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The intricate and dynamic interactions between the host im-1

mune system and its microbiome constituents undergo dynamic2

shifts in response to perturbations to the intestinal tissue envi-3

ronment. Our ability to study these events on the systems level4

is significantly limited by in situ approaches capable of gener-5

ating simultaneous insights from both host and microbial com-6

munities. Here, we introduce Microbiome Cartography (Mi-7

croCart), a framework for simultaneous in situ probing of host8

features and its microbiome across multiple spatial modalities.9

We demonstrate MicroCart by comprehensively investigating10

the alterations in both gut host and microbiome components11

in a murine model of colitis by coupling MicroCart with spa-12

tial proteomics, transcriptomics, and glycomics platforms. Our13

findings reveal a global but systematic transformation in tis-14

sue immune responses, encompassing tissue-level remodeling15

in response to host immune and epithelial cell state perturba-16

tions, and bacterial population shifts, localized inflammatory17

responses, and metabolic process alterations during colitis. Mi-18

croCart enables a deep investigation of the intricate interplay19

between the host tissue and its microbiome with spatial multi-20

omics.21
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Introduction25

The intestinal environment represents a highly intricate26

ecosystem characterized by diverse and dynamic interac-27

tions, including the mucosal layer and its plethora of bacterial28

components (1), and the immune and epithelial cell popula-29

tions within its adjacent tissue (2). The balanced interplay30

between these microbiome components, epithelial cells, and31

immune players is crucial for maintaining immune home-32

ostasis (3). The remarkable ability of microbial species to33

modulate and educate the host immune system starts early34

during infancy (4). This is achieved via the delivery of anti-35

gens to gut resident T cells and other immune populations,36

which in turn promotes immune tolerance and plays a vital37

role in immune homeostasis in humans (5). Recent stud-38

ies have also unveiled the immune-modulatory effects of the39

microbiome in tumor patients, wherein specific microbiome-40

related peptides can cross-activate tumor-infiltrating lympho-41

cytes, thereby facilitating more effective patient treatments42

(6, 7). When this delicate balance of the host-microbiome43

homeostasis is disrupted, particularly in the presence of vari-44

ous external perturbations or disease states, a myriad of other45

interactions emerge in response to physical barrier breaches.46

For instance, in inflammatory bowel disease (IBD), func-47

tional changes are observed in epithelial, immune, and bacte-48

rial cells, leading to a compromised segregation among these49

elements, and eliciting acute immune responses in the intesti-50

nal tissue (8). Colorectal cancer represents another promi-51

nent example wherein altered interactions within the intes-52

tine during disease states contribute to the deterioration of the53

epithelial cell layer and microbiome dysbiosis (9). This, in54

turn, results in increased delivery of bacterial toxins to the tis-55

sue, causing DNA damage and exacerbating tumor progres-56

sion. Overall, understanding the intricate interplay between57

the microbiome, epithelium, and immune cells within the in-58

testinal tissue microenvironment is of utmost importance in59

comprehending the maintenance of a healthy system as well60

as the pathological mechanisms underlying various diseases.61

Current approaches for investigating these interactions,62

whether in a homeostatic or diseased state, present signif-63

icant challenges. Traditional tools, such as 16S rRNA se-64

quencing or metagenomic sequencing for analyzing the mi-65

crobiome, and flow cytometry or single-cell RNA sequencing66

(scRNA-seq) for studying host cells, have provided valuable67

insights into different populations in various settings. Al-68

though these methods offer in-depth information, they often69

lack crucial spatial context, missing the unique opportunity70
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to study interaction events in their native environment. For-71

tunately, a growing number of methods have emerged in re-72

cent years, aiming to decode host cell populations and func-73

tions with spatial information. These approaches include74

multiplexed imaging techniques (10–12) and spatially re-75

solved sequencing methods (13–15). These innovative tech-76

niques enable the examination of host cell interactions within77

their specific locations. Similarly, advances have been made78

in understanding the spatial organization of the microbiome79

within its native context. Initially, methods were developed80

to target specific bacterial groups (16), but more recent ap-81

proaches have enabled the investigation of hundreds of bac-82

terial species (17, 18) using cyclic imaging or modified se-83

quencing assays. Multiplexing 16S-specific probes with hu-84

man poly-A capture in spatially resolved sequencing “spots”85

has also been a significant advancement in spatially resolv-86

ing host-bacterial interactions in situ (19, 20). These ap-87

proaches have greatly facilitated our understanding of the88

intricate interaction between host cells and microbial com-89

ponents from a spatial perspective. Additional spatial multi-90

omics approaches are required for a more comprehensive un-91

derstanding of host-microbial interactions, including 1) bac-92

terial identity, to study microbiome spatial patterns; 2) pro-93

tein expression, particularly for defining immune-epithelial94

communities and related niches; 3) transcriptomic, to elu-95

cidate the functional shift in presence of spatial change in96

microbiome, immune, and epithelial communities; 4) gly-97

comics, to investigate the metabolic change in response to98

functional alterations.99

To address this technological gap, we introduce Microbiome100

Cartograph (MicroCart), an integrative framework designed101

to bridge the divide between host-microbiome interactions102

and spatial analysis. MicroCart consists of an optimized103

16S probe design and validation approach for highly spe-104

cific targeting of bacterial taxa, while also ensuring the105

co-preservation of diverse biological targets within the tis-106

sue for downstream investigations using multiplex imag-107

ing platforms (Multiplexed Ion Beam Imaging; MIBI), spa-108

tial sequencing modalities (Nanostring GeoMx Digital Spa-109

tial Profiling; DSP), and mass spectrometry imaging tech-110

niques (MALDI-IMS imaging for N-glycans), thus enabling111

comprehensive and multi-omics spatial dissection of host-112

microbiome interactions across any biological model.113

Results114

Overall study design for MicroCart. The MicroCart115

framework allows a detailed investigation into tissues of in-116

terest that contain intact microbial components, such as in-117

testine tissues from a mouse model of colitis as performed in118

this study (Fig. 1A): In brief, we induced colitis in mice by119

introducing 3.5% DSS in drinking water for 6 days. A to-120

tal of 4 mice were included in the colitis group, while 4 mice121

served as a healthy control group with normal drinking water.122

The intestinal tissues collected from the mouse experiment123

can be subject to various spatial-omics techniques, includ-124

ing the simultaneous probing of 1) MicroCart-MIBI imaging125

of both microbial and host components with antibodies and126

16S-specific probes (Fig. 1A, top), 2) MicroCART-GeoMx127

spatial transcriptomics with custom 16S-specific probes, in128

conjunction with murine whole transcriptome-level capabil-129

ities (13) (Fig. 1A, middle), and 3) MALDI-MSI for N-130

glycans using mass spectrometry (Fig. 1A, bottom) on serial131

sections from the same tissue for a tri-modality spatial inter-132

rogation of host-microbe interactions in situ (Fig. 1B).133

Robust design and efficient validation of bacteria134

oligo probes. The imaging of bacteria using in situ hy-135

bridization (ISH)-based methods has been a longstanding ap-136

proach in the field (21). To achieve this, oligonucleotide137

probes specifically targeting conserved 16S ribosomal RNA138

sequences are first designed in silico, enabling the visualiza-139

tion of various bacterial groups (22). Given that most 16S140

ISH probes currently in use were designed before the ad-141

vent of next-generation sequencing (NGS) technologies (23),142

a significant number of existing ISH probes in the literature143

may not accurately target the intended bacterial groups (24).144

To address this limitation, we first introduce an improved145

16S ISH probe designing pipeline that aims to achieve robust146

and precise targeting of bacteria, within the context of the147

intact intestinal microbiome (Fig. 2A). A major bottleneck148

for probe design is the delicate balance between the cover-149

age and specificity of the probes, as demonstrated for eukary-150

otic genomes (25). This process is even more challenging in151

the microbial context, considering the vast amount of bacte-152

ria sequences publically available in conventional databases153

(26, 27). To overcome this hurdle, we adopted a strategy (28)154

that involved constructing a curated 16S rRNA sequence pool155

exclusively consisting of known bacteria found in the intesti-156

nal microbiome, totaling 12,936 near-full length 16S rRNA157

sequences. We then employed phylogeny sequence searcher158

ARB (29) to identify signature sequences from this curated159

sequence pool that qualify for the coverage and specificity160

requirements for a user-defined bacteria target group. Sub-161

sequently, these candidate signature sequences as identified162

by ARB are subjected to additional filtering and screening163

based on multiple criterion, including melting temperature,164

hybridization efficiency (30), and predicted secondary struc-165

ture (31). Probes that meet all the above criteria are re-166

tained. To target groups at lower phylogeny levels, such167

as the species level, a single oligonucleotide probe is used.168

However, for higher phylogeny levels, like the phylum level,169

a single probe often fails to provide satisfactory coverage and170

specificity due to the large number of sequences within the171

target group. Therefore, we employed an additional com-172

binatory probe set strategy, where multiple probes selected173

from the previous step were combined into groups of three.174

These probe combinations were then evaluated in-silico for175

optimal coverage and specificity, where fast sequence align-176

ment of probes to the curated 16S rRNA sequence pool with177

Usearch (32) was performed. Following this step, the probe178

combination group that achieved the highest coverage while179

maintaining specificity is then recommended for experimen-180

tal validation (Fig. 2A). This probe design component of181

MicroCART is capable of rapidly designing highly specific182

16S probes against microbiome components at various levels183
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Figure 1: (A) Overview of the study. Colitis mice (triggered by DSS, n = 4) and healthy control mice (n = 4) were sacrificed, and intestinal tissues were dissected. Tissue
samples were fixed with the Methacarn-formalin method developed here and embedded in paraffin (MFPE; detailed in Material & Methods), before sectioning onto serial
slides. These adjacent slides were subject to analysis using: 1) Multiplex Ion Beam Imaging (MIBI) spatial proteomics, with an antibody panel targeting host antigens and
custom oligo probes targeting bacterial groups; 2) GeoMx Digital Spatial Profiler (DSP) spatial transcriptomics, with a whole transcriptome panel targeting host RNA molecules
and custom oligo probes targeting bacterial groups. The selected DSP regions are aligned to where the MIBI FOVs were acquired within the adjacent slides; 3) MALDI mass
spectrometry imaging (MALDI-MSI) that measures N-Glycan levels. (B) Representative images of the intestinal tissue sections that were investigated by the three different
modalities. Images from left to right: H&E image of the tissue section; representative MIBI antibody signals from the tissue section; fluorescence image with boxes indicating
the regions being captured for transcriptomic analysis in the tissue section of DSP; representative MALDI N-Glycan signals from the tissue section.

(Supp. Table 1).184

Coupling the in silico pipeline of MicroCart with a rigorous185

experimental validation framework is crucial for ensuring the186

quality, specificity, and reliability of the probes. Traditional187

methods for validating bacteria ISH probes involve grow-188

ing bacterial cultures, and performing brightfield or fluores-189

cence ISH staining using labeled candidate probes. How-190

ever, this process is not easily scalable, and does not include191

proper controls to assess probe specificity. To address this192

challenge, we introduce an efficient bacteria probe valida-193

tion pipeline in MicroCart (Fig. 2B). We first culture mul-194

tiple related and non-related intestinal microbiome bacteria195

species (Fig. 2B, left), with each species being grown in its196

specific required medium and under anaerobic conditions as197

needed. After cultivation, the bacteria were harvested and198

centrifuged to obtain bacterial pellets. The bacterial pellets199

were then fixed using methacarn and subsequently fixed in200

methacarn and formalin. To further maintain the structural201

integrity of the fixed bacteria pellets, we embedded them in202

Histogel (33). The fixed and histogel-embedded bacteria pel-203

lets across different species were finally arranged in an array204

format in a tissue cassette, and embedded in paraffin to create205
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Figure 2: (A) Schematic of the MicroCart in silico probe design process. A curated database of 16S rRNA sequences from intestinal microbiota was first created, then
probe candidates were designed that are specific for target bacterial groups. Stringent criteria, including melting temperature, hybridization efficiency, secondary structure,
coverage, and specificity were used to select for top candidate probes. Optionally, the MicroCart probe design tool can also create combination sets of probes to maximize
performance. (B) An illustration of the experimental validation process for designed probes. Bacteria strains were cultured, harvested, fixed (using our optimized MFPE
fixation), and embedded in HistoGel. Subsequently, HistoGel-bacteria strains were dehydrated and embedded in paraffin in a microarray fashion, into Bacteria MicroArrays
(BMA), before sectioning onto slides. Probe validation can be either performed using primary oligos conjugated to fluorophores, or using a secondary barcoded-oligos
conjugated to fluorescence to reduce cost through flexibility and increase efficiency through multiplexing. (C) Left: Experimental validation on BMA slides, with probes
designed to target phylum groups (Bacteroidetes or Firmicutes). Right: probes designed to target various probiotic species.

a methacarn and formalin-fixed, paraffin embedded (MFPE)206

Bacteria MicroArray (BMA). The MFPE-BMA allows for207

repeated sectioning and analysis, eliminating the need for208

repetitive bacteria culturing whilst maintaining the fixation209
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conditions as the final tissues of interest for maximal com-210

patibility. By using the MFPE-BMA slides, probes can either211

be validated with the conventional primary probe with fluo-212

rescence, or a primary and secondary oligo staining scheme213

akin to Oligopaints for cost efficiency (34), where all the can-214

didate probes that undergo testing can share a conserved sec-215

ondary detection barcode, thus reducing the required amount216

of fluorescence-labeled detection probes (Fig. 2B, right).217

Most importantly, these control MFPE-BMA sections con-218

tains multiple bacteria species simultaneously, allowing for219

a combined positive and negative control for ISH specificity220

and assay performance. Using this improved design and val-221

idation pipeline for bacteria probes in MicroCart, we were222

able to design and validate probes targeting different phy-223

logeny levels of groups. At the phylum-level, we designed224

probes targeting the phylum Firmicutes and Bacteroidetes225

(Fig. 2C, left). In parallel, we also designed and validated226

single oligonucleotide probes targeting various species-level227

probiotic taxa, including: Lactobacillus acidophilus, Lacto-228

bacillus paracasei, Lactobacillus reuteri, Lactococcus lactis,229

Lactobacillus plantarum, Lactobacillus rhamnosus, and Bifi-230

dobacterium longum subsp. longum (Fig. 2C, right). Probes231

designed using the MicroCart pipeline performed robustly on232

both levels, with fluorescent signals observed only in targeted233

groups but not the others, and limited off-targeting binding in234

bacteria with close sequence similarity (Supp. Fig. 1, Supp.235

Table 2).236

Multiplexed imaging of microbiome and host cells with237

MicroCart-MIBI. We next adapted the probes produced with238

our MicroCart pipeline onto multiplexed imaging platforms,239

as exemplified with the MIBI-TOF, an imaging platform ca-240

pable of >40-plex spatial readout using secondary ion mass241

spectrometry combined with a time-of-flight readout to re-242

solve metal-tagged labels in tissue sections at subcellular res-243

olutions (35). To further amplify the oligo targets for an op-244

timal signal-to-noise ratio, we adapted the metal conjugated-245

antibody-based approach by targeting labeled antibodies spe-246

cific for haptens covalently tagged to 16S-targeting oligos, to247

achieve signal amplification beyond standard metal-tagged248

oligos (36, 37). This allowed for robust detection of bacte-249

rial signal on the MIBI-TOF in conjunction with antibodies250

against haptens of interest (Supp. Fig. 2). To accurately lo-251

calize the spatial patterns of both microbiome and host com-252

ponents, we also further improved upon the fixation method253

for microbiome-related tissues. Methacarn fixation is com-254

monly suggested for the preservation of mucus structure and255

bacteria localization in tissue samples (38), but this approach256

is not as effective for the preservation of protein epitopes as257

formalin fixation and paraffin embedding (FFPE), the cur-258

rent clinical standard for tissue preservation widely used in259

standard clinical histology, and spatial platforms including260

the MIBI-TOF (39–41). We postulated that an optimized fix-261

ation method suitable for MicroCart should ideally contain262

both fixatives: first methacarn to preserve the mucosal layer263

and the bacterial components within (38), followed by for-264

malin to ideally preserve protein epitopes. This approach,265

termed Methacarn and Formalin-fixed, Paraffin-Embedded266

(MFPE), was validated for it’s ability to preserve both the267

mucosal layer and protein epitopes (Supp. Fig. 3& 4).268

MFPE tissue sections were first subject to ISH with269

MicroCart-oligos carrying covalently attached haptens270

(Supp. Table 3), followed by staining with an MIBI antibody271

cocktail panel including antibodies that bind specifically for272

these haptens (Supp. Table 4), thus enabling simultaneous273

imaging of both host proteins and bacterial components (Fig.274

3A, Supp. Fig. 5A). We performed MIBI imaging of a total275

of 202 field-of-views (400um * 400um; FOVs), across in-276

testinal tissues from DSS-treated and healthy control mice (n277

= 4 each), identifying a total of 126,426 host cells, inclusive278

of diverse immune and epithelial cell types within the small279

and large intestines (Fig. 3B, Supp. Fig. 5B). We observed280

significant compositional changes in the intestinal cell pop-281

ulations during colitis (Figs. 3C & D), including reduced282

numbers of plasma cells in both small and large intestines in283

DSS-induced colitis, and a global increase in immune cells in284

both the small and large intestines, reflective of the localized285

nature of the immune response to colitis.286

We next quantified the spatial variations in the bacterial com-287

ponents during colitis using a sliding window strategy, fo-288

cusing on quantitative spatial variations across the intestinal289

FOVs (Fig. 3E). We first evaluated the ratio of mucosal290

size to bacteria patch within each sliding window, among291

the non-host region in each MIBI FOV. A higher value in-292

dicated increased local intermixing between the host mucus293

and bacterial community (see Material & Methods for more294

details). Our results indicated that mice with colitis exhib-295

ited significantly more local intermixing of host and bacteria296

cells, reflective of potential microbial-linked remodeling and297

barrier penetration related to DSS-induced colitis (Fig. 3F).298

We next assessed the local Shannon entropy of various bac-299

terial phyla based on our MicroCart ISH probes, wherein a300

lower entropy value reflected decreased diversity in the local301

microbiome composition, as was observed in mice with col-302

itis (Fig. 3G). Together, these results highlight the ability of303

MicroCart, coupled with highly multiplexed imaging, for a304

multi-modal dissection of the host-microbial remodeling and305

spatial reorganization in a mouse-model of colitis.306

Spatially resolved sequencing of host and micro-307

biome with MicroCart-DSP. To orthogonally validate our308

bacteria probe specificity (Fig. 2C), we developed a cus-309

tomized workflow (see Material & Methods) for the spa-310

tial transcriptomics Nanostring GeoMx DSP platform, using311

MicroCart-DSP custom probes (Supp. Table 5) on MFPE-312

BMA sections. We successfully confirmed the specificity313

of MicroCart-DSP probes to their targeted phylum group314

using NGS sequencing as a readout for the unique UMIs315

on these MicroCart barcodes (Fig. 4A), highlighting the316

cross-platform utility of MicroCart designed probes for both317

spatial imaging and sequencing. Given the feasibility of318

MicroCart-DSP custom probes in situ, we next developed a319

custom workflow for integrating the mouse whole transcrip-320

tome atlas (WTA; > 20,000 genes) probeset in conjunction321

with MicroCart-DSP custom probes, to spatially dissect cel-322

lular pathways, immune signaling, metabolic states and mi-323
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Figure 3: (A) Images from a representative tissue region showing selected MIBI signals, cell segmentation, and cell type annotation information from host cells or
microbiome communities. (B) UMAP dimensional reduction visualization of host cell type annotation information, based on single cell MIBI protein expression profiles. (C)
Cell type proportions per tissue sample, grouped by tissue location and colitis status. (D) Cell types with a significant (p.adj < 0.05, Student’s t-test) frequency change
compared between colitis and healthy tissues. Left: small intestine. Right: large intestine. (E) Illustration of the sliding window microbiome analysis devised for the MIBI
microbiome analysis in (F) and (G). (F) Violin plot and illustration of the localized mucus-bacteria ratios in control or colitis large intestine tissue samples, p-value calculated
with Student’s t-test. For more details, see Material & Methods. (G) Violin plot and illustration of the localized bacteria Shannon entropy in control or colitis large intestine
tissue samples, p-value calculated with Student’s t-test. For more details, see Material & Methods.

crobial compositional changes between healthy and colitis324

mouse intestines, as stratified by CD45-positive (immune),325

E-cadherin-positive (non-immune epithelial), and bacterial326

regions. We used this approach to sequence a total of 350327

regions. Akin to our MFPE-BMA results, our mouse tissue328

spatial transcriptomes results also confirmed the specificity329

of bacterial signals (Fig. 4B, Supp. Fig. 6).330

This MicroCart-DSP approach enabled the further investiga-331

tion of the host-pathogen responses during colitis. In the332

small intestine regions, we observed an increase in the ex-333

pression of genes in the Reg3 family (Reg3b & Reg3g), both334

previously implicated with potent roles in antimicrobial ac-335

tivity and tissue repair during colitis (42). We also observed336

an increase in gene expression of isoenzymes Duox2 and337

Duoxa2, previously implicated with IBD in human patients338

(43, 44), and the Sprr2 family (Sprr2b, Sprr2i & Sprr2h),339
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Figure 4: (A) Left: Illustration of the validation scheme for bacteria probes on the BMAs, using MicroCart-DSP spatial sequencing as a read out. Right: Barplots showing
sequencing counts (mean ± 0.95 CI) from the respective probes in different bacteria species arrays. Red dotted line indicates the limit of detection. (B) Violin plot showing
bacteria probe counts from MicroCart-DSP coupled with the mouse Whole Transcriptome Atlas probes, summed up from individual bacterial regions in tissue sections,
separated by colitis status and tissue locations. (C) Volcano plots showing top differentially expressed genes for host cells between healthy and colitis samples, separated
by MicroCart-DSP region compartments (E-Cad+ or CD45+) and tissue locations. (D) GSEA analysis showing the top 15 enriched gene pathways in the colitis groups,
separated by MicroCart-DSP region types and tissue locations.

suggestive of an antimicrobial response specific for Gram-340

positive bacteria (45, 46), signaling a disruption of the bac-341

terial community composition within the small intestines342

during colitis. Meanwhile, in the large intestine, we ob-343

served increased expression of genes including the myeloid344

cell marker Ly6c1 and decreased expression of plasma cell-345

related genes (Igkc, Igha & Jchain), consistent with our MIBI346

observations on increased macrophages and monocytic infil-347

trations, and depletion of plasma cells in the large intestine348

during colitis (Fig. 3D). The increased expression of gene349

Saa1 further highlights the critical role of macrophages in350

acute inflammation within the large intestine, in line with351

studies linking its protein product, Serum Amyloid A, and352

macrophage infiltration in humans and mice (47, 48).353

We next conducted region-specific transcriptomic analysis to354

better contextualize pathway-level changes in the immune355

(CD45+) and non-immune (Ecad+) regions during colitis356

across the mouse small and large intestines. We first per-357

formed GSEA on the GeoMx spatial transcriptomic data, and358

observed the enrichment of pathways related to antigen pre-359

sentation of exogenous antigens, and the killing of cells from360

another organism in the CD45+ immune compartment, re-361

flective of an orchestrated immune response to the potential362

mucosal breach and exposure to bacterial components during363
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colitis. In the Ecad+ region of the small intestine, the en-364

riched pathways in epithelial cells were also predominantly365

associated with various defensive pathways, including pyrop-366

tosis, and others during colitis (Fig. 4D, left). Conversely,367

within the large intestine, the CD45+ immune regions ex-368

hibited enrichment in immune responses encompassing path-369

ways related to granulocyte, leukocyte migration, chemo-370

taxis, and activation. In the Ecad+ regions, enriched path-371

ways included immune responses and metabolic processes372

(Fig. 4D, right). These results highlight the diverse range of373

immune responses and varying metabolic shifts across local374

regions of the small and large intestines upon DSS-treatment375

in a mouse model of colitis.376

MALDI-MSI detects global glycosylation shift in377

intestine during colitis. Given the implications of immune378

responses and tissue remodeling in response to DSS-induced379

colitis and microbial changes, we further observed alteration380

of genes related to the host glycosylation processes (Supp.381

Fig. 7A& B), a key component of immune cell trafficking382

(50). For example, we found transcripts encoding for383

glycosyltransferases (Mgat3, Mgat4a, Mgat4b, Mgat5)384

significantly upregulated in the small intestine epithelium385

layer. We also identified key glycosyltransferases fuco-386

syltransferase (Fut2), and galactosyltransferase (B4galt1),387

to be significantly upregulated in both large and small388

intestine epithelium layers. Lastly, we also observed beta-389

mannosidase (Manba) to be significantly downregulated390

in both large and small intestine epithelium layers. These391

genes have also been described as potential IBD risk factors392

in human patients (51). Given our spatial transcriptomics393

results, we postulated that tissue glycosylation patterns394

are linked to the microbial invasion and immune-epithelial395

remodeling observed in colitis. To comprehensively assess396

the unknown spatial glycosylation landscape in our mouse397

colitis model, we implemented timsTOF fleX MALDI-2398

N-glycan imaging on the tissue sections adjacent to the ones399

previously investigated using MicroCart-MIBI and -DSP, to400

stratify varying N-Glycan tissue components down to a 10401

µm pixel-level spatial resolution (Supp. Table 6). Dimen-402

sional reduction using UMAP on the glycan compositions403

per pixel stratified between 1) small and large intestines,404

and 2) healthy and DSS tissues, highlighted both common405

and unique glycosylation patterns that are species-, tissue-406

and disease-specific (Fig. 5A). We next confirmed these407

differences from visual inspection of the data across several408

glycans (Fig. 5B). Further quantification of the data identi-409

fied significant glycosylation changes between healthy and410

colitis tissues: in large intestine tissues, there was a marked411

increase in Hex4HexNAc3, Hex4HexNAc4, Hex5HexNAc5,412

Hex5HexNAc4, and Hex6dHex1HexNAc5 during colitis.413

Conversely, in small intestine tissues, we observed a notable414

decrease in Hex7HexNAc6, Hex5HexNAc5NeuGc1,415

Hex6dHex2HexNAc5, Hex5HexNAc6NeuGc1, and416

Hex6HexNAc6 during colitis (Fig. 5C). Previous studies417

have found association between intestinal inflammation and418

upregulated expression of truncated and immature surface419

glycans (51), which is consistent with the observation in our420

study, where we detected an increase in low-branching N-421

glycans and a decrease of high-branching N-glycans in DSS422

intestinal tissues (Fig. 5C). We next employed a pixel-level423

clustering approach (49) on N-Glycan signals to identify 20424

spatially distinctive glycosylation populations (Fig. 5D &E).425

Our results indicate the enrichment of Hex3dHex1HexNAc4,426

Hex3dHex1HexNAc2, and Hex3dHex1HexNAc3, in the427

large intestine, as indicated by the significant decrease in428

clusters 2 (p.adj = 0.00012, Student’s t test), and 15 (p.adj429

= 0.00235), and increase in cluster 7 (p.adj = 0.00054)430

during colitis. We further observed in the small intestines431

during colitis, the enrichment of Hex5HexNAc6NeuGc1,432

Hex5dHex1HexNAc6NeuGc1, and Hex6dHex3HexNAc6,433

as represented by the significant decrease in clusters 1 (p.adj434

= 0.0205) and 6 (p.adj = 0.0205), and increase in cluster 11435

(p.adj = 0.0217) (Fig. 5F).436

Multi-omics spatial analysis of macrophage in coli-437

tis. Our observations thus far suggested the increased infil-438

tration of monocytes and macrophages in the large intes-439

tine during colitis from both MicroCart-MIBI and -DSP ad-440

jacent sections (Figs. 3D &4D). The spatial multi-omics441

data generated here prompted us to focus our subsequent in-442

tegrative analysis on tissue regions with high macrophage443

and monocyte infiltration in the large intestine. To realize444

a more comprehensive understanding of the cellular path-445

ways and functional impacts of these tissue processes. We446

observed that macrophage and monocytes occupy spatially447

stratified niches around the smooth muscle cells in the in-448

testinal muscular layer (Fig. 6A), suggestive of an orches-449

trated and spatially localized immunological response during450

colitis. We next performed a distance-based analysis to quan-451

tify our findings of infiltrating macrophages and monocytes452

into the muscle layer of the large intestine (Supp. Fig. 8A).453

Further analysis of the CD45 regions from MicroCart-DSP454

data also yielded significantly more collagen-related genes455

(Col1a1, Col1a2, Col3a1, Col18a1, Col4a1, and Col5a1) in456

addition to monocyte-linked genes (S100a8, S100a11, and457

Ly6c1), supporting our model for the increased proximity458

and infiltration of macrophages and monocytes into the in-459

testinal smooth muscle cells (Supp. Fig. 8B). We fur-460

ther observed within the high macrophage and monocyte in-461

filtration FOVs, elevated smooth muscle proliferation and462

migration-related gene signatures (Fig. 6B, top) and in-463

creased macrophage and monocyte chemotaxis-related gene464

signature (Fig. 6B, bottom) when compared to all other large465

intestine regions. These results were additionally supported466

by the further diminutive signatures observed for smooth467

muscle proliferation, migration, and macrophage and mono-468

cyte chemotaxis when compared across more stratified con-469

ditions (Supp. Fig. 9A). We reasoned that the infiltration470

of the macrophage and monocyte populations into these re-471

gions can initiate further downstream immune interactions472

and remodeling in colitis, and confirmed our hypothesis by473

modeling the pairwise cell type interactions using a permu-474

tation test (39, 52). Our results are indicative of an increased475

interaction between macrophages and monocytes with most476

cell types identified with MicroCart-MIBI (Fig. 6C, Supp.477
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Figure 5: (A) UMAP dimensionality reduction visualization of colitis status or tissue type information, based on pixel level N-glycan signals from MALDI-MSI. Pixels were
either colored by colitis status or tissue location. (B) Representative images of selected N-glycan signals from small and large intestinal tissues. A total number of 51 intestinal
tissue sections (all tissue sections that were investigated by MIBI and DSP) were imaged using MALDI-MSI. (C) Top 5 most significantly changed (p.adj < 0.05, Student’s t
test) N-glycans in small and large intestine tissues compared between healthy and colitis status. (D) Representative images of pixie (49) clustering results based on N-glycan
signals. (E) Heatmap of the average N-glycan level for each pixel level cluster from pixie. (F) Pixie cluster percentage for each tissue across colitis status and tissue locations.

Fig. 9B).478

To identify immune cell pathways and states associated479

with this functionality shift in macrophage and monocyte-480

infiltrated regions, we first utilized GSEA to confirm the up-481

regulation of macrophage activities within the CD45+ im-482

mune compartments. Within the paired E-Cadherin+ epithe-483

lial regions, we observed the activation of multiple pathways484

specifically related to bacteria composition and microbial-485

linked immune suppression, including metal ion sequester-486

ing, humoral immune response to microbes, and hydrogen487

peroxide secretion. These results support a model in which488

macrophage and monocyte infiltration acts as a front-line489

host defense mechanism against bacterial components that490

breached the physical epithelium barrier during colitis (Fig.491

6D).492

We next investigated the relationship between gene pro-493

grams within paired CD45+ and Ecad+ tissue regions for494

a systems-level understanding of immune-epithelial interac-495
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Figure 6: (A) Representative MIBI images of a tissue region not infiltrated by macrophages and monocytes (left), and a region with high number of macrophage and
monocyte infiltration (right). Only Large intestine regions were considered in this analysis. (B) Violin plots of gene pathway scores from the MicroCart-DSP regions, separated
by macrophage and monocyte infiltration status (based on the MIBI information from the same regions on the adjacent slide). (C) Dumbbell plots of pairwise cell-cell
interactions enriched or depleted compared to a randomized background permutations (1000 iterations) background between macrophage/monocytes to other cell types
in large intestine tissues, separated by macrophage/monocyte infiltration status. Only interactions that passed a statistical test (p < 0.05, Wilcoxon test) for both infection
conditions are shown. (D) GSEA analysis on high macrophage/monocyte infiltration regions. For Ecad regions, top 3 enriched significant pathways (p.adj < 0.05) related to
anti-bacterial functions were shown. For CD45 regions, top 3 enriched significant pathways (p.adj < 0.05) related to macrophage activities were shown. (E) Heatmap of the
correlation of gene programs as identified via cNMF (cite) between paired CD45 and Ecad MicroCart-DSP compartments. Left: correlation heatmap from tissues that were
not infiltrated by macrophage/monocyte. Right: correlation heatmap from tissues that were infiltrated by macrophage/monocyte. (F) Gene ontology (GO) analysis on selected
correlation hotspots of gene programs. Top 10 genes that contribute to each of the gene programs within the selected hotspot were grouped together, and used as input for
the GO analysis. The top 5 most enriched GO terms were shown for each hotspot.

tions in response to microbial infiltration. We first identified496

diverse gene programs using a consensus Non-negative Ma-497

trix factorization (cNMF) approach (53) from our MicroCart-498

DSP data, and performed a correlation analysis of these499

gene programs between the paired immune and epithelial re-500

gions. Interestingly, compared to other large intestinal re-501

gions, regions with high amounts of macrophage and mono-502

cyte infiltration (as detected via MIBI) exhibited more ag-503
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gregated correlation gene program ‘hotspots’ (Fig. 6E),504

indicative of orchestrated immunological responses on the505

spatial level. We further investigated the functionality of506

these identified correlation hotspots of Ecad and CD45 re-507

gions by performing gene ontology analysis on the top con-508

tributing genes for these gene programs enriched within the509

hotspots. Our results identified pathways related to immune510

responses, immune cell population chemotaxis, phagocytosis511

and cell clearance (Fig. 6F), indicating that the macrophage512

and monocyte infiltration is a node for the diverse immune-513

epithelial tissue crosstalk during colitis in mouse intestine.514

Spatial tri-modal integration for a systems level anal-515

ysis of colitis. The tri-modal MicroCart spatial-omics516

data generated, specifically 1) MIBI: cell phenotype, mi-517

crobial composition and frequency information, 2) DSP:518

compartment-specific whole transcriptome and microbial519

quantification, and 3) MALDI-MSI: N-glycan levels. Given520

the varying scale of the data (Fig. 1B), we first manually521

aligned the tri-modal data on the individual FOV level, to522

maximize the concordance for downstream multi-omic in-523

vestigation of the colitis samples. Given the link between524

glycan branching pathways and metabolite flux (54), our ini-525

tial investigation focused on the correlations between path-526

way enrichment scores of various metabolic pathways and527

distinct glycan expression levels within the tissue regions.528

We first identified key metabolic pathways that are impor-529

tant for N-glycan expression, including those related to fruc-530

tose, inosine, and NAD (Fig. 7A). We additionally link ox-531

idative stress to changes of glycan expressions (55) (Fig.532

7A). Further investigations identified statistically significant533

positive correlations between epithelium cell and dendritic534

cell frequencies and the glycans Hex5HexNAc5NeuGc1 and535

Hex4dHex1HexNAc5, and significant negative correlations536

between proliferating smooth muscle cell frequencies and537

Hex5dHex2HexNAc4 (Fig. 7B), suggesting the recruitment538

and depletion of key cell type-specific factors and their gly-539

cosylation states in the intestinal tissues.540

We next investigated host responses to microbial infiltration541

during DSS-induced colitis. We observed specifically in col-542

itis tissues, a positive correlation between goblet cell fre-543

quency and the bacteria local mucus ratio (Fig. 7C, top544

left), and a negative correlation with MUC2+ epithelial cells545

(Fig. 7C, bottom left), with the local mucus ratio as de-546

fined previously as the intermixing of bacteria and mucosal547

signals in the MIBI (Fig. 3F). We observed no significant548

corresponding relationship in the healthy control samples549

(Fig. 7C, left). We also observed negative correlations be-550

tween monocyte frequencies with local bacteria Shannon en-551

tropy specific to colitis, and T cell frequencies, with the lo-552

cal bacteria entropy specific for healthy controls (Fig. 7C,553

right). Our results highlight a structured host response to554

local microbial perturbations, which prompted our next in-555

vestigation into the linkage between bacteria and host spatial556

transcriptomic changes. We observed clear metabolic sig-557

natures as a result of the distinctive bacterial phylum com-558

position (Fig. 7D), including for Firmicutes with phos-559

phatidylethanolamine and fatty acid processes, Bacteroidetes560

with lipid-related metabolic processes, and Proteobacteria561

with phosphatidic acid and cholesterol processes compart-562

mentalized to in the non-immune E-Cad+ regions (Fig. 7D).563

These results further solidify the host-microbial interactions564

and downstream effects post DSS-perturbation.565

To gain systems-level perspective on colitis across all three566

spatial-omics modalities, we performed correlation network567

analysis encompassing all the features measured (56) (Fig.568

7E). We identified key hubs in the microbial-host com-569

partmentalized interactions within intestinal biology. Our570

constructed correlation network graph incorporated fea-571

tures representing cell population frequencies and bacteria572

signal strength (MicroCart-MIBI), singular value decom-573

position (SVD) dimension reduced transcriptomic princi-574

ple components (MicroCart-DSP, to reduce feature num-575

bers, Supp. Table 7), and N-glycan expression (MALDI-576

MSI). In the graph, nodes represent features, and the back-577

bone edges (black) represent distances between features578

based on Spearman’s correlation and constructed via Min-579

imal Spanning Tree (MST). Additional edges (gray) link-580

ing two nodes indicate significant correlations between the581

pair of features. Through this network, we identified key582

global features and significant correlations across modali-583

ties, indicative of the multitude of cell types, cell states,584

signaling pathways, and glycosylation patterns linked to585

an orchestrated host immunological response to micro-586

bial infiltration in the intestinal system. Our highlighted587

key signatures include bacteria signals, varying transcrip-588

tomic signatures from E-Cad and CD45 compartments,589

and varying N-glycans including Hex5dHex2HexNGc4,590

Hex5dHex2HexNGc5, Hex3dHex1HexNGc3.591

We next sought to perform prediction of colitis status, using a592

stacked ensemble machine learning model, In line with previ-593

ous demonstrations on the effectiveness of ensemble learning594

when applied to multi-omics data (57, 58). We first trained595

three individual random forest classifiers for each modal-596

ity (spatial protein, RNA and glycans) to predict colitis sta-597

tus. We next applied a random forest ensemble learning598

layer on these three individual classifiers for the final pre-599

diction (Fig. 7F). Our results support the multi-omics en-600

semble learner as the highest performing model for classify-601

ing colitis status, when compared to single-modality classi-602

fiers (Fig. 7G). These results support the notion that a multi-603

tude of biomolecules (including proteins, RNA and glycans)604

are involved in the orchestrated immunological responses605

to diseases, as exemplified by colitis here. To identify key606

features for future hypothesis generation in colitis research,607

we tabulated the importance scores of cross-modality fea-608

tures within our classifier model (Fig. 7H). Notable high-609

importance features in our colitis classifier include microbial610

signatures (e.g., Proteobacteria), gene expressions in E-Cad611

compartments, and cell frequencies of Epithelial, DCs, and612

macrophages (Fig. 7H). These components warrant future613

detailed investigations to better understand the orchestrated614

tissue responses to microbial invasion of the gastrointestinal615

tract.616
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Figure 7: (A) Correlation between metabolic pathways scores from MicroCart-DSP and N-glycan levels from MALDI-MSI, based on aligned FOVs from adjacent slides.
Metabolic pathways (from GO:BP database) or N-glycans with at least one significant (p.adj < 0.05) correlation were shown in the plot. (B) Dot plot showing correlations
between cell type frequencies from MIBI and N-glycan levels from MALDI, based on the aligned FOVs from adjacent slides. Only relationships with significant (p.adj < 0.05, F
test) correlations were shown. Color of dots indicates colitis status of the FOV. Line and shade indicate the linear relationship with 0.95 CI. (C) Dot plot showing correlations
between cell type frequencies from MIBI and microbiome spatial metrics in the fecal regions from the same FOV. Left: cell frequencies and bacteria local mucus ratio score.
Right: cell frequencies and bacteria local entropy score. Line and shade indicate the linear relationship with 0.95 CI. (D) Correlation (Z-normalized) between bacteria signals
(from MicroCart-DSP) and host transcriptome signals from paired E-Cad compartments (adjacent to bacteria regions on the same tissue). The top 50 correlated genes per
bacteria phylum (Firmicutes, Bacteroidetes, Proteobacteria) were shown in the heatmap. Annotation of the gene pathway was performed using Gene Ontology analysis with
the top 50 correlated genes for each bacteria phylum. (Caption continues on next page.)
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Figure 7 (continued): (E) Correlation network of the features across three different modalities. Each node represents a different feature, with color representing the modality,
and the size of the node representing the number of significant (p.adj < 0.05) correlating cross-modality features it has. The backbone edges (black) and the layout of the
nodes were generated by implementing a minimum spanning tree using the correlation-based distance among features. Gray edges between nodes indicate a significant
(p.adj < 0.05) correlation between them. (F) Illustration of the schematics for training a tri-modality stacked ensemble prediction model. (G) Performance of the tri-modality
stacked ensemble prediction model. F1 score, Accuracy, MCC (Matthews Correlation Coefficient) higher indicates better performance; Log loss (cross-entropy loss) lower
indicates better performance. (H) Relative feature importance scores from the random forest classifiers. Higher value indicates higher contribution of the feature to the model
prediction ability. Color indicates the modality type. Top 3 most important features from each modality type were labeled.

Discussion617

Here we introduce MicroCart, an approach for the integrative618

analysis of host-microbiome interactions through a spatial-619

multi-omics lens. Within our MicroCart framework, we pro-620

vide a computational pipeline for the rapid design and val-621

idation of highly specific oligonucleotide probes targeting622

various components of the human microbiome, and present623

an efficient protocol enabling the preservation and simulta-624

neous detection of bacterial, mucosal, and host signals in625

situ. This protocol is adaptable to diverse spatial-omics plat-626

forms, not limited to the MIBI and GeoMx-DSP as exempli-627

fied here. Enabled by the MicroCart pipeline, we designed628

and validated 16S rRNA targeting probes for distinct bacte-629

rial groups within the human gut microbiome, and assessed630

their on-target specificity. We next delved into exploring631

both systemic and localized shifts in the microbiome and632

host responses within mouse colitis models induced by DSS633

administration. The modularity of the MicroCart pipeline634

allowed our analysis to include MIBI (spatial proteomics),635

GeoMx-DSP (spatial transcriptomics), and MALDI (spa-636

tial glycomics) on adjacent sections of mouse intestinal tis-637

sues. Our findings revealed significant cellular compositional638

changes, transcriptomic responses related to various orches-639

trated immunological responses, and glycomics structural al-640

terations during colitis. We further identified tissue-level re-641

modeling interactions between host immune and epithelial642

cells in response to microbial infiltration, and pinpointed the643

pivotal role of macrophages as a key orchestrator in this dy-644

namic process. We finally established a comprehensive tri-645

modality feature network, employing machine learning ap-646

proaches to identify key contributors to the status of mouse647

colitis. Our results highlight the need to understand the pre-648

cise native tissue context of diseases and their constituents649

for future mechanistic and therapeutic work. In summary,650

MicroCart provides a powerful tool that also lays the foun-651

dation for future investigations seeking to unravel intricate652

cell-cell and cell-microbial interactions within the complex653

milieu of bacteria-host tissue environments.654

Materials & Methods655

Human 16S rRNA sequence pool construction. A656

comprehensive sequence pool for 16S rRNA sequences of657

intestinal microbiota was constructed following the method658

described in (28) with some modifications. Initially, se-659

quences were obtained from the National Center for Biotech-660

nology Information (NCBI) using the command ((“Homo661

sapiens”[Organism] OR Human[All Fields])662

AND (intestinal[All Fields] OR gut[All663

Fields]) AND 16S[All Fields]) AND664

("bacteria"[porgn] OR "archaea"[porgn])665

AND 1000:2000[SLEN] in May 2019. A total of666

79,223 sequences were collected. These sequences667

were then matched against the SILVA ribosomal database668

SILVA_132_SSURef_Nr99_tax_silva_DNA.fasta669

using Usearch (32) with the usearch_global command670

-id 0.99 -strand plus -maxaccepts 1. The671

matched sequences were then extracted from the SILVA672

database, and sequences shorter than 1.3 kb were filtered673

out. The final resulting sequence pool consisted of 12,936674

near-full-length intestinal 16S rRNA sequences.675

Taxonomy assignment. The curated and length-filtered se-676

quences from the sequence pool were assigned taxonomy677

information using the Dada2 package in R (59). The678

assignTaxonomy function was used with the reference679

database hitdb_dada2. A total of 4,881 sequences were680

assigned to the species level. To further enhance the tax-681

onomy assignment, sequences that were not assigned to the682

genus level by Dada2 but had genus information in SILVA683

were selected: If the family information for the sequence was684

the same as Dada2 and SILVA, the SILVA genus was then685

assigned to the sequence. The same criteria were applied to686

the species level. Consequently, 5,187 sequences were as-687

signed to the species level. Sequences that still did not have688

species-level information were annotated with a "likely" tax-689

onomy assignment. These sequences were searched against690

the sequences assigned with species information in the pool,691

using Usearch at >97% identity. Sequences with a best match692

>97% remained "Unknown" at the species level but were as-693

signed a "likely" species based on the matched sequence.694

This type of annotation was not used during probe design, but695

the mismatch count of candidate probes on those sequences696

would be ignored if the probe targeted the annotated "likely"697

taxonomy group. The same process was performed at the698

genus level but with matching at >95% identity.699

Bacteria probe design. Fasta files containing the se-700

quences and taxonomy information were loaded into ARB701

for probe design (29). The target group was selected, and702

the desired covering percentage and out-group hitting counts703

were provided. The length of the candidate probes was set704

to 15-30 bp. The candidate lists (.prb file) generated from705

ARB were then imported into R. Subsequently, the probes706

were screened following a similar approach as described in707

Wright et al. (30). Specifically, the melting temperature, sec-708

ondary structure, and predicted hybridization efficiency were709

calculated for each candidate probe based on the experimen-710

tal conditions (hybridization temperature, formamide con-711

centration, and salt concentration) using a modified version712

of the function in R package Decipher (detail can be found713
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in github repository). In this study, the input parameters714

were set as follows: hybridization temperature of 46 °C, for-715

mamide concentration of 40%, and sodium concentration of716

390 mM. Candidate probes with a melting temperature (Tm)717

>60 °C, hybridization efficiency >0.8, and deltaG >-1.5 were718

selected as potential candidate probes.719

For combinatorial probe design, the candidate probes pro-720

duced from the previous step were utilized. Three individ-721

ual probes from different regions of the 16S rRNA, as de-722

fined by ARB, were randomly chosen. These probe sets were723

matched against the sequence pool using the Usearch com-724

mand usearch_global with an identity of 100%. The725

overall coverage (good hit) of the target group and the over-726

all out-group hitting (bad hit) were recorded for each probe727

set. From a total of 2000 random combination trials, the op-728

timized probe set with the desired coverage and out-group729

sensitivity was selected. To validate the specificity and cov-730

erage of the probes among abundant species in the human731

microbiome, the top 20 abundant human microbiome species732

in the phyla Firmicutes, Bacteroidetes, and Proteobacteria733

were acquired from the Human Microbiome Project (1). The734

ranking of the overall counts of the Operational Taxonomic735

Unit (OTU) table among 147 human stool samples, obtained736

through 16S rRNA sequencing, was used to determine the737

abundance. OTUs belonging to unclassified species were ex-738

cluded. Subsequently, the full-length 16S rRNA sequences739

of the abundant species were retrieved from the SILVA740

database. The Usearch tool (usearch_global: -id741

1, -strand plus) was employed to align the probes742

against the 16S rRNA sequences of the abundant species in-743

dividually (Supp. Table 8 & 9). For future convenience, an744

R package has been compiled to facilitate the easy utilization745

of the functions described above, under github.746

For probes designed for the GeoMx DSP platform, the same747

process described above was implemented, except the mini-748

mal probe length was set to 30 bps. For candidate probes that749

passed all requirements, a poly-A tail was added to the end of750

the probe to make the probe length of 35 bps, if not already751

larger or equal to that length.752

After probe designing, probes (barcoded, fluorescent, or hap-753

ten versions) were either purchased from the Stanford PAN754

facility or from Integrated DNA Technologies (USA). Probes755

for the Nanostring GeoMx DSP platform were custom-756

designed (see above) and synthesized in collaboration with757

Nanostring (USA). The detailed sequences of these probes758

used in this manuscript can be found in the supplementary759

information (Supplementary Table 2, 3, 5).760

Bacteria strain culture. Bacteria strains used are either761

purchased from ATCC (Lactobacillus acidophilus ATCC®762

4356™, Lactobacillus paracasei ATCC® BAA-52™, Lac-763

tobacillus reuteri ATCC® 23272™, Lactococcus lactis764

ATCC® 19435™, Bifidobacterium breve ATCC® 15700™,765

Bifidobacterium longum subsp. longum ATCC® 15707™,766

Clostridium perfringens ATCC® 13124™, Ruminococcus767

gnavus 35913™) or obtained from the Sonnenburg lab (Bac-768

teroides fragilis NCTC 9343, Bacteroides finegoldii DSM769

17565, Bacteroides dorei DSM17855, Bacteroides ovatus770

ATCC 8483, Lactobacillus plantarum ATCC BAA-793, Lac-771

tobacillus rhamnosus ATCC 53103).772

Lactobacilli MRS Agar plate (Hardy Diagnostic, USA) was773

used to culture L. acidophilus, L. paracasei, L. reuteri, L.774

plantarum, L. rhamnosus, L. lactis. Blood Agar plate (Hardy775

Diagnostic, USA) was used to culture B. breve, B. longum,776

C. perfringens, R. gnavus. BHI agar plate (Hardy Diagnostic,777

USA) was used to culture B. finegoldii, B. dorei, B. ovatus,778

B. fragilis.779

Each bacterial strain was inoculated onto the respective cul-780

ture plates under sterile conditions. The plates were then781

placed in an air-tight gas pouch containing one pack of782

BD Difco™ GasPak™ EZ Gas Generating System (Ther-783

moFisher B260683, USA) to create an anaerobic environ-784

ment. The pouches were incubated at 37 °C for 48 hrs until785

harvest, allowing the bacteria to grow and develop.786

Bacteria MicroArray (MFPE) preparation for probe val-787

idation. To harvest the bacteria culture mentioned above,788

each plate was scraped using a sterile 20 µl pipette tip into a789

1.5 ml Eppendorf tube filled with 1 ml of sterile 1x PBS. The790

tube was centrifuged at 800 xg for 10 mins, and the super-791

natant was discarded. The bacterial pellet was then incubated792

with 1 ml of Methacarn fixation solution (60% methanol,793

30% chloroform, and 10% glacial acetic acid) for 30 mins794

at room temperature. During incubation, the tube was placed795

on a Mix Rack (ELMI, USA) and rotated at 10 rpm. After796

incubation, the bacteria were centrifuged at 800 xg for 10797

mins, and the supernatant was discarded. The bacterial pellet798

was washed twice with 1 ml of PBS, each time centrifuging799

at 800 xg for 10 mins, and removing the supernatant. Sub-800

sequently, the bacteria were fixed with freshly prepared 4%801

PFA in 1x PBS for either 30 mins (for fluorescence / DSP802

imaging) or 6 hrs (for MIBI imaging). After fixation, the bac-803

teria were washed twice with 1x PBS, each time centrifuging804

at 800 xg for 10 mins, and removing the supernatant. To805

facilitate embedding and storage, 20-50 µl of melted Histo-806

Gel (ThermoFisher, USA) was added to each bacterial sam-807

ple. The sample was cooled at room temperature for 15 mins,808

followed by the addition of another 20-50 µl of melted His-809

toGel on top for sealing. The samples were then cooled at810

4 °C for 1 hr until the HistoGel solidified. The solidified811

samples were removed from the Eppendorf tubes and placed812

in 9-compartment biopsy cassettes (EMS, USA). They were813

stored in 70% ethanol until processed in the pathology core814

at Stanford University, where they were embedded in paraf-815

fin blocks and sectioned into slides. Glass slides were used816

for fluorescence / DSP imaging, while gold slides (Ionpath,817

USA) were used for MIBI imaging. The slides were stored818

in vacuum chambers until they were ready for analysis. The819

fixation method used in this study, combining Methacarn and820

formalin fixation followed by paraffin embedding, was re-821

ferred to as MFPE (Methacarn and Formalin-fixed, Paraffin-822

Embedded). This method enabled the preservation of mucus823

structure and protein epitopes.824

Mouse colitis model and tissue (MFPE) collection.825

C57BL/6J female mice that were 6 weeks old were ob-826
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tained from Jackson Laboratory. To induce colitis, mice were827

provided with drinking water containing 3.5% dextran sul-828

fate sodium salt (colitis grade, MPbio, USA) for a duration829

of 6 days. At the conclusion of the experimental period,830

mice were euthanized by CO2 asphyxiation. Two types of831

mouse intestinal tissues were collected: the distal 4 cm of the832

small intestine and large intestine parts containing formed833

fecal pellets. The collected tissues were placed in tissue834

cassettes and immediately immersed in methacarn solution835

(60% methanol, 30% chloroform, and 10% glacial acetic836

acid) for fixation, at RT for 3 hrs. Following methacarn fixa-837

tion, the tissues were washed twice with 1x PBS for 10 mins838

each. Subsequently, the tissues were transferred to 4% PFA839

and fixed for 20 hrs. After fixation, the tissues were stored840

in 70% ethanol until further processing for paraffin embed-841

ding and sectioning into slides by the Stanford Pathology842

Core. Glass slides were used for sections intended for flu-843

orescence/DSP/MALDI imaging, while gold slides (Ionpath,844

USA) were utilized for imaging by MIBI. All slides were845

stored in vacuum chambers until ready for use. All mice were846

maintained according to practices prescribed by the NIH at847

Stanford’s Research Animal Facility and by the Institutional848

Animal Care and Use Committee (IACUC, protocol 33699)849

at Stanford.850

Antibody conjugation for MIBI. The antibody conjugation851

process was conducted following a previously described pro-852

tocol (60) utilizing the Maxpar X8 Multi Metal Labeling Kit853

(Fluidigm, USA). Initially, 100 µg of BSA-free antibody was854

subjected to washing using the conjugation buffer. Subse-855

quently, the antibody was reduced by incubating it with a856

final concentration of 4 µM TCEP (Thermo Fisher Scientific,857

USA) for 30 mins in a water bath maintained at 37 °C. Fol-858

lowing reduction, the antibody was mixed with Lanthanide-859

loaded polymers and incubated for 1.5 hrs in a water bath860

at 37 °C. Subsequently, the conjugated antibody was sub-861

jected to four washes using an Amicon Ultra filter (Millipore862

Sigma, USA). The resulting conjugated antibody was quan-863

tified using a NanoDrop spectrophotometer (Thermo Scien-864

tific, USA) in IgG mode, specifically measuring absorbance865

at 280 nm (A280). To ensure stability and preserve the conju-866

gated antibody, the final concentration was adjusted using at867

least 30% (v/v) Candor Antibody Stabilizer (Thermo Fisher868

Scientific, USA). The conjugated antibody was then stored at869

4 °C until further use. Information about antibody panels can870

be found in Supplementary Table 4.871

FISH hybridization on MFPE fixed samples. Fluores-872

cence In Situ Hybridization (FISH) was conducted to validate873

the designed bacteria probes using fluorescent microscopy.874

Two types of samples were subjected to FISH: bacteria pel-875

lets (obtained from Methacarn + 4% PFA fixation for 30876

mins) and mouse tissue sections (obtained from Methacarn877

+ 4% PFA fixation for 20 hrs). The following steps were per-878

formed for FISH. For bacteria pellets, slides were initially879

baked at 70 °C for 15 mins, followed by two washes in xy-880

lene for 5 mins each. Subsequently, the slides were washed881

twice with 99.5% ethanol for 5 mins each. A Hydrophobic882

Barrier PAP Pen (Vector Labs, USA) was utilized to circle883

out the hybridization area. Rehydration of the samples was884

achieved by washing them with 2x SSCT for 5 mins. Hy-885

bridization was then performed using either primary probes886

directly labeled with fluorophore, or primary probes with887

secondary oligo barcodes. The hybridization buffer con-888

sisted of 2x SSCT, 10% Dextran sulfate, 1x Denhardt’s Solu-889

tion, 40% Formamide, 0.01% SDS, 200 µg/ml Salmon sperm890

DNA, and oligonucleotide probes at concentrations ranging891

from 1 to 5 µM (1 µM for primary probes with fluorophore,892

and 2-5 µM for primary probes detected by secondary bar-893

codes). The slides were incubated at 46 °C for 3 hrs in a894

humidity chamber. Following incubation, the hybridization895

buffer was removed, and the slides were subjected to three896

washes with 40% formamide in 2x SSCT at 46 °C, each last-897

ing 10 mins. For samples stained with probes directly con-898

jugated to fluorophores, the slides were quickly washed with899

2x SSCT, stained with Hoechst 33342, mounted using Pro-900

Long™ Diamond Antifade Mountant, and sealed for imag-901

ing. In the case of samples stained with probes with sec-902

ondary oligo barcodes, the slides were quickly washed with903

2x SSCT and subjected to secondary detection probe staining904

in secondary hybridization buffer, containing 2x SSCT, 30%905

formamide, and 0.3 µM secondary detection probes labeled906

with fluorophores. The secondary hybridization was per-907

formed at room temperature for 20 mins. Subsequently, the908

slides were washed twice with 30% formamide in 2x SSCT909

for 5 mins each. Finally, the slides were quickly washed with910

2x SSCT, stained with Hoechst 33342, mounted using Pro-911

Long™ Diamond Antifade Mountant, and sealed for imag-912

ing. Fluorescent images were acquired using a BZ-X710 in-913

verted fluorescence microscope (Keyence) equipped with a914

CFI Plan Apo l 20x/0.75 objective (Nikon). To ensure accu-915

racy during probe specificity validation experiment on bac-916

teria pellets, the exposure times for each channel was set917

consistent: Hoechst (Hi-resolution setting) 1/25s; Cy3 (Hi-918

resolution setting) 1/3s; Cy5 (Hi-resolution setting) 1/1.5s on919

the Keyence microscope.920

MicroCart staining for MIBI imaging. Gold slides with921

sections from bacteria pellets (Methacarn + 4%PFA 6 hrs)922

or tissue (Methacarn + 4%PFA 20 hrs) were baked at 70 °C923

for 30 mins, and then washed in xylene for 2 times, each 5924

mins. Standard deparaffinization was performed thereafter925

(3x Xylene, 2x 100% EtOH, 2x 95% EtOH, 1x 80% EtOH,926

1x 70% EtOH, 3x ddH2O; 1 min each). Epitope retrieval was927

then performed at 95 °C for 10 min at pH 9 with Dako Target928

Retrieval Solution (Agilent, USA), in a Lab Vision PT Mod-929

ule (Thermo Fisher Scientific). Slides were cooled to 65 °C930

and then removed from the PT Module, then cooled further in931

RT for 20 mins. After antigen retrieval, a Hydrophobic Bar-932

rier PAP Pen (Vector Labs, USA) was used to draw out the933

hybridization area. Slides were incubated in 2x SSCT (300934

mM Sodium chloride, 30 mM Trisodium citrate, 0.1% (v/v)935

Tween-20) for 10 mins, then added with the hybridization936

buffer (2x SSCT, 10% Dextran sulfate, 1x Denhardt’s Solu-937

tion, 40% Formamide, 0.01% SDS, 200 µg/ml Salmon sperm938

DNA, hapten oligo probes 1 - 3 µM each). Slides were then939

Zhu et al. | MicroCart bioRχiv | 15

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2024. ; https://doi.org/10.1101/2024.03.04.583400doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.04.583400
http://creativecommons.org/licenses/by-nc/4.0/


incubated at 46 °C for 3 hrs in a humidity chamber. After940

incubation, the hybridization buffer was removed, and slides941

were subject to three times washing with 40% formamide 2x942

SSCT at 46 °C, 10 mins each. Subsequently, slides went943

through a standard MIBI antibody staining process described944

before (61). Briefly: slides were quickly rinsed in MIBI945

Wash Buffer (1x TBS-T, 0.1% BSA) for 2 mins, and then946

blocked by Antibody Blocking Buffer (5% Donkey Serum,947

0.05% NaN3 in 1x TBS-T) for 1hr at room temperature.948

Then slides were stained at 4 °C in an antibody cocktail949

(metal-conjugated) overnight. Slides were then washed twice950

by MIBI Wash Buffer, each 5 mins, then post-fixed by 4%951

PFA and 2% GA in 1x TBS-T for 15 mins. At last, slides952

were washed three times with 100 mM ammonium acetate,953

each 5 mins, air-dried, and stored in a vacuum chamber until954

MIBI imaging.955

MIBI imaging, processing, and analysis. Multiplexed956

imaging was conducted using a commercial MIBI-TOF mass957

spectrometer (MIBIscope™ System), equipped with a Xenon958

ion source. Running parameters on the instrument followed959

standard MIBI-TOF protocols (FOV size: 400 µm, Reso-960

lution setting: Fine 1ms, Depth: 1 layer). Subsequent to961

data acquisition, image processing was performed using cus-962

tom code deposited on GitHub. In brief, metal counts were963

extracted from raw MIBI data files, and compensated for964

spectrum contamination using the methods described by the965

Toffy method (cite github). Then for mouse colitis sam-966

ples, each individual image was manually separated into967

two masked regions: one containing fecal regions and the968

other containing luminal regions. The masks were man-969

ually drawn using FIJI (ImageJ). The images masked by970

the luminal mask underwent whole cell segmentation us-971

ing Mesmer (62), where the dsDNA signal served as the972

nuclear channel and a linear summation of CD45, tubu-973

lin, and E-cadherin channels served as the membrane chan-974

nel. Signal normalization was then performed within each975

MIBI run, whereby the median dsDNA intensities per seg-976

mented single cell from each field of view (FOV) were cal-977

culated. Subsequently, the signal intensity of all channels978

from each FOV were scaled up based on the ratio of the979

largest dsDNA median to the current FOV’s dsDNA median980

(within each MIBI run). The subsequent analysis diverged981

into two directions: 1) Analysis for host cells (within lumi-982

nal masks): Signal aggregates were removed from images983

using empty mass channels (mass_163) as masks. Counts984

from single cells in segmented MIBI images were then ex-985

tracted based on the segmentation generated by MESMER.986

Single cells with size of less than 50 pixels or more than987

2000 pixels were filtered out. Counts were normalized by988

the function log1p in R. Immune cells (CD45 >= 1.15989

pre-log1p normalized) and non-immune cells (CD45 < 1.15990

pre-log1p normalized) were clustered separately: for im-991

mune cells, "B220", "CD3e", "CD4", "CD11b", "CD11c",992

"CD68", "F480", "IgA", "Ly6g" were used for clustering;993

for non-immune cells, "Ecad", "Ki67", "MUC2", "PNAD.1",994

"SMA", "Tubulin", "Vimentin", "CD31" were used for clus-995

tering. Unsupervised clustering was performed by functions996

FindNeighbors and FindClusters from R package997

Seurat, and subsequently manually annotated for cell998

types. 2) Analysis for bacteria (within fecal masks): To999

calculate local bacteria spatial metrics, the bacteria-related1000

channels were first binarized, then a sliding window method1001

was implemented: a window of size 100 x 100 pixels (∼ 401002

µm) with sliding steps of 10 pixels was used. Windows that1003

have an overlap with the host mask for more than 50% of1004

the window area were removed for downstream analysis. For1005

mucus-bacteria ratio calculation, the ratio between the posi-1006

tive percentage of PAN-bacteria (all bacteria) signal and the1007

positive percentage of MUC2 signal within each sliding win-1008

dow was calculated. The medium ratio values inside each1009

MIBI FOV were used for downstream analysis. For entropy1010

calculation, function stats.entropy in python package1011

scipy was used, where input was the percentage of posi-1012

tive pixels of each bacterial channel inside each sliding win-1013

dow. The medium entropy values inside each MIBI FOV1014

were used for downstream analysis.1015

For correlative analysis between host and bacteria: cell type1016

frequencies within each FOV were calculated based on cell1017

annotations described above; local bacteria spatial metrics1018

were calculated as described above. Values from the same1019

FOVs were used to calculate the Pearson correlations and1020

test statistics, with function stat_cor() in R package1021

ggpubr. Details of the process are deposited in the github1022

repository.1023

MicroCart staining for GeoMx-Digital Spatial Profiling1024

(DSP). The GeoMx-DSP mouse Whole Transcriptome At-1025

las (WTA) panel was stained as previously described but1026

with modification to be compatible with MicroCart (13). In1027

brief, adjacent glass slides from MIBI imaging slides were1028

baked at 70 °C for 30 mins, and then washed in xylene1029

for 2 times, each 5 mins. Standard deparaffinization was1030

performed thereafter (3x Xylene, 2x 100% EtOH, 2x 95%1031

EtOH, 1x 80% EtOH, 1x 70% EtOH, 3x ddH2O; 1 min each).1032

Epitope retrieval was then performed at 95 °C for 10 min at1033

pH 9 (Dako Target Retrieval Solution, S236784-2) in a Lab1034

Vision PT Module (Thermo Fisher Scientific). Slides were1035

cooled to 65 °C and then removed from the PT Module, then1036

cooled further in RT for 20 mins. After antigen retrieval, a1037

Hydrophobic Barrier PAP Pen (Vector Labs, USA) was used1038

to draw out the hybridization area, and then washed 1 min1039

in 1x PBS. Slides were then digested by Protease K (0.11040

µg/ml) for 5 mins at 37 °C, and then washed with 1x PBS.1041

For BMA samples (if used), the Protease K step was skipped.1042

Subsequently, slides were fixed by 10% NBF for 5 min at1043

room temperature, then the fixation process was stopped by1044

5 mins of 1x NBF Stop Buffer wash, followed by 5 mins1045

1x PBS wash. The slides were first stained with custom-1046

made bacteria probes with DSP NGS barcodes (Nanostring),1047

then stained with the mouse WTA panel. In detail: slides1048

were first stained with custom bacteria NGS probes in hy-1049

bridization buffer (2x SSCT, 10% Dextran sulfate, 1x Den-1050

hardt’s Solution, 40% Formamide, 0.01% SDS, 200 µg/ml1051

Salmon sperm DNA,bacteria DSP probes 5 nM) at 46 °C for1052

3 hrs, in a humidity chamber. After incubation, the hybridiza-1053
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tion buffer was removed, and slides were subject to three1054

times washing with 40% formamide 2x SSCT at 46 °C, 101055

mins each, then followed with a quick 2x SSC wash. After-1056

wards, Nanostring DSP mouse WTA detection probes were1057

then applied to the slides and incubated overnight (∼ 18 hrs)1058

at 37 °C. After hybridization, slides were washed in Strin-1059

gent Wash Buffer (2x SSC, 50% Formamide) 2 times, each1060

5 mins at RT. Slides were then washed by 2x SSC twice, 21061

mins each. Buffer W was then applied to the slides for 301062

mins, followed by antibody staining for 1hr 1:100 dilution1063

of CD45-Alx647 (D3F8Q, CST), and 1:100 dilution of E-1064

Cadherin-Alx594 (24E10, CST). Slides were then washed by1065

2x SSC twice, 5 mins each, and stained with 500 nM SYTO1066

13 for 15 mins, then loaded onto the GeoMx DSP machine.1067

For the bacteria pellet sample, the process was the same as1068

described above, but with two differences: 1), the antigen re-1069

trieval step was skipped. 2), 2x SSC, instead of the mouse1070

WTA detection panel, was used during the first staining step,1071

as no mouse cells were present in the bacteria pellet samples.1072

Digital Spatial Profiling data acquisition and analysis.1073

For the GeoMx DSP sample collection, we followed the1074

guidelines provided in the GeoMx DSP instrument user man-1075

ual (MAN-10088-03). The process involved selecting spe-1076

cific regions of interest (ROIs) that were imaged by MIBI1077

on the adjacent gold slide. Three types of ROIs were cho-1078

sen: 1) luminal regions positive for CD45, 2) luminal regions1079

positive for Ecad, and 3) adjacent fecal regions. For bacte-1080

ria pellet samples (validation), ROIs were circles with 1001081

µm radius with bacterial cells. Sample collection was per-1082

formed according to the designated ROIs. Subsequently, the1083

Nanostring NGS library preparation kit was utilized. Each1084

collected ROI was uniquely indexed using Illumina’s i5 x i71085

dual-indexing system. A PCR reaction was carried out with 41086

µl of collected samples, 1 µM of i5 primer, 1 µM of i7 primer,1087

and 1x Nanostring library prep PCR Master Mix. The PCR1088

conditions included incubation at 37 °C for 30 mins, 50 °C1089

for 10 mins, an initial denaturation at 95 °C for 3 min, fol-1090

lowed by 18 cycles of denaturation at 95 °C for 15 s, an-1091

nealing at 65 °C for 60 s, extension at 68 °C for 30 s, and a1092

final extension at 68 °C for 5 mins. The PCR product was1093

purified using two rounds of AMPure XP beads at a 1.2x1094

bead-to-sample ratio. The libraries were then subjected to1095

paired-end sequencing (2 x 75 bp) on a NextSeq550 platform1096

(Novogene). The NGS barcodes from the Nanostring mouse1097

WTA panel and custom bacteria probes were mapped and1098

counted using the commercial GeoMx Data Analysis soft-1099

ware pipeline, using FASTQ files generated from NGS se-1100

quencing. The resulting data underwent quality control and1101

normalization steps, using the R package Geomx-Tools1102

provided by Nanostring. Initially, ROIs and probes that did1103

not meet the default quality control requirements were fil-1104

tered out and excluded from subsequent analyses. Next, raw1105

probe counts were transformed into a gene-level count ma-1106

trix by calculating the geometric mean of the probes corre-1107

sponding to each gene. Normalization of gene counts was1108

performed using the ’Q3 norm (75th percentile)’ method rec-1109

ommended by Geomx-Tools. The normalized gene counts1110

(Q3 normed) were then used for downstream analyses. Dif-1111

ferentially expressed genes (DEG) between control and DSS1112

treated samples were identified using a linear mixed-effect1113

model (LMM) documented by Geomx-Tools. Gene set1114

enrichment analysis (GSEA) was performed with R package1115

GSEA with function gsea and database ‘GO:BP’ (63). De-1116

tails of the process are deposited in the github repository.1117

MALDI-MSI N-Glycan data acquisition and analysis.1118

The tissue preparation process was followed as previously1119

described (64). In brief, glass slides with MFPE mouse in-1120

testinal tissues were baked at 70 °C for 30 mins, and then1121

washed in xylene for 2 times, each 5 mins. Standard deparaf-1122

finization was performed thereafter (3x xylene, 2x 100%1123

EtOH, 2x 95% EtOH, 1x 80% EtOH, 1x 70% EtOH, 3x1124

ddH2O; 1 min each). Epitope retrieval was then performed1125

at 95 °C for 10 min at pH 9 (Dako Target Retrieval Solution,1126

S236784-2) in a Lab Vision PT Module (Thermo Fisher Sci-1127

entific). Slides were cooled to 65 °C and then removed from1128

the PT Module, then cooled further in RT for 20 mins. Af-1129

terwards, slides were dried overnight in a desiccator. Then, a1130

total of 15 passes of the PNGase F PRIME enzyme at 0.11131

µg/µl was applied to the tissue slides, at a rate 25 µl/min1132

with a velocity of 1200 mm/min and a 3 mm offset at 101133

psi and 45 °C using an M3+ Sprayer (HTX Technologies,1134

USA). Enzyme-sprayed slides were then incubated in pre-1135

warmed humidity chambers for 2 hrs at 38.5 °C for deglyco-1136

sylation. After incubation, a total of 14 passes of 7 mg/ml1137

CHCA matrix in 50% ACN/0.1% TFA was applied to the1138

deglycosylated slides at a rate of 70 µl/min with a velocity of1139

1300 mm/min and a 3 mm offset at 10 psi and 77 °C using1140

the same sprayer. Washing steps using low and high-pH solu-1141

tions and water were performed between enzyme and matrix1142

applications to clear the sprayer headline. After matrix depo-1143

sition, slides were desiccated until analysis. To assist batch1144

effect correction for MALDI signals, 4 tissue cores from the1145

same human TMA were sectioned into each glass slide with1146

mouse intestine samples, and utilized as baseline normaliza-1147

tions for downstream analysis.1148

A timsTOF fleX MALDI-2 mass spectrometer (Bruker Dal-1149

tonics, Germany) equipped with a 10 kHz SmartBeam three-1150

dimensional (3D) laser operating in positive mode with a spot1151

size of 10 µm was used to detect released N-glycans at a high1152

resolution. 200 laser shots per pixel over a mass range of 8001153

to 4000 m/z were collected for analysis, with an ion transfer1154

time of 120 µs, a prepulse storage time of 28 µs, a collision1155

frequency of 4000 Vpp, a multipole frequency of 1200 Vpp,1156

and a collision cell energy of 10 eV.1157

Following MALDI data analysis, signals were extracted and1158

generated into .tiff (per glass slide) images using https://1159

github.com/angelolab/maldi-tools developed1160

by the Angelo lab. To account for batch effects among differ-1161

ent slides during N-Glycan level comparisons between col-1162

itis status, the signals from each N-Glycan molecule were1163

normalized to the same scale, based on the average ratio1164

calculated between the corresponding 4 control tissue cores1165

(from Human TMA with muscle/epithelial tissues) across1166

slides. To perform pixel-level clustering on N-Glycan sig-1167
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nals, pixie was implemented as previously described (49).1168

Briefly, harmony (65) was performed first to further cor-1169

rect the batch effects at the latent space level. Pixel level1170

N-glycan signals from each image were flattened into n × p1171

dimensional matrix, where p is the number of N-Glycan,1172

and n is the total number of pixels in each image/slide.1173

We then concatenated the vectors among all slides (m × p,1174

from 4 slides in total), and utilized SVD to denoise and re-1175

duce the matrix to m × k, where k was set to 30. Subse-1176

quently the function run_harmony from python package1177

harmonypy was used to run on the dot product of U and1178

D matrix from the SVD process in the previous step, where1179

the slide id was used as batch labels. The resulting harmony1180

Z_corr loading matrix was then used to calculate the dot1181

product with the V matrix from the SVD process in the pre-1182

vious step, and reformatted back to matrices with the same1183

dimensions as the original .tiff image (eg. h × w × p). This1184

resulted in a ‘harmony - corrected’ version of the image, and1185

these images were used as input for the pixie pipeline. The1186

number of pixel clusters to be defined was set to 20 clusters,1187

and no Gaussian blurring was applied to images and other1188

parameters were set as default for the pipeline. Details of the1189

process are deposited in the github repository.1190

Macrophage analysis. To identify high macrophage /1191

monocyte infiltration tissue areas, MIBI FOVs were ranked1192

by macrophage and monocyte (combined) percentage, and1193

the top 15 FOVs (and the paired DSP regions) were labeled1194

as high infiltration, and the rest of all FOVs were labeled1195

as other. Gene pathway scores were calculated based on1196

gene expression data from DSP-CD45 regions, using the1197

function gsva in R package GSVA. For ‘Smooth muscle1198

proliferation score’, genes from the GO:BP database term:1199

‘GOBP_SMOOTH_MUSCLE_CELL_PROLIFERATION’1200

were used. For ‘Smooth muscle migration1201

score’, genes from the GO:BP database term:1202

‘GOBP_SMOOTH_MUSCLE_CELL_MIGRATION’1203

were used. For ‘Macrophage chemotaxis1204

score’, genes from the GO:BP database term:1205

‘GOBP_MACROPHAGE_CHEMOTAXIS’ were used.1206

For ‘Monocyte chemotaxis score’, genes from the GO:BP1207

database term: ‘GOBP_MONOCYTE_CHEMOTAXIS’1208

were used. Cell-cell interaction analysis was performed as1209

previously described (39, 52). In brief, for each individual1210

macrophage or monocyte, the Delaunay triangulation for1211

neighboring cells (within 50 µm) was calculated based on1212

the XY position with the deldir R package. To establish1213

a baseline distribution of the distances, cells were randomly1214

assigned to existing XY positions, for 1000 permutations.1215

The baseline distribution of the distance was then compared1216

to the observed distances using a Wilcoxon test (two-sided).1217

The log2 fold enrichment of observed mean over expected1218

mean for each interaction type was plotted for interactions1219

with a p-value < 0.05. The test results also include the1220

interactions in both directions (eg. Macrophage => T and1221

T => Macrophage). GSEA analysis on the high infiltration1222

regions was implemented similarly as described in previous1223

sections.1224

Gene programs for DSP host WTA data were identified via1225

cNMF as previously described (53). In brief, functions1226

from python package cnmf were used on the top 8000 vari-1227

able genes in the q3-normalized DSP gene expression data.1228

The rank in cNMF (number of gene programs) was set to1229

35 (determined via function k_selection_plot). Af-1230

ter identifying the gene programs, the Spearman correlation1231

of the programs scores between paired CD45 and Ecad re-1232

gions was calculated, and plotted as a heatmap with pro-1233

grams clustered by hierarchical clustering. To annotate each1234

‘correlation hotspot’ in the heatmap, the top 10 contributing1235

genes for each gene program (identified from gep_scores1236

from package cnmf) within the selected ‘hotspots’ were1237

grouped, and Gene Ontology term enrichment analysis was1238

performed on the grouped genes from each hotspot, using the1239

function enrichr in R package enrichR, with database1240

‘GO_Biological_Process_2015’. Details of the process are1241

deposited in the github repository.1242

Multiomic analysis, correlation network, and stacked1243

ensemble model. Multiomic information of MIBI, DSP,1244

and MALDI from each individual intestinal tissue region1245

were gathered for analysis. FOVs from MIBI and ROIs1246

from DSP were paired and used for downstream analysis.1247

For MALDI data, masks where the MIBI FOVs and DSP1248

ROIs were acquired on the tissue were manually gener-1249

ated, and glycan expression profiles were extracted for each1250

FOV. This process created a MIBI-DSP-MALDI tri-modality1251

paired data across different tissue regions.1252

For correlative analysis between GO:BP-metabolic pro-1253

cesses and glycan expression: gene terms with pat-1254

tern ‘metabolic_processes’ were selected from the GO:BP1255

database, and the corresponding genes for each gene term1256

were extracted and used to calculate a gene term enrichment1257

score for each tissue region by function gsva from R pack-1258

age GSVA. Gene terms of metabolic processes with the top 201259

highest variation across samples (based on gsva scores) were1260

selected, and the Spearman correlation between the glycan1261

expressions and gene terms were calculated. For visualiza-1262

tion purposes, features (gene terms and glycans) with at least1263

one significant correlation (p.adjusted < 0.05) were shown in1264

the heatmap. For correlative analysis between cell type fre-1265

quencies and glycan expression: the correlation between cell1266

frequencies within each tissue region from MIBI data and1267

glycan expressions were calculated and plotted.1268

For correlative analysis between host transcriptome and bac-1269

teria signal, Spearman correlations were calculated between1270

each mouse WTA gene inside ‘Ecad’ regions (large intes-1271

tine), and bacteria signals (‘Firmicute’, ‘Bacteroidetes’, ‘Pro-1272

teobacteria’) in the adjacent ‘Fecal’ regions. The top 501273

genes with the highest absolute Spearman correlation values1274

for each type of bacteria signal were used for plotting and1275

analysis. GSEA was performed with R package GSEA with1276

function gsea and database GO:BP on the highly correlative1277

genes for each bacteria signal type. For correlative analysis1278

between cell type frequencies and microbiome local spatial1279

metrics, the Spearman correlations were calculated between1280

within each tissue region from MIBI FOVs, and the adjacent1281
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fecal regions.1282

For cross-modality feature correlation network construction:1283

For MIBI, host cell-type percentages and normalized bac-1284

teria signal from each FOV were used as input; For DSP,1285

we implemented dimension reduction first to decrease the1286

number of features. We applied SVD to denoise and re-1287

duce the gene expression matrix from CD45 and Ecad re-1288

gions separately, with k set to 20, and the dot product of1289

the U and D matrix were used as the reduced gene com-1290

ponents. The loading values from the V matrix were used1291

to identify the top 10 positive contributing (high loading1292

value) and top 10 negative contributing (low loading value)1293

genes for each gene component. The CD45 and Ecad gene1294

components, along with bacteria signals from fecal regions1295

from each ROI were used as input; For MALDI, N-Glycan1296

signals from each manually aligned mask were used as in-1297

put. Subsequently, features from these three modalities1298

were concatenated, and a correlation (Spearman) matrix was1299

calculated with function rcorr.adjust from R package1300

RcmdrMisc. The correlation matrix was then transformed1301

into a distance matrix to construct a graph with Minimal1302

Spanning Tree (MST), with function mst from R package1303

ape and function graph.adjacency from R package1304

igraph. The MST graph was used as the backbone of1305

the network. Subsequently, we constructed a second graph,1306

where nodes (feature) were connected together by an edge,1307

if there was significant (p.adj < 0.05) correlation observed.1308

Finally, the graphs were plotted by functions from R pack-1309

ages ggplot and ggnetwork, where the node placements1310

were determined by MST graph layout, and edges connected1311

by either MST graph (backbone) or the second significant1312

correlation graph.1313

For the stacked ensemble prediction model, single modal-1314

ity or stacked multi-omic features were used to classify1315

colitis status. Single modality prediction models were1316

Distributed Random Forest (DRF) classifiers with func-1317

tion h2o.randomForest from R package h2o; the1318

stacked ensemble prediction model was achieved by stack-1319

ing the 3 single modality DRF classifiers with function1320

h2o.stackedEnsemble, using a DRF metalearner. All1321

single or stacked models used the same 60% - 40% train test1322

data split, 5-fold cross-validation with the same seed. Fea-1323

ture importance scores were calculated based on function1324

h2o.varimp, where the importance percentages from each1325

single modality model were extracted, and further weighted1326

by drop-out ensemble model performances tests, in order to1327

scale up features from more important modalities. Details of1328

the process are deposited in the github repository.1329
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