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Abstract 

The dopaminergic system of the brain is involved in complex cognitive functioning and 

undergoes extensive reorganization during development. Yet, these changes are poorly 

characterized. We have quantified the density of dopamine 1- and 2-receptor (D1 and D2) 

positive cells across the forebrain of male and female mice at five developmental stages. Our 

findings show a cortico-subcortical shift in D1/D2 balance, with increasing D1 dominance in 

cortical regions as a maturational pattern that occurs earlier in females. We describe postnatal 

trajectories of D1 and D2 cell densities across major brain regions and observe increasing 

regional differentiation of D1 densities through development. Our results provide the most 

comprehensive overview of the developing dopaminergic system to date, and an empirical 

foundation for further experimental and computational investigations of dopaminergic 

signaling. 
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Introduction 

Dopamine is a monoamine neurotransmitter modulating complex behaviors such as attention, 

cognitive flexibility, and decision making via its receptors1–3. Amongst five receptors, 

dopamine receptors 1 and 2 (D1 and D2) are the most abundant in the mammalian central 

nervous system4. D1 and D2 have distinct molecular structures and opposing intracellular 

processes4, which explains how dopamine can have such a varied role in cognition and affect5. 

These receptors also represent the main therapeutic targets for many psychiatric disorders, 

many of which are the most prevalent in adolescence6. Therefore, insight into the development 

of D1 and D2 distribution in the brain is essential for precision medicine. 

Popular neurocognitive theories to explain adolescence as the dominant period for 

neuropsychiatric disorders posit that the function of subcortical socioemotional systems of the 

brain may develop faster compared to cortical cognitive control systems to result in reduced 

cognitive control during adolescence7,8. In addition, immature functional connectivity between 

cortical and subcortical regions during adolescence may further dampen cognitive control at 

this age9,10. The dopaminergic system is critical for neural connectivity11, and D1 and D2 

signaling is particularly important for neural network function12,13. However, the postnatal 

development of D1 and D2 neurons has only been characterized for a few brain regions, and a 

comprehensive overview allowing for analysis of differences across the brain has been lacking.  

To address this gap, we performed region-wise quantitative analysis of D1- and D2-expressing 

cells (hereafter referred to as D1 and D2 cells, respectively) in the entire forebrain of 

developing mice, using a comprehensive collection of immunohistochemically stained sections 

(DOPAMAP)14 that are spatially registered to age-specific Allen Mouse Brain atlases15. The 

brains available from the DOPAMAP collection (n = 153) span five age groups (postnatal day 

17, 25, 35, 49 and 70) together covering development from the juvenile stage through 

adolescence, and both sexes. We created a custom scheme of anatomical regions largely 

following the hierarchical organization specified for the adult Allen Mouse Brain atlas16, but 

with cortical layers and very fine subregions merged. Immunolabelled cells were identified in 

section images using the image segmentation tool ilastik17 (Figure 1A-C), an open-source 

software for machine-learning based segmentation of features in biomedical images. The 

segmentation images were combined with the atlas maps using Nutil Quantifier18 (v0.8.0; 

Figure 1D), outputting the number of segmented objects (i.e. labelled cells) and coordinates 

representing them, sorted according to the atlas regions. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 7, 2024. ; https://doi.org/10.1101/2024.03.05.583309doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.05.583309
http://creativecommons.org/licenses/by/4.0/


The quantitative data were used for statistical analysis to investigate regional changes in D1- 

and D2 densities across development of female and male mice. Considering the importance of 

balance between D1- and D2-expressing cells in psychiatry19–21, we first asked whether D1 

density normalized to D2 density (i.e., D1:D2 ratio22) show cortical-subcortical maturational 

differences. Raw D1 and D2 density values were then analyzed. With the cortical-subcortical 

maturation theory in mind, we investigated the maturation of D1 and D2 expression across 

cortical and subcortical regions and explored the correlation of D1 and D2 expression between 

regions across the age groups. We provide the quantitative data as an openly shared resource, 

which can be used to explore the data presented here, to answer questions beyond those asked 

in the current study or to build computational models.  
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Fig. 1. Forebrain-wide mapping of cells containing dopamine receptor 1 (D1) or 2 (D2). 

(A) Image of coronal section showing immunolabelled D1 cells (from subject C60 of the adult 

female group) that were segmented using a machine-learning based method. Because the level 

of staining appeared very different across areas, three separate algorithms were trained for 

different major regions defined using atlas delineations: one general, one for heavily stained 

areas, and one for fibrous areas (B). The resulting segmentations (A’) were combined based on 

the atlas regions (C-D). All objects in the segmentation images were extracted and quantified 

per region in the Allen mouse brain Common Coordinate Framework. (E) Point cloud 

representations showing the average expression of D1 (top) and D2 (bottom) cells based on all 

P70 and P49 subjects. The panels from left to right show a 3D view, as well as coronal, sagittal 

and horizontal slices through this volume. The individual points are color coded by the atlas 

regions. Scale bars are 2 mm, 200 µm and 100 µm in A, A’ and B, respectively. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 7, 2024. ; https://doi.org/10.1101/2024.03.05.583309doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.05.583309
http://creativecommons.org/licenses/by/4.0/


Materials and Methods 

We used a comprehensive collection of openly shared datasets showing dopamine 1- and 2-

receptor positive cells in the developing mouse forebrain23-40. These datasets consist of high-

resolution microscopic images that are publicly available through the EBRAINS Knowledge 

Graph (https://search.kg.ebrains.eu/). The acquisition and sharing of these data are described 

in detail in previous publications14,22. We used the semi-automated QUINT workflow41,42 to 

extract labelled cells from the public images and perform quantitative analysis across the 

forebrain and through postnatal development.  

Overview of data. The DOPAMAP collection includes data from DR1a-EGFP and DR2-EGFP 

mice, with male and female subject from five age groups (P17, P25, P35, P49 and P70). 

Animals were sacrificed by perfusion fixation, and 40 µm thick coronal sections were cut and 

immunohistochemically stained using 3,3-diaminobenzidine (DAB). Series of sections were 

then scanned and shared as high-resolution microscopic images through the EBRAINS 

Knowledge Graph, with the full collection comprising 153 image series. Technical details on 

antibodies and protocols are given in Cullity et al.22 

Selection of data for analysis. Histological sections are vulnerable to damage during 

processing, such as tears or holes in sections; also, section images may display suboptimal 

staining. To select series for analysis, we evaluated whether the staining quality of each series 

was suitable for automatic extraction of cells. We also evaluated the completeness of each 

series, with regards to how much damage the sections displayed and how much of the brain a 

series covered; if a series displayed a lot of damage and covered only a small part of the brain, 

we did not include it in our analysis. This was largely a judgement call based on the cost of 

including a series with a lot of damage in the analysis (as such series requires significant 

additional time for non-linear registration and damage correction) and the added value the 

series would give to the analysis (which is higher the more of the brain is covered). An example 

series excluded based on tissue damage is series C36 from the D1 late adolescent male group 

29. In this series, sections between section numbers 20 and 28 were missing, and sections 

posterior to s028 displayed considerable tissue damage. Thus, the posterior part of the series 

would likely have been excluded entirely. Given that several of the remaining sections also 

displayed damage and only covered the most rostral end of the forebrain, the series was 

excluded. Based on such considerations, we selected 111 out of 153 DOPAMAP series for 

semi-automatic, quantitative analysis of labelled cells. Table S13 summarizes the number of 
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subjects in each group. Note that the series cover variable extents of the forebrain (for a full 

overview, see our previous publication), and that the number of animals in the D2 group with 

coverage through the posterior part of the forebrain was relatively low. However, the 

expression patterns in our individual and averaged datasets resembled those seen in other public 

datasets of D2 receptor expression from the Allen Institute (Figure S1). 

Spatial registration to atlas. The images in the DOPAMAP data collection were previously 

spatially registered to the Allen mouse brain Common Coordinate Framework (v3, 2017 

versions of the delineations)16 using the QuickNII tool to perform linear transformation of the 

atlas to fit each section image14. For the youngest age groups (P17, P25 and P35), we used 

versions of the atlas that have been tailored to fit serial two-photon tomography templates of 

developing brains15. The overlays achieved by use of linear registration with QuickNII provide 

a good starting point for interpreting neuroanatomy, but do not fit perfectly due to the normal 

variation between animals and deformities introduced by the histological processing. To 

facilitate accurate automatic quantification of cells in different atlas regions, we therefore 

further refined the existing atlas overlay images by use of VisuAlign (RRID:SCR_017978), 

which enables in-plane non-linear transformations. When using VisuAlign, we first focused on 

fitting the atlas overlay to the outer edges of the section images, at the same time altering the 

placement of borders between cortical regions as little as possible. Secondly, we adjusted the 

placement of borders for clearly distinguishable landmarks deep in the brain, such as the 

hippocampus, striatum, and globus pallidus. We avoided adjusting the atlas overlay in regions 

where a neuroanatomical substrate for its borders could not be seen in the section.  

Image segmentation. Image segmentation was performed using ilastik, an open-source 

software for machine-learning based segmentation of features in biomedical images17. Prior to 

segmenting images, we downscaled the images to 20% of their original resolution using Nutil 

(v.0.6.0). Twenty of these downscaled images were selected (one image from each of the 20 

subject groups) to use during training. Both in D1 and D2 stained material, there were large 

variations in the general appearance and intensity of staining in different brain areas. For 

example, striatal regions showed heavy staining with dense cell populations, while other areas 

showed almost no cellular staining but a lot of fibers. Because of this variability, it was not 

possible to train a single classifier to reliably identify cells across the whole brain while 

simultaneously ignoring fiber staining in areas with few cells. We therefore trained one general 

classifier, designed to segment cells across most brain areas, and two specific ones to segment 
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cells in 1) brain regions with very dense cell populations (e.g. the caudoputamen, nucleus 

accumbens and olfactory tubercle) and 2) areas with a lot of fiber staining (e.g. the globus 

pallidus and all white matter tracts). The resulting three algorithms are referred to as classifiers 

for “general”, “heavily stained” and “fibrous” regions, respectively. Examples of the different 

types of regions and resulting segmentations are shown in Figure 1. 

We used the pixel classification workflow to train each of the three classifiers, creating two 

classes (“cell” and “background”). Our training images were cropped to mainly show regions 

of interest for the classifier being trained, and using cropped images also served to make the 

ilastik software more stable. Example segmentations were made in all training images and 

across different brain areas. The resulting segmentation was continuously evaluated using the 

“Live update” function in ilastik. Training was stopped when a satisfactory result was obtained, 

and the classification did not change significantly with more training. Segmentation results 

were exported as Simple Segmentation (.png) images using the Batch Processing function, 

running each of the three classifiers on each of the 111 image series.  

The result of the above procedure were three sets of segmentation images for each brain, one 

for each classifier. However, from each segmentation image series, only a subset of the image 

was of interest for the final quantification. That is, for each region in the brain, either the 

‘general’, ‘heavily’ or ‘fibrous’ segmentation image would be used depending on the staining 

pattern. The assignation of classifier for each brain region was the same across all subjects and 

age groups but was different for D1 and D2 stained material as different regions show heavy 

staining in these data. A custom python script was used to combine the three segmentation 

images based on the region definitions from the non-linear atlas maps. For each segmentation 

image resulting from each of the three classifiers, the script masks every region except those 

for which the given classifier should be used, based on information contained in the .FLAT 

files exported from VisuAlign. It then combines the three masked images to create one image 

consisting of segmentations from the three different classifiers (Figure 1C). The segmentations 

resulting from each of the classifiers were exported using different colors for the cells (Figure 

1B) to verify that the automatic combination was working correctly. However, prior to 

quantification with Nutil, all objects were recolored (Figure 1D) to allow extraction of all 

objects in a single run. 

Quantification of segmented objects. To quantify the segmented objects across the brain, 

segmentation images were combined with the atlas maps using Nutil Quantifier (v0.8.0)18. 
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Object splitting was turned off and the pixel cut-off was set to 4 pixels. We used a custom 

region scheme largely following the Allen Mouse Brain atlas hierarchy, but with cortical layers 

and very fine subregions merged. The custom regions excel file, compatible with Nutil 

Quantifier, is shared with the public datasets. Remaining Nutil parameters followed the default 

settings. 

Identification of damaged and missing areas. Although we excluded some series due to the 

overall staining quality or amount of damage (see “Selection of data for analysis”), many 

images within the selected image series still have some artifacts caused by the processing of 

histological tissue such as damage or suboptimal staining in parts of sections. To account for 

such artifacts, we manually inspected all analyzed sections. Whenever a section displayed 

damage or suboptimal staining, we created a custom “mask” in Adobe Photoshop that covered 

the affected area. The mask images were then automatically superimposed on the segmentation 

images using a custom python script. The result of this procedure is a segmentation image 

where the parts corresponding to region(s) with damage are covered by a black mask. Any 

object present in damaged areas are thus masked and effectively excluded from the analysis. 

To account for excluded areas in the quantification, we used numbers from the from 

neighboring sections or the contralateral side to interpolate data (see “post-processing of 

results” below).  

To identify and quantify areas that were masked for each image, we ran the mask images 

through Nutil Quantifier (v0.8.0). We used the same parameters as for quantifying segmented 

objects except that object splitting was turned on (since a mask can overlap more than one 

custom region). The mask load (i.e. the size of the mask relative to the size of the custom 

region) was used during post-processing of results to account for damaged areas in the final 

quantitative data (see below). 

In some images, part of the section was missing (e.g. a cortical hemisphere missing in the 

caudal part of the brain) with the consequence that the image was cropped to fit the dimensions 

of the remaining section parts. When the image is cropped, the corresponding atlas plate is also 

cropped, and will consequently be missing parts of or whole regions. Such missing regions will 

not be represented in the mask load. To amend this, we created a python script to generate, for 

each atlas plate, a corresponding uncropped atlas plate. By comparison of the number of pixels 

for a region in each cropped and uncropped atlas map pair, we estimated the percentage of each 
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region that were missing in each section image. This “hidden mask load” was added to the 

mask load to give a total mask load accounting for missing and damaged parts of sections. 

Post-processing of results. Nutil Quantifier generates reports containing the counts of objects 

in custom brain regions, sorted per coronal section image. However, several post-processing 

steps are necessary in order to generate realistic neuron numbers, accounting for 1) the section 

sampling interval; 2) the tendency to over-estimate when extrapolating numbers to whole 

regions43,44; 3) any damage or suboptimal staining intensity in section images. We generated a 

python script to streamline the post-processing of Nutil Quantifier results into realistic cell 

numbers and densities. The steps included in this post-processing pipeline are outlined below. 

First, we corrected for damaged areas in all the section-wise object counts by use of the mask 

load information. The total mask load was the sum of the damage mask load (extracted from 

the “Load” column of the section-wise Nutil reports on the mask quantification) and the hidden 

mask load (see above). Regions could be either partly or fully masked (> 90% of the region 

covered by a mask were considered fully masked, as a few pixels of the region could have been 

missed when creating the mask). In fully masked regions, numbers were interpolated by use of 

data from neighboring sections. Numbers for missing sections (indicated by a section number 

in the serial order missing) were also interpolated.  

Partly masked regions were corrected using the data for the intact part within the section, by 

use of the following formula:  

Nm =  
𝑁

1− 𝑚
 

Where N is the raw number of objects, m is the mask load, and Nm is the mask-corrected number 

of objects. 

Secondly, to account for the tendency to over-estimate object counts when extrapolating 

numbers observed in sections, we corrected the section-wise object counts using 

Abercrombie’s formula43: 

𝑁𝑎 =  
𝑁𝑚 ×  𝑇

𝑇 + 𝐷
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Where Nm is the mask-corrected object count, T is the thickness of the sections, and D is the 

mean diameter of the profiles, and Na is the resulting estimated number of cells (Abercrombie-

corrected). The mean diameter of the profiles was calculated based on the size estimates in the 

Object reports from Nutil Quantifier. This report gives the estimated area in pixels for every 

object. We calculated the mean object size per custom region in µm by multiplying this by the 

pixel size (1.21), and converted this into the object diameter by the following formula: 

D =  2 ×  √
𝐴

𝜋
 

To obtain region areas in µm2, the section-wise region areas were multiplied by the pixel size 

of the images (which was 1.21 µm in all series). Lastly, to arrive at section-wise densities per 

region, the corrected object counts were divided by the region area. This gave the neuron count 

per µm2. To convert this into neuron counts per mm3, we divided it by the section thickness 

(40 µm; giving the count per µm3) and multiplied by 109 (giving the count per mm3). 

Statistical analysis. For statistical analysis, we grouped the custom regions used in the QUINT 

analysis into 17 major brain regions. This was done to reduce the number of comparisons made 

and to increase the sample size for each area, making the analyses more robust. The sorting 

was guided by the hierarchy levels of the Allen Mouse brain CCF ontology. A full overview 

of the mapping of regions to this level of the hierarchy is given in Table S14, and an overview 

of the sorting of the fine-grained regions of the CCF into custom regions is shared with the 

public dataset45. 

All statistics used IBM SPSS Statistics 29 (IBM Corp., NY, USA). Density data for each group 

for each brain region were first examined for normality (skewness and kurtosis of the 

distribution of individual datapoints). Most groups for each brain region fell within acceptable 

range (skewness range = -1.960 to 1.976; kurtosis range = -3.270 to 3.448)46, and these groups 

contained no statistical outliers (Grubb’s test p’s < 0.05). Groups with data that fell outside this 

range for skewness and/or kurtosis are shown in Table S15. Grubb’s test revealed an outlier 

from each of these groups, which were removed for subsequent analyses.   

Group differences were then analyzed with two- or three-way analyses of variances (ANOVA) 

with Tukey’s post hoc multiple comparisons for age main effects and Bonferroni-corrected 

post hoc tests for any significant interactions (Table S1-2). For inter-regional correlations, two-

tailed Pearson’s correlation (r) tests were used (Table S3-12). 
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Visualization of data. We used the python matplotlib library to calculate descriptive statistics, 

summary data and D1:D2 ratios, as well as to create graphs used in the figures. All the code 

used for this is available through the DOPAMAP github repository and can be re-run on the 

data sheets provided in the public dataset45, to reproduce the figures presented in this paper or 

create similar figures for other datasets. The color-coding of D1:D2 ratio across major brain 

regions (Figure 2) and correlations coefficients (Figure 3) were created using conditional 

formatting in Microsoft Excel. 

To create an average representation of the D1 and D2 neurons across the brain we used the 

.json files with coordinates from Nutil (3D_combined.json file, available for each subject in 

the shared dataset45). For each subject, this file contains the 3D atlas coordinates for all 

segmented pixels. Since prior analysis had shown there were no substantial differences between 

the two oldest age groups (P49 and P70), subjects from both these groups were combined for 

the average visualization. For each brain we created an ‘individual intensity volume’. This was 

achieved by first generating a volume corresponding to the Allen Mouse brain Common 

Coordinate Framework, with 25-micron voxel resolution. In this volume, each voxel was given 

a value corresponding to the number of segmented pixels with coordinates falling inside that 

voxel, as extracted from the Nutil .json file. To fill the space between sections, each of these 

volumes were linearly interpolated. To give the most accurate average representation of the 

individual intensity volumes, we wanted to weigh values by their distance to observed data (i.e. 

values close to observed data-points should contribute more to the average representation than 

values which were interpolated and far from any observed data-point). To achieve this, we 

created a second volume for each brain which contained the distance of each voxel from the 

nearest section, giving large values to voxels which were far from any section. Weighting 

values for all the voxels were then calculated so that they would exponentially decrease in 

relation to their magnitude, creating a ‘weights volume’ for each brain. The individual intensity 

volumes were then averaged together, with values in each volume weighted by the 

corresponding voxel in the weights volume. This process was done separately for D1 and D2 

animals, creating average D1 and D2 volumes that were saved in both nifti and neuroglancer 

file formats. The NIfTI files were shared with the public dataset45, while the Neuroglancer 

format volumes were made available through Siibra, enabling users to interact with the data 

alongside atlas delineations. We used the interactive viewer when creating Figure 2, with the 

parameters set as follows:  
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- Opacity: 0.9 

- Lower threshold: 0 

- Higher threshold: 0.51 for D1 and 0.34 for D2. The higher threshold was set differently 

in the two volumes in order to normalize them to the highest intensity overall, which 

was found in the D2 volume, thus facilitating side-by-side comparison in the figure. 

- Brightness: 0.08 

- Contrast: 0 

- Color map: magma 

The average expression volumes were used to create an average point cloud representation to 

represent the D1 and D2 data (shown in Figure 1). In these volumes, points were placed 

according to the expression distribution represented in the average volumes, until the number 

of points was equal to the total number of cells estimated in our calculations from the QUINT 

data. 

Data sharing. All the data from the current study was curated and shared as a dataset via the 

EBRAINS Knowledge Graph45. The dataset contains all the necessary files to re-run any part 

of the analysis performed here, or to re-use parts of the dataset (e.g. the nonlinear registration 

information, segmentation images) in new analyses. The content and structure of the shared 

data is fully described in the data descriptor accompanying the dataset on the EBRAINS 

Knowledge Graph. 
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Results 

Cortical-subcortical shift in dopamine receptor 1 dominance to dopamine receptor 2 

dominance. Bar charts of D1 and D2 densities averaged across male and female mice of five 

age groups showed a marked shift from D1 dominance in cortical regions to D2 dominance in 

subcortical regions (Figure 2A). The cortical-subcortical shift in D1 vs D2 balance was also 

clearly seen when inspecting 3D representations of the average expressions (Figure 2B) and 

the D1:D2 ratio across regions (Figure 2C). For statistical analyses we grouped regions into 17 

major brain regions, of which names and abbreviations are listed in the legend of Figure 2. 
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Figure 2. Distribution and ratio of dopamine receptor 1 or 2 expressing cells across the 

mouse brain and through development. (A) Bar plots of dopamine 1 (D1) and 2 (D2) cell 

densities across the P70 mouse brain, with D1 shown in the left panel and D2 in the right. Each 

bar represents a brain region and is color coded according to the Allen Mouse brain Common 

Coordinate Framework (bottom row) and sorted from top to bottom following the hierarchy. 

(B) 3D rendering (top) and coronal slice images (bottom) showing the intensity of D1 (left) 

and D2 (right) cell staining, averaged across P70 and P49 data to improve the visualization. 

Differences in the distributions can be seen corresponding to the data shown in panel A and are 

indicated by white lines. For example, D1 is more abundant in the cortex (e.g. in the anterior 

cingulate area (ACAv) and in deep layers across the cortex) and thalamus (e.g. anterodorsal 

(AD), anteroventral (AV), and reuniens (RE) nuclei), while D2 is more abundant in the lateral 

septum (LS), dorsal entopeduncular nucleus (EPd), and regions of the hypothalamus (e.g. 

anterior olfactory (AON) and paraventricular hypothalamic (PVH) nuclei). These intensity 

volumes can be explored interactively in the EBRAINS interactive atlas viewer; physical 

coordinates from the viewer of the levels shown here are indicated with red text 47,48. (C) Ratios 

of D1 and D2 cell densities (D1 divided by D2) in 17 major brain regions across development, 

with male and female ratios shown separately. Red and blue colors indicate strong D1 and D2 

dominance respectively, while white indicates a balanced ratio. Grey indicates missing data. 

Significant post-hoc tests for age-specific sex effects following a significant age × sex 

interaction are indicated by an asterisk for the relevant age group. Abbreviations: MO, motor 

areas; SS, somatosensory areas; GU/V, gustatory and visceral areas; ACC, anterior cingulate 

areas; PFA, prefrontal areas; RSP, retrosplenial areas; Olf, olfactory areas; HR, hippocampal 

region; CTX-s, cortical subplate; STR, striatum; sAMY, striatum-like amygdalar nuclei; PAL, 

pallidum; Th-s, thalamus, sensory-motor cortex related; Th-P, thalamus, polymodal association 

cortex related; Hy-o, hypothalamus, other; Hy-m, hypothalamic medial zone; Hy-l, 

hypothalamic lateral zone. 

Two-way (age and sex factor) analyses of variances (ANOVA) with Tukey’s post hoc multiple 

comparisons for age main effects and Bonferroni-corrected post hoc tests for any significant 

interactions (Table S1, Figure 2C) showed that there were main effects of age in all cortical 

regions (MO, SS, GU/V, ACC, PFA, RSP, Olf; see Figure 2 legend for abbreviations), with 

P17 showing the least and P70 generally showing the most pronounced D1 dominance (except 

for motor and prefrontal areas, where D1 was most dominant at P49). The D1 dominance also 

varied with sex. In all cortical regions except for anterior cingulate areas, there were significant 

main effects of sex with females showing a stronger D1 dominance than males. Given that the 

strengthening of D1 dominance in the cortical regions is an overall maturational pattern, this 

indicates an earlier maturation of cortical regions in females. Significant age × sex interactions 

were also observed for D1 dominance in motor and gustatory and visceral areas. While follow-

up post hoc tests indicated no sex effects at any age for motor areas, for gustatory and visceral 

areas there was a significant sex effect at P17 with females showing higher D1 dominance than 

males (t=2.504, p=0.020).  

D2 dominance was seen in most subcortical regions (HR, CTX-s, STR, sAMY, PAL, Th-S, 

Th-P, Hy-o, Hy-m, Hy-l; see Figure 2 legend for abbreviations) except for the hippocampal 
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region, pallidum, and hypothalamic lateral zone. In these region significant main effects of age 

were seen, with P17, P25, P35, and/or P49 being more D2 dominant than P70 (Table S1, Figure 

2C). Significant main effects of sex were also observed in every subcortical region with males 

having stronger D2 dominance, except for the thalamus (Th-s, Th-p). Significant age × sex 

interactions were observed in the hippocampal region and hypothalamic medial zone. Follow-

up post hoc tests indicated a significant sex effect at P17 with males showing stronger D2 

dominance in the hippocampal region (t=3.657, p<0.001), whereas no sex effects were 

observed at any age for hypothalamic medial zone. Consistent with cortical regions, the results 

indicate an earlier maturation of subcortical regions in females with the weakening of D2 

dominance an overall maturational pattern in the subcortical regions.  

Postnatal trajectories of dopamine receptor cells across the forebrain. To understand the 

independent changes in D1 and D2 density across age and sex, these values were analyzed with 

three-way (receptor, age, and sex factors) ANOVAs with post hoc tests as described above 

(Figure 3-4). Main effects of receptor were significant in all cortical regions, with higher D1 

than D2 density (Table S2). All cortical areas (except the prefrontal areas) also showed a main 

effect of age, with the P17 group showing the highest overall receptor densities. Specifically, 

P17 showed higher receptor densities compared to all other ages in motor and somatosensory 

areas, compared to P35-P70 in gustatory and visceral, anterior cingulate, and retrosplenial 

areas, and compared to P35 in olfactory areas (Figure 3). In prefrontal and olfactory areas, 

significant sex × receptor interactions were observed. Follow up post hoc tests revealed a 

significant sex effect for D1 (t=2.655, p=0.010) but not D2 in olfactory areas; no sex 

differences were detected for any receptor for the prefrontal areas.  
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Figure 3. Postnatal trajectories of D1 and D2 cell densities in cortical regions. The line 

graphs show the development of D1 (solid lines) and D2 (dashed lines) for female (orange 

lines) and male (blue lines) subjects. Significant effects are indicated on the graphs, and age 

groups that were significantly different from P17 are bolded on the x axis. Error bars indicate 

SEM. 

Most subcortical regions also showed significant differences between receptor types (except 

for striatum-like amygdalar areas, the sensory-motor cortex related thalamus, and 

hypothalamic lateral zone; Table S2). These effects of receptor type were more complex than 

in the cortical regions, interacting with one or more factors (age and/or sex) in all regions, 

except for the pallidum (where the D2 density was higher than D1 density regardless of age 

and sex (Figure 4)). Age effects were observed in all subcortical regions except for cortical 

subplate, striatum, and striatum-like amygdalar nuclei. All the age effects interacted with 

receptor and/or sex, except in the pallidum (where post hoc test indicated higher overall 

receptor levels in P17 than P70) and hypothalamic lateral zone (post hoc tests were not 

significant). 
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Figure 4. Postnatal trajectories of D1 and D2 cell densities in subcortical regions. The line 

graphs show the development of D1 (solid lines) and D2 (dashed lines) for female (orange 

lines) and male (blue lines) subjects. Significant effects are indicated on the graphs, and age 

groups that were significantly different from P17 are bolded on the x axis. Error bars indicate 

SEM. 

Follow up post hoc tests to sex × receptor interactions showed that females had a higher D1 

density than males in cortical subplate, striatum-like amygdalar nuclei, and hypothalamus other 

areas (biggest p = 0.040), while there were no sex effects on D1 density in striatum and 

hypothalamus lateral areas. Males had a higher D2 density than females in striatum, striatum-

like amygdalar nuclei, and hypothalamic lateral zone (biggest p = 0.049), while there were no 

sex effects on D2 density in cortical subplate and hypothalamus other areas.  

Follow up post hoc tests to age × receptor interactions showed that in thalamus polymodal area 

D2 density is significantly higher in P17 compared to all the other ages (biggest p<0.001), 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 7, 2024. ; https://doi.org/10.1101/2024.03.05.583309doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.05.583309
http://creativecommons.org/licenses/by/4.0/


while D1 density was not affected by age. Similar analyses in hypothalamus other area showed 

that D2 density in P17 is higher than in P35-P70 and P25 is higher than P70 (biggest p=0.036), 

but no age effects in D1 density. In contrast, hypothalamic medial zone D1 density was 

significantly higher in P17 compared to P49 while D2 density was higher in P17 compared to 

all the other ages.  

Thus, while cortical D1 and D2 densities (Figure 3) were generally similar in male and female 

mice with age effects not dependent on receptor or sex, several subcortical areas showed 

receptor-specific sex and age differences (Figure 4). Interestingly, we observed a three-way 

interaction effect (age × sex × receptor) in the hippocampal region and sensory-motor cortex 

related thalamus. For both areas, the interaction was driven by D2 density that showed age x 

sex interactions (biggest p = 0.023), with Figure 4 indicating particularly high levels of D2 in 

P17 males compared to all other groups.   

Age-specific correlation of dopamine receptor 1 or 2 density between regions. For each age 

group, we asked whether the cell densities correlated across different areas within the same 

receptor type (Table S3-S12). We found a striking reduction in correlation of D1 cell densities 

across regions with age. In P17, almost all region pairs (116 out of 136, or 85 %) showed a 

significant positive correlation (Figure 5), and the correlation coefficients were generally 

higher within broader hierarchical groups. For example, the density in cortical motor areas was 

highly correlated with that of the somatosensory areas (r(14) = 0.91, p < 0.001), and slightly 

less correlated with that in the hippocampal region (r(14) = 0.70, p = 0.003). The correlation 

coefficients gradually decreased with age (Figure 5), so that at P70, there were no significant 

correlation between the cortical motor areas and these regions (somatosensory areas, r(7) = 

0.36, p = 0.344, hippocampal region, r(7) = -0.44, p = 0.241); in general, only 31% of region 

pairs showed a significant positive correlation at this age. The D1 density in the hypothalamic 

lateral zone was in fact significantly negatively correlated with that in the striatum-like 

amygdalar nuclei at P35 (r(10) = -0.60, p = 0.04) and P49 (r(9) = -0.70, p = 0.016), and the 

sensory-motor cortex related thalamus at P49 (r(8) = -0.63, p = 0.049). Although the D1 and 

D2 density values for some other region pairs were negatively correlated across the dataset 

(Figure 5), only those mentioned above were significant. In contrast, D2 densities were 

generally less correlated between regions than D1 densities, with adolescent periods of P35 

and P49 showing the most significant positive correlations (42% and 38% of region pairs, 

respectively). Although some negative correlations were seen in almost all groups, very few 
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were significant (D1 densities for the hypothalamic lateral zone with sensory-motor cortex 

related thalamus at P35 and P49, and with striatum-like amygdala nuclei at P49). 

Figure 5. Correlation matrices 

showing the correlation of D1 

(left) and D2 cell densities 

(right) across 17 major 

forebrain regions. D1 densities 

are highly correlated across 

regions within animals at P17, 

with correlation coefficient 

gradually decreasing through 

development. At P17, 85% region 

pairs show a significant positive 

correlation, compared to 77%, 

54%, 24% and 31% at P25, P35, 

P49 and in the adult, respectively. 

D2 densities are generally less 

correlated than D1 densities, with 

35% of region pairs showing a 

significant positive correlation at 

P17, 18% at P25, 42% at P35, 

38% at P49 and 22% at P70. 
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Discussion  

We quantified D1 and D2 cell densities in atlas-defined regions in the forebrain of male and 

female mice across five age groups from the juvenile stage to young adulthood. While previous 

studies have investigated D1 and D2 expression in one or a few areas at a time, either through 

cell counting22,49,50 or other methods51,52, the current study is the first to cover the entire 

forebrain. The present results show considerable differences in D1 and D2 densities across age 

groups, sex, and regions. While the cortical-subcortical maturation theory might suggest that 

D1 and D2 expression should stabilize in subcortical regions before cortical regions, we did 

not find such a pattern in our dataset. Most of the complex age-related interaction effects were 

found in subcortical areas, while cortical areas showed simpler age main effects with P17 

expressing the most D1 and D2. In addition, D1 expression between regions correlated less 

with age, a surprising finding that may indicate increasing differentiation with age. D1 may be 

upregulated with relatively low selectivity early in life, but with maturation its role appears to 

be highly specialized and dissociated across regions. The highest regional correlations in D2 

were observed during adolescence. This may reflect alterations in the relative amounts of D2 

across the brain in this period, a period where D2 expression levels are prone to dynamic 

changes in response to stressful events53–55.   

D1 and D2 cell densities typically declined from P17 onwards in most regions, indicating 

pruning of dopamine receptors in this period. Such pruning has been shown in several brain 

areas before, but the extent and timing might differ amongst areas56,57. The difference of the 

P17 group from the rest of the ages is highly interesting. One of the best characterized behaviors 

in P17 rodents is extinction of conditioned fear, which refers to when a cue that used to elicit 

a threat response no longer elicits a response because it has been repeatedly presented without 

any consequences. It represents a new learning that confers a neutral meaning to the cue that 

competes with the cue-threat association. Extinction is generally reversible from three weeks 

of age and the threat response to the cue can relapse. However, extinction is irreversible in P17 

male rodents, which is attributed to extinction erasing conditioned fear58,59. Importantly, 

extinction is reversible in P17 female rodents60,61, which is consistent with the present study 

showing a more mature D1 and D2 expression than males at this age. As D1 and D2 cells are 

crucial players in mechanisms of learnt fear62,63, one might speculate that high levels of D1 and 

D2-expressing cells in P17 mice play a role in the unique extinction capabilities at this age. 

D2 expression was especially irregular across sex and age in subcortical areas, where D2 cells 

were generally more abundant than D1 cells. Alterations in the D2 system are associated with 
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several psychiatric disorders64,65, and many medications in psychiatry exert their effect through 

modulation of D2 activity66,67. However, vulnerability to disorders and effect of drugs is often 

sex- and age-specific6,68,69. In this light, our finding of a higher D2 density in males than 

females early in life is particularly interesting, and may indicate important new targets for 

intervention studies for sexually dimorphic psychiatric disorders70. 

Our study provides a comprehensive overview of the number of D1 or D2 positive cells in the 

developing mouse forebrain. Both the raw and derived data are made available through the 

EBRAINS Knowledge Graph and provide a starting point for new analyses or generation of 

hypotheses. The derived data include point clouds that can be integrated in computational 

models, where the current data should be of high interest for modelling the basal ganglia. Thus, 

we believe our study provides an important advance to our knowledge of the developing 

dopaminergic system and that the comprehensive data provided with it will serve as an 

important resource of broad interest for neuroscientists. 
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