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Abstract 

5-hydroxymethylcytosine (5hmC), a critical epigenetic mark with a significant role in regulating tissue-

specific gene expression, is essential for understanding the dynamic functions of the human genome. 

Using tissue-specific 5hmC sequencing data, we introduce Deep5hmC, a multimodal deep learning 

framework that integrates both the DNA sequence and the histone modification information to predict 

genome-wide 5hmC modification. The multimodal design of Deep5hmC demonstrates remarkable 

improvement in predicting both qualitative and quantitative 5hmC modification compared to unimodal 

versions of Deep5hmC and state-of-the-art machine learning methods. This improvement is demonstrated 

through benchmarking on a comprehensive set of 5hmC sequencing data collected at four time points 

during forebrain organoid development and across 17 human tissues. Notably, Deep5hmC showcases its 

practical utility by accurately predicting gene expression and identifying differentially hydroxymethylated 

regions in a case-control study of Alzheimer’s disease.  
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Introduction 

5-hydroxymethylcytosine (5hmC) modification is one important intermediate state among a successive of 

states in active demethylation, which includes 5-Methylcytosine (5mC), 5hmC, 5-formylcytosine (5fC), 

and 5-carboxylcytosine (5caC). The generation of 5hmC occurs through the oxidation of 5mC by the ten-

eleven translocation (TET) protein family, and it is specifically recognized by 5hmC-binding proteins 

(Spruijt et al., 2013; Tahiliani et al., 2009). In the nervous system, 5hmC plays a critical role in 

neurodevelopment and neurological function. It has been found to be enriched in embryonic stem cells 

and neuronal cells, regulating neuronal-specific gene expression during neural progenitor cell 

differentiation (Kriaucionis & Heintz, 2009; X. Li et al., 2017). Abnormalities in 5hmC distribution and 

enrichment can be critical factors contributing to neurodegenerative diseases such as Huntington’s disease, 

Autism spectrum disorder and Alzheimer’s disease (AD) (Bernstein et al., 2016; Cheng et al., 2018; 

Coppieters et al., 2014; Kuehner et al., 2021; Qin et al., 2020; Wang et al., 2013). Beyond 

neurodegenerative diseases, 5hmC also plays a significant role in cancer development and treatment.  

Genome-wide mapping of 5hmC reveals that loss of 5hmC is an epigenetic hallmark of melanoma and 

medulloblastoma (Lian et al., 2012; Stahl et al., 2021; Zhao et al., 2021). Additionally, 5hmC in 

circulating cell-free DNA serves as diagnostic biomarkers for colorectal, gastric, pancreatic cancer, acute 

myeloid leukemia and other common human cancer types (Gao et al., 2019; W. Li et al., 2017; Shao et al., 

2022). Importantly, 5hmC-based biomarkers of circulating cfDNA have demonstrated high predictiveness 

of cancer stage and superior to conventional biomarkers (Guler et al., 2020; W. Li et al., 2017; Song et al., 

2017).  

The emergence of next generation sequencing has facilitated the genome-wide profiling of 5hmc 

modification. Among 5hmC sequencing technologies, antibody-based immunoprecipitation and 

sequencing of hydroxymethylated DNA  (hMeDIP-seq) (Weber et al., 2005) as well as 5hmC-selective 

chemical labeling method (e.g. 5hmC-Seal) (Han et al., 2016; Song et al., 2011), have become cost-

effective methods to map genome-wide 5hmC signals. These methods aim to capture and enrich 5hmC 
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methylated DNA fragments, followed by next-generation sequencing. Similar to ChIP-seq analysis, the 

enriched region of 5hmC, deemed as “peak”, can be identified by peak-calling algorithm such as MACS 

(Zhang et al., 2008). Due to their popularity, hMeDIP-seq/5hmC-Seal and other similar protocols have 

been widely adopted to explore the distribution and patterns of genome-wide 5hmC in various tissues, 

cell types (Cui et al., 2020; W. Li et al., 2017) and diseases (Bernstein et al., 2016; Cheng et al., 2018; 

Kuehner et al., 2021; Qin et al., 2020). In addition, 5hmC sequencing aids in investigating the association 

between 5hmC and other genomic elements. For instance, 5hmC has been found to co-localize with gene 

bodies and enhancers known to activate gene expression, and it is positively correlated with gene 

expression (He et al., 2021). Moreover, 5hmC is significantly enriched in histone modifications 

associated with active enhancers, such as H3K4me1 and H3K27ac (Cui et al., 2020; Stroud et al., 2011). 

Furthermore, the distribution and enrichment of 5hmC exhibit tissue-specificity, evident in its preferential 

enrichment on tissue-specific gene bodies and enhancers (Li & Liu, 2011).  

Nevertheless, it is still costly to conduct a deep sequencing for an accurate identification of 5hmC 

modification. In addition, 5hmC experiments may suffer from underpowering due to insufficient 

sequencing depth or various artifacts, leading to a limited detection of 5hmC modification sites. Moreover, 

5hmC profiles exhibit dynamic changes across tissues and cell types. To overcome these challenges, 

computational models have been developed to enable an in silico genome-wide prediction of 5hmC 

profiles. The general principle of these methods is to treat DNA sequence within a genomic region as the 

model input and predict the probability of the region being a 5hmC peak. The key distinction between 

these approaches lies in the feature engineering applied to DNA sequences and successive use of machine 

learning algorithms. For example, iRNA5hmC-PS adopts k-mer (k=2,3) frequency and uses logistic 

regression for predicting the presence of 5hmC peaks (Ahmed et al., 2020). iRhm5CNN utilizes a simple 

convolution neural network, which employs one-hot encoding DNA sequence as the model input to 

predict the occurrence of 5hmC peaks (Ali et al., 2021). Given that the resolution of 5hmC peaks closely 

aligned with that of ChIP-seq peaks, deep learning methods designed for predicting the binding sites of 
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transcriptional factor, histone modification sites and open chromatin regions such as DeepSEA (Zhou & 

Troyanskaya, 2015), which  aims to predict epigenetic signals across hundreds of tissues and cell types in 

a multi-task framework, can be readily adapted for the task for predicting 5hmC peaks.  

Despite the success of existing computational methods for predicting 5hmC modification, there 

are still challenges to be addressed. First, there is a lack of computational methods specifically designed 

for predicting tissue/cell type-specific 5hmC modification on DNA is lacking, and alternative methods 

substituted for this purpose such as DeepDEA may be suboptimal. Second, the relationship among 5hmC, 

histone modification and gene expression is rarely explored in the predictive modeling of 5hmC 

modification. Lastly, current methods primarily concentrate on classifying binary 5hmC peaks while 

overlooking the quantitative variation of 5hmC modification. To address these challenges, we introduce a 

novel multi-modal deep learning framework named Deep5hmC, which aims to enhance the prediction of 

tissue/cell type-specific genome-wide 5hmC modification by incorporating information from both DNA 

sequence and histone modification. The contribution of our work lies on following aspects: (i) Deep5hmC 

leverages both DNA sequence and histone modifications to improve the prediction of 5hmC modification 

in both qualitative (i.e., 5hmC peaks) and quantitative prediction (i.e., normalized 5hmC reads); (ii) 

Deep5hmC is developed and evaluated using a comprehensive set of 5hmC sequencing (5hmc-seq) data 

collected at four time points during forebrain organoid development and across 17 human tissues. The 

extensive dataset demonstrates the power of Deep5hmC in predicting tissue-specific 5hmC modification; 

(iii) Deep5hmC is further assessed using one 5hmC-seq data in one case-control study of Alzheimer’s 

disease to demonstrate its broad utility in predicting differentially hydroxymethylated regions (DhMR) 

within the context of the disease; (iv) an extension of Deep5hmC is to quantify gene expression by 

predicted quantitative 5hmC modification within gene bodies; (v) Deep5hmC is released as an open-

source python toolkit, which can benefit the epigenetic research community.  As a result, we demonstrate 

that inclusion of histone modification leads to improved prediction performance of Deep5hmC for both 

qualitative and quantitative 5hmC modification. Importantly, Deep5hmC outperforms competing machine 
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learning approaches for the same purpose. In addition, Deep5hmC achieves an accurate prediction of gene 

expression and is also powerful for predicting DhMRs. 

Results 

Overview of Deep5hmC 

The workflow of the deep learning framework, Deep5hmC is demonstrated in Fig. 1. The labelled 

training set can be derived from tissue/cell-type specific 5hmC-enriched region (i.e., peaks) in one 

condition (Fig. 1A) or DhMRs in a case-control study (Fig. 1B) (e.g., disease versus healthy control).  

Accordingly, one-hot encoding DNA sequence in peaks or DhMRs serves as the input for the sequence 

modality (Fig 1C, D). In addition, histone features are obtained from histone ChIP-seq from public 

consortiums such as ENCODE or Roadmap Epigenomics (Fig. 1A), with matched tissue/cell-type as the 

5hmC-seq. Only the histone features in the neighborhoods of the 5hmC peaks/DhMRs are considered as 

the input for the histone modality. The sequence modality and histone modality each go through their own 

convolutional neural networks (CNN) to derive separate feature representations, which are later joined via 

the MFB fusion layer. The output of the MFB fusion layer further connects to fully connected layers and 

the output layer afterwards. Depending on the preparation of training set and prediction mission, the 

Deep5hmC consists of four modules, including Deep5hmC-binary, Deep5hmC-cont, Deep5hmC-gene 

and Deep5hmC-diff. Specifically, Deep5hmC-binary takes the labelled 5hmC peaks and non-peaks as the 

training set to identify the 5hmC-enriched regions (More details in section “Evaluating Deep5hmC for 

predicting binary 5hmC modification sites”). Deep5hmC-cont takes normalized read counts in 5hmC 

peaks and aim to predict the continuous 5hmC modification genome-wide (More details in section 

“Evaluating Deep5hmC for predicting continuous 5hmC modification”). By leveraging Deep5hmC-cont, 

Deep5hmC-gene aggregates the predictions of Deep5hmC-cont in the gene bodies as a surrogate for 

predicted gene expression (More details in section “Evaluating Deep5hmC in predicting gene 

expression”). Different from Deep5hmC-binary, Deep5hmC-diff takes the labelled DhMRs/non-DhMRs 

in a case-control design of 5hmC-seq as the training set, and  derives histone features from a similar case-
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control design of histone ChIP-seq. Deep5hmC-diff aims to predict genome-wide DhMRs and discover 

de novo DhMRs that may be absent in the training set (More details in section “Evaluating Deep5hmC for 

predicting differential hydroxymethylated regions”). Overall, the four modules in the deep learning 

framework Deep5hmC will provide a comprehensive assessment of genome-wide tissue/cell type-specific 

5hmC modification in either qualitative or quantitative manner as well as genome-wide DhMRs. In 

addition, it allows the prediction of gene expression using predicted 5hmC modification. The details and 

evaluation for each module of Deep5hmC will be elaborated in the subsequent sections. 

Distribution pattern of histone modification around 5hmC peaks 

We conduct a real data exploration by integrating tissue matched 5hmC-seq data and histone ChIP-seq 

data to evaluate the potential of histone modification as informative features for predicting 5hmC 

modification. Without loss of generality, we gather EB 5hmC peaks from “Forebrain Organoid” and 

ChIP-seq data in “Brain Angular Gyrus” involving seven histone marks from Roadmap Epigenomics 

(Supplementary Table S1). The seven histone marks consists of H3K4me1, H3K27ac and H3K9ac 

associated with active enhancers; H3K4me3 associated with active promoters; H3K36me3 associated 

with active expressed gene bodies; and repressive marks such as H3K9me3 and H3K27me3. To 

characterize the histone modification patterns around 5hmC modification sites, we acquire and average 

the histone features with dimensions of 1x41 in the neighborhood of each 5hmC peak for the positive and 

negative sets. The histone features represent essentially normalized 5hmC read counts, which are created 

by segmenting an extended genomic region of 10kb both upstream and downstream of each 5hmC peak 

into 41 1kb windows, with a sliding size 500bp and counting reads for each 1kb windows (More details in 

“Multimodal features”). Performing the Wilcoxon rank-sum test on the two sets of histone features for 

each histone mark, we find that the distribution of histone features is significantly different between 

positive and negative 5hmC peaks (pvalue<0.05) (Fig. 2). This observation suggests that histone marks 

are informative for predicting 5hmC modification. 
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Moreover, the enrichment patterns of the seven histone marks exhibit variations (Fig. 2). Active 

enhancer marks such as H3K4me1, H3K27ac and H3K9ac display a consistent pattern, where the histone 

features are consistently higher in the positive 5hmC peaks than in negative ones.  Notably, H3K4me1 

shows the most significant differential enrichment of histone features between positive and negative 

peaks (pvalue = 5.728 � 10���), followed by H3K27ac (pvalue = 2.169 � 10��) and H3K9ac (pvalue = 

4.682 � 10��). This observation aligns with the previous findings that 5hmC is significantly enriched in 

histone marks associated with enhancers, such as H3K4me1 and H3K27ac (Stroud et al., 2011). 

Interestingly, the enrichment pattern is opposite for H3K4me3 compared to the active enhancer marks. 

H3K4me3 is more enriched in negative 5hmC peaks than in positive ones (pvalue = 5.982 � 10��). A 

similar trend and shape are observed for H3K27me3 (pvalue = 9.690 � 10��). Although the histones 

features are higher in negative 5hmC peaks than in positive peaks for both H3K9me3 (pvalue = 8.553 �

10���
 and H3K36me3 (pvalue = 4.708 � 10�	�
, the enrichment patterns differ. H3K9me3 exhibits a 

valley-shaped pattern for both positive and negative peaks, while H3K36me3 shows a peak-shaped 

pattern for negative peaks and a valley-shaped pattern for positive peaks. Comparing to H3K27me3, 

which is considered as a temporary repression signal, H3K9me3, another repressive mark viewed as a 

permanent repression signal, shows the same direction but different enrichment patterns (Kim & Kim, 

2012). Furthermore, the overall enrichment level of active histone marks is higher than that of repressive 

histone marks. Taking positive peaks as an example, the average 5hmC read counts in the center of the 

positive peaks are approximately 24 for H3K4me1, 15 for H3K27ac, 24 for H3K9ac, 20 for H3K4me3 

and 14 for H3K36me3 compared to 10 for H3K27me3 and 9 for H3K9me3. Additionally, the change of 

enrichment from distal windows to the center window of active histone marks is more significant than 

that of repressive histone marks.  For positive peaks, the average 5hmC read counts increases by 

approximately 5 from the distal 20th window to the center window for H3K4me1, 4 for H3K27ac, 5 for 

H3K9ac, 5 for H3K4me3, while they decrease by approximately 3 for H3K36me3. In contrast, the 

average 5hmC read counts increases by only 0.5 for H3K27me3 and decreases by 2 for H3K9me3.  
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Evaluating the predictive power of histone marks 

Motivated by the observation that the enrichment of histone marks shows differential distribution between 

positive and negative 5hmC peaks, we further explore the predictive power of each histone mark in 

classifying positive and negative 5hmC peaks. Identifying the most influential histone marks is crucial for 

reducing the model complexity especially when dealing with multiple histone marks in the matched 

tissues or cell types. Specifically, we choose the EB 5hmC peaks from “Forebrain Organoid” and ChIP-

seq data from all brain regions of seven histone marks in Roadmap Epigenomics (Supplement Table S1) 

and evaluate the predictive performance for each histone mark in terms of AUROC and AUPRC. 

Consequently, we find that H3K4me1 and H3K4me3 show higher AUROC than other histone marks 

(Supplementary Fig. S1). In addition, the two histone marks are most prevalent across multiple tissue 

and cell types in consortiums such as ENCODE and Roadmap Epigenomics. As a result, we only include 

the two histone marks in the subsequent experiments.  

Comparing unimodal and multimodal Deep5hmC 

As Deep5hmC is a multimodal model comprising both sequence and histone modalities, we conduct an 

ablation study to demonstrate that incorporating the histone modality leads to improved prediction 

performance of 5hmC modification. For this purpose, we compare two unimodal models of Deep5hmC: 

Deep5hmC-Seq and Deep5hmC-His to the default multimodal Deep5hmC. Without loss of generality, we 

utilize the same EB 5hmC peaks from “Forebrain Organoid” and ChIP-seq data from two histone marks: 

H3K4me1 and H3K4me3 collected from all brain regions in Roadmap Epigenomics (Supplementary 

Table S2). The results indicate that Deep5hmC achieves the best performance with an AUROC of 0.92, 

followed by Deep5hmC-Seq with an AUROC of 0.89. Deep5hmC-His lags with an AUROC of 0.68 (Fig. 

3A). The observation indicates that integrating both sequence and histone modalities indeed enhances the 

prediction performance, although using histone modality alone achieve only moderate predictive ability. 

Similar trends are observed when measuring prediction performance by AUPRC (Fig. 3B).  It is evident 

that multimodal Deep5hmC unequivocally outperforms unimodal Deep5hmC, whether Deep5hmC-Seq or 
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Deep5hmC-His, in terms of both AUROC and AUPRC. Given the superior performance of multimodal 

Deep5hmC, we will use it as the default implementation in subsequent sections. 

Evaluating Deep5hmC for predicting binary 5hmC modification sites 

To demonstrate the superiority of Deep5hmC to existing methods, we further conduct a comparison 

between the binary version of Deep5hmC, named Deep5hmC-binary, and competing models, which 

include DeepSEA-Transfer, DeepSEA-Retrain, and Random Forest to predict the binary 5hmC 

modification sites (i.e. normalized peaks), using the same training, validation, and testing sets as outlined 

in the “cross-chromosomal” strategy (More details in the Methods section) for  both “Forebrain Organoid” 

and “Human Tissues”. We adopt DeepSEA as the representative of deep learning approaches for its 

renowned use of genomic sequence to predict epigenetic signals, which has demonstrated superior 

performance (Zhou & Troyanskaya, 2015).  Given that DeepSEA is a multi-task model predicting 

epigenetic signals across various tissues and cell types simultaneously, we customize it into single-task 

model in the output layer for a fair comparison to Deep5hmC. In addition, we design two versions of 

DeepSEA: DeepSEA-Transfer and DeepSEA-Retrain, both sharing the same network architectures as 

DeepSEA but differing in the training process. Specifically, DeepSEA-Transfer is a transfer learning 

model built upon the pretrained DeepSEA, with fine-tuning applied exclusively to the last fully connected 

layer. In contrast, DeepSEA-Retrain starts the model training from the scratch, updating all model 

parameters. To represent conventional machine learning models, we select Random Forest for its robust 

performance. Following prior work, we adopt 3-mer frequency of genomic sequence, which result in 64 

features for Random Forest (Ahmed et al., 2020).  

For “Forebrain Organoid”, we present the AUROC and AUPRC of all models across four 

developmental time points: day 8 embryoid bodies (EB), day 56 (D56), day 84 (D84), day 112 (D112) of 

healthy forebrain organoid (Fig. 4).  Consequently, Deep5hmC-binary consistently obtains the highest 

AUROC (0.94 for EB; 0.95 for D56; 0.96 for D84; 0.97 for D112) among all methods and developmental 

stages (Fig. 4A). Following closely is DeepSEA-Retrain (0.90 for EB; 0.92 for D56; 0.92 for D84; 0.92 
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for D112).  The observation indicates that enhanced prediction performance can be achieved by 

leveraging tissue-matched histone modification through a comparison between Deep5hmC-binary and 

DeepSEA-Retrain, the latter being a CNN model solely relying on genomic sequence as the input. 

DeepSEA-Retrain outperforms Random Forest (AUROC = 0.85 for EB; 0.88 for D56; 0.89 for D84; 0.90 

for D112) and its counterpart DeepSEA-Transfer, which records the lowest overall AUROC (AUROC = 

0.86 for EB; 0.85 for D56; 0.83 for D84; 0.83 for D112). The superiority of DeepSEA-Retrain over 

Random Forest underscores the advantage of deep learning model in capturing nonlinear and high-order 

dependencies in the genomic sequence compared to k-mer frequency. The observation also suggests that 

DeepSEA benefits more from retraining the model than relying on the pretrained model. The initial 

pretraining of DeepSEA on hundreds of tissue/cell type-specific factors may not be optimal for predicting 

5hmC modification, which is another epigenetic factor, emphasizing the importance of context matching, 

where training and testing data belong to the same domain. Moreover, consistent trends are observed 

across all methods when evaluated using AUPRC. (Fig. 4B). 

For “Human Tissues”, we present that both AUROC and AUPRC of all compared methods across 

17 human tissues (Fig. 5). The evaluation of two methods is extended through a Wilcoxon rank-sum test 

on AUROC/AUPRC across 17 human tissues, aiming to determine the statistical significance of 

differences in prediction performance. Consequently, Deep5hmC-binary emerges as the top-performed 

method, followed by DeepSEA-Retrain, while DeepSEA-Transfer and Random Forest exhibit comparable 

performance (median AUROC=0.96 for Deep5hmC-binary; 0.90 for DeepSEA-Retrain; 0.84 for 

DeepSEA-Transfer; 0.85 for Random Forest) (Fig. 5A). The superiority of Deep5hmC over other 

methods is also statistically significant (p-value = 1.548 � 10�� for Deep5hmC-binary versus DeepSEA-

Retrain; 6.455 � 10��  for Deep5hmC-binary versus DeepSEA-Transfer; 6.455� 10��  for Deep5hmC 

versus Random Forest). Consistent with the findings in “Forebrain Organoid”, DeepSEA-Retrain 

significantly outperforms DeepSEA-Transfer (pvalue = 3.923 � 10��
  and DeepSEA-Transfer holds 

comparable performance to Random Forest. Moreover, the trend is maintained when assessing prediction 
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performance using AUPRC (Fig. 5B). Conclusively, the comprehensive evalaution focusing on tissue-

specific predictions underscores that Deep5hmC-binary possesses a distinct advantage over existing 

methods concerning binary 5hmC modification sites. 

Evaluating Deep5hmC for predicting continuous 5hmC modification 

Using the same two datasets as aforementioned in predicting binary 5hmC modification, we extend the 

evaluation to the continuous version of Deep5hmC, named Deep5hmC-cont, along with other competing 

methods for predicting continuous 5hmC modification, quantified by normalized 5hmC read counts.  To 

mitigate the impact of outliers and normalize the count data towards a normal distribution, we perform a 

log-transformation on the 5hmC read counts.  Evaluation of prediction performance is conducted using 

Pearson correlation coefficient (R) and mean square error (MSE), which are calculated between the 

observed 5hmC read counts and predicted ones on the logarithm scale. 

For “Forebrain Organoid”, Deep5hmC-cont demonstrates the highest R across all developmental 

stages (R=0.870 for EB; 0.876 for D56; 0.893 for D84; 0.876 for D112) (Fig. 6A).  Following closely is 

DeepSEA-Retrain, showing comparable performance with Random Forest (Rs=0.842, 0.843, 0.857 and 

0.790 for DeepSEA-Retrain; 0.829, 0.825, 0.830 and 0.828 for Random Forest). Notably, DeepSEA-

Transfer remains potent, yet it exhibits the least favorable performance with Rs of 0.756, 0.693, 0.752 and 

0.653 across four time points. In addition, Deep5hmC-cont obtains the lowest MSE in 3 out of 4 time 

points (Supplementary Fig. S2A).  

 For “Human Tissues”, Deep5hmC-cont excels by emerging as the top-performed method in 15 

out of 17 tissues in terms of Rs and achieving the highest median of R across 17 tissues (median R=0.88 

for Deep5hmC-cont; 0.76 for DeepSEA-Retrain; 0.65 for DeepSEA-Transfer; R=0.85 for Random 

Forest). (Fig. 6B). Random Forest rank second, followed by DeepSEA-Retrain, while DeepSEA-Transfer 

exhibits the least favorable performance. Upon comparing the Deep5hmC-cont to other methods using 

Wilcoxon rank-sum test on the Rs from 17 tissues, we find that Deep5hmC-cont has comparable 

performance to Random Forest while enjoys a substantial advantage over DeepSEA-Retrain and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2024. ; https://doi.org/10.1101/2024.03.04.583444doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.04.583444
http://creativecommons.org/licenses/by-nc-nd/4.0/


DeepSEA-Transfer (pvalue = 1.318 � 10�
 for Deep5hmC-cont versus DeepSEA-Retrain; 6.455� 10�� 

for Deep5hmC-cont versus DeepSEA-Transfer; 0.079 for Deep5hmC-cont versus Random Forest). Once 

again, DeepSEA-Retrain significantly performs better than DeepSEA-Transfer (pvalue = 6.455 � 10��
. 

Additionally, Deep5hmC-cont is comparable to Random Forest and achieves the lowest MSE in 8 out of 

the 17 tissues, as well as second lowest MSE in 6 out of the 17 tissues (Supplementary Fig. S2B). These 

observations affirm that Deep5hmC-cont accurately predict the tissue-specific continuous 5hmc 

modification, showcasing its improvement over other methods, especially for “Forebrain Organoid”. 

Evaluating Deep5hmC for predicting gene expression 

The positive correlation between 5hmC modification in the gene body and gene expression has been 

demonstrated in both mouse brain and human tissues (He et al., 2021; Mellén et al., 2012). To quantify 

the predictive power for gene expression using 5hmC modification, we introduce Deep5hmC-gene, a 

module within the Deep5hmC framework, designed to predict gene expression by leveraging continuous 

predicted 5hmC modification from Deep5hmC-cont. Specifically, Deep5hmC-gene employs a three-step 

approach. First, it segments each gene body into nonadjacent 1kb windows. For gene bodies less than 1kb 

or with the last window less than 1kb, padding is applied to ensure each window is 1kb. Next, 

Deep5hmC-gene utilizes the pretrained Deep5hmC-cont to predict the 5hmC counts for each 1kb window. 

Finally, it aggregates all predicted 5hmC counts within each gene body to generate the predicted gene 

expression. To evaluate the effectiveness of Deep5hmC-gene in predicting gene expression, we evaluate 

it on both “Forebrain Organoid” and “Human Tissues”, which provide a comprehensive set of tissue-

specific paired 5hmC-seq data and RNA-seq data. Gene expression measured by RNA-seq data, in terms 

of read counts, serves as the gold standard. The evaluation is based on the pearson Correlation Coefficient 

(R) calculated between predicted and observed gene expression. In addition, we report Rs calculated 

between predicted and observed 5hmc read counts in all gene bodies, as the predicted gene expression is 

quantified by predicted 5hmC read counts in gene bodies. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2024. ; https://doi.org/10.1101/2024.03.04.583444doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.04.583444
http://creativecommons.org/licenses/by-nc-nd/4.0/


As a result, Deep5hmC-gene achieves a high R value of 0.95 between the predicted and observed 

5hmC read counts in all gene bodies for EB in “Forebrain Organoid” (Fig. 7A). Leveraging this accurate 

prediction of 5hmC in gene bodies, Deep5hmC-gene obtains a substantial R value of 0.54 between 

predicted and observed gene expression for EB in “Forebrain Organoid” (Fig. 7B). Extending the analysis 

to all four time points in the “Forebrain Organoid” reveals consistent results, with Deep5hmC-gene 

accurately predicting 5hmC read counts in gene bodies (R within the range of 0.94 to 0.95) (Fig. 7C) and 

gene expression (R within the range of 0.54 to 0.62) (Fig. 7D). The MSE calculated between predicted 

and observed 5hmC read counts in gene bodies, as well as between predicted and observed gene 

expression for “Forebrain Organoid” can be found in the Supplementary Fig S3.A,B. 

Moreover, we benchmark Deep5hmC-gene against other competing methods for “Human 

Tissues”. All approaches demonstrate high prediction accuracy for 5hmC read counts in gene bodies in 

terms of R (Fig. 7E). Deep5hmC-gene exhibits comparable performance to other methods, with a median 

R value of 0.95 compared to 0.94 for DeepSEA-Retrain, 0.94 for DeepSEA-Transfer and 0.96 for 

Random Forest. Notably, Deep5hmC-gene exhibits the smallest MSE (Supplementary Fig S3.C). The 

prediction accuracy for gene expression of all methods declines and shows tissue-specific variability (Fig. 

7F). Deep5hmC-gene performs best, achieving the highest median of R value of 0.75 compared to 0.74 

for Random Forest and 0.70 for both DeepSEA-Retrain and DeepSEA-Transfer. Notably, the R values of 

most tissues falls within the range of 0.7 to 0.8 across all methods, confirming that using 5hmC read 

counts can accurately predict gene expression. Once again, Deep5hmC-gene achieves the smallest MSE 

of predicted and observed gene expression for “Human Tissues” (Supplementary Fig S3.D). Overall, the 

exploration demonstrates that leveraging 5hmC read counts in gene bodies facilitates accurate prediction 

of gene expression, potentially linking DNA methylation and gene expression in a tissue-specific gene 

regulatory context. 

Evaluating Deep5hmC for predicting differential hydroxymethylated regions 
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Thus far, we have demonstrated the efficacy of Deep5hmC in predicting tissue-specific 5hmC 

modification, quantified by both 5hmC peak and continuous 5hmC reads.  However, extending our study 

to a case-control design allows us to explore differential hydroxymethylated regions (DhMRs). In this 

scenario, DhMRs are regions enriched or present only in one disease/treatment condition, while absent or 

depleted in the control condition, or vice versa. Identified DhMRs can be potential biomarkers for disease 

prevention, diagnosis and treatment. We formularize the DhMR identification as a binary classification 

task, where each genomic region (i.e., 1kb) is labelled and predicted as DhMR or non-DhMR. This 

module for predicting DhMRs is named “Deep5hmC-diff”. Deep5hmC-diff utilizes Deep5hmC-His 

modality, masking Deep5hmC-Seq modality, as the genomic sequence is shared between two conditions 

in the same genomic regions. The training set for Deep5hmC-diff is created by performing differential 

peak analysis using tools such as DESeq2 (Love et al., 2014) and ChIPComp (Chen et al., 2015) on 

unioned 5hmC peaks from all samples in both case and control conditions. Subsequently, Deep5hmC-diff 

is trained and tested using the labeled DhMRs. 

 To demonstrate the feasibility of Deep5hmC-diff, we focus on an Alzheimer’s disease study, 

specifically “Kentucky AD”, which profiles 5hmC-seq for 3 AD and 3 healthy controls. We employ 

DESeq2 (Love et al., 2014) to identify DhMRs (e.g., FDR<0.1) and non-DhMRs (e.g., FDR>0.5), 

resulting in 4330 differential DhMRs and 4025 non-DhMRs . The histone features are derived from 

H3K27ac and H3K4me3 ChIP-seq data from Rush Alzheimer’s Disease Study, available on ENCODE 

portal (Sloan et al., 2016). H3K27ac is used as an alternative of H3K4me1 given the unavailability of 

H3K4me1 data, and both H3K27ac and H3K4me1 are active enhancer marks. For each histone mark, we 

select one ChIP-seq data with matched gender, age for the 5hmC-seq in AD group, diagnosed with 

“Alzheimer’s disease” and another ChIP-seq data with matched gender, age for the 5hmC-seq in healthy 

control group, diagnosed with “No Cognitive Impairment”.  

We employ the same “cross-chromosomal” strategy to create training, validation and testing sets. 

Deep5hmC-diff achieves an AUROC of 0.67 (Fig. 8A) and AUPRC of 0.73 (Fig. 8B), demonstrating 
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predictive power for identifying DhMRs by leveraging histone modification data. There is potential for 

further improvement by incorporating additional histone marks or other epigenetic factors such as 

chromatin accessibility and transcription factor binding. In addition to evaluating Deep5hmC-diff using 

the “cross-chromosomal” strategy, we extend its application by conducting a genome-wide screening for 

de nove DhMRs, which may not be present in the 5hmC-seq data potentially due to lacking sufficient 

sequencing depths or technical bias etc. For this purpose, we utilize all labelled DhMRs and non-DhMRs 

peaks from “Kentucky AD” to train the Deep5hmC-diff model. The entire human genome is then 

segmented into non-overlapping 1kb windows, serving as the testing set. Each 1kb window, considered a 

candidate genomic region, is assigned a predictive probability of being a DhMR or not, using a cutoff at 

0.5. The distributions of de novo DhMRs is found to be consistent with those from 'Kentucky AD' across 

different genomic features, including Introns, Intergenic Regions, Promoters, Exons, immediate 

Downstream, 5UTRs and 3UTRs (Supplement Fig S4A, B). Of particular interest is the evaluation of 

whether Deep5hmC-diff can identify de novo DhMRs within key functional genomic sites associated with 

AD. We focus on three causal genes associated with early on-set AD, which include PSEN1 

(chr14:73603143–73690399), PSEN2 (chr1:227058273-227083804) and APP (chr21:27252861-

27543138) as well as one causal gene APOE (chr19:45409039-45412650) associated with late on-set AD. 

The predicted probability within the gene bodies, and upstream and downstream 5kb of the gene bodies 

are plotted (Fig. 8C). Deep5hmC-diff successfully identifies multiple de novo DhMRs with more DhMR 

found for APP and PSEN2 than APOE and PSEN1. As 5hmC modification is positively correlated with 

gene expression, we conduct differential expression analysis to validate the identified differential de novo 

DhMRs. We collect matched RNA-seq data for AD and healthy controls from “Kentucky AD” and 

perform differential expression analysis using DESeq2 (Love, Huber, & Anders, 2014). Consequently, 

three out of the four causal genes show differential expression (FDR = 0.019 for APP; 0.031 for PSEN1; 

0.028 for PSEN2), supporting the findings of predicted DhMRs in the three genes. These observations 

indicate that Deep5hmC-diff can be a valuable tool for identifying novel DhMRs in a case-control study. 
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The SNP enrichment analysis is designed to assess the enrichment of diseases/traits-associated 

GWAS SNPs or eQTLs within tissue/cell type-specific epigenetic regions. The analysis is crucial for 

identifying disease/trait-associated cell types, providing functional annotation and elucidating the role of 

GWAS SNPs or eQTLs (Agarwal et al., 2023; Chen, Jin, & Qin, 2016; Chen & Qin, 2017; Chen et al., 

2019; Kundaje et al., 2015; Wang & Chen, 2022). Recent AD studies have extensively employed SNP 

enrichment analysis to assess the enrichment of AD-associated SNPs in DhMRs, which helps unravel the 

functional implications of these AD-associated SNPs in AD pathogenesis (Bernstein et al., 2016). 

Building on these insights, we conduct SNP enrichment analysis to evaluate the enrichment of AD-

associated SNPs in de novo DhMRs, which are defined as genome-wide 1kb candidate regions with a 

predictive probability greater than 0.5 contrasting with non-DhMRs.   

Statistically significant AD-associated SNPs, considered positive SNPs, are gathered from five 

resources, containing summary statistics from GWAS conducted in AD. The first set of positive SNPs is 

derived from a study named “genome-wide association study by proxy (GWAX)”, comprising 1302 

significant SNPs from UK Biobank (pvalue<1x10��) (Liu, Erlich, & Pickrell, 2017). The second set is 

obtained from GWASCatalog (https://www.ebi.ac.uk/gwas/), including 1108 significant SNPs (p-

value<1x 10�� ). The third set is sourced from the Association Results Browser (ARB) 

(https://www.ncbi.nlm.nih.gov/projects/gapplus/sgap_plus.htm), containing 111 significant SNPs (p-

value<1x10�� ). The other two sets of positive SNPs are acquired from International Genomics of 

Alzheimer’s Project (IGAP) stage1 and combined stage1 & 2, harboring 6225 and 3687 significant SNPs 

respectively (p-value<1x10��) (Lambert et al., 2013).  Moreover, only SNPs in the noncoding regions are 

considered given the majority of GWAS SNPs are located within noncoding regions. To establish a 

reliable control group, we generate negative control SNPs at a ratio of 10:1 compared to the positive set, 

following the strategy from previous work (Chen, Jin, & Qin, 2016; Chen & Qin, 2017). Subsequently, 

for each variant set, we tally the number of positive/negative SNPs within DhMRs/non-DhMRs and 

construct a 2 by 2 contingency table. Fisher’s exact test is then employed to calculate the odd ratio (OR), 
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confidence interval (CI) and pvalue for the table. The results reveal that all five sets of positive SNPs 

exhibit enrichment in the de novo DhMRs (OR>1 and pvalue<0.05), suggesting a crucial role of AD-

associated SNPs in the pathogenesis of AD through their enrichment in DhMRs. 

 

Conclusion and Discussion 

In this study, we present a comprehensive deep learning framework named Deep5hmC, designed to 

predict genome-wide landscape of 5-Hydroxymethylcytosine (5hmC). Deep5hmC comprises four distinct 

modules tailored to specific prediction tasks: Deep5hmC-binary for predicting binary 5hmC peaks; 

Deep5hmC-cont for predicting continuous 5hmC modification; Deep5hmC-gene for predicting gene 

expression; Deep5hmC-diff for predicting differential hydroxymethylated regions (DhMRs). Notably, 

Deep5hmC stands out as a multi-modal deep learning model, which incorporates both DNA genomic 

sequence and histone modification data to enhance the accuracy of prediction for genome-wide 

qualitative and quantitative 5hmC modification. The decision to include histone modality stems from a 

thorough exploration of real data, involving tissue-matched histone ChIP-seq data from seven histone 

marks in a specific one brain region and one 5hmC-seq data profiled in embryoid body (EB) from 

forebrain organoid. This exploration reveals distinct distribution patterns between 5hmC peaks and non-

peak genomic regions in histone modifications of both active and repressive histone marks, suggesting the 

informative nature of histone modification features in predicting 5hmC modification. Notably, H3K4me1 

and H3K4me3 are identified as the most informative histone marks. To accommodate the histone 

modality, Deep5hmC employs �  Convolutional Neural Networks (CNNs), each corresponding to a 

different histone mark. The output from the histone modality is then integrated with the output from the 

sequence modality through the MFB fusion layer, resulting in a joint embedding for subsequent 

predictions. Using an illustrative example with one 5hmC-seq data profiled in EB from a brain organoid, 

we demonstrate that the multi-modal Deep5hmC outperforms both single-modal Deep5hmC-Seq, 

utilizing only DNA sequence, and Deep5hmC-His, relying solely on histone modification. 
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We further employ the multi-modal version of Deep5hmC as the default model for comparative 

analysis against existing methods, which include Random Forest and two variants of DeepSEA involving 

fine-tuning or retraining on two comprehensive datasets. These datasets encompass a broad collection of 

5hmC-seq across human tissues. One dataset, named “Forebrain Organoid”, comprises matched 5hmC-

seq and RNA-seq from four stages during fetal brain development. The other dataset, named “Human 

Tissues”, includes matched 5hmC-seq and RNA-seq from 17 diverse human tissues. Through an 

evaluation using the “cross-chromosomal” strategy, Deep5hmC-binary emerges as superior to existing 

methods, achieving the highest AUROC and AUPRC for predicting binary 5hmC modification sites. 

Similarly, Deep5hmC-cont attains the highest Pearson correlation coefficient and lowest MSE for 

predicting continuous 5hmC modification. Moreover, leveraging the predictions from pretrained 

Deep5hmC-cont, Deep5hmC-gene aggregates all predicted 5hmC counts within the gene body, accurately 

predicting the gene expression for both “Forebrain Organoid” and “Human Tissues”. This observation 

underscores the regulatory connection between DNA hydroxymethylation and gene expression in a tissue-

specific context.  

In addition to predicting 5hmC modification in a single healthy tissue, Deep5hmC-diff enables 

the prediction of differential hydroxymethylated regions (DhMRs) in a case-control design. where the 

regions, enriched or present only in one disease/treatment condition but depleted or absent in the control 

condition (or vice versa), are of particular interest. Demonstrating the feasibility, Deep5hmC-diff is 

applied to “Kentucky AD” study with matched 5hmC-seq and RNA-seq data for both AD patients and 

healthy controls. The results not only showcase the accurate prediction of DhMRs using the “cross-

chromosomal” strategy but also successfully identify genome-wide de novo DhMRs. Notably, multiple de 

novo DhMRs are found in AD causal genes such as APP, APOE, PSEN1 and PSEN2. These findings are 

further supported by differential expression analysis using the matched RNA-seq data. In addition, 

significant SNPs reported to be associated with AD from various studies are found to be enriched in 
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DhMRs, indicating a potential role of DhMRs in AD pathogenesis. Overall, these discoveries underscore 

the potency and broad applications of Deep5hmC in 5hmC-seq analysis.  

Several promising extensions of current work are envisioned. First, the 5hmC-seq data used to 

train Deep5hmC lacks single-base resolution. The incorporation of high-resolution 5hmC data from 

advanced technologies such as Tet-assisted bisulfite sequencing (TAB-Seq) and Oxidative bisulfite 

sequencing (oxBS-Seq), provides an opportunity to extend Deep5hmC’s capability to predict 5hmC 

modification at the single-base level. To achieve this, we intend to adapt and develop large language 

models, accommodating the significantly increased training sample size and addressing spatial correlation 

among single-base modification sites. Secondly, while we have incorporated histone modification as one 

additional modality for Deep5hmC, other epigenetic factors such as transcription factor binding and 

chromatin accessibility can be further integrated into the multi-modal deep learning framework. This 

expansion aims to enhance prediction performance by considering a more comprehensive set of 

epigenetic features. Furthermore, in our future work, we plan to develop an explainable version of 

Deep5hmC utilizing attention mechanisms. This will enable the identification of functional interactions 

between 5hmC and other epigenetic marks, shedding light on their interplay in the regulation of gene 

expression. This approach seeks to provide a more interpretable and nuanced understanding of the 

complex relationships within the epigenetic landscape. 

 

Methods 

Data description and processing 

The first dataset, termed “Forebrain Organoid”, includes paired 5hmC-seq data and RNA-seq data across 

embryoid body (8 days EB) and forebrain organoids cultured over three distinct time points: 56 days 

(D56), 84 days (D84), and 112 days (D112), designed to model the early development of the fetal brain 

(Kuehner et al., 2021). The called 5hmC peaks using MACS2 are retrieved from the original publication 

with GEO accession number GSE151818 (Kuehner et al., 2021). Each 5hmC peak is subsequently 
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standardized into a 1kb window by extending the center of the peak upstream and downstream 500bp. For  

the acquisition of raw read counts associated with each peak, the raw 5hmC-seq data is downloaded, and 

bowtie2 (Langmead et al., 2009) is employed to map the reads onto hg19 reference genome. Using 

R/Bioconductor package “GenomicRanges”, read counts for each 5hmC peak are obtained by overlapping 

the genomic positions of reads and peaks. Similarly, raw RNA-seq data is obtained, and STAR (Dobin & 

Gingeras, 2015) is utilized to map the reads onto hg19 reference transcriptome. Read counts for each gene 

are calculated based on the positional overlap between reads and genes, using R/Bioconductor package 

“GenomicRanges” and “Rsamtools”. Subsequently, the read counts of biological replicates are averaged 

after adjusting the sequencing depth.  

The second dataset, referred to as “Human Tissues”, comprises paired 5hmC-seq data and RNA-

seq data spanning 19 human tissues derived from ten organ systems.  The called 5hmC peaks using 

MACS2  are obtained from the original publication with GEO accession number GSE144530  (Cui et al., 

2020). To enhance reliability, we merge the peaks from biological replicates and retain only those peaks 

appearing in more than two biological replicates. Subsequently, the merged peaks are further standardized 

into 1kb windows. Raw 5hmC-seq data is downloaded and processed by mapping reads onto hg19 

reference genome using bowtie2. Read counts for each 5hmC peak are then calculated based on the 

mapped genomic positions. Raw RNA-seq data is downloaded and processed using STAR to map reads 

onto hg19 reference transcriptome. The read counts for each gene are determined by overlapping genomic 

positions between reads and genes. The read counts of biological replicates are averaged while adjusting 

the sequencing depth.  

The third dataset, titled “Kentucky AD”, is obtained from one the publication which provides the 

information of 5hmC-seq data in an Alzheimer’s disease study conducted by University of Kentucky 

Alzheimer's Disease Research Center with GEO accession number GSE72782 and RNA-seq  With SRA 

accession number SRA060572 (Bernstein et al., 2016). Raw 5hmC-seq data is collected from three 

prefrontal cortex samples of post-mortem AD patients and three controls with similar age, no history of 
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neurological illness and no significant neuropathology. After data acquisition, read mapping is executed 

using bowtie2 on the hg19 reference genome, and peak-calling is conducted for each sample using 

MACS2. Peak standardization and read counting for each peak are carried out employing the 

aforementioned approaches. 

For histone modification data, our primary focus is on acquiring H3K4me1 and H3K4me3 ChIP-

seq data that aligned with the tissue or disease condition associated with the 5hmC-seq data. In the case of  

“Forebrain Organoid”, we compile aligned bed files of brain-related ChIP-seq data from Roadmap 

Epigenomics (Kundaje et al., 2015) 

(https://egg2.wustl.edu/roadmap/data/byFileType/alignments/unconsolidated/) (Supplementary Table 

S2). For “Human Tissues”, we carefully select aligned bed files of ChIP-seq data from Roadmap 

Epigenomics by ensuring a match between ChIP-seq data and 5hmC-seq data based on tissue type. In 

cases where tissue-matched ChIP-seq data is unavailable at Roadmap Epigenomics, we retrieve it from 

ENCODE portal (Sloan et al., 2016) (https://www.encodeproject.org/). Owing to the absence of matched 

histone ChIP-seq data for “Hypothalamus” and “Lymph Nodes” in both databases, we exclude the two 

tissues, resulting in a total of 17 tissues in “Human tissues” for the subsequent analysis (Supplementary 

Table S3). For “Kentucky AD”, we gather H3K27ac and H3K4me3 ChIP-seq data from Rush 

Alzheimer’s Disease Study available on ENCODE portal (Supplementary Table S4). H3K27ac is used 

as an alternative for H3K4me1 due to the unavailability of H3K4me1 ChIP-seq data and both H3K27ac 

and H3K4me1 serve as active enhancer marks. In addition, H3K27ac has been found correlated with 

5hmC  (Cui et al., 2020). For AD group, we collect mapped ChIP-seq bam files from one individual with 

matched gender, age and diagnosed with “Alzheimer’s disease”. For healthy control group, we obtain the 

mapped ChIP-seq bam files from one individual with matched gender, age and diagnosed with “No 

Cognitive Impairment”. 

Multimodal features 
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Two types of features are utilized as input for Deep5hmC, which include DNA sequence within the 

standardized 5hmC peak (i.e., 1kb) and histone modification in the proximity of 5hmC peak. The DNA 

sequence in each 1kb window undergoes one-hot encoding, adhering to the rule ‘A’: [1,0,0,0], ‘C’: 

[0,1,0,0], ’G’: [0,0,1,0] and ‘T’: [0,0,0,1], which result in a 1000 � 4 matrix representing the sequence 

feature.  For the histone feature, we extend 10kb both upstream and downstream of each 5hmC peak and 

calculate normalized read counts from matched tissue-specific histone ChIP-seq data in a 1kb window 

with a sliding size 500bp, yielding the histone feature with dimensions 1x41. In scenarios where � 

matched ChIP-seq datasets are available, histone features from all datasets are horizontally stacked, 

resulting in a histone feature with dimensions �x41.  

Creating labelled data of training, validation and testing 

The qualitative prediction is essentially a binary classification task aimed at distinguishing 5hmC peaks 

from background genomic regions. Specifically, we label standardized 5hmC peaks (i.e., 1kb) with 

statistical significance from peak-calling results (FDR<0.05) as positive. To choose peaks in the negative 

set, we apply a series of selection criteria for genome-wide 1kb genomic regions of hg19 reference 

genome. Initially, negative peaks are required to be within 10kb distance from the positive ones. 

Additionally, the density distribution of GC content in the negative peaks must match that of the positive 

ones.  Without loss of generality, we maintain an equal number of positive and negative peaks. As a result, 

the number of positive peaks ranges from 12,596 to 137,488 with a median of 69,322 among 17 human 

tissues in “Human Tissue” and from 56,036 to 81,050 with a median of 72,745 for “Forebrain Organoid”. 

To predict differentially hydroxymethylated regions (DhMRs) in “Kentucky AD”, we start by identifying 

the 5hmC peaks from all samples in both AD and healthy controls. We merge overlapped peaks, 

standardize and calculate the read counts for merged 5hmC peaks. Next, we employ DESeq2 (Love et al., 

2014) to identify DhMRs. Peaks exhibiting statistical significance are deemed as positive (e.g., FDR<0.1) 

and non-significant peaks as considered as negative (e.g., FDR>0.5). For the quantitative prediction of 

5hmC modification, we treat logarithm of normalized 5hmC reads from both peaks and non-peak 
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genomic regions as the outcome.  More details regarding sample size from all datasets can be found 

in Supplementary Table S6. 

Network architecture of Deep5hmC 

Deep5hmC is essentially a multimodal deep learning model, which consists of three crucial components 

in the network architecture, which includes (1) an encoder module based on two CNNs; (2) a feature 

fusion module based on Multi-modal Factorized Bilinear (MFB) pooling approach (Yu et al., 2017) and 

(3) a prediction module for either binary classification or continuous prediction (Fig. 2D).   

The encoder module is composed of two unimodal encoders, each responsible for transforming an 

individual modality to a high-level feature presentation for further processing by subsequent layers in the 

model. Specifically, two separate and independent CNNs function as the unimodal encoders for DNA 

sequence and histone modification respectively. The sequence encoder takes the one-hot encoding DNA 

sequence as input, consisting of three sequential 1-D convolutional layers sharing the same kernel size of 

8 and stride of 1, padding of 0, and dilation of 1. The number of filters vary across these layers: 64, 128 

and 256. In addition, a max-pooling layer with a kernel size of 4 and a stride of 4 follows each of the first 

two convolutional layers. The output of last convolutional layer is flattened and connected to two fully 

connected layers. On the other hand, the histone encoder takes curated histone features from � histone 

marks as the input, where each histone mark � is profiled in the dimensions ��x41. Here, �� represents 

the number of matched tissues/cell types or biological replicates of the histone ChIP-seq data. 

Consequently, the histone encoder takes multimodal histone features as input, with each modality 

representing a different histone mark (Fig. 2D). Each histone mark has its own CNN to extract the high-

level features, comprising three 2-D convolutional layers sharing the same kernel size of 3 � 3, stride of 1, 

padding of 1, and varying number of filters: 32, 64, 128. A max-pooling layer with stride of 2 follows 

each of the first two convolutional layers. The kernel size for the max-pooling layer depends on the ��. 

For ��  equals 1, a 1 � 2  kernel size is chosen, and otherwise 2 � 2 . Similarly, the output of last 
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convolutional layer is flattened and is connected to two fully connected layers. Finally, the output from � 

CNN, corresponding to � histone marks, are concatenated to form the final output of histone module. 

The feature fusion module seamlessly integrates the two feature representations derived from the 

sequence and histone encoders into a unified representation for subsequent prediction (Fig. 2D). 

Specifically, we employ MFB (Yu et al., 2017), designed to efficiently amalgamate features from diverse 

modalities. Compared to alternative fusion techniques, MFB excels in capturing intricate interactions 

among multiple modalities while concurrently reducing computational complexity through factorization. 

Let 	� 
 ��  denote the feature representation from sequence modality, 	� 
 ��  represent feature 

representation from histone modality and � 
 ��  denote the output after fusion module. Notably, 
 is 

substantially smaller than both � and �. MFB aims to identify two low-rank factorized matrices �� 


��	
� and �� 
 ��	
�, aiming to convert two long vectors of different lengths to two short vectors of 

same length �
, where � denotes the latent dimensionality indicating the degree of factorization. The 

larger � is, the more original information can be preserved.  

	�
� �  ���	�, 	�

� 
 �
� (1) 

	�
� �  ���	�, 	�

� 
 �
� (2) 

The output of MFB fusion can be represented as follows: 

� � SumPooling�	�
�  	�

� , �! (3) 

where   is the element-wise multiplication of two vectors. Following the SumPooling operation, 

subsequent layers include power normalization �sign��!|�|
.�! and ℓ� normalization ��/& � &! layers. 

These steps enhance the properties of the fused data, ensuring appropriate scaling and distribution 

characteristics for subsequent layers. 
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The prediction module utilizes the output of MFB fusion layer as the input for the two fully 

connected layers, which are succeeded by the output layer for the prediction. In the output layer, a single 

node exists for continuous outcome and two nodes are present for binary outcome. In the case of binary 

outcome (presence or absence of 5hmc peak), the output undergoes a sigmoid function to yield the 

prediction probability. For continuous outcome (normalized 5hmC read counts), the output directly serves 

as the prediction. ReLU serves as the activation function across the entire network, excluding the output 

layer. Additionally, dropout layers with a rate of 0.5 are strategically incorporated to mitigate overfitting. 

Model implementation, training, validation and testing 

Deep5hmC is implemented using PyTorch (Paszke et al., 2019) on an NVIDIA A100 GPU system. 

Utilizing mini-batch gradient descent and the Adam optimizer (Kingma & Ba, 2017), the network is 

optimized for binary outcome using cross-entropy loss and continuous outcome using mean square error 

(MSE) respectively. The default learning rate is set to 10�� . To improve the efficiency of learning 

process, warm-up steps and a learning rate decay strategy are incorporated as options. Each model 

undergoes training for a maximum of 200 epochs, with early stopping implemented if the model 

performance stagnated over a consecutive 10 epochs. In alignment with the evaluation strategy for 

DeepSEA, a “cross-chromosomal” strategy is employed to design training, validation and testing sets. 

Specifically, 5hmc peaks on chromosomes 8 and 9 constitute the testing set, chromosome 7 serves as the 

validation set, and the remaining chromosomes form the training set. 

 

Figure Legend 

Figure 1. Overview of Deep5hmC. A. The training set of Deep5hmC can be derived from matched 

5hmC-seq and histone ChIP-seq from one condition. Specifically, the 5hmC-seq data can be collected 

from tissue-specific human tissues, which include bladder, brain, breast, heart, kidney, liver, lung, 

marrow, ovary (female), pancreas, placenta (female), prostate (male), colon (sigmoid), colon (transverse), 
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skin, stomach and testis (male). The matched tissue-specific histone ChIP-seq data are collected 

according from public consortiums such as Roadmap Epigenomics and ENCODE. In this context, 

Deep5hmC aims to predict genome-wide 5hmC modification in a single condition. B. The training set of 

Deep5hmC can also be derived from matched 5hmC-seq and histone ChIP-seq from a case-control study 

(e.g., Alzheimer’s Disease vs healthy control) for predicting differentially hydroxymethylated regions 

(DhMRs).  C. Deep5hmC is a multimodal deep learning model to improve the prediction of tissue/cell 

type-specific genome-wide 5hmC modification by leveraging both DNA sequence and histone 

modification. Deep5hmC consists of four modules, including Deep5hmC-binary, Deep5hmC-cont, 

Deep5hmC-gene and Deep5hmC-diff. Specifically, Deep5hmC-binary takes the labelled 5hmC peaks and 

non-peaks as the training set to identify the 5hmC enriched regions. Deep5hmC-cont takes the normalized 

read counts in 5hmC peaks and aim to predict the continuous 5hmC modification genome-wide. By 

leveraging Deep5hmC-cont, Deep5hmC-gene aggregates the predictions of Deep5hmC-cont in the gene 

bodies as the surrogate for the predicted gene expression. Different from Deep5hmC-binary, Deep5hmC-

diff takes the labelled DhMRs/non-DhMRs in a case-control design of 5hmC-seq as the training set to 

predict genome-wide DhMRs and may discover de novo DhMRs. D. Model architecture of Deep5hmC. 

Deep5hmC consists of both sequence modality and histone modality consisting of their own 

convolutional neural networks (CNN) to derive separate feature representations, which will be joined later 

via the Multi-modal Factorized Bilinear pooling (MFB) fusion layer. The output of the MFB fusion layer 

will further connect to fully connected layers and the output layer afterwards.  

Figure 2. Distribution pattern of histone modification around 5hmC peaks. EB 5hmC peaks is 

collected from “Forebrain Organoid” 5hmC-seq data and ChIP-seq data in “Brain Angular Gyrus” from 

seven histone marks are collected from Roadmap Epigenomics. Histone features are obtained and 

averaged in the neighborhood of all 5hmC peaks for the positive and negative set respectively. 

Specifically, histone features are created by segmenting an extended genomic region of 10kb both 

upstream and downstream of each 5hmC peak into 41 1kb windows with a sliding size 500bp and 
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counting reads for each 1kb windows. For each histone mark, Wilcoxon rank-sum test is performed to test 

the distribution difference of histone features between positive and negative 5hmC peaks and pvalue is 

reported. 

Figure 3. Comparison of unimodal and multimodal Deep5hmC in predicting of 5hmC modification 

sites. Two unimodal models of Deep5hmC: Deep5hmC-Seq using only DNA sequence as the model input 

and Deep5hmC-His using only histone features as the model input are compared to the default 

multimodal Deep5hmC using both DNA sequence and histone features as the model input. 5hmC peaks 

from “Forebrain Organoid” and two histone marks: H3K4me1 and H3K4me3 ChIP-seq data in all brain 

regions from Roadmap Epigenomics are used as the training set.  A. AUROC reported for three compared 

methods. B. AUPRC reported for three compared methods. 

Figure 4. Evaluating Deep5hmC-binary for predicting binary 5hmC modification sites using 

“Forebrain Organoid” data. A. AUROC are reported for all compared methods across 4 developmental 

stages in “Forebrain Organoid”.  B. AUPRC are reported for all compared methods across 4 

developmental stages in “Forebrain Organoid”.   

Figure 5. Evaluating Deep5hmC-binary for predicting binary 5hmC modification sites using 

“Human Tissues” data. A. AUROC are reported for all compared methods across 17 human tissues in 

“Human Tissues”.  B. AURPC are reported for all compared methods across 17 human tissues in “Human 

Tissues”. 

Figure 6. Evaluating Deep5hmC-cont for predicting continuous 5hmC modification.  A. Pearson 

correlation coefficients (Rs) are reported for all compared methods across 4 developmental stages in 

“Forebrain Organoid”.  B. Pearson correlation coefficients (Rs) are reported for all compared methods 

across 17 human tissues in “Human Tissues”.   

Figure 7. Evaluating Deep5hmC-gene for predicting gene expression. A. Correlation between the 

predicted and observed 5hmC read counts in all gene bodies for EB in “Forebrain Organoid”. B. 
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Correlation between predicted and observed gene expression for EB in “Forebrain Organoid”. C. Pearson 

correlation coefficients (Rs) calculated between the predicted and observed 5hmC read counts in all gene 

bodies for 4 developmental stages in “Forebrain Organoid”. D. Pearson correlation coefficients (Rs) 

calculated between the predicted and observed gene expression for 4 time points in “Forebrain Organoid”. 

E. Pearson correlation coefficients (Rs) calculated between the predicted and observed 5hmC read counts 

in all gene bodies for 17 human tissues in “Human Tissues”.  F. Pearson correlation coefficients (Rs) 

calculated between the predicted and observed gene expression for 17 human tissues in “Human Tissues”.   

Figure 8. Applying Deep5hmC-diff in a case-control study of Alzheimer’s disease. A. AUROC is 

reported for predicting differential hydroxymethylated regions (DhMRs) between 3 AD patients and 3 

healthy controls in “Kentucky AD”. B. AUPRC is reported for predicting DhMRs between AD patients 

and healthy controls. C. Distribution of identified de novo DhMRs in three causal genes associated with 

early on-set AD, which include PSEN1 (chr14:73603143–73690399), PSEN2 (chr1:227058273- 

227083804) and APP (chr21:27252861-27543138) as well as one causal gene APOE (chr19:45409039- 

45412650) associated with late on-set AD.  D.  SNP enrichment analysis to evaluate the enrichment of 

AD-associated SNPs in de novo DhMRs. Positive SNPs are collected from five sources including UK 

Biobank. Association Results Browser (ARB), GWASCatalog, International Genomics of Alzheimer’s 

Project (IGAP) stage1 and combined stage1 & 2.  

Availability of data and materials.  

The histone ChIP-seq data can be found at Roadmap Epigenomics 

(https://egg2.wustl.edu/roadmap/data/byFileType/alignments/unconsolidated/) and ENCODE portal 

(https://www.encodeproject.org/). 5hmC peaks and raw 5hmC-seq data and RNA-seq data of “Forebrain 

Organoid” can be found from GEO with accession number GSE151818. 5hmC peaks and raw 5hmC-seq 

data and RNA-seq data of “Human Tissues” can be found from GEO with accession number GSE144530. 

For “Kentucky AD”, raw 5hmC-seq data can be found from GEO with accession number GSE72782 and 

RNA-seq with SRA accession number SRA060572. 
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Software availability 

https://github.com/XinBiostats/Deep5hmC 
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Supplementary information 

Supplementary Figure S1. Evaluating predictive performance of 7 histone marks using ‘Forebrain 

Organoid’ data. A. AUROC are reported for all histone marks for EB in “Forebrain organoid”. B. 

AUPRC are reported for all histone marks for EB in “Forebrain Organoid”. 

Supplementary Figure S2. Evaluating Deep5hmC-cont for predicting continuous 5hmC 

modification. A. Mean squared error (MSE) are reported for all compared methods across 4 

developmental stages in “Forebrain Organoid”. B. MSE are reported for all compared methods across 17 

human tissues in “Human Tissues”. 

Supplementary Figure S3. Evaluating Deep5hmC-gene for predicting gene expression. A. Mean 

squared error (MSE) are calculated between the predicted and observed 5hmC read counts in all gene 

bodies for 4 developmental stages in “Forebrain Organoid”. B. MSE are calculated between the predicted 

and observed gene expression for 4 developmental stages in “Forebrain Organoid”. C. MSE are 

calculated between the predicted and observed 5hmC read counts in all gene bodies for 17 human tissues 
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in “Human Tissues”. D. MSE are calculated between the predicted and observed gene expression for 17 

human tissues in “Human Tissues”. 

Supplementary Figure S4. Comparing the distribution of DhMRs in the training set of “Kentucky 

AD” to genome-wide de novo DhMRs across different genomic features. A. The distribution of 

DhMRs in the training set of “Kentucky AD” across different genomic features. B. The distribution of 

genome-wide de novo DhMRs across different genomic features. 

Supplementary Table S1. Source of ChIP-seq data in “Brain Angular Gyrus” from Roadmap 

Epigenomics for exploring the distribution pattern of histone modification in the neighborhoods of 

EB 5hmC peaks from “Forebrain Organoid”. 

Supplementary Table S2. Source of ChIP-seq data in all brain regions from Roadmap Epigenomics 

for evaluating the predictive power of seven histone marks and being used by Deep5hmC as histone 

features (H3K4me1 and H3K4me3) for evaluating 4 developmental stages in “Forebrain Organoid”.  

Supplementary Table S3. Source of ChIP-seq data from ENCODE being used by Deep5hmC as 

histone features (H3K4me1 and H3K4me3) for evaluating 17 human tissues in “Human Tissues”.  

Supplementary Table S4. Source of ChIP-seq data from ENCODE used by Deep5hmC as histone 

features (H3K27ac and H3K4me3) for predicting DhMRs in “Kentucky AD”. 

Supplementary Table S5. Summary of sample size for “Brain Organoid”, “Human Tissues” and 

“Kentucky AD” data. 
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