

1 **Effects of access condition on substance use disorder-like phenotypes in male and**
2 **female rats self-administering MDPV or cocaine**

3

4 Michelle R. Doyle¹, Nina M. Beltran², Mark S. A. Bushnell¹, Maaz Syed¹, Valeria
5 Acosta¹, Marisa Desai¹, Kenner C. Rice³, Katherine M. Serafine², Georgianna G.
6 Gould⁴, Lynette C. Daws^{1,4}, Gregory T. Collins^{1,5}

7

8 1 Department of Pharmacology, University of Texas Health Science Center at San
9 Antonio, San Antonio, TX, USA

10 2 Department of Psychology, University of Texas at El Paso, El Paso, TX, USA

11 3 Drug Design and Synthesis Section, Molecular Targets and Medications Discovery
12 Branch National Institute on Drug Abuse and National Institute on Alcohol Abuse and
13 Alcoholism - Intramural Research Program, Bethesda, MD

14 4 Department of Cellular and Integrative Physiology, University of Texas Health Science
15 Center at San Antonio, San Antonio, TX, USA

16 5 South Texas Veterans Health Care System, San Antonio, TX, USA

17

18 Corresponding author:

19 Gregory T. Collins, PhD

20 Department of Pharmacology, The University of Texas Health Science Center at San
21 Antonio

22 7703 Floyd Curl Dr, MC 7764, San Antonio, TX 78240

23 Telephone: (210) 567-4199

24 Email: CollinsG@uthscsa.edu

25

26

27 **Abstract**

28 Substance use disorder (SUD) is a heterogeneous disorder, where severity, symptoms,
29 and patterns of substance use vary across individuals. Yet, when rats are allowed to self-
30 administer drugs such as cocaine under short-access conditions, their behavior tends to be
31 well-regulated and homogeneous in nature; though individual differences can emerge
32 when rats are provided long- or intermittent-access to cocaine. In contrast to cocaine,
33 significant individual differences emerge when rats are allowed to self-administer 3,4-
34 methylenedioxypyrovalerone (MDPV), even under short-access conditions, wherein
35 ~30% of rats rapidly transition to high levels of drug-taking. This study assessed the SUD-
36 like phenotypes of male and female Sprague Dawley rats self-administering MDPV (0.032
37 mg/kg/infusion) or cocaine (0.32 mg/kg/infusion) by comparing level of drug intake,
38 responding during periods of signaled drug unavailability, and sensitivity to footshock
39 punishment to test the hypotheses that: (1) under short-access conditions, rats that self-
40 administer MDPV will exhibit a more robust SUD-like phenotype than rats that self-
41 administered cocaine; (2) female rats will have a more severe phenotype than male rats;
42 and (3) compared to short-access, long- and intermittent-access to MDPV or cocaine self-
43 administration will result in a more robust SUD-like phenotype. After short-access, rats
44 that self-administered MDPV exhibited a more severe phenotype than rats that self-
45 administered cocaine. Though long- and intermittent-access to cocaine and MDPV self-
46 administration altered drug-taking patterns, manipulating access conditions did not
47 systematically alter their SUD-like phenotype. Evidence from behavioral and quantitative
48 autoradiography studies suggest that these differences are unlikely due to changes in
49 expression levels of dopamine transporter, dopamine D₂ or D₃ receptors, or 5-HT_{1B}, 5-HT
50 2A, or 5-HT_{2C} receptors, though these possibilities cannot be ruled out. These results show
51 that the phenotype exhibited by rats self-administering MDPV differs from that observed
52 for rats self-administering cocaine, and suggests that individuals that use MDPV and/or
53 related cathinones may be at greater risk for developing a SUD, and that short-access
54 MDPV self-administration may provide a useful method to understand the factors that
55 mediate the transition to problematic or disordered substance use in humans.

56 Introduction

57 The use of psychoactive substances has been commonplace for millennia, yet only 15-
58 30% of individuals that use these drugs develop a substance use disorder (SUD) [1]. The
59 DSM-5 defines SUD by 11 diagnostic criteria from four different modalities [2], resulting
60 in a heterogeneous disorder, the severity of which depends on the number of positive
61 criteria [1]. In recent decades, preclinical SUD research has attempted to model the
62 heterogeneity and multi-symptomatic complexities of SUD in animals by assessing
63 multiple behavioral endpoints thought to be related to the diagnostic criteria for SUD [3-
64 6]. These multifaceted studies aim to provide greater insight into SUD and help close the
65 translational gap in the development of effective treatments.

66 The 3-criteria model, developed by Deroche-Gammonet and colleagues, was one of the
67 first attempts to quantitatively assess the SUD-like phenotypes of rats self-administering
68 cocaine based upon (1) the number of responses made during signaled periods of drug
69 unavailability (“drug-seeking”), (2) breakpoints under progressive ratio schedule of
70 reinforcement (“motivation to use drug”), and (3) resistance to footshock punishment
71 (“continued use despite adverse consequences”) [3]. Since then, this model has been
72 adapted and used in numerous studies to identify and assess differences between rats
73 with robust and mild SUD-like phenotypes [4-9]. Initial studies used short-access
74 procedures, where drug was typically available during 1-2 hour sessions; however,
75 subsequent studies suggest that providing longer periods of access to drug (e.g., 6 hrs;
76 long-access) [10] can enhance resistance to footshock punishment [11-13], and
77 increases in cue- and drug-induced reinstatement of extinguished responding [14-16].
78 More recently, an intermittent-access procedure (5-min of drug availability provided every
79 30-min over a 6-hour session) was developed to establish rapid, binge-like patterns of
80 cocaine intake [17,18] and has been shown to increase the reinforcing effectiveness of
81 cocaine, and enhance cue- and drug-induced reinstatement of responding [6,19,20].
82 Thus, while it is possible to observe individual differences in SUD-related behaviors in
83 rats self-administering cocaine (or other drugs) under short-access conditions, mounting
84 evidence suggests when rats are provided long- or intermittent-access to cocaine they
85 develop more severe SUD-like phenotypes (for review, see [21]).

86 3,4-methylenedioxypyrovalerone (MDPV) is a synthetic cathinone that functions as a
87 cocaine-like monoamine uptake inhibitor, but unlike cocaine which is roughly equipotent
88 at the dopamine, norepinephrine, and serotonin transporters (DAT, NET, and SERT,
89 respectively) MDPV is ~800-fold selective for DAT and NET over SERT [22-24]. We have
90 previously reported that 30-40% of male and female rats that are allowed to self-
91 administer MDPV during daily 90-min sessions rapidly develop a high-responder
92 phenotype, characterized by levels of MDPV intake ~2-5 times greater than low-
93 responders across a range of doses, greater breakpoints under progressive ratio
94 schedules of reinforcement, and higher rates of responding during periods of signaled
95 drug unavailability [25-29]. Though consistent with MDPV high-responder rats engaging
96 in SUD-like behaviors, it is unclear if the phenotype observed in these rats would extend
97 to other core SUD-related behaviors, such as resistance to punishment by footshock,

98 (i.e., “continued use despite adverse consequences”), or if the “severity” of the SUD-like
99 phenotype is sensitive to access condition manipulations, as has been reported for
100 cocaine. Thus, the primary goals of the current study were to: (1) directly compare the
101 SUD-like phenotype of rats self-administering MDPV to those of rats self-administering
102 cocaine under short-access conditions; (2) determine whether long- and intermittent-
103 access to MDPV and cocaine self-administration differentially impacted the SUD-like
104 phenotypes relative to rats maintained on short-access MDPV and cocaine self-
105 administration; and (3) assess whether any of these effects differed as a function of sex.
106 In addition, because stimulant use is known to dysregulate dopaminergic and
107 serotonergic systems, the current studies also assessed how various drug histories (e.g.,
108 MDPV vs. cocaine, short-, long- and intermittent-access), and ultimately the severity of
109 SUD-like phenotype impacted the expression of key transporters and receptors within the
110 dopamine and serotonin systems. Specifically, we used quantitative autoradiography
111 within the caudate putamen and nucleus accumbens to investigate transporters and
112 receptors that have been shown to be increased (i.e., DAT and dopamine D₃ receptors
113 [30-43]; SERT and 5-HT_{2A} receptors [44-47]) or decreased (i.e., dopamine D₂ receptors
114 [48-56], but see [57,58]; 5-HT_{1B} and 5-HT_{2C} receptors [59-61]) following periods of
115 stimulant use. Thus, the overarching goals of these studies were to determine the degree
116 to which the severity of a SUD-like phenotype was influenced by the self-administered
117 drug (MDPV and cocaine), access conditions associated with SUD-like behaviors (short-
118 , long-, and intermittent-access), and the sex of the subject (female and male), and
119 whether key neurobiological changes in dopamine and serotonin systems differed as a
120 function of their SUD-like phenotype severity. Ultimately by identifying conditions that
121 facilitate the development of robust SUD-like phenotypes, these studies will inform future
122 work aimed at identifying medications capable of normalizing aberrant drug-taking
123 behavior in the hopes of developing novel and effective treatments for stimulant and other
124 substance use disorders.

125

126 **Materials and Methods**

127 **Subjects**

128 Female and male Sprague Dawley rats (weighing 200-225g and 275-300g, respectively,
129 upon arrival) were obtained from Envigo (Indianapolis, IN, USA) and singly housed in a
130 temperature- and humidity-controlled environment under a 14/10-hour light cycle (lights
131 on at 06:00) with *ad libitum* access to Purina chow and water. All experiments were
132 conducted in accordance with the Institutional Animal Care and Use Committee of the
133 University of Texas Health Science Center at San Antonio, and the Guide for Care and
134 Use of Laboratory Animals [62].

135

136 **Surgery**

137 Rats were anesthetized using 2% isoflurane and surgically prepared with a chronic
138 indwelling catheter in the left femoral vein, which was attached to a vascular access
139 button secured in the mid-scapular region, as previously described [26-28,63,64].
140 Penicillin G (60,000 U/rat) or Excede (20 mg/kg) was administered subcutaneously
141 following surgery, and catheters were flushed daily with 0.5 ml heparinized saline (100
142 U/ml) to maintain catheter patency.

143

144 ***Self-Administration***

145 ***Apparatus***

146 Intravenous drug self-administration was conducted in standard operant chambers (Med
147 Associates Inc, St. Albans, VT) within light- and sound-attenuated cubicles. A white house
148 light was located on the top of the wall opposite the two levers. Above each lever was a
149 set of red, yellow, and green LEDs. The grid floor was connected to a scrambled shock
150 system (Env-414, Aversive stimulator/scrambler; Med Associates Inc, St. Albans, VT)
151 used to deliver footshocks. A variable-speed syringe driver was used to deliver infusions
152 through Tygon tubing that was connected to a fluid swivel and spring tether held by a
153 counterbalanced arm. The active lever (counterbalanced across rats) was signaled by
154 illumination of the yellow LED above the lever; completion of the response requirement
155 (fixed ratio [FR] 1 or 5) resulted in delivery of the drug infusion and initiation of the 5-sec
156 post-infusion timeout (TO), signaled by illumination of the houselight and all three LEDs
157 above the active lever.

158 ***Experimental overview***

159 As shown in Figure 1, rats initially underwent a self-administration training period where
160 they were allowed to self-administer cocaine (0.32 mg/kg/infusion) or MDPV (0.032
161 mg/kg/infusion) for 24 sessions, with the first 14 sessions being under a fixed ratio (FR)
162 1:TO 5-sec schedule of reinforcement, and the remaining 10 being a FR5:TO 5-sec
163 schedule. The doses were selected because of their position on the descending limb of
164 the FR dose response curve and due to the 10-fold potency difference [22,28,29,65,66].
165 Then rats underwent a two-part phenotyping procedure where four endpoints were
166 measured to generate a phenotype score. After this, rats were assigned to self-administer
167 under short (FR5:TO 5-sec; 60-min session), long (FR5:TO 5-sec; 6-hr session), or
168 intermittent access (FR5:TO 1.5-sec; 5 min of drug availability followed by 25-min of drug
169 unavailability in a 6-hr session) for 3 weeks before going through the phenotyping period
170 a second time to test the effects of access condition. Finally, rats underwent a 3-week
171 drug-free period before doing a cue reactivity test where drug was signaled to be
172 available, but only saline was delivered upon completion of the FR5:TO 5-sec schedule
173 of reinforcement. Dopamine D₃ receptor sensitivity was also measured using
174 pramipexole-induced yawning (see Supplemental Methods) before self-administration
175 began and at the end of the study, prior to euthanasia for quantitative autoradiography
176 studies (see Supplemental Methods).

177

178 *Phenotyping procedure*

179 To test the effects of access condition on an overall phenotype score, rats underwent a
180 phenotyping procedure before and after the three-week access condition manipulation.
181 The overall phenotype score was a composite score from four endpoints: (1) number of
182 infusions, (2) pre-session responses, (3) intercomponent interval responses, and (4)
183 punishment score. The first three endpoints were collected during the multiple component
184 self-administration and the punishment score was generated during the footshock
185 punishment procedure (see below and Figure 1 for more details).

186 To generate a phenotype score, all rats, regardless of sex or drug, were rank ordered for
187 each endpoint (i.e., pre-session responses, infusions, intercomponent interval responses,
188 and punishment score) and divided by quartiles. Rats in the bottom quartile received a
189 score of 0, rats middle two quartiles received a score of 1, and rats in the top quartile
190 received a score of 2; statistical outliers received scores of 3 [(1.5 x interquartile range) +
191 3rd quartile cutoff] or 4 [(3 x interquartile range) + 3rd quartile cutoff]. Individual phenotype
192 scores represent the mean of the four endpoint scores, with the lowest possible score
193 being 0, and highest possible score being 4. Rats with an overall phenotype score of less
194 than 1 were classified as “low score”, rats with a score ≥ 1 but < 2 were classified as “mid
195 score”, and rats with a score of ≥ 2 were classified as having a “high score”.

196

197 *Phenotyping procedure: Multiple component self-administration*

198 To assess responding during periods of signaled drug availability (and unavailability), all
199 rats were transitioned to a multiple-component schedule of reinforcement that began with
200 a 5-min pre-session TO, followed by three 20-min periods of drug availability, each
201 followed by 5-min intercomponent TOs. During the pre-session and intercomponent TOs,
202 drug was signaled to be unavailable by extinguishing all visual stimuli, and responses
203 were recorded but had no scheduled consequence. A yellow LED above the active lever
204 was used to signal drug availability. The total number of infusions earned, responses
205 made during the presession TO, and responses during the three intercomponent TOs
206 (i.e., periods of drug unavailability) served as endpoints for the phenotype score.

207

208 *Phenotyping procedure: Footshock punishment*

209 To assess sensitivity to footshock punished responding, all rats responded under an
210 FR5:TO 5-sec schedule for two 60-min “baseline” sessions before initiating footshock
211 testing. Punishment sessions were identical to “baseline” sessions with the exception that
212 beginning with the 4th infusion, a 0.5-sec, unsignaled footshock was delivered coincident
213 with 1 out of every 2 infusions (i.e., ~50% of infusions were paired with a footshock). The
214 initial footshock intensity was 0.1 mA, and this increased by 0.2 mA across consecutive
215 sessions (0.1, 0.3, 0.5, 0.7mA) until the number of infusions earned was $\leq 20\%$ of

216 baseline, or a maximum intensity of 0.7mA (Figure 1). Punishment sessions were
217 followed by at least two “baseline” sessions. A punishment score was calculated by
218 multiplying the current that reduced responding by 50% (IC₅₀) with the total infusions
219 earned, and this was fourth endpoint of the phenotype score.

220

221 *Observation of behavioral response to non-contingent footshock*

222 To determine if sensitivity to footshock differed across groups, rats were allowed to
223 habituate to a self-administration chamber for 2-5 minutes before receiving a series of
224 non-contingent footshocks. Behavioral responses were scored by a trained observer
225 using the following criteria: 0=no reaction; 1=looks around or passive movement (no
226 startle response); 2=runs around or walks backward rapidly; 3=jump; 4=vocalize.
227 Footshock functions were generated in triplicate, twice in ascending order, and once in
228 descending order. Scores were averaged across the three replicates.

229

230 **Drugs**

231 Racemic MDPV was synthesized and supplied by Kenner Rice and cocaine hydrochloride
232 was provided by National Institute on Drug Abuse Drug Supply Program. Both self-
233 administered drugs were dissolved in sterile, physiological saline and delivered
234 intravenously at a volume of 0.1 ml/kg and a dose of 0.032 mg/kg/infusion for MDPV and
235 0.32 mg/kg/infusion for cocaine.

236

237 **Statistical analyses**

238 A one-factor (score) ANOVA was used for rate and level of acquisition with Tukey’s post-
239 hoc analyses (Table 1). Raw data for infusions, intercomponent TO responses,
240 punishment score, and rate of responding were log-transformed before analyzing using
241 two-factor or three-factor ANOVAs. Two-factor or three-factor ANOVAs were performed
242 on the raw values for pre-session responses, cue reactivity responses, phenotype score,
243 and change in phenotype score. Two-factor (drug x sex) ANOVAs were conducted for the
244 dataset in Figure 1, and three-factor (drug x sex x access condition or drug x sex x
245 phenotype score) ANOVAs were performed on datasets in Figures 2-4. Tukey’s post-hoc
246 analyses were performed when there was a significant main effect of access condition or
247 phenotype score. Change in phenotype score (Figure 3F) was analyzed by calculating
248 the mean change in phenotype score (phenotype score 2 – phenotype score 1) and
249 comparing 95% confidence intervals, which were corrected for multiple comparisons.
250 Escalation (Table 2) was initially calculated in individual subjects (mean of the last three
251 sessions – mean of first 3 sessions of the access condition manipulation). The mean and
252 95% confidence intervals were used to compare whether there was significant escalation
253 (confidence intervals did not overlap with 0). The behavioral response to noncontingent
254 shock was analyzed using a two-factor (shock intensity x group) ANOVA, where group

255 was phenotype score, self-administered drug, or sex. Sidak's multiple comparisons post-
256 hoc analyses were performed when there was a main effect of group. Data from a subset
257 of rats (n=8; n=2 per sex/drug) were excluded from the cue reactivity test due to
258 procedural error.

259

260 **Results**

261 ***Acquisition of cocaine and MDPV self-administration***

262 Nearly all rats met acquisition criteria (i.e., \geq 20 infusions and \geq 80% of responses on the
263 active lever) within the 14-session acquisition period. Although rats self-administering
264 MDPV acquired earlier (~4.5 sessions) than rats self-administering cocaine (~7.5
265 sessions), the rate of MDPV and cocaine acquisition did not vary by sex (Table 1). The
266 level of acquisition (i.e., mean infusions earned during sessions 12-14) did not differ as a
267 function of either sex or drug (Table 1). Retrospective analyses revealed that rats with
268 higher phenotype scores at the initial phenotyping period acquired more quickly and
269 earned more infusions than rats with lower phenotype scores (Table 1).

270

271 ***Phenotype 1***

272 After the initial phenotyping period (i.e., ~5 weeks of short access self-administration), a
273 two-factor (drug x sex) ANOVA revealed main effects of both sex ($F [1, 114] = 5.91$;
274 $p=0.017$) and drug ($F [1, 114] = 26.09$; $p<0.0001$), where females had higher scores than
275 males, and rats that self-administered MDPV had higher phenotype scores than rats that
276 self-administered cocaine (Figure 1E). This trend was generally true for each of the
277 individual phenotype endpoints where analysis of the mean number of infusions found
278 main effects of sex ($F [1, 114] = 7.38$; $P=0.0076$), with females earning more infusions
279 than males, and drug ($F [1, 114] = 9.28$; $P=0.0029$), where more infusions of MDPV were
280 self-administered than cocaine (Figure 1A). Similarly, analysis of pre-session TO
281 responses revealed females made more responses than males ($F [1, 114] = 10.40$;
282 $P=0.0016$) and rats self-administering MDPV made more responses than rats self-
283 administering cocaine ($F [1, 114] = 36.56$; $P<0.0001$) (Figure 1B). Analysis of
284 intercomponent TO responses found that females responded more than males ($F [1, 114]$
285 $= 7.47$; $P=0.0073$) and rats self-administering MDPV responded more than rats self-
286 administering cocaine ($F [1, 114] = 42.63$; $P<0.0001$) (Figure 1C). In contrast, though rats
287 self-administering MDPV had higher punishment scores than rats self-administering
288 cocaine ($F [1, 114] = 10.28$; $P=0.0017$), there was no main effect of sex ($F [1, 114] = 0.22$;
289 $P=0.6436$) (Figure 1D). Importantly, the behavioral response to noncontingent footshock
290 did not differ as a function of SUD-like phenotype score or self-administration drug
291 (phenotype score: $F [2, 115] = 0.17$; $P=0.8453$; drug: $F [1, 116] = 0.17$; $P=0.6795$)
292 (Supplemental Figure 1), however, females were more sensitive than males ($F [1, 116] =$
293 11.27 ; $P=0.0011$) (Supplemental Figure 2). There were no sex x drug interactions for any
294 behavioral endpoints or the overall phenotype score.

295

296 **Access conditions**

297 The mean number of infusions and rate of responding over the 21-day access condition
298 manipulation are shown in Figure 2. 3-factor ANOVA (access condition x drug x sex)
299 revealed significant main effects of access for both number of infusions earned ($F [2, 106]$
300 = 108.40; $P < 0.0001$), where long > intermittent > short, and rate of responding ($F [2, 106]$
301 = 41.14; $P < 0.0001$), where intermittent > long = short. Consistent with the first
302 phenotyping period, rats that self-administered MDPV earned more infusions ($F [1, 106]$
303 = 13.70; $P = 0.0003$) and responded at a faster rate [$F (1, 106) = 13.76$; $P = 0.0003$] than
304 rats that self-administered cocaine. Similarly, females earned more infusions ($F [1, 106]$
305 = 10.23; $P = 0.0018$) and responded at a faster rate ($F [1, 106] = 10.22$; $P = 0.0018$) than
306 males. Rats that self-administered cocaine, but not MDPV, under long-access conditions
307 showed a significant escalation in drug intake (Table 2).

308

309 **Phenotype 2**

310 Redeterminations of the SUD-like phenotype score after manipulating access condition
311 are shown in Figure 3. There were no main effects of access condition on any of the
312 behavioral endpoints nor the overall phenotype score. However, as was observed during
313 the initial phenotyping period, there were main effects of sex and drug on multiple
314 endpoints, as well as the overall phenotype score. Rats that self-administered MDPV
315 earned more infusions ($F [1, 106] = 20.58$; $P < 0.0001$), made more pre-session TO
316 responses ($F [1, 106] = 15.14$; $P = 0.0002$), made more intercomponent TO responses (F
317 $[1, 106] = 19.22$; $P < 0.0001$), and had an overall higher phenotype score than rats self-
318 administering cocaine ($F [1, 106] = 11.73$; $P = 0.0009$). Females earned more infusions (F
319 $[1, 106] = 8.71$; $P = 0.0039$), made more pre-session TO responses ($F [1, 106] = 5.24$;
320 $P = 0.0240$), and had higher phenotype scores ($F [1, 106] = 5.36$; $P = 0.0226$) compared to
321 males. Though there was no effect of access condition on the overall phenotype score,
322 analysis of the change in phenotype score (Figure 3F) revealed that long-access to
323 cocaine resulted in a significant increase in phenotype score for female rats (mean: 0.44;
324 95% CI: 0.07-0.82). After self-administration concluded, sensitivity to noncontingent
325 footshock was measured. There was no difference between rats with low, mid, and high
326 phenotype scores or between rats self-administering MDPV or cocaine; however, female
327 rats were more sensitive than male rats (Figure S1).

328

329 **Cue reactivity**

330 The number of responses made during the cue reactivity test (i.e., for drug-paired stimuli
331 and a saline infusion) is shown in Figure 4. There were significant main effects of access
332 condition ($F [2, 106] = 5.21$; $P = 0.0069$), drug ($F [1, 106] = 5.05$; $P = 0.0268$), and sex ($F [1,$
333 $106] = 5.74$; $P = 0.0183$), where rats that previously self-administered MDPV made more
334 responses than rats that had self-administered cocaine, and females made more

335 responses than males (Figure 4A). Post-hoc analyses revealed that rats with a history of
336 intermittent-access self-administration also made more responses than rats that self-
337 administered under short- ($P=0.0126$) or long-access ($P=0.0290$) conditions; responding
338 by short- and long-access rats did not differ ($P=0.9538$). There were no significant
339 interactions ($P\geq0.2526$). When cue reactivity responses were analyzed by phenotype
340 score, there were no significant main effects ($P\geq0.0774$) or interactions ($P\geq0.2424$)
341 (Figure 4B).

342

343 **Measures of receptor sensitivity or availability**

344 Behavioral responses (yawning) to non-contingent administration of pramipexole, a
345 dopamine D₃/D₂ receptor agonist, and lorcaserin, a 5-HT_{2C} receptor agonist, were
346 evaluated in a subset of rats ($n=43$), both prior to initiating self-administration and again
347 after the cue-reactivity tests. Pramipexole dose-dependently induced yawning in male
348 and female rats, although females yawned about half as much as males (Figure S2).
349 There were no effects of phenotype score at either time point; however, there was a main
350 effect of time on the composite yawning score (minimally effect dose x peak number of
351 yawns) in both female ($F [1, 63] = 14.70$; $P=0.0003$) and male rats ($F [2, 59] = 19.46$;
352 $P<0.0001$) where rats had a higher composite yawning score after self-administration
353 compared to before self-administration began (Figure S2). Lorcaserin did not reliably
354 induce yawning in most rats (data not shown).

355

356 Quantitative autoradiography studies were conducted on brain tissue collected from a
357 subset of rats ($n=60$) after the cue reactivity tests. Expression levels of the dopamine
358 transporter and dopamine D₂, dopamine D₃, 5-HT_{1B}, 5-HT_{2A}, or 5-HT_{2C} receptors did not
359 vary as a function of phenotype score or sex in the nucleus accumbens or caudate
360 putamen (Figures S3, S4, S5). However, there was an effect of access condition
361 (intermittent > short) and drug (MDPV > cocaine) for increased 5-HT_{1B} and 5-HT_{2C}
362 receptor expression, respectively (Figures S4, S5, S6).

363

364 **Discussion**

365 Similar to the heterogeneous manifestation of SUD in people, rats can develop different
366 levels of SUD-related behaviors. Studying rats with more extreme phenotypes may
367 provide a more translational framework to understand factors that underlie the transition
368 from regular to disordered patterns of substance use. Though a relatively small subset of
369 rats (17-22%) develop the most severe SUD-like phenotype when they are allowed to
370 self-administer cocaine [3,8], a much larger proportion of rats (~30-40%) engage in
371 aberrantly high levels of drug-taking when MDPV is available for self-administration [25-
372 29]. Thus, the primary goals of the current studies were to directly compare the SUD-like
373 phenotype in male and female rats self-administering MDPV or cocaine, and to determine
374 how manipulating access condition (short-, long-, and intermittent-access) impacted

375 these SUD-like phenotypes. The first central finding was that rats that self-administer
376 MDPV have a more robust SUD-like phenotype than rats that self-administer cocaine
377 after an initial period of short-access self-administration (Figure 1). Second, female rats
378 exhibit a more robust phenotype than male rats (Figures 1, 3). Third, providing rats with
379 long- or intermittent-access to MDPV or cocaine self-administration did not alter the
380 severity of their SUD-like phenotype, except for female rats self-administering cocaine
381 under long-access conditions, which had increased scores during the second
382 phenotyping period (Figure 3). Finally, evidence from behavioral and quantitative
383 autoradiography studies suggests that these differences may not be due to shifts in
384 expression level of DAT, dopamine D₂ or D₃ receptors, or 5-HT_{1B}, 5-HT_{2A}, or 5-HT_{2C}
385 receptors (but see SI discussion).

386 Consistent with previous studies reporting unusually high levels of drug-taking in male
387 and female rats that self-administer MDPV, rats that self-administered MDPV had a more
388 severe SUD-like phenotype score than rats that self-administered cocaine, regardless of
389 access condition or duration of self-administration. This was primarily due to the increase
390 in infusions earned, responses made during the pre-session time out, and responses
391 made when drug was signaled to be unavailable, replicating and extending our previous
392 studies with high-responder rats [25-29]. Given that sensitivity to punishment frequently
393 contributes to severe SUD-like phenotype [3,4,6-8] and considering some rats that self-
394 administered MDPV had very high punishment scores, it was somewhat unexpected that
395 rats that self-administered cocaine or MDPV did not differ with regard to the punishment
396 endpoint. This was especially surprising given that the punishment score incorporated
397 both footshock sensitivity (IC₅₀) and total current received, and some rats self-
398 administering MDPV earned several dozen more infusions than rats self-administering
399 cocaine. Perhaps the footshock schedule (unsignaled, and unable to be avoided without
400 suppressing all responding) masked any differences between the groups and another
401 procedure (e.g., signaled footshock) would tease apart differences between rats self-
402 administering MDPV or cocaine. Alternatively, the phenotype that leads to sensitivity to
403 footshock punishment may be related less to the other behavioral endpoints [67].

404 Women initiate drug use later than men, but transition from initial substance use to
405 treatment-seeking in a shorter time period and use similar amounts of cocaine as men
406 [68-71], suggesting women may develop a SUD more rapidly and/or with greater severity
407 compared to men. Even though females and males acquired responding for MDPV and
408 cocaine at similar rates and to similar levels, females self-administering either MDPV or
409 cocaine exhibited more severe SUD-like phenotypes than males during both phenotyping
410 periods. Female rats were more sensitive to noncontingent footshock, suggesting their
411 punishment score and, by extension, overall phenotype score may have even been
412 underestimated.

413 Decades of work suggest that providing rats long periods of access to cocaine self-
414 administration can result in the development of behaviors thought to more closely
415 resemble SUDs in people (e.g., escalated drug intake, resistance to punishment by
416 footshock) [11-16]. More recently, the intermittent access procedure has been shown to

417 promote rapid, binge-like patterns of cocaine use, and increase the reinforcing
418 effectiveness of cocaine [6,17-20]. Both phenomena were observed in the present study,
419 although the escalation was not statistically significant in rats that self-administered
420 MDPV under long-access conditions. Unexpectedly, we found that some rats self-
421 administered up to 80 infusions of MDPV in a single 5-min period during the intermittent-
422 access procedure. Five of 22 of the rats (23%) that self-administered MDPV earned an
423 average of 17-45 infusions per 5-min period across the entire 21-session access
424 manipulation, which is much higher than the approximate 3-12 cocaine infusions in a 5-
425 min period that we and others have observed when unit-doses ranging from 0.25 to 0.4
426 mg/kg/infusion are available [72-76]. This finding strongly supports the notion that binge-
427 like patterns of dysregulated drug-taking develop in a subset of rats that self-administer
428 MDPV, consistent with what has been reported by humans using MDPV and related
429 synthetic cathinones. Though the access manipulations produced robust behavioral
430 differences, these effects did not carry over into the phenotyping period, suggesting that
431 the changes in patterns of drug-taking induced by long- and/or intermittent-access may
432 not be long-lasting and may be more a function of the schedule of reinforcement than a
433 fundamental change in the “state” of the rat. Though we have previously reported that
434 ‘high-responder’ rats will earn significantly more infusions of MDPV under both FR and
435 progressive ratio schedules of reinforcement, we did not evaluate responding under a
436 progressive ratio schedule of reinforcement or use behavioral economics. Other studies
437 find that rats with a history of long- or intermittent-access find cocaine and other
438 reinforcers more reinforcing than rats with a history of short-access self-administration
439 [14,18,72,75,77-82], but see [83].

440 Though rats with a history of self-administering cocaine under long- compared to short-
441 access conditions have been reported to make more responses during reinstatement or
442 cue reactivity tests [14-16], this effect was not seen in the present study. However, rats
443 that self-administered under intermittent-access did make more responses compared to
444 the other access conditions, consistent with other reports [75,76,84]. We also found that
445 female rats made more responses than male rats during the cue reactivity test, which
446 may be related to the higher rates of relapse and drug craving in women compared to
447 men [85-88]; however, many studies do not report sex differences in reinstatement or cue
448 reactivity tests [14,89,90], but see [91]. These differences could be due to procedural
449 differences (e.g., extinction sessions or a history of punishment).

450 The differences in MDPV and cocaine at the first phenotyping period could have
451 represented a quicker transition to a SUD-like phenotype; however, the fact that the
452 phenotype scores for cocaine and MDPV did not converge after access suggests that
453 there is something fundamentally different about the development of SUD-like
454 phenotypes in response to MDPV and cocaine self-administration. Since we did not
455 observe any consistent effects of access condition, this study cannot rule out the
456 involvement of DAT or any of the receptors quantified here in the presentation of SUD-
457 like phenotype(s). Additionally, because all rats showed a leftward shift in the
458 pramipexole-induced yawning dose-response function (Figure S2), the assay may not

459 have been sensitive enough to detect relatively small differences in the size of the shift.
460 Future studies could use alternative approaches, such as RNA sequencing or genome-
461 wide association studies [92-95] to cast a wider net to identify underlying factors that
462 contribute to the individual differences in SUD-like phenotype.

463 The within-subject design can be powerful to evaluate individual differences, with some
464 caveats. For instance, more sessions were spent self-administering under short-access
465 conditions for all groups than the access condition manipulation (70 short-access vs 21
466 of long- or intermittent-access), which may have attenuated the effects of the access
467 condition. However, we calculated the second phenotype score using data from only the
468 first three sessions following the access condition manipulation and did not find any
469 differences compared to using the average of the entire phenotyping period (data not
470 shown). Additionally, the effects of intermittent-access may have been underestimated
471 since two of the phenotype endpoints (pre-session responses and intercomponent
472 timeout responses) measured responding during signaled periods of unavailability, and
473 rats with intermittent-access had extended periods (5-hours/session) of drug
474 unavailability, which rats in the short- and long-access groups did not experience.
475 However, there was also no effect of intermittent-access on the other two endpoints (i.e.,
476 infusions, punishment score), suggesting an overall lack of effect of intermittent-access.

477 Synthetic cathinones have been reported to produce stimulant and euphoric effects in
478 humans [96], and in the current study, even relatively brief periods of short-access to
479 MDPV self-administration produced high levels of drug-taking and -seeking. Though the
480 SUD-like phenotype established by MDPV was not exacerbated by a history of long- or
481 intermittent-access to MDPV self-administration, it is equally interesting and important to
482 note that even long- or intermittent-access to cocaine was unable to produce an SUD-like
483 phenotype comparable to that established with MDPV. Exploiting the severe phenotype
484 developed in rats self-administering MDPV to investigate the mechanisms that underly
485 the development of the phenotype can provide valuable insight into the transition in
486 people from recreational use to SUD and help identify novel pharmacotherapies for SUD
487 treatment.

488

489 **Funding**

490 This work was supported by the National Institutes of Health, including National Institute
491 of Drug Abuse [R01 DA039146 (GTC), R36 DA050955 (MRD), R21 DA046044 (LCD),
492 and R01 DA055703 (LCD)], the jointly-sponsored National Institutes of Health
493 Predoctoral Training Program in the Neurosciences [Grant T32 NS082145 (MRD)], and
494 the Intramural Research Programs of the National Institute on Drug Abuse and National
495 Institute of Alcohol Abuse and Alcoholism [Z1A-DA000527 (KCR)]. It was also
496 supported by the John L Santikos Charitable Foundation endowment to the San Antonio
497 Area Foundation (GGG).

498

499 **Competing Interests**

500 The authors have nothing to disclose.

501

502 **Acknowledgments**

503 The authors would like to thank Drs. Amy Hauck Newman and Jianjing Cao for
504 providing VK4-116, which was used in some of the quantitative autoradiography
505 studies.

506

507 **Author contributions**

508 MRD and GTC conceived the project and designed the experiments with input from GGG
509 and LCD. MRD, MSAB, MS, VA, and MD performed the behavioral experiments. NMB
510 analyzed and scored the yawning videos and contributed to data analysis. MRD, GGG,
511 MSAB, and MS performed quantitative autoradiography experiments and analysis. MRD
512 analyzed and interpreted the experimental data. GTC, KMS, GGG and LCD supervised
513 the research. KCR contributed reagents. MRD and GTC wrote the manuscript with
514 contributions from all authors. All authors read and approved the final manuscript.

515

516 **References**

517 1 Substance Abuse and Mental Health Services Administration. 2020 NSDUH
518 Annual National Report. 2021. <https://www.samhsa.gov/data/report/2020-nsduh-annual-national-report>.

520 2 American Psychiatric Association. Diagnostic and Statistical Manual of Mental
521 Disorders. 5th ed. American Psychiatric Publishing; 2013.

522 3 Deroche-Gammonet V, Belin D, Piazza PV. Evidence for addiction-like behavior in
523 the rat. *Science*. 2004;305(5686):1014-7.

524 4 Belin D, Balado E, Piazza PV, Deroche-Gammonet V. Pattern of intake and drug
525 craving predict the development of cocaine addiction-like behavior in rats. *Biol
526 Psychiatry*. 2009;65(10):863-8.

527 5 O'Neal TJ, Nooney MN, Thien K, Ferguson SM. Chemogenetic modulation of
528 accumbens direct or indirect pathways bidirectionally alters reinstatement of
529 heroin-seeking in high- but not low-risk rats. *Neuropsychopharmacology*.
530 2020;45(8):1251-62.

531 6 Garcia AF, Webb IG, Yager LM, Seo MB, Ferguson SM. Intermittent but not
532 continuous access to cocaine produces individual variability in addiction
533 susceptibility in rats. *Psychopharmacology*. 2020;237:2929-41, pmid = 32556402.

534 7 Belin D, Berson N, Balado E, Piazza PV, Deroche-Gammonet V. High-novelty-
535 preference rats are predisposed to compulsive cocaine self-administration.
536 *Neuropsychopharmacology*. 2011;36(3):569-79.

537 8 Belin D, Mar AC, Dalley JW, Robbins TW, Everitt BJ. High impulsivity predicts the
538 switch to compulsive cocaine-taking. *Science*. 2008;320(5881):1352-5.

539 9 Venniro M, Zhang M, Caprioli D, Hoots JK, Golden SA, Heins C, et al. Volitional
540 social interaction prevents drug addiction in rat models. *Nat Neurosci*.
541 2018;21(11):1520-29.

542 10 Ahmed SH, Koob GF. Transition from moderate to excessive drug intake: change
543 in hedonic set point. *Science*. 1998;282(5387):298-300.

544 11 Pelloux Y, Murray JE, Everitt BJ. Differential vulnerability to the punishment of
545 cocaine related behaviours: effects of locus of punishment, cocaine taking history
546 and alternative reinforcer availability. *Psychopharmacology (Berl)*.
547 2015;232(1):125-34.

548 12 Vanderschuren LJ, Everitt BJ. Drug seeking becomes compulsive after prolonged
549 cocaine self-administration. *Science*. 2004;305(5686):1017-9.

550 13 Xue Y, Steketee JD, Sun W. Inactivation of the central nucleus of the amygdala
551 reduces the effect of punishment on cocaine self-administration in rats. *Eur J
552 Neurosci*. 2012;35(5):775-83.

553 14 Doyle SE, Ramoa C, Garber G, Newman J, Toor Z, Lynch WJ. A shift in the role
554 of glutamatergic signaling in the nucleus accumbens core with the development of
555 an addicted phenotype. *Biol Psychiatry*. 2014;76(10):810-5.

556 15 Kippin TE, Fuchs RA, See RE. Contributions of prolonged contingent and
557 noncontingent cocaine exposure to enhanced reinstatement of cocaine seeking in
558 rats. *Psychopharmacology (Berl)*. 2006;187(1):60-7.

559 16 Mantsch JR, Baker DA, Francis DM, Katz ES, Hoks MA, Serge JP. Stressor- and
560 corticotropin releasing factor-induced reinstatement and active stress-related

561 behavioral responses are augmented following long-access cocaine self-
562 administration by rats. *Psychopharmacology (Berl)*. 2008;195(4):591-603.

563 17 Zimmer BA, Dobrin CV, Roberts DC. Brain-cocaine concentrations determine the
564 dose self-administered by rats on a novel behaviorally dependent dosing schedule.
565 *Neuropsychopharmacology*. 2011;36(13):2741-9.

566 18 Zimmer BA, Oleson EB, Roberts DC. The motivation to self-administer is increased
567 after a history of spiking brain levels of cocaine. *Neuropsychopharmacology*.
568 2012;37(8):1901-10.

569 19 Calipari ES, Siciliano CA, Zimmer BA, Jones SR. Brief intermittent cocaine self-
570 administration and abstinence sensitizes cocaine effects on the dopamine
571 transporter and increases drug seeking. *Neuropsychopharmacology*.
572 2015;40(3):728-35.

573 20 Nicolas C, Russell TI, Pierce AF, Maldera S, Holley A, You ZB, et al. Incubation of
574 Cocaine Craving After Intermittent-Access Self-administration: Sex Differences
575 and Estrous Cycle. *Biol Psychiatry*. 2019;85(11):915-24.

576 21 Kawa AB, Allain F, Robinson TE, Samaha AN. The transition to cocaine addiction:
577 the importance of pharmacokinetics for preclinical models. *Psychopharmacology*
(Berl). 2019;236(4):1145-57.

579 22 Baumann MH, Partilla JS, Lehner KR, Thorndike EB, Hoffman AF, Holy M, et al.
580 Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a
581 principal constituent of psychoactive 'bath salts' products.
582 *Neuropsychopharmacology*. 2013;38(4):552-62.

583 23 Gannon BM, Baumann MH, Walther D, Jimenez-Morigosa C, Sulima A, Rice KC,
584 Collins GT. The abuse-related effects of pyrrolidine-containing cathinones are
585 related to their potency and selectivity to inhibit the dopamine transporter.
586 *Neuropsychopharmacology*. 2018;43(12):2399-407.

587 24 Simmler LD, Buser TA, Donzelli M, Schramm Y, Dieu LH, Huwyler J, et al.
588 Pharmacological characterization of designer cathinones in vitro. *Br J Pharmacol*.
589 2013;168(2):458-70.

590 25 Abbott MS, Seaman RW, Jr., Doyle MR, Maguire DR, Rice KC, Collins GT.
591 Interactions between impulsivity and MDPV self-administration in rats. *Addict Biol*.
592 2022;27(3):e13168.

593 26 Doyle MR, Peng LN, Cao J, Rice KC, Newman AH, Collins GT. 3,4-
594 Methylenedioxypyrovalerone high-responder phenotype as a tool to evaluate
595 candidate medications for stimulant use disorder. *J Pharmacol Exp Ther*.
596 2023;384(3):353-62.

597 27 Doyle MR, Sulima A, Rice KC, Collins GT. Influence of contingent and
598 noncontingent drug histories on the development of high levels of MDPV self-
599 administration. *J Pharmacol Exp Ther*. 2021;379(2):108-16.

600 28 Doyle MR, Sulima A, Rice KC, Collins GT. MDPV self-administration in female
601 rats: influence of reinforcement history. *Psychopharmacology (Berl)*.
602 2021;238(3):735-44.

603 29 Gannon BM, Galindo KI, Rice KC, Collins GT. Individual differences in the relative
604 reinforcing effects of 3,4-methylenedioxypyrovalerone under fixed and progressive
605 ratio schedules of reinforcement in rats. *J Pharmacol Exp Ther*. 2017;361(1):181-
606 89.

607 30 Chen L, Segal DM, Moraes CT, Mash DC. Dopamine transporter mRNA in autopsy
608 studies of chronic cocaine users. *Brain Res Mol Brain Res.* 1999;73(1-2):181-5.
609 31 Crits-Christoph P, Newberg A, Wintering N, Ploessl K, Gibbons MB, Ring-Kurtz S,
610 et al. Dopamine transporter levels in cocaine dependent subjects. *Drug Alcohol
611 Depend.* 2008;98(1-2):70-6.
612 32 Letchworth SR, Nader MA, Smith HR, Friedman DP, Porrino LJ. Progression of
613 changes in dopamine transporter binding site density as a result of cocaine self-
614 administration in rhesus monkeys. *J Neurosci.* 2001;21(8):2799-807.
615 33 Malison RT, Best SE, van Dyck CH, McCance EF, Wallace EA, Laruelle M, et al.
616 Elevated striatal dopamine transporters during acute cocaine abstinence as
617 measured by [123I] beta-CIT SPECT. *Am J Psychiatry.* 1998;155(6):832-4.
618 34 Matuskey D, Gallezot JD, Pittman B, Williams W, Wanyiri J, Gaiser E, et al.
619 Dopamine D(3) receptor alterations in cocaine-dependent humans imaged with
620 [11C](+)-PHNO. *Drug Alcohol Depend.* 2014;139:100-5.
621 35 Payer DE, Behzadi A, Kish SJ, Houle S, Wilson AA, Rusjan PM, et al. Heightened
622 D3 dopamine receptor levels in cocaine dependence and contributions to the
623 addiction behavioral phenotype: a positron emission tomography study with [11C]-
624 -+PHNO. *Neuropsychopharmacology.* 2014;39(2):311-8.
625 36 Porrino LJ, Miller MD, Smith HR, Nader SH, Nader MA. Neural correlates of
626 exposure to cocaine cues in rhesus monkeys: modulation by the dopamine
627 transporter. *Biol Psychiatry.* 2016;80(9):702-10.
628 37 Segal DM, Moraes CT, Mash DC. Up-regulation of D3 dopamine receptor mRNA
629 in the nucleus accumbens of human cocaine fatalities. *Brain Res Mol Brain Res.*
630 1997;45(2):335-9.
631 38 Staley JK, Hearn WL, Ruttenber AJ, Wetli CV, Mash DC. High-affinity cocaine
632 recognition sites on the dopamine transporter are elevated in fatal cocaine
633 overdose victims. *Journal of Pharmacology and Experimental Therapeutics.*
634 1994;271(3):1678-85.
635 39 Staley JK, Mash DC. Adaptive increase in D3 dopamine receptors in the brain
636 reward circuits of human cocaine fatalities. *J Neurosci.* 1996;16(19):6100-6.
637 40 Collins GT, Truong YN, Levant B, Chen J, Wang S, Woods JH. Behavioral
638 sensitization to cocaine in rats: evidence for temporal differences in dopamine D3
639 and D2 receptor sensitivity. *Psychopharmacology (Berl).* 2011;215(4):609-20.
640 41 Conrad KL, Ford K, Marinelli M, Wolf ME. Dopamine receptor expression and
641 distribution dynamically change in the rat nucleus accumbens after withdrawal
642 from cocaine self-administration. *Neuroscience.* 2010;169(1):182-94.
643 42 Groman SM, Hillmer AT, Liu H, Fowles K, Holden D, Morris ED, et al. Midbrain
644 D(3) receptor availability predicts escalation in cocaine self-administration. *Biol
645 Psychiatry.* 2020;88(10):767-76.
646 43 Neisewander JL, Fuchs RA, Tran-Nguyen LT, Weber SM, Coffey GP, Joyce JN.
647 Increases in dopamine D3 receptor binding in rats receiving a cocaine challenge
648 at various time points after cocaine self-administration: implications for cocaine-
649 seeking behavior. *Neuropsychopharmacology.* 2004;29(8):1479-87.
650 44 Banks ML, Czoty PW, Gage HD, Bounds MC, Garg PK, Garg S, Nader MA. Effects
651 of cocaine and MDMA self-administration on serotonin transporter availability in
652 monkeys. *Neuropsychopharmacology.* 2008;33(2):219-25.

653 45 Jacobsen LK, Staley JK, Malison RT, Zoghbi SS, Seibyl JP, Kosten TR, Innis RB.
654 Elevated central serotonin transporter binding availability in acutely abstinent
655 cocaine-dependent patients. *Am J Psychiatry*. 2000;157(7):1134-40.
656 46 Mash DC, Staley JK, Izenwasser S, Basile M, Ruttenber AJ. Serotonin transporters
657 upregulate with chronic cocaine use. *J Chem Neuroanat*. 2000;20(3-4):271-80.
658 47 Sawyer EK, Mun J, Nye JA, Kimmel HL, Voll RJ, Stehouwer JS, et al.
659 Neurobiological changes mediating the effects of chronic fluoxetine on cocaine
660 use. *Neuropsychopharmacology*. 2012;37(8):1816-24.
661 48 Besson M, Pelloux Y, Dilleen R, Theobald DE, Lyon A, Belin-Rauscent A, et al.
662 Cocaine modulation of frontostriatal expression of Zif268, D2, and 5-HT2c
663 receptors in high and low impulsive rats. *Neuropsychopharmacology*.
664 2013;38(10):1963-73.
665 49 Caprioli D, Hong YT, Sawiak SJ, Ferrari V, Williamson DJ, Jupp B, et al. Baseline-
666 dependent effects of cocaine pre-exposure on impulsivity and D2/3 receptor
667 availability in the rat striatum: possible relevance to the attention-deficit
668 hyperactivity syndrome. *Neuropsychopharmacology*. 2013;38(8):1460-71.
669 50 Dalley JW, Fryer TD, Brichard L, Robinson ES, Theobald DE, Laane K, et al.
670 Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine
671 reinforcement. *Science*. 2007;315(5816):1267-70.
672 51 Martinez D, Greene K, Broft A, Kumar D, Liu F, Narendran R, et al. Lower level of
673 endogenous dopamine in patients with cocaine dependence: findings from PET
674 imaging of D(2)/D(3) receptors following acute dopamine depletion. *Am J
675 Psychiatry*. 2009;166(10):1170-7.
676 52 Moore RJ, Vinsant SL, Nader MA, Porrino LJ, Friedman DP. Effect of cocaine self-
677 administration on dopamine D2 receptors in rhesus monkeys. *Synapse*.
678 1998;30(1):88-96.
679 53 Nader MA, Daunais JB, Moore T, Nader SH, Moore RJ, Smith HR, et al. Effects of
680 cocaine self-administration on striatal dopamine systems in rhesus monkeys: initial
681 and chronic exposure. *Neuropsychopharmacology*. 2002;27(1):35-46.
682 54 Tsukada H, Kreuter J, Maggos CE, Unterwald EM, Kakiuchi T, Nishiyama S, et al.
683 Effects of binge pattern cocaine administration on dopamine D1 and D2 receptors
684 in the rat brain: an in vivo study using positron emission tomography. *J Neurosci*.
685 1996;16(23):7670-7.
686 55 Volkow ND, Chang L, Wang GJ, Fowler JS, Ding YS, Sedler M, et al. Low level of
687 brain dopamine D2 receptors in methamphetamine abusers: association with
688 metabolism in the orbitofrontal cortex. *Am J Psychiatry*. 2001;158(12):2015-21.
689 56 Volkow ND, Fowler JS, Wang GJ, Hitzemann R, Logan J, Schlyer DJ, et al.
690 Decreased dopamine D2 receptor availability is associated with reduced frontal
691 metabolism in cocaine abusers. *Synapse*. 1993;14(2):169-77.
692 57 Merritt KE, Bachtell RK. Initial d2 dopamine receptor sensitivity predicts cocaine
693 sensitivity and reward in rats. *PLoS One*. 2013;8(11):e78258.
694 58 Nader MA, Nader SH, Czoty PW, Riddick NV, Gage HD, Gould RW, et al. Social
695 dominance in female monkeys: dopamine receptor function and cocaine
696 reinforcement. *Biol Psychiatry*. 2012;72(5):414-21.
697 59 Anastasio NC, Stutz SJ, Fox RG, Sears RM, Emeson RB, DiLeone RJ, et al.
698 Functional status of the serotonin 5-HT2C receptor (5-HT2CR) drives interlocked

699 phenotypes that precipitate relapse-like behaviors in cocaine dependence.
700 *Neuropsychopharmacology*. 2014;39(2):370-82.

701 60 Matuskey D, Bhagwagar Z, Planeta B, Pittman B, Gallezot JD, Chen J, et al.
702 Reductions in brain 5-HT1B receptor availability in primarily cocaine-dependent
703 humans. *Biol Psychiatry*. 2014;76(10):816-22.

704 61 Zaniewska M, McCreary AC, Wydra K, Faron-Gorecka A, Filip M. Context-
705 controlled nicotine-induced changes in the labeling of serotonin (5-HT)2A and 5-
706 HT2C receptors in the rat brain. *Pharmacol Rep*. 2015;67(3):451-9.

707 62 National Research Council. *Guide for the care and use of laboratory animals*.
708 2011.

709 63 Collins GT, Narasimhan D, Cunningham AR, Zaks ME, Nichols J, Ko MC, et al.
710 Long-lasting effects of a PEGylated mutant cocaine esterase (CocE) on the
711 reinforcing and discriminative stimulus effects of cocaine in rats.
712 *Neuropsychopharmacology*. 2012;37(5):1092-103.

713 64 Doyle MR, Sulima A, Rice KC, Collins GT. Interactions between reinforcement
714 history and drug-primed reinstatement: Studies with MDPV and mixtures of MDPV
715 and caffeine. *Addict Biol*. 2021;26(2):e12904.

716 65 Collins GT, Gerak LR, Javors MA, France CP. Lorcaserin Reduces the
717 Discriminative Stimulus and Reinforcing Effects of Cocaine in Rhesus Monkeys. *J*
718 *Pharmacol Exp Ther*. 2016;356(1):85-95.

719 66 Gatch MB, Rutledge MA, Forster MJ. Discriminative and locomotor effects of five
720 synthetic cathinones in rats and mice. *Psychopharmacology (Berl)*.
721 2015;232(7):1197-205.

722 67 Belin D, Deroche-Gamonet V. Responses to novelty and vulnerability to cocaine
723 addiction: contribution of a multi-symptomatic animal model. *Cold Spring Harb*
724 *Perspect Med*. 2012;2(11).

725 68 DeVito EE, Babuscio TA, Nich C, Ball SA, Carroll KM. Gender differences in
726 clinical outcomes for cocaine dependence: randomized clinical trials of behavioral
727 therapy and disulfiram. *Drug Alcohol Depend*. 2014;145:156-67.

728 69 Griffin ML, Weiss RD, Mirin SM, Lange U. A comparison of male and female
729 cocaine abusers. *Arch Gen Psychiatry*. 1989;46(2):122-6.

730 70 Hernandez-Avila CA, Rounsville BJ, Kranzler HR. Opioid-, cannabis- and
731 alcohol-dependent women show more rapid progression to substance abuse
732 treatment. *Drug Alcohol Depend*. 2004;74(3):265-72.

733 71 Miguel AQC, Jordan A, Kiluk BD, Nich C, Babuscio TA, Mari JJ, Carroll KM.
734 Sociodemographic and clinical outcome differences among individuals seeking
735 treatment for cocaine use disorders. The intersection of gender and race. *J Subst*
736 *Abuse Treat*. 2019;106:65-72.

737 72 Algallal H, Allain F, Ndiaye NA, Samaha AN. Sex differences in cocaine self-
738 administration behaviour under long access versus intermittent access conditions.
739 *Addict Biol*. 2020;25(5):e12809.

740 73 Allain F, Bouayad-Gervais K, Samaha AN. High and escalating levels of cocaine
741 intake are dissociable from subsequent incentive motivation for the drug in rats.
742 *Psychopharmacology (Berl)*. 2018;235(1):317-28.

743 74 Allain F, Samaha AN. Revisiting long-access versus short-access cocaine self-
744 administration in rats: intermittent intake promotes addiction symptoms
745 independent of session length. *Addict Biol.* 2019;24(4):641-51.
746 75 Kawa AB, Robinson TE. Sex differences in incentive-sensitization produced by
747 intermittent access cocaine self-administration. *Psychopharmacology (Berl).*
748 2019;236(2):625-39.
749 76 Kawa AB, Valenta AC, Kennedy RT, Robinson TE. Incentive and dopamine
750 sensitization produced by intermittent but not long access cocaine self-
751 administration. *Eur J Neurosci.* 2019;50(4):2663-82.
752 77 James MH, Bowrey HE, Stopper CM, Aston-Jones G. Demand elasticity predicts
753 addiction endophenotypes and the therapeutic efficacy of an orexin/hypocretin-1
754 receptor antagonist in rats. *Eur J Neurosci.* 2019;50(3):2602-12.
755 78 Lynch WJ, Bakhti-Suroosh A, Abel JM, Davis C. Shifts in the neurobiological
756 mechanisms motivating cocaine use with the development of an addiction-like
757 phenotype in male rats. *Psychopharmacology (Berl).* 2021;238(3):811-23.
758 79 Minogianis EA, Samaha AN. Taking rapid and intermittent cocaine infusions
759 enhances both incentive motivation for the drug and cocaine-induced gene
760 regulation in corticostriatal regions. *Neuroscience.* 2020;442:314-28.
761 80 Orio L, Edwards S, George O, Parsons LH, Koob GF. A role for the
762 endocannabinoid system in the increased motivation for cocaine in extended-
763 access conditions. *J Neurosci.* 2009;29(15):4846-57.
764 81 Wee S, Mandyam CD, Lekic DM, Koob GF. Alpha 1-noradrenergic system role in
765 increased motivation for cocaine intake in rats with prolonged access. *Eur
766 Neuropsychopharmacol.* 2008;18(4):303-11.
767 82 Beasley MM, Gunawan T, Tunstall BJ, Kearns DN. Intermittent access training
768 produces greater motivation for a non-drug reinforcer than long access training.
769 *Learn Behav.* 2022;50(4):509-23.
770 83 Algallal HE, Jacquemet V, Samaha AN. Intermittent nicotine access is as effective
771 as continuous access in promoting nicotine seeking and taking in rats.
772 *Psychopharmacology (Berl).* 2024.
773 84 Kawa AB, Bentzley BS, Robinson TE. Less is more: prolonged intermittent access
774 cocaine self-administration produces incentive-sensitization and addiction-like
775 behavior. *Psychopharmacology (Berl).* 2016;233(19-20):3587-602.
776 85 Back SE, Brady KT, Jackson JL, Salstrom S, Zinzow H. Gender differences in
777 stress reactivity among cocaine-dependent individuals. *Psychopharmacology (Berl).*
778 2005;180(1):169-76.
779 86 Elman I, Karlsgodt KH, Gastfriend DR. Gender differences in cocaine craving
780 among non-treatment-seeking individuals with cocaine dependence. *Am J Drug
781 Alcohol Abuse.* 2001;27(2):193-202.
782 87 Hyman SM, Paliwal P, Chaplin TM, Mazure CM, Rounsville BJ, Sinha R. Severity
783 of childhood trauma is predictive of cocaine relapse outcomes in women but not
784 men. *Drug Alcohol Depend.* 2008;92(1-3):208-16.
785 88 McKay JR, Rutherford MJ, Cacciola JS, Kabasakalian-McKay R, Alterman AI.
786 Gender differences in the relapse experiences of cocaine patients. *J Nerv Ment
787 Dis.* 1996;184(10):616-22.

788 89 Lynch WJ, Taylor JR. Decreased motivation following cocaine self-administration
789 under extended access conditions: effects of sex and ovarian hormones.
790 *Neuropsychopharmacology*. 2005;30(5):927-35.
791 90 Peterson AB, Hivick DP, Lynch WJ. Dose-dependent effectiveness of wheel
792 running to attenuate cocaine-seeking: impact of sex and estrous cycle in rats.
793 *Psychopharmacology (Berl)*. 2014;231(13):2661-70.
794 91 Reichel CM, Chan CH, Ghee SM, See RE. Sex differences in escalation of
795 methamphetamine self-administration: cognitive and motivational consequences
796 in rats. *Psychopharmacology (Berl)*. 2012;223(4):371-80.
797 92 Carrette LLG, de Guglielmo G, Kallupi M, Maturin L, Brennan M, Boomhower B, et
798 al. The cocaine and oxycodone biobanks, two repositories from genetically diverse
799 and behaviorally characterized rats for the study of addiction. *eNeuro*. 2021;8(3).
800 93 Chitre AS, Polesskaya O, Holl K, Gao J, Cheng R, Bimschleger H, et al. Genome-
801 wide association study in 3,173 outbred rats identifies multiple loci for body weight,
802 adiposity, and fasting glucose. *Obesity (Silver Spring)*. 2020;28(10):1964-73.
803 94 Crofton EJ, Nenov MN, Zhang Y, Tapia CM, Donnelly J, Koshy S, et al.
804 Topographic transcriptomics of the nucleus accumbens shell: Identification and
805 validation of fatty acid binding protein 5 as target for cocaine addiction.
806 *Neuropharmacology*. 2021;183:108398.
807 95 Zhou JL, de Guglielmo G, Ho AJ, Kallupi M, Pokhrel N, Li HR, et al. Single-nucleus
808 genomics in outbred rats with divergent cocaine addiction-like behaviors reveals
809 changes in amygdala GABAergic inhibition. *Nat Neurosci*. 2023;26(11):1868-79.
810 96 Johnson PS, Johnson MW. Investigation of "bath salts" use patterns within an
811 online sample of users in the United States. *J Psychoactive Drugs*.
812 2014;46(5):369-78.
813
814

815 **Table 1.** Acquisition of Cocaine and MDPV Self-Administration.

816 The mean number of days to reach acquisition criteria (>20 infusions and >80% of
817 responses on the active lever), percent of rats that acquired, and level of acquisition
818 (mean infusions / session) in rats, split by sex, self-administration drug and initial
819 phenotype score.

		Days to Acquisition mean ± SEM	% of rats acquired (acquired n / total n)	Level of acquisition mean ± SEM
Cocaine	Females	7.0 + 0.6	93% (28 / 30)	58.3 + 2.7
	Males	7.7 + 0.6	96% (27 / 30)	49.9 + 2.6
MDPV	Females	4.2 + 0.4 *	100% (30 / 30)	69.1 + 7.1
	Males	4.6 + 0.4 *	100% (30 / 30)	64.9 + 13.4
<1 score	All	7.2 + 0.5	98% (48 / 49)	44.6 + 1.6
	<i>Cocaine</i>	8.8 + 0.5	97% (32 / 33)	47.4 + 2.0
	<i>MDPV</i>	4.4 + 0.5 *	100% (16 / 16)	38.0 + 2.2
< 2 score	All	5.1 + 0.4 #	96% (51 / 53)	63.6 + 4.1 #
	<i>Cocaine</i>	6.5 + 0.7	92% (22 / 24)	62.3 + 3.0
	<i>MDPV</i>	4.6 + 0.5 *	100% (29 / 29)	64.7 + 7.1
2+ score	All	4.0 + 0.4 #\\$	100% (16 / 16)	102.7 + 22.8 #
	<i>Cocaine</i>	4	100% (1 / 1)	74.3
	<i>MDPV</i>	4.0 + 0.4	100% (15 / 15)	104.6 + 24.3 #\\$

820

821 * = significantly different than rats of the same sex or score that self-administered cocaine

822 # = significantly different than <1 rats in the same group

823 \\$ = significantly different than <2 rats

824

825

826

827 **Table 2.** Escalation During 21-Day Access Condition Manipulation

828 Mean and confidence intervals (CI) around escalation, calculated by mean of infusions
829 earned during sessions 19-21 minus mean of sessions 1-3 in individual subjects. Data
830 shown by self-administration group and phenotype score.

Access condition	Group	n	Escalation Mean (95% CI)
Short	Female cocaine	9	0.6 (-8.5, 9.6)
	Male cocaine	9	0.8 (-2.8, 4.4)
	Female MDPV	10	-11.3 (-50.0, 27.4)
	Male MDPV	9	1.1 (-25.3, 27.5)
Long	Female cocaine	9	39.8 (21.3, 58.2) *
	Male cocaine	9	45.0 (12.7, 77.3) *
	Female MDPV	9	160.8 (-141.1, 462.7)
	Male MDPV	10	35.7 (-15.4, 86.7)
Intermittent	Female cocaine	12	13.8 (-4.5, 32.0)
	Male cocaine	10	0.3 (-23.3, 23.8)
	Female MDPV	11	17.5 (-86.4, 121.3)
	Male MDPV	11	-6.3 (-42.2, 29.7)
Short	<1	14	0.1 (-5.1, 5.3)
	<2	18	1.2 (-10.6, 13.1)
	2+	5	-22.9 (-121.0, 75.3)
Long	<1	10	40.2 (4.1, 76.2) *
	<2	22	61.0 (-43, 165.2)
	2+	5	164.5 (-84.9, 413.9)
Intermittent	<1	25	0.3 (-16.9, 17.5)
	<2	14	0.7 (-31.5, 32.8)
	2	5	54.8 (-219.8, 329.4)
Short		37	-2.5 (-13.3, 8.4)
Long		37	69.4 (3.7, 135.1) *
Intermittent		44	6.6 (-18.4, 31.6)

831

832 * = significant escalation (confidence intervals do not overlap with 0)

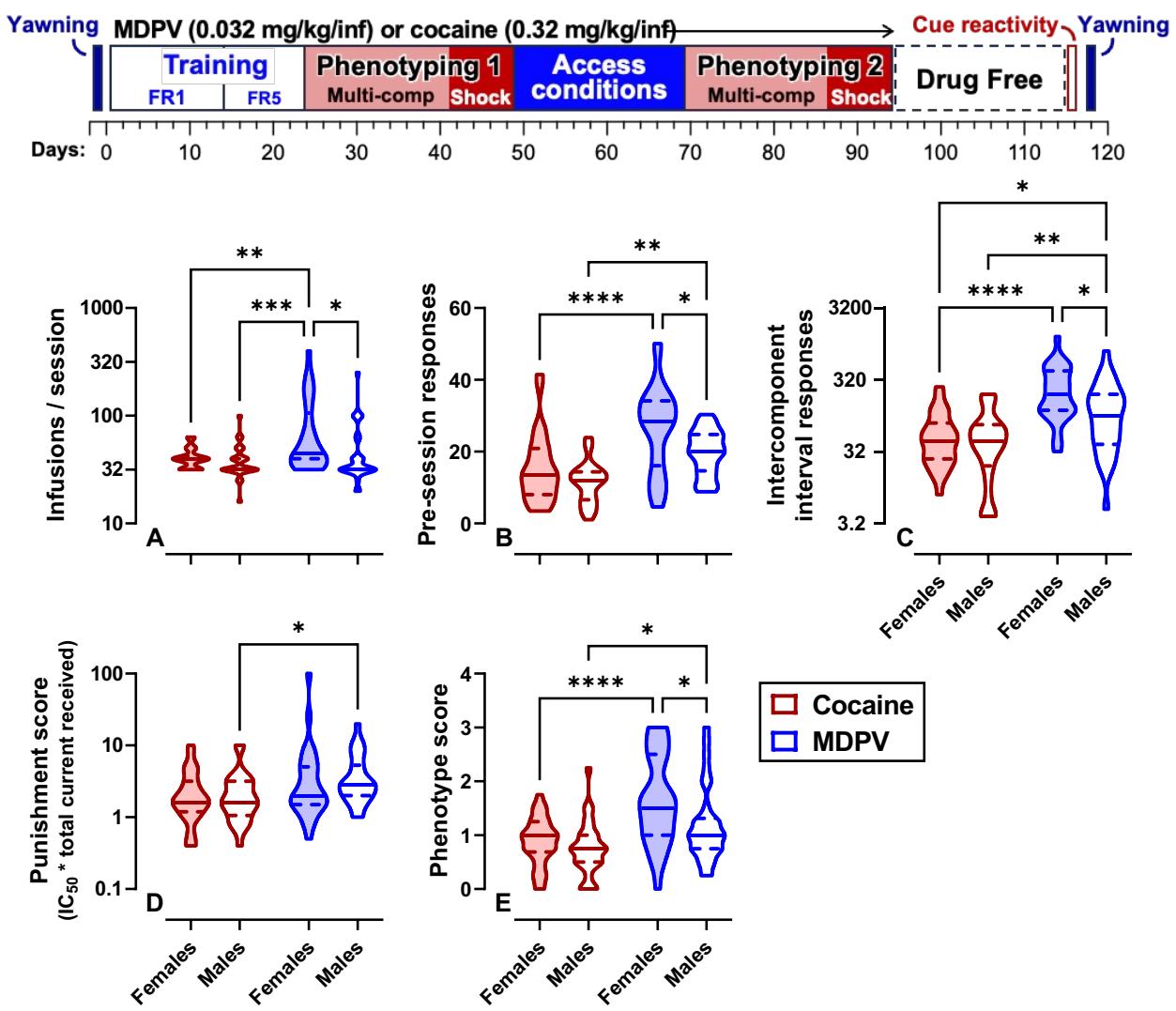
Figure Legends

Figure 1. Timeline and Initial Phenotype Score Endpoints

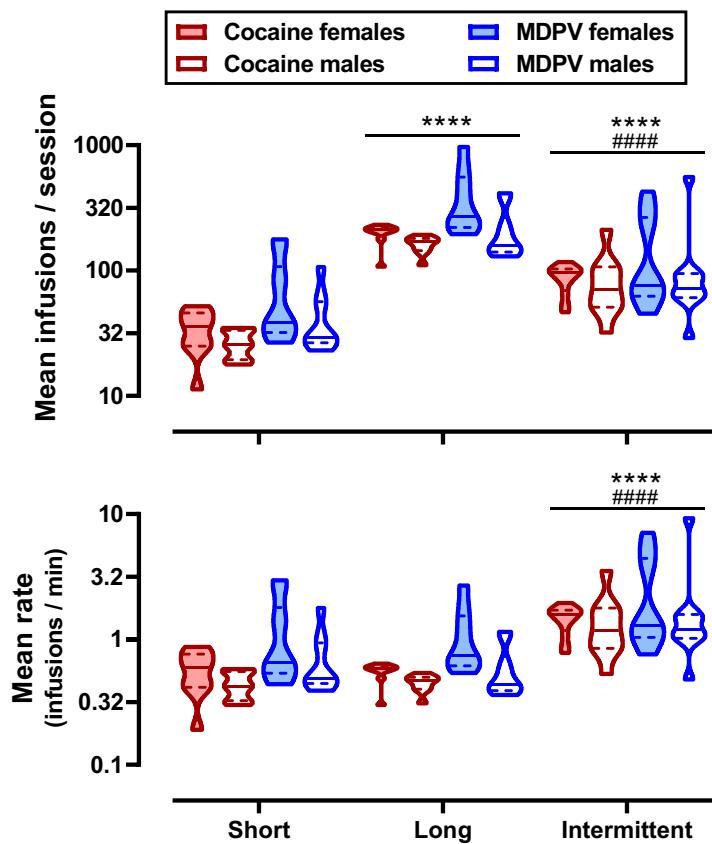
Experimental timeline showing the total study duration in days as well as each aspect of the experiment. Violin plots representing the mean number of infusions (A), pre-session responses (B), intercomponent interval responses (C), punishment score (D) and SUD-like phenotype score (E) in female (shaded) and male (white) rats self-administering cocaine (red) or MPDV (blue) during the first phenotyping period. Solid lines indicate median and dashed lines indicate quartiles. * = $P<0.05$, **= $P<0.01$, ***= $P<0.001$, ****= $P<0.0001$ for post-hoc analyses.

Figure 2. Access Condition Manipulations

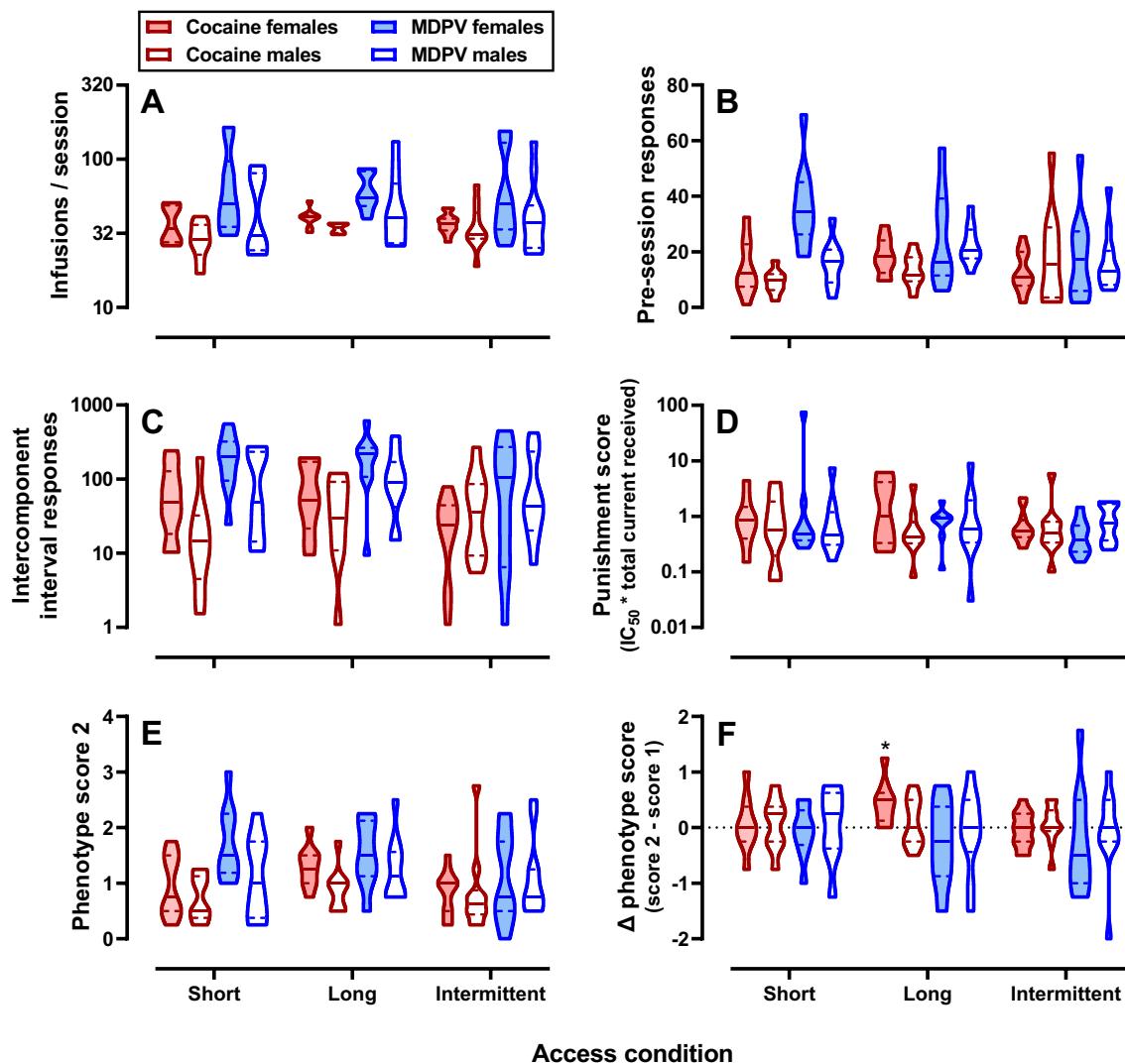
Violin plots representing the number of infusions (top) and rate of responding (bottom) averaged across the 21-session access condition manipulation. Female (shaded) and male (white) rats self-administering cocaine (red) or MPDV (blue) under short- (left), long- (middle), or intermittent-access (right). Solid lines indicate median and dashed lines indicate quartiles. Main effect of access condition where ****= $P<0.0001$ compared to short-access; #####= $P<0.0001$ compared to long-access for post-hoc analyses.

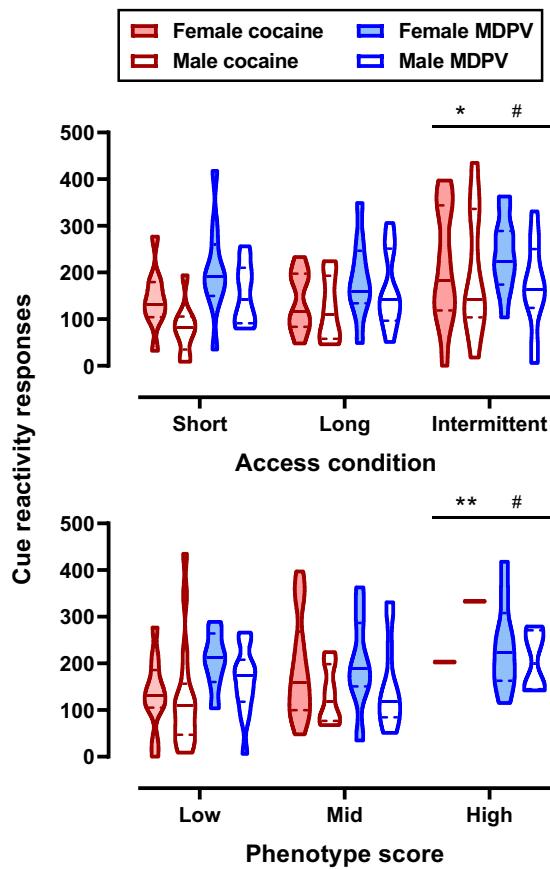

Figure 3. Final Phenotype Score Endpoints

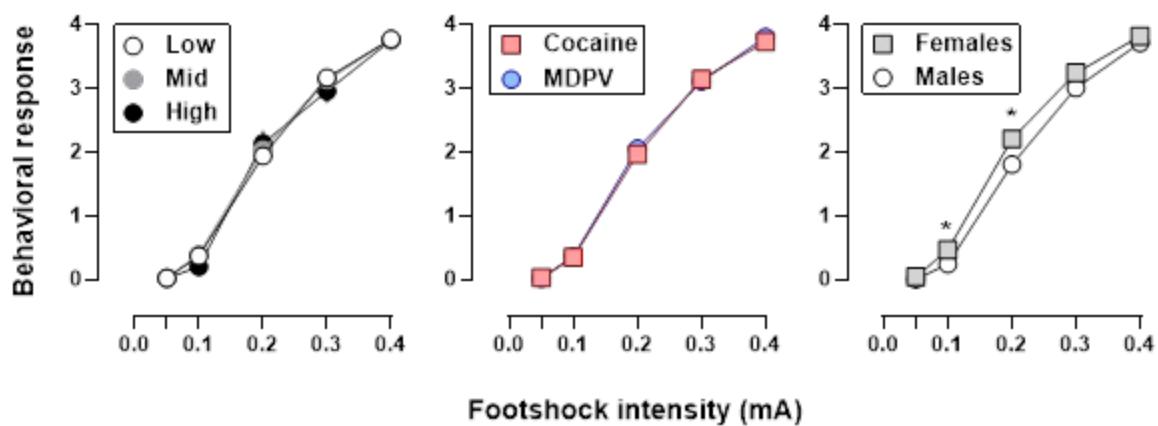
Violin plots representing the mean number of infusions (A), pre-session responses (B), intercomponent interval responses (C), punishment score (D), SUD-like phenotype score (E), and change in phenotype score in female (shaded) and male (white) rats self-administering cocaine (red) or MPDV (blue) during the second phenotyping period. Data are split by access condition. Solid lines indicate median and dashed lines indicate quartiles. *=significant change in phenotype score, where confidence intervals did not overlap with 0. Main effects of drug and sex are not indicated on figures.

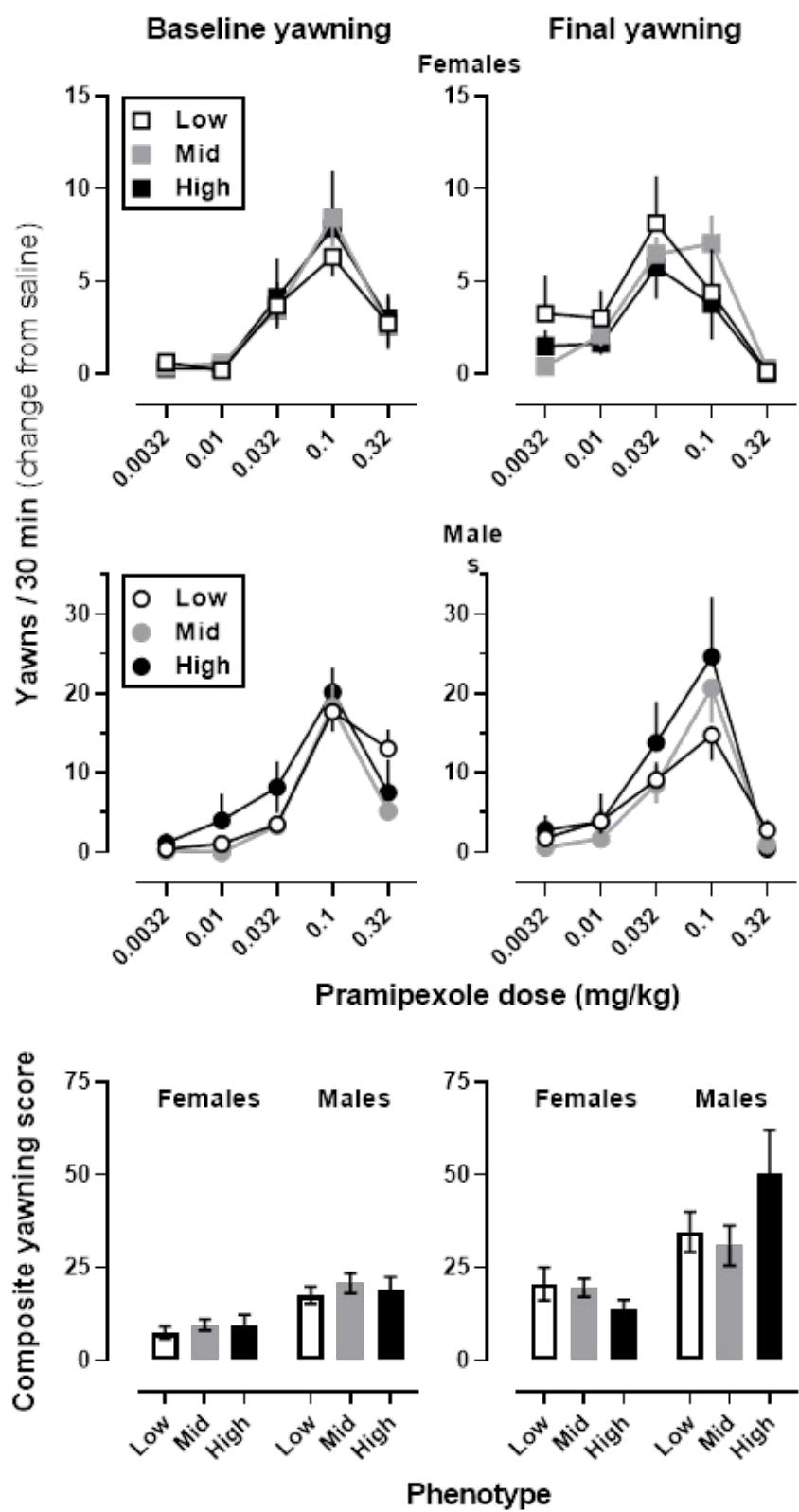

Figure 4. Responses During Cue Reactivity Test

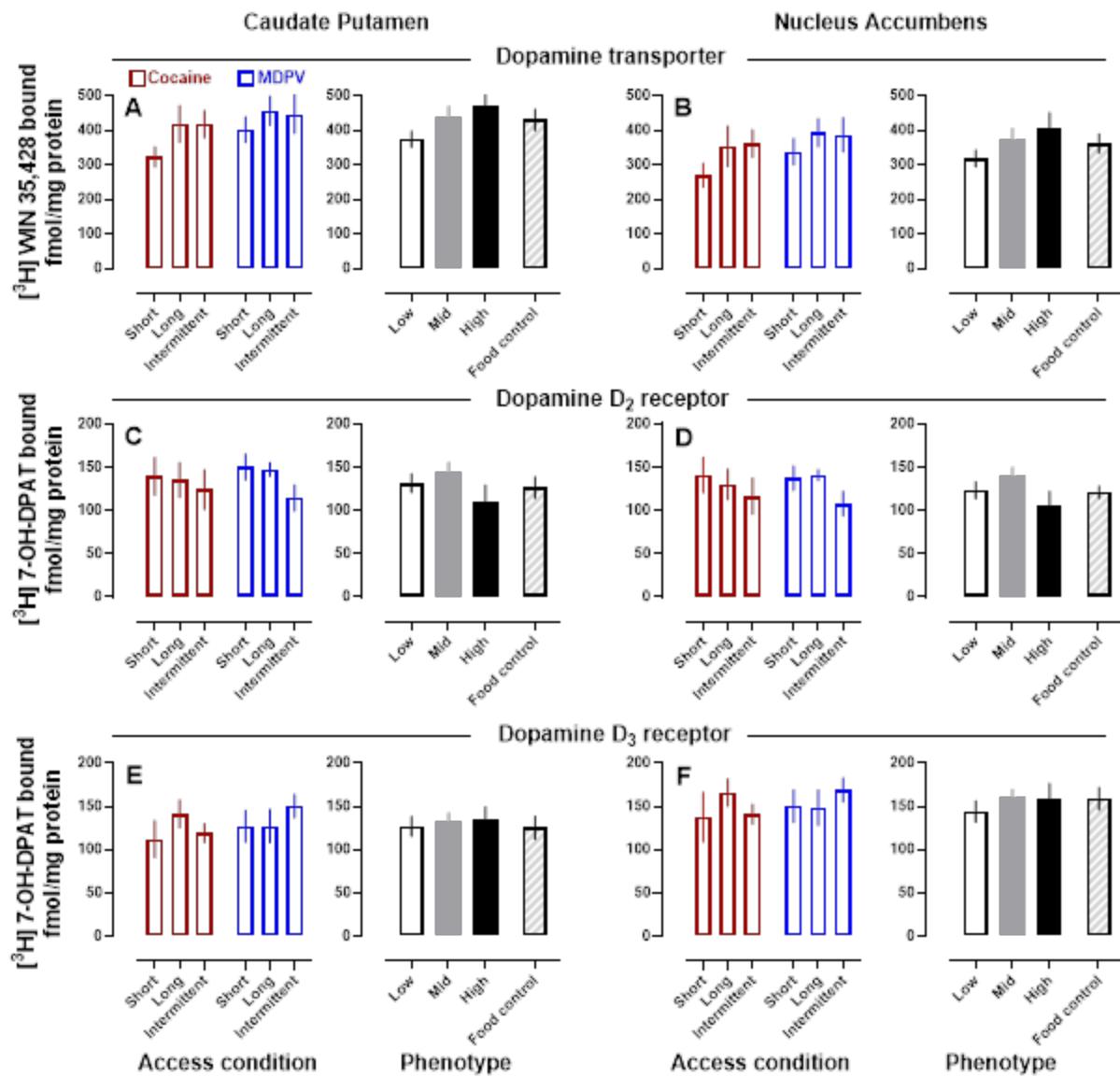
Violin plots representing the mean number of responses during the cue reactivity test, split by access condition (top) or phenotype score (bottom) in female (shaded) and male (white) rats self-administering cocaine (red) or MPDV (blue). Solid lines indicate median and dashed lines indicate quartiles. Top: main effect of access condition where *= $P<0.05$ compared to short-access; #= $P<0.05$ compared to long-access. Bottom: main effect of phenotype where **= $P<0.01$ compared to low score; #= $P<0.05$ compared to mid score.

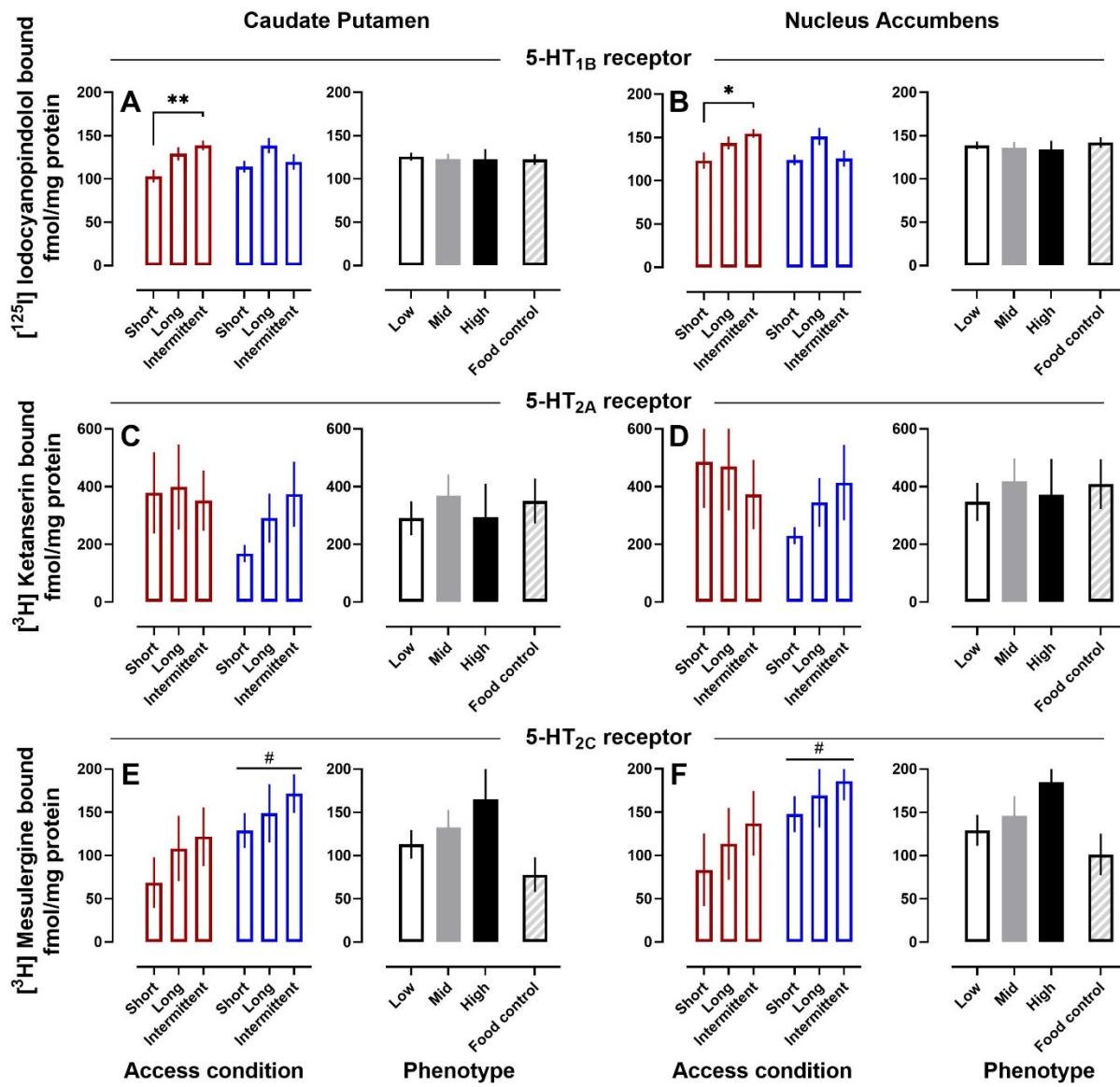

Figure 1

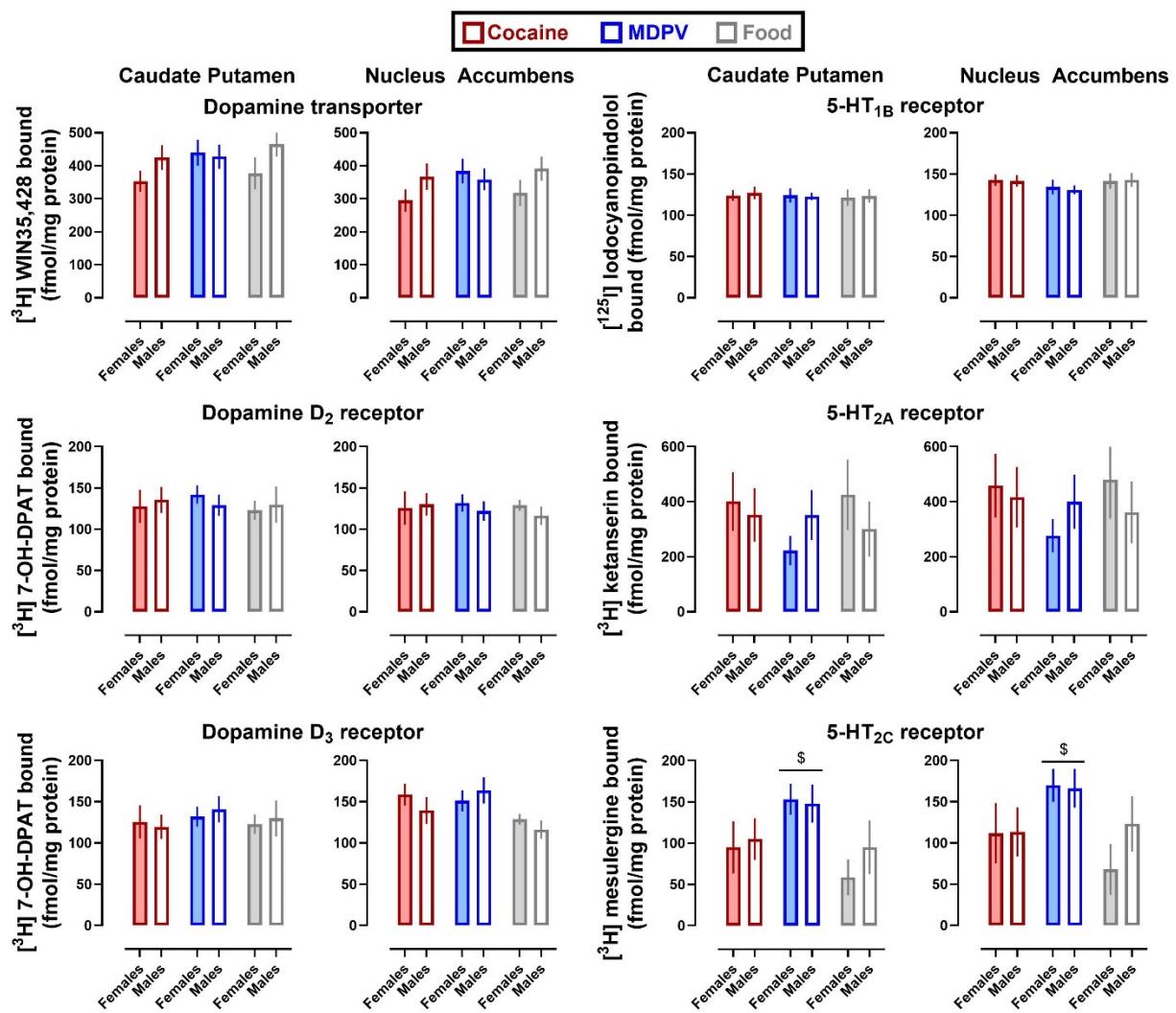

Figure 2


Figure 3


Figure 4


Supplemental Figure 1


Supplemental Figure 2


Supplemental Figure 3


Supplemental Figure 4

Supplemental Figure 5

Supplemental Figure 6

