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Abstract 

Electroencephalography (EEG) has been thoroughly studied for decades in psychiatry research. 

Yet its integration into clinical practice as a diagnostic/prognostic tool remains unachieved. We 

hypothesize that a key reason is the underlying patient's heterogeneity, overlooked in 

psychiatric EEG research relying on a case-control approach. We combine HD-EEG with 

normative modeling to quantify this heterogeneity using two well-established and extensively 

investigated EEG characteristics -spectral power and functional connectivity- across a cohort 

of 1674 patients with attention-deficit/hyperactivity disorder, autism spectrum disorder, 

learning disorder, or anxiety, and 560 matched controls. Normative models showed that 

deviations from population norms among patients were highly heterogeneous and frequency-

dependent. Deviation spatial overlap across patients did not exceed 40% and 24% for spectral 

and connectivity, respectively. Considering individual deviations in patients has significantly 

enhanced comparative analysis, and the identification of patient-specific markers has 

demonstrated a correlation with clinical assessments, representing a crucial step towards 

attaining precision psychiatry through EEG. 

Introduction 

Electroencephalography (EEG) has been extensively studied in psychiatry research to identify 

electrophysiological correlates of various disorders (Loo and Makeig 2012; Olbrich and Arns 

2013; de Aguiar Neto and Rosa 2019; Wang et al. 2013), disease severity (Livint Popa et al. 

2020), subtypes (Zhang et al. 2021; Slater et al. 2022; Clarke et al. 2001), and treatment 

response (Widge et al. 2019; Watts et al. 2022; Wu et al. 2020; Rolle et al. 2020). The non-

invasive nature of EEG, its cost-effectiveness, and its capacity to capture rapid spontaneous 

brain activity make it a highly appealing tool for clinical psychiatry. Nonetheless, despite 

considerable research efforts, the pathophysiological mechanisms of psychiatric disorders are 

still poorly understood and the progress in establishing clinically applicable EEG-based 

biomarkers has fallen short of expectations. This is evidenced by the pronounced 

inconsistencies observed across studies (Newson and Thiagarajan 2019; Neo et al. 2023; 

González-Madruga, Staginnus, and Fairchild 2022; Cortese et al. 2021; Miljevic et al. 2023). 

A key factor contributing to this issue is the reliance, in EEG research, on statistical designs 

that fail to account for the inherent heterogeneous nature of psychiatric disorders (Feczko et al. 

2019; Marquand et al. 2019). Typically, these designs rely on comparisons of average 

differences between groups (e.g. patient versus control or treatment versus placebo), 

presupposing uniformity within groups, as well as distinct separations between cases and 

healthy controls (Verdi et al. 2021; Marquand et al. 2016, 2019; Feczko et al. 2019). However, 

such assumptions significantly misrepresent the reality of psychiatric disorders, which exhibit 

profound heterogeneity and overlap in symptoms, severity levels, developmental course, 

biological underpinnings, and response to treatment (Segal et al. 2023).  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2024. ; https://doi.org/10.1101/2024.03.04.583393doi: bioRxiv preprint 

https://paperpile.com/c/GyzLkE/MyeE+wzQK+c62r+ZvVd
https://paperpile.com/c/GyzLkE/MyeE+wzQK+c62r+ZvVd
https://paperpile.com/c/GyzLkE/yBt3B
https://paperpile.com/c/GyzLkE/yBt3B
https://paperpile.com/c/GyzLkE/HCe5+jx1H+EPSv
https://paperpile.com/c/GyzLkE/ZgQZ+Xq9I+79Ys+YRoh
https://paperpile.com/c/GyzLkE/qK1S+0Hrc+PQcG+nwnX+bcXG
https://paperpile.com/c/GyzLkE/qK1S+0Hrc+PQcG+nwnX+bcXG
https://paperpile.com/c/GyzLkE/EsrY+1xIu
https://paperpile.com/c/GyzLkE/EsrY+1xIu
https://paperpile.com/c/GyzLkE/rjiS+dKvN+1xIu+EsrY
https://paperpile.com/c/GyzLkE/kvlN
https://doi.org/10.1101/2024.03.04.583393
http://creativecommons.org/licenses/by/4.0/


 

To more effectively capture the nuanced heterogeneity of psychiatric disorders, research 

methodologies should go beyond conventional case-control paradigms to more sophisticated 

statistical techniques that can accommodate the variability within and across patient and 

healthy populations (Marquand et al. 2019; Verdi et al. 2021). An emerging powerful approach 

in neuroimaging is normative modeling (NM), which involves estimating normative 

trajectories of a reference population and assessing the degree to which individuals deviate 

from these norms (Verdi et al. 2021; Marquand et al. 2016, 2019). A well-known example of 

NM is pediatric growth charts, by which a child's height and weight are compared to those of 

children of the same age and sex (Cole 2012). Recent MRI studies combined with NM have 

endeavored to chart analogous trajectories for brain phenotypes (e.g., grey and white matter 

volumes, mean cortical thickness, total surface area, etc.) to map lifespan age-related changes 

in brain structure (Bethlehem et al. 2022; Rutherford, Fraza, et al. 2022; Rutherford et al. 2023) 

and characterize structural heterogeneity in psychiatric disorders (Segal et al. 2023) such as 

ADHD (Wolfers et al. 2020), Autism (Zabihi et al. 2020), Schizophrenia and Bipolar disorder 

(Wolfers et al. 2018), as well as in neurodegenerative disease as Alzheihmer’s disease (Verdi 

et al. 2023). Additionally, there has been a development of normative models for functional 

MRI, although to a lesser extent (Rutherford, Kia, et al. 2022; Sun et al. 2023). However, to 

our knowledge, similar research focusing on the electrophysiological aspects of psychiatric 

disorders and the underlying substrates of heterogeneity remains unexplored. 

 

Fig. 1 | Normative modeling of electrophysiological features across age and individual deviation 

assessment. (a) Illustration of the normative trajectory of a given feature across different ages, with the 

solid line representing the median trajectory derived from a healthy reference population (training set). 

(b) Tabulation of deviation scores for individual subjects across multiple features including power 

spectral densities and functional connectivity. Red and blue values denote negative and positive 

deviations (i.e., below/above the median), respectively. (c) Individual deviation maps showing spectral 

(upper panel) and network-based (lower panel) deviations. 

Here, we address this gap by combining HD-EEG with NM to elucidate the 

electrophysiological heterogeneity of psychiatric disorders. We perform our investigation at 

two levels, the scalp (the level of electrode) and the sources (the level of cortical brain sources), 

thanks to the availability of high channel density. We develop an end-to-end NM framework 

of a normative HD-EEG cohort comprising 560 healthy subjects (age 5-18 yo), see Fig. 1a for 

illustrative explanation. We then systematically quantify the heterogeneity observed in the HD-
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EEG power spectrum and functional connectivity among a clinical group of 1674 age-matched 

patients diagnosed with autism ASD, Attention deficit hyperactivity disorder (ADHD), anxiety 

(ANX), and learning disorders (LD), Fig. 1b, 1c. Inspired by MRI-based studies, we 

hypothesize that psychiatric disorders exhibit substantial electrophysiological heterogeneity 

and that individual patient deviations are likely to demonstrate low spatial homogeneity across 

both channels and cortical regions. 

Results 

Data description 

High-density (128 channels) resting-state EEG data was collected from subjects aged between 

5 and 18 years old across multiple datasets (Methods). Models were trained on 448 (52% M) 

healthy controls (HC) and 112 (55% M) healthy subjects were held out as a comparison group 

against the clinical cohort. The clinical groups comprised 576 subjects diagnosed with ASD 

(52% M), 650 with ADHD (27% M), 216 with Anxiety disorders (52% M), and 232 with 

Learning disorders (46% M).  

Normative modeling 

EEG power spectra (i.e., EEG power in the predefined frequency band: delta, theta, alpha, beta, 

and gamma) have been the most used EEG features in psychiatry (Neo et al. 2023). More 

recently and with the availability of high-density EEG, source-space functional connectivity 

analysis has emerged as a highly promising approach, establishing a framework for the 

electrophysiological circuit-level differentiation of healthy and diseased brains (Hassan and 

Wendling 2018). Here, we have developed models for the normative trajectories of these two 

well-established sets of features and assessed the heterogeneity in psychiatric disorders based 

on subject deviations from the normative trajectories. For each feature, we trained a 

Generalized Additive Model for Location, Scale, and Shape (GAMLSS) on a healthy reference 

population. For the spectral features, a GAMLSS was fitted to the relative power (Welch’s 

method) of each channel and each frequency band. Functional connectivity was estimated 

between 68 predefined brain regions from the Desikan-Killiany atlas using Amplitude 

Envelope Correlation -AEC- (Brookes et al. 2011; Hipp et al. 2012), corrected for source 

leakage using an orthogonalization approach (Brookes, Woolrich, and Barnes 2012). A 

GAMLSS was fitted to the connectivity values at each connection and each frequency band.  

Subsequently, subjects with psychiatric disorders (ASD, ADHD, ANX, and LD) along with an 

HC(test) group were projected on these models to calculate their deviation scores (z-scores, z). 

These deviations can be negative (lower than normative values) or positive (higher than 

normative values), Fig. 2a1, 2b1. Extreme deviations were defined as |z|> 2 (Bethlehem et al. 

2022; Rutherford, Kia, et al. 2022; Rutherford et al. 2023; Segal et al. 2023; Wolfers et al. 

2020, 2018; Zabihi et al. 2020; Verdi et al. 2023), Fig. 2a2, 2b2. 
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First, we computed the percentage of subjects with at least one extremely deviated 

channel/connection, as well as the number of extremely deviated channels/connections per 

subject in each group. Next, we evaluated the spatial overlap of extreme deviations by 

computing the percentage of extremely deviated subjects per channel/connection within each 

group. (Fig. 2a3, 2b3). A group-based permutation test (Segal et al. 2023) was used to compare 

clinical groups and HCs overlap maps (all results were corrected for multiple comparisons 

using FDR), Fig. 2a4, 2b4. 

 

Fig. 2 | Overview of the quantification of heterogeneity in spectral and connectivity features based 

on normative model-inferred deviation scores. (a1) individualized deviation maps scores for spectral 

power, (a2) extreme deviation maps displaying both positive (top) and negative (bottom) deviations, 

identified for deviation scores >2 and <-2, respectively, (a3) spatial overlap maps, calculated as the 

percentage of subjects showing extreme deviation at each channel, among those with at least one 

extreme deviation, to identify common areas of deviation. (a4) group-based permutation tests  to 
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evaluate group differences (HC(test) vs clinical group) in channel-level overlap (p<0.05, FDR 

corrected) (b1-b4) same methodological approach applied for functional connectivity. 

The distribution of the number of extremely deviated channels/connections across groups is 

depicted in Fig. S19-S28 in Supplementary Materials. Range and median values are reported 

in Table S6-S15. The number of negatively deviated channels per subject in all clinical groups 

were significantly different as compared to HC(test) in delta band (p<0.03, Mann-Whitney 

test). For the positive deviations, all groups showed significant differences compared to 

HC(test) at alpha and beta bands (p<0.01). Regarding functional connectivity features, ADHD 

and ASD showed significantly fewer numbers of negative extreme deviations compared to 

HCs, particularly in the beta and gamma bands (p<0.01). Conversely, ANX and LD 

demonstrate significant differences only in the alpha band (p<0.05). However, connections 

displaying positive deviations are significant across all clinical groups and frequency bands 

(p<0.01). Interestingly, while we observed significant differences in most cases, our results did 

not reveal a uniform trend. In some instances, clinical cohorts exhibited higher numbers of 

extreme deviations compared to the HC group; conversely, in other instances, the HC group 

showed more extreme deviations than clinical groups. 

Spectral heterogeneity 

The percentages of subjects having at least one negative deviation were relatively low with the 

highest values occurring in the theta (ASD: 44%), alpha (ADHD: 29%, LD: 25%, ANX: %23), 

and beta (HC(test): %35) bands (These percentages are detailed across all frequency bands and 

disorders in Table S6-S10 in the Supplementary Materials). Thus, a substantial proportion of 

participants exhibit significant similarities with the healthy control (HC) group. Then, we 

quantified the spatial overlap of these extreme deviations across subjects. Fig. 3a illustrates 

examples of the overlap maps across groups (detailed results figures can be found in 

Supplementary Materials, Fig S29-S33). Interestingly, the overlap values were low and did not 

exceed 40% (delta: ADHD: 31%, ANX: 32%; beta: ASD: 28%, HC(test): 31%; gamma: LD: 

40%) reflecting an inconsistency in the spatial location of extreme deviations. Notably, LD and 

ADHD exhibited the highest consistency (i.e., overlap) across subjects, mainly in the delta 

band. Overall, similar results were obtained for positive deviations. The ASD group exhibited 

the highest percentage of subjects having at least one extreme deviation (41% in theta band) 

and the spatial overlap that did not exceed 40% (HC(test), alpha).  

To investigate if the obtained overlap may differentiate patients from HC, we compared the 

channel-wise overlap maps between clinical groups and healthy controls. The result of group-

based permutations (see Methods) varies greatly between frequency bands (Fig. 3b). Out of 

124 channels (remained after data preprocessing), the highest number of channels showing 

significant difference with HC(test) for negative extreme deviation overlap was 41 (delta: 

ADHD: 26; beta: ASD: 19, LD: 41; ANX: 22; uncorrected). Only 15 channels survive FDR 

correction for LD in beta band mainly in the occipital-parietal region. For anxiety in the beta 

band, none survive the FDR correction, instead in the gamma band 11 channels remain mostly 

in the frontal area (Fig. 3b). For positive extreme deviations, ADHD has the highest number of 

significant channels in gamma (delta: ANX: 50; alpha: ASD: 57; gamma: ADHD: 86, LD: 63, 
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uncorrected), of which 74 channels remain after FDR correction. For the ASD group after FDR 

correction there are no significant channels in the alpha band, only 3 channels in the frontal 

region survive in the delta band (Fig. 3b). This low overlap and weak differentiation between 

cases and HC confirm the absence of consistent characteristic patterns among a whole group. 

Instead, the patterns seem to be subject-specific. All the results for cases and frequency bands 

are presented in the supplementary materials (Figure S29 to S33). 

 

Fig. 3 | Spectral features heterogeneity. (a) Overlap maps of deviation scores for clinical groups and 

the held-out healthy control group (HC(test)), illustrating areas of common deviation. (b) channels 

showing significant differences between HC(test) and clinical groups, determined through group-based 

permutation tests (p<0.05, FDR corrected).  

Heterogeneity at the level of functional connectivity  

Next, we quantified the heterogeneity at the level of functional brain connections. Unlike the 

findings from spectral analysis, we observed an increase in the number of subjects exhibiting 

at least one negative/positive extreme deviation. Detailed percentages across all frequency 

bands and disorders are provided in Table S11-S15 in the Supplementary Materials. For 

negative extreme deviations, the highest observed percentage was 87% (delta: HC(test): 87%, 

ASD: 71%; theta: ADHD: 82%, ANX: 83%, LD: 82%). Among subjects with at least one 

extreme deviation, the spatial overlap of these deviations was notably low, not exceeding 14% 

(alpha: HC(test): 14%, ASD: 9%, ADHD: 10%, LD: 10%, gamma: ANX: 12%), Fig. 4b. For 

positive deviations, the percentage of subjects with at least one extremely deviant connection 

is modestly lower (the highest value (73%) obtained for ASD in beta band). Conversely, the 

within-groups overlap percentages slightly increased (delta: ADHD: 15%; theta: ANX: 19%; 

alpha: HC(test): 23%, beta: LD: 24%, gamma: ASD: 21%) with LD exhibiting the highest 

overlap values, Fig. 4a.  
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Fig. 4 | Functional connectivity heterogeneity. Overlap maps of (a) positive and (b) negative 

deviation scores for clinical groups and the held-out healthy control group (HC(test)) within the 

different frequency bands, illustrating areas of common deviation among patients (with only the highest 
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3% overlap values being plotted for visualization purposes). (c-d) functional connections showing 

significant differences between HC(test) and clinical groups at the different frequency bands, 

determined through group-based permutation tests (p<0.05, FDR corrected). 

Significant differences, using group-based permutation tests corrected using FDR, in overlap 

maps between clinical groups and healthy controls are shown in Fig. 4c and Fig S34-S38 in 

Supplementary Materials. The variation is pronounced across frequency bands. Compared to 

connections with negative deviations, a higher number of connections with positive deviations 

were found to be significant. 

Deviation scores as patient-specific markers for comparative 

analysis and correlation with clinical assessment 

Having assessed the heterogeneity among patients, we sought potential solutions by leveraging 

NMs to derive EEG-markers tailored to individual patients. To explore this, we performed two 

proof-of-concept analyses. First, we explored whether the metrics derived from NM could 

outperform classical features in differentiating between healthy controls and patient groups. 

Using a network-based statistics -NBS- approach (permutation test, n=5000) (Zalesky, Fornito, 

and Bullmore 2010), we compared the clinical groups to the HC using either the original 

functional connectivity  matrices (the original features) or the deviation score (z-scores) 

matrices. Interestingly, FC features did not show any significant differences between HC vs. 

cases. However, using z-scores, significant differences were found between groups at different 

frequency bands. Examples of these differences are presented in Fig. 5a for ASD at alpha 

(p=0.0002, 91 edges) and beta (p=0.007, 12 edges) bands and ADHD at delta band (p<0.0001, 

94 edges). 

Second, we explored the potential of NM to provide a framework for generating subject-

specific markers that may correlate with clinical assessments of patients. For this purpose, we 

calculated a global deviation score for each subject, defined as the average z values of the 

extremely deviated connections. This score was then correlated with the patients' clinical 

assessments. Fig. 5b shows a significant, but relatively low, Spearman correlation (average 

⍴=0.2, p<0.05) between total ADOS scores (a standard clinical assessment in ASD) and both 

positive and negative patient-specific global deviation scores. As ADOS scores increased, 

positive global deviations also increased, while negative global deviations decreased. Global 

deviations derived from the spectral models showed no correlation with clinical scores. These 

findings are a first step into developing EEG-based patient-specific markers that can be used 

for objectively quantifying personalized treatment such as medication or neurostimulation. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2024. ; https://doi.org/10.1101/2024.03.04.583393doi: bioRxiv preprint 

https://paperpile.com/c/GyzLkE/wNe9
https://paperpile.com/c/GyzLkE/wNe9
https://doi.org/10.1101/2024.03.04.583393
http://creativecommons.org/licenses/by/4.0/


 

 

Fig. 5 | Leveraging deviation scores for group-based analysis and correlation with clinical 

assessments. (a) Identification of significant network patterns that differentiate case groups (ASD and 

ADHD) from the healthy control (HC) group, as revealed by network-based statistics (NBS). (b) 

Correlation between ASD subjects' global deviation scores and clinical assessment scores (total ADOS) 

in alpha and gamma bands. 

Discussion 

We combined HD-EEG with normative modeling to characterize the heterogeneity in spectral 

power and functional connectivity among patients with psychiatric disorders. We showed 

highly heterogeneous alterations with deviation spatial overlap across patients that did not 

exceed 40% and 24% for spectral power and connectivity, respectively. Our results challenge 

the prevailing reliance on a case-control approach in psychiatric EEG studies, emphasizing the 

importance of recognizing individual variability. The pronounced heterogeneity we observed 

across the conditions studied suggests that assuming within-group homogeneity, as implicitly 

done in prior psychiatric EEG research, oversimplifies the intricate neurophysiological 

signatures associated with psychiatric disorders. We finally showed that through the 

consideration of the individual patient variability, the enhancement of comparative analysis has 

been substantial. The identification of patient-specific markers has demonstrated a correlation 

with clinical assessments, representing a crucial advancement in the pursuit of EEG precision 

psychiatry.  

Heterogeneity in EEG spectral and connectivity features 

EEG spectral power has long dominated EEG clinical research in general and specifically in 

psychiatry (Neo et al. 2023). Investigating changes in the power of predefined frequency bands 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2024. ; https://doi.org/10.1101/2024.03.04.583393doi: bioRxiv preprint 

https://paperpile.com/c/GyzLkE/0Hrc
https://doi.org/10.1101/2024.03.04.583393
http://creativecommons.org/licenses/by/4.0/


 

has been one of the standards in EEG research for determining changes between healthy 

controls and patient groups. However, research outcomes are usually inconsistent across 

studies (Neo et al. 2023; Newson and Thiagarajan 2019). Moreover, changes in EEG power do 

not characterize a single disorder but rather show significant overlap across various psychiatric 

conditions (Newson and Thiagarajan 2019). For instance, an increase in power in the lower 

frequency bands (delta and theta) and a decrease across higher frequencies (alpha, beta, and 

gamma) represent a dominant pattern of change across several disorders, including ADHD, 

schizophrenia, and OCD (Newson and Thiagarajan 2019). Furthermore, a significant number 

of conditions, including PTSD, addiction, and autism, do not exhibit a consistent pattern of 

spectral change in any specific direction (Newson and Thiagarajan 2019). 

Functional connectivity research represents an emerging framework that is not as established 

as spectral analysis. Despite its novelty, there is a significant body of studies aimed at 

characterizing functional alterations associated with psychiatric disorders. Nevertheless, 

inconsistencies in the results have been observed (Miljevic et al. 2023). For instance, meta-

analyses of resting-state functional connectivity in ADHD found no spatial convergence across 

studies (González-Madruga, Staginnus, and Fairchild 2022; Cortese et al. 2021). Similar 

findings were observed in (Samea et al. 2019) where no significant convergent functional 

alterations in children/adolescents with ADHD in their main meta-analysis comprising 1914 

unique participants from 96 studies. 

The observed inconsistency in results can be, in part, justified by the lack of a standardized 

methodology for EEG data acquisition and analysis (variations in electrode configurations, task 

paradigms, signal processing techniques, etc...) and small sample sizes compromising the 

generalizability of the findings. However, even with efforts to control for these methodological 

variables, achieving consistent results remains challenging. A principal source of this 

variability is the inherent heterogeneity among patient populations in psychiatric disorders 

(Feczko et al. 2019; Marquand et al. 2016), which may introduce confounding factors not 

accounted for in group-level analyses. The heterogeneity we observed here in psychiatric EEG 

is in line with recent studies using MRI (structural and functional) with NM in psychiatry. 

Indeed, it was shown that patient-specific deviations from population expectations for regional 

gray matter volume were highly heterogeneous, affecting the same area in <7% of people with 

the same diagnosis (Segal et al. 2023). Our results at the channel/connection level showed 

higher consistency than these structural MRI-based studies. Our results are however 

comparable with the results obtained by these studies when looking for overlaps at 

network/circuit level (~40 to 50%).  

We believe that the demonstrated heterogeneity is the primary factor hindering the 

development of EEG-based biomarkers. The challenges associated with group-level analysis 

manifest at different levels. At the diagnostic level, patients are often classified into distinct, 

clearly defined groups, presupposing homogeneity within each group. At the treatment level, a 

'one-size-fits-all' strategy is often adopted, applying the same treatment protocols to all patients 

without considering individual heterogeneity. To address this issue, it is crucial to develop 

patient-specific electrophysiological biomarkers that aim to 1) accurately diagnose disease 
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conditions, 2) monitor and predict disease progression, and 3) guide patients in choosing 

therapeutic options tailored to their individual risk factors.  

Beyond heterogeneity mapping 

Here, by leveraging subject-level inferences from normative models, we have mapped the 

heterogeneity within psychiatric conditions and among healthy populations. However, the 

utility of normative models extends beyond merely elucidating sample heterogeneity. 

Deviation scores obtained from these models also can be used as inputs for downstream 

analyses. Instead of using the raw features (i.e. relative power, functional connectivity, etc.), 

group average, classification, and prediction analyses can be run using the deviation scores 

inferred from the models that can serve as inputs. For instance, (Rutherford et al. 2023) found 

minor (regression) to strong (group difference testing) advantages of using deviation scores 

over raw features. We have indeed tested this in the current paper and showed that NM can 

indeed improve group-level comparison between HC and cases. As such, normative models 

can contribute to the development of more personalized electrophysiological approaches. 

Moreover, one of the main aims of combining EEG and normative modeling, in addition to 

deciphering heterogeneity, is to develop a patient-specific marker that can be clinically useful. 

We analyzed the clinical correlates of extreme deviations and showed associations between 

individual-specific deviations and their clinical assessment, this can add a crucial dimension to 

our understanding of neurological manifestations. While normative models serve as valuable 

benchmarks for evaluating brain activity, extreme deviations observed in certain individuals 

prompt an inquiry into the potential clinical significance of these aberrations. Such deviations 

may signify unique neural signatures associated with severe symptomatology or treatment-

resistant cases within psychiatric disorders. The identification and examination of these 

extreme EEG patterns may also offer an opportunity to delineate subgroups within diagnostic 

categories, potentially informing personalized therapeutic interventions. However, it is 

imperative to approach these findings with caution, recognizing that extreme deviations may 

also result from individual variability, comorbidities, or methodological considerations and 

uncontrolled factors. Future research should delve into the nuanced clinical implications of 

extreme EEG deviations, striving to bridge the gap between normative modeling and real-world 

psychiatric presentations for a more comprehensive understanding of neurobiological 

substrates. 

Limitations 

While our sample size is considered significantly large for EEG studies (n~2200), it does not 

reach the scale often seen in MRI and fMRI studies, nor is it representative of the broader 

population. Furthermore, the sample size of the datasets was not uniform. The largest dataset, 

HBN, comprised 1539 subjects out of the total 2234 subjects considered in this study, which 

could bias the results. Moreover, data for this article has been sourced from five studies 

(detailed in Methods) utilizing 128-channel EEG systems. While this somewhat controls for 
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variability stemming from the spatial resolution of the collected EEG data, it also introduces 

limitations to the generalizability (over other EEG systems) of the results.  

One limitation of this study is the potential influence of psychiatric medication on EEG results 

in the assessed psychiatric patient cohort. While our research endeavors to elucidate 

neurobiological patterns, it is essential to recognize that medication-induced effects may 

introduce confounding variables. Psychotropic medications commonly prescribed for symptom 

management could impact the recorded EEG signals, potentially complicating the attribution 

of observed changes solely to underlying psychiatric conditions. Individual variations and 

medication interactions remain challenging to fully account for. Future studies may benefit 

from more extensive participant profiling, including detailed pharmacological histories (when 

available), to enable a more nuanced analysis of the interplay between medication and EEG 

outcomes.  

Another challenge of the study stems from the inherent heterogeneity that may exist within 

each group of patients who present multiple psychiatric diagnoses. This comorbidity introduces 

a layer of complexity. The presence of comorbidities poses challenges in isolating the unique 

contributions of each condition. This complexity is reflective of the clinical reality where 

patients frequently exhibit overlapping symptomatology, necessitating a comprehensive 

approach to diagnosis and treatment. We were aware of this key point when quantifying 

heterogeneity and we provided an additional control analysis by investigating heterogeneity 

among patients who have only one diagnosis (according to the HBN dataset). The overlap 

results of the functional connectivity were always low and did not exceed 30%. This confirms 

that the observed heterogeneity is indeed intrinsic to the disorder and not driven by the possible 

comorbidity. In addition, we have controlled for some available parameters such as IQ (Fig. 

S12-S14) and sex (Fig. S2-S11, table S1-S2). Nevertheless, other factors for which information 

was not available for all datasets, such as the sleep quality and time of recording, may also have 

an impact on brain activity and should be the subject of further research and control. 

Our choice of the features to model was based on the most dominant features in the literature, 

however, it is plausible that alternative EEG features not included in our analysis could reveal 

greater homogeneity among the clinical groups. A potential further analysis is to use other EEG 

features or combine other modalities such as MRI with EEG. Presently, the capability to train 

normative models for multiple response variables using GAMLSS is unavailable, thereby 

limiting modeling versatility. This constraint manifests in several ways. Firstly, individual 

models must be trained for each channel, connection, or region, escalating the complexity of 

both the procedure and its transition into a clinical tool. Secondly, these models are calibrated 

to the average values of respective channels, connections, or regions, potentially resulting in 

fitting inaccuracies for each model. Lastly, and notably, the inclusion of multiple response 

variables could yield a more rigorous representation of the deviation at the subject level. 
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Conclusion 

Our investigation of the electrophysiological heterogeneity across 4 psychiatric disorders 

reveals that EEG spectral and connectivity deviations from a normative population are 

extremely heterogeneous. Our findings emphasize the urgency of going beyond the average 

brain and adopting innovative EEG (and more broadly neuroimaging) approaches at the patient 

level, steering the field toward precision psychiatry. The complex tapestry of individual 

differences in EEG signatures underscores the inadequacy of current one-size-fits-all 

approaches. The call for tailored, patient-specific interventions becomes more pronounced as 

we navigate the intricate terrain of psychiatric heterogeneity, ultimately striving for a paradigm 

shift in the way we approach and understand these complex disorders. 

Methods 

Dataset 

Our cohort consisted of 2234 individuals, subdivided into a group of healthy controls (n=448 

in the training set, n=112 in the held-out testing set) and a group of 1674 participants clinically 

diagnosed with psychiatric disorders, including ADHD (n=650), ASD (n=576), ANX (n=216), 

and LD (n=232). The data were aggregated from five distinct studies: the Healthy Brain 

Network Dataset (HBN) (Alexander et al. 2017; Langer et al. 2017) 

(https://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/index.html), 

Multimodal Resource for Studying Information Processing in the Developing Brain (MIPDB) 

(https://fcon_1000.projects.nitrc.org/indi/cmi_eeg/index.html) (Langer et al. 2017), Autism 

Biomarker Consortium for Clinical Trials Dataset (ABCCT) 

(https://nda.nih.gov/edit_collection.html?id=2288) (McPartland et al. 2020), Multimodal 

Developmental Neurogenetics of Females with ASD (femaleASD) 

(https://nda.nih.gov/edit_collection.html?id=2021) (Pelphrey 2014), and LausanneASD. 

Subjects included in this study were aged between 5 and 18 years old (mean = 9.99 ± 3.06; 

45% M). High-density (128-channels) resting-state EEG data were recorded while participants 

had their eyes open. For a comprehensive overview of the datasets, please refer to the 

Supplementary Materials. 

Data Preprocessing 

The EEG preprocessing and artifact removal pipeline is executed through a multi-stage, fully 

automated algorithm. Initially, EEG signals undergo bandpass filtering between 1 and 100 Hz, 

focusing on the relevant frequency range for subsequent analysis. Signals were downsampled 

to 200 Hz. Bad EEG channels are identified using the pyprep algorithm, which employs a 

RANSAC-based approach, and these channels are subsequently interpolated using information 

from neighboring electrodes (Bigdely-Shamlo et al. 2015; Appelhoff et al. 2022). RANSAC 

works by randomly selecting a small group of EEG channels, estimating a model based on 

these channels, and then identifying channels that deviate from the model as potential outliers 
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or bad channels. This process is repeated to find a model that best fits the majority of channels 

while disregarding outliers. Then, re-referencing is performed using the common average 

reference method to minimize common noise across electrodes. Independent Component 

Analysis (ICA) is then applied, and the IClabel algorithm automatically identifies and rejects 

components related to eye blinks (Pion-Tonachini, Kreutz-Delgado, and Makeig 2019). A 

second bandpass filter narrows the frequency range to 1-45 Hz, refining the data further. The 

EEG signals are segmented into 10-second epochs based on experimental paradigms (e.g., 

eyes-open and eyes-closed). The Autoreject toolbox (Jas et al. 2017) is utilized for the detection 

and cleaning/rejection of bad epochs, ensuring the removal of artifacts or irregularities. All 

EEG datasets underwent the preprocessing steps described above, except when certain 

procedures were deemed infeasible. Notably, the Autoreject step was excluded from the 

preprocessing of the ABCCT dataset. The femaleASD dataset had already been preprocessed 

and segmented into 2-second epochs. Therefore, further preprocessing for this dataset was 

confined solely to downsampling and re-referencing. 

Features Extraction 

Spectral features 

As previously stated, a normative model estimates the relationship between a response variable 

and one or more covariates. In the context of this study, we are interested in the spectral features 

of the EEG signal as the designated response variable. This choice was motivated by the large 

literature about the alterations of EEG power in psychiatric disorders (Newson and Thiagarajan 

2019). The power spectrum density (PSD) for each epoch and each channel is computed using 

Welch’s method (1-second Hann window with a 50% overlap, and a spectral resolution of 0.5 

Hz). PSDs are averaged across all epochs within a single subject. To assess the relative power 

in specific frequency bands (delta [1-4 Hz], theta [4-8 Hz], alpha [8-13 Hz], beta [13-30 Hz], 

gamma [30-45 Hz]), the absolute power within each narrow band is divided by the power 

within the broader band [1-45 Hz].  

Functional connectivity 

EEG-based functional networks were computed using the HD-EEG source connectivity 

method, as described in (Hassan and Wendling 2018). Briefly, cortical sources are computed 

using the exact low-resolution brain electromagnetic tomography (eLORETA) which aims to 

reconstruct the cortical activity from EEG data with correct localization (Pascual-Marqui 

2007). In our case, the noise covariance matrix was set to the identity matrix, and the 

regularization parameter λ was set to 0.1 (inversely proportional to the signal-to-noise ratio). 

Age-specific head models of the three layers (brain, skull, and scalp) were built using an MRI 

template of young children (4-18y) (Fonov et al. 2011). We used the Boundary Element 

Method (BEM) provided by the MNE Python package. The forward and inverse models were 

solved within a source space of 4098 sources per hemisphere (with a ~5mm spacing between 

sources). Then, to streamline the complexity of the cortical sources, we downsampled them to 

68 representative sources by averaging the sources within each region as defined by the 
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Desikan-Killiany atlas (Desikan et al. 2006). Subsequently, we computed functional 

connectivity between pairwise regions of interest, using the amplitude envelope correlation 

(AEC) method, defined as the Pearson correlation between signals’ envelopes derived from the 

Hilbert transform (Brookes et al. 2011; Hipp et al. 2012). Zero-lag signal overlaps caused by 

spatial leakage were removed using a pairwise orthogonalization approach before connectivity 

computation (Brookes, Woolrich, and Barnes 2012). 

The total number of subjects who completed the preprocessing and feature extraction steps 

comprises 624 individuals from the healthy control (HC) group and 2478 from the clinical 

group, which includes 604 subjects with ASD, 1314 with ADHD, 323 with anxiety, and 237 

with learning disorders. Only the subjects between 5 and 18 years old were used in the training 

and testing phases. The clinical groups, namely ADHD, anxiety, and learning, were 

downsampled while ensuring a balanced representation across age, sex, and site/study 

covariates. This resulted in the final dataset used for testing, as described in the data description 

section. 

Normative Modeling 

Normative Modeling (NM) seeks to establish a standard or normative relationship between a 

response variable (behavioral, demographic, or clinical variables) and at least one covariate (a 

quantitative biological measure, e.g. age, sex).  In this context, Generalized Additive Models 

for Location, Scale, and Shape (GAMLSS) (Rigby and Stasinopoulos 2005), are semi-

parametric regression models. In these models, the response variable is presumed to follow a 

specific distribution, wherein the parameters of this distribution can be linked to a set of 

explanatory variables via linear or nonlinear predictor functions, providing a flexible 

framework to capture complex relationships. The mathematical formulation of GAMLSS is as 

follows: 

𝑦~𝐹(𝜇, 𝜎, 𝜈, 𝜏) 

𝑔𝜇 (𝜇) = 𝑋𝜇𝛽𝜇 + 𝑍𝜇𝛾𝜇 +∑

𝑖

𝑠𝜇,𝑖(𝑥𝑖)  

𝑔𝜎 (𝜎) = 𝑋𝜎𝛽𝜎 + 𝑍𝜎𝛾𝜎 +∑

𝑖

𝑠𝜎,𝑖(𝑥𝑖)  

𝑔𝜈 (𝜈) = 𝑋𝜈𝛽𝜈 + 𝑍𝜈𝛾𝜈 +∑

𝑖

𝑠𝜈,𝑖(𝑥𝑖)  

𝑔𝜏 (𝜏) = 𝑋𝜏𝛽𝜏 + 𝑍𝜏𝛾𝜏 +∑

𝑖

𝑠𝜏,𝑖(𝑥𝑖)  

The response variable 𝑦 is assumed to follow a distribution 𝐹 characterized by the parameters 

(𝜇, 𝜎, 𝜈, 𝜏). Each parameter can be linked to explanatory variables through the link function 

𝑔(), where 𝛽 represents the fixed effect term and 𝑋 is its design matrix. 𝛾 accounts for the 

random effects, and Z is its design matrix. 𝑠 is the non-parametric smoothing function (Rigby 
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and Stasinopoulos 2005; Bethlehem et al. 2022). In this study, our response variable is an EEG-

derived feature and the main covariate is age. The possibility of adding other covariates such 

as sex and data collection sites is detailed in the following sections. Bethlehem et al. use 

fractional polynomials as the smoothing function to account for nonlinearity without adding 

instability to their models (Bethlehem et al. 2022), and we adopt the same approach.  

Model distribution 

GAMLSS framework offers a comprehensive list of distribution families. An empirical 

methodology was utilized to determine the most suitable distribution. The selection process 

involved training models across all considered distribution families (number of moments = 3 

or more, continuous/mixed), with the Bayesian Information Criterion (BIC) serving as the 

comparative metric. The optimal distribution was identified as the one yielding the lowest BIC 

score. This selection process was systematically applied to the two features considered in this 

study. Distributions yielding the best fit of the averaged spectral power and averaged 

connectivity values are reported in Table S3 in the Supplementary Materials, respectively. The 

ideal number of polynomials for the age covariate and whether to consider its inclusion in 

parameters beyond μ is also determined based on comparing BIC scores across various models. 

Model covariates 

The selection of model covariates beyond age (sex, and site/study as both a fixed effect and a 

random effect) is performed empirically. Each covariate is sequentially integrated into the 

parameter formulas. Next, the models are compared based on their BIC scores. The model 

yielding the lowest BIC score is selected, determining whether the covariates are retained in 

the final model. Subsequently, testing for the optimal distribution as described in the previous 

section is conducted again to reassess the suitability of the chosen distribution families. The 

final models for spectral and connectivity features are reported in Table S4-S5 in the 

Supplementary Materials. 

Model performance 

Residual Plots. To assess the performance of our models, as recommended by XX we 

inspected their Q-Q plots. A good model is characterized by the presence of randomly scattered 

residuals around the horizontal zero line. Additionally, the kernel density estimate of the 

residuals should approximately follow a normal distribution, and an ideal Q-Q plot should 

exhibit linearity (Stasinopoulos et al. 2017). Upon reviewing our models, it appears that they 

demonstrate satisfactory fit and quality, Fig S15-S16 in Supplementary Materials.  

Bootstrap analysis. The robustness and reliability of our model were assessed using bootstrap 

analysis. The original training set was resampled 1000 times with replacement, with the model 

being retrained on each of these resampled datasets. A distribution profile for the predicted 

median was constructed, capturing the inherent variability and stability of our model's 

performance. To offer a quantifiable measure of reliability, the 95% confidence intervals were 

calculated from the distribution profiles, Fig. S17-S18 in Supplementary Materials. These 
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intervals provide a statistical boundary within which the true parameter values are likely to lie, 

offering a clear, concise depiction of the model's precision and stability across multiple 

resampling iterations.  

Deviation scores / Overlap maps  

After selecting and validating the model parameters, we trained GAMLSS models for each 

channel/connection across all frequency bands for the reference healthy group. Subsequently, 

we project the test data (i.e., relative power and functional connectivity values), of our clinical 

groups (ADHD, ASD, ANX, LD) and the held-out healthy control group HC(test), onto the 

corresponding models. This process enables us to calculate deviation scores, known as z-scores 

(normalized quantile residuals, (Dunn and Smyth 1996)), for each channel/connection for each 

subject, resulting in an individual deviation map for each subject. An extreme deviation is 

defined as |z-score| > 2. Consequently, we derived positive and negative extreme deviation 

maps for z-scores > 2 and < -2, respectively. We then computed the number of subjects 

exhibiting at least one extreme deviation, as well as the number of extreme deviations per 

subject. Additionally, for each channel/connection, we assessed the percentage of subjects 

exhibiting extreme deviation at that location among those with at least one extreme deviation, 

leading to an overlap map of the extreme deviation in each group. 

Permutation test 

We used group-based permutation tests to evaluate group differences in channel/connectivity-

level overlap (Segal et al. 2023). These tests involved shuffling cases and control labels of the 

individual-specific deviation maps. At each iteration, we permuted group labels and obtained 

a new grouping of extreme deviation maps for each subject based on the shuffled labels. 

Subsequently, new overlap maps were computed for HC(test) and each clinical group. We then 

subtracted the surrogate HC(test) overlap map from the surrogate clinical group’s overlap map 

to derive an overlap difference map for each disorder. This procedure was repeated 5,000 times 

to establish an empirical distribution of overlap difference maps under the null hypothesis of 

random group assignment. Finally, for each channel/connection, we obtained p-values as the 

proportion of null values that exceeded the observed difference. Statistically significant effects 

were identified using two-tailed FDR correction (p<0.05). 

Data availability 

The Healthy Brain Network (HBN) dataset is available at 

https://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/index.html. The 

Multimodal Resource for Studying Information Processing in the Developing Brain (MIPDB) 

Dataset is accessible at https://fcon_1000.projects.nitrc.org/indi/cmi_eeg/index.html. The 

Autism Biomarker Consortium for Clinical Trials Dataset (ABCCT) and the Multimodal 

Developmental Neurogenetics of Females with ASD (femaleASD) can be requested from the 

NIMH Data Archive platform (https://nda.nih.gov/edit_collection.html?id=2288, 

https://nda.nih.gov/edit_collection.html?id=2021). The LausanneASD dataset is available 

upon request from [BR].  
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Code availability 

Codes are available at https://github.com/MINDIG-1/NM-Psy.git. For statistical modeling, we 

employed the gamlss package in R, (Mikis Stasinopoulos and Rigby 2008). EEG signal 

processing is done using the MNE-python package (https://mne.tools/stable/index.html). 

Networks are visualized using BrainNet Viewer (https://www.nitrc.org/projects/bnv/) (Xia, 

Wang, and He 2013). Network comparisons were performed utilizing the network-based 

statistic (NBS) tool, (https://www.nitrc.org/projects/nbs) (Zalesky, Fornito, and Bullmore 

2010).  
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