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ABSTRACT 
A hybrid off-lattice agent-based model has been developed to reconstruct the tumor tissue oxygenation landscape 
based on histology images and simulated interactions between vasculature and cells with microenvironment 
metabolites. Here, we performed a robustness sensitivity analysis of that model's physical and computational 
parameters. We found that changes in the domain boundary conditions, the initial conditions, and the Michaelis 
constant are negligible and, thus, do not affect the model outputs. The model is also not sensitive to small perturbations 
of the vascular influx or the maximum consumption rate of oxygen. However, the model is sensitive to large 
perturbations of these parameters and changes in the tissue boundary condition, emphasizing an imperative aim to 
measure these parameters experimentally.  
 
1. INTRODUCTION 
Tortuous tumor vasculature can cause heterogeneities in tissue oxygenation, resulting in well-oxygenated 
areas (normoxia) and regions with low levels of oxygen (hypoxia) within a tumor [1]. Experimental 
measurements, including vascular parameters such as perfusion and hemoglobin-oxygen saturation, direct 
oxygen measurements with probes and oximetry, and markers such as immunohistochemistry [2], provide 
insight into the oxygenation status of tumor vs. normal tissues. However, a noninvasive and inexpensive 
approach to predicting tissue oxygenation is to recreate it using the first principles of physics and 
simulations of mathematical models of oxygen kinetics defined on a cellular microscale level [3]. This 
approach takes advantage of the spatial distributions of vessels and cells, which are assessed from tissue 
histology images, and treats them as agents in a hybrid agent-based model (ABM) [4, 5]. This enables the 
modeling of individual cell–cell interactions and cellular heterogeneity, such as differences in cell size, 
shape, and spatial location. Hybrid models combine discrete equations that describe the behavior of these 
agents with continuous equations that describe the kinetics of microenvironmental factors, such as 
diffusible oxygen and nutrients [4].   

Input parameters in mathematical models, including the hybrid agent–based models, may be 
associated with some uncertainty that can produce a range of possible model outputs. Sensitivity analyses 
can be used to understand the effect of an input parameter's perturbation on the model output and to identify 
the robust parameters whose perturbation does not change the model outputs significantly [6]. Sensitivity 
analysis also identifies the parameters contributing to prediction inaccuracy in the model output; that is, it 
shows whether changes in the input parameters' values significantly alter the model output [6]. It is vital to 
assess how sensitive the model outputs are to small changes to the input parameter values, as this can yield 
insight into the model output changes attributed to the dynamics of the modeled biological system vs. those 
attributed to artifacts from the unknown aspects of the biological system (biological uncertainty) or 
parametrization [7, 8]. Sensitivity analysis involves local and global techniques. For local analysis, the input 
parameter values are changed one at a time while the other parameters remain fixed. For global analysis, 
all model parameters are changed simultaneously. 

There are several methods for sensitivity analysis of agent-based models, as discussed in [9]. Here, 
we focus on robustness sensitivity analysis, which is a type of local sensitivity analysis investigating the 
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robustness of a model's output to local perturbations of input parameters. We apply this analysis to 
parameters related to the initial oxygen level in the tissue, the computational and tissue boundary conditions, 
the influx of oxygen from vessels, and cellular uptake. Our analysis provides insight into which model 
parameters can be varied and also identifies the parameters whose accurate values would need to be 
measured experimentally. 

The rest of the paper is organized as follows. The mathematical model is described in section 2. 
The results presented in section 3 include the design of the digitized tissue (section 3.1), the calculation of 
a stable oxygen distribution (section 3.2), a sensitivity analysis of the model initial conditions (section 3.3), 
the domain boundary conditions (section 3.4), the tissue boundary conditions (section 3.5), vascular influx 
(section 3.6), and the Michaelis–Menten parameters for cellular uptake (section 3.7). Finally, we discuss 
the implications of our sensitivity analyses (section 4). 
 
2. MATHEMATICAL MODEL 
We used a hybrid multicell lattice-free agent-based model that includes individual cells and vasculature 
represented as discrete agents, with a continuous description of oxygen kinetics, similar to our previous 
models [3, 10, 11]. However, here we used the digitized tissue obtained from a histology image as our 
modeling domain (section 2.1), which requires preprocessing steps to resolve cell–cell and cell–vessel 
overlaps (section 2.2), to annotate the outer points (section 2.3), and to annotate the inner cavities (section 
2.4) for tissue boundary conditions. The influx of oxygen from individual vessels was also modeled as a 
boundary condition (section 2.5), and a reaction–diffusion partial differential equation was used to describe 
the oxygen kinetics (section 2.6). The cellular uptake by tumor and immune cells was governed by 
Michaelis–Menten kinetics (section 2.7). Finally, the sensitivity analysis methods we used are described in 
section 2.8. 
 
2.1 Data acquisition 
Our mathematical model uses tissue histology images as a computational domain. These images were 
acquired from in vivo experiments with C57BL/6 female mice that received an intravesical instillation of 
1×105 MB49-OVA murine bladder cancer cells. At the end of the experiment, the bladder tissue was 
harvested and sliced into sections 4 μm thick and mounted on slides. The sections were stained with 
hematoxylin and eosin (H&E) to visualize all cells' nuclei and cytoplasm, and immunohistochemistry (IHC) 
stains specific for vasculature (CD31). The slides were then scanned with a Leica Aperio AT2 digital 
pathology slide scanner, and the H&E and IHC images were co-registered using Visiopharm's Tissuealign. 
Visiopharm was used to segment the H&E image images. The cell detection algorithm was used to segment 
the cells and vessels and determine their coordinates and areas. The segmented H&E image was used to 
identify domain and tissue boundaries using the minimum and maximum coordinates of all cells. The 
shapes of cells and vessels were approximated by circles. Thus, we calculated the circle radius of each cell 
and vessel using Eq. (1). 

𝑅 = #𝐴𝑟𝑒𝑎
𝜋 		(1) 
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2.2. Resolve cell–cell and cell–vessel overlaps 
Using circles to approximate the cell and vessel shapes may cause overlaps between them. Therefore, the 
repulsive forces were applied between nearby cells (cell–cell forces) and between cells and vessels (cell–
vessel forces) to resolve overlaps. Let 𝑿! and 𝑿" be the coordinates of two discrete elements (either cells 
or vessels) with radii 𝑅! and 𝑅" , respectively. The Hookean force 𝒇𝑿𝒊,𝑿𝒋 acting on element 𝑿! is given by 
Eq. (2), 

𝒇𝑿𝒊,𝑿𝒋 = .ℱ 01𝑅% + 𝑅&3 − 5𝑿% −𝑿&57
𝑿% −𝑿𝒋
5𝑿% −𝑿&5

		if			5𝑿% −𝑿&5 <	𝑅% + 𝑅&

0 																																																																			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
	(2) 

 
where ℱ is a constant spring stiffness identical for all cells and vessels and 𝑅! + 𝑅" represents the force 
resting length. 

The repulsive force 𝑭%&  acting on cell 𝑪𝒍 = (𝐶%( , 𝐶%
)) combines force contributions from all 

neighboring cells 𝑪𝒑 = (𝐶+( , 𝐶+
)) and vessels 𝑽𝒌 = (𝑉-( , 𝑉-

)) and is given by Eq. (3), where 𝑁&  represents 
the number of cells and 𝑁. represents the number of vessels. 

 

𝑭'( =E𝒇𝑪𝒍,𝑪𝒑

*%

+,'

+E𝒇𝑪𝒍,𝑽𝒌

*'

./0

									for		𝑙 = 1…𝑁( 		(3) 

 
Cell relocation to resolve cell–cell and cell–vessel overlaps follows the overdamped spring 

equation:  
𝑑𝑪'
𝑑𝑡 =

1
𝜈 𝑭'

( 		(4) 

 
where ν is the viscosity of the surrounding medium. We applied Eqs. (3), and (4) iteratively to all 
overlapping cells until the magnitude of the repulsive force 𝑭%&   fell below a small threshold value 𝐹/0(, at 
which point the remaining cell–cell and cell–vessel overlaps are negligible. However, vessel–vessel 
overlaps are allowed as they mimic the different vascular shapes observed in histology images that arise 
when vessels within the tissue slice are cut at different angles. This algorithm to resolve overlaps was used 
once during the preprocessing step in order to create the digitized tissue for further oxygen simulations. 
The force algorithm was deactivated after this step.  
 
2.3 Define outer points  
As our computational domain is rectangular and tissue histology can have an irregular shape that does not 
conform to that domain, we identified a tissue boundary to separate grid points outside and inside the tissue. 
The tissue boundary was defined using MATLABÒ boundary routine based on the cell coordinates after 
resolving overlaps. We determined the grid points located outside the tissue boundary called "outer points" 
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using the MATLABÒ inpolygon function. This function takes the tissue boundary coordinates and the grid 
points as input values and returns the value one if the boundary encloses the given grid point and zero if it 
does not. The outer points were used to define tissue boundary conditions to avoid the calculation of oxygen 
diffusion outside the tissue.  
 
2.4 Define inner cavities space 
The bladder is a hollow organ lined by a luminal mucosa. Thus, our computational domain included grid 
points that represented empty inner cavities. To avoid calculating the diffusion of oxygen into these empty 
spaces, we needed to specify the boundary conditions at all cavity points. However, the bladder tissue 
(especially normal, non-tumor tissue) can be composed of sparsely packed cells that may be misclassified 
as cavity points. To distinguish between these two types of points, we introduced "ghost cells" to artificially 
fill the spaces around cells segmented from a histology image. The ghost cells remove the sparsely packed 
cells; thus, the remaining points with no cells (real or ghost) in their vicinity belong to inner cavities.  
 Ghost cells were created following Eq. (5). For every sparsely packed cell 𝑪𝒍, that is, a cell for 
which the minimum Euclidean distance from other cells was greater than a specified threshold 𝑇ℎ1 , ten 
ghost cells were placed in a random direction 𝜃! (for 𝑖=1...10). 
 

𝑪12345% = 𝑪𝒍 − (3 + 7𝜔)𝑅((1𝑐𝑜𝑠(𝜃%), 𝑠𝑖𝑛(𝜃%)3				if 				 min+/0…*%
X5𝑪𝒍 − 𝑪𝒑59Y > 𝑇ℎ: 				(5) 

𝜔 ∈ [0,1], 𝜃% ∈ [0,2𝜋] 
 
Similarly, the ghost cells were added around each vessel 𝑽𝒌 using Eq. (6) if the minimum distance from its 
closest cell was greater than 𝑇ℎ1 .  
 

𝑪12345% = 𝑽𝒌 − (1 + 3𝜔)𝑅<)1𝑐𝑜𝑠(𝜃%), 𝑠𝑖𝑛(𝜃%)3		if	 min+/0…*%
X5𝑽𝒌 − 𝑪𝒑59Y > 𝑇ℎ: 				(6) 

𝜔 ∈ [0,1], 	𝜃% ∈ [0,2𝜋] 
 
Thus, a grid point was defined as belonging to an inner cavity only if its minimum Euclidean distance from 
all cells, ghost cells, and vessels was greater than a specified threshold 𝑇ℎ& . This process was repeated for 
all grid points inside the tissue boundary to identify those that form all inner cavities. Identification of all 
inner cavity points was done as a one-time preprocessing step to reduce computational costs.  
 
2.5. Define vascular influx 
Since our goal was to recreate tissue oxygenation based on a static histology image, we assumed that the 
vessels would not evolve during the simulation and that the oxygen level in each vessel was also not 
changing. Therefore, we could identify the grid points inside each vessel and specify the oxygen influx 
values at each point. This one-time preprocessing step allowed us to use these values in every consecutive 
iteration. The computational domain was divided using the grid size ℎ equals 5	𝜇𝑚. Because the vessels 
identified from the histology image may have various diameters, we considered two cases: the vessels with 
diameters (i) larger than the grid size and (ii) smaller than the grid size.  For large vessels (such that, 2𝑅.= >
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ℎ), we assumed that there was a constant amount of oxygen (𝐼2) supplied at each grid point <𝑥! , 𝑦"? inside 
the vessel with center at <𝑉-( , 𝑉-

)?; thus, the level of oxygen at the grid point 𝛾!,"=	𝛾(𝑥! , 𝑦") and the total 
amount of oxygen in the vessel 𝛾(𝑽𝒌, 𝑡) are given by Eq. (7) 
 

 𝛾%,&= 𝐼>  for  51𝑥% , 𝑦&3 − 1𝑉.?, 𝑉.
@35 < 𝑅<) 		(7) 

 
𝛾(𝑽𝒌, 𝑡) = 𝐼> ×𝑁+ 

 
where 𝐼2 is the defined oxygen level and 𝑁+ is the number of grid points inside the vessel 𝑽𝒌. 
             For the small vessels with diameters below the grid size and no grid points located inside the vessel, 
the oxygen level supplied from that vessel (𝐼2) needed to be distributed to the four grid points surrounding 
the vessel <𝑉-( , 𝑉-

)?. This was done so as to ensure that the oxygen level at each of the grid points was 
inversely proportional to its distance from the vessel center, as described in Eq. (8) 
 

𝛾%,& =
(𝑥%A0 − 𝑉.?)1𝑦&A0 − 𝑉.

@3𝐼>
ℎ9  

γ%A0,& =
(𝑉.? − 𝑥%)1𝑦&A0 − 𝑉.

@3𝐼>
ℎ9  

𝛾%,&A0 =
(𝑥%A0 − 𝑉.?)1𝑉.

@ − 𝑦&3𝐼>
ℎ9  

𝛾%A0,&A0 =
(𝑉.? − 𝑥%)1𝑉.

@ − 𝑦&3𝐼>
ℎ9  

 
where 𝛾!," + γ!34," + 𝛾!,"34 + 𝛾!34,"34 = 𝐼2 and 𝐼2 is the total vascular level of oxygen. The four grid points 
surrounding the vessel are (𝑥! , 𝑦"), (𝑥!34, 𝑦"), (𝑥! , 𝑦"34), and (𝑥!34, 𝑦"34). 

 In principle, it would be possible to reduce the grid size below the smallest cell radius, such that 
the grid points could be located inside every vessel. However, this was computationally too expensive.  The 
grid points inside the large vessels and surrounding the small vessels were identified once as a preprocessing 
step, and the assigned appropriate influx values were used in all subsequent iterations of our algorithm. 
This was a one-time preprocessing step to reduce the computational cost. 

 
2.6. Simulate tissue oxygenation 
To recreate the tissue oxygenation landscape based on a static histology image, we generated a stable 
distribution of oxygen that was a result of the balance between oxygen influx, its diffusion, and cellular 
uptake. To achieve this, we ran the reaction–diffusion equation iteratively until the difference between 
consecutive oxygen distributions was very small.  
 The change in oxygen level at location 𝒙 = (𝑥, 𝑦) at time 𝑡 depends on the influx from vessels 
(modeled as a boundary condition), diffusion through the tissue with a constant diffusion coefficient 𝐷 
(solved using the standard finite difference methods), and uptake by cells (governed by Michaelis–Menten 
kinetics). The overall oxygen kinetics is described in Eq. (9) 

(8) 
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𝜕𝛾(𝒙, 𝑡)
𝜕𝑡 			kllmlln

B%45C%DE5%3F	%F	52H	5%44EH

=			 			𝐷𝛥𝛾(𝒙, 𝑡)			klllmllln
B%IIE4%3F

			−			 			𝛾'
E+(𝒙, 𝑡)E𝜒

*%

'/0

(𝑪𝒍(𝑡), 𝒙)			
kllllllllmlllllllln

JH''E'KC	E+5K.H

		(9) 

where 𝛾%
5+ is the cellular uptake rate defined separately for small and large cells (see Eqs. (13) and (15)), 

𝑁& 	is the total number of cells, and 𝑪% represents the cell coordinates. The oxygen is defined on the cartesian 
grid 𝒙 = (𝑥, 𝑦), and the cells are defined on the Lagrangian grid 𝑪𝒍 = (𝐶%( , 𝐶%

)). Therefore, the oxygen–
cell interactions are specified by the indicator function, χ(𝑪𝒍(𝑡), 𝒙) given in Eq. (10) with the interaction 
radius 𝑅&L for large cells and interaction width ℎ	for small cells.  
 

χ(𝑪𝒍(𝑡), 𝒙) = t 1 if	‖𝒙 − 𝑪𝒍(𝑡)‖ < 𝑚𝑎𝑥1𝑅(( , ℎ3	
			0 												𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																														

	(10) 
 
The initial oxygen level in the whole tissue area was set to zero. The following boundary conditions were 
set up:  

i. in all grid points inside inner cavities and outside the tissue boundary, the oxygen level was set up 
to a hypoxia threshold  𝛾6 

ii. in all grid points representing the vessels, a constant level of oxygen was imposed according to Eq. 
(7) and Eq. (8)    

iii. no loss or gain of oxygen along the domain boundaries was imposed, as defined by the Neumann-
type boundary conditions: 

 
𝜕𝛾(𝒙, 𝑡)
𝜕𝒏 = 0		(11) 

 
where 𝒏 is an outward normal vector. 
To achieve a stable distribution of oxygen within the tissue, that is, a balance between oxygen 

influx, diffusion, and cellular uptake, the reaction-diffusion equation was iteratively repeated until the L2 
norm between two consecutively calculated oxygen distributions fell below the prescribed threshold, i.e., 
𝜀27	< 10-5, where: 

 

𝜀>F	 = ‖𝛾F − 𝛾FM0‖9 = yE1𝛾%,&F − 𝛾%,&FM03
9

**,*+

%,&/0

			(12) 

 
Once this criterium was met, the oxygen distribution within the tissue was considered numerically stable. 
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2.7 Define cellular uptake  
Similar to the vessels described before in section 2.5, cells in the tissue may have diameters larger or smaller 
than the grid width. For a large cell with the center at <𝐶%( , 𝐶%

)?	and diameter greater than h, there are grid 
points <𝑥! , 𝑦"? inside the cells where the uptake of oxygen 𝛾%

5+ is defined by the Michaelis–Menten kinetics 
using Eq. (13) as, 
 

𝛾'
E+ =

𝑉N		𝛾%,&
𝐾N + 𝛾%,&

			for		51𝑥% , 𝑦&3 − 1𝐶'?, 𝐶'
@35 < 2𝑅(( 		and		2𝑅(( > ℎ		(13) 

 
where 𝛾!," is the oxygen level at grid point <𝑥! , 𝑦"?, 𝑅&L is the cell radius, 𝑉/	is the maximum consumption 
rate, and 𝐾/ is the oxygen level at half 𝑉/. The total cell oxygenation level 𝛾(𝑪𝒍, 𝑡) in this case is defined 
by Eq. (14). 
 

𝛾(𝑪𝒍, 𝑡) =
1
𝑁+

E 𝛾%,&

*,

%,&/0

		for		51𝑥% , 𝑦&3 − 1𝐶'?, 𝐶'
@35 < 2𝑅(( 	and		2𝑅(( > ℎ	(14) 

where 𝑁+ is the number of grid points inside the cell. 
For a small cell <𝐶%( , 𝐶%

)?	 with no grid points inside and a diameter smaller than h, the cell will 
utilize the four surrounding grid points to absorb oxygen in amounts that are inversely proportional to the 
distance from the cell center. This is defined in Eq. (15). 
 

𝛾'
E+ =

1
4ℎ9

⎝

⎜
⎛
�
𝑥%A0 − 𝐶'?

𝐶'? − 𝑥%
�
O

⎣
⎢
⎢
⎢
⎡ �

𝑉N		𝛾%,&
𝐾N + 𝛾%,&

� �
𝑉N		𝛾%,&A0
𝐾N + 𝛾%,&A0

�

�
𝑉N		𝛾%A0,&
𝐾N + 𝛾%A0,&

� �
𝑉N	𝛾%A0,&A0
𝐾N + 𝛾%A0,&A0

�
⎦
⎥
⎥
⎥
⎤
�
𝑦&A0 − 𝐶'

@

𝐶'
@ − 𝑦&

�

⎠

⎟
⎞
				(15) 

 
where 𝛾!,", 𝛾!,"34, 	𝛾!34," , and	𝛾!34,"34,	 are the oxygen levels at the grid points 
<𝑥! , 𝑦"?, (𝑥! , 𝑦"34), (𝑥!34, 𝑦"), and	(𝑥!34, 𝑦"34)	surrounding the cell. The total cell oxygenation level in this 
case is defined by Eq. (16). 
 

𝛾(𝑪𝒍, 𝑡) =
0
P
(𝛾%,& + 𝛾%A0,& + 𝛾%,&A0 + 𝛾%A0,&A0)  (16) 

 
All parameter values are given in Table 1. 
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Table 1. The physical and computational model parameters. 

Parameters Model value  Reference 
Force stiffness, ℱ 50 µg/µm.s2   [12, 13] 
Medium viscosity, 𝜈 250 µg/µm.s [14] 
Oxygen diffusion, 𝐷 100 µm2/s [15, 16] 
Baseline oxygen in a vessel, 𝐼! 65.28 sg/µm3  

= 60 mmHg 
[17, 18] 

Hypoxia level, 𝛾" 10.8  sg/µm3 
=10 mmHg 

[2] 

Michaelis constant, 𝐾#  1.344 sg/µm3 

=2.1 ×10-3 mM 
[19] 

Maximum oxygen uptake rate, 𝑉#  4.774 sg/s.µm3   

=3.25 ×10-17 mole/cell/s 
[19] 

Repulsive force threshold, 𝐹#$%  50 µg/µm.s2    
L2 norm error threshold, 𝜀! 10-5  
Threshold for creating ghost cells, 𝑇ℎ& 1.5× ℎ µm  
Threshold for creating inner cavities, 𝑇ℎ' 2.5× ℎ µm  
Grid width, ℎ 5 µm (∆*

"!
≤ +

,
  

Time step, Dt 0.0625 s 
Scaling parameter, s 0.5×10-19  

 
2.8 Methods for sensitivity analysis 
We followed [9] and considered here a sensitivity analysis method that determines how robust the model 
output is to local parameter perturbations, i.e., how changing the value of one parameter while holding the 
other parameter values fixed affects or does not affect the model output. The A-measure (section 2.8.1) was 
used as an intuitive way to compare the distributions produced by the perturbed parameter values vs. the 
baseline value [9]. L2 norm was used to determine the differences between two stabilized oxygen 
distributions (section 2.8.2). 
 
2.8.1 A-measure of stochastic superiority 
The A-measure of stochastic superiority (or A-measure) is a method used to compare the equality of two 
data distributions (discrete or continuous) [20]. It describes the probability that a randomly chosen value 
from one distribution is greater than a randomly chosen member of the other distribution. It accounts for 
ties by awarding a value of 0.5.  
 Suppose we want to compare two distributions 𝐵 = 𝑏4, 𝑏9, … , 𝑏/ and 𝐶 = 𝑐4, 𝑐9, … , 𝑐7 with respect 
to some variable 𝑋. Using conventional probability theory, A-measure 𝐴:&(𝑋) is defined as, 
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𝐴Q((𝑋) = 𝑃(𝑋Q > 𝑋() + 0.5𝑃(𝑋Q = 𝑋()									(17) 
 
where 𝑋: is a randomly selected value from 𝐵 and 𝑋&  is a randomly selected value from 𝐶. The point 
estimate 𝐴S-measure is given by Eq. (18).  
 

𝐴�Q((𝑋) =
#(𝑏% > 𝑐&)

𝑚𝑛 + 0.5
#(𝑏% = 𝑐&)

𝑚𝑛 									(18) 
 
Hamis et al., 2020 [9] provided the following notation of 𝐴S-measure: 
 

𝐴�Q((𝑋) =
1
𝑚𝑛EE𝐻1𝑏% − 𝑐&3

F

&/0

N

%/0

										(19) 

 
where 𝐻(𝑥) is a Heaviside step function: 
 

𝐻(𝑥) = �
1				for	𝑥 > 0
0.5	for	𝑥	 = 0
	0					for	𝑥 < 	0

									 

 
If 𝐴S:&(𝑋) =	0.5, the distributions 𝐵	and 𝐶 are stochastically equal with respect to 𝑋. Thus, 𝐴S-measure ∈
[0,1], assesses how much 𝐵	and 𝐶 deviate from the equality value, 0.5. Furthermore, the effect of the 
stochastic difference between 𝐵	and 𝐶 can be described using statistical significance based on the following 
classifications [20]: the statistical significance of the difference between 𝐵	and 𝐶 is small if 𝐴S-measure ∈
[0.44,0.56], medium if 𝐴S-measure ∈ [0.36,0.64], and large if 𝐴S-measure ∈ [0.29,0.71]. For example, if 𝐴S-
measure is close to 0.5, the 𝐵	and 𝐶 distributions are “fairly equal”, and the statistical significance of the 
difference between 𝐵	and 𝐶 is classified as small. The getA_measure.m function used to implement A-
measure in MATLABÒ is provided in [9]. More details about A-measure’s derivation are described in [9, 
20]. 
 
2.8.2 L2 norm of differences between tissue oxygenation patterns 
We defined the oxygen on a cartesian grid which we stored as matrices in MATLABÒ. Calculating the L2 
norms gives the difference between the two matrices containing oxygen values and quantifies whether the 
matrices are significantly different [3]. This study used L2 norms, calculated using Eq. (12), to determine 
the differences between the final stabilized oxygen distribution produced by the baseline parameter value 
vs. those produced by the perturbed parameter values. The calculations were done using only the tissue grid 
points and normalized by the number of tissue grid points. The lower the L2 norm value, the smaller the 
difference between the two distributions. 
 
3. RESULTS 
In this section, we describe how the digitized bladder tissue obtained from a scanned histology image 
(section 3.1) was used to recreate a stable oxygenation map using the hybrid ABM model (section 3.2).  
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The following local sensitivity analyses of model parameters were performed: sensitivity to initial 
conditions (section 3.3), to different computational domain boundary conditions (section 3.4), and to 
boundary conditions imposed on the inner cavities and outer points (section 3.5). The robustness of the 
vascular influx (section 3.6), the maximum cellular uptake 𝑉/ (section 3.7), and the Michaelis constant 𝐾/ 
(section 3.8) were also tested for small and large parameter perturbations. The number of perturbed 
parameter values was reported for each parameter investigated. Furthermore, one or more of the following 
model outputs were generated for each perturbed parameter value: 1) the average oxygen value in the tissue 
in each iteration, 2) the final stabilized oxygen distribution in the tissue, and 3) the cellular oxygen levels 
calculated using Eqs. (14) and (16) for each cell after stabilization of the oxygen gradient.  
 
3.1 Histology data and digitized tissue 
The H&E and CD31 histology images in Figs. 1A and 1B were used for cell and vessel segmentation, 
respectively. Next, the repulsive force algorithm was applied to resolve potential overlaps between cells 
and vessels. The final digitized tissue is presented in Fig. 1C. The tumor area is 0.75 mm2, containing 
9,896.80 cells/mm2 and 745.66 vessels/mm2. The nontumor area is 11.88 mm2 with a cellular density of 
3,682.66 cells/mm2 and a vascular density of 340.02 vessels/mm2. This results in the tumor area occupying 
6% of the tissue and the nontumor area occupying 94%. These proportions, together with the sizes and 
spatial locations of cells and vessels, could influence the oxygen distribution in a tissue [3]. The tumor cells' 
nuclei in this tissue were relatively small, with diameters of 5.191 ±	2.006 𝜇𝑚 (mean ± std). The nontumor 
cells nuclei (which may include immune and stromal cells) were smaller on average than the tumor cells 
(4.368 ± 1.461 𝜇𝑚), while the vessels were relatively larger (13.737 ± 6.978 𝜇𝑚). The tumor cells, 
nontumor cells, and vessels are shown in gold, gray, and red, respectively, in Fig 1C.  

Fig. 1D shows the relative frequency histogram of the minimum distances between cells and vessels 
in the tumor. This data is left-skewed and follows a gamma distribution fit (shape = 4.15, rate = 0.19), as 
indicated by the black line. This data indicates that 98% of the tumor cells are located within 50 𝜇𝑚 from 
the nearest vessel. Such cells can be expected to be well-oxygenated and were thus used for comparison to 
cell oxygenation in our simulations. Fig. 1E shows that most nontumor cells were also close to the vessels, 
except for 0.52 % of cells that were 100 𝜇𝑚 or more away from the nearest vessel. This minimum distance 
data also follows the gamma distribution fit (shape = 2.84, rate = 0.09), as indicated by the black line in 
Fig.1E. The cells that are more than 100 μm away from a vessel cells should be hypoxic [2] and were used 
to determine the baseline value of the maximum cellular uptake rate, 𝑉/ (section 3.7). The intervascular 
distances and spatial vascular distribution determine the available oxygen supply in a tissue [3]. Fig. 1F 
shows the relative frequency histogram of the minimum intervascular distances in the tissue. The data 
follows a lognormal distribution fit (mean = 3.4, std = 0.46, as indicated by the black line), showing that 
the most frequent separation was about 30 𝜇𝑚. Of the vessels, 86% were less than or equal to 50 𝜇𝑚 from 
each other, and the remaining 14% were within 50 to 100 𝜇𝑚 of each other. As some vessels were closer 
to each other, regions with clustered vessels would be expected to be more oxygenated. We then performed 
a chi-square dispersion test of complete spatial randomness for the vessels based on quadrat counts using 
the quadrat.test in the R package Spatstat. This was done to determine whether the vessels were 
independently and homogeneously distributed in the whole tissue, meaning they did not differ in density 
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(vessel number per area) from location to location. The function divides the domain into equal quadrats (a 
set of rectangles) and tests if the number of points in each quadrat deviates from a homogenous intensity 
[21]. The quadrat test indicated inhomogeneity of the vessels when 1x1 (p = 0), 10x10 (p = 0), or 100x100 
(p = 2.78x10-22) array of equal quadrats were used. 

 

 
Next, using the G-function, we tested whether the cells clustered around their nearby vessels in the 

tissue. The G-function calculates the nearest-neighbor probability, meaning the chance that a randomly 
chosen cell in the tissue has its nearest vessel within a given distance [22]. The G-function value can only 
increase up to a maximum of 1 because of the increasing radius around a given cell used in the calculations. 
The G-function values are compared to those of a completely random distribution (Poisson process) to 
determine the clustering or dispersion of the cells around the vessels. Fig. 1G gives the nearest neighbor 
probabilities (black solid line), as calculated by the multitype G-function, Gcross, in R package Spatstat. 

 
Fig. 1. Histology data and the digitized tissue. A. A hematoxylin and eosin histology image of the tissue. The 
nuclei of tumor and nontumor cells are stained in deep blue-purple, and the different shades of pink represent the 
cytoplasm, extracellular matrix, and other structures. B. The CD31+ immunohistochemistry histology image with 
the endothelium of vessels stained in brown. C. The digitized tissue contains cells from A and vessels from B. 
The colors represent vessels (red), tumor cells (gold), and nontumor cells located within 100 𝜇𝑚 from the nearest 
vessel (gray), and nontumor cells that are more than 100 𝜇𝑚 away from a vessel (green). D-E. The frequency 
distributions of the minimum distances separating cells and vessels within the tumor and nontumor regions, 
respectively. F. The frequency distribution of intervascular distances in the tissue. G. A plot of the empirical G-
function (black line) against the Poisson distribution (dashed red line) of the cells and vessels in the tissue.   
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The upward deviation from the Poisson line (red dashed line) shows that the nearest neighbor distances 
between cells and vessels are shorter at distances less than 75 𝜇𝑚 than would be expected if the pattern was 
completely random, indicating clustering. The cells and vessels were regularly spaced at distances greater 
than 75 μm. 
 

 
3.2 Oxygen stabilization 
The digitized tissue containing the locations of cells and vessels was used to recreate an oxygenation map 
of the bladder tissue. To achieve this, a balance was required between the continuous constant influx of 
oxygen from all vessels, oxygen diffusion through the tissue, and the continuous uptake by all tumor and 
nontumor cells. This balance was achieved through the stabilization process described by Eq. (12). 
Snapshots taken during the process of oxygen stabilization in the digitized tissue are shown in Fig. 2. The 
tissue was initialized with 0 mmHg of oxygen, which was uniformly distributed, as shown in Fig. 2A. 
Hypoxia at 10 mmHg of oxygen was imposed as a boundary condition in the outer points and inner cavities 
(Fig. 2A). Simulations were run iteratively, and the oxygen gradient was formed in the tissue as vessels 
continuously output oxygen at a constant rate; oxygen diffused through the tissue and was consumed by the 
cells via Michaelis–Menten kinetics. The oxygen maps in Figs. 2B and 2C show the difference in tissue 
oxygen gradients at iterations 100 and 4,500, respectively. As the number of iterations increased, the oxygen 
gradient eventually reached an equilibrium and stabilized (Fig. 2D), and subsequent changes in oxygen 

 
 
Fig. 2. Tissue oxygenation during the stabilization process. A. The tissue initial setup with a uniform distribution 
of 0 mmHg of oxygen in the tissue and hypoxic values (10 mmHg) imposed in the inner cavities and the areas 
outside the tissue. The red circles represent the vessels. B-C. The simulated oxygenation maps after 100 and 4500 
iterations, respectively. D. The numerically stable oxygenation map after 7981 iterations. E. Changes in the average 
oxygen level in the tissue (y-axis) over iterations (x-axis) from the initial 0 mmHg to the stable average level of 
31.403 mmHg.  
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gradients were negligible. The simulations were stopped when the L2 norm of the difference between 
subsequent oxygen distributions fell below the threshold value of 10-5. The final stabilized oxygen 
distribution reached an average level of 31.403 mmHg after 7,981 iterations (Fig. 2E), with 𝜀2 =	9.94x10-

6. 
 
3.3 Sensitivity analysis of the initial tissue oxygenation 
Initially, the oxygen was uniformly distributed within the tissue at a level of 0 mmHg. We tested whether 
varying the initial oxygen level from 0 mmHg to 60 mmHg with increments of 3 mmHg would impact the 
final stabilized oxygen distribution.  
 

 
In cases when the initial level of oxygen in the tissue is low, oxygen must first outflux from the vessels and 
diffuse through the tissue before being consumed by the cells. Thus, the initial changes in the spatial 
distribution of oxygen were mostly due to the diffusion process. Fig. 3 shows that the average oxygen level 
rose before stabilizing for the simulations initialized with lower oxygen levels (blue curves). On the 
contrary, the average oxygen level decreased steadily until stabilization for simulations initialized with 
higher oxygen levels (red curves). This is because when the initial level of oxygen in the tissue was high 
(especially at 60 mmHg), the tissue was already oxygenated, and the cells could uptake the oxygen 

 
 
Fig. 3. Independence of the final oxygen stabilization level on the initial oxygen amount in the tissue. 
Temporal evolution of the average oxygen levels in the tissue (y-axis) over iterations (x-axis, logarithmic scale) 
for 21 simulations initialized with 0 to 60 mmHg of oxygen, with increments of 3 mmHg. All graphs stabilized at 
31.403 mmHg, with stabilization errors below 10-5. Each simulation is indicated by a different color corresponding 
to the initial tissue oxygenation level. The final stabilized oxygen maps are shown in the insets: a simulation 
initialized with 0 mmHg (bottom) and with 60 mmHg (top).  
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immediately; thus, the initial changes in the spatial distribution of oxygen were due mostly to the uptake 
process. Despite different initial oxygen levels, all 21 simulations stabilized at 31.403 mmHg (Fig. 3). 
Therefore, the model was insensitive to the level of oxygen chosen at the beginning of each simulation. 
However, the time required for the stabilization process to be completed differed for all cases. The 
simulations that started with lower oxygen levels stabilized faster than those with higher initial oxygen 
levels. 

 
3.4 Sensitivity analysis of the domain boundary conditions 
In the simulations discussed in sections 3.2 and 3.3, we assumed no loss or gain of oxygen along the 
computational domain boundaries and imposed the Neumann-type boundary conditions. These simulations 
resulted in the average oxygen level stabilizing at 31.403 mmHg after 7,981 iterations (Fig. 2). Here, we 
examined whether our model outcomes would change significantly if other types of boundary conditions 
were imposed. First, we tested the periodic boundary condition by replicating the oxygen values defined 
along each boundary column and row to the opposite side boundary. Simulations with periodic boundary 
conditions produced the same stabilized average oxygen level at 31.403 mmHg, and this also took 7,981 
iterations. This stable oxygen distribution was not significantly different from that generated by the 
Neumann-type boundary conditions. The normalized L2 norm between the oxygen distributions was 
2.619x10-5. This was calculated using only the grid points in the tissue and omitting the outer and cavity 

 
 
Fig. 4. The dependence of the final stabilized oxygen distribution on the oxygen level imposed outside 
the tissue and in the inner cavities. A. Annotated grid points outside the tissue (magenta) and in the inner 
cavities (blue). The remaining area is composed of tissue grid points. B. Temporal evolution of the average 
oxygen levels with 0 mmHg (blue) and 10 mmHg (black) boundary conditions. C. The stabilized oxygenation 
map for 0 mmHg boundary condition. D. The stabilized oxygenation map for 10 mmHg boundary condition.  
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points, as they had the same oxygen level imposed (hypoxia). Next, we tested the Dirichlet boundary 
conditions with a constant hypoxia value defined along all the domain boundaries. The stabilized average 
oxygen level was again 31.403 mmHg, and the stabilization process required 7,981 iterations. The 
normalized L2 norm between solutions with the Dirichlet and Neumann boundary conditions was 2.619x10-

5. The stable oxygen distributions produced by the Dirichlet and periodic boundary conditions were not 
significantly different from the stable oxygen map generated with the Neumann boundary conditions. 
Therefore, the final stable oxygen distribution was not sensitive to changing the domain boundary 
conditions because this condition is influenced by the outer points boundary condition discussed in 3.5. 
 
3.5 Sensitivity analysis of the tissue boundary conditions 
The histology image of the mouse bladder that we used as the base of our simulations did not occupy the 
whole rectangular computational domain. Therefore, we did not calculate oxygen diffusion in the grid 
points outside the tissue (outer points shown in magenta in Fig.4A). The boundary condition imposed on 
outer points affects the domain boundary conditions discussed in section 3.4. We imposed a constant 
hypoxia value in all these points as a boundary condition. Moreover, the bladder tissue contained some 
inner cavities (shown in blue in Fig. 4A). We also imposed hypoxia values in those grid points. These 
boundary conditions ensured that the inner cavities and outer points had constant hypoxia values during the 
simulation. We tested whether changing the boundary condition values from hypoxia (10 mmHg) to 0 
mmHg would affect the final oxygen distribution within the tissue. Fig. 4B shows the stabilized average 
oxygen levels in the tissue: 31.403 mmHg for the hypoxia boundary condition and 28.536 mmHg for the 
zero-boundary condition. This gave a 2.867 mmHg difference between the averages. The normalized L2 
norm between the final stabilized oxygen distributions was 0.0045. The L2 norm calculations used only the 
tissue grid points and were normalized by the number of tissue grid points. Therefore, the model output 
was sensitive to changing the oxygen level in the inner cavities and outer points. The stable oxygen maps 
for hypoxia and zero oxygen boundary conditions are shown in Figs. 4C and 4D, respectively. 
 
3.6 Sensitivity analysis of the vascular influx 
In this section, we test the sensitivity of changing the influx parameter. The partial pressure of oxygen (pO2 
in mmHg) in blood vessels varies depending on the vasculature type and size. For example, the pO2 in 
capillaries is 30 mmHg and in arteries is 80 mmHg [18, 23]. In this work, the base pO2 level in each vessel 
was set to 60 mmHg following [18, 23]. Therefore, we tested how robust the model outputs were to local 
perturbations when the influx was varied in a range of 60 +/- 10 mmHg with a 1 mmHg progression. We 
investigated 20 parameter values and compared their model outputs with those generated by the baseline 
value of 60 mmHg.  
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The first model output analyzed was the cellular oxygen levels. We used 𝐴S-measure to assess the 

extent and significance of the changes in this model output. Fig. 5A shows the 𝐴S-measure values (y-axis) 
calculated by comparing the cellular oxygen levels produced by the perturbed values vs. those produced by 
the baseline value. The plot shows that the influx within 4 mmHg from 60 mmHg yielded model outputs 
that were not statistically different from the baseline value—they are within the green lines in Fig. 5A, as 
indicated by '*', and thus they are within the minimal statistical significance as determined by the A-measure 
method.  

Thus, the cellular oxygen levels are less sensitive to +/- 4 mmHg perturbations of the vascular 
influx. However, influx values beyond 4 mmHg perturbations produced model outputs that differed 
significantly from the baseline value. These sensitive parameter values are outside the green lines in Fig. 
5A. Fig. 5B presents the five-point boxplots of the cellular oxygen levels for the baseline value, and all 
considered perturbed values from Fig. 5A. The boxplots show that the median cellular oxygen levels 

 
 
Fig. 5. The model outputs are independent of the vascular influx value for small perturbations. A. The 𝐴1-
values (y-axis) calculated by comparing the cellular oxygen levels produced by perturbed and the baseline influx 
values (x-axis). The symbols represent: filled circle (baseline value), stars (perturbed values plotted for panel C), 
and open circles (other perturbed values).  B. Boxplots of the cellular oxygen levels (y-axis) for all perturbed and 
the baseline influx values (x-axis) from A. C. Temporal evolution of the average tissue oxygen levels (y-axis) over 
iterations (x-axis). The inset shows a magnified portion with the corresponding average oxygen values.  
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increased as the influx values increased. As expected, the minimum cellular oxygen levels were zero 
because some cells do not have oxygen. In contrast, the maximum cellular oxygen levels corresponded to 
the influx value used in the simulation. 

The second model output analyzed was the average oxygen levels in the tissue in each iteration. 
Fig. 5C shows this output plotted for the perturbed values indicated by '*' in Fig. 5A and the baseline value. 
The average oxygen distribution stabilized at levels from 29.234 mmHg to 33.577 mmHg for the influx 
values between 56 mmHg and 64 mmHg, with about 0.543 mmHg difference for each 1 mmHg increment 
of the influx value. These close stabilizations support the conclusion drawn from Fig 5A. The number of 
iterations required to reach the stabilized oxygen distribution varied depending on the influx value. It was 
fastest for 56 mmHg and increased with each additional 1 mmHg increment until 64 mmHg.  

The third model output analyzed was the final stabilized oxygen distribution in the tissue. The L2 
norms between this output generated by the baseline value and those generated for each perturbed value 
were calculated. The minimum and maximum normalized L2 norm values were 0.0008 and 0.0083, 
respectively. This shows that as the parameter was perturbed, the final stable oxygen distribution did not 
change significantly compared to that generated by the baseline parameter.   

 
3.7. Sensitivity analysis of the maximum cellular uptake rate 𝑽𝒎 

We used the Michaelis–Menten kinetics to model the cellular uptake of oxygen. However, the 
consumption rate 𝛾!

"#	was defined by Eqs. (13) or (15), depending on the cell size. The Michaelis–Menten 
parameter values for 𝑉/, the maximum oxygen consumption rate, and 𝐾/, the oxygen concentration at half 
consumption rate, were initially estimated based on [24]. The 𝑉/ value was further optimized for this tissue, 
as described below. As chronic hypoxia in tumors typically occurs at distances between 100 and 180 𝜇𝑚 
from the vasculature [2], the cells in our tissue whose minimum Euclidean distance from the closest vessel 
was greater than 100 𝜇𝑚 were designated as hypoxic candidates (shown in green in Fig. 1C). For the tissue 
under consideration, they constituted 0.52 % of all cells (266 out of 51266). The patternsearch routine in 
MATLABÒ, a direct search algorithms, was used to find the baseline 𝑉/ value. Our objective function was 
set up to minimize the false negatives (the cells that are hypoxic candidates and not simulated as hypoxic). 
Initially, 𝑉/=6.25x10-17 mole/s per cell [24] (=9.548 sg/µm3*s after rescaling). Simulations with this 
parameter value yielded an accuracy of 0.86, a misclassification rate of 0.14, a sensitivity of 1, and a 
specificity of 0.86. The optimized baseline value was 3.125x10-17 mole/s per cell (=4.774 sg/µm3*s), 
resulting in an accuracy of 0.96, a misclassification rate of 0.04, a sensitivity of 0.89, and a specificity of 
0.96. We then tested the local sensitivity around this optimized baseline value using 20 perturbed values.  

First, the extent and significance of the changes in the cellular oxygen levels are summarized in the 
𝐴S-measure plot in Fig. 6A. The plot shows that changing 𝑉/ between 1.64x10-17 and 4.9x10-17 mole/s per 
cell yielded model outputs whose differences compared to the baseline value outputs were small. The 
statistical significance of the differences was minimal, meaning that the cellular oxygen levels were less 
sensitive to these perturbations (indicated by * within the green lines in Fig. 6A). These are the robust 
values of 𝑉/. The cellular oxygen levels were more sensitive to perturbed 𝑉/ values outside this range. 
Second, the boxplots of the oxygen levels sensed by the cells are shown in Fig. 6B. For smaller 𝑉/ and thus 
smaller consumption, the median cellular oxygen level was increased in/around the cells because there was 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 10, 2024. ; https://doi.org/10.1101/2024.03.05.583363doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.05.583363
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 18 

more oxygen left in the microenvironment. In contrast, larger 𝑉/ implies more consumption and less oxygen 
left in the microenvironment. Third, Fig. 6C supports this observation by showing the inverse relationship 
between 𝑉/ and the average oxygen level in the tissue. As expected, the stabilized average oxygen value 
increased as the 𝑉/ decreased because cells consumed less oxygen, and more oxygen remained in the 
interstitial space of the tissue. Finally, the normalized L2 norm values were calculated for the final stabilized 
oxygen distributions produced by the perturbed values compared to those produced by the baseline value. 
The minimum and maximum normalized L2 norm values were 0.0003 and 0.0062, respectively.  
 

 
 

First, the extent and significance of the changes in the cellular oxygen levels are summarized in the 
𝐴S-measure plot in Fig. 6A. The plot shows that changing 𝑉/ between 1.64x10-17 and 4.9x10-17 mole/s per 
cell yielded model outputs whose differences compared to the baseline value outputs were small. The 
statistical significance of the differences was minimal, meaning that the cellular oxygen levels were less 

 
Fig. 6. Sensitivity analysis to 𝑽𝒎 parameter. A. The 𝐴1-values (y-axis) calculated by comparing the cellular 
oxygen levels produced by perturbed and the baseline 𝑉# values (x-axis). The symbols represent: filled circle 
(baseline value), stars (perturbed values plotted for panel C), and open circles (other perturbed values).   B. 
Boxplots of the cellular oxygen levels (y-axis) for the perturbed and the baseline 𝑉# values (x-axis) from A. C. 
Temporal evolution of the average oxygen in the tissue (y-axis) over iterations (x-axis). The inset shows a 
magnified portion with the corresponding average oxygen values. 
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sensitive to these perturbations (indicated by * within the green lines in Fig. 6A). These are the robust 
values of 𝑉/. The cellular oxygen levels were more sensitive to perturbed 𝑉/ values outside this range. 
Second, the boxplots of the oxygen levels sensed by the cells are shown in Fig. 6B. For smaller 𝑉/ and thus 
smaller consumption, the median cellular oxygen level was increased in/around the cells because there was 
more oxygen left in the microenvironment. In contrast, larger 𝑉/ implies more consumption and less oxygen 
left in the microenvironment. Third, Fig. 6C supports this observation by showing the inverse relationship 
between 𝑉/ and the average oxygen level in the tissue. As expected, the stabilized average oxygen value 
increased as the 𝑉/ decreased because cells consumed less oxygen, and more oxygen remained in the 
interstitial space of the tissue. Finally, the normalized L2 norm values were calculated for the final stabilized 
oxygen distributions produced by the perturbed values compared to those produced by the baseline value. 
The minimum and maximum normalized L2 norm values were 0.0003 and 0.0062, respectively.  
 
3.8 Sensitivity analysis of the Michaelis constant 𝑲𝒎 
The value of the Michaelis constant 𝐾/ was estimated in [24] to be 𝐾/= 2.1x10-3 mM of O2 (=1.344 
𝜎𝑔/𝜇𝑚<after scaling). 𝐾/ is inversely related to the affinity for oxygen binding; thus, for high 𝐾/ values, 
the cells require greater oxygen concentrations to reach the maximal consumption rate 𝑉/. In contrast, low 
values of 𝐾/ show a high affinity for oxygen binding and require lower oxygen concentrations to reach 𝑉/. 
We conducted a value sensitivity analysis for 𝐾/ by dividing the baseline value (by two, four, and ten) to 
obtain small values and multiplying the baseline value (by the same numbers and more) to obtain large 
values. Therefore, we tested 13 parameter values.  

First, the magnitude and significance of the changes in cellular oxygen level produced by the 
perturbed vs. baseline value are summarized in Fig. 7A 𝐴S-measure plot. The plot shows that none of the 
perturbed values tested resulted in significantly different model outputs compared to the baseline value 
output, meaning, the cellular oxygen levels are insensitive to 𝐾/ perturbations. A large 𝐾/= 73.5x10-3 
value was required to cross the green line. Second, the boxplots of the cellular oxygen levels in Fig. 7B 
show that for smaller values of 𝐾/,	the median cellular oxygen levels were the same. However, the median 
values increased starting at 𝐾/= 21x10-3. The minimum and maximum cellular oxygen values were the 
same for all values. This is because some cells will not uptake oxygen while others will uptake oxygen up 
to the imposed vascular influx value. 

Third, the average oxygen in the tissue for each value was calculated and plotted in Fig 7C. This 
graph shows that the average oxygen levels increased as the Michaelis constant 𝐾/ increased. Larger 𝐾/ 
values imply low affinity for oxygen binding, resulting in more oxygen in the tissue and a higher average 
oxygen value. Conversely, lower 𝐾/ values result in a lower average oxygen level. However, the averages 
were close to each other. In addition, the normalized L2 norm values between the final stabilized oxygen 
gradients for perturbed values compared to the baseline value were 0.0002 and 0.0039 for the minimum 
and maximum values, respectively. These small values indicate that the stabilized oxygen gradients were 
not significantly different from the map generated by the baseline value. Therefore, the model outputs were 
less sensitive to both small and large perturbations of 𝐾/.  
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4. DISCUSSION 
In this paper, we presented a mathematical model for reconstructing the oxygenation landscape of a 
digitized tissue obtained from in vivo murine experiments. Similar mathematical models were used 
previously by our group [3, 10, 11]. However, in the current study, we performed computational simulations 
using an actual image of a mouse bladder tissue and tumors. Most parameters in our study were based on 
published experimental measurements (summarized in Table 1). However, like all experimental 
measurements, these parameters were associated with some variability and uncertainty. Therefore, we used 
sensitivity analyses to examine how changes in model parameters would affect the outcomes of the 
mathematical model. These analyses helped to determine the robust parameters and their changeable ranges 
vs. those that are sensitive and should be fixed.  
 Our sensitivity analysis of the initial oxygen level in the tissue shows that this initial condition is 
robust. We also observed that the simulations that started with lower oxygen levels stabilized more quickly 

 
Fig. 7. Sensitivity analysis to 𝑲𝒎 parameter. A. The 𝐴1-values (y-axis) were calculated by comparing the cellular 
oxygen levels produced by perturbed and baseline 𝐾# values (x-axis). The symbols represent: filled circle 
(baseline value), stars (perturbed values plotted for panel C), and open circles (other perturbed values).  It takes 
𝐾# to be a large as 73.5 x10-3 mM of O2 to cross the green line). B. Boxplots of the cellular oxygen levels (y-
axis) for the perturbed and the baseline 𝐾# values (x-axis) from A. C. Temporal evolution of the average oxygen 
in the tissue (y-axis) over iterations (x-axis) for simulations with 𝐾# between 0.11 x10-3 and 42 x10-3 mM of O2. 
The two insets show zoomed-in portions with the corresponding average oxygen values. 
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than those with higher initial oxygen levels. These results corroborate those of Kingsley et al. [3], who 
found, that the final stabilized oxygen distribution is independent of the oxygen level chosen to initiate the 
oxygenation process, but some simulations stabilized faster than others. However, our work differs in 
several key ways from [3]. Specifically, the vasculature in [3] comprised vessels of the same size and 
identical oxygen influx levels. Similarly, all cells of the same kind (tumor or stromal) had identical sizes. 
In contrast, the structural tissue elements in our model were of variable sizes, with non-uniform vascular 
influx and cellular consumption modes based on cell size. Furthermore, the tissue in [3] was smaller in size, 
had a square shape, and lacked some of our tissues' features, such as inner cavities and an irregular tissue 
shape that required the definition of outer points. These features make our model more realistic and bring 
it closer to translation from preclinical to clinical work and validation with patients' histological-based 
tissues. Our next sensitivity analysis showed that changing the type of tissue boundary conditions did not 
affect the final model output. Using the periodic or Dirichlet instead of Neumann boundary conditions on 
the domain boundaries did not significantly change the final stabilized oxygen distribution. However, the 
model was sensitive to changing the imposed hypoxia values in the inner cavity's points. The hypoxia 
boundary condition is biologically feasible given that these cavities (representing the hollow spaces of the 
bladder) may be exposed to some oxygen level, albeit a low-level [25]. Therefore, we recommend imposing 
the hypoxia boundary condition. The high sensitivity to the changes in cavity values from hypoxia to zero 
indicates that this parameter may need to be measured experimentally to improve the model's accuracy. The 
natural levels of oxygen partial pressure may be assessed in such cavity spaces using direct oxygen imaging 
with solid probes, as proposed in [26]. 
 The sensitivity analysis of the oxygen vascular influx level showed that this parameter is robust 
only for the oxygen pressure gradients within 4 mmHg from the baseline value, which was set to 60 mmHg 
[18, 23].  The parameter values from 56 to 64 mmHg produced results with minimal statistically significant 
differences compared to the baseline value. However, the influx parameter is sensitive to changes beyond 
4 mmHg, and thus it should be measured experimentally for a given tumor, as tumor vascularization may 
differ for different cancers. Our study also suggests that of the two Michaelis–Menten parameters, the model 
is more sensitive to large perturbations of the maximum consumption rate 𝑉/. Only small perturbations of 
V/ have a negligible influence on the final stabilized average oxygen levels and the resultant cellular 
oxygen levels. Conversely, no perturbations of 𝐾/, the oxygen concentration at half 𝑉/, produced 
significantly different results compared to the baseline value. Our results are consistent with other 
sensitivity analyses by Fontes et al. [27] and Hetrick et al. [28], who showed that their models were also 
sensitive to 𝑉/ and insensitive to 𝐾/. 

The tissue oxygenation in our model was recreated based on 2-dimensional (2D) histology images, 
whereas truly 3-dimensional (3D) recreation would be useful. The 2D tissue slices are important as they 
provide information on cellularity, vascularity, and spatial heterogeneity and lead to identifying subregions 
with different oxygenation patterns. Nevertheless, 3D models offer more realistic and detailed geometries, 
easier visualization of tumor volumetric data, and may also provide more physiologically accurate 
information. Our model can be translated to the 3D space by using spheres (of different radii) to represent 
the cells, as was done in [29, 30], and branched tube segments that can represent vasculature or irregular 
geometry, as was done in [31-33]. The equations can be extended to 3D by including the z plane. For 
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example, the spatial locations of 3D grid points would be 𝒙 = (𝑥, 𝑦, 𝑧) as was done in [34]. However, 
visualizing the diffused oxygen gradients may be difficult in 3D. Furthermore, these 3D models may be 
computationally expensive.  
 
CONCLUSIONS 
In this study, we analyzed the robustness of the physical and computational parameters in our hybrid ABM. 
Based on a local sensitivity analysis, we identified that the most robust parameters are: the Michaelis 
constant 𝐾/, the computational domain boundary conditions, and the initial oxygen conditions. Conversely, 
the maximum consumption rate 𝑉/, the vascular influx, and the tissue boundary condition imposed on the 
outer points and the inner cavities are sensitive parameters. 
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