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Abstract

Electroencephalography (EEG) has been thoroughly studied for decades in psychiatry research.
Yet its integration into clinical practice as a diagnostic/prognostic tool remains unachieved. We
hypothesize that a key reason is the underlying patient's heterogeneity, overlooked in
psychiatric EEG research relying on a case-control approach. We combine HD-EEG with
normative modeling to quantify this heterogeneity using two well-established and extensively
investigated EEG characteristics -spectral power and functional connectivity- across a cohort
of 1674 patients with attention-deficit/hyperactivity disorder, autism spectrum disorder,
learning disorder, or anxiety, and 560 matched controls. Normative models showed that
deviations from population norms among patients were highly heterogeneous and frequency-
dependent. Deviation spatial overlap across patients did not exceed 40% and 24% for spectral
and connectivity, respectively. Considering individual deviations in patients has significantly
enhanced comparative analysis, and the identification of patient-specific markers has
demonstrated a correlation with clinical assessments, representing a crucial step towards
attaining precision psychiatry through EEG.

Introduction

Electroencephalography (EEG) has been extensively studied in psychiatry research to identify
electrophysiological correlates of various disorders (Loo and Makeig 2012; Olbrich and Arns
2013; de Aguiar Neto and Rosa 2019; Wang et al. 2013), disease severity (Livint Popa et al.
2020), subtypes (Zhang et al. 2021; Slater et al. 2022; Clarke et al. 2001), and treatment
response (Widge et al. 2019; Watts et al. 2022; Wu et al. 2020; Rolle et al. 2020). The non-
invasive nature of EEG, its cost-effectiveness, and its capacity to capture rapid spontaneous
brain activity make it a highly appealing tool for clinical psychiatry. Nonetheless, despite
considerable research efforts, the pathophysiological mechanisms of psychiatric disorders are
still poorly understood and the progress in establishing clinically applicable EEG-based
biomarkers has fallen short of expectations. This is evidenced by the pronounced
inconsistencies observed across studies (Newson and Thiagarajan 2019; Neo et al. 2023;
Gonzélez-Madruga, Staginnus, and Fairchild 2022; Cortese et al. 2021; Miljevic et al. 2023).

A key factor contributing to this issue is the reliance, in EEG research, on statistical designs
that fail to account for the inherent heterogeneous nature of psychiatric disorders (Feczko et al.
2019; Marquand et al. 2019). Typically, these designs rely on comparisons of average
differences between groups (e.g. patient versus control or treatment versus placebo),
presupposing uniformity within groups, as well as distinct separations between cases and
healthy controls (Verdi et al. 2021; Marquand et al. 2016, 2019; Feczko et al. 2019). However,
such assumptions significantly misrepresent the reality of psychiatric disorders, which exhibit
profound heterogeneity and overlap in symptoms, severity levels, developmental course,
biological underpinnings, and response to treatment (Segal et al. 2023).
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To more effectively capture the nuanced heterogeneity of psychiatric disorders, research
methodologies should go beyond conventional case-control paradigms to more sophisticated
statistical techniques that can accommodate the variability within and across patient and
healthy populations (Marquand et al. 2019; Verdi et al. 2021). An emerging powerful approach
in neuroimaging is normative modeling (NM), which involves estimating normative
trajectories of a reference population and assessing the degree to which individuals deviate
from these norms (Verdi et al. 2021; Marquand et al. 2016, 2019). A well-known example of
NM is pediatric growth charts, by which a child's height and weight are compared to those of
children of the same age and sex (Cole 2012). Recent MRI studies combined with NM have
endeavored to chart analogous trajectories for brain phenotypes (e.g., grey and white matter
volumes, mean cortical thickness, total surface area, etc.) to map lifespan age-related changes
in brain structure (Bethlehem et al. 2022; Rutherford, Fraza, et al. 2022; Rutherford et al. 2023)
and characterize structural heterogeneity in psychiatric disorders (Segal et al. 2023) such as
ADHD (Wolfers et al. 2020), Autism (Zabihi et al. 2020), Schizophrenia and Bipolar disorder
(Wolfers et al. 2018), as well as in neurodegenerative disease as Alzheihmer’s disease (Verdi
et al. 2023). Additionally, there has been a development of normative models for functional
MRI, although to a lesser extent (Rutherford, Kia, et al. 2022; Sun et al. 2023). However, to
our knowledge, similar research focusing on the electrophysiological aspects of psychiatric
disorders and the underlying substrates of heterogeneity remains unexplored.
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Fig. 1 | Normative modeling of electrophysiological features across age and individual deviation
assessment. (a) Illustration of the normative trajectory of a given feature across different ages, with the
solid line representing the median trajectory derived from a healthy reference population (training set).
(b) Tabulation of deviation scores for individual subjects across multiple features including power
spectral densities and functional connectivity. Red and blue values denote negative and positive
deviations (i.e., below/above the median), respectively. (c) Individual deviation maps showing spectral
(upper panel) and network-based (lower panel) deviations.

Here, we address this gap by combining HD-EEG with NM to elucidate the
electrophysiological heterogeneity of psychiatric disorders. We perform our investigation at
two levels, the scalp (the level of electrode) and the sources (the level of cortical brain sources),
thanks to the availability of high channel density. We develop an end-to-end NM framework
of a normative HD-EEG cohort comprising 560 healthy subjects (age 5-18 yo), see Fig. 1a for
illustrative explanation. We then systematically quantify the heterogeneity observed in the HD-
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EEG power spectrum and functional connectivity among a clinical group of 1674 age-matched
patients diagnosed with autism ASD, Attention deficit hyperactivity disorder (ADHD), anxiety
(ANX), and learning disorders (LD), Fig. 1b, 1c. Inspired by MRI-based studies, we
hypothesize that psychiatric disorders exhibit substantial electrophysiological heterogeneity
and that individual patient deviations are likely to demonstrate low spatial homogeneity across
both channels and cortical regions.

Results

Data description

High-density (128 channels) resting-state EEG data was collected from subjects aged between
5 and 18 years old across multiple datasets (Methods). Models were trained on 448 (52% M)
healthy controls (HC) and 112 (55% M) healthy subjects were held out as a comparison group
against the clinical cohort. The clinical groups comprised 576 subjects diagnosed with ASD
(52% M), 650 with ADHD (27% M), 216 with Anxiety disorders (52% M), and 232 with
Learning disorders (46% M).

Normative modeling

EEG power spectra (i.e., EEG power in the predefined frequency band: delta, theta, alpha, beta,
and gamma) have been the most used EEG features in psychiatry (Neo et al. 2023). More
recently and with the availability of high-density EEG, source-space functional connectivity
analysis has emerged as a highly promising approach, establishing a framework for the
electrophysiological circuit-level differentiation of healthy and diseased brains (Hassan and
Wendling 2018). Here, we have developed models for the normative trajectories of these two
well-established sets of features and assessed the heterogeneity in psychiatric disorders based
on subject deviations from the normative trajectories. For each feature, we trained a
Generalized Additive Model for Location, Scale, and Shape (GAMLSS) on a healthy reference
population. For the spectral features, a GAMLSS was fitted to the relative power (Welch’s
method) of each channel and each frequency band. Functional connectivity was estimated
between 68 predefined brain regions from the Desikan-Killiany atlas using Amplitude
Envelope Correlation -AEC- (Brookes et al. 2011; Hipp et al. 2012), corrected for source
leakage using an orthogonalization approach (Brookes, Woolrich, and Barnes 2012). A
GAMLSS was fitted to the connectivity values at each connection and each frequency band.

Subsequently, subjects with psychiatric disorders (ASD, ADHD, ANX, and LD) along with an
HC(test) group were projected on these models to calculate their deviation scores (z-scores, z).
These deviations can be negative (lower than normative values) or positive (higher than
normative values), Fig. 2al, 2b1. Extreme deviations were defined as |z|> 2 (Bethlehem et al.
2022; Rutherford, Kia, et al. 2022; Rutherford et al. 2023; Segal et al. 2023; Wolfers et al.
2020, 2018; Zabihi et al. 2020; Verdi et al. 2023), Fig. 2a2, 2b2.
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First, we computed the percentage of subjects with at least one extremely deviated
channel/connection, as well as the number of extremely deviated channels/connections per
subject in each group. Next, we evaluated the spatial overlap of extreme deviations by
computing the percentage of extremely deviated subjects per channel/connection within each
group. (Fig. 2a3, 2b3). A group-based permutation test (Segal et al. 2023) was used to compare
clinical groups and HCs overlap maps (all results were corrected for multiple comparisons
using FDR), Fig. 2a4, 2b4.
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Fig. 2 | Overview of the quantification of heterogeneity in spectral and connectivity features based
on normative model-inferred deviation scores. (al) individualized deviation maps scores for spectral
power, (a2) extreme deviation maps displaying both positive (top) and negative (bottom) deviations,
identified for deviation scores >2 and <-2, respectively, (a3) spatial overlap maps, calculated as the
percentage of subjects showing extreme deviation at each channel, among those with at least one
extreme deviation, to identify common areas of deviation. (a4) group-based permutation tests to
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evaluate group differences (HC(test) vs clinical group) in channel-level overlap (p<0.05, FDR
corrected) (b1-b4) same methodological approach applied for functional connectivity.

The distribution of the number of extremely deviated channels/connections across groups is
depicted in Fig. S19-S28 in Supplementary Materials. Range and median values are reported
in Table S6-S15. The number of negatively deviated channels per subject in all clinical groups
were significantly different as compared to HC(test) in delta band (p<0.03, Mann-Whitney
test). For the positive deviations, all groups showed significant differences compared to
HC(test) at alpha and beta bands (p<0.01). Regarding functional connectivity features, ADHD
and ASD showed significantly fewer numbers of negative extreme deviations compared to
HCs, particularly in the beta and gamma bands (p<0.01). Conversely, ANX and LD
demonstrate significant differences only in the alpha band (p<0.05). However, connections
displaying positive deviations are significant across all clinical groups and frequency bands
(p<0.01). Interestingly, while we observed significant differences in most cases, our results did
not reveal a uniform trend. In some instances, clinical cohorts exhibited higher numbers of
extreme deviations compared to the HC group; conversely, in other instances, the HC group
showed more extreme deviations than clinical groups.

Spectral heterogeneity

The percentages of subjects having at least one negative deviation were relatively low with the
highest values occurring in the theta (ASD: 44%), alpha (ADHD: 29%, LD: 25%, ANX: %23),
and beta (HC(test): %35) bands (These percentages are detailed across all frequency bands and
disorders in Table S6-S10 in the Supplementary Materials). Thus, a substantial proportion of
participants exhibit significant similarities with the healthy control (HC) group. Then, we
quantified the spatial overlap of these extreme deviations across subjects. Fig. 3a illustrates
examples of the overlap maps across groups (detailed results figures can be found in
Supplementary Materials, Fig S29-S33). Interestingly, the overlap values were low and did not
exceed 40% (delta: ADHD: 31%, ANX: 32%; beta: ASD: 28%, HC(test): 31%; gamma: LD:
40%) reflecting an inconsistency in the spatial location of extreme deviations. Notably, LD and
ADHD exhibited the highest consistency (i.e., overlap) across subjects, mainly in the delta
band. Overall, similar results were obtained for positive deviations. The ASD group exhibited
the highest percentage of subjects having at least one extreme deviation (41% in theta band)
and the spatial overlap that did not exceed 40% (HC(test), alpha).

To investigate if the obtained overlap may differentiate patients from HC, we compared the
channel-wise overlap maps between clinical groups and healthy controls. The result of group-
based permutations (see Methods) varies greatly between frequency bands (Fig. 3b). Out of
124 channels (remained after data preprocessing), the highest number of channels showing
significant difference with HC(test) for negative extreme deviation overlap was 41 (delta:
ADHD: 26; beta: ASD: 19, LD: 41; ANX: 22; uncorrected). Only 15 channels survive FDR
correction for LD in beta band mainly in the occipital-parietal region. For anxiety in the beta
band, none survive the FDR correction, instead in the gamma band 11 channels remain mostly
in the frontal area (Fig. 3b). For positive extreme deviations, ADHD has the highest number of
significant channels in gamma (delta: ANX: 50; alpha: ASD: 57; gamma: ADHD: 86, LD: 63,
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uncorrected), of which 74 channels remain after FDR correction. For the ASD group after FDR
correction there are no significant channels in the alpha band, only 3 channels in the frontal
region survive in the delta band (Fig. 3b). This low overlap and weak differentiation between
cases and HC confirm the absence of consistent characteristic patterns among a whole group.
Instead, the patterns seem to be subject-specific. All the results for cases and frequency bands
are presented in the supplementary materials (Figure S29 to S33).
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Fig. 3 | Spectral features heterogeneity. (a) Overlap maps of deviation scores for clinical groups and
the held-out healthy control group (HC(test)), illustrating areas of common deviation. (b) channels
showing significant differences between HC(test) and clinical groups, determined through group-based
permutation tests (p<0.05, FDR corrected).

Heterogeneity at the level of functional connectivity

Next, we guantified the heterogeneity at the level of functional brain connections. Unlike the
findings from spectral analysis, we observed an increase in the number of subjects exhibiting
at least one negative/positive extreme deviation. Detailed percentages across all frequency
bands and disorders are provided in Table S11-S15 in the Supplementary Materials. For
negative extreme deviations, the highest observed percentage was 87% (delta: HC(test): 87%,
ASD: 71%; theta: ADHD: 82%, ANX: 83%, LD: 82%). Among subjects with at least one
extreme deviation, the spatial overlap of these deviations was notably low, not exceeding 14%
(alpha: HC(test): 14%, ASD: 9%, ADHD: 10%, LD: 10%, gamma: ANX: 12%), Fig. 4b. For
positive deviations, the percentage of subjects with at least one extremely deviant connection
is modestly lower (the highest value (73%) obtained for ASD in beta band). Conversely, the
within-groups overlap percentages slightly increased (delta: ADHD: 15%; theta: ANX: 19%;
alpha: HC(test): 23%, beta: LD: 24%, gamma: ASD: 21%) with LD exhibiting the highest
overlap values, Fig. 4a.
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Fig. 4 | Functional connectivity heterogeneity. Overlap maps of (a) positive and (b) negative
deviation scores for clinical groups and the held-out healthy control group (HC(test)) within the
different frequency bands, illustrating areas of common deviation among patients (with only the highest
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3% overlap values being plotted for visualization purposes). (c-d) functional connections showing
significant differences between HC(test) and clinical groups at the different frequency bands,
determined through group-based permutation tests (p<0.05, FDR corrected).

Significant differences, using group-based permutation tests corrected using FDR, in overlap
maps between clinical groups and healthy controls are shown in Fig. 4c and Fig S34-S38 in
Supplementary Materials. The variation is pronounced across frequency bands. Compared to
connections with negative deviations, a higher number of connections with positive deviations
were found to be significant.

Deviation scores as patient-specific markers for comparative
analysis and correlation with clinical assessment

Having assessed the heterogeneity among patients, we sought potential solutions by leveraging
NMs to derive EEG-markers tailored to individual patients. To explore this, we performed two
proof-of-concept analyses. First, we explored whether the metrics derived from NM could
outperform classical features in differentiating between healthy controls and patient groups.
Using a network-based statistics -NBS- approach (permutation test, n=5000) (Zalesky, Fornito,
and Bullmore 2010), we compared the clinical groups to the HC using either the original
functional connectivity matrices (the original features) or the deviation score (z-scores)
matrices. Interestingly, FC features did not show any significant differences between HC vs.
cases. However, using z-scores, significant differences were found between groups at different
frequency bands. Examples of these differences are presented in Fig. 5a for ASD at alpha
(p=0.0002, 91 edges) and beta (p=0.007, 12 edges) bands and ADHD at delta band (p<0.0001,
94 edges).

Second, we explored the potential of NM to provide a framework for generating subject-
specific markers that may correlate with clinical assessments of patients. For this purpose, we
calculated a global deviation score for each subject, defined as the average z values of the
extremely deviated connections. This score was then correlated with the patients' clinical
assessments. Fig. 5b shows a significant, but relatively low, Spearman correlation (average
p=0.2, p<0.05) between total ADOS scores (a standard clinical assessment in ASD) and both
positive and negative patient-specific global deviation scores. As ADOS scores increased,
positive global deviations also increased, while negative global deviations decreased. Global
deviations derived from the spectral models showed no correlation with clinical scores. These
findings are a first step into developing EEG-based patient-specific markers that can be used
for objectively quantifying personalized treatment such as medication or neurostimulation.
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Fig. 5 | Leveraging deviation scores for group-based analysis and correlation with clinical
assessments. (a) Identification of significant network patterns that differentiate case groups (ASD and
ADHD) from the healthy control (HC) group, as revealed by network-based statistics (NBS). (b)
Correlation between ASD subjects' global deviation scores and clinical assessment scores (total ADOS)
in alpha and gamma bands.

Discussion

We combined HD-EEG with normative modeling to characterize the heterogeneity in spectral
power and functional connectivity among patients with psychiatric disorders. We showed
highly heterogeneous alterations with deviation spatial overlap across patients that did not
exceed 40% and 24% for spectral power and connectivity, respectively. Our results challenge
the prevailing reliance on a case-control approach in psychiatric EEG studies, emphasizing the
importance of recognizing individual variability. The pronounced heterogeneity we observed
across the conditions studied suggests that assuming within-group homogeneity, as implicitly
done in prior psychiatric EEG research, oversimplifies the intricate neurophysiological
signatures associated with psychiatric disorders. We finally showed that through the
consideration of the individual patient variability, the enhancement of comparative analysis has
been substantial. The identification of patient-specific markers has demonstrated a correlation
with clinical assessments, representing a crucial advancement in the pursuit of EEG precision
psychiatry.

Heterogeneity in EEG spectral and connectivity features

EEG spectral power has long dominated EEG clinical research in general and specifically in
psychiatry (Neo et al. 2023). Investigating changes in the power of predefined frequency bands
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has been one of the standards in EEG research for determining changes between healthy
controls and patient groups. However, research outcomes are usually inconsistent across
studies (Neo et al. 2023; Newson and Thiagarajan 2019). Moreover, changes in EEG power do
not characterize a single disorder but rather show significant overlap across various psychiatric
conditions (Newson and Thiagarajan 2019). For instance, an increase in power in the lower
frequency bands (delta and theta) and a decrease across higher frequencies (alpha, beta, and
gamma) represent a dominant pattern of change across several disorders, including ADHD,
schizophrenia, and OCD (Newson and Thiagarajan 2019). Furthermore, a significant number
of conditions, including PTSD, addiction, and autism, do not exhibit a consistent pattern of
spectral change in any specific direction (Newson and Thiagarajan 2019).

Functional connectivity research represents an emerging framework that is not as established
as spectral analysis. Despite its novelty, there is a significant body of studies aimed at
characterizing functional alterations associated with psychiatric disorders. Nevertheless,
inconsistencies in the results have been observed (Miljevic et al. 2023). For instance, meta-
analyses of resting-state functional connectivity in ADHD found no spatial convergence across
studies (Gonzalez-Madruga, Staginnus, and Fairchild 2022; Cortese et al. 2021). Similar
findings were observed in (Samea et al. 2019) where no significant convergent functional
alterations in children/adolescents with ADHD in their main meta-analysis comprising 1914
unique participants from 96 studies.

The observed inconsistency in results can be, in part, justified by the lack of a standardized
methodology for EEG data acquisition and analysis (variations in electrode configurations, task
paradigms, signal processing techniques, etc...) and small sample sizes compromising the
generalizability of the findings. However, even with efforts to control for these methodological
variables, achieving consistent results remains challenging. A principal source of this
variability is the inherent heterogeneity among patient populations in psychiatric disorders
(Feczko et al. 2019; Marquand et al. 2016), which may introduce confounding factors not
accounted for in group-level analyses. The heterogeneity we observed here in psychiatric EEG
is in line with recent studies using MRI (structural and functional) with NM in psychiatry.
Indeed, it was shown that patient-specific deviations from population expectations for regional
gray matter volume were highly heterogeneous, affecting the same area in <7% of people with
the same diagnosis (Segal et al. 2023). Our results at the channel/connection level showed
higher consistency than these structural MRI-based studies. Our results are however
comparable with the results obtained by these studies when looking for overlaps at
network/circuit level (~40 to 50%).

We believe that the demonstrated heterogeneity is the primary factor hindering the
development of EEG-based biomarkers. The challenges associated with group-level analysis
manifest at different levels. At the diagnostic level, patients are often classified into distinct,
clearly defined groups, presupposing homogeneity within each group. At the treatment level, a
‘'one-size-fits-all' strategy is often adopted, applying the same treatment protocols to all patients
without considering individual heterogeneity. To address this issue, it is crucial to develop
patient-specific electrophysiological biomarkers that aim to 1) accurately diagnose disease
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conditions, 2) monitor and predict disease progression, and 3) guide patients in choosing
therapeutic options tailored to their individual risk factors.

Beyond heterogeneity mapping

Here, by leveraging subject-level inferences from normative models, we have mapped the
heterogeneity within psychiatric conditions and among healthy populations. However, the
utility of normative models extends beyond merely elucidating sample heterogeneity.
Deviation scores obtained from these models also can be used as inputs for downstream
analyses. Instead of using the raw features (i.e. relative power, functional connectivity, etc.),
group average, classification, and prediction analyses can be run using the deviation scores
inferred from the models that can serve as inputs. For instance, (Rutherford et al. 2023) found
minor (regression) to strong (group difference testing) advantages of using deviation scores
over raw features. We have indeed tested this in the current paper and showed that NM can
indeed improve group-level comparison between HC and cases. As such, normative models
can contribute to the development of more personalized electrophysiological approaches.

Moreover, one of the main aims of combining EEG and normative modeling, in addition to
deciphering heterogeneity, is to develop a patient-specific marker that can be clinically useful.
We analyzed the clinical correlates of extreme deviations and showed associations between
individual-specific deviations and their clinical assessment, this can add a crucial dimension to
our understanding of neurological manifestations. While normative models serve as valuable
benchmarks for evaluating brain activity, extreme deviations observed in certain individuals
prompt an inquiry into the potential clinical significance of these aberrations. Such deviations
may signify unique neural signatures associated with severe symptomatology or treatment-
resistant cases within psychiatric disorders. The identification and examination of these
extreme EEG patterns may also offer an opportunity to delineate subgroups within diagnostic
categories, potentially informing personalized therapeutic interventions. However, it is
imperative to approach these findings with caution, recognizing that extreme deviations may
also result from individual variability, comorbidities, or methodological considerations and
uncontrolled factors. Future research should delve into the nuanced clinical implications of
extreme EEG deviations, striving to bridge the gap between normative modeling and real-world
psychiatric presentations for a more comprehensive understanding of neurobiological
substrates.

Limitations

While our sample size is considered significantly large for EEG studies (n~2200), it does not
reach the scale often seen in MRI and fMRI studies, nor is it representative of the broader
population. Furthermore, the sample size of the datasets was not uniform. The largest dataset,
HBN, comprised 1539 subjects out of the total 2234 subjects considered in this study, which
could bias the results. Moreover, data for this article has been sourced from five studies
(detailed in Methods) utilizing 128-channel EEG systems. While this somewhat controls for
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variability stemming from the spatial resolution of the collected EEG data, it also introduces
limitations to the generalizability (over other EEG systems) of the results.

One limitation of this study is the potential influence of psychiatric medication on EEG results
in the assessed psychiatric patient cohort. While our research endeavors to elucidate
neurobiological patterns, it is essential to recognize that medication-induced effects may
introduce confounding variables. Psychotropic medications commonly prescribed for symptom
management could impact the recorded EEG signals, potentially complicating the attribution
of observed changes solely to underlying psychiatric conditions. Individual variations and
medication interactions remain challenging to fully account for. Future studies may benefit
from more extensive participant profiling, including detailed pharmacological histories (when
available), to enable a more nuanced analysis of the interplay between medication and EEG
outcomes.

Another challenge of the study stems from the inherent heterogeneity that may exist within
each group of patients who present multiple psychiatric diagnoses. This comorbidity introduces
a layer of complexity. The presence of comorbidities poses challenges in isolating the unique
contributions of each condition. This complexity is reflective of the clinical reality where
patients frequently exhibit overlapping symptomatology, necessitating a comprehensive
approach to diagnosis and treatment. We were aware of this key point when quantifying
heterogeneity and we provided an additional control analysis by investigating heterogeneity
among patients who have only one diagnosis (according to the HBN dataset). The overlap
results of the functional connectivity were always low and did not exceed 30%. This confirms
that the observed heterogeneity is indeed intrinsic to the disorder and not driven by the possible
comorbidity. In addition, we have controlled for some available parameters such as 1Q (Fig.
S12-S14) and sex (Fig. S2-S11, table S1-S2). Nevertheless, other factors for which information
was not available for all datasets, such as the sleep quality and time of recording, may also have
an impact on brain activity and should be the subject of further research and control.

Our choice of the features to model was based on the most dominant features in the literature,
however, it is plausible that alternative EEG features not included in our analysis could reveal
greater homogeneity among the clinical groups. A potential further analysis is to use other EEG
features or combine other modalities such as MRI with EEG. Presently, the capability to train
normative models for multiple response variables using GAMLSS is unavailable, thereby
limiting modeling versatility. This constraint manifests in several ways. Firstly, individual
models must be trained for each channel, connection, or region, escalating the complexity of
both the procedure and its transition into a clinical tool. Secondly, these models are calibrated
to the average values of respective channels, connections, or regions, potentially resulting in
fitting inaccuracies for each model. Lastly, and notably, the inclusion of multiple response
variables could yield a more rigorous representation of the deviation at the subject level.
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Conclusion

Our investigation of the electrophysiological heterogeneity across 4 psychiatric disorders
reveals that EEG spectral and connectivity deviations from a normative population are
extremely heterogeneous. Our findings emphasize the urgency of going beyond the average
brain and adopting innovative EEG (and more broadly neuroimaging) approaches at the patient
level, steering the field toward precision psychiatry. The complex tapestry of individual
differences in EEG signatures underscores the inadequacy of current one-size-fits-all
approaches. The call for tailored, patient-specific interventions becomes more pronounced as
we navigate the intricate terrain of psychiatric heterogeneity, ultimately striving for a paradigm
shift in the way we approach and understand these complex disorders.

Methods

Dataset

Our cohort consisted of 2234 individuals, subdivided into a group of healthy controls (n=448
in the training set, n=112 in the held-out testing set) and a group of 1674 participants clinically
diagnosed with psychiatric disorders, including ADHD (n=650), ASD (n=576), ANX (n=216),
and LD (n=232). The data were aggregated from five distinct studies: the Healthy Brain
Network Dataset (HBN) (Alexander et al. 2017; Langer et al. 2017)
(https://fcon_1000.projects.nitrc.org/indi/cmi_healthy brain_network/index.html),

Multimodal Resource for Studying Information Processing in the Developing Brain (MIPDB)
(https://fcon_1000.projects.nitrc.org/indi/cmi_eeg/index.html) (Langer et al. 2017), Autism

Biomarker Consortium for Clinical Trials Dataset (ABCCT)
(https://nda.nih.gov/edit_collection.htmlI?id=2288) (McPartland et al. 2020), Multimodal
Developmental Neurogenetics of Females with ASD (femaleASD)

(https://nda.nih.gov/edit_collection.htmlI?id=2021) (Pelphrey 2014), and LausanneASD.
Subjects included in this study were aged between 5 and 18 years old (mean = 9.99 + 3.06;
45% M). High-density (128-channels) resting-state EEG data were recorded while participants
had their eyes open. For a comprehensive overview of the datasets, please refer to the
Supplementary Materials.

Data Preprocessing

The EEG preprocessing and artifact removal pipeline is executed through a multi-stage, fully
automated algorithm. Initially, EEG signals undergo bandpass filtering between 1 and 100 Hz,
focusing on the relevant frequency range for subsequent analysis. Signals were downsampled
to 200 Hz. Bad EEG channels are identified using the pyprep algorithm, which employs a
RANSAC-based approach, and these channels are subsequently interpolated using information
from neighboring electrodes (Bigdely-Shamlo et al. 2015; Appelhoff et al. 2022). RANSAC
works by randomly selecting a small group of EEG channels, estimating a model based on
these channels, and then identifying channels that deviate from the model as potential outliers
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or bad channels. This process is repeated to find a model that best fits the majority of channels
while disregarding outliers. Then, re-referencing is performed using the common average
reference method to minimize common noise across electrodes. Independent Component
Analysis (ICA) is then applied, and the IClabel algorithm automatically identifies and rejects
components related to eye blinks (Pion-Tonachini, Kreutz-Delgado, and Makeig 2019). A
second bandpass filter narrows the frequency range to 1-45 Hz, refining the data further. The
EEG signals are segmented into 10-second epochs based on experimental paradigms (e.g.,
eyes-open and eyes-closed). The Autoreject toolbox (Jas et al. 2017) is utilized for the detection
and cleaning/rejection of bad epochs, ensuring the removal of artifacts or irregularities. All
EEG datasets underwent the preprocessing steps described above, except when certain
procedures were deemed infeasible. Notably, the Autoreject step was excluded from the
preprocessing of the ABCCT dataset. The femaleASD dataset had already been preprocessed
and segmented into 2-second epochs. Therefore, further preprocessing for this dataset was
confined solely to downsampling and re-referencing.

Features Extraction

Spectral features

As previously stated, a normative model estimates the relationship between a response variable
and one or more covariates. In the context of this study, we are interested in the spectral features
of the EEG signal as the designated response variable. This choice was motivated by the large
literature about the alterations of EEG power in psychiatric disorders (Newson and Thiagarajan
2019). The power spectrum density (PSD) for each epoch and each channel is computed using
Welch’s method (1-second Hann window with a 50% overlap, and a spectral resolution of 0.5
Hz). PSDs are averaged across all epochs within a single subject. To assess the relative power
in specific frequency bands (delta [1-4 HZz], theta [4-8 HZ], alpha [8-13 HZz], beta [13-30 Hz],
gamma [30-45 Hz]), the absolute power within each narrow band is divided by the power
within the broader band [1-45 HZz].

Functional connectivity

EEG-based functional networks were computed using the HD-EEG source connectivity
method, as described in (Hassan and Wendling 2018). Briefly, cortical sources are computed
using the exact low-resolution brain electromagnetic tomography (eLORETA) which aims to
reconstruct the cortical activity from EEG data with correct localization (Pascual-Marqui
2007). In our case, the noise covariance matrix was set to the identity matrix, and the
regularization parameter A was set to 0.1 (inversely proportional to the signal-to-noise ratio).
Age-specific head models of the three layers (brain, skull, and scalp) were built using an MRI
template of young children (4-18y) (Fonov et al. 2011). We used the Boundary Element
Method (BEM) provided by the MNE Python package. The forward and inverse models were
solved within a source space of 4098 sources per hemisphere (with a ~5mm spacing between
sources). Then, to streamline the complexity of the cortical sources, we downsampled them to
68 representative sources by averaging the sources within each region as defined by the
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Desikan-Killiany atlas (Desikan et al. 2006). Subsequently, we computed functional
connectivity between pairwise regions of interest, using the amplitude envelope correlation
(AEC) method, defined as the Pearson correlation between signals’ envelopes derived from the
Hilbert transform (Brookes et al. 2011; Hipp et al. 2012). Zero-lag signal overlaps caused by
spatial leakage were removed using a pairwise orthogonalization approach before connectivity
computation (Brookes, Woolrich, and Barnes 2012).

The total number of subjects who completed the preprocessing and feature extraction steps
comprises 624 individuals from the healthy control (HC) group and 2478 from the clinical
group, which includes 604 subjects with ASD, 1314 with ADHD, 323 with anxiety, and 237
with learning disorders. Only the subjects between 5 and 18 years old were used in the training
and testing phases. The clinical groups, namely ADHD, anxiety, and learning, were
downsampled while ensuring a balanced representation across age, sex, and site/study
covariates. This resulted in the final dataset used for testing, as described in the data description
section.

Normative Modeling

Normative Modeling (NM) seeks to establish a standard or normative relationship between a
response variable (behavioral, demographic, or clinical variables) and at least one covariate (a
quantitative biological measure, e.g. age, sex). In this context, Generalized Additive Models
for Location, Scale, and Shape (GAMLSS) (Righy and Stasinopoulos 2005), are semi-
parametric regression models. In these models, the response variable is presumed to follow a
specific distribution, wherein the parameters of this distribution can be linked to a set of
explanatory variables via linear or nonlinear predictor functions, providing a flexible
framework to capture complex relationships. The mathematical formulation of GAMLSS is as
follows:

y~F(u,0,v,7)

Ju W) = Xu.BpL + Z,uyu + z Su,i(xi)
i

9o (0) = XsPs + Zs¥s + Z So‘,i(xi)
i

g W) =X,p, +Z,7, + Z Sv,i(xi)
i

g ) =Xp; +Z7; + Z S‘r,i(xi)
i

The response variable y is assumed to follow a distribution F characterized by the parameters
(u, 0,v, 7). Each parameter can be linked to explanatory variables through the link function
g(), where f represents the fixed effect term and X is its design matrix. y accounts for the
random effects, and Z is its design matrix. s is the non-parametric smoothing function (Rigby
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and Stasinopoulos 2005; Bethlehem et al. 2022). In this study, our response variable is an EEG-
derived feature and the main covariate is age. The possibility of adding other covariates such
as sex and data collection sites is detailed in the following sections. Bethlehem et al. use
fractional polynomials as the smoothing function to account for nonlinearity without adding
instability to their models (Bethlehem et al. 2022), and we adopt the same approach.

Model distribution

GAMLSS framework offers a comprehensive list of distribution families. An empirical
methodology was utilized to determine the most suitable distribution. The selection process
involved training models across all considered distribution families (hnumber of moments = 3
or more, continuous/mixed), with the Bayesian Information Criterion (BIC) serving as the
comparative metric. The optimal distribution was identified as the one yielding the lowest BIC
score. This selection process was systematically applied to the two features considered in this
study. Distributions yielding the best fit of the averaged spectral power and averaged
connectivity values are reported in Table S3 in the Supplementary Materials, respectively. The
ideal number of polynomials for the age covariate and whether to consider its inclusion in
parameters beyond p is also determined based on comparing BIC scores across various models.

Model covariates

The selection of model covariates beyond age (sex, and site/study as both a fixed effect and a
random effect) is performed empirically. Each covariate is sequentially integrated into the
parameter formulas. Next, the models are compared based on their BIC scores. The model
yielding the lowest BIC score is selected, determining whether the covariates are retained in
the final model. Subsequently, testing for the optimal distribution as described in the previous
section is conducted again to reassess the suitability of the chosen distribution families. The
final models for spectral and connectivity features are reported in Table S4-S5 in the
Supplementary Materials.

Model performance

Residual Plots. To assess the performance of our models, as recommended by XX we
inspected their Q-Q plots. A good model is characterized by the presence of randomly scattered
residuals around the horizontal zero line. Additionally, the kernel density estimate of the
residuals should approximately follow a normal distribution, and an ideal Q-Q plot should
exhibit linearity (Stasinopoulos et al. 2017). Upon reviewing our models, it appears that they
demonstrate satisfactory fit and quality, Fig S15-S16 in Supplementary Materials.

Bootstrap analysis. The robustness and reliability of our model were assessed using bootstrap
analysis. The original training set was resampled 1000 times with replacement, with the model
being retrained on each of these resampled datasets. A distribution profile for the predicted
median was constructed, capturing the inherent variability and stability of our model's
performance. To offer a quantifiable measure of reliability, the 95% confidence intervals were
calculated from the distribution profiles, Fig. S17-S18 in Supplementary Materials. These
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intervals provide a statistical boundary within which the true parameter values are likely to lie,
offering a clear, concise depiction of the model's precision and stability across multiple
resampling iterations.

Deviation scores / Overlap maps

After selecting and validating the model parameters, we trained GAMLSS models for each
channel/connection across all frequency bands for the reference healthy group. Subsequently,
we project the test data (i.e., relative power and functional connectivity values), of our clinical
groups (ADHD, ASD, ANX, LD) and the held-out healthy control group HC(test), onto the
corresponding models. This process enables us to calculate deviation scores, known as z-scores
(normalized quantile residuals, (Dunn and Smyth 1996)), for each channel/connection for each
subject, resulting in an individual deviation map for each subject. An extreme deviation is
defined as |z-score| > 2. Consequently, we derived positive and negative extreme deviation
maps for z-scores > 2 and < -2, respectively. We then computed the number of subjects
exhibiting at least one extreme deviation, as well as the number of extreme deviations per
subject. Additionally, for each channel/connection, we assessed the percentage of subjects
exhibiting extreme deviation at that location among those with at least one extreme deviation,
leading to an overlap map of the extreme deviation in each group.

Permutation test

We used group-based permutation tests to evaluate group differences in channel/connectivity-
level overlap (Segal et al. 2023). These tests involved shuffling cases and control labels of the
individual-specific deviation maps. At each iteration, we permuted group labels and obtained
a new grouping of extreme deviation maps for each subject based on the shuffled labels.
Subsequently, new overlap maps were computed for HC(test) and each clinical group. We then
subtracted the surrogate HC(test) overlap map from the surrogate clinical group’s overlap map
to derive an overlap difference map for each disorder. This procedure was repeated 5,000 times
to establish an empirical distribution of overlap difference maps under the null hypothesis of
random group assignment. Finally, for each channel/connection, we obtained p-values as the
proportion of null values that exceeded the observed difference. Statistically significant effects
were identified using two-tailed FDR correction (p<0.05).

Data availability

The Healthy Brain Network (HBN) dataset § available at
https://fcon_1000.projects.nitrc.org/indi/cmi_healthy brain_network/index.html. The
Multimodal Resource for Studying Information Processing in the Developing Brain (MIPDB)
Dataset is accessible at https://fcon_1000.projects.nitrc.org/indi/cmi_eeg/index.html. The
Autism Biomarker Consortium for Clinical Trials Dataset (ABCCT) and the Multimodal
Developmental Neurogenetics of Females with ASD (femaleASD) can be requested from the
NIMH  Data Archive platform  (https://nda.nih.gov/edit_collection.htmlI?id=2288,
https://nda.nih.gov/edit_collection.htm!?id=2021). The LausanneASD dataset is available
upon request from [BR].
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Code availability

Codes are available at https://github.com/MINDIG-1/NM-Psy.qit. For statistical modeling, we
employed the gamlss package in R, (Mikis Stasinopoulos and Rigby 2008). EEG signal
processing is done using the MNE-python package (https://mne.tools/stable/index.html).
Networks are visualized using BrainNet Viewer (https://www.nitrc.org/projects/bnv/) (Xia,
Wang, and He 2013). Network comparisons were performed utilizing the network-based
statistic (NBS) tool, (https://www.nitrc.org/projects/nbs) (Zalesky, Fornito, and Bullmore
2010).
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