bioRxiv preprint doi: https://doi.org/10.1101/2024.03.05.583465; this version posted March 5, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

A complete mitochondrial genome of a Roman-era Plasmodium

falciparum

Alejandro Llanos-Lizcano “**7, Michelle Himmerle'?*’, Alessandra Sperduti*®, Susanna
Sawyer"?, Brina Zagorc'?, Kadir Toykan Ozdogan®, Meriam Guellil %, Olivia Cheronet'?,
Martin Kuhlwilm'?, Ron Pinhasi***, Pere Gelabert>%*

! Department of Evolutionary Anthropology, University of Vienna, Austria
> Human Evolution and Archeological Sciences (HEAS), University of Vienna, Austria
3Facultad de Quimica y Farmacia, Universidad del Atlantico (Barranquilla, Colombia)

* Museo delle Civilta, Roma, Italia

*Dipartimento di Archeologia, Asia, Africa e Mediterraneo, Universita L'Orientale, Napoli

[talia

®Department of History and Art History, Utrecht University, Utrecht, Netherlands

"These authors contributed equally to this work

*Correspondence to: pere.gelabert@univie.ac.at, ron.pinhasi@univie.ac.at



mailto:pere.gelabert@univie.ac.at
mailto:ron.pinhasi@univie.ac.at
https://doi.org/10.1101/2024.03.05.583465
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.05.583465; this version posted March 5, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Summary

Malaria has historically been one of the leading infection-related causes of death in
human populations. To this day, it continues to pose a significant public health threat in
African countries, particularly among children. Humans are affected by five Plasmodium
species, with Plasmodium falciparum being the most lethal. The study of pathogenic
DNA from ancient human remains has been vital in understanding the origin, evolution,
and virulence of human-infecting pathogens. However, there have been no complete
pre-20th century mitochondrial DNA (mtDNA) or genomic sequences of Plasmodium
falciparum reported to date. This gap in knowledge makes it difficult to understand the
genetic dynamics of this pathogen in the past. The difficulty in identifying ancient
malaria cases through bioarchaeology and the infrequent presence of Plasmodium DNA
in ancient bones contribute to these limitations. Here, we present the first complete
mtDNA genome of P. falciparum recovered from an archaeological skeleton (a 2™
century CE Roman individual from Italy). The study of the 43-fold mtDNA genome
supports the hypothesis of an Indian origin for P. falciparum in Europe and provides
evidence for the genetic continuity of this lineage over the past 2,000 years. Additionally,
our research highlights that extensive sampling may be necessary for malaria screening
to gain insights into the evolution of this vector-borne disease from archaeological

samples.
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Main

Malaria is an infectious disease caused by various Plasmodium species. Among those
affecting humans, Plasmodium vivax has the broadest distribution, while Plasmodium
falciparum is responsible for the majority of malaria-associated deaths. Currently,
malaria's geographic distribution predominantly spans warmer climates near the
equator, covering Africa, parts of the Middle East, Southeast Asia, China, and the
Americas. Due to its extensive reach and severity, malaria remains one of the most
significant health threats to humans. It is estimated that in 2016, approximately 455,000
people died from malaria, with 91% of these deaths occurring in Africa !. Both P, vivax
and P, falciparum are believed to have originated in Africa around 50,000-60,000 years
ago*® and spread worldwide with complex patterns of migration, probably following
human migrations**, Into the 20™ century, malaria was widespread worldwide with its
widest known geographical distribution, including southern and northern Europe and

the USA>®.

It has been hypothesised that both P, vivax and P. falciparum may have reached Europe
during the Neolithic, about 8,500 years ago, due to a combination of favourable
parameters, including climatic conditions, increased human population densities, and
the presence of a capable Anopheles vector species’. However, this claim lacks
archaeological or genetic evidence and remains contested®. Nevertheless, there is
consensus that Plasmodium species have been present in Europe since at least the
Roman Imperial period, particularly around the Mediterranean shores of the Roman
Empire, coinciding with endemic areas of Anopheles spp—endemic areas’. Scholars
addressing the effects of this endemic disease on societies in antiquity have stressed the
dramatic political and economic consequences of malaria, an issue sometimes neglected
by historiography®. Malaria remained endemic in Europe until the 1970s, extending
from the Baltic Sea to the Mediterranean’. The lack of ancient malarial genomes,

however, leaves the initial spread of malaria to Europe and its origin unclear.

The identification and sequencing of ancient malaria strains present several challenges.
Firstly, osteological lesions are not indicative of infection, and archival records
confirming infection are often missing from archaeological skeletal collections. As a

result, the detection of malaria, similar to HBV and other pathogens, relies on
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indiscriminate sampling of individuals. Secondly, the success in recovering ancient
Plasmodium genomes from human remains is contingent on the survival of Plasmodium
DNA in bone and dental tissues. Some studies have suggested the presence of P
falciparum DNA in ancient individuals, such as a 5 century CE infant from Lugnano in
Teverina, Italy'’, and in ancient Egyptian mummies'’. However, these studies fell short of
providing definitive evidence of the pathogens, a gap that next-generation sequencing
techniques can now address. A recent study comparing the reliability of antigen
detection and DNA sequencing in identifying pathogens in ancient skeletal remains
found that, despite a limited sample size, paleogenomics methods are the most
dependable for this purpose'?*. Microscopy remains an alternative for mummified

tissues™®.

Currently, only two sequences from ancient Plasmodium strains have been identified.
The first is a complete mitochondrial genome from a mid-20™ century CE individual
from Spain (Ebro-1944), closely related to contemporary Indian strains'®*® This
individual had a co-infection of P. vivax and P. falciparum, a common occurrence in
regions where both species are endemic'®. The genetic similarity between the Spanish
sample and Indian strains lends support to the hypothesis of a spread of P. falciparum
from Asia to Europe, possibly during ancient times. The second sequence is a
low-coverage partial genome obtained from two individuals in Italy, LV13 (Velia) and
LG20 (Vagnari), dated to the 152" century CE. These sequences are the oldest evidence
of P, falciparum presence to date and the only pre-20th Century genetic data available®.
The combined data from these individuals covers 50.8% of the 5,967 bp P, falciparum
mitochondrial genome. However, due to the low coverage, it is challenging to
differentiate between DNA damage, sequencing errors, and actual single nucleotide
polymorphisms (SNPs) in these genomes. Thus, while these partial sequences provide
initial evidence for the phylogenetic positioning of ancient European P falciparum
strains within a modern clade, they lack the comprehensive coverage necessary for

high-resolution phylogenetic analysis?’.

Here, we introduce the first complete mitochondrial genome sequence (43-fold
coverage) of Plasmodium falciparum from the Roman era, derived from an individual

known as Velia-186 (LV13), previously confirmed to be infected with the pathogen?.
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In an initial screening, we produced sequencing libraries from both teeth and parts of
the femur of individual Velia-186 (Velia, Porta Marina necropolis, I-II cent. CE) .We
targeted teeth based on evidence that other pathogens are well-preserved in dental
tissues?’ and the femoral diaphysis and head, given that P falciparum gametocytes
commonly mature in human bone marrow? As one of the libraries yielded just over
100 unique reads for P. falciparum, we decided to increase the efforts for recovering
more DNA. For that purpose, 38 DNA libraries from seven teeth were generated by
sampling at least two roots per tooth (see Supp. Table S1). The libraries were enriched
with in-solution baits covering both P. falciparum and P. vivax mitochondrial genomes
and sequenced on an Illumina NextSeq 550, generating paired-end reads with a length
of 150 bp. After preprocessing, quality control, and collapsing, 946 million, averaging 22
million reads per library (standard deviation (SD) = 1.167 million), were recovered, and
the data was subsequently merged. To assess whether the recovered reads originated
from a co-infection of P. falciparum and P. vivax, we performed competitive mapping,
which maps reads to different reference genomes simultaneously to ascertain to which
genome the read fits best. Competitive mappings for P, falciparum and P. vivax resulted
in 33.66-fold (Fig. 1C, Table S1) and 1.75-fold (Fig. 1C, Table S1) depth of coverage,
respectively, indicating that the vast majority of reads stem from P. falciparum and not P
vivax. We then performed comparative mapping, which maps to each genome
individually to obtain the coverage per species. This mapping resulted in a mean depth
of 21.61 for P. vivax. However, only 22% of the genome has coverage due to uneven
mapping, which indicates mismapping. On the other hand, the mapping to P. falciparum
shows an even distribution of coverage with an average depth of 43.67-fold. (Fig. 1C,
Table S1). Based on these results, we deduce that the Velia-186 individual was only
infected with P, falciparum and exclude the possibility of a co-infection with P, vivax as in
Ebro-1944. Hence, below, we focus on reads mapped to the P falciparum mtDNA
genome. Additionally, we inspected misincorporation patterns characteristic of ancient
DNA, finding a clear deamination pattern in both 5 (22%) and 3’ (18%) ends,
corroborating an ancient origin of the sequencing data (Fig. 1C). Furthermore, the
read-length distribution shows the typical small fragment lengths associated with

ancient DNA (Supp. Table S1).
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In our study, following the identification of a solitary P. falciparum infection, we
proceeded to analyze the P. falciparum DNA across various sequencing libraries. This
analysis was centred on aligned reads with mapping scores above 30 (refer to Supp.
Table S1). Notably, we found no reads aligning to P. falciparum on the external surfaces
of the first right inferior premolar nor in the femoral diaphysis or head (Supp. Table S1).
On average, each of the libraries from the seven teeth produced 108 reads (with a
standard deviation of 180 across all 38 libraries). Intriguingly, a mere seven out of the

38 libraries contributed to 72% of the unique fragments (see Fig. 1B).

To explore any potential correlation between the dental samples and their respective
sequencing yields, we conducted an analysis but found no significant correlation (R* =
0.07 and p = 0.65). Further, considering the non-normal distribution of reads, we
investigated whether there was greater diversity within the teeth samples compared to
between them. This was assessed using a Kruskal-Wallis test (x2(6) = 11.06, p = 0.08),
which revealed no significant differences in medians, suggesting homogeneity across the

dental samples.

These findings underscore a considerable intra-individual variation in the presence of
Plasmodium within a single tooth. This variation implies that for effective pathogen
sampling, a strategy encompassing multiple samples from an individual might be more

optimal than relying on a single sample.
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Figure 1: (A) Velia-186 skull (male 20-25 years old). Photo by the Museum of Civilizations. (B)
The number of unique reads mapping to the reference genome K1 [NC_037526] was
recovered from each sequencing library. The red line denotes the average amount of reads
recovered per library. Samples 2, 3 (Upper right second molar), and 8 (Lower right first
molar) contribute the majority of reads. (C) Mapping plots to both P. vivax and P
falciparum. Reads with an MQ of or above 30 are depicted in green. The coverage is shown
across the whole mitochondrial genome. The bar plot on the right depicts the edit distance

and the percentage of C -> T mutations at the 5'end and the G -> A mutations at the 3’end.

We combined the 5,458 mapped reads from all seven teeth, which gives us a
mitochondrial genome of P. falciparum with an average depth of 43-fold. We used these
reads to generate a consensus sequence with ANGSD (version 0.941) and obtained a

mitochondrial genome with 99.1% of the sequence covered. The consensus sequence
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has three gaps with a size of 59 (858-917), 20 (1151-1171) and 9 (3495-3504) base
pairs. In a previous study on the same individual, based on only a few sequenced
fragments and low depth of coverage, Marciniak et al. 2016 reported 21 mutations
between the ancient genome and the mitochondrial P. falciparum reference genome. The
SNPs in our consensus sequence were inspected individually in IGV (v2_16.0) to verify
and validate their presence. Our high-coverage genome consensus sequence has seven
mutations compared to the reference strain mitochondrial genome. When comparing
our high-coverage calling with the previously reported mutations in LV-132?° we could
only verify two of the previously reported mutations (2763, C > T; 3938, A > T) while
adding five well-supported ones (74, A > T; 276 G > A; 725,C>T; 772, T >(C; 2172, T >
C), all supported by at least ten reads (see Supp. Table S2). The previously reported
higher number of mutations is probably a result of the low coverage of degraded DNA.
Four of the seven mutations are located in coding regions of the mtDNA (Supp. Table
S2). However, none of these is non-synonymous using the Apollo® annotation tool
accessed through PlasmoDB?*. More details about the mutations are presented in

Supplementary Table S2.

To elucidate how our P, falciparum consensus sequence compares to other P, falciparum
genomes, we downloaded 339 mitochondrial genomes of P falciparum strains from
NCBI, representing the entire present-day diversity of P falciparum. (see Supp. Table
S3). First, we observed that only two substitutions, at positions 2172 (T > C) and 3938
(A > T), were not present in any P, falciparum strain of the dataset. Next, we performed a
maximum likelihood tree using a multiple sequence alignment, including our ancient
consensus sequence (n = 340). Although some clades cluster geographically, we
observed that the current mtDNA genetic diversity does not exclusively reflect a
geographical distribution, as previously reported #. In the phylogenetic tree, Velia-186
clusters exclusively with strains currently found in India with 95 bootstrap support.
(Fig. 2, Supp. Fig. 1). Out of the seven SNPs described above, mutations 276 and 2763
are observed in the present-day Indian strains from different locations in India?!, which
supports the clustering of the Velia-186 sequence close to the Indian strains. The SNP at
position 725 (C>T), combined with the 276 and 2763 mutations, is characteristic of the
Indian subclade called Pflndia, described by Tyagi et al., 2014 2°. These three defining

mutations also exist in Ebro-1944, indicating genetic similarity between European
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samples. As this combination of SNPs is also evident in P. falciparum-like pathogens
infecting monkeys, it is suggested to be the missing link between animal- and

human-infecting parasites®®*.

Our findings lend further credence to the hypothesis proposed by de-Dios et al., 2019,
regarding the Asian origin of P falciparum in Europe during ancient times. This
hypothesis suggests that the parasite might have disseminated across Europe during the
Achaemenid Empire and the subsequent Hellenistic period, propelled by the extensive
movement of goods and people from various Asian regions to Europe. Remarkably,
despite the Velia-186 mitochondrial genome originating from an individual nearly two
millennia old, its sequence demonstrates a close phylogenetic relationship with the
Ebro-1944 P falciparum mitochondrial genome from 1940s Spain. This connection
implies a genetic continuity of the parasite in Europe over the last 2000 years.
Additionally, the partial nuclear data from the Ebro-1944 sample indicated an affinity
with Asian strains, as previously suggested by the mtDNA'®'8, However, since nuclear
data from Velia-186 has not yet been obtained, it raises the intriguing question of
whether the nuclear genome of the Velia-186 strain would similarly exhibit an affinity

with Asian strains.
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Figure 2: P, falciparum mtDNA maximum likelihood phylogeny. It is observable that the
P falciparum from Velia-186 in red clusters with Indian strains and clusters close to

Ebro-1944 in blue. The tree was visualised with TreeViewer *. We present an unrooted

phylogeny without branch lengths. Numbers represent bootstrap values.

Author Contributions

P. G. conceptualised the study. A. S. sampled and provided archeo-anthropological
context, A. L-L, O. C and S. S. performed the experiments, P. G., M. G., A. L-L., and M. H.

analysed the data, and P. G., A. L-L.,, R. B, A. S, M. K, M. G, S.S. and M. H. wrote the text with
inputs from all collaborators.

Acknowledgements


https://paperpile.com/c/jZTdTM/heNp
https://doi.org/10.1101/2024.03.05.583465
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.05.583465; this version posted March 5, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

The study was funded through FWF Principal Investigator grant P-36433 and
INFRAVEC ISID_2019 to P. G. Alejandro Llanos-Lizcano was funded by Colfuturo
(Fundacién para el futuro de Colombia) during his MSc. This project has been funded by
the Vienna Science and Technology Fund (WWTF) [10.47379/VRG20001] and by the
Austrian Science Fund (FWF) [FW547002] to M.K.
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Key resources table

REAGENT or RESOURCE SOURCE

Biological Samples

Velia_gr. 186 Lower premolar left 1 Museo della Civilta
Velia_gr. 186 Upper molar right 2 Museo della Civilta
Velia_gr. 186 Upper molar left 1 Museo della Civilta
Velia_gr. 186 Lower molar left 2 Museo della Civilta
Velia_gr. 186 Upper molar right 1 Museo della Civilta
Velia_gr. 186 Lower molar left 3 Museo della Civilta
Velia_gr. 186 Lower molar right 1 Museo della Civilta
Velia_gr. 186 Head of the femur Museo della Civilta

Velia_gr. 186 Distal epiphysis of Femur (Left) | Museo della Civilta

Velia_gr. 186 Lower premolar (Left) (Cavity) Museo della Civilta

Velia_gr. 186 Surface of the root of the lower

premolar Museo della Civilta
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Roman individual
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Samtools 1.9 31

Picard Tools 3.1.1 32
aDNA-BAMplotter 33
ANGSD 0.941 34
IGV 2.16.1 35
MAFFT v7.520 3
1QTree2 2.2.6 37

38

Haplogrep 3.2.2.1
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Questions regarding further information on materials, datasets, and protocols should be

directed to and will be fulfilled by the Lead Contact, Pere Gelabert
(pere.gelabert@univie.ac.at).

Materials availability

The raw genomic data used in all the analyses can be accessed at the European

Nucleotide Archive (ENA) under the accession number: PRJEB72667.
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Sequencing data and the filtered sequences are available at the European Nucleotide
Archive (ENA) under the accession number: PRJEB72667. All code used in this study
and other previously published genomic data is available at the sources referenced in

the key resource table.

Method Details

Archeological context

We sampled seven dental pieces from Individual Velia-186. Velia is located on a
peninsula on the Tyrrhenian coast 112 km southeast of Naples in the region of
Campania and was an important port during Roman times. Several bioarchaeological

analyses have been carried out on individuals from this cemetery **-*3

,and P, falciparum
0 was identified in the individual we selected for downstream analyses. This sample is
from the 1%-2"* centuries CE.

Velia is located on a peninsula on the Tyrrhenian coast 112 km southeast of Naples and
was incorporated into the Roman territory in the IIl century. BCE became a port city
utilised for the shipment of goods, boat maintenance, fish processing, and arboriculture.
The subsistence was also provided by cultivations in the hinterland and well-watered
intramural areas. The cemetery of Porta Marina (I-II cent. CE) was investigated by
Fiammenghi (2003) and led to the identification of approximately 330 burials (mostly
inhumations). The human skeletal material is entrusted for anthropological study to the
Bioarchaeology Service of the Museum of Civilizations based in Rome to reconstruct the
funerary rituals and describe the demographic and bio-social characteristics of the
ancient inhabitants of Velia within an interpretative framework guided by
historical-archaeological evidence. The analyses, still in progress, have involved various
aspects, such as sex and age composition of sample *3, health status ***°, and prevalent

39,40
)

working activities. ***¢, diet */, migration and individual mobility patterns and

dental anomalies *®

Experimental model and subject details
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Velia-186 is represented by a complete and well-preserved skeleton, lacking only small
portions of the skull, part of the scapular blades, and some hand and foot elements. The
right iliac fossa presents a large green stain from a bronze object that came into contact
with the bone after the soft tissue decomposition. The morphological and morphometric
analyses led to a diagnosis of a young adult male (20-25 years). The values of oxygen
and strontium isotopes indicate that the individual was likely born and raised in Velia
3940 The skeleton shows a robust morphology with mildly developed muscle
attachments. The estimated living height (by Pearson regression formulas on the femur
maximum length) is 166.9 cm, slightly above the average of the VELIA male series
(164.7+4.8 cm). The distal segment of the diaphysis of the right femur shows evidence
of a healed trauma. The direction of the main axis of the shaft is unaltered, but its medial
surface presents a slight deformation and thickening corresponding to the callus
formation. Velia-186 shows developmental anomalies: retention of the metopic suture;
unfused scapular acromion (right side;); bipartite rib (left side); bipartite right patella.
The individual presents cribra orbitalia on both orbital roofs. The lesions (Type 3,
according to '*) are in a remodelling phase.

The teeth have moderate wear, with small patches of dentine exposure on the anterior
dentition and on the first molars (Stage 3-4) *. The first mandibular left molar was lost
antemortem, followed by alveolar bone remodelling and complete filling of the roots'
sockets. The adjacent second molar is affected by a small caries lesion on the mesial
aspect of the crown. Very slight supragingival calculus deposits (grade 1 by Brothwell
scale) are present on a few teeth, affecting mainly the interproximal surfaces of the
lower anterior dentition. The following dental morphological variants were recorded:
shovel shape (grade 2) on the upper incisors; dental tuberculum of grade 3 on both the
left incisors and grade 4 on the right ones; Carabelli's cup on both first molars (grade 3);

6th cusp on the third lower molar (grade 3).

Laboratory procedures

100 mg was ground from multiple locations of different teeth and bone material (Table
S1). DNA was extracted from bone powder in the Ancient DNA (aDNA) Laboratory at the
University of Vienna following detailed protocols adapted to aDNA *°. Single-stranded
libraries were prepared following detailed protocols for ancient DNA®’. Libraries were

enriched with an in-solution capture designed by Daiiecel Arbor Biosciences
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(https://arborbiosci.com/products/targeted-ngs /mybaits-custom-kits /mybaits-custom

-dna-seq/)following the manufacturer manual. The solution kit included baits targeting
the mtDNA sequences of both P. falciparum and P. vivax. Libraries were pooled in 20 ul
and sequenced 2x150 PE on NextSeq 550 at the Polo d'Innovazione di Genomica

Genetica e Biologia (Siena, Italy).

Bioinformatics

Sequenced reads were clipped with cutadapt 4.5 ?°, removing Illumina adapters and
base quality 30, and later collapsed using PEAR version 0.9.11 *°, requiring a minimum
overlap of 11 bp and a minimum length of 30 bp. Filtered collapsed reads were aligned
with a competitive mapping of both P vivax and P falciparum (Salvador 1 [ID:
NC_007243.1] and K1[ID: NC_037526], respectively) using BWA 0.7.17 aln *', disabling
seeding to allow a higher sensitivity of aDNA reads °!, gap open penalty of 2 and edit
distance of 0.04. Next, duplicates and low mapping-quality reads were removed using
Samtools 1.9 ** and Picard-tools 3.1.1 32, We calculated the deamination pattern using

% mapping plots were created using aDNA-BAMplotter *. We used this

MapDamage *
competitive mapping between P falciparum and P. vivax to determine the possible

presence of co-infection.

A consensus sequence was obtained using ANGSD (v0.941) >3 using the majority of calls
and excluding sites with coverage lower than 5, all the SNPs are fixed. The detected
mutations were examined visually with IGV *. The consensus sequence was aligned
with multiple P falciparum sequences'®?***>° with MAFFT (v7.520) *°. For the
phylogeny, the alignment was filtered for positions with 90% coverage, which left 5884
sites, including variable 100 sites. The TVMe+ASC substitution model was chosen with
IQTree2 (v 2.2.6), and we constructed a Maximum likelihood tree with 1000

nonparametric bootstrap replicates.

Human mtDNA analyses

We aligned the reads against the human genome (hg19), including the mtDNA sequence
(rCRS). We could recover 2,141,320 reads by combining all the libraries, which all show
consistent signals of deamination due to the age. 153022 out of these reads are aligning

to the human rCRS genome. We recover a 700X mtDNA sequence. We recovered the
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consensus sequence using ANGSD °3, and identified the haplogroup using Haplogrep
3.2.2.1 *°. We identified that the individual Velia 186 belongs to haplogroup T2b7a
(88%), which is already identified in MBA individuals from the Levant ®* and is also
present in several present-day Mediterranean populations and is mostly present in

European populations %

Supplementary table titles

Table S1: Sequencing results of the samples included in the analysis

Table S2: List of mutations in the Velia-186 sequence

Table S3: P. falciparum mtDNA sequences used in the analyses
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Supplementary Figure 1: P falciparum mtDNA Maximum Likelihood phylogeny. The
sample sequenced in this study is written in red (Velia-186) and the other partial

European genome (Ebro-1944) in blue.
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