nov 1;25(11):4450–68.

884 27. Chadderton GL, Mohan A, Suter BA, Neymotin SA, Kerr CC, Francis JT, et al. Motor Cortex
885 Microcircuit Simulation Based on Brain Activity Mapping. *Neural Computation*. 2014 Jul
886 1;26(7):1239–62.

887 28. García-Cabezas MÁ, Barbas H. Area 4 has layer IV in adult primates. *European Journal of*
888 *Neuroscience*. 2014;39(11):1824–34.

889 29. Yamawaki N, Borges K, Suter BA, Harris KD, Shepherd GMG. A genuine layer 4 in motor cortex with
890 prototypical synaptic circuit connectivity. Nelson SB, editor. *eLife*. 2014 Dec 19;3:e05422.

891 30. Callaway EM, Dong HW, Ecker JR, Hawrylycz MJ, Huang ZJ, Lein ES, et al. A multimodal cell census
892 and atlas of the mammalian primary motor cortex. *Nature*. 2021 Oct 6;598(7879):86–102.

893 31. Dura-Bernal S, Neymotin SA, Suter BA, Dacre J, Moreira JVS, Urdapilleta E, et al. Multiscale model
894 of primary motor cortex circuits predicts *in vivo* cell-type-specific, behavioral state-dependent
895 dynamics. *Cell Reports*. 2023 Jun 27;42(6):112574.

896 32. Aberra AS, Wang B, Grill WM, Peterchev AV. Simulation of transcranial magnetic stimulation in
897 head model with morphologically-realistic cortical neurons. *Brain Stimulation*. 2020 Jan
898 1;13(1):175–89.

899 33. Ziemann U, Tergau F, Wischer S, Hildebrandt J, Paulus W. Pharmacological control of facilitatory I-
900 wave interaction in the human motor cortex. A paired transcranial magnetic stimulation study.
901 *Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control*. 1998
902 Aug 1;109(4):321–30.

903 34. Paulus W, Classen J, Cohen LG, Large CH, Di Lazzaro V, Nitsche M, et al. State of the art:
904 Pharmacologic effects on cortical excitability measures tested by transcranial magnetic
905 stimulation. *Brain Stimulation*. 2008 Jul 1;1(3):151–63.

906 35. Premoli I, Rivolta D, Espenhahn S, Castellanos N, Belardinelli P, Ziemann U, et al. Characterization
907 of GABAB-receptor mediated neurotransmission in the human cortex by paired-pulse TMS-EEG.
908 *NeuroImage*. 2014 Dec 1;103:152–62.

909 36. Yamashita T, Pala A, Pedrido L, Kremer Y, Welker E, Petersen CCH. Membrane Potential Dynamics
910 of Neocortical Projection Neurons Driving Target-Specific Signals. *Neuron*. 2013 Dec
911 18;80(6):1477–90.

912 37. Mountcastle VB. The columnar organization of the neocortex. *Brain*. 1997 Apr 1;120(4):701–22.

913 38. Wagstyl K, Larocque S, Cucurull G, Lepage C, Cohen JP, Bludau S, et al. BigBrain 3D atlas of cortical
914 layers: Cortical and laminar thickness gradients diverge in sensory and motor cortices. *PLOS
915 Biology*. 2020 Apr 3;18(4):e3000678.

916 39. Peters A. The Morphology of Minicolumns. In: Blatt GJ, editor. *The Neurochemical Basis of Autism: From Molecules to Minicolumns* [Internet]. Boston, MA: Springer US; 2010 [cited 2023 Jun 22]. p. 45–68. Available from: https://doi.org/10.1007/978-1-4419-1272-5_4

919 40. Favorov OV, Diamond ME. Demonstration of discrete place-defined columns—segregates—in the
920 cat SI. *Journal of Comparative Neurology*. 1990;298(1):97–112.

921 41. Muller L, Reynaud A, Chavane F, Destexhe A. The stimulus-evoked population response in visual
922 cortex of awake monkey is a propagating wave. *Nat Commun*. 2014 Apr 28;5(1):3675.

923 42. Houghton C, Kreuz T. On the efficient calculation of van Rossum distances. *Network: Computation
924 in Neural Systems*. 2012 Mar 1;23(1–2):48–58.

925 43. Satopaa V, Albrecht J, Irwin D, Raghavan B. Finding a “Kneedle” in a Haystack: Detecting Knee
926 Points in System Behavior. In: 2011 31st International Conference on Distributed Computing

927 Systems Workshops [Internet]. 2011 [cited 2023 Nov 16]. p. 166–71. Available from:
928 <https://ieeexplore.ieee.org/abstract/document/5961514>

929 44. Tonda A. *Inspyred: Bio-inspired algorithms in Python*. *Genet Program Evolvable Mach*. 2020 Jun
930 1;21(1):269–72.

931 45. Kucherenko S, Albrecht D, Saltelli A. *Exploring multi-dimensional spaces: a Comparison of Latin*
932 *Hypercube and Quasi Monte Carlo Sampling Techniques* [Internet]. arXiv; 2015 [cited 2023 Aug
933 15]. Available from: <http://arxiv.org/abs/1505.02350>

934 46. Gad AG. *Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review*. *Arch*
935 *Computat Methods Eng*. 2022 Aug 1;29(5):2531–61.

936 47. Xu G, Luo K, Jing G, Yu X, Ruan X, Song J. *On convergence analysis of multi-objective particle swarm*
937 *optimization algorithm*. *European Journal of Operational Research*. 2020 Oct 1;286(1):32–8.

938 48. Xu S, Rahmat-Samii Y. *Boundary Conditions in Particle Swarm Optimization Revisited*. *IEEE*
939 *Transactions on Antennas and Propagation*. 2007 Mar;55(3):760–5.

940 49. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. *Scikit-learn: Machine*
941 *Learning in Python*. *J Mach Learn Res*. 2011 Nov 1;12(null):2825–30.

942 50. Hagberg A, Swart PJ, Schult DA. *Exploring network structure, dynamics, and function using*
943 *NetworkX* [Internet]. Los Alamos National Laboratory (LANL), Los Alamos, NM (United States);
944 2008 Jan [cited 2023 Aug 15]. Report No.: LA-UR-08-05495; LA-UR-08-5495. Available from:
945 <https://www.osti.gov/biblio/960616>

946 51. Guyon I, Weston J, Barnhill S, Vapnik V. *Gene Selection for Cancer Classification using Support*
947 *Vector Machines*. *Machine Learning*. 2002 Jan 1;46(1):389–422.

948 52. Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models via
949 Coordinate Descent. *J Stat Softw.* 2010;33(1):1–22.

950

951

952

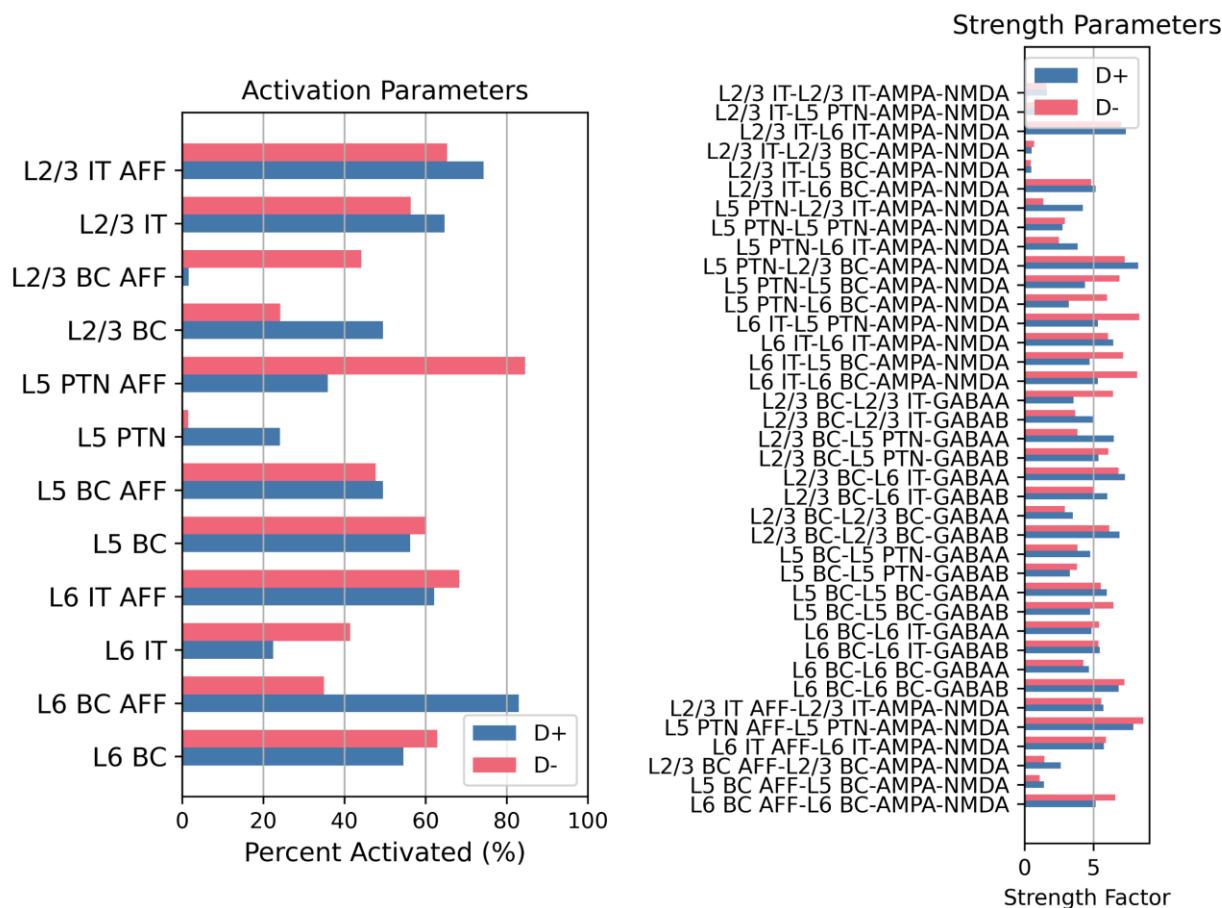
953

954

955

956 **S1 APPENDIX**

957 **Fig A**



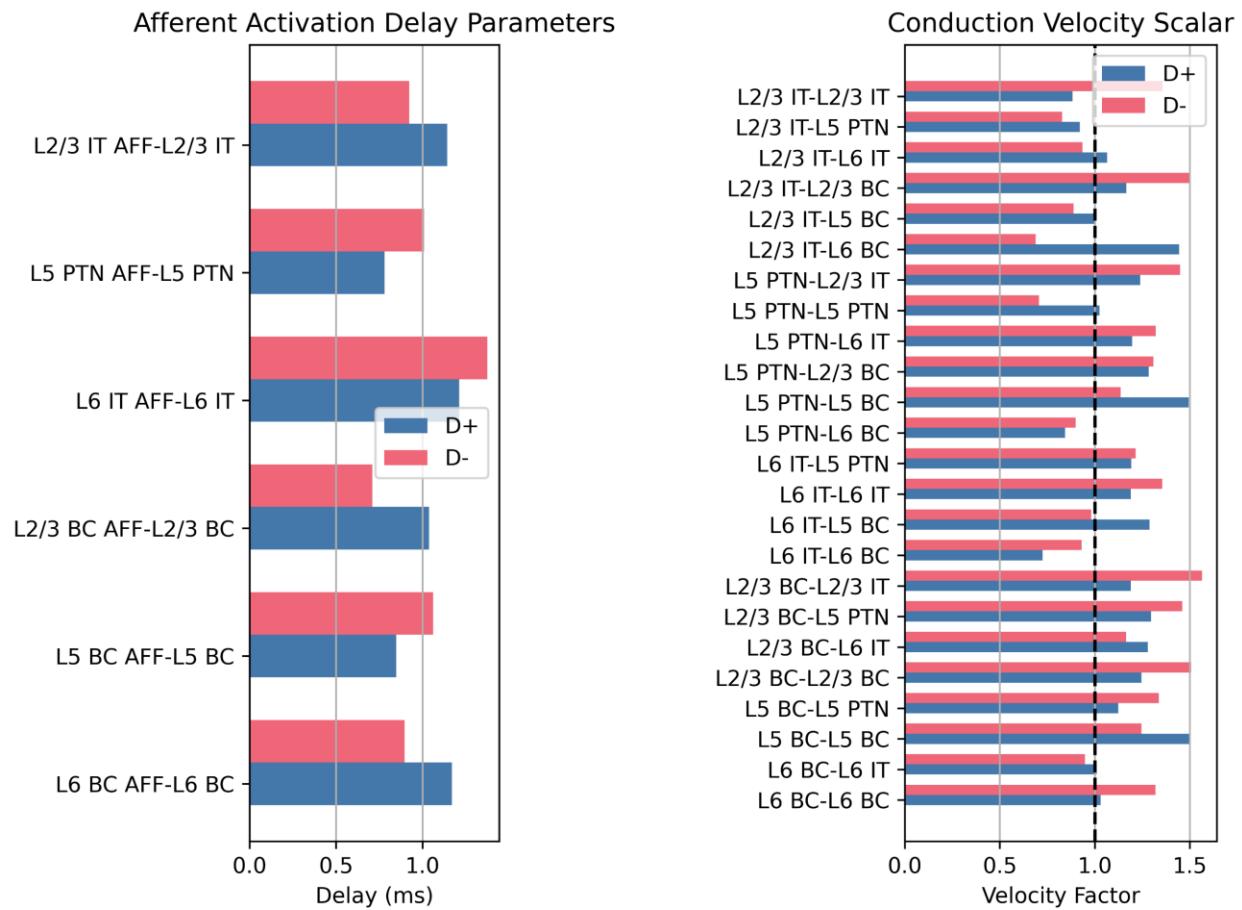
958

959 **Fig A. Activation and synaptic weight scalar parameters for best D+ and D- models.**

960 *IT: Intratelencephalic neuron. PTN: Pyramidal tract neuron. BC: Basket cell. AFF: Afferent.*

961

962 Fig B



963

964 **Fig B. Afferent activation delay and conduction velocity scalars for best D+ and D- models.**

965 *IT: Intratelencephalic neuron. PTN: Pyramidal tract neuron. BC: Basket cell. AFF: Afferent.*

966

967

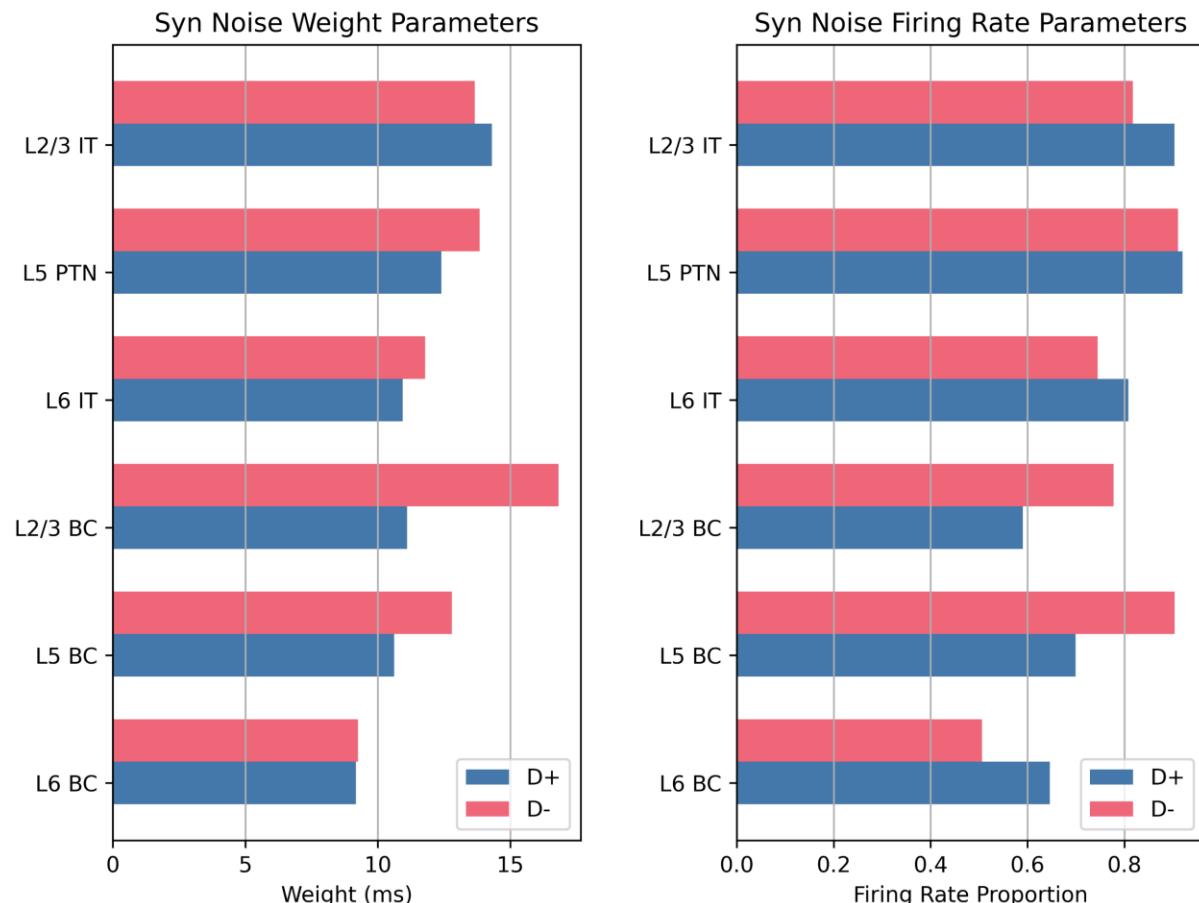
968

969

970

971 Fig C

972



973

974 **Fig C. Synaptic noise weight and synaptic noise firing rates for best D+ and D- models.**

975 *IT: Intratelencephalic neuron. PTN: Pyramidal tract neuron. BC: Basket cell. AFF: Afferent.*

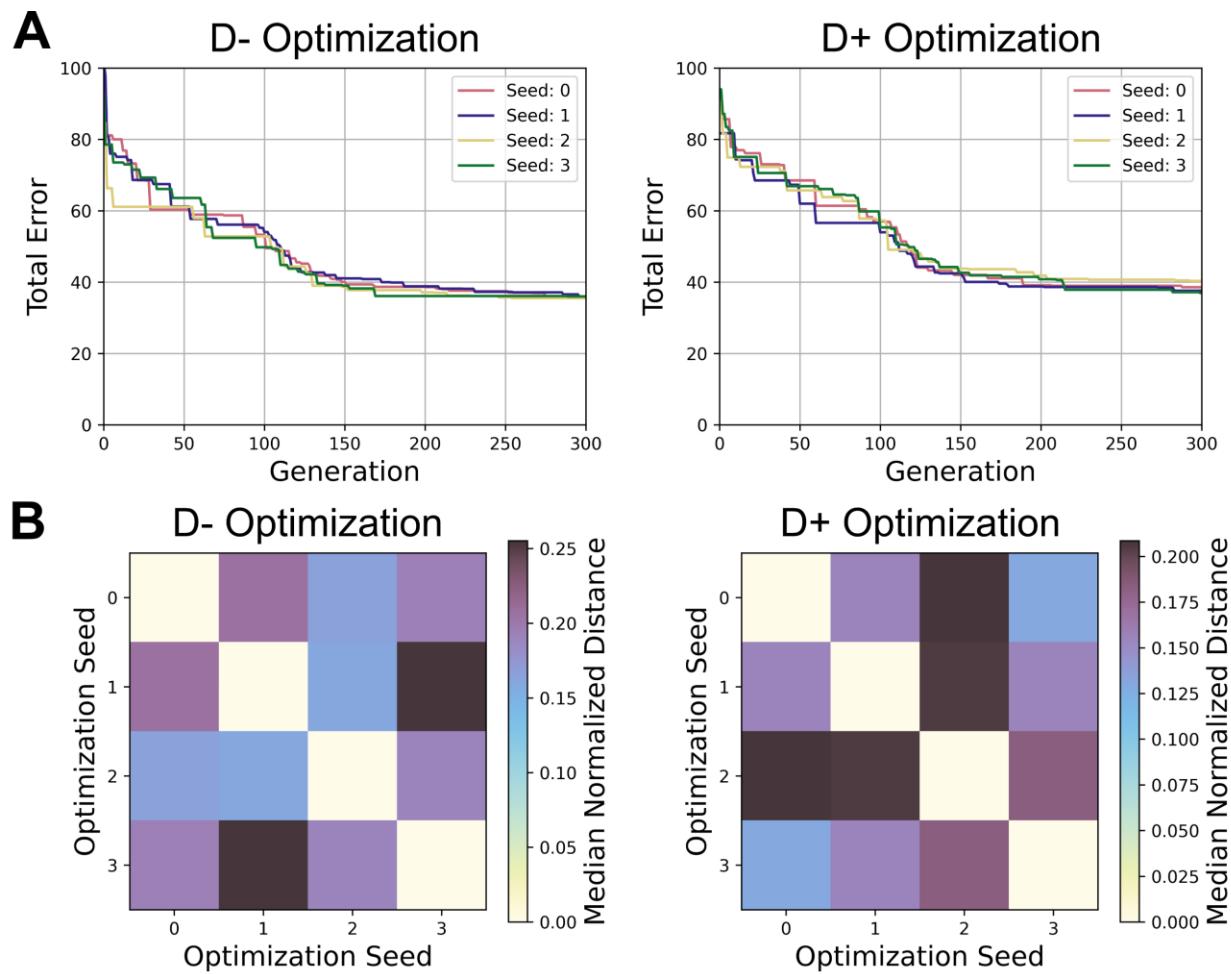
976

977

978

979

980 Fig D

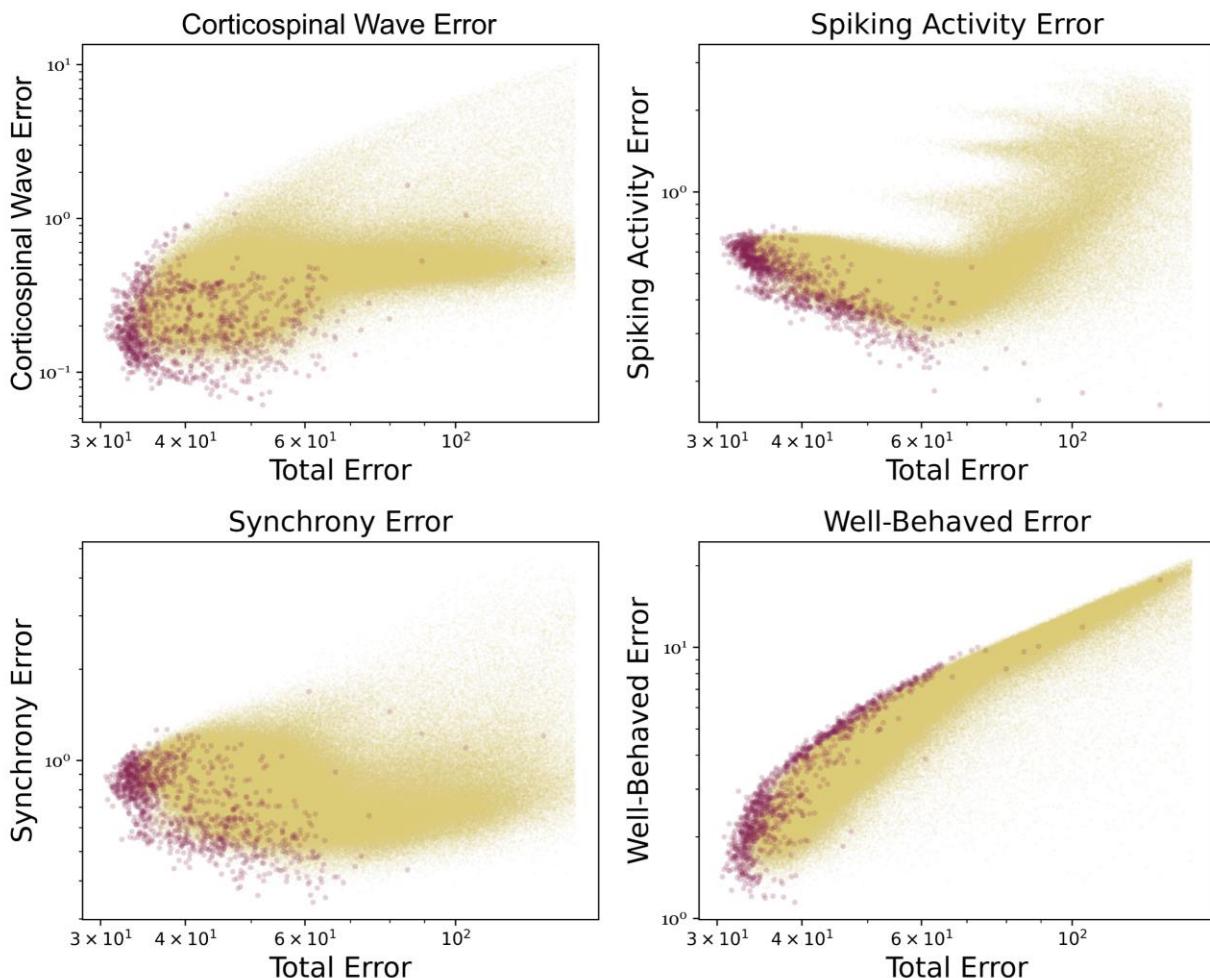


981

982 **Fig D. Characterizations of convergence from optimization.**

983 *A) The cumulative lowest total error is plotted as a function of optimization iteration. Four evolution*
984 *seeds were run for each responder type (D^+ and D^-). All seeds converged to errors of similar magnitude.*
985 *B) The normalized distances of the parameters of the best solutions for each optimization run. The*
986 *Euclidean distance of the best solutions was normalized by the maximum possible distance given the*
987 *bounds of the explored parameter space. The diagonals of the matrix are zero because they represent*
988 *the distance between a solution and itself. The overall normalized distances were 17.4 to 19.6% for D^+*
989 *and D^- , respectively.*

990 Fig E



991

992 **Fig E. Visualization of reduced pareto front.**

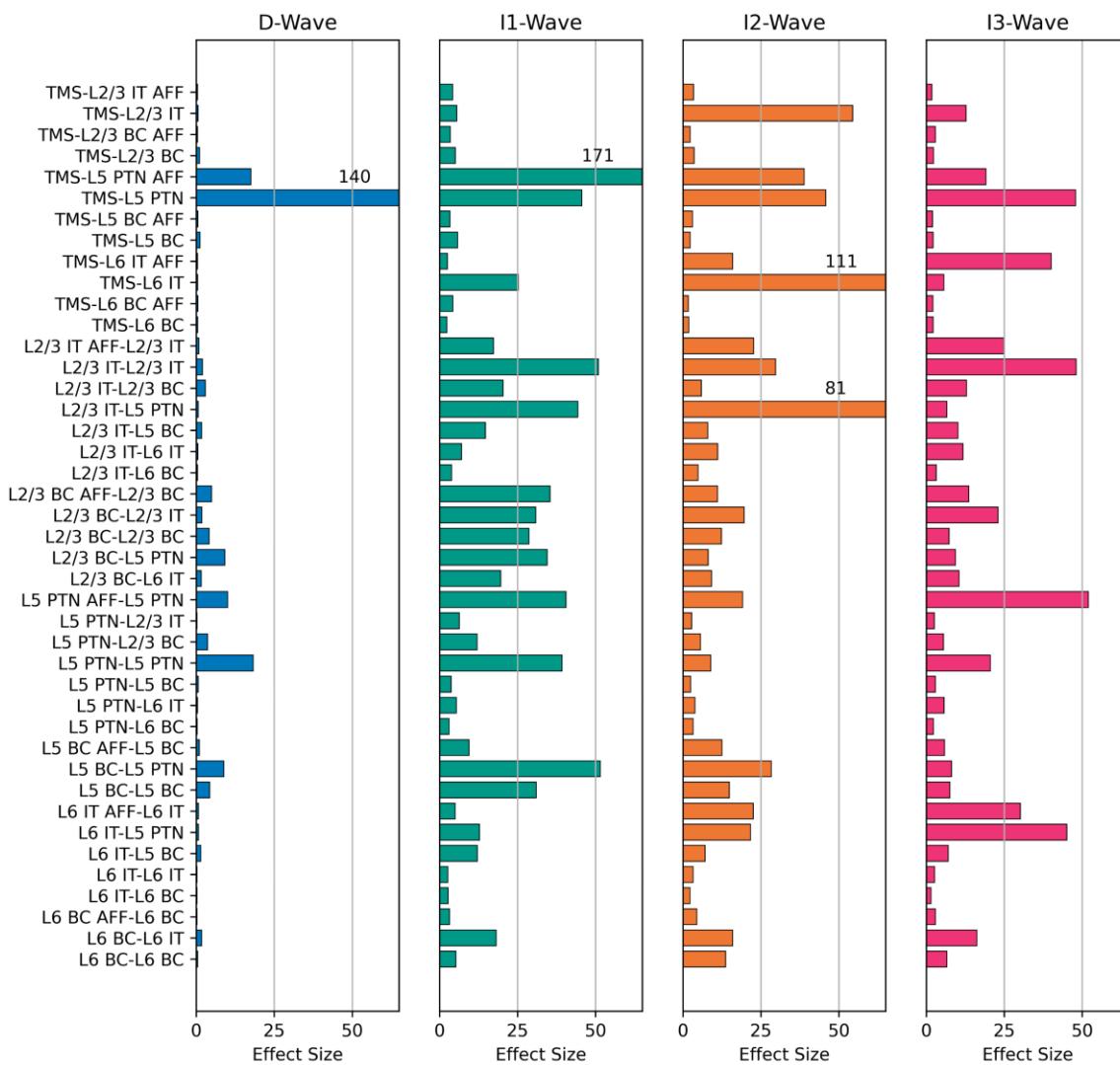
993 *Objectives were grouped into categories, and their combined error was plotted against the total error.*

994 *Red dots indicate particles that were pareto dominant, and yellow particles indicate the remaining*

995 *particles. The correlation between the category error and the total error is a representation of the pareto*

996 *front and how the category error changes as total error is minimized.*

997 **Fig F**

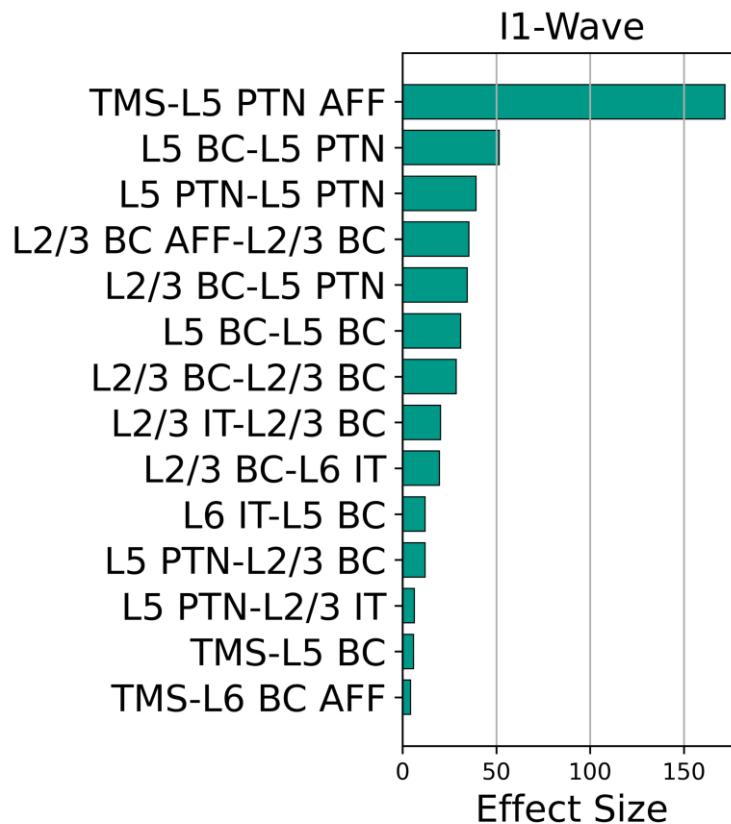


998

999 **Fig F. Effect sizes for all parameters and all waves.**

1000 *Effect size was calculated as the integrals of the absolute values of the partial derivatives of the*
 1001 *polynomial fits to the TVAT surfaces. Effect sizes were not normalized, and the x-axis maximum was*
 1002 *chosen to allow visualization of the smaller effect sizes. Effect sizes that are greater than the x-axis*
 1003 *maximum have their values listed above their corresponding bars. Y-axis labels are shared across*
 1004 *subplots. IT: Intratelencephalic neuron. PTN: Pyramidal tract neuron. BC: Basket cell. AFF: Afferent.*

1005 Fig G



1006

1007 **Fig G. Effect size ranking for all parameters that preferentially affected I1-wave amplitude.**

1008 *IT: Intratelencephalic neuron. PTN: Pyramidal tract neuron. BC: Basket cell. AFF: Afferent.*

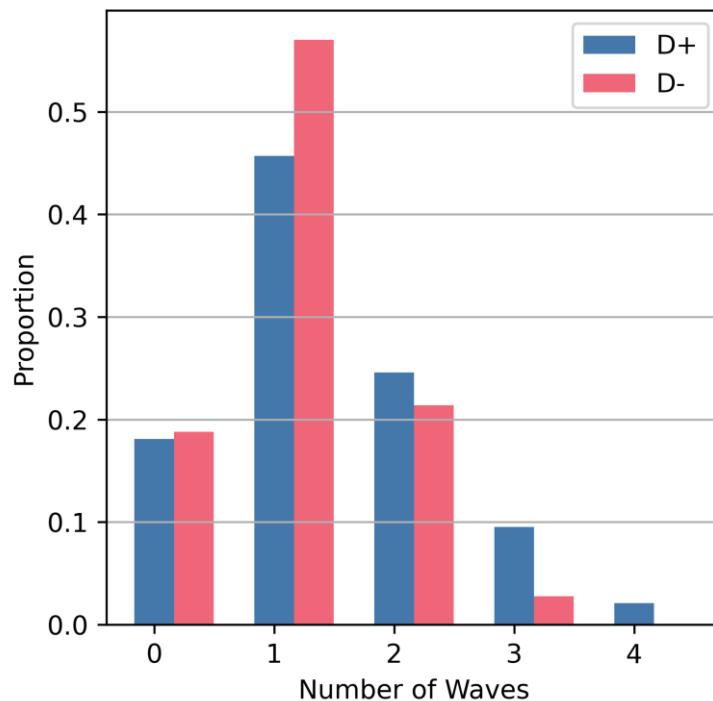
1009

1010

1011

1012

1013 Fig H



1014

1015 **Fig H. Histogram of number of waves for which L5 PTNs contributed a spike.**

1016 For each stimulus presentation, the spikes generated by each L5 PTN were divided based on the time
1017 windows for each corticospinal wave, and the total number of wave time windows during which spiking
1018 occurred was counted.

1019

1020

1021

1022

1023

1024

1025 **Table A**

1026 **Table A. List of Optimized Synaptic Weight Parameters**

Synaptic Weight Parameters

L2/3 IT to L2/3 IT (AMPAR/NMDAR)	L2/3 BC to L5 PTN (GABA _B R)
L2/3 IT to L5 PTN (AMPAR/NMDAR)	L2/3 BC to L6 IT (GABA _A R)
L2/3 IT to L6 IT (AMPAR/NMDAR)	L2/3 BC to L6 IT (GABA _B R)
L2/3 IT to L2/3 BC (AMPAR/NMDAR)	L2/3 BC to L2/3 BC (GABA _A R)
L2/3 IT to L5 BC (AMPAR/NMDAR)	L2/3 BC to L2/3 BC (GABA _B R)
L2/3 IT to L6 BC (AMPAR/NMDAR)	L5 BC to L5 PTN (GABA _A R)
L5 PTN to L2/3 IT (AMPAR/NMDAR)	L5 BC to L5 PTN (GABA _B R)
L5 PTN to L5 PTN (AMPAR/NMDAR)	L5 BC to L5 BC (GABA _A R)
L5 PTN to L6 IT (AMPAR/NMDAR)	L5 BC to L5 BC (GABA _B R)
L5 PTN to L2/3 BC (AMPAR/NMDAR)	L6 BC to L6 IT (GABA _A R)
L5 PTN to L5 BC (AMPAR/NMDAR)	L6 BC to L6 IT (GABA _B R)
L5 PTN to L6 BC (AMPAR/NMDAR)	L6 BC to L6 BC (GABA _A R)
L6 IT to L5 PTN (AMPAR/NMDAR)	L6 BC to L6 BC (GABA _B R)
L6 IT to L6 IT (AMPAR/NMDAR)	L2/3 IT AFF to L2/3 IT (AMPAR/NMDAR)
L6 IT to L5 BC (AMPAR/NMDAR)	L2/3 BC AFF to L2/3 BC (AMPAR/NMDAR)
L6 IT to L6 BC (AMPAR/NMDAR)	L5 PTN AFF to L5 PTN (AMPAR/NMDAR)
L2/3 BC to L2/3 IT (GABA _A R)	L5 BC AFF to L5 BC (AMPAR/NMDAR)
L2/3 BC to L2/3 IT (GABA _B R)	L6 IT AFF to L6 IT (AMPAR/NMDAR)
L2/3 BC to L5 PTN (GABA _A R)	L6 BC AFF to L6 BC (AMPAR/NMDAR)

1027

1028 *IT: Intratelencephalic neuron. PTN: Pyramidal tract neuron. BC: Basket cell. AFF: Afferent.*

1029

1030

1031

1032 **Table B**

1033 **Table B. List of Optimized Delay, Activation, and Noise Parameters**

Parameters

Conduction velocity scalar L2/3 IT to L2/3 IT	Activation propagation delay stdev. L2/3 IT AFF
Conduction velocity scalar L2/3 IT to L5 PTN	Activation propagation delay stdev. L2/3 BC AFF
Conduction velocity scalar L2/3 IT to L6 IT	Activation propagation delay stdev. L5 PTN AFF
Conduction velocity scalar L2/3 IT to L2/3 BC	Activation propagation delay stdev. L5 BC AFF
Conduction velocity scalar L2/3 IT to L5 BC	Activation propagation delay stdev. L6 IT AFF
Conduction velocity scalar L2/3 IT to L6 BC	Activation propagation delay stdev. L6 BC AFF
Conduction velocity scalar L5 PTN to L2/3 IT	Proportion activated L2/3 IT
Conduction velocity scalar L5 PTN to L5 PTN	Proportion activated L2/3 BC
Conduction velocity scalar L5 PTN to L6 IT	Proportion activated L5 PTN
Conduction velocity scalar L5 PTN to L2/3 BC	Proportion activated L5 BC
Conduction velocity scalar L5 PTN to L5 BC	Proportion activated L6 IT
Conduction velocity scalar L5 PTN to L6 BC	Proportion activated L6 BC
Conduction velocity scalar L6 IT to L5 PTN	Proportion activated L2/3 IT AFF
Conduction velocity scalar L6 IT to L6 IT	Proportion activated L2/3 BC AFF
Conduction velocity scalar L6 IT to L5 BC	Proportion activated L5 PTN AFF
Conduction velocity scalar L6 IT to L6 BC	Proportion activated L5 BC AFF
Conduction velocity scalar L2/3 BC to L2/3 IT	Proportion activated L6 IT AFF
Conduction velocity scalar L2/3 BC to L5 PTN	Proportion activated L6 BC AFF
Conduction velocity scalar L2/3 BC to L6 IT	Noise weight L2/3 IT
Conduction velocity scalar L2/3 BC to L2/3 BC	Noise weight L2/3 BC
Conduction velocity scalar L5 BC to L5 PTN	Noise weight L5 PTN
Conduction velocity scalar L5 BC to L5 BC	Noise weight L5 BC
Conduction velocity scalar L6 BC to L6 IT	Noise weight L6 IT
Conduction velocity scalar L6 BC to L6 BC	Noise weight L6 BC
Activation propagation delay L2/3 IT AFF	Noise rate L2/3 IT
Activation propagation delay mean L2/3 BC AFF	Noise rate L2/3 BC

Activation propagation delay mean L5 PTN AFF	Noise rate L5 PTN
Activation propagation delay mean L5 BC AFF	Noise rate L5 BC
Activation propagation delay mean L6 IT AFF	Noise rate L6 IT
Activation propagation delay mean L6 BC AFF	Noise rate L6 BC

1034

1035 *IT: Intratelencephalic neuron. PTN: Pyramidal tract neuron. BC: Basket cell. AFF: Afferent.*

1036

1037