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Abstract

5-hydroxymethylcytosine (5ShmC), acritical epigenetic mark with a significant rolein regulating tissue-
specific gene expression, is essential for understanding the dynamic functions of the human genome.
Using tissue-specific 5ShmC sequencing data, we introduce Deep5hmC, a multimodal deep learning
framework that integrates both the DNA sequence and the histone modification information to predict
genome-wide 5hmC modification. The multimodal design of DeepShmC demonstrates remarkable
improvement in predicting both qualitative and quantitative 5ShmC modification compared to unimodal
versions of Degp5hmC and state-of -the-art machine learning methods. This improvement is demonstrated
through benchmarking on a comprehensive set of 5ShmC sequencing data collected at four time points
during forebrain organoid development and across 17 human tissues. Notably, Deep5ShmC showcases its
practical utility by accurately predicting gene expression and identifying differentially hydroxymethylated

regionsin acase-control study of Alzheimer’s disease.


https://doi.org/10.1101/2024.03.04.583444
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.04.583444; this version posted March 6, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

I ntroduction

5-hydroxymethylcytosine (5hmC) modification is one important intermediate state among a successive of
states in active demethylation, which includes 5-Methylcytosine (5mC), 5hmC, 5-formylcytosine (5fC),
and 5-carboxylcytosine (5¢caC). The generation of 5ShmC occurs through the oxidation of 5mC by the ten-
eleven tranglocation (TET) protein family, and it is specifically recognized by 5hmC-binding proteins
(Spruijt et a., 2013; Tahiliani et a., 2009). In the nervous system, 5hmC plays a critical role in
neurodevelopment and neurological function. It has been found to be enriched in embryonic stem cells
and neuronal cells, regulating neuronal-specific gene expression during neural progenitor cell
differentiation (Kriaucionis & Heintz, 2009; X. Li et a., 2017). Abnormalities in 5ShmC distribution and
enrichment can be critical factors contributing to neurodegenerative diseases such as Huntington’s disease,
Autism spectrum disorder and Alzheimer’'s disease (AD) (Bernstein et al., 2016; Cheng et a., 2018;
Coppieters et a., 2014; Kuehner et al., 2021; Qin et a., 2020; Wang et al., 2013). Beyond
neurodegenerative diseases, 5ShmC also plays a significant role in cancer development and treatment.
Genome-wide mapping of 5hmC reveals that loss of 5hmC is an epigenetic hallmark of melanoma and
medulloblastoma (Lian et a., 2012; Stahl et a., 2021; Zhao et al., 2021). Additionaly, 5hmC in
circulating cell-free DNA serves as diagnostic biomarkers for colorectal, gastric, pancreatic cancer, acute
myeloid leukemia and other common human cancer types (Gao et al., 2019; W. Li et d., 2017; Shao et dl.,
2022). Importantly, 5ShmC-based biomarkers of circulating cfDNA have demonstrated high predictiveness
of cancer stage and superior to conventional biomarkers (Guler et a., 2020; W. Li et a., 2017; Song et d.,

2017).

The emergence of next generation sequencing has facilitated the genome-wide profiling of Shmc
modification. Among 5hmC sequencing technologies, antibody-based immunoprecipitation and
sequencing of hydroxymethylated DNA (hMeDIP-seq) (Weber et al., 2005) as well as 5ShmC-selective
chemical labeling method (e.g. 5ShmC-Seal) (Han et a., 2016; Song et a., 2011), have become cost-

effective methods to map genome-wide 5hmC signals. These methods aim to capture and enrich 5hmC
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methylated DNA fragments, followed by next-generation sequencing. Similar to ChiP-seq analysis, the
enriched region of 5hmC, deemed as “peak”, can be identified by peak-calling algorithm such as MACS
(Zhang et al., 2008). Due to their popularity, hMeDIP-seq/5hmC-Seal and other similar protocols have
been widely adopted to explore the distribution and patterns of genome-wide 5hmC in various tissues,
cell types (Cui et a., 2020; W. Li et a., 2017) and diseases (Bernstein et a., 2016; Cheng et al., 2018;
Kuehner et d., 2021; Qin et a., 2020). In addition, 5hmC sequencing aids in investigating the association
between 5hmC and other genomic elements. For instance, 5ShmC has been found to co-localize with gene
bodies and enhancers known to activate gene expression, and it is positively correlated with gene
expression (He et a., 2021). Moreover, 5hmC is significantly enriched in histone modifications
associated with active enhancers, such as H3K4mel and H3K27ac (Cui et al., 2020; Stroud et al., 2011).
Furthermore, the distribution and enrichment of 5ShmC exhibit tissue-specificity, evident in its preferential

enrichment on tissue-specific gene bodies and enhancers (Li & Liu, 2011).

Nevertheless, it is still costly to conduct a deep sequencing for an accurate identification of ShmC
modification. In addition, 5hmC experiments may suffer from underpowering due to insufficient
sequencing depth or various artifacts, leading to a limited detection of 5ShmC modification sites. Moreover,
5hmC profiles exhibit dynamic changes across tissues and cell types. To overcome these challenges,
computational models have been developed to enable an in silico genome-wide prediction of 5hmC
profiles. The general principle of these methods is to treat DNA sequence within a genomic region as the
model input and predict the probability of the region being a 5hmC peak. The key distinction between
these approaches lies in the feature engineering applied to DNA sequences and successive use of machine
learning algorithms. For example, iIRNA5ShmC-PS adopts k-mer (k=2,3) frequency and uses logistic
regression for predicting the presence of 5hmC peaks (Ahmed et al., 2020). iIRhm5CNN utilizes a simple
convolution neura network, which employs one-hot encoding DNA sequence as the model input to
predict the occurrence of 5ShmC peaks (Ali et al., 2021). Given that the resolution of 5ShmC peaks closely

aligned with that of ChlP-seq peaks, deep learning methods designed for predicting the binding sites of
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transcriptional factor, histone modification sites and open chromatin regions such as DeepSEA (Zhou &
Troyanskaya, 2015), which aimsto predict epigenetic signals across hundreds of tissues and cell typesin

amulti-task framework, can be readily adapted for the task for predicting 5ShmC peaks.

Despite the success of existing computational methods for predicting 5ShmC modification, there
are till challenges to be addressed. First, there is alack of computational methods specifically designed
for predicting tissue/cell type-specific 5hmC modification on DNA is lacking, and alternative methods
substituted for this purpose such as DeepDEA may be suboptimal. Second, the relationship among 5hmC,
histone modification and gene expression is rarely explored in the predictive modeling of 5hmC
modification. Lastly, current methods primarily concentrate on classifying binary 5hmC peaks while
overlooking the quantitative variation of 5ShmC modification. To address these challenges, we introduce a
novel multi-modal deep learning framework named Deegp5hmC, which aims to enhance the prediction of
tissue/cell type-specific genome-wide ShmC modification by incorporating information from both DNA
sequence and histone modification. The contribution of our work lies on following aspects: (i) DegpShmC
leverages both DNA sequence and histone modifications to improve the prediction of 5hmC modification
in both qualitative (i.e.,, 5hmC peaks) and quantitative prediction (i.e., normalized 5hmC reads); (ii)
Deep5hmC is developed and evaluated using a comprehensive set of 5ShmC sequencing (5hmc-seq) data
collected at four time points during forebrain organoid development and across 17 human tissues. The
extensive dataset demonstrates the power of Deep5hmC in predicting tissue-specific 5ShmC modification;
(iii) Deep5hmC is further assessed using one 5hmC-seq data in one case-control study of Alzheimer’s
disease to demonstrate its broad utility in predicting differentially hydroxymethylated regions (DhMR)
within the context of the disease; (iv) an extension of Deegp5hmC is to quantify gene expression by
predicted quantitative 5ShmC maodification within gene bodies; (v) Deegp5hmC is released as an open-
source python toolkit, which can benefit the epigenetic research community. As a result, we demonstrate
that inclusion of histone modification leads to improved prediction performance of Deep5hmC for both

qualitative and quantitative 5ShmC modification. Importantly, DeepShmC outperforms competing machine
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learning approaches for the same purpose. In addition, DeepShmC achieves an accurate prediction of gene

expression and is also powerful for predicting DhMRs.

Results

Overview of Degp5hmC

The workflow of the deep learning framework, Deep5hmC is demonstrated in Fig. 1. The labelled
training set can be derived from tissue/cell-type specific ShmC-enriched region (i.e., peaks) in one
condition (Fig. 1A) or DhMRs in a case-control study (Fig. 1B) (e.g., disease versus hedlthy contral).
Accordingly, one-hot encoding DNA sequence in peaks or DhMRs serves as the input for the sequence
modality (Fig 1C, D). In addition, histone features are obtained from histone ChiP-seq from public
consortiums such as ENCODE or Roadmap Epigenomics (Fig. 1A), with matched tissue/cell-type as the
5hmC-seg. Only the histone features in the neighborhoods of the 5ShmC peaks/DhMRs are considered as
the input for the histone modality. The sequence modality and histone modality each go through their own
convolutional neura networks (CNN) to derive separate feature representations, which are later joined via
the MFB fusion layer. The output of the MFB fusion layer further connects to fully connected layers and
the output layer afterwards. Depending on the preparation of training set and prediction mission, the
Deep5ShmC consists of four modules, including DegpShmC-binary, DegpShmC-cont, Deep5ShmC-gene
and Deep5hmC-diff. Specifically, DegpShmC-binary takes the labelled 5hmC peaks and non-peaks as the
training set to identify the ShmC-enriched regions (More details in section “Evaluating Deep5hmC for
predicting binary 5ShmC modification sites’). Deep5hmC-cont takes normalized read counts in 5hmC
peaks and aim to predict the continuous 5hmC modification genome-wide (More details in section
“Evauating Deep5hmC for predicting continuous 5hmC modification”). By leveraging Deep5hmC-cont,
Deep5hmC-gene aggregates the predictions of Deep5hmC-cont in the gene bodies as a surrogate for
predicted gene expression (More details in section “Evaluating Deep5hmC in predicting gene
expression”). Different from Degp5ShmC-binary, DeepShmC-diff takes the labelled DhMRs/non-DhMRs

in a case-control design of 5ShmC-seq as the training set, and derives histone features from a similar case-
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control design of histone ChlP-seq. DeepShmC-diff aims to predict genome-wide DhMRs and discover
de novo DhMRs that may be absent in the training set (M ore details in section “Evaluating Deep5hmC for
predicting differential hydroxymethylated regions’). Overall, the four modules in the deep learning
framework Deep5hmC will provide a comprehensive assessment of genome-wide tissue/cell type-specific
5hmC modification in either qualitative or guantitative manner as well as genome-wide DhMRs. In
addition, it allows the prediction of gene expression using predicted 5hmC modification. The details and

evaluation for each module of Deep5hmC will be elaborated in the subsequent sections.
Distribution pattern of histone modification around 5hmC peaks

We conduct a real data exploration by integrating tissue matched 5hmC-seq data and histone ChlP-seq
data to evaluate the potential of histone modification as informative features for predicting 5hmC
modification. Without loss of generality, we gather EB 5hmC peaks from “Forebrain Organoid” and
ChlP-seq data in “Brain Angular Gyrus’ involving seven histone marks from Roadmap Epigenomics
(Supplementary Table S1). The seven histone marks consists of H3K4mel, H3K27ac and H3K9ac
associated with active enhancers, H3K4me3 associated with active promoters, H3K36me3 associated
with active expressed gene bodies; and repressive marks such as H3K9me3 and H3K27me3. To
characterize the histone modification patterns around 5hmC modification sites, we acquire and average
the histone features with dimensions of 1x41 in the neighborhood of each 5hmC peak for the positive and
negative sets. The histone features represent essentially normalized 5ShmC read counts, which are created
by segmenting an extended genomic region of 10kb both upstream and downstream of each 5hmC peak
into 41 1kb windows, with a sliding size 500bp and counting reads for each 1kb windows (More detailsin
“Multimodal features’). Performing the Wilcoxon rank-sum test on the two sets of histone features for
each histone mark, we find that the distribution of histone features is significantly different between
positive and negative 5hmC peaks (pvalue<0.05) (Fig. 2). This observation suggests that histone marks

are informative for predicting 5ShmC modification.
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Moreover, the enrichment patterns of the seven histone marks exhibit variations (Fig. 2). Active
enhancer marks such as H3K4mel, H3K27ac and H3K9ac display a consistent pattern, where the histone
features are consistently higher in the positive 5hmC peaks than in negative ones. Notably, H3K4mel
shows the most significant differential enrichment of histone features between positive and negative
peaks (pvalue = 5.728 x 1071¢), followed by H3K27ac (pvalue = 2.169 x 10~°) and H3K9ac (pvalue =
4.682 x 1077). This observation aligns with the previous findings that 5hmC is significantly enriched in
histone marks associated with enhancers, such as H3K4mel and H3K27ac (Stroud et a., 2011).
Interestingly, the enrichment pattern is opposite for H3K4me3 compared to the active enhancer marks.
H3K4me3 is more enriched in negative 5hmC peaks than in positive ones (pvalue = 5.982 x 10™%). A
similar trend and shape are observed for H3K27me3 (pvalue = 9.690 x 1073). Although the histones
features are higher in negative 5hmC peaks than in positive peaks for both H3K9me3 (pvalue = 8.553 X
10718) and H3K36me3 (pvalue = 4.708 x 10~2%), the enrichment patterns differ. H3K9me3 exhibits a
valley-shaped pattern for both positive and negative peaks, while H3K36me3 shows a peak-shaped
pattern for negative peaks and a valley-shaped pattern for positive peaks. Comparing to H3K27me3,
which is considered as a temporary repression signal, H3K9me3, another repressive mark viewed as a
permanent repression signal, shows the same direction but different enrichment patterns (Kim & Kim,
2012). Furthermore, the overall enrichment level of active histone marks is higher than that of repressive
histone marks. Taking positive peaks as an example, the average 5hmC read counts in the center of the
positive peaks are approximately 24 for H3K4mel, 15 for H3K27ac, 24 for H3K9ac, 20 for H3K4me3
and 14 for H3K36me3 compared to 10 for H3K27me3 and 9 for H3K9me3. Additionally, the change of
enrichment from distal windows to the center window of active histone marks is more significant than
that of repressive histone marks. For positive peaks, the average 5hmC read counts increases by
approximately 5 from the distal 20™ window to the center window for H3K4mel, 4 for H3K27ac, 5 for
H3K9ac, 5 for H3K4me3, while they decrease by approximately 3 for H3K36me3. In contrast, the

average 5hmC read countsincreases by only 0.5 for H3K27me3 and decreases by 2 for H3K9me3.
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Evaluating the predictive power of histone marks

Motivated by the observation that the enrichment of histone marks shows differential distribution between
positive and negative 5ShmC peaks, we further explore the predictive power of each histone mark in
classifying positive and negative 5hmC peaks. Identifying the most influential histone marksis crucial for
reducing the model complexity especially when dealing with multiple histone marks in the matched
tissues or cell types. Specifically, we choose the EB 5hmC peaks from “Forebrain Organoid” and ChiP-
seq data from all brain regions of seven histone marks in Roadmap Epigenomics (Supplement Table S1)
and evaluate the predictive performance for each histone mark in terms of AUROC and AUPRC.
Consequently, we find that H3K4mel and H3K4me3 show higher AUROC than other histone marks
(Supplementary Fig. S1). In addition, the two histone marks are most prevalent across multiple tissue
and cell types in consortiums such as ENCODE and Roadmap Epigenomics. As aresult, we only include

the two histone marks in the subsequent experiments.
Comparing unimodal and multimodal Deegp5hmC

As Deep5hmC is a multimodal model comprising both sequence and histone modalities, we conduct an
ablation study to demonstrate that incorporating the histone modality leads to improved prediction
performance of 5hmC modification. For this purpose, we compare two unimodal models of Deep5hmC:
Deep5hmC-Seq and DeepShmC-His to the default multimodal Deep5hmC. Without loss of generality, we
utilize the same EB 5hmC peaks from “Forebrain Organoid” and ChlP-seq data from two histone marks:
H3K4mel and H3K4me3 collected from al brain regions in Roadmap Epigenomics (Supplementary
Table S2). The results indicate that Degp5hmC achieves the best performance with an AUROC of 0.92,
followed by Degp5hmC-Seq with an AUROC of 0.89. Deep5hmC-His lags with an AUROC of 0.68 (Fig.
3A). The observation indicates that integrating both sequence and histone modalities indeed enhances the
prediction performance, although using histone modality alone achieve only moderate predictive ability.
Similar trends are observed when measuring prediction performance by AUPRC (Fig. 3B). It is evident

that multimodal Deep5hmC unequivocally outperforms unimodal DeepShmC, whether Deep5ShmC-Seq or
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Deep5hmC-His, in terms of both AUROC and AUPRC. Given the superior performance of multimodal

Deep5hmC, we will useit as the default implementation in subsequent sections.

Evaluating Degp5hmC for predicting binary 5ShmC modification sites

To demonstrate the superiority of Deegp5hmC to existing methods, we further conduct a comparison
between the binary version of Degp5hmC, named Deep5hmC-binary, and competing models, which
include DeepSEA-Transfer, DeepSEA-Retrain, and Random Forest to predict the binary 5hmC
modification sites (i.e. normalized peaks), using the same training, validation, and testing sets as outlined
in the “cross-chromosomal” strategy (More details in the Methods section) for both * Forebrain Organoid”
and “Human Tissues’. We adopt DeepSEA as the representative of deep learning approaches for its
renowned use of genomic sequence to predict epigenetic signals, which has demonstrated superior
performance (Zhou & Troyanskaya, 2015). Given that DeepSEA is a multi-task model predicting
epigenetic signals across various tissues and cell types simultaneously, we customize it into single-task
model in the output layer for a fair comparison to Deep5ShmC. In addition, we design two versions of
DeepSEA: DeepSEA-Transfer and DeepSEA-Retrain, both sharing the same network architectures as
DeepSEA but differing in the training process. Specifically, DegpSEA-Transfer is a transfer learning
model built upon the pretrained DeepSEA, with fine-tuning applied exclusively to the last fully connected
layer. In contrast, DeepSEA-Retrain starts the model training from the scratch, updating all model
parameters. To represent conventional machine learning models, we select Random Forest for its robust
performance. Following prior work, we adopt 3-mer frequency of genomic sequence, which result in 64

features for Random Forest (Ahmed et al., 2020).

For “Forebrain Organoid”, we present the AUROC and AUPRC of al models across four
developmental time points: day 8 embryoid bodies (EB), day 56 (D56), day 84 (D84), day 112 (D112) of
healthy forebrain organoid (Fig. 4). Consequently, Deegp5ShmC-binary consistently obtains the highest
AUROQOC (0.94 for EB; 0.95 for D56; 0.96 for D84; 0.97 for D112) among all methods and devel opmental

stages (Fig. 4A). Following closely is DegpSEA-Retrain (0.90 for EB; 0.92 for D56; 0.92 for D84; 0.92
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for D112). The observation indicates that enhanced prediction performance can be achieved by
leveraging tissue-matched histone modification through a comparison between Deep5hmC-binary and
DeepSEA-Retrain, the latter being a CNN model solely relying on genomic sequence as the input.
DeepSEA-Retrain outperforms Random Forest (AUROC = 0.85 for EB; 0.88 for D56; 0.89 for D84; 0.90
for D112) and its counterpart DeepSEA-Transfer, which records the lowest overall AUROC (AUROC =
0.86 for EB; 0.85 for D56; 0.83 for D84; 0.83 for D112). The superiority of DeepSEA-Retrain over
Random Forest underscores the advantage of deep learning model in capturing nonlinear and high-order
dependencies in the genomic sequence compared to k-mer frequency. The observation also suggests that
DeepSEA benefits more from retraining the model than relying on the pretrained model. The initia
pretraining of DeepSEA on hundreds of tissue/cell type-specific factors may not be optimal for predicting
5hmC modification, which is another epigenetic factor, emphasizing the importance of context matching,
where training and testing data belong to the same domain. Moreover, consistent trends are observed

across al methods when evaluated using AUPRC. (Fig. 4B).

For “Human Tissues’, we present that both AUROC and AUPRC of all compared methods across
17 human tissues (Fig. 5). The evaluation of two methods is extended through a Wilcoxon rank-sum test
on AUROC/AUPRC across 17 human tissues, aiming to determine the statistical significance of
differences in prediction performance. Consequently, Deep5hmC-binary emerges as the top-performed
method, followed by DeepSEA-Retrain, while DeepSEA-Transfer and Random Forest exhibit comparable
performance (median AUROC=0.96 for Deep5hmC-binary; 0.90 for DeepSEA-Retrain; 0.84 for
DeepSEA-Transfer; 0.85 for Random Forest) (Fig. 5A). The superiority of DeepShmC over other
methods is also statistically significant (p-value = 1.548 x 10~° for Deep5hmC-binary versus DeepSEA-
Retrain; 6.455 x 10~ for Degp5hmC-binary versus DeepSEA-Transfer; 6.455x 10~ for Degp5hmC
versus Random Forest). Consistent with the findings in “Forebrain Organoid”, DeepSEA-Retrain
significantly outperforms DeepSEA-Transfer (pvalue = 3.923 x 107%) and DeepSEA-Transfer holds

comparable performance to Random Forest. Moreover, the trend is maintained when assessing prediction
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performance using AUPRC (Fig. 5B). Conclusively, the comprehensive evalaution focusing on tissue-
specific predictions underscores that DeepShmC-binary possesses a distinct advantage over existing

methods concerning binary 5hmC modification sites.

Evaluating Degp5hmC for predicting continuous 5hmC modification

Using the same two datasets as aforementioned in predicting binary 5hmC modification, we extend the
evaluation to the continuous version of Deegp5hmC, named Deep5hmC-cont, along with other competing
methods for predicting continuous 5hmC modification, quantified by normalized 5hmC read counts. To
mitigate the impact of outliers and normalize the count data towards a normal distribution, we perform a
log-transformation on the 5hmC read counts. Evaluation of prediction performance is conducted using
Pearson correlation coefficient (R) and mean square error (MSE), which are calculated between the

observed 5hmC read counts and predicted ones on the logarithm scale.

For “Forebrain Organoid”, Degp5hmC-cont demonstrates the highest R across all developmental
stages (R=0.870 for EB; 0.876 for D56; 0.893 for D84; 0.876 for D112) (Fig. 6A). Following closely is
DeepSEA-Retrain, showing comparable performance with Random Forest (Rs=0.842, 0.843, 0.857 and
0.790 for DeepSEA-Retrain; 0.829, 0.825, 0.830 and 0.828 for Random Forest). Notably, DeepSEA-
Transfer remains potent, yet it exhibits the |east favorable performance with Rs of 0.756, 0.693, 0.752 and
0.653 across four time points. In addition, Degp5hmC-cont obtains the lowest MSE in 3 out of 4 time

points (Supplementary Fig. S2A).

For “Human Tissues’, Deep5hmC-cont excels by emerging as the top-performed method in 15
out of 17 tissues in terms of Rs and achieving the highest median of R across 17 tissues (median R=0.88
for Deep5hmC-cont; 0.76 for DeepSEA-Retrain; 0.65 for DeepSEA-Transfer; R=0.85 for Random
Forest). (Fig. 6B). Random Forest rank second, followed by DeepSEA-Retrain, while DeepSEA-Transfer
exhibits the least favorable performance. Upon comparing the DeepShmC-cont to other methods using
Wilcoxon rank-sum test on the Rs from 17 tissues, we find that Deep5ShmC-cont has comparable

performance to Random Forest while enjoys a substantial advantage over DeepSEA-Retrain and
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DeepSEA-Transfer (pvalue = 1.318 x 10~° for DeepShmC-cont versus DeepSEA-Retrain; 6.455x 10~7
for Degp5hmC-cont versus DeepSEA-Transfer; 0.079 for Degp5hmC-cont versus Random Forest). Once
again, DeepSEA-Retrain significantly performs better than DeepSEA-Transfer (pvalue = 6.455 x 1077).
Additionally, Deep5hmC-cont is comparable to Random Forest and achieves the lowest MSE in 8 out of
the 17 tissues, as well as second lowest MSE in 6 out of the 17 tissues (Supplementary Fig. S2B). These
observations affirm that Deep5ShmC-cont accurately predict the tissue-specific continuous 5hmc

modification, showcasing itsimprovement over other methods, especialy for “Forebrain Organoid”.
Evaluating Deep5hmC for predicting gene expression

The positive correlation between 5hmC modification in the gene body and gene expression has been
demonstrated in both mouse brain and human tissues (He et al., 2021; Mellén et al., 2012). To quantify
the predictive power for gene expression using 5ShmC modification, we introduce DegpShmC-gene, a
module within the Deep5ShmC framework, designed to predict gene expression by leveraging continuous
predicted 5ShmC modification from Degp5hmC-cont. Specifically, Deep5ShmC-gene employs a three-step
approach. First, it segments each gene body into nonadjacent 1kb windows. For gene bodies less than 1kb
or with the last window less than 1kb, padding is applied to ensure each window is 1kb. Next,
Deep5hmC-gene utilizes the pretrained Deep5ShmC-cont to predict the 5ShmC counts for each 1kb window.
Finally, it aggregates all predicted 5hmC counts within each gene body to generate the predicted gene
expression. To evaluate the effectiveness of Degp5hmC-gene in predicting gene expression, we evaluate
it on both “Forebrain Organoid” and “Human Tissues’, which provide a comprehensive set of tissue-
specific paired 5ShmC-seq data and RNA-seq data. Gene expression measured by RNA-seq data, in terms
of read counts, serves as the gold standard. The evaluation is based on the pearson Correlation Coefficient
(R) calculated between predicted and observed gene expression. In addition, we report Rs calculated
between predicted and observed 5hmc read counts in all gene bodies, as the predicted gene expression is

guantified by predicted 5ShmC read counts in gene bodies.
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As aresult, Degp5ShmC-gene achieves a high R value of 0.95 between the predicted and observed
5hmC read countsin all gene bodies for EB in “Forebrain Organoid” (Fig. 7A). Leveraging this accurate
prediction of 5hmC in gene bodies, Degp5hmC-gene obtains a substantial R value of 0.54 between
predicted and observed gene expression for EB in * Forebrain Organoid” (Fig. 7B). Extending the analysis
to al four time points in the “Forebrain Organoid” reveas consistent results, with Degp5hmC-gene
accurately predicting 5hmC read counts in gene bodies (R within the range of 0.94 to 0.95) (Fig. 7C) and
gene expression (R within the range of 0.54 to 0.62) (Fig. 7D). The MSE calculated between predicted
and observed 5hmC read counts in gene bodies, as well as between predicted and observed gene

expression for “ Forebrain Organoid” can be found in the Supplementary Fig S3.A,B.

Moreover, we benchmark Deep5hmC-gene against other competing methods for “Human
Tissues’. All approaches demonstrate high prediction accuracy for 5ShmC read counts in gene bodies in
terms of R (Fig. 7E). Degp5hmC-gene exhibits comparable performance to other methods, with a median
R value of 0.95 compared to 0.94 for DeepSEA-Retrain, 0.94 for DeepSEA-Transfer and 0.96 for
Random Forest. Notably, DeepShmC-gene exhibits the smallest MSE (Supplementary Fig S3.C). The
prediction accuracy for gene expression of all methods declines and shows tissue-specific variability (Fig.
7F). Deep5hmC-gene performs best, achieving the highest median of R value of 0.75 compared to 0.74
for Random Forest and 0.70 for both DeepSEA-Retrain and DeepSEA-Transfer. Notably, the R values of
most tissues falls within the range of 0.7 to 0.8 across al methods, confirming that using 5hmC read
counts can accurately predict gene expression. Once again, Deegp5hmC-gene achieves the smallest MSE
of predicted and observed gene expression for “Human Tissues” (Supplementary Fig S3.D). Overdl, the
exploration demonstrates that leveraging 5hmC read counts in gene bodies facilitates accurate prediction
of gene expression, potentialy linking DNA methylation and gene expression in a tissue-specific gene

regulatory context.

Evaluating DeepShmC for predicting differential hydroxymethylated regions
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Thus far, we have demonstrated the efficacy of Deep5hmC in predicting tissue-specific 5hmC
modification, quantified by both 5ShmC peak and continuous 5hmC reads. However, extending our study
to a case-control design alows us to explore differential hydroxymethylated regions (DhMRs). In this
scenario, DhMRs are regions enriched or present only in one disease/treatment condition, while absent or
depleted in the control condition, or vice versa. Identified DhMRs can be potential biomarkers for disease
prevention, diagnosis and treatment. We formularize the DhMR identification as a binary classification
task, where each genomic region (i.e., 1kb) is labelled and predicted as DhMR or non-DhMR. This
module for predicting DhMRs is named “DeepShmC-diff”. DeepShmC-diff utilizes Degp5ShmC-His
modality, masking Deep5hmC-Seq modality, as the genomic sequence is shared between two conditions
in the same genomic regions. The training set for DeepShmC-diff is created by performing differential
peak analysis using tools such as DESeg2 (Love et a., 2014) and ChIPComp (Chen et a., 2015) on
unioned 5hmC peaks from all samples in both case and control conditions. Subsequently, DeepShmC-diff

istrained and tested using the labeled DhMRs.

To demonstrate the feasibility of Degp5hmC-diff, we focus on an Alzheimer’s disease study,
specifically “Kentucky AD”, which profiles 5hmC-seq for 3 AD and 3 healthy controls. We employ
DESeg2 (Love et a., 2014) to identify DhMRs (e.g., FDR<0.1) and non-DhMRs (e.g., FDR>0.5),
resulting in 4330 differential DhMRs and 4025 non-DhMRs . The histone features are derived from
H3K27ac and H3K4me3 ChlP-seq data from Rush Alzheimer’'s Disease Study, available on ENCODE
portal (Sloan et al., 2016). H3K27ac is used as an dternative of H3K4mel given the unavailability of
H3K4mel data, and both H3K27ac and H3K4mel are active enhancer marks. For each histone mark, we
select one ChlP-seq data with matched gender, age for the 5hmC-seq in AD group, diagnosed with
“Alzheimer’s disease” and another ChiP-seq data with matched gender, age for the 5hmC-seq in healthy

control group, diagnosed with “No Cognitive Impairment”.

We employ the same “cross-chromosomal” strategy to create training, validation and testing sets.

Deep5hmC-diff achieves an AUROC of 0.67 (Fig. 8A) and AUPRC of 0.73 (Fig. 8B), demonstrating
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predictive power for identifying DhMRs by leveraging histone modification data. There is potential for
further improvement by incorporating additional histone marks or other epigenetic factors such as
chromatin accessibility and transcription factor binding. In addition to evaluating Deep5hmC-diff using
the “cross-chromosomal” strategy, we extend its application by conducting a genome-wide screening for
de nove DhMRs, which may not be present in the 5ShmC-seq data potentially due to lacking sufficient
sequencing depths or technical bias etc. For this purpose, we utilize all labelled DhMRs and non-DhMRs
peaks from “Kentucky AD” to train the Deep5hmC-diff model. The entire human genome is then
segmented into non-overlapping 1kb windows, serving as the testing set. Each 1kb window, considered a
candidate genomic region, is assigned a predictive probability of being a DhMR or not, using a cutoff at
0.5. The distributions of de novo DhMRs is found to be consistent with those from 'Kentucky AD' across
different genomic features, including Introns, Intergenic Regions, Promoters, Exons, immediate
Downstream, SUTRs and 3UTRs (Supplement Fig S4A, B). Of particular interest is the evaluation of
whether Deep5hmC-diff can identify de novo DhMRs within key functional genomic sites associated with
AD. We focus on three causal genes associated with early on-set AD, which include PSEN1
(chr14:73603143-73690399), PSEN2 (chrl:227058273-227083804) and APP (chr21:27252861-
27543138) aswell as one causa gene APOE (chr19:45409039-45412650) associated with late on-set AD.
The predicted probability within the gene bodies, and upstream and downstream 5kb of the gene bodies
are plotted (Fig. 8C). Deep5hmC-diff successfully identifies multiple de novo DhMRs with more DhMR
found for APP and PSEN2 than APOE and PSEN1. As 5hmC modification is positively correlated with
gene expression, we conduct differential expression analysis to validate the identified differential de novo
DhMRs. We collect matched RNA-seq data for AD and healthy controls from “Kentucky AD” and
perform differential expression analysis using DESeq2 (Love, Huber, & Anders, 2014). Consequently,
three out of the four causal genes show differential expression (FDR = 0.019 for APP; 0.031 for PSEN1,
0.028 for PSEN2), supporting the findings of predicted DhMRSs in the three genes. These observations

indicate that DeepShmC-diff can be a valuable tool for identifying novel DhMRs in a case-control study.
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The SNP enrichment analysis is designed to assess the enrichment of diseases/traits-associated
GWAS SNPs or eQTLs within tissue/cell type-specific epigenetic regions. The analysis is crucial for
identifying disease/trait-associated cell types, providing functional annotation and elucidating the role of
GWAS SNPs or eQTLs (Agarwal et a., 2023; Chen, Jin, & Qin, 2016; Chen & Qin, 2017; Chen et al.,
2019; Kundgje et a., 2015; Wang & Chen, 2022). Recent AD studies have extensively employed SNP
enrichment analysis to assess the enrichment of AD-associated SNPs in DhMRs, which helps unravel the
functional implications of these AD-associated SNPs in AD pathogenesis (Bernstein et al., 2016).
Building on these insights, we conduct SNP enrichment analysis to evaluate the enrichment of AD-
associated SNPs in de novo DhMRs, which are defined as genome-wide 1kb candidate regions with a

predictive probability greater than 0.5 contrasting with non-DhMRs.

Statistically significant AD-associated SNPs, considered positive SNPs, are gathered from five
resources, containing summary statistics from GWAS conducted in AD. The first set of positive SNPsis
derived from a study named “genome-wide association study by proxy (GWAX)”, comprising 1302
significant SNPs from UK Biobank (pvalue<1x10~*) (Liu, Erlich, & Pickrell, 2017). The second set is

obtained from GWASCatalog (https://www.ebi.ac.uk/gwas/), including 1108 significant SNPs (p-

value<lx 10™* ). The third set is sourced from the Association Results Browser (ARB)

(https://www.nchi.nlm.nih.gov/projects/gapplus/sgap plus.htm), containing 111 significant SNPs (p-

value<1x107*). The other two sets of positive SNPs are acquired from International Genomics of
Alzheimer’'s Project (IGAP) stagel and combined stagel & 2, harboring 6225 and 3687 significant SNPs
respectively (p-vaue<1x10~*) (Lambert et al., 2013). Moreover, only SNPs in the noncoding regions are
considered given the majority of GWAS SNPs are located within noncoding regions. To establish a
reliable control group, we generate negative control SNPs at a ratio of 10:1 compared to the positive set,
following the strategy from previous work (Chen, Jin, & Qin, 2016; Chen & Qin, 2017). Subsequently,
for each variant set, we tally the number of positive/negative SNPs within DhMRs/non-DhMRs and

construct a 2 by 2 contingency table. Fisher’s exact test is then employed to calculate the odd ratio (OR),
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confidence interval (Cl) and pvalue for the table. The results reveal that al five sets of positive SNPs
exhibit enrichment in the de novo DhMRs (OR>1 and pvalue<0.05), suggesting a crucia role of AD-

associated SNPs in the pathogenesis of AD through their enrichment in DhMRs.

Conclusion and Discussion

In this study, we present a comprehensive deep learning framework named Deep5hmC, designed to
predict genome-wide landscape of 5-Hydroxymethylcytosine (5hmC). Deep5hmC comprises four distinct
modules tailored to specific prediction tasks: DeepShmC-binary for predicting binary 5hmC peaks;
Deep5hmC-cont for predicting continuous 5hmC modification; Deep5hmC-gene for predicting gene
expression; Deep5hmC-diff for predicting differential hydroxymethylated regions (DhMRs). Notably,
Deep5hmC stands out as a multi-moda deep learning model, which incorporates both DNA genomic
sequence and histone modification data to enhance the accuracy of prediction for genome-wide
qualitative and quantitative 5ShmC modification. The decision to include histone modality stems from a
thorough exploration of real data, involving tissue-matched histone ChiP-seq data from seven histone
marks in a specific one brain region and one 5hmC-seq data profiled in embryoid body (EB) from
forebrain organoid. This exploration reveas distinct distribution patterns between 5hmC peaks and non-
peak genomic regions in histone modifications of both active and repressive histone marks, suggesting the
informative nature of histone modification features in predicting 5ShmC modification. Notably, H3K4mel
and H3K4me3 are identified as the most informative histone marks. To accommodate the histone
modality, DeepShmC employs n Convolutional Neural Networks (CNNs), each corresponding to a
different histone mark. The output from the histone modality is then integrated with the output from the
sequence modality through the MFB fusion layer, resulting in a joint embedding for subsequent
predictions. Using an illustrative example with one 5hmC-seq data profiled in EB from a brain organoid,
we demonstrate that the multi-modal DeepShmC outperforms both single-modal Deep5hmC-Seq,

utilizing only DNA sequence, and Degp5hmC-His, relying solely on histone modification.
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We further employ the multi-modal version of DeepShmC as the default model for comparative
analysis against existing methods, which include Random Forest and two variants of DeepSEA involving
fine-tuning or retraining on two comprehensive datasets. These datasets encompass a broad collection of
5hmC-seq across human tissues. One dataset, named “Forebrain Organoid”, comprises matched 5hmC-
seq and RNA-seq from four stages during fetal brain development. The other dataset, named “Human
Tissues’, includes matched 5hmC-seq and RNA-seq from 17 diverse human tissues. Through an
evaluation using the “cross-chromosomal” strategy, Deep5ShmC-binary emerges as superior to existing
methods, achieving the highest AUROC and AUPRC for predicting binary 5hmC modification sites.
Similarly, Deep5ShmC-cont attains the highest Pearson correlation coefficient and lowest MSE for
predicting continuous 5hmC modification. Moreover, leveraging the predictions from pretrained
Deep5hmC-cont, DegpShmC-gene aggregates al predicted 5ShmC counts within the gene body, accurately
predicting the gene expression for both “Forebrain Organoid” and “Human Tissues’. This observation
underscores the regul atory connection between DNA hydroxymethylation and gene expression in atissue-

specific context.

In addition to predicting 5hmC maodification in a single healthy tissue, Deep5hmC-diff enables
the prediction of differential hydroxymethylated regions (DhMRS) in a case-control design. where the
regions, enriched or present only in one disease/treatment condition but depleted or absent in the control
condition (or vice versa), are of particular interest. Demonstrating the feasibility, DeepShmC-diff is
applied to “Kentucky AD” study with matched 5hmC-seq and RNA-seq data for both AD patients and
healthy controls. The results not only showcase the accurate prediction of DhMRs using the “cross-
chromosomal” strategy but also successfully identify genome-wide de novo DhMRs. Notably, multiple de
novo DhMRs are found in AD causal genes such as APP, APOE, PSEN1 and PSEN2. These findings are
further supported by differential expression anaysis using the matched RNA-seq data. In addition,

significant SNPs reported to be associated with AD from various studies are found to be enriched in
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DhMRs, indicating a potential role of DhMRs in AD pathogenesis. Overall, these discoveries underscore

the potency and broad applications of Deep5hmC in 5hmC-seq analysis.

Several promising extensions of current work are envisioned. First, the 5hmC-seq data used to
train Deep5ShmC lacks single-base resolution. The incorporation of high-resolution 5ShmC data from
advanced technologies such as Tet-assisted bisulfite sequencing (TAB-Seq) and Oxidative bisulfite
sequencing (0xBS-Seq), provides an opportunity to extend DeepShmC's capability to predict 5ShmC
modification at the single-base level. To achieve this, we intend to adapt and develop large language
models, accommodating the significantly increased training sample size and addressing spatial correlation
among single-base modification sites. Secondly, while we have incorporated histone modification as one
additional modality for Deep5hmC, other epigenetic factors such as transcription factor binding and
chromatin accessibility can be further integrated into the multi-modal deep learning framework. This
expansion aims to enhance prediction performance by considering a more comprehensive set of
epigenetic features. Furthermore, in our future work, we plan to develop an explainable version of
Deep5hmC utilizing attention mechanisms. This will enable the identification of functional interactions
between 5hmC and other epigenetic marks, shedding light on their interplay in the regulation of gene
expression. This approach seeks to provide a more interpretable and nuanced understanding of the

complex relationships within the epigenetic landscape.

M ethods

Data description and processing

The first dataset, termed “ Forebrain Organoid”, includes paired 5ShmC-seq data and RNA-seq data across
embryoid body (8 days EB) and forebrain organoids cultured over three distinct time points: 56 days
(D56), 84 days (D84), and 112 days (D112), designed to model the early development of the fetal brain
(Kuehner et a., 2021). The called 5hmC peaks using MACS2 are retrieved from the original publication

with GEO accession number GSE151818 (Kuehner et al., 2021). Each 5hmC peak is subsequently
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standardized into a 1kb window by extending the center of the peak upstream and downstream 500bp. For
the acquisition of raw read counts associated with each peak, the raw 5hmC-seq data is downloaded, and
bowtie2 (Langmead et al., 2009) is employed to map the reads onto hgl9 reference genome. Using
R/Bioconductor package “ GenomicRanges’, read counts for each 5hmC peak are obtained by overlapping
the genomic positions of reads and peaks. Similarly, raw RNA-seq data is obtained, and STAR (Dobin &
Gingeras, 2015) is utilized to map the reads onto hgl9 reference transcriptome. Read counts for each gene
are calculated based on the positional overlap between reads and genes, using R/Bioconductor package
“GenomicRanges’ and “Rsamtools’. Subsequently, the read counts of biological replicates are averaged

after adjusting the sequencing depth.

The second dataset, referred to as “Human Tissues’, comprises paired 5hmC-seq data and RNA-
seg data spanning 19 human tissues derived from ten organ systems. The called 5hmC peaks using
MACS2 are obtained from the original publication with GEO accession number GSE144530 (Cui et al.,
2020). To enhance reliability, we merge the peaks from biological replicates and retain only those peaks
appearing in more than two biological replicates. Subsequently, the merged peaks are further standardized
into 1kb windows. Raw 5hmC-seq data is downloaded and processed by mapping reads onto hgl9
reference genome using bowtie2. Read counts for each 5hmC peak are then calculated based on the
mapped genomic positions. Raw RNA-seq data is downloaded and processed using STAR to map reads
onto hg19 reference transcriptome. The read counts for each gene are determined by overlapping genomic
positions between reads and genes. The read counts of biological replicates are averaged while adjusting

the sequencing depth.

The third dataset, titled “ Kentucky AD”, is obtained from one the publication which provides the
information of 5hmC-seq data in an Alzheimer’'s disease study conducted by University of Kentucky
Alzheimer's Disease Research Center with GEO accession number GSE72782 and RNA-seq With SRA
accession number SRA060572 (Bernstein et al., 2016). Raw 5hmC-seq data is collected from three

prefrontal cortex samples of post-mortem AD patients and three controls with similar age, no history of
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neurological illness and no significant neuropathology. After data acquisition, read mapping is executed
using bowtie2 on the hgl9 reference genome, and peak-calling is conducted for each sample using
MACS2. Peak standardization and read counting for each peak are carried out employing the

aforementioned approaches.

For histone modification data, our primary focus is on acquiring H3K4mel and H3K4me3 ChiP-
seq datathat aligned with the tissue or disease condition associated with the 5hmC-seq data. In the case of
“Forebrain Organoid”, we compile aligned bed files of brain-related ChlP-seq data from Roadmap
Epigenomics (Kundaje et al., 2015)

(https.//egg2.wustl.edu/roadmap/data/byFileType/alignments/unconsolidated/)  (Supplementary Table

S2). For “Human Tissues’, we carefully select aligned bed files of ChiP-seq data from Roadmap
Epigenomics by ensuring a match between ChiP-seq data and 5hmC-seq data based on tissue type. In
cases where tissue-matched ChiP-seq data is unavailable at Roadmap Epigenomics, we retrieve it from

ENCODE portal (Sloan et a., 2016) (https://www.encodeproject.org/). Owing to the absence of matched

histone ChlP-seq data for “Hypothalamus” and “Lymph Nodes’ in both databases, we exclude the two
tissues, resulting in atotal of 17 tissues in “Human tissues’ for the subsequent analysis (Supplementary
Table S3). For “Kentucky AD”, we gather H3K27ac and H3K4me3 ChIP-seq data from Rush
Alzheimer’s Disease Study available on ENCODE portal (Supplementary Table $4). H3K27ac is used
as an alternative for H3K4mel due to the unavailability of H3K4mel ChlP-seq data and both H3K27ac
and H3K4mel serve as active enhancer marks. In addition, H3K27ac has been found correlated with
5hmC (Cui et d., 2020). For AD group, we collect mapped ChlP-seq bam files from one individual with
matched gender, age and diagnosed with “ Alzheimer’s disease”. For healthy control group, we obtain the
mapped ChlP-seq bam files from one individua with matched gender, age and diagnosed with “No

Cognitive Impairment”.

Multimodal features
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Two types of features are utilized as input for Degp5hmC, which include DNA sequence within the
standardized 5hmC peak (i.e., 1kb) and histone modification in the proximity of 5ShmC peak. The DNA
sequence in each 1kb window undergoes one-hot encoding, adhering to the rule *‘A’: [1,0,0,0], ‘C':
[0,1,0,0], 'G': [0,0,1,0] and ‘T": [0,0,0,1], which result in a 1000 x 4 matrix representing the sequence
feature. For the histone feature, we extend 10kb both upstream and downstream of each 5ShmC peak and
calculate normalized read counts from matched tissue-specific histone ChlP-seq data in a 1kb window
with a dliding size 500bp, yielding the histone feature with dimensions 1x41. In scenarios where n
matched ChiP-seq datasets are available, histone features from al datasets are horizontally stacked,

resulting in a histone feature with dimensions nx41.
Creating labelled data of training, validation and testing

The qualitative prediction is essentially a binary classification task aimed at distinguishing 5ShmC peaks
from background genomic regions. Specifically, we label standardized 5hmC peaks (i.e., 1kb) with
statistical significance from peak-calling results (FDR<0.05) as positive. To choose peaks in the negative
set, we apply a series of selection criteria for genome-wide 1kb genomic regions of hgl9 reference
genome. Initialy, negative peaks are required to be within 10kb distance from the positive ones.
Additionally, the density distribution of GC content in the negative peaks must match that of the positive
ones. Without loss of generality, we maintain an equal number of positive and negative peaks. As aresullt,
the number of positive peaks ranges from 12,596 to 137,488 with a median of 69,322 among 17 human
tissues in “Human Tissue” and from 56,036 to 81,050 with a median of 72,745 for “ Forebrain Organoid”.
To predict differentially hydroxymethylated regions (DhMRs) in “Kentucky AD”, we start by identifying
the 5hmC peaks from al samples in both AD and hedthy controls. We merge overlapped peaks,
standardize and calculate the read counts for merged 5ShmC peaks. Next, we employ DESeg2 (Love et d.,
2014) to identify DhMRs. Peaks exhibiting statistical significance are deemed as positive (e.g., FDR<0.1)
and non-significant peaks as considered as negative (e.g., FDR>0.5). For the quantitative prediction of

5hmC modification, we treat logarithm of normalized 5hmC reads from both peaks and non-peak
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genomic regions as the outcome. More details regarding sample size from al datasets can be found

in Supplementary Table S6.

Networ k ar chitectur e of Deep5hmC

Deep5hmC is essentially a multimodal deep learning model, which consists of three crucial components
in the network architecture, which includes (1) an encoder module based on two CNNSs; (2) a feature
fusion module based on Multi-modal Factorized Bilinear (MFB) pooling approach (Yu et al., 2017) and

(3) aprediction module for either binary classification or continuous prediction (Fig. 2D).

The encoder module is composed of two unimodal encoders, each responsible for transforming an
individual modality to a high-level feature presentation for further processing by subsequent layers in the
model. Specifically, two separate and independent CNNSs function as the unimoda encoders for DNA
sequence and histone modification respectively. The sequence encoder takes the one-hot encoding DNA
sequence as input, consisting of three sequential 1-D convolutional layers sharing the same kernel size of
8 and stride of 1, padding of 0, and dilation of 1. The number of filters vary across these layers: 64, 128
and 256. In addition, a max-pooling layer with a kernel size of 4 and a stride of 4 follows each of the first
two convolutional layers. The output of last convolutiona layer is flattened and connected to two fully
connected layers. On the other hand, the histone encoder takes curated histone features from n histone
marks as the input, where each histone mark h is profiled in the dimensions n;,x41. Here, n;, represents
the number of matched tissues/cell types or biologica replicates of the histone ChiP-seq data
Consequently, the histone encoder takes multimodal histone features as input, with each modality
representing a different histone mark (Fig. 2D). Each histone mark has its own CNN to extract the high-
level features, comprising three 2-D convolutional layers sharing the same kernel size of 3 x 3, stride of 1,
padding of 1, and varying number of filters: 32, 64, 128. A max-pooling layer with stride of 2 follows
each of the first two convolutional layers. The kernel size for the max-pooling layer depends on the n,.

For n, equals 1, a1 x 2 kernel size is chosen, and otherwise 2 x 2. Similarly, the output of last
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convolutional layer is flattened and is connected to two fully connected layers. Finally, the output from n

CNN, corresponding to n histone marks, are concatenated to form the final output of histone module.

The feature fusion module seamlessly integrates the two feature representations derived from the
sequence and histone encoders into a unified representation for subsequent prediction (Fig. 2D).
Specifically, we employ MFB (Yu et a., 2017), designed to efficiently amalgamate features from diverse
modalities. Compared to aternative fusion techniques, MFB excels in capturing intricate interactions
among multiple modalities while concurrently reducing computational complexity through factorization.
Let x; € R™ denote the feature representation from sequence modality, x, € R™ represent feature
representation from histone modality and z € R denote the output after fusion module. Notably, o is
substantially smaller than both m and n. MFB aims to identify two low-rank factorized matrices U €
R™*k0 and V7 € R™k°, aiming to convert two long vectors of different lengths to two short vectors of
same length ko, where k denctes the latent dimensionality indicating the degree of factorization. The

larger k is, the more original information can be preserved.

xp=U"x;, x}eRk (1)

x,=V'x,  x, eRK (2

The output of MFB fusion can be represented as follows:

z = SumPooling(x] ° x5, k) 3

where o isthe element-wise multiplication of two vectors. Following the SumPooling operation,
subsequent layers include power normalization (sign(z)|z|%>) and £, normalization (z/Il z |I) layers.
These steps enhance the properties of the fused data, ensuring appropriate scaling and distribution

characteristics for subsequent layers.
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The prediction module utilizes the output of MFB fusion layer as the input for the two fully
connected layers, which are succeeded by the output layer for the prediction. In the output layer, asingle
node exists for continuous outcome and two nodes are present for binary outcome. In the case of binary
outcome (presence or absence of 5hmc peak), the output undergoes a sigmoid function to yield the
prediction probability. For continuous outcome (normalized 5hmcC read counts), the output directly serves
asthe prediction. ReL U serves as the activation function across the entire network, excluding the output

layer. Additionally, dropout layers with arate of 0.5 are strategically incorporated to mitigate overfitting.
M odd implementation, training, validation and testing

Deep5hmC is implemented using PyTorch (Paszke et al., 2019) on an NVIDIA A100 GPU system.
Utilizing mini-batch gradient descent and the Adam optimizer (Kingma & Ba, 2017), the network is
optimized for binary outcome using cross-entropy |oss and continuous outcome using mean square error
(MSE) respectively. The default learning rate is set to 1073, To improve the efficiency of learning
process, warm-up steps and a learning rate decay strategy are incorporated as options. Each model
undergoes training for a maximum of 200 epochs, with early stopping implemented if the model
performance stagnated over a consecutive 10 epochs. In alignment with the evaluation strategy for
DeepSEA, a “cross-chromosomal” strategy is employed to design training, validation and testing sets.
Specifically, 5hmc peaks on chromosomes 8 and 9 constitute the testing set, chromosome 7 serves as the

validation set, and the remaining chromosomes form the training set.

FigureLegend

Figure 1. Overview of Deep5hmC. A. The training set of Degp5hmC can be derived from matched
5hmC-seq and histone ChiP-seq from one condition. Specifically, the 5hmC-seq data can be collected
from tissue-specific human tissues, which include bladder, brain, breast, heart, kidney, liver, lung,

marrow, ovary (female), pancreas, placenta (female), prostate (male), colon (sigmoid), colon (transverse),
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skin, stomach and testis (male). The matched tissue-specific histone ChiP-seq data are collected
according from public consortiums such as Roadmap Epigenomics and ENCODE. In this context,
Deegp5hmC aims to predict genome-wide 5ShmC modification in a single condition. B. The training set of
Deep5hmC can a'so be derived from matched 5hmC-seq and histone ChiP-seq from a case-control study
(e.g., Alzheimer’s Disease vs hedlthy control) for predicting differentially hydroxymethylated regions
(DhMRs). C. Deep5hmC is a multimodal deep learning model to improve the prediction of tissue/cell
type-specific genome-wide 5hmC modification by leveraging both DNA sequence and histone
modification. DeepShmC consists of four modules, including Deep5hmC-binary, Deep5hmC-cont,
Deep5hmC-gene and Deep5hmC-diff. Specifically, Deep5hmC-binary takes the labelled 5hmC peaks and
non-peaks as the training set to identify the 5ShmC enriched regions. DeepShmC-cont takes the normalized
read counts in 5hmC peaks and aim to predict the continuous 5hmC modification genome-wide. By
leveraging Deep5hmC-cont, Deep5ShmC-gene aggregates the predictions of Deegp5hmC-cont in the gene
bodies as the surrogate for the predicted gene expression. Different from Deep5hmC-binary, Deep5hmC-
diff takes the labelled DhMRs/non-DhMRs in a case-control design of 5hmC-seq as the training set to
predict genome-wide DhMRs and may discover de novo DhMRs. D. Model architecture of Degp5hmC.
Deep5hmC consists of both sequence modality and histone modality consisting of their own
convolutional neural networks (CNN) to derive separate feature representations, which will be joined later
viathe Multi-modal Factorized Bilinear pooling (MFB) fusion layer. The output of the MFB fusion layer

will further connect to fully connected layers and the output layer afterwards.

Figure 2. Distribution pattern of histone modification around 5hmC peaks. EB 5hmC pesks is
collected from *Forebrain Organoid” 5hmC-seq data and ChlP-seq data in “Brain Angular Gyrus®’ from
seven histone marks are collected from Roadmap Epigenomics. Histone features are obtained and
averaged in the neighborhood of all 5hmC peaks for the positive and negative set respectively.
Specifically, histone features are created by segmenting an extended genomic region of 10kb both

upstream and downstream of each 5hmC peak into 41 1kb windows with a dliding size 500bp and
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counting reads for each 1kb windows. For each histone mark, Wilcoxon rank-sum test is performed to test
the distribution difference of histone features between positive and negative 5hmC peaks and pvalue is

reported.

Figure 3. Comparison of unimodal and multimodal Deep5ShmC in predicting of 5hmC maodification
sites. Two unimodal models of Degp5hmC: Deep5hmC-Seq using only DNA sequence as the model input
and Deep5hmC-His using only histone features as the model input are compared to the default
multimodal Deep5hmC using both DNA sequence and histone features as the model input. 5hmC peaks
from “Forebrain Organoid” and two histone marks: H3K4mel and H3K4me3 ChiP-seq datain al brain
regions from Roadmap Epigenomics are used asthetraining set. A. AUROC reported for three compared

methods. B. AUPRC reported for three compared methods.

Figure 4. Evaluating Deep5hmC-binary for predicting binary 5hmC modification sites using
“Forebrain Organoid” data. A. AUROC are reported for all compared methods across 4 devel opmental
stages in “Forebrain Organoid”. B. AUPRC are reported for all compared methods across 4

developmental stagesin “Forebrain Organoid”.

Figure 5. Evaluating Deep5hmC-binary for predicting binary 5hmC modification sites using
“Human Tissues’ data. A. AUROC are reported for all compared methods across 17 human tissues in
“Human Tissues’. B. AURPC are reported for all compared methods across 17 human tissues in “Human
Tissues’.

Figure 6. Evaluating Deep5hmC-cont for predicting continuous 5hmC modification. A. Pearson
correlation coefficients (Rs) are reported for all compared methods across 4 developmental stages in
“Forebrain Organoid”. B. Pearson correlation coefficients (Rs) are reported for all compared methods

across 17 human tissuesin “Human Tissues”.

Figure 7. Evaluating Deep5hmC-gene for predicting gene expression. A. Correlation between the

predicted and observed 5hmC read counts in al gene bodies for EB in “Forebrain Organoid”. B.
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Correlation between predicted and observed gene expression for EB in “Forebrain Organoid”. C. Pearson
correlation coefficients (Rs) calculated between the predicted and observed 5hmC read countsin al gene
bodies for 4 developmental stages in “Forebrain Organoid”. D. Pearson correlation coefficients (RS)
calculated between the predicted and observed gene expression for 4 time pointsin “Forebrain Organoid”.
E. Pearson correlation coefficients (Rs) calculated between the predicted and observed 5hmC read counts
in al gene bodies for 17 human tissues in “Human Tissues'. F. Pearson correlation coefficients (Rs)

calculated between the predicted and observed gene expression for 17 human tissuesin “Human Tissues’.

Figure 8. Applying Deep5hmC-diff in a case-control study of Alzheimer’s disease. A. AUROC is
reported for predicting differential hydroxymethylated regions (DhMRs) between 3 AD patients and 3
healthy controls in “Kentucky AD”. B. AUPRC is reported for predicting DhMRs between AD patients
and healthy controls. C. Distribution of identified de novo DhMRs in three causal genes associated with
early on-set AD, which include PSEN1 (chrl4:73603143-73690399), PSEN2 (chrl:227058273-
227083804) and APP (chr21:27252861-27543138) as well as one causal gene APOE (chr19:45409039-
45412650) associated with late on-set AD. D. SNP enrichment analysis to evaluate the enrichment of
AD-associated SNPs in de novo DhMRs. Positive SNPs are collected from five sources including UK
Biobank. Association Results Browser (ARB), GWASCatalog, International Genomics of Alzheimer's

Project (IGAP) stagel and combined stagel & 2.
Availability of data and materials.

The histone ChIP-seq data can be found at Roadmap Epigenomics
(https://egg2.wustl.edu/roadmap/data/byFileType/alignments/unconsolidated/) and ENCODE porta
(https:.//mww.encodeproject.org/). 5ShmC peaks and raw 5hmC-seq data and RNA-seq data of “Forebrain
Organoid” can be found from GEO with accession number GSE151818. 5hmC peaks and raw 5hmC-seq
data and RNA-seq data of “Human Tissues” can be found from GEO with accession number GSE144530.
For “Kentucky AD”, raw 5hmC-seq data can be found from GEO with accession number GSE72782 and

RNA-seq with SRA accession number SRA060572.
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Softwar e availability

https://github.com/XinBiostats'Deep5hmC
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Supplementary infor mation

Supplementary Figure S1. Evaluating predictive performance of 7 histone marks using ‘Forebrain
Organoid’ data. A. AUROC are reported for all histone marks for EB in “Forebrain organoid”. B.
AUPRC arereported for al histone marks for EB in “Forebrain Organoid”.

Supplementary Figure S2. Evaluating DeepShmC-cont for predicting continuous 5hmC
modification. A. Mean sguared error (MSE) are reported for al compared methods across 4
developmental stages in “Forebrain Organoid”’. B. MSE are reported for all compared methods across 17

human tissuesin “Human Tissues'.

Supplementary Figure S3. Evaluating DeepShmC-gene for predicting gene expression. A. Mean
squared error (MSE) are calculated between the predicted and observed 5hmC read counts in al gene
bodies for 4 developmental stages in “Forebrain Organoid”. B. MSE are cal culated between the predicted
and observed gene expression for 4 developmental stages in “Forebrain Organoid”. C. MSE are

calculated between the predicted and observed 5hmC read counts in al gene bodies for 17 human tissues
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in “Human Tissues’. D. MSE are calculated between the predicted and observed gene expression for 17

human tissuesin “Human Tissues’.

Supplementary Figure $4. Comparing the distribution of DhM Rs in the training set of “Kentucky
AD” to genome-wide de novo DhMRs across different genomic features. A. The distribution of
DhMRs in the training set of “Kentucky AD” across different genomic features. B. The distribution of

genome-wide de novo DhMRs across different genomic features.

Supplementary Table S1. Source of ChlP-seq data in “Brain Angular Gyrus’ from Roadmap
Epigenomics for exploring the distribution pattern of histone modification in the neighbor hoods of
EB 5hmC peaks from “Forebrain Organoid”.

Supplementary Table S2. Source of ChlP-seq data in all brain regions from Roadmap Epigenomics
for evaluating the predictive power of seven histone marks and being used by Deep5hmC as histone
features (H3K4mel and H3K 4me3) for evaluating 4 developmental stagesin “ Forebrain Organoid”.
Supplementary Table S3. Source of ChlP-seq data from ENCODE being used by Deep5hmC as
histone featur es (H3K 4mel and H3K 4me3) for evaluating 17 human tissuesin “Human Tissues’.
Supplementary Table $S4. Source of ChlP-seq data from ENCODE used by Deep5hmC as histone
features (H3K 27ac and H3K 4me3) for predicting DhMRsin “Kentucky AD”.

Supplementary Table S5. Summary of sample size for “Brain Organoid”, “Human Tissues’ and

“Kentucky AD” data.
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