

1 **Early cytokine-driven adaptation of survival pathways in lymphoid cells**
2 **during targeted therapies**

3
4 Meng-Xiao Luo^{1,2, \$}, Tania Tan^{1,2, \$}, Marie Trussart^{1,2}, Annika Poch^{2,3}, Thi Minh Hanh Nguyen^{2,3},
5 Terence P. Speed^{1,2}, Damien G. Hicks⁴, Esther Bandala-Sanchez^{1,2}, Hongke Peng^{1,2}, Stéphane
6 Chappaz⁵, Charlotte Slade^{1,2}, Daniel T Utzschneider^{2,3}, Andreas Strasser^{1,2}, Rachel Thijssen^{1,2},
7 Matthew E Ritchie^{1,2}, Constantine S Tam^{2,6,7}, Geoff Lindeman^{1,2}, David CS Huang^{1,2}, Thomas E
8 Lew^{1,2,6,8}, Mary Ann Anderson^{1,2,6,8}, Andrew W Roberts^{1,2,6,8}, Charis E Teh^{1,2,*, #}, Daniel HD
9 Gray^{1,2, *, #}

10

11 ¹The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia

12 ²The University of Melbourne, Melbourne, VIC, Australia

13 ³The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia

14 ⁴Swinburne University of Technology, Hawthorn, VIC, Australia

15 ⁵Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia

16 ⁶Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia

17 ⁷St. Vincent's Hospital, Melbourne, VIC, Australia

18 ⁸Department of Haematology, Royal Melbourne Hospital, VIC, Australia

19

20 \$Joint first authors *Joint senior authors

21 #Address correspondence to teh.c@wehi.edu.au or dgray@wehi.edu.au

22

23 Key points

24

25 • Leukaemic cells rapidly adapt to targeted therapy by elevating pro-survival protein
26 expression.

27 • Cell attrition and increased bioavailability of homeostatic cytokines drive this heightened
28 survival, highlighting avenues for more potent combination therapies.

29 **Abstract**

30 Venetoclax, a first-in-class BH3 mimetic drug targeting BCL-2, has improved outcomes for
31 patients with chronic lymphocytic leukemia (CLL). Early measurements of the depth of the
32 venetoclax treatment response, assessed by minimal residual disease, are strong predictors of
33 long-term clinical outcomes. Yet, there are limited data concerning the early changes induced by
34 venetoclax treatment that might inform strategies to improve responses. To address this gap, we
35 conducted longitudinal mass cytometric profiling of blood cells from patients with CLL during
36 the first two months of venetoclax monotherapy. At baseline, we resolved CLL heterogeneity at
37 the single-cell level to define multiple subpopulations in all patients distinguished by
38 proliferative, metabolic and cell survival proteins. Venetoclax induced significant reduction in all
39 CLL subpopulations coincident with rapid upregulation of pro-survival BCL-2, BCL-XL and
40 MCL-1 proteins in surviving cells, which had reduced sensitivity to the drug. Mouse models
41 recapitulated the venetoclax-induced elevation of survival proteins in B cells and CLL-like cells
42 that persisted *in vivo*, with genetic models demonstrating that extensive apoptosis and access to
43 the B cell cytokine, BAFF, were essential. Accordingly, analysis of patients with CLL that were
44 treated with a different targeted therapy, the anti-CD20 antibody obinutuzumab, also exhibited
45 marked elevation of BAFF and increased pro-survival proteins in leukemic cells that persisted.
46 Overall, these data highlight the rapid adaptation of CLL cells to targeted therapies via
47 homeostatic factors and support co-targeting of cytokine signals to achieve deeper and more
48 durable long-term responses.

49 **Introduction**

50

51 Chronic lymphocytic leukemia (CLL), the most prevalent adult leukemia in many developed
52 countries, is characterized by the accumulation of long-lived CD5⁺CD19⁺ B cells in the blood,
53 bone marrow and secondary lymphoid organs. Most CLL cells are quiescent¹, with a small
54 population of proliferating cells responding to growth factor signals detectable in lymph nodes
55 and blood². Defective apoptosis is a hallmark of CLL mediated by elevated expression of the pro-
56 survival protein, BCL-2³. Venetoclax (ABT-199), a small molecule inhibitor of BCL-2, is a
57 highly efficacious treatment for CLL either as monotherapy^{4,5} or in combination with other
58 agents⁶⁻⁹. Venetoclax induces rapid apoptosis, with the majority of susceptible cells dying within
59 4–8 hours of exposure *in vitro* and *in vivo*¹⁰. Administration of high concentrations of venetoclax
60 in patients with bulky disease can cause tumor lysis syndrome⁴, so a weekly dose ramp-up
61 regimen is typically used.

62

63 Despite the high efficacy of venetoclax in CLL (and acute myeloid leukemia (AML)), incomplete
64 responses and emergent therapeutic resistance remain important challenges. Studies of patients
65 who relapse after long-term venetoclax therapy have revealed multiple, non-mutually exclusive
66 drug resistance mechanisms: (i) mutations in the binding groove of BCL-2¹¹⁻¹³, (ii)
67 overexpression of other members of the BCL-2 family pro-survival proteins not targeted by
68 venetoclax (e.g. BCL-XL and MCL-1)^{11,14}, or (iii) loss of BAX^{15,16} and/or TP53 dysfunction¹⁷.
69 Yet how leukemic cells initially evade venetoclax-induced apoptosis and the setting in which
70 resistance emerges remain unclear.

71

72 Here, we sought to address these questions by longitudinal deep profiling of blood cells from
73 patients during the ramp-up period. We found striking elevation of pro-survival BCL-2 protein
74 levels in residual CLL cells post-treatment that was recapitulated in murine models. We found
75 evidence that heightened BCL-2 in surviving CLL cells was due to both the preferential loss of
76 cells with relatively lower BCL-2 expression and cytokine-driven upregulation of BCL-2.
77 Abrogation of BAFF-R signaling blocked venetoclax-induced BCL-2 upregulation *in vivo* in
78 normal B cells. Moreover, obinutuzumab, a targeted therapy that kills CLL cells in a BCL-2-
79 independent manner, also resulted in BCL-2 upregulation in persisting cells, accompanied by

80 marked elevation of serum BAFF and APRIL. These findings highlight a mechanism by which
81 potent B cell depleting therapies alleviate cell competition for cytokine-mediated survival signals
82 in CLL cells, suggesting new avenues to achieve deeper responses.

83

84 **Methods**

85

86 **Patient samples.** Patients treated with venetoclax monotherapy (VENICE study;
87 NCT02980731¹⁸), venetoclax-ibrutinib (CAPTIVATE; NCT02910583¹⁹) or combination time-
88 limited venetoclax-obinutuzumab⁷ were recruited from the Department of Clinical Haematology
89 Royal Melbourne Hospital and Peter MacCallum Cancer Centre (Victoria, Australia)
(Supplementary Table 1); healthy donors were from the Victorian Blood Donor Registry. All
91 donors provided written informed consent and the research was approved by Human Research
92 Ethics Committees/Institutional Review Boards. PBMCs were isolated by density gradient
93 centrifugation and resuspended in IMDM medium with 10% heat-inactivated foetal calf serum.
94 Patients with breast cancer (#ACTRN12615000702516²⁰, **Supplementary Table 1**) were
95 analyzed by CITE-seq as previously described²¹.

96

97 **Mass cytometry.** Cells were prepared as previously described^{21,22} and frozen at -80°C. Thawed
98 cisplatin-labelled cells underwent 20-plex palladium barcoding and were batched (**Fig S1A**) with
99 common anchor samples. After methanol permeabilization and staining with antibody conjugates
(Supplementary Table 2) and 125nM ¹⁹¹Ir/¹⁹³Ir DNA intercalator (Fluidigm, CA, USA), cells
101 were washed, filtered and resuspended with EQ normalization beads and acquired on a Helios
102 CyTOF (Fluidigm, CA, USA). Data were processed using the CATALYST package²³. Replicated
103 anchor samples were used to identify and correct for batch effects using CytofRUV²⁴. FlowSOM
104 with 22 lineage proteins was used to identify clusters and all clusters were used to define pseudo-
105 replicates with k=3. Data were visualized using uniform manifold approximation and projection
106 (UMAP)²⁵.

107

108 **Linear Discriminant Analysis (LDA).**

109 Linear discriminant analysis (LDA) was performed on IgM⁺CLL clusters for each patient with
110 increasing doses of venetoclax. Results were displayed and ranked according to the magnitude of

111 the projection of each marker direction onto the plane of the first two LDA components. The
112 green shading represents the distribution of ranking curves when randomly picking a 2D plane in
113 n -dimensional space (where n is the number of parameters), projecting each of the n markers onto
114 it, then ranking the markers based on their projected length on that plane. This process was
115 repeated 500 times and the standard deviation of the sampled projection lengths at each rank
116 position is determined.

117

118 ***In vitro* cell death assays.**

119 Cells were treated with graded concentrations of venetoclax or dimethyl sulfoxide (DMSO). Cell
120 viability was quantified by flow cytometry with propidium iodide (5 μ g/mL; Sigma).

121

122 **Cell counts.**

123 Cell number calculations by flow cytometry were performed using Green Live/Dead Cell Dye
124 (Invitrogen) for viability. Concentration of cells in blood = % total live WBC (and daughter
125 gates) by flow cytometry \times WBC concentration in blood by Advia = y (cells/L)

126

127 **Mice.**

128 C57BL/6, *Bak*^{-/-}*Bax*^{ΔCd23}, *vav-huBcl2*, *Bak*^{-/-}*Bax*^{ΔCd23}*Tnfrsf13c*^{-/-} and *Eμ-TCL-1* mice were
129 backcrossed onto the C57BL/6 background from foundation strains (**Supplementary Table 5**).
130 All mice were housed at WEHI or University of Melbourne in SPF conditions and experiments
131 performed under relevant Animal Ethics Committee requirements. Wild-type mice received
132 5 \times 10⁵ splenocytes from leukemic *Eμ-TCL1* donors (%CD19⁺CD5⁺ cells>95%) by intravenous
133 injection. Recipients were treated with venetoclax or vehicle after reaching 80% CD19⁺CD5⁺ of
134 blood lymphocytes. Venetoclax (100mg/kg body weight) or vehicle was administered by daily
135 oral gavage for 1 week.

136

137 **Hematopoietic reconstitution.**

138 CD45.1/CD45.2 C57BL/6 F1 mice (6-8 week-old) were lethally irradiated with 2 \times 5.5 Gy 3h
139 apart and reconstituted by intravenous injection of 2 \times 10⁶ bone marrow (BM) cells. Irradiated
140 recipients received anti-Thy1 (clone T24; 100 μ g) intraperitoneally 24h later then reconstituted
141 for >6 weeks.

142

143 **Flow cytometry.**

144 Single-cell suspensions were stained with antibody conjugates to detect cell surface and
145 intracellular proteins (**Supplementary Table 6**). Samples were acquired on LSRII or Fortessa
146 flow cytometer (BD Bioscience) and analyzed using Flowjo software (Treestar).

147

148 **Cytokine measurements.**

149 Serum cytokines were measured using the Luminex xMAP technology on the Bio-Plex 200
150 platform (Bio-plex Manager 5.0) with the Bio-Plex ProTM Human Cytokine Screening Test Kit
151 (48-Plex, Bio-Rad) and the Bio-Plex ProTM Human Inflammation Panel-1 Kit (37-Plex, Bio-Rad).

152

153 **Quantification and statistical analysis.**

154 Data were analyzed using GraphPad Prism software. Student's two-tailed *t* tests (paired or un-
155 paired) were used for comparisons and differences were considered significant when *p*<0.05.

156

157 **Results**

158

159 **Mass cytometry resolves heterogeneity among CLL cells**

160

161 To assess the impact of venetoclax on CLL heterogeneity and survival, we assayed peripheral
162 blood (PB) from 18 relapse/refractory CLL patients receiving venetoclax monotherapy¹⁸, healthy
163 donor and two treatment naïve CLL patients receiving venetoclax-ibrutinib after ibrutinib run-in⁷
164 (**Supplementary Table 1**). PB samples were drawn before each weekly venetoclax dose-
165 escalation until reaching 400 mg/day (**Fig 1A**). As expected, venetoclax induced substantial dose-
166 related reductions in PB lymphocytes in all patients (**Fig 1B**). Samples were palladium-barcoded
167 and pooled into batches that included shared “anchor” samples then stained with a panel of 43
168 conjugates to discriminate CLL/normal immune sub-populations, BCL-2 family proteins, cell
169 cycle regulators, key signaling pathways, including NF-κB, ERK/p38, mTOR, DNA damage,
170 CREB and cancer-related proteins (TP53 and c-MYC)²² (**Fig S1A, Supplementary Table 3**) for
171 CyTOF.

172

173 FlowSOM was used to identify 30 clusters and the data visualized with 2D UMAP (**Fig 1C**).
174 These clusters were annotated based on the expression of lineage markers distinguishing healthy
175 B (C1: CD19^{high}CD5^{low}), CLL (C2-5: CD19^{high}CD5^{high}), T (C6-12: CD3^{high}), NKT (C13), NK
176 (C14: CD56^{high}) and myeloid (C15-30: CD11c^{high}) cell populations (**Fig 1C-D**). Cluster
177 distinctions within lineages were driven by expression of BCL-2 family proteins, cell cycle
178 regulators, core signaling pathway constituents, including NF- κ B, ERK/p38, mTOR, JAK/STAT
179 and the transcription factors, pCREB, TP53 and c-MYC (**Fig S1B**). Overall, the initial analysis
180 identified four putative CLL clusters (C2-5: CD19^{high}CD5^{high}) that were prominent in PB from
181 CLL patients but not in a healthy donor (**Fig 1E**).
182

183 Next, we performed finer mapping of normal B/CLL clusters into 10 sub-clusters using
184 FlowSOM (**Fig 2A**). Overlaying the expression profile of various markers (**Fig S1C**) on UMAPs
185 distinguished normal CD5^{low}CD20^{high}pS6^{high} healthy B cells (C2.1-2.3)²⁶ (**Fig 2B**) from CLL
186 cells. CLL clusters could be broadly divided into IgM^{low} (C2.4-2.5) and IgM^{high} cells (C2.6-2.10)
187 (**Fig 2C**). In addition, we detected minor CLL sub-populations, including pRB^{high} TACI^{high}
188 BAX^{high} (C2.9) and pH2AX^{high} (C2.10) subsets (**Fig. 2A, 2D**).
189

190 Interestingly, the major CLL clusters had graded expression of BCL-2, CD5 and CXCR4 (**Fig**
191 **2E**). Traditional 2D gating identified CXCR4^{low}CD5^{high} and CXCR4^{high}CD5^{low} CLL populations
192 (**Fig 2F**), previously identified as PB CLL cells that have recently migrated from or are *en route*
193 to lymphoid tissues, respectively²⁷. Consistent with prior observations²⁸, CXCR4^{low}CD5^{high} CLL
194 cells had relatively lower levels of BCL-2 and BCL-XL than CXCR4^{high}CD5^{low} CLL cells, but
195 higher amounts of MCL-1 and mitosis-associated phosphorylated histone 3 (pH3) (**Fig 2G**). With
196 a few exceptions, all CLL clusters were found in all patients, albeit at varying frequencies (**Fig**
197 **2H**), suggesting relatively modest inter-patient variability. Taken together, the CyTOF profiling
198 of CLL cells revealed heterogeneity distinguished by cell surface phenotype, signaling states (e.g.
199 pRB, pH2AX) and expression of BCL-2 pro-survival proteins (e.g. BCL-2^{high}CXCR4^{high}CD5^{low}
200 vs BCL-2^{low}CXCR4^{low}CD5^{high} CLL cells).
201

202 **Venetoclax induces a dose-related increase in BCL-2 in surviving CLL cells**

203

204 Having defined the baseline characteristics and heterogeneity of CLL cell populations among
205 patients, we sought to resolve the impact of venetoclax monotherapy ($n=18$). Venetoclax reduced
206 CLL burden in all patients with no dose-dependent changes in CLL cluster proportions observed
207 (**Fig 3A, Figure S2A**). Gating on CXCR4^{low}CD5^{high} and CXCR4^{high}CD5^{low} populations identified
208 some instances of CXCR4^{high} CLL cell enrichment (with comparatively higher BCL-2), but this
209 trend was not statistically significant (**Fig S2B, C**). To identify dose-related changes in CLL
210 cells, independent of sub-populations, we performed linear discriminant analysis (LDA). LDA
211 ranked proteins according to the most significant dose-dependent changes in CLL cells in
212 individual patients (e.g. patient CLL19, **Fig 3B, Fig S3A**), compared to the distribution of
213 randomly oriented planes (green shaded area). A summary of LDA from all patients showed that
214 the top ranked dose-dependent change in CLL cells over time was BCL-2 (**Fig 3C**). Accordingly,
215 we observed a significant increase in mean level of BCL-2 in CLL cells at post-50 mg and post-
216 100 mg doses of venetoclax treatment compared to baseline (**Fig S3B**). These CyTOF data show
217 that short-term venetoclax treatment enriched for or drove higher BCL-2 in surviving cells
218 (hereafter termed VEN^{surv}).

219
220 To verify these findings, we used conventional flow cytometry with fluorochrome conjugates that
221 offer a greater dynamic range than CyTOF. Analysis of paired samples at screening and post-
222 200mg of venetoclax validated the significant increase in BCL-2 protein expression in VEN^{surv}
223 cells (**Fig 3D-E**). Smaller, statistically significant increases in BCL-XL and/or MCL-1 were also
224 apparent (**Fig 3E**). We compared the *in vitro* venetoclax sensitivity of cells at screening and post-
225 200mg treatment and found reduced sensitivity in CLL cells (**Fig 3F-G**), but not CD4⁺ T cells
226 (**Fig 3H-I**). These data align with a previous study of a smaller patient group²⁹ and demonstrate
227 venetoclax selects for or induces cells with higher expression of pro-survival BCL-2 proteins
228 shortly after therapy with resultant reduced sensitivity to venetoclax. To extend these findings
229 into a setting of combination therapy, we analyzed two CLL patients that received first-line
230 ibrutinib lead-in followed by ibrutinib plus venetoclax, comparing cells just before and after
231 venetoclax treatment. The addition of venetoclax substantially reduced WBC counts (**Figure**
232 **S3C**) and VEN^{surv} CLL cells in both patients had increased BCL-2 expression and reduced *in*
233 *vitro* sensitivity to venetoclax (**Figure S3D-E**). These data suggest that the rapid adaptation
234 processes acting on VEN^{surv} CLL cells are pertinent to multiple settings.

235
236 **Preferential loss of CLL cells with relatively lower BCL-2 protein partially accounts for**
237 **VEN^{surv} cell phenotype**
238

239 To explore how venetoclax causes an apparent, rapid increase in pro-survival proteins in VEN^{surv}
240 cells, we hypothesized that, *in vivo*, dose escalation may preferentially eliminate those cells with
241 relatively lower amounts of BCL-2 (**Fig 4A**). To test this notion, we first set a baseline threshold
242 delineating the 20% of cells with the highest amount of BCL-2 (BCL-2^{top20}) versus the remaining
243 80% (BCL-2^{lower80}) cells in each patient at screening. We then applied this threshold to the paired
244 post-200mg data (**Fig 4B**). Calculation of the *ex vivo* concentration of the two populations
245 revealed a mean 30-fold decrease in BCL-2^{lower80} cells while BCL-2^{top20} cells decreased by only
246 3.2-fold (**Fig 4C**). These data support the notion that during the venetoclax ramp-up, CLL cells
247 with lower amounts of BCL-2 are preferentially killed. However, we also observed that VEN^{surv}
248 cells often manifest levels of BCL-2 that exceeded the range measured prior to venetoclax
249 administration (**Fig 3D, 4B**), suggesting another (non-mutually exclusive) scenario where cell
250 extrinsic factors drive upregulation of BCL-2.

251
252 ***In vivo* elevation of BCL-2 in VEN^{surv} cells in mice**
253

254 To further dissect the mechanisms driving increased pro-survival protein expression in VEN^{surv}
255 cells, we assayed normal and leukemic B cells in mice shortly after venetoclax treatment.
256 Consistent with previous studies³⁰, venetoclax swiftly reduced total B cell numbers by >2-fold in
257 wildtype (wt) mice (**Fig 5A,B**), predominantly in peripheral B cells. As observed among CLL
258 patients (**Fig 3E**), VEN^{surv} B cells had elevated levels of BCL-2 and MCL-1; BCL-XL levels
259 remained unchanged (**Fig 5C-D**). In *Bak*^{-/-}*Bax*^{ΔCd23} mice, B cells lack the downstream effectors of
260 apoptosis, BAX and BAK, therefore cannot undergo apoptosis. Venetoclax did not affect B cell
261 numbers or BCL-2 expression in these mice (**Fig 5B-D**), demonstrating that apoptotic death was
262 essential for elevation of BCL-2 in VEN^{surv} B cells. Intriguingly, MCL-1 levels still increased in
263 VEN^{surv} B cells from *Bak*^{-/-}*Bax*^{ΔCd23} mice (**Fig 5B-D**), suggesting a non-apoptotic or cell extrinsic
264 mechanism influences MCL-1 protein expression in this scenario.

265

266 We also assessed the impact of venetoclax on *vav-huBCL-2* transgenic mice that overexpress
267 human BCL-2 in all hematopoietic cells³¹. B cells from *vav-huBCL-2* mice remained sensitive to
268 venetoclax-induced cell death *in vivo* (**Fig 5B**) and VEN^{surv} cells exhibited substantially increased
269 amounts of both human (i.e. transgene encoded) and mouse BCL-2 (i.e. endogenous) (**Fig 5C-D**).
270 Together, these data indicate that the increase in cellular BCL-2 protein following short-term
271 venetoclax treatment *in vivo* is: (1) conserved between mouse and human BCL-2, (2) dependent
272 on cells undergoing apoptosis, (3) independent of the BCL-2 antibodies used for detection, and
273 (4) observed in B cells with varying baseline amounts of BCL-2.

274

275 Next, we tested whether the elevated BCL-2 observed in VEN^{surv} B cells also occurs in a mouse
276 model of CLL. We adoptively transferred CLL cells from *Eμ-TCL-1* transgenic mice into wt
277 mice and treated recipients with either vehicle or venetoclax (**Fig 5E**). Venetoclax caused a
278 significant decline in splenic healthy B cells, but not in leukemic CD19⁺CD5⁺ cells (**Fig 5F**). The
279 apparently lower sensitivity of CD19⁺CD5⁺ *Eμ-TCL-1* transgenic B cells, consistent with
280 previous studies^{32,33}, is likely due to the high proliferation of *Eμ-TCL-1* CLL-like cells compared
281 to human CLL cells. Indeed, the proportions of KI-67⁺ proliferating *Eμ-TCL-1* transgenic B cells
282 increased with venetoclax treatment (**Fig 5F**), presumably maintaining their numbers despite
283 substantial apoptosis. Nevertheless, we observed increased expression levels of BCL-2 and
284 MCL-1 in VEN^{surv} leukemic cells (**Fig 5G-H**). Collectively, these data reveal that venetoclax-
285 induced apoptosis, *in vivo*, rapidly drives elevated BCL-2 and MCL-1 protein levels in VEN^{surv}
286 cells, recapitulating the responses observed in CLL cells from patients.

287

288 Competition for BAFF controls the homeostatic response to venetoclax in murine B cells

289

290 We next sought to determine whether cell extrinsic factors drive the increase in BCL-2 proteins
291 in VEN^{surv} cells. To establish an *in vivo* model where the impact of venetoclax on the
292 microenvironment could be read-out in apoptosis-resistant B cells, we generated hematopoietic
293 chimeras with a mixture of congenically-labelled wild-type (CD45.1⁺) cells and *Bak*^{-/-}*Bax*^{ΔCd23}
294 (CD45.2⁺) cells into CD45.1/2 irradiated recipients (**Fig 6A**). These chimeras were treated with
295 venetoclax which ablated wt B cells, accompanied by elevated BCL-2, MCL-1 and BCL-XL in
296 surviving wt cells (**Fig 6B-D**). The numbers of B cells derived from *Bak*^{-/-}*Bax*^{ΔCd23} BM was

unchanged by venetoclax treatment; however, their levels of BCL-2 increased (**Fig 6B-D**). This finding contrasts the observations in intact *Bak*^{-/-}*Bax*^{ΔCd23} mice (**Fig 5C-D**), indicating that BCL-2 upregulation is driven by cell extrinsic factors and dependent on the removal of wt cells in the chimeras. MCL-1 protein increased modestly in both wt and *Bak*^{-/-}*Bax*^{ΔCd23} B cells from the venetoclax-treated chimeras (**Fig 6C-D**), similar to findings in intact *Bak*^{-/-}*Bax*^{ΔCd23} mice (**Fig 5C-D**), indicating that the elevation of MCL-1 was independent of B cell apoptosis. Collectively, these data demonstrate that cell extrinsic cues rapidly upregulate pro-survival proteins in VEN^{surv} B cells.

A prominent candidate cytokine is B cell activating factor (BAFF), which binds to the BAFF receptor (BAFF-R) on peripheral B cells to promote their maturation and survival³⁴. To test this candidate, we used *Bak*^{-/-}*Bax*^{ΔCd23} mice lacking the BAFFR (*Bak*^{-/-}*Bax*^{ΔCd23}*Tnfrsf13c*^{-/-})³⁵, generating B cells that were both resistant to apoptosis and refractory to BAFF signaling. We adoptively transferred B cells purified from *Bak*^{-/-}*Bax*^{ΔCd23} or *Bak*^{-/-}*Bax*^{ΔCd23}*Tnfrsf13c*^{-/-} mice into wt recipients that had been treated with venetoclax for four days to deplete their B cells (**Fig 6E**). After a further three-day treatment with venetoclax, we detected increased BCL-2 in *Bak*^{-/-}*Bax*^{ΔCd23}, but not *Bak*^{-/-}*Bax*^{ΔCd23}*Tnfrsf13c*^{-/-} VEN^{surv} total B cells (**Fig 6F-H**) or IgM⁺CD21⁺ B cells (**Fig S4A-C**). By contrast, both populations showed modestly increased MCL-1 (**Fig 6F-H**). These data demonstrate that venetoclax treatment rapidly induces BAFFR signals *in vivo* that upregulate BCL-2 in VEN^{surv} B cells, while a BAFF-independent pathway increases MCL-1 protein levels.

To assess whether a similar mechanism impacts human B cells, we investigated patients receiving venetoclax for metastatic breast cancer (i.e. without a hematological malignancy) (**Fig 7A**) (patient characteristics in **Supplementary Table 2**)²⁰. Venetoclax treatment induced a striking reduction in circulating lymphocytes within 31 days (**Fig 7B**), consistent with the loss of circulating naïve B cells²⁰. This decrease was accompanied by increased plasma concentrations of BAFF and APRIL (another cytokine mediating differentiation and survival of B cells) (**Fig 7C**) and elevated BCL-2 expression in B cells (**Fig 7D-E**). The impact of venetoclax treatment on the B cell transcriptome was analyzed using single cell CITE-seq data from 5 paired samples²¹. KEGG pathway analysis of DE genes (48 down, 67 up; false discovery rate <0.05, log fold

328 change >0.5) showed 17 pathways enriched, including the BAFF-related NF- κ B signaling,
329 cytokine-cytokine receptor interactions, TNF signaling pathways and apoptosis (**Fig 7F**). These
330 findings support the concept that increased BAFF signaling drives BCL-2 upregulation in
331 VEN^{surv} B cells.

332

333 **Depletion of leukemia via other targeted therapies also elevates BCL-2 pro-survival**
334 **proteins in surviving cells**

335

336 The data thus far support the hypothesis that venetoclax-induced killing of leukemic cells reduces
337 competition among VEN^{surv} cells for cytokines, such as BAFF, resulting in elevated BCL-2
338 protein expression and reduced sensitivity to venetoclax (**Figure S5A**). One prediction of this
339 model is that any targeted therapy capable of sufficiently reducing leukemic burden would induce
340 a similar effect in surviving CLL cells. We assayed CLL cells from four patients treated with
341 anti-CD20 antibody (obinutuzumab) prior to venetoclax ramp-up during standard-of-care
342 venetoclax-obinutuzumab therapy (**Fig 7G**, patient characteristics in **Supplementary Table 1**).
343 Obinutuzumab monotherapy markedly reduced PB lymphocytes, with a further reduction in three
344 patients upon subsequent venetoclax treatment (**Fig 7H**). BCL-2 expression increased in CLL
345 cells surviving obinutuzumab monotherapy and increased further following venetoclax treatment
346 (**Fig 7I**). We then measured serum cytokines in these patients on day 1, 8, 22 (obinutuzumab run-
347 in) and 50 (post-venetoclax) (selected cytokines in **Figure S5B**). Within 8 days of obinutuzumab
348 treatment, BAFF concentration increased ~2-fold in all patients and remained high thereafter (**Fig**
349 **7J**). Together, these findings show that elevation of BCL-2 in cells surviving targeted therapies is
350 not a unique feature of targeting BCL-2. Instead, it appears related to the reduction in leukemic
351 cells and may reflect reduced cell competition and enhanced access to cytokines.

352

353 **Discussion**

354

355 Venetoclax and other targeted therapies have improved treatment outcomes for patients with CLL
356 and AML in certain settings; however, therapeutic resistance remains an important problem. It is
357 clear that long-term venetoclax treatment in patients can induce a variety of changes in the
358 interplay among BCL-2 family proteins that engender resistance^{11-14,17}. Yet, a detailed

359 understanding of how targeting BCL-2 over the short term impacts the apoptosis pathway within
360 the context of CLL heterogeneity is lacking. This timeframe is important because: (1) patients
361 with incomplete responses are more prone to relapse⁴ and (2) the prevailing environment
362 supporting leukemic cell survival likely influences the manifestation of resistance. Our findings
363 highlight the rapid elevation of BCL-2 in circulating CLL cells as a key feature in patients during
364 venetoclax dose-escalation. We find evidence that, *in vivo*, BAFF-BAFF-R signaling contributes
365 to BCL-2 upregulation, culminating in reduced sensitivity of CLL cells to treatment.
366 Collectively, these data support the notion that alleviation of competition for BAFFR-mediated
367 survival signals among CLL cells during treatment may limit therapeutic responses and support
368 resistance.

369
370 Our deep profiling of circulating CLL cells at the single-cell level revealed that they could be
371 further distinguished from normal B cells by lower expression of MCL-1 and pS6, consistent
372 with their low metabolic activity and turnover. Among CLL cells, a key distinction was the
373 expression of pro-survival proteins, demarcated by CXCR4 expression^{36,37}. CXCR4^{low} cells, that
374 had presumably recently emigrated from lymph nodes, were MCL-1^{high}BCL-2^{low}BCL-XL^{low} and
375 proliferative (pH3^{high}). By contrast, PB CXCR4^{high} CLL cells capable of migrating into lymph
376 nodes were MCL-1^{low}BCL-2^{high}BCL-XL^{high} and quiescent (pH3^{low}). These data reveal dynamic
377 regulation of the expression of pro-survival BCL-2 family proteins in CLL cells associated with
378 division.

379
380 All PB CLL clusters were diminished by venetoclax dose-escalation, concomitant with
381 enrichment for cells with higher expression of BCL-2 and, to a lesser extent, BCL-XL and MCL-
382 1. These data are consistent with a previous study of 5 CLL patients that found heightened
383 expression of BCL-2 in surviving cells after 2-week venetoclax treatment²⁹. We found that
384 VEN^{surv} CLL cells exhibited reduced *in vitro* sensitivity to venetoclax and that the increased
385 BCL-2 expression could only partially be explained by depletion of CLL cells with relatively
386 lower BCL-2. *In vivo* mouse models provided clear evidence for a cell extrinsic mediator,
387 transduced by BAFFR, that drove up pro-survival BCL-2 in VEN^{surv} B cells. Consistent with a
388 mechanism whereby increased BAFF availability drives BCL-2 upregulation upon extensive
389 CLL cell apoptosis, obinutuzumab treatment also led to elevated BCL-2 in a small patient cohort,

390 coincident with markedly increased circulating BAFF. This phenomenon was also observed
391 among two patients receiving venetoclax-ibrutinib after ibrutinib run-in, suggesting that
392 cytokine-mediated BCL2 upregulation may also contribute to resistance to dual BCL2-BTK
393 inhibition regimens, which are likely to be increasingly used in clinical practice^{38,39}. These data
394 support the notion that competition for BAFF constrains expression of pro-survival BCL-2.

395

396 We also detected modest increases in MCL-1 in surviving CLL cells, apparently driven by cell
397 extrinsic signals that were independent of B cell apoptosis. One potential explanation is that
398 MCL-1, which has a high rate of protein turnover, is stabilized in presence of venetoclax due to
399 the displacement of pro-apoptotic BIM from BCL-2 to MCL-1^{40,41}. Another possibility is the
400 existence of an alternative pathway that upregulates MCL-1 in presence of venetoclax, perhaps
401 via alteration of stromal cells⁴².

402

403 An implication of these data is that combining targeted therapies with agents that neutralize
404 relevant cytokines could be beneficial by restraining BCL-2 expression. More specifically, our
405 work builds the rationale to explore the combination of venetoclax with BAFF blockade. Indeed,
406 co-targeting of BAFF with ibrutinib provided a survival benefit in a murine CLL model⁴³ and the
407 *in vitro* killing of primary patient CLL cells treated with venetoclax, idelalisib or ibrutinib^{43,44}. A
408 clinical trial combining venetoclax with a BAFF neutralizing antibody for treating CLL patients
409 (NCT05069051) is currently in progress. Here we provide evidence for a potential *in vivo*
410 mechanism-of-action, involving the prevention of BCL-2 protein upregulation and enhanced
411 sensitivity to apoptosis. These findings raise the question of whether the elevated levels of
412 homeostatic cytokines observed during targeted therapy purely reflect reduced consumption or
413 involve microenvironmental responses to leukemic cell death.

414

415 More broadly, this cytokine/pro-survival protein axis may be relevant to other malignancies
416 where venetoclax has been tested, such as AML and myeloma, where malignant cells utilize
417 distinct homeostatic cytokines to support their survival. Together, our discoveries underscore the
418 potential of mitigating the bioavailability of pro-survival cytokines when designing more potent
419 treatment strategies in diverse types of hematologic cancers, which can induce deeper response
420 and minimize the risk of future relapse.

421 **References:**

- 422 1. Damle RN, Calissano C, Chiorazzi N. Chronic lymphocytic leukaemia: a disease of
423 activated monoclonal B cells. *Best Pract Res Clin Haematol.* 2010;23(1):33-45.
- 424 2. Svanberg R, Janum S, Patten PEM, Ramsay AG, Niemann CU. Targeting the tumor
425 microenvironment in chronic lymphocytic leukemia. *Haematologica.* 2021;106(9):2312-2324.
- 426 3. Kitada S, Andersen J, Akar S, et al. Expression of apoptosis-regulating proteins in chronic
427 lymphocytic leukemia: correlations with In vitro and In vivo chemoresponses. *Blood.*
428 1998;91(9):3379-3389.
- 429 4. Roberts AW, Davids MS, Pagel JM, et al. Targeting BCL2 with Venetoclax in Relapsed
430 Chronic Lymphocytic Leukemia. *N Engl J Med.* 2016;374(4):311-322.
- 431 5. Stilgenbauer S, Eichhorst B, Schetelig J, et al. Venetoclax in relapsed or refractory
432 chronic lymphocytic leukaemia with 17p deletion: a multicentre, open-label, phase 2 study.
433 *Lancet Oncol.* 2016;17(6):768-778.
- 434 6. Souers AJ, Leverson JD, Boghaert ER, et al. ABT-199, a potent and selective BCL-2
435 inhibitor, achieves antitumor activity while sparing platelets. *Nat Med.* 2013;19(2):202-208.
- 436 7. Fischer K, Al-Sawaf O, Bahlo J, et al. Venetoclax and Obinutuzumab in Patients with
437 CLL and Coexisting Conditions. *N Engl J Med.* 2019;380(23):2225-2236.
- 438 8. Seymour JF, Kipps TJ, Eichhorst B, et al. Venetoclax-Rituximab in Relapsed or
439 Refractory Chronic Lymphocytic Leukemia. *N Engl J Med.* 2018;378(12):1107-1120.
- 440 9. Seymour JF, Ma S, Brander DM, et al. Venetoclax plus rituximab in relapsed or
441 refractory chronic lymphocytic leukaemia: a phase 1b study. *Lancet Oncol.* 2017;18(2):230-240.
- 442 10. Anderson MA, Deng J, Seymour JF, et al. The BCL2 selective inhibitor venetoclax
443 induces rapid onset apoptosis of CLL cells in patients via a TP53-independent mechanism.
444 *Blood.* 2016;127(25):3215-3224.
- 445 11. Blomberg P, Anderson MA, Gong JN, et al. Acquisition of the Recurrent Gly101Val
446 Mutation in BCL2 Confers Resistance to Venetoclax in Patients with Progressive Chronic
447 Lymphocytic Leukemia. *Cancer Discov.* 2019;9(3):342-353.
- 448 12. Blomberg P, Thompson ER, Nguyen T, et al. Multiple BCL2 mutations cooccurring with
449 Gly101Val emerge in chronic lymphocytic leukemia progression on venetoclax. *Blood.*
450 2020;135(10):773-777.
- 451 13. Tausch E, Close W, Dolnik A, et al. Venetoclax resistance and acquired BCL2 mutations
452 in chronic lymphocytic leukemia. *Haematologica.* 2019;104(9):e434-e437.
- 453 14. Guieze R, Liu VM, Rosebrock D, et al. Mitochondrial Reprogramming Underlies
454 Resistance to BCL-2 Inhibition in Lymphoid Malignancies. *Cancer Cell.* 2019;36(4):369-384
455 e313.
- 456 15. Blomberg P, Lew TE, Dengler MA, et al. Clonal hematopoiesis, myeloid disorders and
457 BAX-mutated myelopoiesis in patients receiving venetoclax for CLL. *Blood.* 2022;139(8):1198-
458 1207.
- 459 16. Anderson MA, Tam C, Lew TE, et al. Clinicopathological features and outcomes of
460 progression of CLL on the BCL2 inhibitor venetoclax. *Blood.* 2017;129(25):3362-3370.
- 461 17. Thijssen R, Tian L, Anderson MA, et al. Single-cell multiomics reveal the scale of
462 multilayered adaptations enabling CLL relapse during venetoclax therapy. *Blood.*
463 2022;140(20):2127-2141.
- 464 18. Cochrane T, Enrico A, Gomez-Almaguer D, et al. Impact of venetoclax monotherapy on
465 the quality of life of patients with relapsed or refractory chronic lymphocytic leukemia: results
466 from the phase 3b VENICE II trial. *Leuk Lymphoma.* 2021:1-11.

467 19. Tam CS, Allan JN, Siddiqi T, et al. Fixed-duration ibrutinib plus venetoclax for first-line
468 treatment of CLL: primary analysis of the CAPTIVATE FD cohort. *Blood*. 2022;139(22):3278-
469 3289.

470 20. Lok SW, Whittle JR, Vaillant F, et al. A Phase Ib Dose-Escalation and Expansion Study
471 of the BCL2 Inhibitor Venetoclax Combined with Tamoxifen in ER and BCL2-Positive
472 Metastatic Breast Cancer. *Cancer Discov*. 2019;9(3):354-369.

473 21. Teh CE, Peng H, Luo M, et al. Venetoclax treatment in cancer patients has limited impact
474 on circulating T and NK cells. *Blood Adv*. 2022.

475 22. Teh CE, Gong JN, Segal D, et al. Deep profiling of apoptotic pathways with mass
476 cytometry identifies a synergistic drug combination for killing myeloma cells. *Cell Death Differ*.
477 2020.

478 23. Crowell HL, Chevrier S, Jacobs A, et al. An R-based reproducible and user-friendly
479 preprocessing pipeline for CyTOF data. *F1000Res*. 2020;9:1263.

480 24. Trussart M, Teh CE, Tan T, Leong L, Gray DH, Speed TP. Removing unwanted variation
481 with CytofRUV to integrate multiple CyTOF datasets. *Elife*. 2020;9.

482 25. Nowicka M, Krieg C, Crowell HL, et al. CyTOF workflow: differential discovery in high-
483 throughput high-dimensional cytometry datasets. *F1000Res*. 2017;6:748.

484 26. Durrieu F, Genevieve F, Arnoulet C, et al. Normal levels of peripheral CD19(+) CD5(+)
485 CLL-like cells: toward a defined threshold for CLL follow-up -- a GEIL-GOELAMS study.
486 *Cytometry B Clin Cytom*. 2011;80(6):346-353.

487 27. Calissano C, Damle RN, Marsilio S, et al. Intraclonal complexity in chronic lymphocytic
488 leukemia: fractions enriched in recently born/divided and older/quiescent cells. *Mol Med*.
489 2011;17(11-12):1374-1382.

490 28. Jayappa KD, Gordon VL, Morris CG, et al. Extrinsic interactions in the
491 microenvironment in vivo activate an antiapoptotic multidrug-resistant phenotype in CLL. *Blood*
492 *Adv*. 2021;5(17):3497-3510.

493 29. Haselager MV, Kielbassa K, Ter Burg J, et al. Changes in Bcl-2 members after ibrutinib
494 or venetoclax uncover functional hierarchy in determining resistance to venetoclax in CLL.
495 *Blood*. 2020;136(25):2918-2926.

496 30. Khaw SL, Merino D, Anderson MA, et al. Both leukaemic and normal peripheral B
497 lymphoid cells are highly sensitive to the selective pharmacological inhibition of prosurvival Bcl-
498 2 with ABT-199. *Leukemia*. 2014;28(6):1207-1215.

499 31. Certo M, Del Gaizo Moore V, Nishino M, et al. Mitochondria primed by death signals
500 determine cellular addiction to antiapoptotic BCL-2 family members. *Cancer Cell*.
501 2006;9(5):351-365.

502 32. ten Hacken E, Valentin R, Regis FFD, et al. Splicing modulation sensitizes chronic
503 lymphocytic leukemia cells to venetoclax by remodeling mitochondrial apoptotic dependencies.
504 *Jci Insight*. 2018;3(19).

505 33. Patel VK, Lamothe B, Ayres ML, et al. Pharmacodynamics and proteomic analysis of
506 acalabrutinib therapy: similarity of on-target effects to ibrutinib and rationale for combination
507 therapy. *Leukemia*. 2018;32(4):920-930.

508 34. Mackay F, Browning JL. BAFF: a fundamental survival factor for B cells. *Nat Rev*
509 *Immunol*. 2002;2(7):465-475.

510 35. Chappaz S, McArthur K, Kealy L, et al. Homeostatic apoptosis prevents competition-
511 induced atrophy in follicular B cells. *Cell Rep*. 2021;36(3):109430.

512 36. Smit LA, Hallaert DY, Spijker R, et al. Differential Noxa/Mcl-1 balance in peripheral
513 versus lymph node chronic lymphocytic leukemia cells correlates with survival capacity. *Blood*.
514 2007;109(4):1660-1668.

515 37. Vogler M, Butterworth M, Majid A, et al. Concurrent up-regulation of BCL-XL and
516 BCL2A1 induces approximately 1000-fold resistance to ABT-737 in chronic lymphocytic
517 leukemia. *Blood*. 2009;113(18):4403-4413.

518 38. Kater AP, Owen C, Moreno C, et al. Fixed-Duration Ibrutinib-Venetoclax in Patients with
519 Chronic Lymphocytic Leukemia and Comorbidities. *NEJM Evid*. 2022;1(7):EVIDoa2200006.

520 39. Munir T, Cairns DA, Bloor A, et al. Chronic Lymphocytic Leukemia Therapy Guided by
521 Measurable Residual Disease. *N Engl J Med*. 2024;390(4):326-337.

522 40. Conage-Pough JE, Boise LH. Phosphorylation alters Bim-mediated Mcl-1 stabilization
523 and priming. *FEBS J*. 2018;285(14):2626-2640.

524 41. Lee EF, Czabotar PE, Van Delft MF, et al. A novel BH3 ligand that selectively targets
525 Mcl-1 reveals that apoptosis can proceed without Mcl-1 degradation. *Journal of Cell Biology*.
526 2008;180(2):341-355.

527 42. Balakrishnan K, Burger JA, Fu M, Doifode T, Wierda WG, Gandhi V. Regulation of Mcl-
528 1 Expression in Context to Bone Marrow Stromal Microenvironment in Chronic Lymphocytic
529 Leukemia. *Neoplasia*. 2014;16(12):1036-1046.

530 43. McWilliams EM, Lucas CR, Chen T, et al. Anti-BAFF-R antibody VAY-736
531 demonstrates promising preclinical activity in CLL and enhances effectiveness of ibrutinib.
532 *Blood Adv*. 2019;3(3):447-460.

533 44. Sanchez-Lopez E, Ghia EM, Antonucci L, et al. NF-κB-p62-NRF2 survival signaling is
534 associated with high ROR1 expression in chronic lymphocytic leukemia. *Cell Death and*
535 *Differentiation*. 2020;27(7):2206-2216.

536

537 **Acknowledgements:**

538

539 The authors thank the patients who enrolled in the venetoclax clinical trials and for assistance
540 from Naomi Sprigg and Kelli Gray with the collection and curation of patient samples. In
541 addition, the authors thank Andrew Mitchell and Tian Zheng at the Materials Characterisation
542 and Fabrication Platform (MCFP) at the University of Melbourne for mass cytometry support.

543

544 This work was supported by grants and fellowships from the Australian National Health and
545 Medical Research Council (NHMRC) fellowships (1089072) (C.E.T.), (1090236 and 1158024)
546 (D.H.D.G.), (1078730 and 1175960) (G.J.L.), and (1043149 and 1156024) (D.C.S.H.);
547 Investigator grants (1177718) (M.A.A.), (1194779) (D.T.U), (1174902) (A.W.R.); a Fulbright
548 Australia-America Postdoctoral Fellowship (C.E.T.); Victorian Cancer Agency Fellowships
549 (MCRF20026) (C.E.T.); Postdoctoral Fellowship from the German Cancer Aid (A.P.); Cancer
550 Council of Victoria Grants-in-Aid (1146518 and 1102104) (D.H.D.G.) (D.T.U.); Perpetual
551 Impact Philanthropy funding (C.E.T.); Australian NHMRC grants (2002618) (C.E.T.), (1016647,
552 1113577, 1016701, 1113133, 1079560, 2013478 and 2011139) (A.W.R. and D.C.S.H.),
553 (1113133 and 1153049) (G.J.L.), (2013478) (D.C.S.H. and R.T.); The Medical Advances
554 Without Animals Trust (MAWA), the Leukemia and Lymphoma Society, US, Specialized
555 Center of Research grant (7015-18) (A.W.R., A.S., and D.C.S.H.); a Tour de Cure Mid-Career
556 Research Grant (RSP-070-FY2023) (D.T.U.); National Breast Cancer Foundation Australia
557 (IIRS-19-004); Breast Cancer Research Foundation (BCRF-20-182) (G.J.L.); Rae Foundation
558 (V.L.B.); and Investigator Initiated Study support from AbbVie and Genentech (Roche) for the
559 breast cancer study (#ACTRN12615000702516) (G.J.L).

560

561 This work was performed in part at the Materials Characterization and Fabrication Platform at the
562 University of Melbourne and the Victorian Node of the Australian National Fabrication Facility
563 with support from the Victorian Comprehensive Cancer Centre. This work was also supported by
564 the Australian Cancer Research Foundation and made possible through Victorian State
565 Government Operational Infrastructure Support and Australian Government NHMRC
566 Independent Research Institutes Infrastructure Support Scheme.

567

568 **Conflict of interest disclosure**

569 All employees of the Walter and Eliza Hall Institute, which receives milestone and royalty
570 payments related to venetoclax. M.A.A. and T.E.L have received honoraria from AbbVie.
571 D.H.D.G. has received research funding from Servier. A.W.R. has received research funding
572 from AbbVie and is an inventor on a patent related to venetoclax dose ramp-up. C.S.T. received
573 honoraria from Jannssen, AbbVie, Beigene and Astrazeneca. The remaining authors declare no
574 competing financial interests.

575

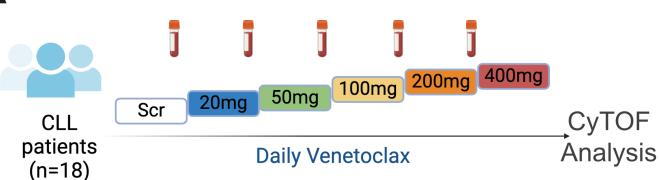
576 **Figure Legends**

577

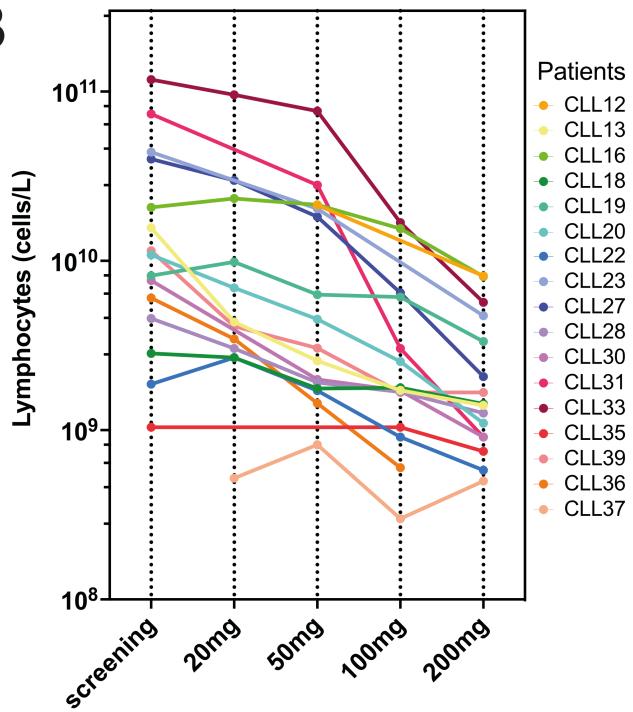
578 **Figure 1. Mass cytometric analysis resolves CLL heterogeneity.** (A) Schematic representation
579 of the experimental strategy, with PB samples from 18 CLL patients collected at screening and
580 during weekly venetoclax dose escalation. (B) Lymphocyte counts (cells/L) during venetoclax
581 dose escalation in each patient. (C) UMAP projection of PB cells (subsampling of 2000 cells per
582 each sample) from CLL patients (n=18 VEN patients plus n=2 VEN+IBR patients, 6 timepoints)
583 and healthy donors coloured by cluster: B cells (C1), CLL cells (C2-5), T cells (C6-C12), NK
584 cells (C14) and myeloid cells (C15:C30). (D) UMAP plots colored by median cell surface protein
585 expression of indicated markers used to identify major immune cell populations. (E) UMAP plots
586 of a patient with CLL (CLL27) and healthy donor with B/CLL clusters circled.

587 **Figure 2. Intra- and inter-patient heterogeneity of CLL cell sub-populations** **(A)** UMAP of
588 re-clustered healthy B/CLL cells (from **Fig 1C**) from patients and healthy controls. **(B)** UMAP
589 plots colored by median protein expression of CD20, pS6 and MCL-1 distinguishing healthy B
590 cells ($CD20^{\text{high}}$ $pS6^{\text{high}}$ $MCL-1^{\text{low}}$) and CLL cells ($CD20^{\text{low}}$ $pS6^{\text{low}}$ $MCL-1^{\text{high}}$). **(C)** UMAP plots
591 colored by median protein expression of IgM, distinguishing IgM^{high} and IgM^{low} B cells. **(D)**
592 UMAP plots colored by median amounts of pRB, TACI, BAX and pH2AX distinguishing two
593 minor sub-populations of CLL cells: $pRB^{\text{high}}TACI^{\text{high}}BAX^{\text{high}}$ (Cluster 2.9) and $pH2AX^{\text{high}}$
594 (Cluster 2.10). **(E)** UMAP plots colored by median protein expression of CD5, CXCR4 and
595 BCL-2, distinguishing two main sub-populations of CLL cells: $CD5^{\text{high}}CXCR4^{\text{low}}BCL-2^{\text{high}}$
596 (Cluster 2.6) and $CD5^{\text{low}}CXCR4^{\text{high}}BCL-2^{\text{v. high}}$ (Cluster 2.7). **(F)** Representative Flowjo plot of
597 CXCR4 vs CD5 expression showing $CD5^{\text{high}}CXCR4^{\text{low}}$ and $CD5^{\text{low}}CXCR4^{\text{high}}$ CLL cell
598 populations from patient CLL20. **(G)** Violin plots showing mean intensities of BCL-2, BCL-XL,
599 MCL-1 and pH3 of old and new CLL cells. **(H)** Frequency of each cluster in PB of patients prior
600 to venetoclax treatment. Student's paired *t* test was used, *, **, ***, and **** denotes $P<0.05$,
601 $P<0.01$, $P<0.005$, $P<0.001$, respectively, n.s. denotes not significant.

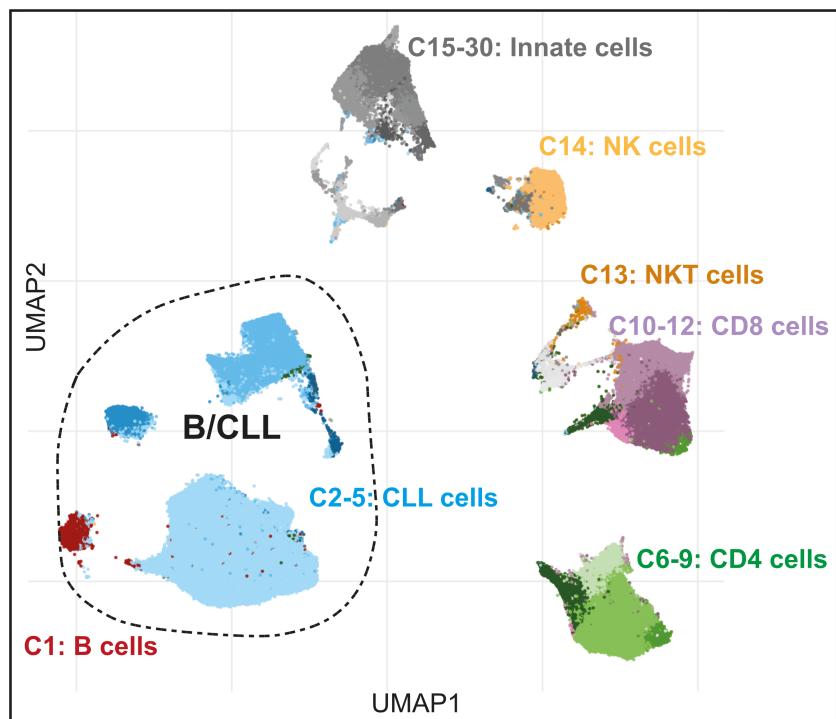
602 **Figure 3. Venetoclax dose-dependent increase in BCL-2 protein detected in CLL cells. (A)**
603 Mean proportions of different CLL clusters from all patients in the cohort at indicated timepoints
604 during treatment. **(B)** Graph of the results of linear discriminant analysis (LDA) of data from
605 CLL clusters from patient CLL19 across increasing doses of venetoclax. The magnitude of the
606 projection of each marker direction onto the plane of the first two LDA components is
607 represented by blue dots. This has a maximum value of 1 if the marker direction lies in the planes
608 of the first two LDA components. To reveal the markers driving the changes, the markers are
609 ordered on the x -axis by the magnitude of this projection. The green shaded area represents the
610 distribution of ranking curves of randomly oriented planes, see methods. **(C)** Summary of
611 markers ranked by contributions to the first two LDA components in all patients for venetoclax
612 dose escalation (seen in (B) for patient CLL19). The higher the ranking of a marker, the more it is
613 affected by venetoclax dose changes, with 20 being the highest ranked marker and 0 the lowest.
614 **(D)** Representative histograms showing mean BCL-2 protein expression of curated pairs of CLL
615 patients at screening and after 200 mg VEN treatment in patient CLL13, CLL19 and CLL22
616 measured by flow cytometry. The distribution of BCL-2 levels in each sample is represented in
617 the box and whisker plots in the lower panel. Box represents the 25th 50th and 75th percentiles of
618 the population, with x marking the mean and whiskers representing the minimum and maximum
619 values (excluding outliers). **(E)** Fold change of BCL-2 MCL-1 and BCL-XL protein expression
620 in samples at post-200mg normalized to screening in individual patients. P values were calculated
621 using raw data and student's two-tailed paired t test. **(F)** Representative results of venetoclax
622 sensitivity *in vitro* assay in CLL cells from patient CLL19. **(G)** Summary of LC50 values of CLL
623 cells at screening and post-200 mg venetoclax treatment. **(H)** Representative results of venetoclax
624 sensitivity *in vitro* assay in non-transformed CD4⁺ T cells from patient CLL19. **(I)** Summary of
625 LC50 values of CD4⁺ T cells at screening and post-200 mg venetoclax treatment. For box and
626 whisker plots in D, outliers were omitted from the plot with an outlier factor of 1.5. Outliers
627 represented less than 2.5% of total population in all samples, For G, I, Student's two-tailed paired
628 t test was used (patients with missing values were excluded from analysis). For E, G and I, *, **,
629 ***, and **** denotes $P<0.05$, $P<0.01$, $P<0.005$, $P<0.001$, respectively, n.s. denotes not
630 significant.

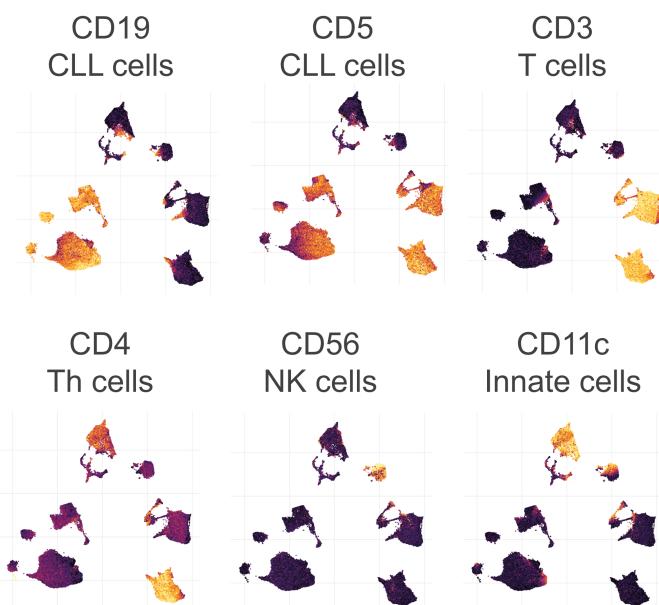

631 **Figure 4. Preferential killing of CLL cells with relatively low BCL-2 levels partially**
632 **accounts for the increase of BCL-2 in VEN^{surv} cells. (A)** Schematic representation of the
633 hypothesis: CLL cells express a range of BCL-2 amounts, from BCL-2⁺ to BCL-2⁺⁺⁺⁺. CLL cells
634 with relatively low level of BCL-2 (BCL-2⁺) are sensitive to venetoclax treatment, enriching for
635 CLL cells with higher BCL-2 levels (BCL-2⁺⁺⁺⁺) after venetoclax monotherapy. **(B)** Distribution
636 of BCL-2 in CLL cells before (Scr) and one week after 200 mg dose of venetoclax with a dashed
637 line indicating the threshold distinguishing the top 20% of BCL-2 expressors (BCL-2^{top20}) and
638 80% lower BCL-2 expressors (BCL-2^{lower80}) at screening. This threshold was then applied to each
639 paired post-200 mg profile. **(C)** Estimated concentration of BCL-2^{top20} and BCL-2^{lower80} in CLL
640 cells in the blood at screening and post-200 mg venetoclax treatment based on the BCL-
641 2^{top20}/BCL-2^{lower80} threshold assigned in the screening sample. For bar graphs, mean \pm SEM is
642 shown, ratio paired *t* test was used, *, **, ***, and **** denotes P<0.05, P<0.01, P<0.005,
643 P<0.001, respectively.

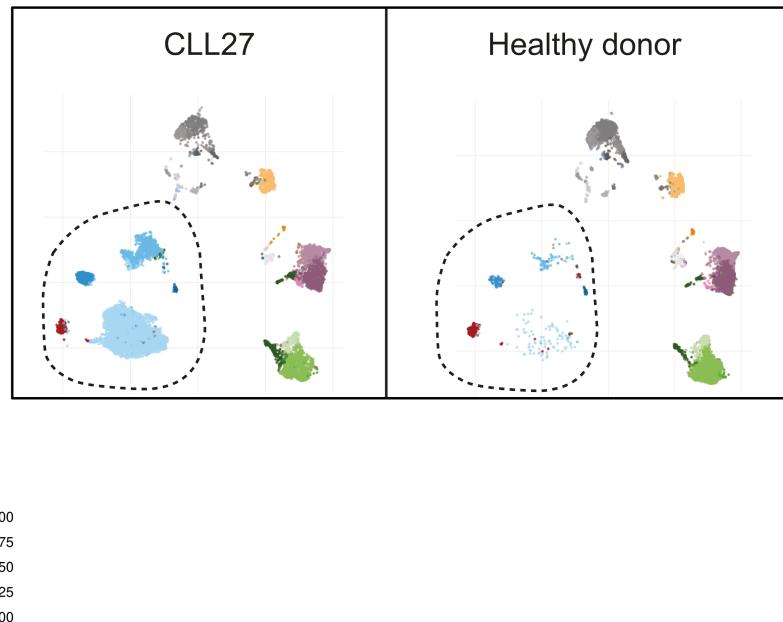
644 **Figure 5. *In vivo* modelling demonstrates the elevation of BCL-2 in VEN^{surv} cells in mice.**
645 (A) Schematic representation of experimental strategy. Wildtype (wt), *Bak*^{-/-}*Bax*^{Δcd23} and *vav-*
646 *huBcl-2* mice were treated daily with 100 mg/kg body weight venetoclax or vehicle (a mixture of
647 60% Phosal 50 PG, 30% PEG 400 and 10% EtOH) for one week. (B) Absolute numbers of
648 splenic B cells before and after venetoclax treatment in wt, *Bak*^{-/-}*Bax*^{Δcd23} and *vav-huBcl-2* mice.
649 (C) Histograms of BCL-2, MCL-1 and BCL-XL protein in CD19⁺CD21⁺IgM⁺ B cells from wt,
650 *Bak*^{-/-}*Bax*^{Δcd23} or *vav-huBcl-2* mice measured by flow cytometry after vehicle or venetoclax
651 treatment. (D) Geometric mean (±SEM) of mBCL-2, huBCL-2, MCL-1 and BCL-XL protein
652 levels in vehicle and venetoclax treated mice of the indicated genotypes. (E) Schematic
653 representation of *Eμ-TCL-1* transgenic mice modelling of CLL cell response to venetoclax.
654 Cohorts of C57BL/6 mice received 5×10^5 *Eμ-TCL-1* transgenic CLL cells from the same donor,
655 and once reaching 80% leukemic burden in blood, were treated with vehicle or venetoclax daily
656 for 7 days. (F) Total splenic cell numbers and the proportions of Ki67⁺ *Eμ-TCL-1* transgenic CLL
657 cells and wt B cells before and after treatment. (G) Histograms of BCL-2, MCL-1 and BCL-XL
658 protein in CLL cells recovered from the spleen of mice treated with vehicle or venetoclax. (H)
659 Quantification of BCL-2, MCL-1 and BCL-XL protein expression in CLL cells recovered from
660 the spleen of mice treated with vehicle or venetoclax. Data from (B-D) are representative of three
661 independent experiments with n=2-5 mice per group. Data from (F-H) are representative of three
662 independent experiments with n=5-6 mice per group. For all bar graphs, mean±SEM are shown
663 and each symbol represents an individual mouse; Student's two-tailed *t* test was used, *, **, ***
664 and **** denotes P<0.05, P<0.01, P<0.005, P<0.001, respectively, n.s. denotes not significant.

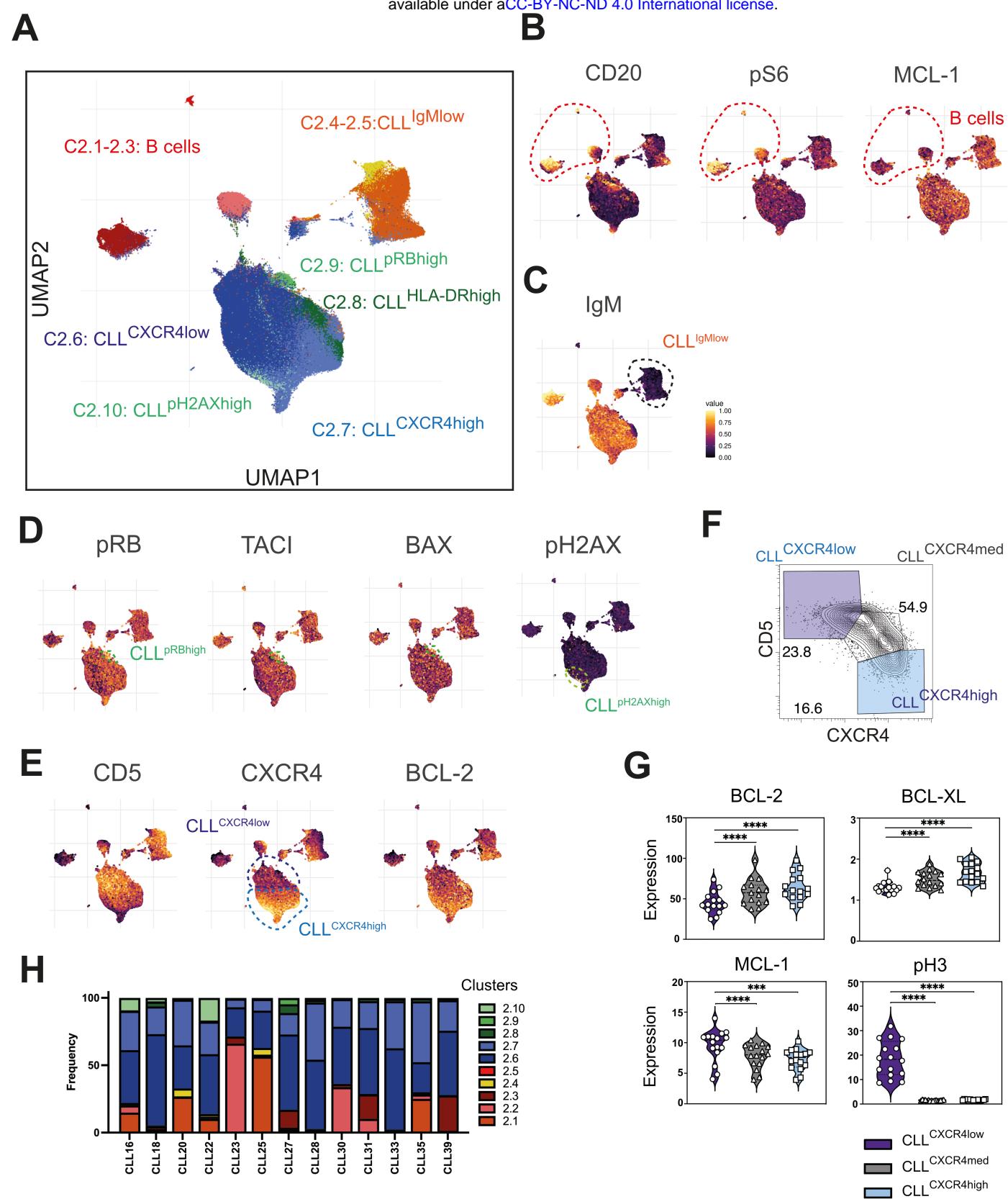

665 **Figure 6. BAFF controls the homeostatic survival response to venetoclax treatment in B**
666 **cells. (A)** Schematic representation of hematopoietic chimeras reconstituted with a mixture of
667 CD45.2⁺ *Bak*^{-/-}*Bax*^{Δcd23} and CD45.1⁺ wt bone marrow progenitors, followed by venetoclax
668 treatment. **(B)** Total numbers of splenic B cells of *Bak*^{-/-}*Bax*^{Δcd23} or wt origin recovered from
669 vehicle and venetoclax treated chimeras. **(C)** Histograms of BCL-2, MCL-1 and BCL-XL
670 staining gated on splenic B cells of wt or *Bak*^{-/-}*Bax*^{Δcd23} origin recovered from chimeric recipient
671 mice treated with vehicle or venetoclax. **(D)** Geometric mean of BCL-2, MCL-1 and BCL-XL
672 protein expression levels in splenic B cells of *Bak*^{-/-}*Bax*^{Δcd23} or wt origin recovered from vehicle
673 or venetoclax treated chimeric recipient mice. **(E)** Schematic representation of experimental
674 design. Purified CD45.2⁺ C57BL/6 B cells from *Bak*^{-/-}*Bax*^{Δcd23} or *Tnfrsf13c*^{-/-}*Bak*^{-/-}*Bax*^{Δcd23} mice
675 were transferred into venetoclax treated CD45.1⁺ C57BL/6 wt recipient mice, which were then
676 maintained on daily venetoclax treatment before analysis. **(F)** Histograms of BCL-2, MCL-1 and
677 BCL-XL protein expression in donor CD45.2⁺ B cells from unmanipulated control mice with the
678 same genotype or from venetoclax treated recipients. **(G)** Geometric mean of BCL-2, MCL-1 and
679 BCL-XL protein expression in *Bak*^{-/-}*Bax*^{Δcd23} and *Tnfrsf13c*^{-/-}*Bak*^{-/-}*Bax*^{Δcd23} B cells from control
680 (untreated) recipient mice or from venetoclax treated recipient mice as indicated in (E), measured
681 by flow cytometry. **(H)** Fold change of BCL-2, MCL-1 and BCL-XL protein levels in *Bak*^{-/-}
682 *Bax*^{Δcd23} and *Tnfrsf13c*^{-/-}*Bak*^{-/-}*Bax*^{Δcd23} B cells in venetoclax treated mice. Data are expressed
683 relative to the MFI in B cells recovered from unmanipulated control mice of the same genotype.
684 Data from (B-H) are representative of three independent experiments with n=3-6 mice per group.
685 For all bar graphs, mean±SEM are shown and each symbol represents an individual mouse;
686 Student's two-tailed *t* test was used, *, **, *** and **** denotes P<0.05, P<0.01, P<0.005,
687 P<0.001, respectively, n.s. denotes not significant.

688 **Figure 7. Increase in serum BAFF levels correlates with BCL-2 up-regulation in both**
689 **healthy and malignant B cells in patients undergoing targeted therapies.** (A) Schematic
690 representation of study design. PB samples from 4 breast cancer patients were collected at
691 screening and during venetoclax treatment. (all patients receiving 800 mg venetoclax) (B)
692 Change of lymphocytes (cells/uL) during venetoclax treatment in each patient after 31 days of
693 treatment. (C) Concentrations of BAFF and APRIL (pg/ml) detected in the serum samples of the
694 breast cancer patients using Luminex assay at screening and 15 days after venetoclax treatment.
695 (D) Histograms of BCL-2 protein expression by flow cytometry in B cells in patients before and
696 after venetoclax treatment (BC_01013 after 201.7 weeks, BC_01014 after 61.1 weeks,
697 BC_01026 after 67.4 weeks, BC_01029 after 112.1 weeks). (E) Geometric mean of BCL-2 levels
698 of B cells in four patients. (F) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichments
699 analysis of DE genes in single cell CITE-seq data from 5 paired samples under long-term
700 venetoclax treatment. (G) Schematic representation of study design. PB samples from 3 CLL
701 patients were collected at screening and during obinutuzumab and venetoclax dose escalation.
702 Patients received intravenous infusion of obinutuzumab on days 1/2 (first 1000mg dose divided
703 over two days 100/900 mg), 8 (1000 mg), 15 (1000 mg) and day 29 (1000 mg). Venetoclax was
704 introduced at 20 mg daily on day 22 and increased weekly (20, 50, 100, 200, 400 mg). (H)
705 Change of lymphocytes concentrations (cells/L) during obinutuzumab and venetoclax treatment
706 in each patient. (I) Histograms (top panel) and MFI (lower panel) of BCL-2 protein expression in
707 CLL cells in each patient at the indicated timepoints. (J) Concentration (pg/mL) of BAFF
708 detected in the serum samples of the CLL patients using Luminex assay.

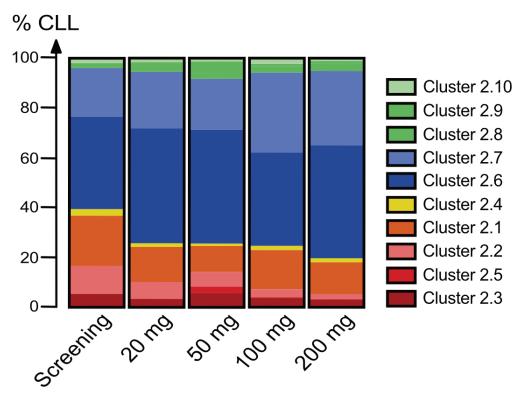

A


B

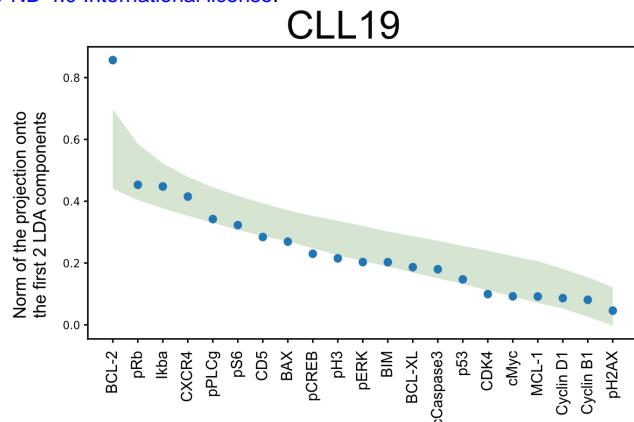

C

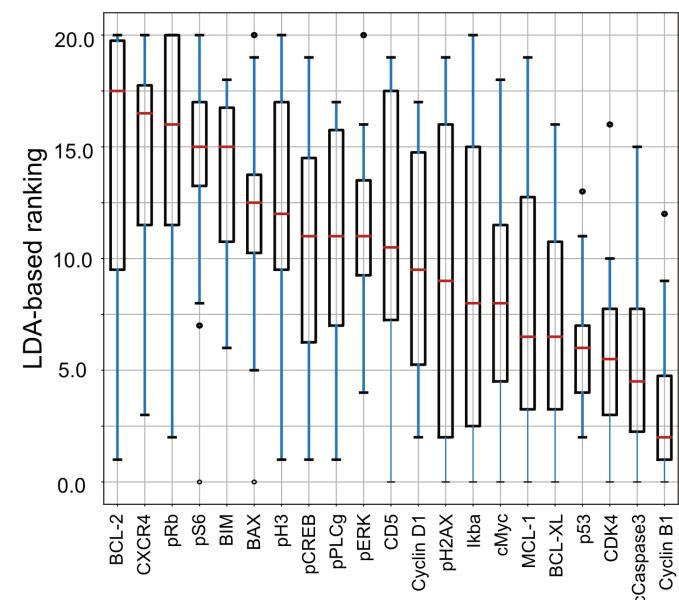


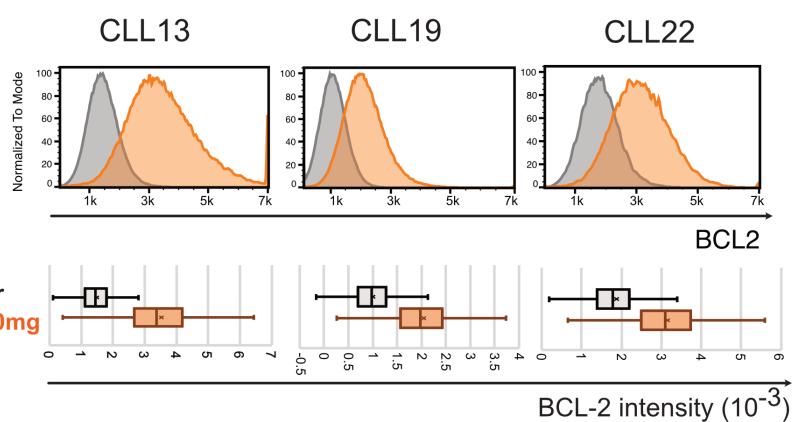
D

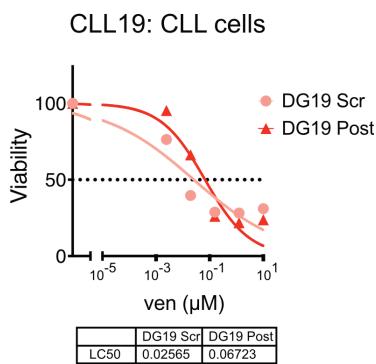


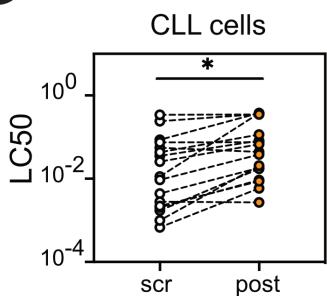
E

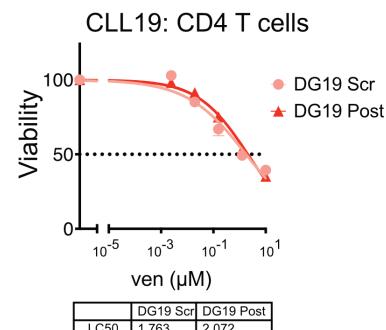


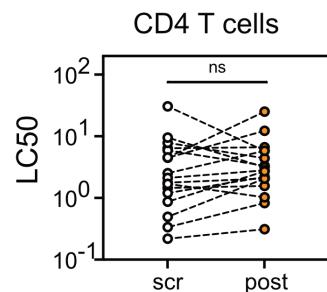

A

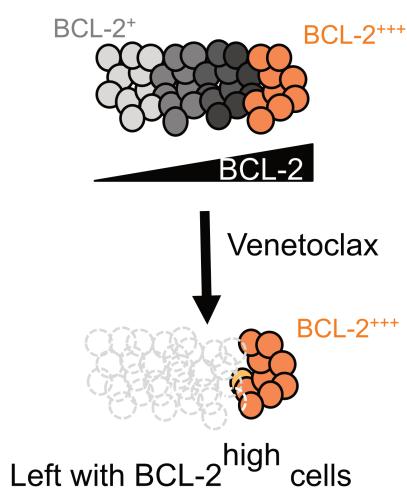

B

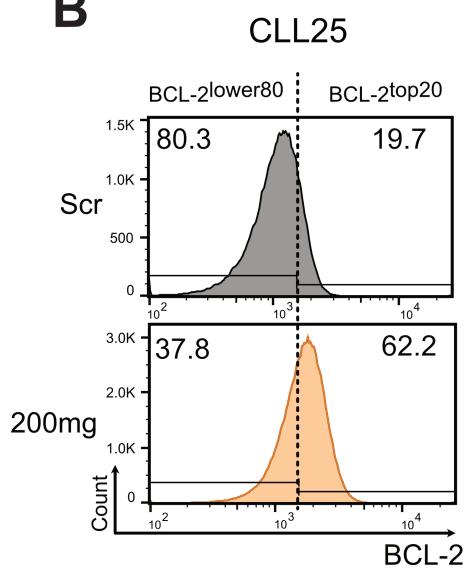

C

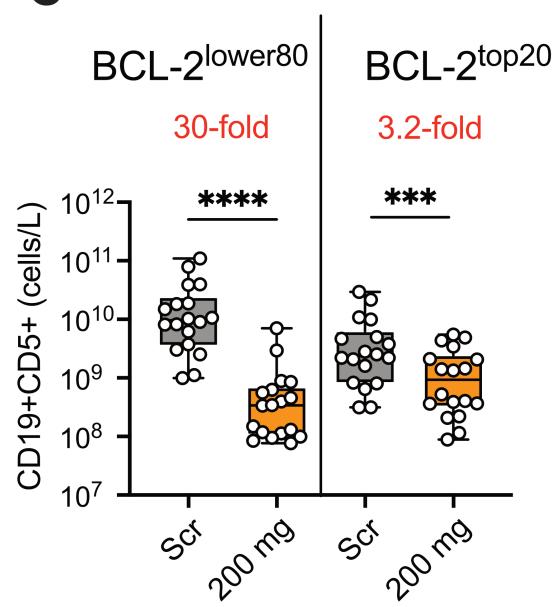

D

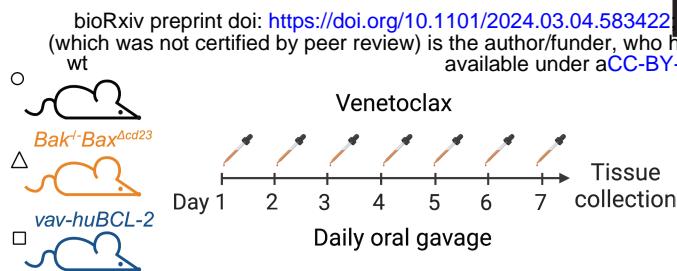
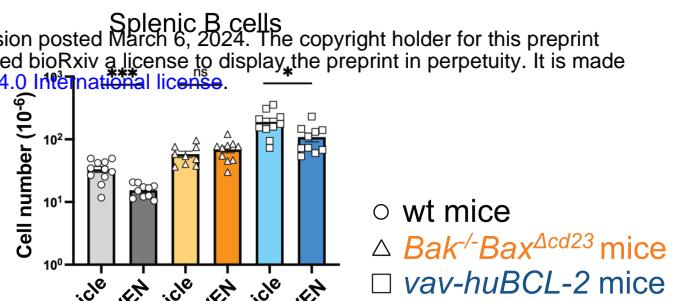
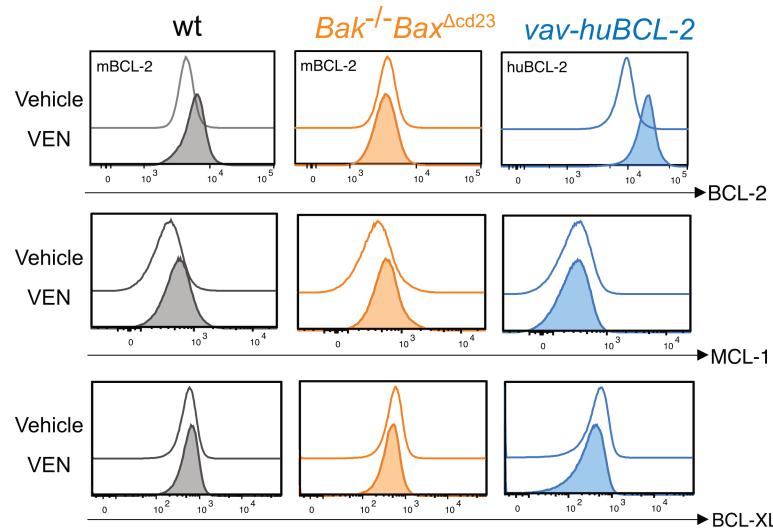
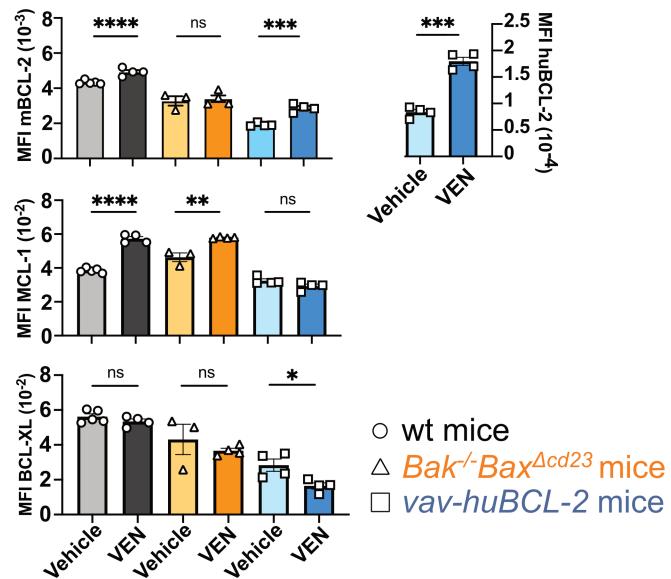

F

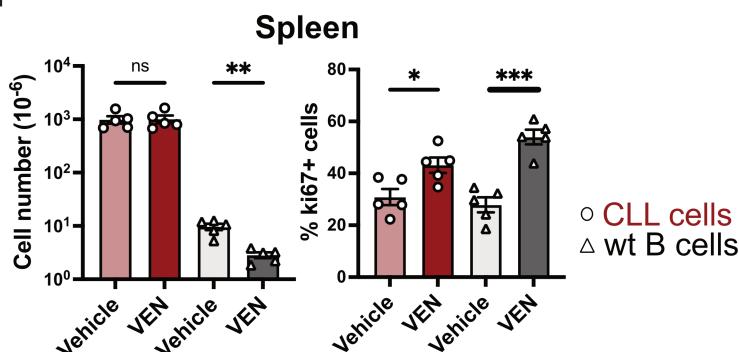
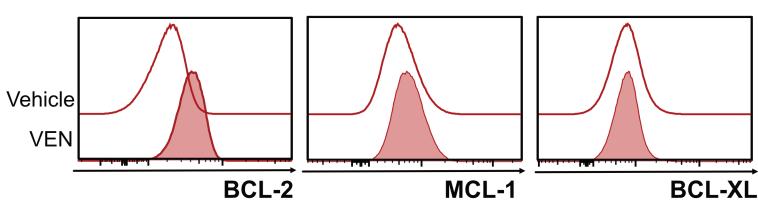
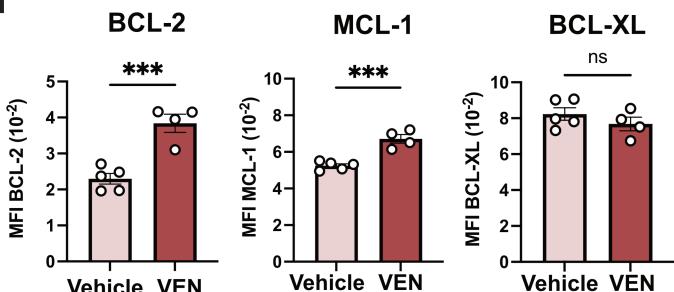

G


H

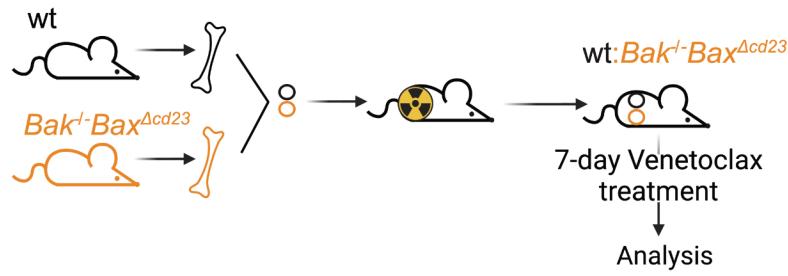
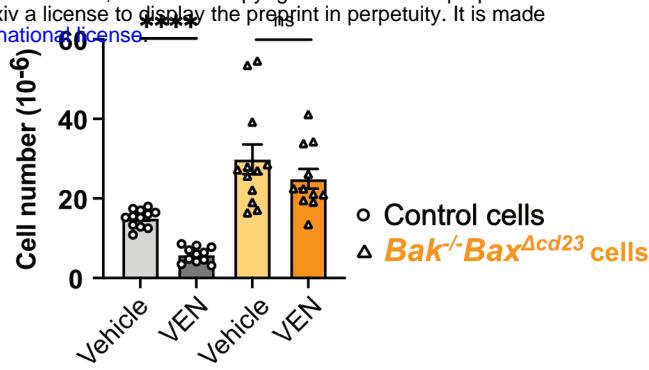
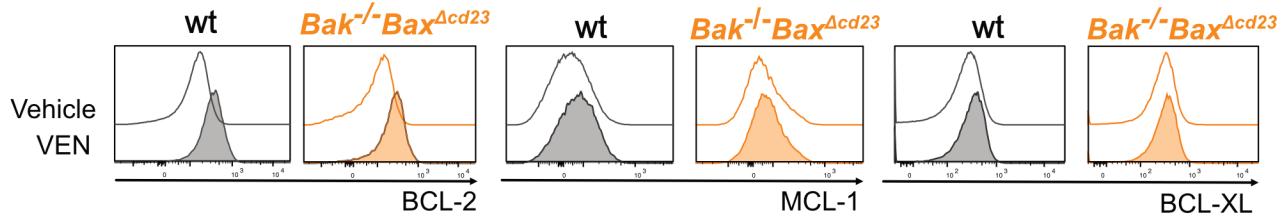
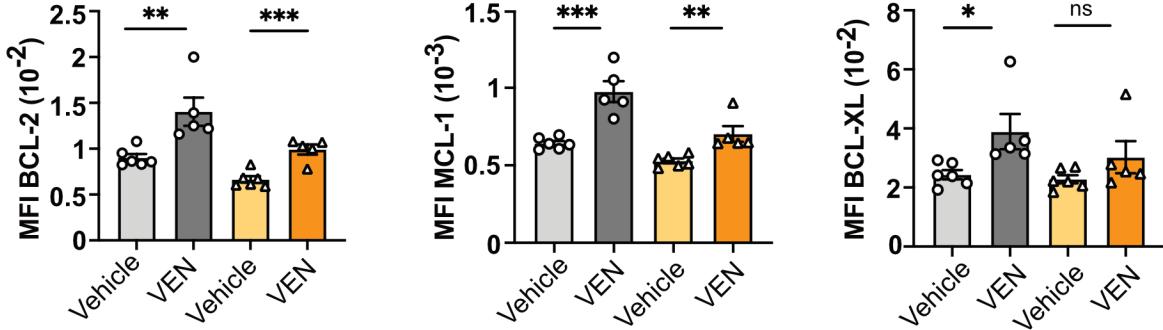
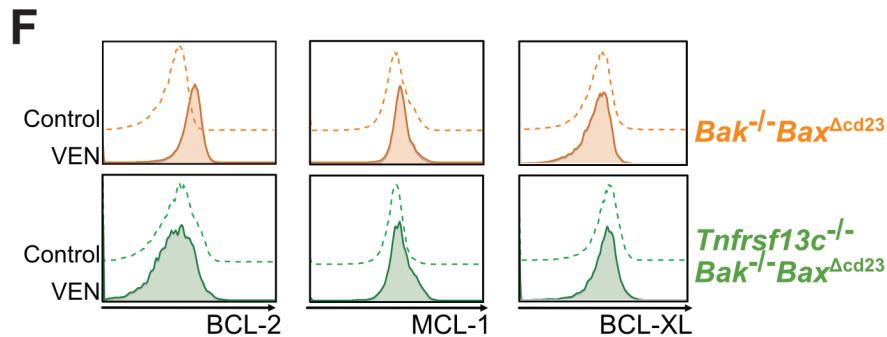
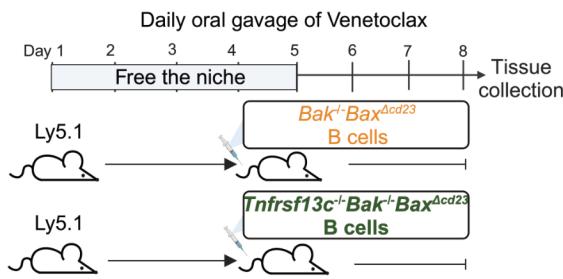
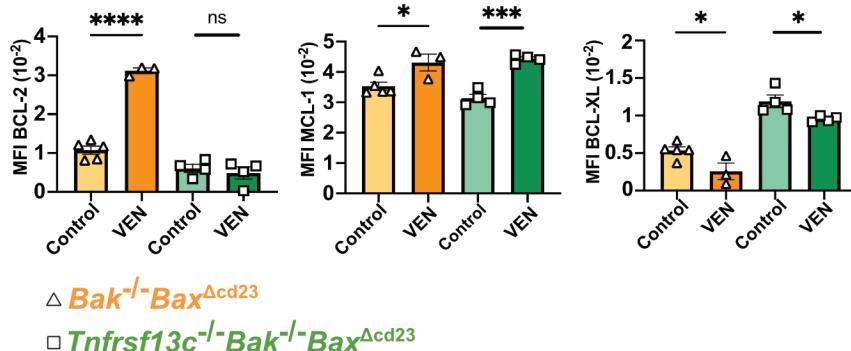
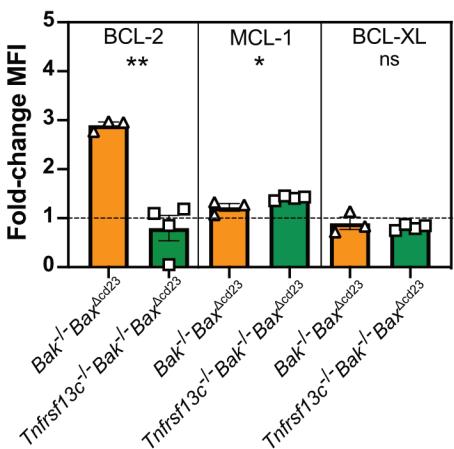

I

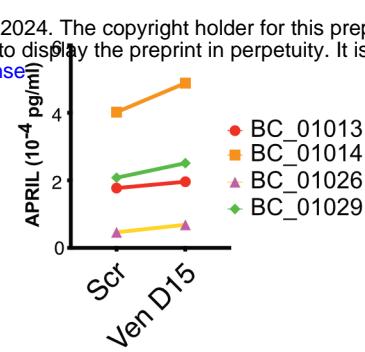
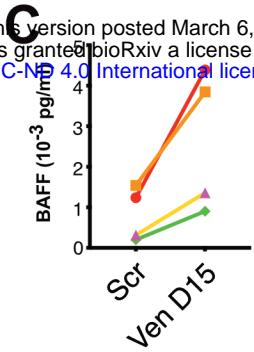
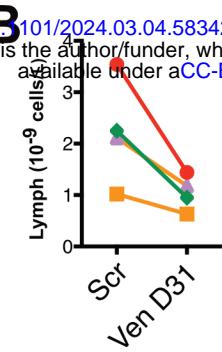
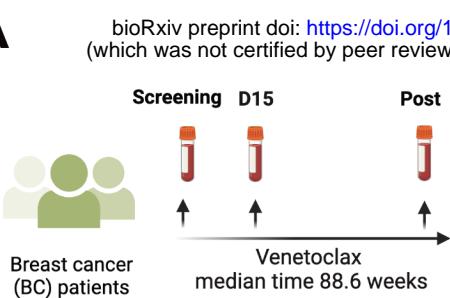

A

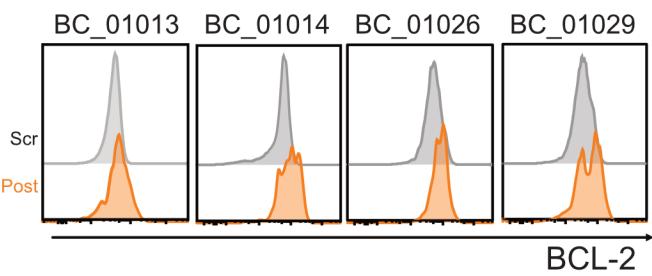




B

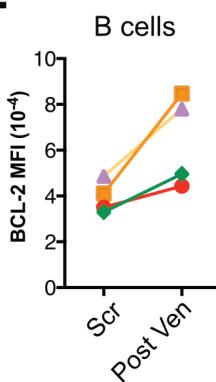








C

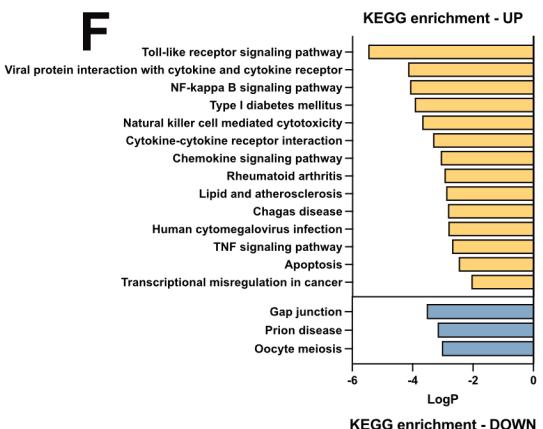




A**B****C****D****E****F****G****Splenic CLL cells****H**

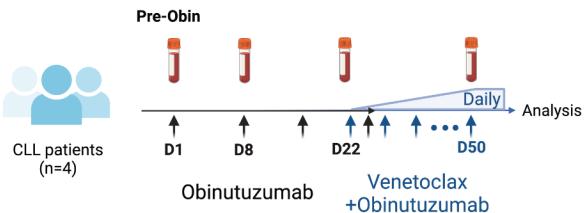
A

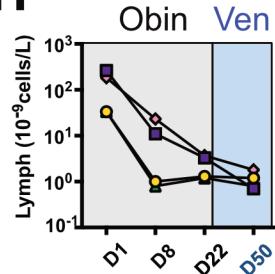

bioRxiv preprint doi: <https://doi.org/10.1101/2024.03.04.583422>; this version posted March 6, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

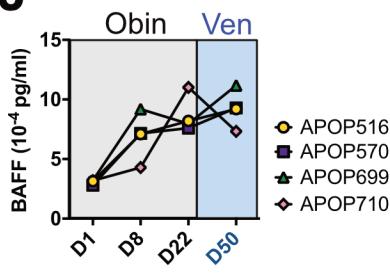
B**C****D****E****G****H**


A


Gated on B cells

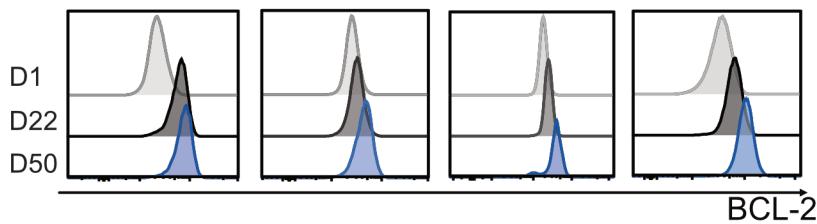

E


F


G

H

J

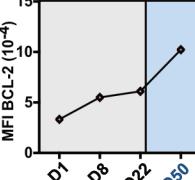
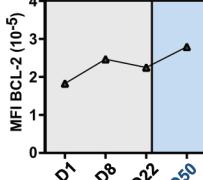
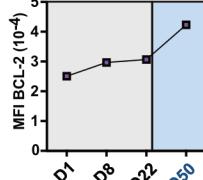
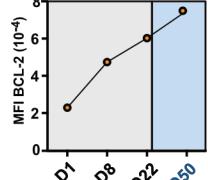


APOP516

APOP570

APOP699

APOP710

Obin Ven

Obin Ven

Obin Ven

Obin Ven

