

1 Venomics and Peptidomics of Palearctic vipers:
2 Clade-wide analysis of seven taxa of the genera
3 *Vipera*, *Montivipera*, *Macrovipera* and *Daboia*
4 across Türkiye

5 Maik Damm ^{1,2,3*}, Mert Kariş ⁴, Daniel Petras ^{5,6}, Ayse Nalbantsoy ⁷, Bayram Göçmen ^{8#},
6 Roderich D. Süssmuth ^{1*}

7 *Shared Corresponding Authors, #deceased

8 ¹ Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin,
9 Germany

10 ² LOEWE-Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325
11 Frankfurt Am Main, Germany

12 ³ Institute for Insect Biotechnology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32,
13 Gießen, 35392 Germany

14 ⁴ Program of Laboratory Technology, Department of Chemistry and Chemical Process
15 Technologies, Acıgöl Vocational School of Technical Sciences, Nevşehir Hacı Bektaş Veli
16 University, 50140 Acıgöl, Nevşehir, Türkiye

17 ⁵ Department of Biochemistry, University of California Riverside, 169 Aberdeen Dr, Riverside,
18 CA 92507

19 ⁶ Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Auf
20 der Morgenstelle 24, Tuebingen, Germany

21 ⁷ Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Bornova, Izmir,
22 Turkiye

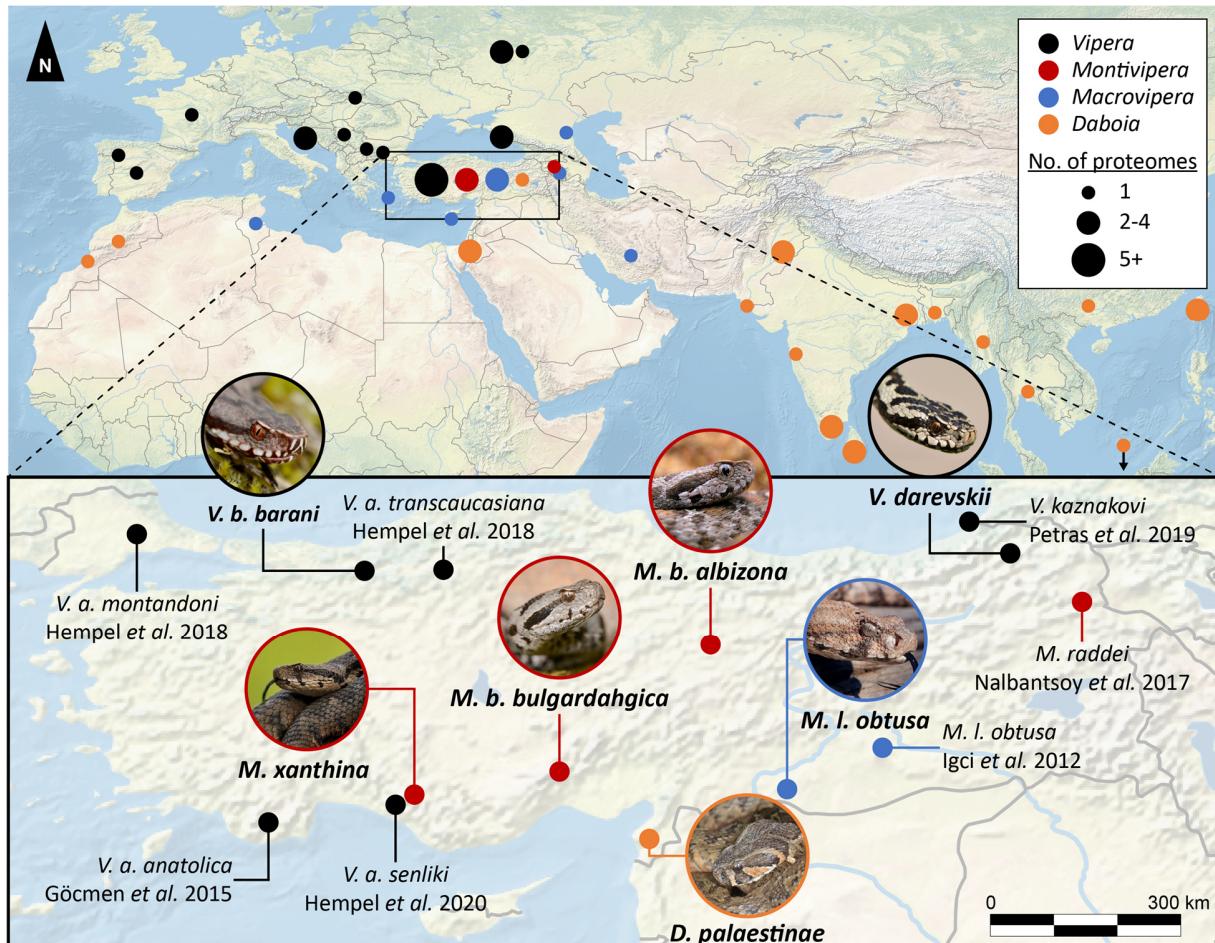
23 ⁸ Zoology Section, Department of Biology, Faculty of Science, Ege University, 35100 Bornova,
24 Izmir, Turkiye

25 KEYWORDS: venom, snakebite, proteomics, peptidomics, viper

26

27 **ABSTRACT**

28 Snake venom variations are a crucial factor to understand the consequences of snakebite
29 envenoming worldwide and therefore it's important to know about toxin composition alterations
30 between taxa. Palearctic vipers of the genera *Vipera*, *Montivipera*, *MacroVIPERA* and *Daboia* have
31 high medical impacts across the Old World. One hotspot for their occurrence and diversity is
32 Türkiye on the border between the continents, but many of their venoms remain still understudied.
33 Here, we present the venom compositions of seven Turkish viper taxa. By complementary mass
34 spectrometry-based bottom-up and top-down workflows, the venom profiles were investigated on
35 proteomics and peptidomics level. This study includes the first venom descriptions of *Vipera berus*
36 *barani*, *Vipera darevskii*, *Montivipera bulgardaghica albizona* and *Montivipera xanthina*, as well
37 as first snake venomics profiles of Turkish *MacroVIPERA lebetinus obtusa* and *Daboia palaestinae*,
38 including an in-depth reanalysis of *Montivipera bulgardaghica bulgardaghica* venom.
39 Additionally, we identified the modular consensus sequence pEXW(PZ)₁₋₂P(EI)/(KV)PPLE for
40 bradykinin-potentiating peptides (BPP) in viper venoms. For better insights into variations and
41 potential impacts of medical significance the venoms were compared against other Palearctic viper
42 proteomes, including the first genus-wide *Montivipera* venom comparison. This will help the risk
43 assessment of snakebite envenoming by these vipers and aid in predicting the venoms
44 pathophysiology and clinical treatments.


45

46 **1. INTRODUCTION**

47 Snakebite envenoming is a major burden on global health ^{1–3}. More than 5.4 million annual
48 snakebites cause more than 150,000 casualties and several more long-lasting physical as well as
49 often neglected mental disabilities ^{4–7}. Responsible for a high number of these snake encounters
50 are, beside elapids (Elapidae) and pit vipers (Crotalinae), the “true” or Old World vipers
51 (Viperinae)⁸. The occurrence of Old World vipers is distributed from the European Atlantic coast
52 across the Palearctic realm, North Africa, Arabia peninsular to Asia and the Pacific coast in the
53 Far East ^{9–11}. Several taxa within this subfamily are in the focus of epidemiological snakebite
54 envenoming dynamics and venom research ^{12–17}. Among them, are the particularly relevant
55 Palearctic vipers of the genera: *Vipera*, *Montivipera*, *Macrovipera* and *Daboia*, following Freitas
56 *et al.* 2020. They consist of about 35 species, but their taxonomic classification has been a topic
57 of debate for long time ^{10,18,19}. The World Health Organization WHO lists all four genera at the
58 highest medical importance, Category 1, with strong impact across their distributions ^{8,11,13,20–22}.

59 Viper envenomation are characterized by mostly hemotoxic and tissue damaging clinical effects,
60 while several Viperinae venoms, such as from the Russell's viper *Daboia russelii* or the nose-
61 horned viper *Vipera ammodytes* are also known for their capability to cause neurotoxic effects ^{23–}
62 ²⁶. Responsible for this spectrum of symptoms are more than 50 known toxin families in snake
63 venoms, which are physiologically diverse: they occur in multiple isoforms and are functionally
64 modulated via posttranslational modifications ^{27–29}. Viperine venoms are primarily composed by
65 enzymatic (e.g. proteases, lipases, oxidases) and non-enzymatic (e.g. lectins, growth factors,
66 hormones) components extending molecular sizes across four magnitudes from small peptides of
67 <500 Da up to protein complexes of >120 kDa ^{30,31}. Over the last decade, venoms of Palearctic

68 vipers have been intensively analysed on the proteomic level for 20 species across 25 countries
69 (Figure 1).

70
71 **Figure 1.** Mapped venomics studies of four Palearctic viper genera from 2003-2023. *Vipera*
72 (*black*), *Montivipera* (*red*), *Macrovipera* (*blue*) and *Daboia* (*orange*) from different geographical
73 areas within 2003 to 2023. The bottom map shows the zoomed detailed overview of venomics
74 studies on Turkish viper taxa with the original studies. Investigated taxa in this study are shown
75 by images of the corresponding snake. Samples/specimen of non-reported venom origin were
76 allocated to the respective capital city of the country. Closely located samples were summed to
77 disks of increasing size. All images by Bayram Göçmen, except *Daboia* by Mert Karış.

78

79 It is important not to generalize the venom composition of a single population to be *per se*
80 representative for a whole species or subspecies. They should rather be considered as potential
81 source for differing compositions, as it has been already reported for several vipers^{16,29,32,33}.
82 Remarkably, a large number of species and most subspecies have never been analysed by state of
83 the art approaches, like modern venomics, defined as the application of high-throughput
84 methodologies to the analysis of an organism's full venom arsenal^{16,34}. Investigating these
85 neglected taxa will help to predict the effect of a snakebite envenoming, to optimize treatment
86 strategies, but also unveil venom evolutionary ecology and guide biodiscovery^{29,35-39}. This can be
87 achieved either through the isolation characterization and assessment of single toxins *in vitro* and
88 *in vivo*, or by detailed and data intensive omics approaches, like genomics, transcriptomics and
89 proteomics^{38,40-42}. Especially the proteomic bottom-up (BU) 'snake venomics' approach, a three-
90 step protocol with a final HPLC (high performance liquid chromatography) linked high resolution
91 mass spectrometry (HR-MS) peptide detection, gives insights into compositions and allows cross-
92 study comparison⁴³⁻⁴⁵. Therefore, it has been used to correlate snake venoms in larger
93 biogeographic contexts^{16,46-48}.

94 On the border between Europe and Asia, Türkiye represents a hotspot of snake diversity, hosting
95 members of all four Palearctic viper genera⁴⁹. The rich herpetofauna has more than ten venomous
96 snake species, several of which with an unresolved taxonomic status^{18,50,51}. Similar to tropical and
97 subtropical regions, snakebite represents a major health burden in Türkiye, but the exact magnitude
98 remains unclear due to the lack of comprehensive data⁵²⁻⁵⁴. Several studies address concrete
99 numbers about snakebite envenoming in Türkiye, like Oto and Haspolat (2021) showed that in
100 southeast regions alone 108 children has been hospitalized between 2006 and 2011, not including

101 dry bites ⁵⁵. In earlier studies Karakus *et al.* (2015) reported for Hatay, a single province in South
102 Türkiye, 125 cases from 2006 to 2010 in total, while Cesareli and Ozkan (2010) listed 550
103 recorded envenomation by the National Poison Information Center (NPIC) across the whole
104 country from 1995 to 2004 ^{52,56}. While awareness of snakebite grows and the still underestimated
105 numbers show the danger of envenomation, the species responsible for a bite are often not known.
106 It is therefore necessary to investigate the range of venomous snakes in the country and the extent
107 to which their venoms are composed. In the last decade, a few of these Turkish species have been
108 studied using modern venomics approaches (**Figure 1**). These include representatives of Viperinae
109 (*Vipera*, *Montivipera* and *Macrovipera*), as well as Morgan's desert cobra, *Walterinnesia morgani*
110 as the only elapid within this region ^{16,57-63}. In this light, it is unfortunate that especially the Turkish
111 taxa of highest medical significance remains virtually unstudied. Therefore, the venom
112 composition and the potentially unfolding effects of envenoming stemming from such components
113 are largely unknown hindering therapeutically care of snakebite victims.

114 Here, we set out to fill this knowledge gap and investigate the venom composition of seven
115 Turkish viper taxa, many of which being recognized as threats to health. Specifically, we
116 investigate representatives of each Turkish viperine genus by a combination of BU snake venomics
117 and top-down (TD) proteomics including peptidomics ^{64,65}. We describe for the first time the
118 venom composition of the Baran's adder *Vipera berus barani* (Böhme & Joger, 1983), an endemic
119 subspecies of the adder located on the north of Türkiye, and the Darevsky's viper *Vipera darevskii*
120 (Vedmederja *et al.*, 1986), a small critically endangered viper living in close proximity to the
121 Turkish-Georgian-Armenian border ^{66,67}. Furthermore, aiming to gain a deeper understanding of
122 the mountain viper venoms, we provide insights into three closely related and highly dangerous
123 *Montivipera xanthina* complex: *Montivipera bulgardaghica bulgardaghica* (Nilson & Andren,

124 1985) and *Montivipera bulgardaghica albizona* (Nilson *et al.*, 1990), as well as the Ottoman Viper
125 *M. xanthina* (Gray, 1849)^{49,50,68–70}. The other two medical relevant genera are represented by one
126 blunt-nosed viper subspecies *Macrovipera lebetinus obtusa* (Dwigubsky, 1832) and the Palestine
127 viper *Daboia palaestinae* (Werner, 1938)^{71,72}. Our sample derived from the most northern, newly
128 described Anatolian specimen of *D. palaestinae*, which venom of this region has been unknown
129 until now⁷³.

130 By extensive modern venomics analysis we double the number of reported Turkish vipers venom
131 compositions and gain novel insights in the venom variation of the four Old World viper genera
132 *Vipera*, *Montivipera*, *Macrovipera* and *Daboia* on the proteomics as well as peptidomics level.

133

134 2. MATERIALS AND METHODS

135 2.1. Origin of snake venoms

136 All snakes were wild caught within Türkiye, the collections were approved with ethical
137 permissions (Ege University, Animal Experiments Ethics Committee, 2010-2015) and special
138 permissions (2011-2015) for field studies from the Republic of Türkiye, Ministry of Forestry and
139 Water Affairs were received. For a detailed list of permission numbers, locations of collection and
140 further venom pool information, see **Supplementary Table S1**.

141 2.2. Bottom-up proteomics - Snake Venomics

142 2.2.1. Venom fractionation

143 For the analysis of each venom pool, 1 mg of lyophilized venom was dissolved to a final
144 concentration of 10 mg/mL in aqueous 5% (v/v) acetonitrile (ACN) with 1% (v/v) formic acid
145 (HFO) and centrifuged for 5 min at 10,000 × g. The supernatants were fractionated on a reversed-
146 phase Supelco Discovery BIO wide Pore C18-3 (4.6 × 150 mm, 3 µm particle size) column

147 operated by a HPLC Agilent 1200 (Agilent Technologies, Waldbronn, Germany) chromatography
148 system. The following gradient with ultrapure water with 0.1% (v/v) HFo (solvent A) and ACN
149 with 0.1% (v/v) HFo (solvent B) was used at 1 mL/min, with a linear gradient between the time
150 points, given at min (B%): 0–5 (5% const.), 5–100 (5 to 40%), 100–120 (40 to 70%), 120–130
151 (70% const.), and 5 min re-equilibration at 5% B. The chromatography runs were observed by a
152 diode array detector (DAD) at $\lambda = 214$ nm detection wavelength. Samples were collected through
153 time-based fractionation (1 fraction/min) and combined peak fractions were dried in a centrifugal
154 vacuum evaporator.

155 Peaks later than 25 min were further processed by the snake venomics steps of gel separation
156 and tryptic digest, peaks with earlier retention times (R_t) are known for their low molecular mass
157 peptide content and were directly sent to the LC-MS. The viperine abundant tripeptide pEKW
158 (with pE for pyroglutamate) signal at around 25 min was set as benchmark.

159 **2.2.2. SDS-PAGE profiling and tryptic digestion**

160 The dried venom fractions were redissolved in 10 μ L reducing 2 \times sodium dodecyl sulfate (SDS)
161 sample buffer (125 mM Tris HCl pH 6.8, 4% (w/v) SDS, 17.5% (w/v) glycerol, 0.02% (w/v)
162 Bromphenol blue and 200 mM freshly prepared dithiothreitol DTT in ultra-pure (MQ) water),
163 heated for 10 min at 95 °C, fully loaded and separated using a 12% SDS-PAGE (SurePage Bis-
164 Tris, Genscript, Piscataway, NJ, USA) run with MES buffer (50 mM 2-(*N*-morpholino)ethane
165 sulfonic acid (MES), 50 mM Tris base, 1 mM EDTA, 0.1% (w/v) SDS, stored in brown glass
166 flasks at 4°C) at 200 V for 21 min. A PageRuler Unstained Protein Ladder (Thermo Scientific,
167 Waltham, MA, USA) was used as protein mass standard. Gels were three times short-washed with
168 water. Proteins were fixed with preheated (50–60 °C) fixation buffer three times for 10 min each
169 (aqueous, 40% (v/v) methanol, 10% (v/v) acetic acid), stained for 45 min in preheated (50–60 °C)

170 fast staining buffer (aqueous, 0.3% (v/v) HCl 37%, 100 mg/L Coomassie 250G) under constant
171 mild shaking, and kept overnight at 4 °C in storage buffer (aqueous, 20% (v/v) methanol, 10%
172 (v/v) acetic acid) for destaining. The cleaned gels were then scanned for documentation and
173 quantification. Gel pieces with single protein bands were cut, dried with 500 µL ACN, and stored
174 at –20 °C without ACN until tryptic digestion. The disulfide bridges were reduced with 30 µL
175 freshly prepared DTT (100 mM in 100 mM ammonium hydrogen carbonate (ABC) per gel band)
176 for 30 min at 56 °C and dried with 500 µL ACN for 10 min before removing the supernatant.
177 Cysteines were alkylated with freshly prepared iodoacetamide (55 mM in 100 mM ABC) for 20
178 min at room temperature in the dark to protect the reduced thiols from oxidation and washed with
179 500 µL ACN for 2 min. before removing the supernatant. Gel samples were dried again with 500
180 µL ACN for 15 min, ACN removed, followed by 30 min incubation on ice with 30 µL freshly
181 activated trypsin (13.3 ng/µL, 10% (v/v) ACN in 10 mM ABC; Pierce trypsin, Thermo, Rockfeld,
182 IL, USA). When necessary, additional volumes of trypsin were added, so that the gel piece was
183 still covered in buffer. All samples were incubated for 90 min on ice, 20 µL ABC buffer (10 mM)
184 was added, and were incubated overnight at 37 °C. Peptides were extracted with 100 µL pre-
185 warmed elution buffer (aqueous, 30% (v/v) ACN MS grade, 5% (v/v) HFo) at 37 °C for 30 min.
186 The supernatant was transferred into a separate microtube, vacuum-dried and if possible directly
187 prepared for the LC-MS/MS measurement, else samples were stored at –20 °C.

188 **2.2.3. Mass spectrometry**

189 For the MS analysis, the extracted and dried tryptic peptides were re-dissolved in 30 µL aqueous
190 3% (v/v) ACN with 1% (v/v) HFo, and 20 µL of each was injected into an LTQ Orbitrap XL mass
191 spectrometer (Thermo, Bremen, Germany) via an Agilent 1260 HPLC system (Agilent
192 Technologies, Waldbronn, Germany) using a reversed-phase Grace Vydac 218MS C18 (2.1 × 150

193 mm; 5 μ m particle size) column. The following gradient with ultrapure water with 0.1% (v/v) HFo
194 (solvent A) and ACN with 0.1% (v/v) HFo (solvent B) was used at 0.3 mL/min, with a linear
195 gradient between the time points, given at min (B%): 0–1 (5% const.), 1–11 (5 to 40%), 11–12 (40
196 to 99%), 12–13 (99% const.), and 2 min re-equilibration at 5% B. The parameters in the ESI
197 positive modus were as follows: 270 °C capillary temperature, 45 L/min sheath gas, 10 L/min
198 auxiliary gas, 4.0 kV source voltage, 100.0 μ A source current, 20 V capillary voltage, 130 V tube
199 lens. FTMS measurements were performed with 1 μ scans and 1000 ms maximal fill time. AGC
200 targets were set to 10^6 for full scans and to 3×10^5 for MS2 scans. MS2 scans were performed with
201 a mass resolution (R) of 60,000 (at *m/z* 400) for *m/z* 250–2000. MS2 spectra were obtained in data-
202 dependent acquisition (DDA) mode as top2 with 35 V normalized CID energy, and 500 as the
203 minimal signal required with an isolation width of 3.0. The default charge state was set to z = 2,
204 and the activation time to 30 ms. Unassigned charge states and charge state 1 were rejected for
205 tryptic digest peptides, for direct submitted fractions from the initial HPLC run all charge states
206 were measured.

207 **2.3. Bottom-up data analysis**

208 The BU LC-MS/MS data RAW files were converted into the MASCOT generic file (MGF)
209 format using MSConvert (version 3.0.10577 64-bit) with peak picking (vendor msLevel = 1–)⁷⁴.
210 For an automated database comparison, files were analysed using pFind Studio⁷⁵, with pFind
211 (version 3.1.5) and the integrated pBuild, with the following parameters: MS Data (format: MGF;
212 MS instrument: CID-FTMS); identification with Database search (enzyme: Trypsin KR_C, full
213 specific up to 3 missed cleavages; precursor tolerance +20 ppm; fragment tolerance +20 ppm);
214 open search setup with fixed carbamidomethyl [C] and Result Filter (show spectra with FDR \leq
215 1%, peptide mass 500–10,000 Da, peptide length 5–100 amino acids, and show proteins with

216 number of peptides >1 and FDR \leq 1%). The used databases included UniProt ‘Serpentes’ (ID
217 8750, reviewed, canonical and isoform, 2640 entries, last accessed on 8th April 2021 via
218 <https://www.uniprot.org/>) and the Common Repository of Adventitious Proteins (215 entries, last
219 accessed on 10 February 2022; available at <https://www.thegpm.org/crap/index.html>). The results
220 were batch-exported as PSM score of all peptides identified with pBuild and manually cleared
221 from decoy entries, contaminations, and artifacts to generate the final list of unique peptide
222 sequences per sample with the best final score. For a second confirmation of identified sequences,
223 all unique entries were analysed using BLAST search with blastp against the non-redundant
224 protein sequences (nr) of the “Serpentes” (taxid: 8570) database^{76,77}. In case of non-automatically
225 annotated band identity, files were manually checked using Thermo Xcalibur Qual Browser
226 (version 2.2 SP1.4), *de novo* annotated, and/or compared on MS1 and MS2 levels with other bands
227 to confirm band and peptide identities. Deconvolution of isotopically resolved spectra was carried
228 out by using the XTRACT algorithm of Thermo Xcalibur.

229 **2.4. Top-down proteomics**

230 For the denaturing TD analysis, 100 μ g of lyophilized venom was dissolved to a final
231 concentration of 10 mg/mL in aqueous 1% (v/v) HFo and centrifuged for 5 min at 20,000 \times g. The
232 supernatant was mixed with 30 μ L of citrate buffer (0.1 M, pH 3.0) and split into two aliquots. The
233 first aliquot was mixed 10 μ L of 0.5 M tris(2-carboxyethyl)phosphine (TCEP), for reduction of
234 disulfide bonds, and incubated for 30 min at 65 °C. The second was supplemented with 10 μ L of
235 ultrapure water and will be referred as non-reduced sample. Both samples were centrifuged for
236 5 min at 20,000 \times g and 10 μ L of each was injected into an Q Exactive HF mass spectrometer
237 (Thermo, Bremen, Germany) via a Vanquish ultra-high performance liquid chromatography
238 (UHPLC) system (Agilent Technologies, Waldbronn, Germany) using a reversed-phase Supelco

239 Discovery BIO wide C18 (2.0 × 150 mm; 3 µm particle size; 300 Å pore size) column thermostated
240 at 30 °C. The following gradient with ultrapure water with 0.1% (v/v) HFo (solvent A) and ACN
241 with 0.1% (v/v) HFo (solvent B) was used at 0.4 mL/min, with a linear gradient between the time
242 points, given at min (B%): 0–6 (5% const.), 6–25 (5 to 40%), 25–30 (40 to 70%), 30–35 (70%
243 const.), and 5 min re-equilibration at 5% B. The parameters in the ESI positive modus were as
244 follows: 265.50 °C capillary temperature, 50.00 AU sheath gas, 12.50 L/min auxiliary gas, 3.50
245 kV source voltage, 100.00 µA source current. FTMS measurements were performed with 1 µ scans
246 and 1000 ms maximal fill time. MS2 scans were performed with a mass resolution (R) of 140,000
247 (at *m/z* 200). MS2 spectra were obtained in DDA mode as top3 with 30% normalized high energy
248 C-trap dissociation (HCD) and an isolation window of *m/z* 3.0. The default charge state was set to
249 *z* = 6, and the activation time to 30 ms. Unassigned charge states and isotope states were rejected
250 for MS2 measurements.

251 **2.5 Top-down data analysis**

252 The TD LC-MS/MS Thermo RAW data were converted to a centroided mass spectrometry data
253 format (mzML) using MSConvert (version 3.0.10577 64-bit) with peak picking (vendor msLevel
254 = 1–) and further analyses by TopPIC^{74,78}. The mzML data were deconvoluted to a MSALIGN
255 file using TopFD (<http://proteomics.informatics.iupui.edu/software/toppic/>; version 1.6.5)
256 with a maximum charge of 30, a maximum mass of 70 000 Da, an MS1 S/N ratio of 3.0, an MS2
257 S/N ratio of 1.0, an *m/z* precursor window of 3.0, an *m/z* error of 0.02 and HCD as fragmentation
258⁷⁹. The final sequence annotation was performed with TopPIC
259 (<http://proteomics.informatics.iupui.edu/software/toppic/>; version 1.6.5) with a decoy
260 database, maximal variable PTM number 3, 10 ppm mass error tolerance, 0.01 FDR cutoff, 1.2 Da
261 PrSM cluster error tolerance, and a maximum of 1 mass shifts (±500 Da), and a combined output

262 file for the non-reduced and reduced samples of a venom pool ⁷⁸. Spectra were matched against
263 the UniProt ‘Serpentes’ database (ID 8750, reviewed, canonical and isoform, 2749 entries, last
264 accessed on 11th October 2023 via <https://www.uniprot.org/>), manually validated, and visualized
265 using the MS and MS/MS spectra using Qual Browser (Thermo Xcalibur 2.2 SP1.48). The
266 XTRACT algorithm of Thermo Xcalibur was used to deconvolute isotopically resolved spectra.

267 **2.6. Intact mass profiling and peptidomics**

268 The TD RAW data were manually screened in the Qual Browser (Thermo Xcalibur 2.2 SP1.48)
269 for an overview of abundant intact protein and peptide masses. They were correlated to the
270 previous peak annotation and identification by snake venomics as well as used for the counting of
271 disulfide bridges between the non-reduced and reduced TD RAW samples. Spectra of multiple
272 charges were isotopically deconvoluted by using the XTRACT algorithm of Thermo Xcalibur.
273 Masses in this study are given in the deconvoluted average *m/z* (with z=1), if not stated otherwise.
274 Monoisotopic masses are also given with z=1. In case of abundant non-TD-annotated peptides,
275 masses were manually checked using Thermo Xcalibur Qual Browser (version 2.2 SP1.4), the
276 peptide sequences were manually *de novo* annotated by the MS/MS spectra and the *m/z* peaks
277 cross-confirmed by in silico fragmentation using MS-Product of the ProteinProspector
278 (<http://prospector.ucsf.edu>, version 6.4.9) ⁸⁰.

279 **2.7. Proteome quantification**

280 The used quantification protocol is based and adapted to the common three-step ‘snake
281 venomics’ approach as summarised in Calvete *et al.* 2023 ⁸¹. The comparable approach determine
282 a toxin family abundance in the venom as the sum of all its normalized toxin abundances *T*:

$$283 T_{toxin\ family} = \sum T_{band}\\ 284 \text{with } T_{all\ families} = 1$$

285 The normalized toxin abundance within a single protein band T_{band} is calculated with the
286 normalized values of the RP-HPLC peak integral P measured at 214 nm, the densitometric gel
287 band intensity D and if necessary the relative MS ion intensity M of the most abundant and
288 identified peptides:

289
$$T_{band} = P \cdot D \cdot M$$

290 For the peak quantification after blank run subtraction, the HPLC separation chromatogram
291 fractions were integrated as area under the curve P_{peak} in ratio to the total sum of all peaks:

292
$$P = \frac{P_{peak}}{\sum P_{all \ HPLC \ peaks}}$$

293 For the densitometric quantification of a single SDS band, the non-highly compressed gel scan
294 (here in PNG format) was processed by Fiji ⁸². The colour depth was set to 8bit grayscale and
295 inverted to integrate former darker bands with higher values. The band area A_{band} and the
296 corresponding integrated band densities D_{band} were measured for each band, as well as a
297 corresponding background areas A_{bg} and integrated band densities D_{bg} . By removing the proportion
298 of background, we calculated the normalized gel band intensity D for each toxin band in the gel:

299
$$D = \frac{D_{band-bg}}{\sum D_{band-bg}} = \frac{D_{band} - (A_{band} \cdot \frac{D_{bg}}{A_{bg}})}{\sum D_{band-bg}}$$

300 In case of multiple toxin identification within a single band, single normalized toxin abundances
301 M were estimated based on the ion intensity sum of the three most intensive peptide ions of one
302 toxin from M_3 in relation to the sum of all top3 toxin ions from the other co-migrated toxins
303 families within this MS sample, as summarised in Calvete *et al.* 2023 ⁸¹:

304
$$M = \frac{M_3 \text{ of toxin family in band}}{\sum M_3 \text{ of all toxin families in band}}$$

305 In total, band identification based on the BU, TD and peptidomics results, in comparison to the
306 IMP and the apparent masses of the SDS bands.

307 **2.8. Online proteome search**

308 To identify relevant publications for the comparison of venom compositions the review of
309 Damm *et al.* (2021) was used as template and database for Old World vipers (Squamata: Serpentes:
310 Viperidae: Viperinae) venoms¹⁶. We used the identical selection criteria parameters with two
311 modifications. Firstly, the genera, species, and subspecies taxa search were limited to Palearctic
312 vipers of the genus *Vipera*, *Montivipera*, *Macrovipera* and *Daboia*, and the investigated time
313 window was continued from 1st January 2021 until 31st December 2023. Therefore the PubMed
314 database (<https://pubmed.ncbi.nlm.nih.gov/>) of the National Centre of Biotechnology Information
315 (NCBI), Google (<https://www.google.com/>) as well as Google Scholar
316 (<https://scholar.google.com/>) has been searched as described earlier and the results were screened
317 manually for proteomic studies¹⁶.

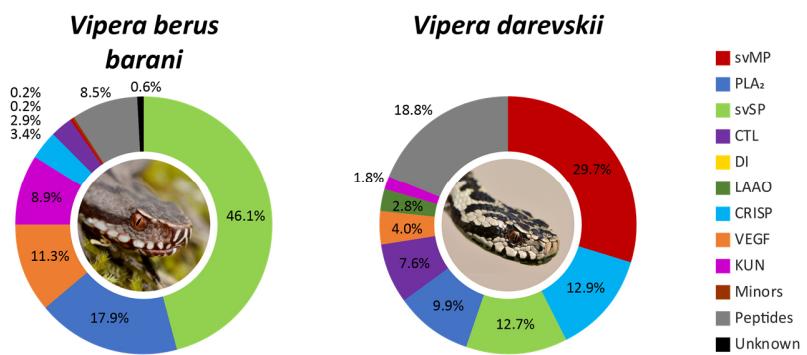
318 **2.9. Data accessibility**

319 Mass spectrometry proteomics data have been deposited in the
320 deposited to the PRIDE Archive
321 (<http://www.ebi.ac.uk/pride/archive/>) via the PRIDE partner repository with the data set
322 identifier

323 Mass spectrometry proteomics data have been deposited with the ProteomeXchange
324 Consortium10 via the MassIVE partner repository (<https://massive.ucsd.edu/>) under the bottom-
325 up and top-down project names “Snake venom proteomics of seven taxa of the genera *Vipera*,
326 *Montivipera*, *Macrovipera* and *Daboia* across Turkiye/Turkey” with the dataset identifiers
327 “MSV000094228” and “MSV000094229”, respectively, as well as in the Zenodo repository
328 (<https://zenodo.org>) under the project name “DATASET - Mass Spectrometry - Snake venom

329 proteomics of seven taxa of the genera *Vipera*, *Montivipera*, *Macrovipera* and *Daboia* across
330 “Türkiye” with the dataset identifier 10.5281/zenodo.10683187⁸³.

331 3. RESULTS


332 The venom proteomes of seven Palearctic viper taxa of Turkish origin were profiled by the snake
333 venomics approach (**Figure 2,3 and 5, Supplementary Figures S1-S7**). For a comprehensive
334 analysis each venom was additionally investigated by non-reduced and reduced top-down MS,
335 including intact mass profiling and peptidomics. All identified toxins and homologs are in detail
336 listed in the supplements (**Supplementary Tables S3-S9**). Four venom proteomes represent first
337 descriptions for these snake taxa (*V. b. barani*, *V. darevskii*, *M. b. albizona* and *M. xanthina*), two
338 have never been investigated before by extensive snake venomics for Turkish populations (*M. l.*
339 *obtusa* and *D. palaestinae*) and one is an in-depth reanalysis in order to identify >20% of unknown
340 proteins from a previous study (*M. b. bulgardaghica*, identical pool)⁵⁸. In general, the seven
341 proteomes largely conform to the previously proposed compositional family trends of toxins in
342 viperine venoms¹⁶. Accordingly, viperine venoms can be categorized into typical major-,
343 secondary-, and minor toxin families. For those, the following abundance ranges were identified
344 for the herein analyzed venoms:

- 345 • major toxin families: snake venom metalloproteinases (svMP, <1-34%) including
346 disintegrin-like/cysteine-rich (DC) proteins; snake venom phospholipases A₂ (PLA₂, 8-
347 18%); snake venom serine proteases (svSP, 10-46%); C-type lectin-related proteins and
348 snake venom C-type lectins (summarized as CTL, 3-20%),
- 349 • secondary toxin families: disintegrins (DI, 0-15%); L-amino acid oxidases (LAAO, 2-
350 4%); cysteine-rich secretory proteins (CRISP, 0-13%), vascular endothelial growth
351 factors F (VEGF, 0-12%), Kunitz-type inhibitors (KUN, 0-9%),

352 • minor toxin families: i.a. 5'-nucleotidases (5N, 0.1-0.8%); nerve growth factors (NGF,
353 0.3%); phosphodiesterases (PDE, 0.2%).

354 Members of rare families in Viperinae venoms, like glutaminyl cyclotransferases (EC 2.3.2.5)
355 or aminopeptidases (EC 3.4.11.-), have not been detected in the herein studied venoms. In the
356 following section, each snake venom composition will be described and the proteomes will be
357 discussed on a genus-wide comparison. Furthermore, a variety of peptides (9-19%) have been
358 observed in the venoms and will be highlighted later in detail separately.

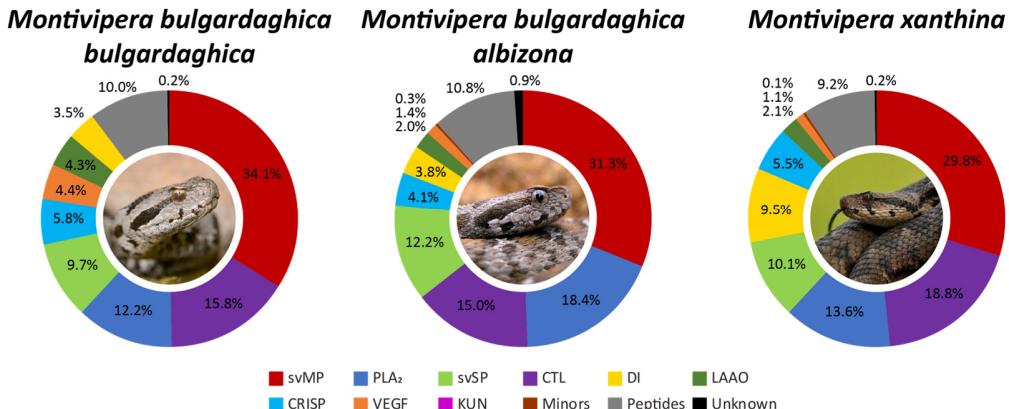
359 **3.1. *Vipera berus barani* and *V. darevskii***

360
361 **Figure 2.** *Vipera* venom compositions of *V. b. barani* and *V. darevskii*. The venom proteomes of
362 two *Vipera* taxa from Türkiye have been quantified by the combined snake venomics approach via
363 HPLC ($\lambda = 214$ nm), SDS (densitometry) and MS ion intensity, including TD proteomics. Toxin
364 families are arranged clockwise by abundances, followed by peptides (grey) and non-annotated
365 parts of the venom (unknown, black). Images by Bayram Göçmen.

366
367 With *V. b. barani* and *V. darevskii* two different taxa of the *Vipera* subclade *Pelias* have been
368 analysed in this study (Figure 2, Supplementary Table S3/4, S10/11, S17/18). The *V. b. barani*
369 crude venom HPLC profile lacks abundant peaks at $R_t > 90$ min, corresponding to a higher ACN

370 gradient (**Supplementary Figure S1**). In viperines, those peaks include normally P-III svMP and
371 have been observed in all other venoms examined within this study. In contrast, *V. b. barani* lacks
372 those late-eluting peaks, and svMP are surprisingly underrepresented and correspond to only 0.2%
373 of the venom. They were identified as members of the P-III subfamily and accordingly no DI were
374 observed.

375 On the other side, the venom profile has a complex peak structure in the chromatogram between
376 75 to 90 min (F27-38) and svSP were identified as the most abundant toxin family. The fractions
377 (F) F27-45 contain svSP of up to 32 kDa and the IMP revealed *m/z* 30327.40 and *m/z* 30909.67 as
378 the most abundant average svSP masses. Both masses appeared in groups of peaks, based on the
379 variable *N*-glycosylation. The clearest signals had mass shifts of Δ 203 Da and Δ 406 Da, indicating
380 at least two *N*-acetylhexosamines (HexNAc, 203.08 Da) in the glycosylation tree. By BU, nikobin
381 was identified as homolog in most of the fractions with the highest peptide coverage. The
382 remaining svSP were identified as homologs to the hemotoxic factor V-activating enzyme (RVV-
383 V, *D. siamensis*) or svSP homolog 2 (*M. lebetinus*).

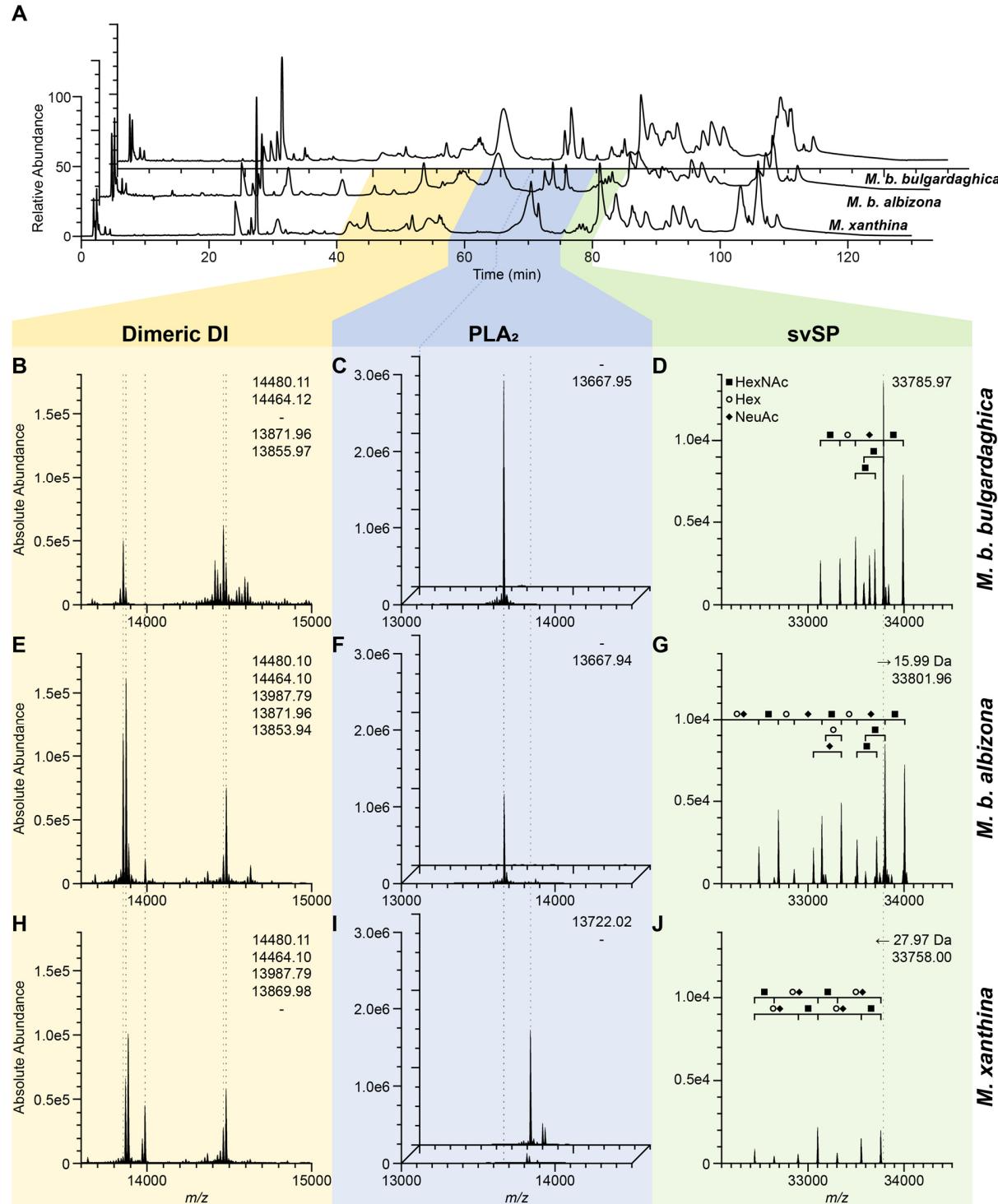

384 A combination of basic, neutral and acidic PLA₂ (18%) formed the second most abundant toxin
385 family and all PLA₂ in the *V. b. barani* venom were identified as neurotoxic homologs, like
386 ammodytin L and ammodytoxin C via BU proteomics^{84,85}. By TD proteomics proteoforms of
387 ammodytin (*m/z* 13553.88, 13676.39, 13692.84) and ammodytoxin (*m/z* 13742.19, 13773.18,
388 13856.25) were annotated and the PLA₂ conserved seven intramolecular disulfide bridges could
389 be confirmed between the reduced and non-reduced samples (**Supplementary Table S17**). The
390 following most abundant toxin families were VEGF (11%), mostly vammin-1' related, and KUN
391 (9%) formed by a single serine protease inhibitor ki-VN (*m/z* 7594.47) with three TD confirmed
392 disulfide bridges. Further toxin families are CRISP (3%), with a single dominant band in F24/25

393 of m/z 24599.42, CTL (3%), PDE (0.2%) and LAAO in small traces (44c; ~55 kDa). Abundant
394 peptides signals of low molecular sizes have been identified by MS2 as pERRPPEIPP (m/z
395 1072.59) and pERWPAGPKVPP (m/z 1144.62), beside two tripeptidic svMP inhibitors (svMP-i)
396 pEKW (m/z 444.22) and pERW (m/z 472.23).

397 The second *Vipera* venom investigated in this study stems from *V. darevskii*. It largely follows
398 the classical Viperinae composition and is characterized by a high abundances of svMP (30%, P-
399 III svMP only), PLA₂ (10%), svSP (13%) and CTL (8%) as major toxin families.

400 The main PLA₂ are acidic homologs to the toxins from *V. ammodytes* and *V. renardi*, such as
401 myotoxic ammodytin 11, as well as MVL-PLA2 and VpaPLA2 from *Daboia* and *Macrovipera*
402 species. One third of the svSP (4% of the total venom) shared the highest similarities with
403 anticoagulant active homologs of *V. ammodytes* and *M. lebetinus*, while the remaining 9%, all
404 eluting >80 min, were matched to sequences from *V. berus* (nikobin) and *V. anatolica senliki*. The
405 CRISP (13%) toxins are second most abundant and interestingly a strong signal for a CRISP
406 fragment has been observed with a monoisotopic mass of m/z 6414.61 eluting at 11 min in the non-
407 reduced, non-digested venom. Its reduced monoisotopic signal of m/z 6424.68 could be annotated
408 by TD as the C-terminal fragment of CRVP_VIPBN, a CRISP from *V. berus nikolskii*, with a
409 single oxidation (+15.99 Da). The mass shift of Δ10.065 Da indicates five disulfide bridges
410 through ten Cys in the sequence. Several further secondary toxin families were identified, like
411 VEGF (4%), LAAO (3%) and KUN (2%), but no DI nor any minors or rare were detected. The
412 peptides (19%) are dominated by a single svMP-i (pEKW) fraction with over 11% of the whole
413 venom proteome of *V. darevskii*. Furthermore, 3% could be assigned to the de novo annotated
414 peptide pENWPGPK (m/z 809.39).

415 **3.2. *Montivipera bulgardaghica* ssp. and *M. xanthina***



416

417 **Figure 3.** *Montivipera* venom compositions of *M. b. bulgardaghica*, *M. b. albizona* and *M.*
418 *xanthina*. The venom proteomes of three *Montivipera* taxa from Türkiye have been quantified by
419 the combined snake venomics approach via HPLC ($\lambda = 214$ nm), SDS (densitometry) and MS ion
420 intensity, including TD proteomics. Toxin families are arranged clockwise by abundances,
421 followed by peptides (grey) and non-annotated parts of the venom (unknown, black). Images by
422 Bayram Göçmen.

423

424 The genus of *Montivipera* is represented in this study by three different taxa, two *M.*
425 *bulgardaghica* subspecies (*M. b. bulgardaghica*, *M. b. albizona*) and *M. xanthina* (Figure 3,
426 Supplementary Table S5-7, S12-15, S19-21). A chromatogram comparison revealed 53 signal
427 groups in the venom of *M. b. bulgardaghica*, 50 for *M. b. albizona* and 42 for *M. xanthina*
428 (Supplementary Figures S3-S5) The profiles between the *M. bulgardaghica* ssp. had higher
429 similarities in the chromatograms of the first 75 min compared to *M. xanthina*, while eluting
430 profiles between 80 to 110 min of all three venoms had exhibited striking similarities (Figure 4).

431 **Figure 4.** Venom profiles of three mountain vipers (*Montivipera*) and comparison of abundant
432 toxins. (A) Chromatogram of the venoms from *M. b. bulgardaghica* (top/back; **B-D**), *M. b.*
433 *albizona* (middle; **E-G**) and *M. xanthina* (bottom/front; **H-J**) with $\lambda = 214$ nm. (B-J) Exemplary
434

435 main toxin families were investigated by non-reduced intact mass profiling (IMP) at their
436 corresponding top-down proteomics retention times set in correlation to the snake venomics HPLC
437 profile. The deconvoluted main toxin masses (dashed lines) are compared for five dimeric DI
438 (**B,E,H** at 11.4-15.2 min IMP RT) and two PLA₂ at two different times (**C,F,I** at front 15.3-
439 18.0 min and back 18.0-19.7 min IMP RT). Begin of the second PLA₂ time windows in (**A**) is
440 connected (dark blue line) the corresponding IMP (back of **C,F,I**). A svSP (**D,G,J** at 20.5-21.2 min
441 IMP RT) shows small mass shifts but similar glycosylation components: HexNAc (*N*-
442 acetylhexosamines, filled square), Hex (hexose, circle), NeuAc (*N*-acetyl neuraminic acid, filled
443 rhombus). Abbreviations: DI, disintegrins (yellow); PLA₂, phospholipase A₂ (blue); svSP, snake
444 venom serine protease (green).

445

446 The semi-quantification by snake venomics shows high similarities in the major toxin
447 abundances. In all three *Montivipera* venoms different svMP (30-34%) dominate, mostly P-III
448 svMP to a smaller extend of DC proteins (2-4%), followed by CTL (15-19%) (**Figure 3**). Each
449 venom had three main fractions collected between 82-104 min with abundant CTL bands in the
450 reduced SDS PAGE at 12 to 15 kDa, each. This is consistent with their multimeric structure ⁸⁶.
451 The observed tryptic peptides sequences were homolog to *M. lebetinus* toxins in all three snakes:
452 Snaclec A11/A1/B9 (82 min), Snaclec A16/B7/B8 (88 min) and C-type lectin-like protein 3A
453 (104 min). At 104 min also Snaclec 3 from *D. siamensis* has been identified and the TD annotation
454 confirmed the presence of Snaclec A14 homologs (*M. lebetinus*) in each of the *Montivipera*
455 venoms.

456 The PLA₂ (12-18%) differ between the species. The acidic phospholipase A₂ Drk-a1 homolog,
457 from *D. russelii*, is the main representative in both, *M. b. bulgardaghica* (11%) and *M. b. albizona*

458 (12%), with m/z 13667.95 and m/z 13667.94, respectively (**Figure 4C,F,I**). The PLA₂ were
459 detected in a single dominant peak at R_t = 62 min, at which the *M. xanthina* chromatogram had
460 only a flat broad signal (F22). In the *M. xanthina* composition this fraction has been identified by
461 BU as a coelution of NGF (0.1%) and PLA₂ (1.3%) with a mass of m/z 13833.24. Its main PLA₂
462 eluted a few minutes later at ~70 min forming a strong signal (F23-25), which in turn was absent
463 in the first two profiles. In *M. xanthina* a different main acidic PLA₂ homolog with m/z 13722.02
464 has been observed. It represents over 8% of the whole venom (**Figure 4C,F,I**). The remaining 3%
465 were formed by basic PLA₂, which were only be detected in traces within the two *M.*
466 *bulgardaghica* subspecies.

467 Within all three HPLC profiles a group of close eluting peaks has been detected at <80 min,
468 which is typical for svSP in viper venoms bearing an extensive glycosylation. BU proteomics
469 confirmed the presence of svSP and the IMP revealed several molecular masses around 33 kDa.
470 The main svSP masses differ within the genus of *Montivipera*, but all peaks are closely related
471 with mass shifts of Δ15.99 Da (O) between *M. b. bulgardaghica* (m/z 33785.97) and *M. b. albizona*
472 (m/z 33801.96), and Δ27.97 Da (CO) between *M. b. bulgardaghica* and *M. xanthina*
473 (m/z 33758.00) (**Figure 4D,G,J**). All three had peak patterns of same distances and revealed so
474 similar consecutive glycosylations, with observed mass shifts of Δ203 Da (HexNAc, 203.08 Da),
475 Δ162 Da (hexose Hex, 162.06 Da) and Δ291 Da (*N*-acetyl neuraminic acid NeuAc, 291.10 Da)
476 (**Figure 4D,G,J**).

477 Secondary toxin families were identified at lower abundances: DI (4-10%), CRISP (4-6%),
478 LAAO (2-4%) and VEGF (1-4%) of which all belong to the vammin/ICCP-type⁸⁷, but no KUN
479 have been detected in any *Montivipera* venom. In total, eleven different abundant masses could be
480 identified as heterodimeric DI around 14 kDa, and while monomeric DI of various lengths from 4


481 to 8 kDa are known to appear in viper venoms, none of these have been observed in the herein
482 analyzed *Montivipera* venoms. *M. xanthina* showed with 9.5% more than twice the amount of DI
483 than *M. b. bulgardaghica* (3.5%) and *M. b. albizona* (3.8%). Only two abundant dimeric DI are
484 shared across all three venoms. They have molecular masses of *m/z* 14480.10 and *m/z* 14464.11
485 with Δ 15.99 Da (O) (**Figure 4B,E,H**), and TD revealed the two subunits as homologs of the close
486 related taxa: lebein and VLO5 (both *M. lebetinus*) and EMF10 (*Eristicophis macmahoni*). The sum
487 of their corresponding exact masses gives proof of the characteristic ten disulfide bridges (twice
488 four intra- plus two interchains). The other ten dimeric DI were either detected in two of the three
489 vipers, or unique for one of them. For example, both *M. bulgardaghica* ssp. shared *m/z* 13871.96,
490 while *m/z* 13987.79 has been only observed for *M. b. albizona* and *M. xanthina* (**Figure 4B,E,H**).
491 The other dimeric masses between the three venoms show differences of a few Dalton, due to the
492 high similarity of the monomeric subunit, similar to the later described *M. l. obtusa*.

493 The three CRISP containing peaks eluted contemporaneous in the *Montivipera* venoms at
494 $R_t = 70$ min, with main representative masses of *m/z* 24816.46 in *M. b. bulgardaghica*, *m/z*
495 24806.44 in *M. b. albizona* and *m/z* 24666.54 in *M. xanthina*. The latter was also low abundant in
496 *M. b. bulgardaghica* (*m/z* 24699.52), and not present in *M. b. albizona*. For the category of minor
497 toxins only 5N (0.3%) were annotated by BU in the venom of *M. b. albizona* and NGF (0.1%) in
498 *M. xanthina*.

499 The three herein analyzed *Montivipera* venoms contain a similar peptide part of around 10% and
500 the svMP-i pEKW, pERW and pENW (*m/z* 430.17) could be identified in all of them as abundant
501 components. The decapeptide pENWPSPKVPP (*m/z* 1132.55) and the two sequence related
502 peptides pENWPSPK (*m/z* 839.41) and pENWPSP (*m/z* 711.31) were also prominent in each
503 *Montivipera* peptidome as well as the glycine-rich peptide pEHPGGGGGGW (*m/z* 892.37).

504

3.3. *Macrovipera lebetinus obtusa*

505

506 **Figure 5. *Macrovipera* and *Daboia* venom compositions of *M. l. obtusa* and *D. palaestinae*.**

507 The venom proteomes of one *Macrovipera lebetinus* subspecies and one *Daboia* species from
508 Türkiye have been quantified by the combined snake venomomics approach via HPLC ($\lambda = 214$ nm),
509 SDS (densitometry) and MS ion intensity, including TD proteomics. Toxin families are arranged
510 clockwise by abundances, followed by peptides (grey) and non-annotated parts of the venom
511 (unknown, black). Images by Bayram Göçmen (*Macrovipera*) and Mert Karış (*Daboia*).

512

513 The third Palearctic viper genus analysed was *Macrovipera*, also referred to as blunt-nosed
514 vipers. Here, we examined the venom of *M. l. obtusa* (Figure 5, Supplementary Table S8, S15,
515 S22). Its major toxins, including DI, forming 83% of the venom and are mostly composed of svMP
516 (22%), with P-I (2%) and P-III svMP (12%). The DC proteins (8%), or P-IIIe svMP subfamily,
517 account for >8% of the venom. They were identified as homologs of Leberagin-C (F22/23). The
518 most abundant P-III svMP was the heavy chain of the coagulation factor X-activating enzyme
519 VLFXA. It forms a heterotrimeric complex with the CTL light chains 1 and 2, annotated in F38
520 and F40. Further abundant svMP include the apoptosis inducing VLAIP-A/B (P-III) and lebetase
521 (P-I). The svSP (19%) consist of different toxins, that has been previously described from the

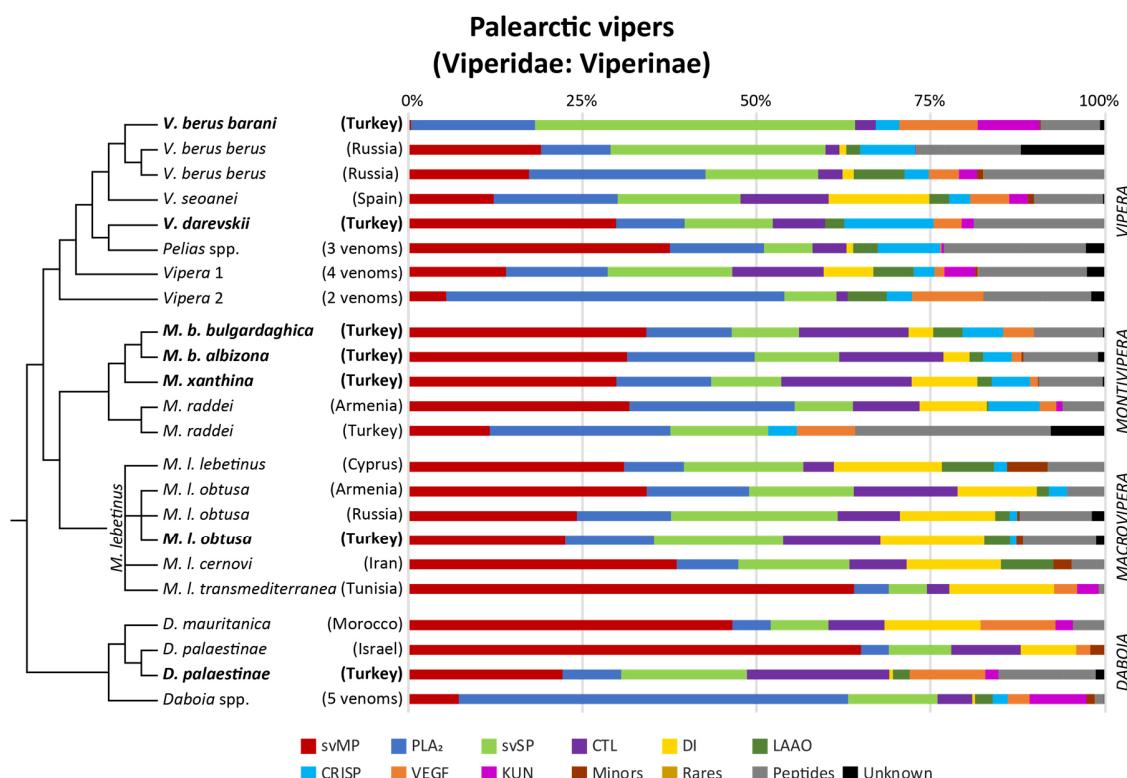
522 *Macrovipera* genus and a majority of the tryptic peptide sequences originated from the coagulant-
523 active lebetina viper venom FV activator (VLFVA or LVV-V), followed by the α - fibrinogenase
524 (VLAf), VLP2 and VLSP3. The third most common toxin family are DI (15%) and we could
525 identify more than ten dimeric DI masses and several determined DI subunits within the Turkish
526 *M. l. obtusa* venom (**Supplementary Table S24**). The main DI subunits, identified by TD and
527 BU, are from known *Macrovipera* toxins, such as lebein-1, VB7A, VLO4, VLO5, VM2L2 or
528 lebetase. This high variety of dimeric DI is also a result of mass shifts compared to known subunit
529 sequences, originating from e.g. from oxidation (Δ 15.99 Da), hydration (Δ 18.01 Da), or the loss
530 of terminal amino acids, e.g. seen C-terminal at lebein-1-alpha (-KD^C) or N-terminal at VM2L2
531 (-^NQNSGN) and VLO5B (-^NM). It cannot be ruled out that some of these modifications are artifacts
532 due to the analysis methods used, since most DI subunits were also observed unmodified. No
533 monomeric DI was observed.

534 The remaining major families are CTL (14%), with the two previously mentioned VLFXA light
535 chains as well as homologs to the CTL 3A, B9, A14, A15 and 4B, and PLA₂ (13%). The venom
536 contained only two PLA₂ (13%), eluting around 80 min in the HPLC profile. They were identified
537 as acidic phospholipase A2 1 (6.4%; *m/z* 13662.79, non-red.) and A2 2 (6.4%, *m/z* 13644.79, non-
538 red.) from *M. lebetinus* and their sequences have been confirmed by TD between the reduced and
539 non-reduced samples, including validation of their seven disulfide bridges, each. Additionally,
540 LAAO (4%), CRISP (0.9%), NGF (0.8%) and PDE (0.2%) were detected as less dominant toxin
541 families.

542 The venom profile of the analyzed *M. l. obtusa* is dominated by one peptide containing peak
543 (F5), with 9% of the whole venom. It has two major molecular masses of *m/z* 444.22 (pEKW) and

544 its 2M+H⁺¹ ion of *m/z* 887.44. Further abundant peptides are pEKWPSPKVPP (*m/z* 1146.63) and
545 pEKWPVPGPEIPP (*m/z* 1327.71).

546 **3.4. *Daboia palaestinae***


547 The last Viperinae genus *Daboia* is represented by *D. palaestinae*. Our analysis revealed, that
548 its venom is largely composed of svMP (22%) with only P-III svMP (16%) and DC proteins (6%),
549 as well as an abundant amount of CTL (21%) (**Figure 5, Supplementary Table S9, S16, S23**).
550 The earlier eluting CTL at R_t = 82 to 88 min (F28-33) have been annotated by several tryptic
551 peptides as homologs to *M. lebetinus*, while the later (R_t > 90 min) are related to Snaclec 3 and
552 Snaclec 4 (*D. palaestinae*). The third abundant toxin family, svSP (18%), is described by different
553 fibrinogenases and plasminogen activators. The HPLC venom profile lacks any dominant peak
554 between R_t = 60 and 75 min and shows one abundant peak at R_t < 80 min (F26/27), which normally
555 contain the PLA₂ and CRISP variants in viper venoms. Therefore, no CRISP were observed and
556 all PLA₂ (8%) were described within F26/27 and being acidic. The two main proteoforms (*m/z*
557 13672.78 and *m/z* 13687.77) were TD identified as VpaPLA2 and VP7 from *D. palaestinae* and
558 MVL-PLA2 from *M. l. transmediterranea*, since all three PLA₂ sequences are highly identical
559 with changes at only three amino acid positions.

560 Secondary toxin families in the venom of *D. palaestinae* are VEGF (11%), mainly homolog to
561 VR-1 from *D. siamensis*, LAAO (2%) and KUN (2%). The ion mass of *m/z* 7722.582 was identical
562 to then KUN serine protease inhibitor PIVL from *M. l. transmediterranea*, and to the its ⁶⁴IQPR^C
563 C-terminal shortened variant (*m/z* 7228.23). The only DI (0.5%) is the small KTS sequence
564 containing viperistatin with *m/z* 4469.84 and four TD confirmed disulfide bridges. No minor or
565 rare toxin families were observed within the Turkish *D. palaestinae* venom.

566 The peptidic part (14%) includes as main representatives, two svMP-i (pEKW, pENW) already
567 detected within the other viper venoms of this study. But while no pERW mass has been observed,
568 several related sequences could be annotated, such as pERWPGPKVPP (m/z 1144.63) and
569 pERWPGPELPP (m/z 1159.59).

570 4. DISCUSSION

571 To gain better insights into the venom variations and the potential impact of medical significance
572 of Palearctic vipers, we aligned the data of the seven vipers in a genus-wide comparison (Figure
573 6). For this purpose, we updated the previous venomics database of the full Old World viper
574 subfamily (Viperinae) from Damm *et al.* (2021) and added additional snake venomics studies of
575 Palearctic vipers until the end of 2023, searched by identical parameters¹⁶.

576
577 **Figure 6.** Snake venomics of Palearctic viper venom proteomes. Overview of all four genera
578 (*Vipera*, *Montivipera*, *Macrovipera* and *Daboia*) summed to the total composition of Palearctic

579 viper venoms (pie chart) and updated according to Damm *et al.* (2021). The 33 comparative
580 proteomics data of 15 different Viperinae species including subspecies are lined up phylogeny-
581 based. Origins of investigated specimen are reported in brackets. Numbers represent investigations
582 of >1 venom proteomes. Venoms from this study are in bold. Schematic cladograms of the
583 phylogenetic relationships based on Freitas *et al.* (2020).

584 **4.1. *Vipera* - Eurasian vipers**

585 With more than 20 species the Eurasian vipers (genus *Vipera*) are the most diverse group of all
586 Old World vipers and can be split into three major clades ¹⁸. The *Pelias* group includes the common
587 adder *V. berus* and meadow vipers of the *V. ursinii-renardi* complex. The other two groups in
588 *Vipera* 1, comprising *Vipera aspis*, *Vipera latastei* and *Vipera monticola*, and *Vipera* 2, the nose-
589 horned viper *V. ammodytes-meridionalis* complex, with its most recent changes ⁸⁸. Several of those
590 species are of medical relevance in Europe, i.a. *V. berus*, *V. ammodytes* and *V. aspis* ^{15,89,90}. In
591 Europe snakebite envenoming is an neglected health burden, even so over 5500 case have been
592 reported in total ⁸⁹. That said, in Europe no mandatory snakebite monitoring has been set up and
593 therefore the true extent of snakebite envenoming remains to be clarified. Similar to the global
594 situation, based on a combination of the non-mandatory snakebite reports and the lack of well-
595 curated official databased statistics in most countries leading to high numbers of unreported cases,
596 there are good reasons to assume that European snakebite incidences are certainly vast
597 underestimated ^{15,91}.

598 Above all, the adder *V. berus* with its extremely wide distribution is of particular interest for
599 venom research, as it is still completely unknown to what extent a venom composition changes
600 within a certain distribution range. Various factors such as genetic isolation and different habitats
601 over several thousand kilometers across different climate zones with variable prey can have an

602 unforeseen influence on the venom composition and make it impossible to predict variations ²⁹.
603 Therefore, it is surprising that relatively little is known about venom variations, both of nominal
604 *V. berus berus* and the multitude of subspecies (*barani*, *bosniensis*, *nikolskii*, *marasso* and
605 *sachalinensis*) ^{10,92}. Only four venomic datasets (*V. b. berus* and *nikolskii*) have been reported
606 beside our *V. b. barani* venom, with two Russian *V. b. berus* analysed by snake venomics ^{16,93-96}.
607 Other studies over the past decades were based on single toxin isolation and characterization, or
608 physiological effects ⁹². The two Russian *V. b. berus* snake venomics studies show the remarkable
609 differences with the herein presented *V. b. barani* venom as svMP are nearly missing and is
610 dominated by svSP, VEGF and KUN forming over 66% of the proteome (**Figure 6**). The only
611 other *Vipera* described to harbor comparatively low svMP levels are *Vipera ammodytes*
612 *montandoni* (1.8%) and the close related *V. b. nikolskii* (0.7%), sometimes also recognized as
613 *Vipera nikolskii* ^{16,62,96}. While high svSP contents are known for other Viperinae, like *Bitis* (15-
614 26%), *Cerastes* (7-25%) or *Macrovipera* (5-24%) so far, only the venom of Russian *V. b. berus*
615 with 30% svSP has been described with an increased svSP content ¹⁶. With 46% svSP the
616 composition of the Turkish *V. b. barani* renders unique among so far quantified Old World viper
617 venoms. Its most prominent protein, Nikobin, was firstly isolated from the *V. b. nikolskii* venom
618 and is, like most svSP, a glycoprotein with unknown glycosylation pattern and putative hemotoxic
619 activity ^{97,98}. Sequences of the proteins show three *N*-glycosylation recognition sites, which high
620 potential variability would explain the complex peak pattern observed for the *V. b. barani* venom
621 profile. It is questionable to what extent the clinical manifestations would be similar, as there is
622 only one suspected case report of this subspecies to date ⁹⁹. In addition to local swelling, and
623 hyperemia, there were clear neurological symptoms with pronounced diplopia and ptosis. No
624 further symptoms were described after two ampules of antivenom (European viper venom

625 antiserum, ‘Zagreb’). The bites of *V. berus* have a broad spectrum of potential effect, and is often
626 per se defined as cyto- and hemotoxic with pro- or anticoagulant inducing effects and blood factor
627 X activators^{92,100}. However, one problem is that the neurotoxic effects of *V. berus* envenoming are
628 poorly documented in comparison to the amount of bite cases, but known for the other two medical
629 relevant species, *V. aspis* and *V. ammodytes*^{24,101–105}. PLA₂, such as presynaptic ammodytoxin
630 isoforms and postsynaptic isoforms of aspin and vipoxin, are most likely responsible for these
631 effects^{94,106,107}. This toxin family could be detected in all *V. berus* venom proteomes in varying
632 abundances and the venoms of *V. b. nikolskii* and the Slovakian *V. b. berus* were described being
633 largely PLA₂-rich, as many Russian vipers of the *Pelias* group^{16,96}. The impact of the extremely
634 high svSP content in *V. b. barani* might be accompanied by strong effects on coagulation pathways
635 and platelet aggregation like in other vipers^{98,108}. This shows that the venoms of the Eurasian
636 adders are far more complex than previously investigated and thus represents an important subject
637 for future venom research with a high relevance for the therapeutic treatment and
638 specimen/population selection for antivenom development.

639 Within Europe several antivenoms are available with vipers as immunizing species. This include
640 usually the four medically most important snakes *V. ammodytes*, *V. aspis*, *V. berus* and *V. latastei*
641^{89,90,100,109}. None of the antivenoms has been assessed by the WHO until now, but are registered by
642 competent national authorities¹¹. A novel candidate with appropriate neutralizing potency is the
643 polyvalent antivenom *Inoserp Europe* using seven species, including *M. xanthina* and two
644 *Macrovipera* spp., with a broad cross-reactivity for European Viperinae¹¹⁰. It needs to be noted,
645 that many vipers of lower medical interest are often not tested and the antivenom efficiency against
646 many of those taxa remains unknown^{111,112}.

647 Especially the taxonomically complex *Vipera* genus has several taxa with nearly no knowledge
648 about bite consequences and their venom composition and pathophysiology ^{9,18}. Their venom
649 composition shows only a few rough trends of toxin family distribution as previously reviewed,
650 whereby this complex picture has been further underpinned by more recent studies ^{16,113,114}.
651 Identified toxins within those neglected vipers often show homologies to highly active compounds
652 of medically relevant taxa, such as *V. ammodytes* and *M. lebetinus*. One example is the here
653 described *V. darevskii* venom, that is mainly dominated by svMP and confers to the classical
654 Viperinae arrangement of major and secondary toxin families, like CRISP. Whether the described
655 truncated C-terminal CRISP is an artificial cleavage product of the main toxins or an independently
656 functional toxin cannot be determined from its sequence alone. Nevertheless, it is striking that it
657 represents a self-contained and structurally stable subdomain with five disulfide bridges, referred
658 to as the Cysteine-Rich Domain (CRD) or Ion Channel Regulatory (ICR) domain ¹¹⁵. This domain
659 contains the ShKT superfamily-like sequence known from highly potent small venom peptides
660 produced by anemones with a strong effect on potassium channels ¹¹⁶. Similarly, in snake venoms
661 other C-terminal subdomains are known to have evolved into independent toxins, such as DI and
662 DC proteins from svMP ¹¹⁷⁻¹¹⁹.

663 Additionally, such neglected taxa have similar large proportion of peptides, consisting of BPP
664 and natriuretic-related peptides, which even at low concentrations can have serious effects on the
665 corresponding physiological systems. With high homology or even identical sequences to the BPP
666 of pit vipers, as the most famous *Bothrops jararaca*, suggests that these peptides may also be
667 responsible for corresponding responses in Palearctic vipers as herein described for all four genera,
668 and discussed later in detail ¹²⁰.

669 **4.2. *Montivipera* - Mountain vipers**

670 The mountain vipers (genus *Montivipera*) are divided into two clades, the Ottoman viper *M.*
671 *xanthina* including *M. bulgardaghica* and the *M. raddei* complex. In comparison to the other three
672 Palearctic viper genera, little is known about their venoms and the clinical consequences of a bite,
673 since only a few studies report on *Montivipera* envenoming^{58,121,122}. Reported bites are from
674 Türkiye, Armenia, Lebanon and Iran and describe symptoms reaching from local effects such as
675 extensive blistering, local edema and necrosis up to coagulopathy and leucocytosis, and in two
676 cases with lethal consequences^{121,123}.

677 Our mass spectrometric analysis revealed that the venoms of the three examined *Montivipera*
678 spp. are relatively similar. A genus-wide comparison showed, that also the venom profile of the
679 Armenian *M. raddei* has also a similar composition (Figure 6). The *M. raddei* venoms from
680 Armenia and Türkiye are surprisingly divergent, and for the Turkish population only five toxin
681 families have been reported. These include nearly 30% peptide content and 8% of unknown
682 identity^{58,124}. Our discovery of PLA₂, VEGF and CTL homologs to toxins of *D. russelii*, *D.*
683 *siamensis*, *M. lebetinus* and *V. ammodytes* in all three *Montivipera* venoms emphasises their
684 potential hazardous nature. The intravenous murine LD₅₀ for Iranian *Montivipera latifii* and *M.*
685 *xanthina* was determined to be <0.5 mg/kg, in the same range as Caspian cobra *Naja oxiana*, saw-
686 scaled viper *Echis carinatus* and *M. lebetinus* (determined in µg venom per 16-18 mg mouse),
687 analogous to the results of a comparison of 18 different Palearctic viper taxa^{110,125}. The similarities
688 found for such snakes of medical relevance indicates that the genus *Montivipera* is of comparable
689 danger. Consequently, bites must be treated with equal caution particularly at the hemo- and
690 neurotoxic level. This is exemplified by several *Montivipera* spp. venoms with potent
691 anticoagulant effects on human plasma¹²⁶. The WHO lists only a few antivenoms with
692 *Montivipera* taxa as immunizing venom species, namely *M. xanthina* and *M. raddei*, including the

693 previously mentioned Inoserp Europe ^{11,15,110}. Therefore, it remains questionable whether such
694 antivenoms are effective against the lesser known *Montivipera* species, especially since some
695 venom are similar at the intra-genus level (here four of five proteomes), but can be strongly
696 variable at the species level, like in *M. raddei* (Figure 6).

697 **4.3. *Macrovipera* - Blunt-nosed vipers**

698 The blunt-nosed vipers *Macrovipera* are widely distributed in the Middle East ^{127,128}. Its most
699 widespread representative, *M. lebetinus*, including several subspecies, can be found in over 20
700 countries and is by the WHO listed as highly medical relevant in more than half it ^{11,21,22}. A detailed
701 genus-wide comparison of all blunt-nose vipers venoms has been published recently in tandem
702 with a detailed biochemical and pharmacological overview of *M. lebetinus* ssp. toxins ^{129,130}. Thus,
703 these aspects will only be briefly discussed here.

704 The overall composition of our Turkish *M. l. obtusa* venom mirrors that of the Armenian and
705 Russian *M. l. obtusa*, and also the other subspecies (*M. l. lebetinus* and *cernovi*) share a similar
706 compositions, with the *M. l. cernovi* venom showing the largest divergence (Figure 6). The
707 taxonomically debated African subspecies *M. l. transmediterranea* is a clear outlier, with a
708 noteworthy increased proportion of svMP. With its VEGF and KUN, the venom is more similar to
709 *D. mauritanica*, which also occurs in the areas of North Africa. Furthermore, P-III svMP including
710 DC proteins are beside svSP, the most prominent toxins across all *M. lebetinus* venoms. The CTL,
711 partially forming the trimeric VLFXA complex with a P-III svMP, have higher variation (3-15%),
712 similar to LAAO (0-8%). It should be emphasized that *Macrovipera* has the largest DI amount of
713 the four genera with a consistently high content of 11-16%, independently to the DI subfamily
714 composition. Although the expected monomeric, KTS sequence containing short DI obtustatin was
715 originally characterized as high abundant toxin of *M. l. obtusa* (unreported local origin) with 7%

716 of the whole venom proteome, no short nor monomeric DI has been described until now for any
717 Turkish and Iranian *Macrovipera* venom^{129,131}, while several R/KTS DI are even known from
718 other Viperidae venoms, including recently *Vipera*^{114,132}. Similarly, the venoms of another Turkish
719 *M. l. obtusa* location and an Iranian *M. l. cernovi* lack small DI, while the Russian and Armenian
720 *M. l. obtusa* contain them¹²⁹. This indicates that the subfamily of monomeric R/KTS DI is
721 diversely distributed even within the genus *Macrovipera*. A detailed understanding of DI
722 heterogeneity is of clinical importance and accordingly, this aspect demands further investigation
723 in the future. A sequence clustering showed, that dimeric and short DI are the closest related snake
724 venom DI subfamilies and might be a hint for this shift in their composition¹³³. A previous study,
725 focusing on the Milos viper (*M. schweizeri*, recognized as a subspecies of *M. lebetinus* by several
726 authors) and three *M. lebetinus* ssp. showed similar HPLC, SDS and bioactivity profiles¹²⁹. On
727 the clinical side, it is therefore to be expected that the symptoms across the investigated *M.*
728 *lebetinus* ssp. localities might be similar with effects on hypotension, hemorrhage and strong
729 cytotoxicity leading to necrosis^{134,135}. On the other side, the geographic distribution of
730 *Macrovipera* is large and includes an array of environments, so it is difficult or even impossible to
731 predict venom variation, equal to the earlier mentioned *V. berus*. Such assumptions need to be
732 investigated in the future through case reports or venom samples from different areas, as it has
733 been done in recent years for the Indian Russell's viper (*D. russelii*), for example, where initial
734 generalizing assumptions led to serious complications in antivenom production and treatment
735^{33,136}.

736 4.4. *Daboia*

737 The *Daboia* spp. ranks among the most medically significant snake lineages. They consists of a
738 venom-wise understudied western Afro-Arabian group (*D. mauritania*, *D. palaestinae*), and the

739 eastern Asian group, with *D. russelii* belonging to Indians ‘Big Four’. About 18 venom proteomes
740 have been published for *D. russelii*, in addition to the eleven of the closely related *D. siamensis*,
741 formerly *D. russelii siamensis* (**Supplementary Table S2**). *Daboia* is a prime example for the
742 effect of biogeographic venom variation, with notable effects on the limited antivenom usability
743 across an entire distribution area.³³ This underlines how, not only on a genus-wide, but also on
744 intraspecific venom variations manifest into a problem of high therapeutically and scientific
745 interest.

746 The venom of *D. palaestinae* has been investigated three times in a venomics context, of which
747 one has been quantified by peak intensities of a shotgun approach and two by snake venomics, but
748 at different wavelength (230 nm versus 214 nm this study)^{137,138}. The other two were of Israeli
749 origin, while this study based on the recently described Turkish population. Even if not all three
750 studies can be directly compared, the two snake venomics approaches (Israel, Türkiye in this
751 study) show already considerable differences (**Figure 6**). While the Israeli sample, similar to the
752 *D. mauritanica*, is dominated by svMP (65%) and contains a relevant amount of DI (8%), the
753 Turkish venom shows a rather unusual composition, as previously described in detail. In particular,
754 the lack of DI and the high level of VEGF distinguish it from the Israeli proteome from 2011¹³⁷.
755 The Israeli shotgun composition from 2022, on the other hand, even lists svSP as the main toxin
756 group, followed by CTL and PLA₂, while the svMP only make up a marginal proportion of the
757 identified peptides (3%)¹³⁸. With these different analytical methods in mind, it shows clearly that
758 all three *D. palaestinae* venoms have a significantly different composition. While Laxme *et al.*
759 (2022) reported in a direct comparison that the Israeli *D. palaestinae* is svSP and the Indian *D.*
760 *russelii* svMP dominated, Damm *et al.* (2021) showed in a proteomic meta-analysis that *Daboia*
761 venoms are more split into an Afro-Arabian and an Asian *Daboia* venom clade^{16,138}. They are

762 dominant in SVMPs with DI in the western clade, while PLA₂ rich in the eastern clade, in contrast
763 to the *D. palaestinae-russelii* comparison carried out by Senji Laxme *et al.* (2022). However, the
764 herein newly reported venom composition of the Turkish population does not exactly fit to either
765 assignment. To what extent the venoms of *Daboia*, and *D. palaestinae* in particular, are really that
766 multivariant or artifacts of different analysis methods needs to be clarified in future.

767 The bites of *D. palaestinae* are well studied for humans, but also in dogs, horses and further pets
768 or farm animals ^{139–142}. Due to the presence of the similar toxins in the here presented venom, it
769 can be assumed that the clinical symptoms of envenoming by Turkish specimen are similar to
770 those of other localities. No bites from the distant Turkish region are yet reported. Nevertheless,
771 the different abundances of the toxin families could result in altered severity of the symptoms. A
772 previous bioactivity-guided study on the hemotoxic properties revealed that *D. palaestinae* venom
773 from different localities (twice Israel, once unknown) had evident variation in its activity across
774 most of the tested assays ¹⁴³. Especially the strongly reduced svMP and DI in the Turkish venom,
775 as well as the increased proportion of svSP and VEGF might have severe influence on the degree
776 of platelet aggregation and blood clotting.

777 **4.5. Small venom peptides of Palearctic vipers**

778 The proteomic landscapes of snake venoms are intensively investigated and reviewed ^{16,81,144}.
779 However, the knowledge about their lower molecular weight, peptidic compounds more restricted.
780 While several of the larger peptide families, with sizes up to 9 kDa, are often reported as toxin
781 families on their own (such as three-finger toxins (3FTx), KUN, DI or crotamine), components
782 below 4 kDa are largely neglected ^{145,146}. While a variety of bradykinin potentiating peptides
783 (BBP), which were with their strong hypotension activity a template for Captopril, are known from
784 Crotalinae venoms, only few studies looked into the peptidome of Viperinae ^{16,120}.

785 Our rigorous MS profiling allowed us for the first time, to identify an array of low molecular
786 weight peptidic components from the seven herein analyzed taxa. As mentioned in the previous
787 part, i.e. KUN and different DI are well known for viperine venom and were usually identified in
788 our analyzed samples. This indicates, that such peptides represent an important, yet seemingly
789 often overlooked fraction of molecular diversity in viperine. While in *Vipera*, the peptide fraction
790 fluctuated profoundly between taxa (ranging from 9-19%), the peptide landscape was more
791 consistent in all three *Montivipera* spp. at 9-11%. *M. l. obtusa* and *D. palaestinae* showed 10-13%,
792 respectively (**Figure 6**). Nevertheless, their compositions and the relative abundances of certain
793 peptides differed strongly between the venoms and also within the same genera. Those identified
794 peptides potentially originate from BPP and natriuretic peptide (NP) precursors, that can include
795 repetitive svMP-i tripeptides and poly-His-poly-Gly (pHpG) sequences¹⁴⁷. A key element of most
796 such peptides is the *N*-terminal pyroglutamate (pE), formed by glutaminyl cyclotransferases,
797 which have been identified several times in viper venoms¹⁶. The overall comparison showed
798 strong similarities in the appearance of abundant peptides within *Montivipera*, the peptidome of
799 which seems related to that of the *M. l. obtusa* (**Table 1**). Surprisingly, the peptidome of *V. b.*
800 *barani* is more similar to *D. palaestinae*, than the taxonomically closer *V. darevskii*.

801
802 **Table 1. Peptidomics of svMP-i, BPP and NP of Palearctic vipers.** Tandem MS/MS confirmed
803 sequences of snake venom metalloproteinase inhibitors (svMP-i), bradykinin-potentiating peptides
804 (BPP) and natriuretic peptides (NP) of seven viper venoms. Masses are given in monoisotopic
805 (mono) *m/z* and if observed with double charges (z=2). Black dots mark the present of a peptide
806 in the corresponding venom. Headline amino acid relation based on the modular pEXW, with pE
807 for pyroglutamate and X for the mentioned amino acid. Amino acid I was set in similarities to

808 known sequences, since a MS differentiation between isobaric L and I was not possible. Post-
 809 translational modification written out under ‘Notes’, as well as further information and
 810 carbamidomethyl (CAM).

Sequence	MH ¹⁺ (mono) <i>m/z</i>	mass with z=2 (mono) <i>m/z</i>	<i>V. b. barani</i>	<i>V. darevskii</i>	<i>M. b. bulgardaghica</i>	<i>M. b. albizona</i>	<i>M. xanthina</i>	<i>M. i. obtusa</i>	<i>D. palestinae</i>	Notes
Lys (K) related										
pEKW	444.224		●	●	●	●	●	●	●	2MH ¹⁺ (<i>m/z</i> 887.441)
pEKW _{ox}	460.219		●	●	●	●	●	●	●	Trp oxidation
pEKWP	541.277		-	-	●	●	●	●	●	
pEKWPSPK	853.457	427.232	-	-	●	●	-	●	●	
pEKWPSPKVPP	1146.631	573.819	-	-	●	●	-	●	-	
pEKWPVPGP	891.472	446.240	-	-	●	●	●	●	-	
pEKWPVPGPEIPP	1327.705	664.356	-	-	●	●	●	●	-	
pEKWPM _{ox} PGPEIPP	1375.672	688.340	-	-	-	-	-	-	●	Met oxidation
pEKWLDPPEIPP	1205.620	603.314	-	●	-	-	-	-	-	
Asn (N) related										
pENW	430.172		●	●	●	●	●	-	●	2MH ¹⁺ (<i>m/z</i> 859.337)
pENWP	527.225		-	●	●	●	●	-	-	
pENWPGP	681.299		-	●	-	-	-	-	-	
pENWPGPK	809.394	405.201	-	●	-	-	●	-	-	
pENWPSP	711.310		-	-	●	●	●	-	-	
pENWSPK	839.405	420.206	-	-	●	●	●	-	-	known as BPP-7b
pENWSPKVPP	1132.579	566.793	-	-	●	●	●	-	-	known as BPP-10e
Arg (R) related										
pERW	472.230		●	●	●	●	●	●	-	2MH ¹⁺ (<i>m/z</i> 859.337)
pERWPGP	723.357		●	-	-	-	-	-	●	
pERWPGPEIPP	1159.590	580.299	-	-	-	-	-	-	●	
pERWPGPK	851.453	426.230	●	-	-	-	-	-	●	
pERWPGPKVPP	1144.626	572.817	●	-	-	-	-	-	●	
pERW _{ox} PGPKVPP	1160.621	580.814	●	-	-	-	-	-	●	Trp oxidation
pERW _{diox} PGPKVPP	1176.616	588.812	-	-	-	-	-	-	●	Trp dioxydation
pERWPGPKVPP _L	1257.710	629.359	●	-	-	-	-	-	●	
pERWPGPKVPPLE	1386.753	693.881	●	-	-	-	-	-	-	identical to ID: A0A1I9KNP8
further peptides										
pEKY	421.208		●	●	●	●	●	●	●	
pEDW	431.156		-	●	-	-	-	-	-	
pEDWR	587.258		-	●	-	-	-	-	-	
pELSPR	583.320		-	-	-	-	-	●	-	
pEHPGGGGGGW	892.370	446.688	-	-	●	●	●	-	●	pHpG-related
pERRPPEIPP	1072.590	536.799	●	-	●	●	-	-	-	
WPGPKVPP	877.493	439.250	●	-	-	-	-	-	●	
pEMWPGPKVPP	1119.566	560.287	●	-	-	-	-	-	-	
natriuretic peptide related										
DNEPP	571.236		-	●	-	-	-	-	-	
DNEPPKKVPPN	1234.643	617.825	●	-	-	-	-	-	-	
EDNEPP	700.278	350.643	-	-	-	-	-	-	●	
EDNEPPKKLPPS	1350.690	675.849	-	-	-	-	-	-	●	
IGSVSGLGC _{CAM} NK	1091.551	546.279	-	●	●	-	●	●	-	BU tryptic digest, protected Cys
IGSHSGLGC _{CAM} NK	1129.542	565.275	-	-	-	-	-	-	●	BU tryptic digest, protected Cys

811

812 Different BPP and *C*-terminal truncated sequences of variable length, from three to twelve
813 amino acids, have been annotated in each of the viper venoms (**Table 1**). The shortest, tripeptidic
814 sequences are henceforth referred to as svMP-i. These small peptides are predicted to protect the
815 venom from auto-digestion by its own svMP^{148,149}. The three svMP-i (pEKW, pENW, pERW) are
816 highly abundant, with pEKW often as main representative, and were detected in all seven venoms,
817 except pENW, that could not be observed in the *M. xanthina* venom, and pERW in the *D.*
818 *palaestinae* proteome.

819 Among the >25 observed peptides pEKWPVPGPEIPP was in all three *Montivipera* and the
820 *M. l. obtusa* venom the main BPP-related sequence with Lys in second position and for the Asn-
821 related pENWPSPKVPP (known as BPP-10e) is exclusive for *Montivipera* and pENWPGPK for
822 *V. darevskii*. The Arg-related BPP were only abundant in the venoms of *V. b. barani* and *D.*
823 *palaestinae* with various truncations of pERWPGPKVPPLE in both and pERWPGPEIPP in *D.*
824 *palaestinae* only. The twelve-mer pERWPGPKVPPLE is identical to a building block of a *V.*
825 *ammodytes* BPP-NP precursor (ID: A0A1I9KNP8_VIPAA) and a *V. aspis* BPP (ID: P31351).
826 Additionally, Trp oxidations have been detected, like pEKW_{ox} in all seven venoms and a Met
827 oxidation in pEKWPM_{ox}PGPEIPP within *D. palaestinae*. Based on our observation, the BPP in
828 Viperinae venoms following the modular structure of **pEXW(PZ)₁₋₂P(EI)/(KV)PPLE**, with X
829 mainly K/N/R, while other amino acids on position 2 are rare, Z = G/S/V and multiple *C*-terminal
830 truncation. Some exclusive sequences, like the pEKWLDPEIPP (*V. darevskii*), pELSPR (*M. l.*
831 *obtusa*) and pERRPPEIPP (*Vipera* and *Montivipera*), underlines that the whole group of BPP-NP
832 precursor related peptides have a highly variable combination pattern, of which most physiological
833 effects are still unknown. The high similarity to pit viper BPP sequences, suggests similar serious
834 activities on the blood pressure.

835 The NP are the third group of peptides deriving from the same precursor. They strongly
836 contribute to the lowering of blood pressure by the NP receptors via cGMP-mediated signaling.
837 NP and can be found in various animals as well as the venom of some elapids and vipers¹⁵⁰. Snake
838 venom NP are structurally homolog to mammalian NPs, including the conserved 17-residue ring
839 structure, closed by a disulfide bridge, with an *N*- and *C*-tail region of variable length¹⁵¹. Their
840 molecular size ranges from 2-4 kDa and they are known from highly medical relevant snakes, like
841 taipans (*Oxyuranus*), brown snakes (*Pseudonaja*), kraits (*Bungarus*) and blunt-nosed vipers
842 (*Macrovipera*). In the case of *M. lebetinus* two different NP structures has been described as
843 lebetins: the long lebetin 2 (3943.4 Da, with one disulfide bridge) and the short lebetin 1
844 (1305.5 Da), which is identical to the lebetin 2 *N*-terminus¹⁵². This terminal sequence is known to
845 be important for platelet aggregation inhibition and to prevent collagen-induced thrombocytopenia
846¹⁵³. We observed two peptides with sequences similar to the short lebetin 1 β (DNKPPKKGPPNG),
847 those are DNEPPKKVPPN in *Vipera* with K2E and G8V, as well as EDNEPPKKLPPS in *Daboia*
848 with an additional *N*-terminal Glu and three substitutions (K2E, G8L and N11S) (**Table 1**). The
849 longer lebetins were full length detected in the venom of *M. l. obtusa* as expected for a *M. lebetinus*
850 subspecies, but surprisingly also in *M. b. bulgardaghica* with a homolog to lebetin 2 α . Further
851 tryptic peptides of NP related sequences, has been observed in *V. darevskii* (gel band 12a), *M. b.*
852 *bulgardaghica* (16a), *M. xanthina* (10a), *M. l. obtusa* (8a). For example, all genera showed the *C*-
853 terminal IGSVSGLGCNK sequence, with a single amino acid change of H4V, except
854 *Macrovipera*, that had the lebetin 2 identical *C*-terminal sequence of IGSHSGLGCNK. Therefore,
855 we confirmed the appearance of NP in the venom of all four genera at the proteomics level, which
856 seems to be a constant part of Viperinae venoms in general.

857 **5. SUMMARY**

858 Palearctic vipers are a highly diverse group of venomous snakes with high impact on health and
859 socioeconomic factors that can be found across three continent. By extensive venomics studies on
860 seven different taxa from Türkiye within this group, the venom proteome and peptidome was
861 characterized and quantified in detail. Our complementary MS-based workflows revealed high
862 divergence in their abundance of toxin families, following the major, secondary and minor toxin
863 family trend known for Old World vipers. A closer look into the type of toxins and corresponding
864 abundancies shows notable differences between the investigated genera of *Vipera*, *Montivipera*,
865 *Macrovipera* and *Daboia*.

866 Within the genus *Vipera*, *V. b. barani* had a unique venom mostly composed of svSP. This sets
867 it clearly apart from *V. berus* venoms of other localities, but also viperine venoms in general. *V. b.*
868 *barani* lacks svMP and the peptidome is closer to the highly medical relevant *D. palaestinae* than
869 to the other viper venoms investigated in this study. Hence, the venom composition of *V. berus*
870 cannot be easily generalized and in regard to its wide distribution and snakebite envenoming
871 potential needs to be more closely investigated in future studies. The venom of *V. darevskii*, as an
872 example of an understudied taxa, which was unknown until now. We could show, that its
873 composition based on different myotoxic and anticoagulant active homologs, as well as a highly
874 abundant pEKW peptide part of >10% of the total venom composition. Furthermore, within its
875 venom a truncated but presumably self-contained C-terminal CRISP subdomain could be
876 annotated. It includes a ShKT-like, or CRD domain, indicating potential neurological envenoming
877 effects by *V. darevskii*. Beside, the parallels between our *V. b. barani* and *D. palaestinae* venom,
878 we could also show important similarities within the genera *Montivipera* and *Macrovipera* on both,
879 proteomics and peptidomics, level. Here, we describe the first genus-wide *Montivipera* venom
880 comparison. The venom compositions across four taxa of the subclades *raddei* and *xanthina* have

881 a consistent appearance, with the Turkish *M. raddei* as an outlier until now. The direct comparison
882 of the three *Montivipera* venom profiles consistently showed a wide range of toxin homologs to
883 highly medical relevant viper species.

884 The herein investigated venom of *D. palaestinae* is in support of a high venom variation within
885 the genus *Daboia*. As it is known for eastern *Daboia* species to cause locality-based different
886 clinical images after a bite, we could show that also the western taxa have strong compositional
887 differences. The *D. palaestinae* venoms of Türkiye and Israel display different toxin abundances.
888 Therefore, based on our findings it seems reasonable to expect that a high venom diversity like in
889 Indian *D. russelii* might also be therapeutically relevant for *D. palaestinae*, if not even the whole
890 genus *Daboia*.

891 Beside the well studied toxin families, all here investigated Palearctic viper venoms have a
892 peptide content of at least 9%. They include a spectrum of svMP-i, BPP, pHPG and NP. We
893 identified the modular consensus sequence **pEXW(PZ)₁₋₂P(EI)/(KV)PPLE** for BPP related
894 peptides in viper venoms. This underscores the intricate nature of snake venom peptidic
895 compounds potential influencing blood pressure. Notably, they exhibit an increased impact on the
896 venom composition, as evidenced by their prevalence not only in our seven vipers but also across
897 various other viper species. Peptides found to be distributed in high proportions, equal to major
898 toxin families, and, intriguingly, reaching even higher concentrations based on the small molecular
899 weight. This points to the significance of BPP as well as NP in the overall venom composition,
900 highlighting their potential role in the physiological effects following a snakebite envenomation,
901 but might be often overlooked until now.

902 The study of the herein investigated seven Palearctic viper venoms shows, that their venoms
903 include a variety of different potent toxin families. Since the vipers in Türkiye are responsible for

904 numerous hospitalization of adults as well as children across the country each year, deciphering
905 these venom variations is of great interest. Our data on the detailed venom compositions and the
906 comparison to other proteomes, will contribute to provide novel biochemically and evolutionary
907 insights in Old World viper venoms and emphasize the potential medical importance of neglected
908 taxa. In particular, the first venom descriptions of several Turkish viper taxa, will facilitate the risk
909 assessment of snakebite envenoming by these vipers and aid in predicting the venoms
910 pathophysiology and clinical treatments.

911

912 ASSOCIATED CONTENT

913 The following files are available free of charge:
914 Supplementary Table S1: Venom pool information of the seven Palearctic viper venoms (xlsx)
915 Supplementary Table S2: Database of Palearctic viper proteomes (xlsx)
916 Supplementary Tables S3-S9: Detailed snake venomics quantification and peptidomics (xlsx)
917 Supplementary Tables S10-S16: Bottom-up identified tryptic peptide sequences (xlsx)
918 Supplementary Tables S17-S23: Top-down identified protein sequences (xlsx)
919 Supplementary Tables S24: Dimeric disintegrin pairing in *M. l. obtusa* venom (xlsx)
920 Supplementary Figures S1-S7: Venom profile of the seven Palearctic viper venoms (PDF)

921

922 AUTHOR INFORMATION

923 Corresponding Author

924 *Maik Damm - Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623
925 Berlin, Germany; LOEWE-Centre for Translational Biodiversity Genomics, Senckenberganlage
926 25, 60325 Frankfurt Am Main, Germany; Institute for Insect Biotechnology, Justus-Liebig

927 University Giessen, Heinrich-Buff-Ring 26-32, Gießen, 35392 Germany; <https://orcid.org/0000-0003-0810-3699>; Email: maik.damm@outlook.de

929 *Roderich D. Süßmuth - Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni
930 135, 10623 Berlin, Germany; <https://orcid.org/0000-0001-7027-2069>; Email:
931 roderich.suessmuth@tu-berlin.de

932 **Author Contributions**

933 The manuscript was written through contributions of all authors. All authors have given approval
934 to the final version of the manuscript. CRediT Taxonomy: Maik Damm (Conceptualization, Data
935 Curation, Formal Analysis, Investigation, Project Administration, Visualization, Writing –
936 Original Draft Preparation, Writing – Review & Editing); Mert Karış (Resources – Field work &
937 Venom Milking, Writing – Review & Editing); Daniel Petras (Resources – Top-Down MS
938 Measurements, Writing – Review & Editing); Ayse Nalbantsoy (Resources – Field work &
939 Venom Milking); Bayram Göçmen (Resources – Field work & Venom Milking); Roderich D.
940 Süßmuth (Funding Acquisition, Resources, Writing – Review & Editing).

941 **Notes**

942 The authors declare no competing financial interest.

943 **ACKNOWLEDGMENT**

944 We thank Tim Lüddecke, Ignazio Avella and Lennart Schulte for critical feedback and reviewing
945 the early manuscript. We dedicate this paper to the memory of Prof. Dr. Bayram Göçmen, who
946 lost his, fight against cancer. He was an outstanding teacher, a good friend and colleague, and
947 loved by his family.

948 **ABBREVIATIONS**

949 ABC, ammonium hydrogen carbonate; ACN, acetonitrile; BPP, bradykinin-potentiating
950 peptides; CTL, C-type lectin-related proteins and snake venom C-type lectins; CRISP, cysteine-
951 rich secretory proteins; DAD, diode array detector; DC, disintegrin-like/cysteine-rich proteins; DI,
952 disintegrins; DTT, dithiothreitol; HFo, formic acid; KUN, Kunitz-type inhibitors; LAAO, L-amino
953 acid oxidases; MES, 2-(N-morpholino)ethane sulfonic acid; NGF, nerve growth factors; NP,
954 natriuretic peptides; PDE, phosphodiesterases; pE, pyroglutamate; pHpG, poly-His-poly-Gly;
955 PLA₂, snake venom phospholipases A₂; SDS, sodium dodecyl sulfate; svMP, snake venom
956 metalloproteinases; svMP-i, snake venom metalloproteinase inhibitors; svSP, snake venom serine
957 proteases; VEGF, vascular endothelial growth factors F; 5N, 5'-nucleotidases.

958

959 **References**

960 (1) GBD 2019 Snakebite Envenomation Collaborator. Global mortality of snakebite envenoming
961 between 1990 and 2019. *Nature Communications* **2022**, *13*, 6160.

962 (2) Habib, A. G.; Kuznik, A.; Hamza, M.; Abdullahi, M. I.; Chedi, B. A.; Chippaux, J.-P.; Warrell,
963 D. A. Snakebite is Under Appreciated: Appraisal of Burden from West Africa. *PLoS Neglected
964 Tropical Diseases* **2015**, *9*, e0004088.

965 (3) WHO. *Snakebite envenoming - A strategy for prevention and control*; WHO, 2019.

966 (4) Pucca, M. B.; Knudsen, C.; S Oliveira, I.; Rimbault, C.; A Cerni, F.; Wen, F. H.; Sachett, J.;
967 Sartim, M. A.; Laustsen, A. H.; Monteiro, W. M. Current Knowledge on Snake Dry Bites. *Toxins*
968 **2020**, *12*.

969 (5) Bhaumik, S.; Kallakuri, S.; Kaur, A.; Devarapalli, S.; Daniel, M. Mental health conditions
970 after snakebite: a scoping review. *BMJ global health* **2020**, *5*.

971 (6) Habib, A. G. Public health aspects of snakebite care in West Africa: perspectives from Nigeria.

972 *The journal of Venomous Animals and Toxins Including Tropical Diseases* **2013**, *19*, 27.

973 (7) Williams, S. S.; Wijesinghe, C. A.; Jayamanne, S. F.; Buckley, N. A.; Dawson, A. H.; Laloo,

974 D. G.; Silva, H. J. de. Delayed psychological morbidity associated with snakebite envenoming.

975 *PLoS Neglected Tropical Diseases* **2011**, *5*, e1255.

976 (8) Gutiérrez, J. M.; Calvete, J. J.; Habib, A. G.; Harrison, R. A.; Williams, D. J.; Warrell, D. A.

977 Snakebite envenoming. *Nature Reviews. Disease primers* **2017**, *3*, 17063.

978 (9) Mallow, D.; Ludwig, D.; Nilson, G. *True vipers: Natural history and toxinology of Old World*

979 *vipers*; Krieger publ: Malabar (Fla.), 2003.

980 (10) Uetz, P.; Freed, P.; Aguilar, R.; Reyes, F.; Kudera, J.; Hošek, J. The Reptile Database. <http://www.reptile-database.org/> (accessed November 22, 2023).

982 (11) WHO. Snakebite Information and Data Platform - Venomous Snake Profiles. <https://snbdatainfo.who.int/> (accessed November 21, 2023).

984 (12) Nguyen, G. T. T.; O'Brien, C.; Wouters, Y.; Seneci, L.; Gallissà-Calzado, A.; Campos-Pinto,

985 I.; Ahmadi, S.; Laustsen, A. H.; Ljungars, A. High-throughput proteomics and in vitro functional

986 characterization of the 26 medically most important elapids and vipers from sub-Saharan Africa.

987 *GigaScience* **2022**, *11*.

988 (13) Alirol, E.; Sharma, S. K.; Bawaskar, H. S.; Kuch, U.; Chappuis, F. Snake bite in South Asia:

989 a review. *PLoS Neglected Tropical Diseases* **2010**, *4*, e603.

990 (14) Casewell, N. R.; Cook, D. A. N.; Wagstaff, S. C.; Nasidi, A.; Durfa, N.; Wüster, W.;

991 Harrison, R. A. Pre-clinical assays predict pan-African *Echis* viper efficacy for a species-specific

992 antivenom. *PLoS Neglected Tropical Diseases* **2010**, *4*, e851.

993 (15) Di Nicola, M. R.; Pontara, A.; Kass, G. E. N.; Kramer, N. I.; Avella, I.; Pampena, R.; Mercuri,
994 S. R.; Dorne, J. L. C. M.; Paolino, G. Vipers of Major Clinical Relevance in Europe: Taxonomy,
995 Venom Composition, Toxicology and Clinical Management of Human Bites. *Toxicology* **2021**,
996 152724.

997 (16) Damm, M.; Hempel, B.-F.; Süßmuth, R. D. Old World Vipers-A Review about Snake
998 Venom Proteomics of Viperinae and Their Variations. *Toxins* **2021**, *13*.

999 (17) Abdullahi, S. A.; Habib, A. G.; Hussaini, N. Mathematical analysis for the dynamics of
1000 snakebite envenoming. *Afr. Mat.* **2024**, *35*.

1001 (18) Freitas, I.; Ursenbacher, S.; Mebert, K.; Zinenko, O.; Schweiger, S.; Wüster, W.; Brito, J. C.;
1002 Crnobrnja-Isailović, J.; Halpern, B.; Fahd, S.; *et al.* Evaluating taxonomic inflation: towards
1003 evidence-based species delimitation in Eurasian vipers (Serpentes: Viperinae). *Amphib.-Reptilia*
1004 **2020**, 1–27.

1005 (19) Stümpel, N.; Joger, U. Recent advances in phylogeny and taxonomy of Near and Middle
1006 Eastern Vipers – an update. *ZK* **2009**, *31*, 179–191.

1007 (20) Chippaux, J.-P. Epidemiology of snakebites in Europe: a systematic review of the literature.
1008 *Toxicon* **2012**, *59*, 86–99.

1009 (21) Amr, Z. S.; Abu Baker, M. A.; Warrell, D. A. Terrestrial venomous snakes and snakebites in
1010 the Arab countries of the Middle East. *Toxicon* **2020**, *177*, 1–15.

1011 (22) Warrell, D. A. Clinical Toxicology of Snakebite In Africa and The Middle East / Arabian
1012 Peninsula. In *Handbook of Clinical Toxicology of Animal Venoms and Poisons*; White, J., Meier,
1013 J., Meier, J., Eds.; CRC Press, 2008.

1014 (23) Ranawaka, U. K.; Laloo, D. G.; Silva, H. J. de. Neurotoxicity in snakebite--the limits of our
1015 knowledge. *PLoS Neglected Tropical Diseases* **2013**, *7*, e2302.

1016 (24) Chowdhury, A.; Zdenek, C. N.; Fry, B. G. Diverse and Dynamic Alpha-Neurotoxicity Within
1017 Venoms from the Palearctic Viperid Snake Clade of *Daboia*, *Macrovipera*, *Montivipera*, and
1018 *Vipera*. *Neurotoxicity Research* **2022**, *40*, 1793–1801.

1019 (25) Slagboom, J.; Kool, J.; Harrison, R. A.; Casewell, N. R. Haemotoxic snake venoms: their
1020 functional activity, impact on snakebite victims and pharmaceutical promise. *Br J Haematol* **2017**,
1021 *177*, 947–959.

1022 (26) Isbister, G. Procoagulant Snake Toxins: Laboratory Studies, Diagnosis, and Understanding
1023 Snakebite Coagulopathy. *Semin Thromb Hemost* **2009**, *35*, 93–103.

1024 (27) Fry, B. G., Ed. *Venomous reptiles and their toxins: Evolution, pathophysiology, and*
1025 *biodiscovery*; Oxford University Press: New York, NY, 2015.

1026 (28) Boldrini-França, J.; Cologna, C. T.; Pucca, M. B.; Bordon, K. d. C. F.; Amorim, F. G.;
1027 Anjolette, F. A. P.; Cordeiro, F. A.; Wiezel, G. A.; Cerni, F. A.; Pinheiro-Junior, E. L.; *et al.* Minor
1028 snake venom proteins: Structure, function and potential applications. *Biochimica et Biophysica*
1029 *Acta. General Subjects* **2017**, *1861*, 824–838.

1030 (29) Casewell, N. R.; Jackson, T. N. W.; Laustsen, A. H.; Sunagar, K. Causes and Consequences
1031 of Snake Venom Variation. *Trends in Pharmacological Sciences* **2020**, *41*, 570–581.

1032 (30) Casewell, N. R.; Wüster, W.; Vonk, F. J.; Harrison, R. A.; Fry, B. G. Complex cocktails: the
1033 evolutionary novelty of venoms. *Trends in Ecology & Evolution* **2013**, *28*, 219–229.

1034 (31) Mackessy, S. P. *Handbook of Venoms and Toxins of Reptiles*; CRC Press: Second edition. |
1035 Boca Raton : CRC Press, 2021., 2021.

1036 (32) Zancolli, G.; Calvete, J. J.; Cardwell, M. D.; Greene, H. W.; Hayes, W. K.; Hegarty, M. J.;
1037 Herrmann, H.-W.; Holycross, A. T.; Lannutti, D. I.; Mulley, J. F.; *et al.* When one phenotype is

1038 not enough: divergent evolutionary trajectories govern venom variation in a widespread rattlesnake
1039 species. *Proceedings. Biological sciences* **2019**, *286*, 20182735.

1040 (33) Senji Laxme, R. R.; Khochare, S.; Attarde, S.; Suranse, V.; Iyer, A.; Casewell, N. R.;
1041 Whitaker, R.; Martin, G.; Sunagar, K. Biogeographic venom variation in Russell's viper (*Daboia*
1042 *russelii*) and the preclinical inefficacy of antivenom therapy in snakebite hotspots. *PLoS Neglected*
1043 *Tropical Diseases* **2021**, *15*, e0009247.

1044 (34) Avella, I.; Wüster, W.; Luiselli, L.; Martínez-Freiría, F. Toxic Habits: An Analysis of General
1045 Trends and Biases in Snake Venom Research. *Toxins* **2022**, *14*.

1046 (35) Reumont, B. M. von; Anderluh, G.; Antunes, A.; Ayvazyan, N.; Beis, D.; Caliskan, F.;
1047 Crnković, A.; Damm, M.; Dutertre, S.; Ellgaard, L.; *et al.* Modern venomics-Current insights,
1048 novel methods, and future perspectives in biological and applied animal venom research.
1049 *GigaScience* **2022**, *11*.

1050 (36) Fox, J. W.; Serrano, S. M. T. Approaching the golden age of natural product pharmaceuticals
1051 from venom libraries: an overview of toxins and toxin-derivatives currently involved in therapeutic
1052 or diagnostic applications. *Current Pharmaceutical Design* **2007**, *13*, 2927–2934.

1053 (37) McCleary, R. J. R.; Kini, R. M. Non-enzymatic proteins from snake venoms: a gold mine of
1054 pharmacological tools and drug leads. *Toxicon* **2013**, *62*, 56–74.

1055 (38) Casewell, N. R.; Wagstaff, S. C.; Wüster, W.; Cook, D. A. N.; Bolton, F. M. S.; King, S. I.;
1056 Pla, D.; Sanz, L.; Calvete, J. J.; Harrison, R. A. Medically important differences in snake venom
1057 composition are dictated by distinct postgenomic mechanisms. *Proceedings of the National*
1058 *Academy of Sciences of the United States of America* **2014**, *111*, 9205–9210.

1059 (39) Chippaux, J.-P.; Williams, V.; White, J. Snake venom variability: methods of study, results
1060 and interpretation. *Toxicon* **1991**, *29*, 1279–1303.

1061 (40) Rao, W.-Q.; Kalogeropoulos, K.; Allentoft, M. E.; Gopalakrishnan, S.; Zhao, W.-N.;
1062 Workman, C. T.; Knudsen, C.; Jiménez-Mena, B.; Seneci, L.; Mousavi-Derazmahalleh, M.; *et al.*
1063 The rise of genomics in snake venom research: recent advances and future perspectives.
1064 *GigaScience* **2022**, *11*.

1065 (41) Fox, J. W.; Serrano, S. M. T. Exploring snake venom proteomes: multifaceted analyses for
1066 complex toxin mixtures. *Proteomics* **2008**, *8*, 909–920.

1067 (42) Walker, A. A.; Robinson, S. D.; Hamilton, B. F.; Undheim, E. A. B.; King, G. F. Deadly
1068 Proteomes: A Practical Guide to Proteotranscriptomics of Animal Venoms. *Proteomics* **2020**, *20*,
1069 e1900324.

1070 (43) Calvete, J. J. Snake venomics at the crossroads between ecological and clinical toxinology.
1071 *The Biochemist* **2019**, *41*, 28–33.

1072 (44) Calvete, J. J.; Juárez, P.; Sanz, L. Snake venomics. Strategy and applications. *Journal of*
1073 *Mass Spectrometry* **2007**, *42*, 1405–1414.

1074 (45) Juárez, P.; Sanz, L.; Calvete, J. J. Snake venomics: characterization of protein families in
1075 *Sistrurus barbouri* venom by cysteine mapping, N-terminal sequencing, and tandem mass
1076 spectrometry analysis. *Proteomics* **2004**, *4*, 327–338.

1077 (46) Mora-Obando, D.; Salazar-Valenzuela, D.; Pla, D.; Lomonte, B.; Guerrero-Vargas, J. A.;
1078 Ayerbe, S.; Gibbs, H. L.; Calvete, J. J. Venom variation in *Bothrops asper* lineages from North-
1079 Western South America. *Journal of Proteomics* **2020**, *229*, 103945.

1080 (47) Sanz, L.; Quesada-Bernat, S.; Ramos, T.; Casais-E-Silva, L. L.; Corrêa-Netto, C.; Silva-
1081 Haad, J. J.; Sasa, M.; Lomonte, B.; Calvete, J. J. New insights into the phylogeographic distribution
1082 of the 3FTx/PLA2 venom dichotomy across genus *Micrurus* in South America. *Journal of*
1083 *Proteomics* **2019**, *200*, 90–101.

1084 (48) Petras, D.; Sanz, L.; Segura, A.; Herrera, M.; Villalta, M.; Solano, D.; Vargas, M.; León, G.;
1085 Warrell, D. A.; Theakston, R. D. G.; *et al.* Snake venomics of African spitting cobras: toxin
1086 composition and assessment of congeneric cross-reactivity of the pan-African EchiTAB-Plus-ICP
1087 antivenom by antivenomics and neutralization approaches. *Journal of Proteome Research* **2011**,
1088 *10*, 1266–1280.

1089 (49) Longbottom, J.; Shearer, F. M.; Devine, M.; Alcoba, G.; Chappuis, F.; Weiss, D. J.; Ray, S.
1090 E.; Ray, N.; Warrell, D. A.; Ruiz de Castañeda, R.; *et al.* Vulnerability to snakebite envenoming:
1091 a global mapping of hotspots. *The Lancet* **2018**, *392*, 673–684.

1092 (50) Mebert, K.; Göçmen, B.; İğci, N.; Karış, M.; Oguz, M. A.; Teynié, A.; Stümpel, N.;
1093 Ursenbacher, S. Mountain vipers in central-eastern Turkey: Huge range extensions for four taxa
1094 reshape decades of misleading perspectives. *Herpetological Conservation and Biology* **2020**, *15*,
1095 169–187.

1096 (51) Mebert, K.; Göçmen, B.; İğci, N.; Oğuz, M. A.; Karış, M.; Ursenbacher, S. New records and
1097 search for contact zones among parapatric New records and search for contact zones among
1098 parapatric vipers in the genus *Vipera* (*barani*, *kaznakovi*, *darevskii*, *eriwanensis*), *Montivipera*
1099 (*wagneri*, *raddei*), and *Macrovipera* (*lebetina*) in northeastern Anatolia. *The Herpetological
1100 Bulletin* **2015**, *133*, 13–22.

1101 (52) Cesaretli, Y.; Ozkan, O. Snakebites in Turkey: epidemiological and clinical aspects between
1102 the years 1995 and 2004. *The journal of Venomous Animals and Toxins Including Tropical
1103 Diseases* **2010**, *16*, 579–586.

1104 (53) Ertem, K. Venomous Snake Bite in Turkey: First Aid and Treatment. *ELECTRON J GEN
1105 MED* **2004**, *1*, 1–6.

1106 (54) Oktay, M. M.; Al, B.; Zengin, S.; Gümüşboğa, H.; Boğan, M.; Sabak, M.; Can, B.; Özdemir,
1107 N.; Eren, Ş. H.; Yıldırım, C. Snakebites on Distal Extremities; Three Years of Experiences.
1108 *Zahedan J Res Med Sci* **2022**, *24*.

1109 (55) Oto, A.; Haspolat, Y. K. Venomous Snakebites in Children in Southeast Turkey. *Dicle Tip*
1110 *Dergisi* **2021**, *48*, 761–769.

1111 (56) Karakus, A.; Zeren, C.; Celik, M. M.; Arica, S.; Ozden, R.; Duru, M.; Tasın, V. A 5-year
1112 retrospective evaluation of snakebite cases in Hatay, Turkey. *Toxicology and industrial health*
1113 **2015**, *31*, 188–192.

1114 (57) Göçmen, B.; Heiss, P.; Petras, D.; Nalbantsoy, A.; Süßmuth, R. D. Mass spectrometry guided
1115 venom profiling and bioactivity screening of the Anatolian Meadow Viper, *Vipera anatolica*.
1116 *Toxicon* **2015**, *107*, 163–174.

1117 (58) Nalbantsoy, A.; Hempel, B.-F.; Petras, D.; Heiss, P.; Göçmen, B.; İğci, N.; Yıldız, M. Z.;
1118 Süßmuth, R. D. Combined venom profiling and cytotoxicity screening of the Radde's mountain
1119 viper (*Montivipera raddei*) and Mount Bulgar Viper (*Montivipera bulgardaghica*) with potent
1120 cytotoxicity against human A549 lung carcinoma cells. *Toxicon* **2017**, *135*, 71–83.

1121 (59) Petras, D.; Hempel, B.-F.; Göçmen, B.; Karis, M.; Whiteley, G.; Wagstaff, S. C.; Heiss, P.;
1122 Casewell, N. R.; Nalbantsoy, A.; Süßmuth, R. D. Intact protein mass spectrometry reveals
1123 intraspecies variations in venom composition of a local population of *Vipera kaznakovi* in
1124 Northeastern Turkey. *Journal of Proteomics* **2019**, *199*, 31–50.

1125 (60) Calvete, J. J.; Pla, D.; Els, J.; Carranza, S.; Damm, M.; Hempel, B.-F.; John, E. B. O.; Petras,
1126 D.; Heiss, P.; Nalbantsoy, A.; *et al.* Combined Molecular and Elemental Mass Spectrometry
1127 Approaches for Absolute Quantification of Proteomes: Application to the Venomics

1128 Characterization of the Two Species of Desert Black Cobras, *Walterinnesia aegyptia* and
1129 *Walterinnesia morgani*. *Journal of Proteome Research* **2021**, *20*, 5064–5078.

1130 (61) Hempel, B.-F.; Damm, M.; Mrinalini; Göçmen, B.; Kariş, M.; Nalbantsoy, A.; Kini, R. M.;
1131 Süßmuth, R. D. Extended Snake Venomics by Top-Down In-Source Decay: Investigating the
1132 Newly Discovered Anatolian Meadow Viper Subspecies, *Vipera anatolica senliki*. *Journal of*
1133 *Proteome Research* [Online early access]. DOI: 10.1021/acs.jproteome.9b00869.

1134 (62) Hempel, B.-F.; Damm, M.; Göçmen, B.; Karis, M.; Oguz, M. A.; Nalbantsoy, A.; Süßmuth,
1135 R. D. Comparative Venomics of the *Vipera ammodytes transcaucasiana* and *Vipera ammodytes*
1136 *montandoni* from Turkey Provides Insights into Kinship. *Toxins* **2018**, *10*.

1137 (63) Igci, N.; Demiralp, D. O. A preliminary investigation into the venom proteome of
1138 *Macrovipera lebetina obtusa* (Dwigubsky, 1832) from Southeastern Anatolia by MALDI-TOF
1139 mass spectrometry and comparison of venom protein profiles with *Macrovipera lebetina lebetina*
1140 (Linnaeus, 1758) from Cyprus by 2D-PAGE. *Archives of Toxicology* **2012**, *86*, 441–451.

1141 (64) Calvete, J. J. Snake venomics: from the inventory of toxins to biology. *Toxicon* **2013**, *75*,
1142 44–62.

1143 (65) Melani, R. D.; Nogueira, F. C. S.; Domont, G. B. It is time for top-down venomics. *The*
1144 *Journal of Venomous Animals and Toxins Including Tropical Diseases* **2017**, *23*, 44.

1145 (66) Böhme, W.; Joger, U. Eine neue Art des *Vipera berus*-Komplexes aus der Türkei. *Amphib.-*
1146 *Reptilia* **1983**, *4*, 265–271.

1147 (67) Vedmederja, V. J.; Orlov, N.; Tuniyev, B. S. On taxonomy of three viper species of the
1148 *Vipera kaznakowi* complex. *Trudy Zoologicheskogo Instituta Akademii Nauk SSSR* **1986**, 55–61.

1149 (68) Nilson, G.; Andrén, C.; Flärdh, B. *Vipera albizona*, a new mountain viper from central
1150 Turkey, with comments on isolating effects of the Anatolian "Diagonal". *Amphib.-Reptilia* **1990**,
1151 *11*, 285–294.

1152 (69) Nilson, G.; Andren, C. Systematics of the *Vipera xanthina* Complex (Reptilia: Viperidae).
1153 III. Taxonomic Status of the Bulgar Dag Viper in South Turkey. *Journal of Herpetology* **1985**,
1154 *19*, 276.

1155 (70) Gray, J. E. *Catalogue of the specimens of snakes in the collection of the British museum*;
1156 Printed by order of the Trustees: London, 1849.

1157 (71) Dwigubsky, I. A. Experience of the natural history of all animals of the Russian Empire,
1158 published by the Imperial University of Moscow, Honored Professor, State Counselor and Cavalier
1159 Ivan Dvigubsky. *Imperial University of Moscow Press* **1832**, 48.

1160 (72) Werner, F. Eine verkannte Viper (*Vipera palaestinae* n. sp.). *Zoologischer Anzeiger - A
1161 Journal of Comparative Zoology* **1938**, 313–318.

1162 (73) Göçmen, B.; Karış, M.; Özmen, E.; Oğuz, M. A. First record of the Palestine viper, *Vipera
1163 palaestinae* (Serpentes: Viperidae) from Anatolia. *South Western Journal of Horticulture, Biology
1164 and Environment* **2018**, *9*, 87–90.

1165 (74) Chambers, M. C.; Maclean, B.; Burke, R.; Amodei, D.; Ruderman, D. L.; Neumann, S.;
1166 Gatto, L.; Fischer, B.; Pratt, B.; Egertson, J.; *et al.* A cross-platform toolkit for mass spectrometry
1167 and proteomics. *Nature Biotechnology* **2012**, *30*, 918–920.

1168 (75) Shao, G.; Cao, Y.; Chen, Z.; Liu, C.; Li, S.; Chi, H.; Dong, M.-Q. How to use open-pFind in
1169 deep proteomics data analysis?- A protocol for rigorous identification and quantitation of peptides
1170 and proteins from mass spectrometry data. *Biophysics reports* **2021**, *7*, 207–226.

1171 (76) Altschul, S. F.; Wootton, J. C.; Gertz, E. M.; Agarwala, R.; Morgulis, A.; Schäffer, A. A.;
1172 Yu, Y.-K. Protein database searches using compositionally adjusted substitution matrices. *The*
1173 *FEBS journal* **2005**, 272, 5101–5109.

1174 (77) Altschul, S. F.; Madden, T. L.; Schäffer, A. A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.
1175 J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
1176 *Nucleic acids research* **1997**, 25, 3389–3402.

1177 (78) Kou, Q.; Xun, L.; Liu, X. TopPIC: a software tool for top-down mass spectrometry-based
1178 proteoform identification and characterization. *Bioinformatics (Oxford, England)* **2016**, 32, 3495–
1179 3497.

1180 (79) Basharat, A. R.; Zang, Y.; Sun, L.; Liu, X. TopFD: A Proteoform Feature Detection Tool for
1181 Top-Down Proteomics. *Analytical Chemistry* **2023**, 95, 8189–8196.

1182 (80) Baker, P. R.; Clauser, K. ProteinProspector: Proteomics tools for mining sequence databases
1183 in conjunction with Mass Spectrometry experiments (Version 6.4.9). <http://prospector.ucsf.edu/>
1184 (accessed December 4, 2023).

1185 (81) Calvete, J. J.; Lomonte, B.; Saviola, A. J.; Calderón Celis, F.; Ruiz Encinar, J. Quantification
1186 of snake venom proteomes by mass spectrometry-considerations and perspectives. *Mass*
1187 *Spectrometry Reviews* [Online early access]. DOI: 10.1002/mas.21850. Published Online: May. 8,
1188 2023.

1189 (82) Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.;
1190 Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; *et al.* Fiji: an open-source platform for
1191 biological-image analysis. *Nature Methods* **2012**, 9, 676–682.

1192 (83) Damm, M.; Petras, D. DATASET - Mass Spectrometry - Snake venom proteomics of seven
1193 taxa of the genera Vipera, Montivipera, Macrovipera and Daboia across Türkiye: [Data set].

1194 *Zenodo* [Online early access]. DOI: 10.5281/zenodo.10683187. <https://doi.org/10.5281/10683187>.

1195 (84) Krizaj, I.; Bieber, A. L.; Ritonja, A.; Gubensek, F. The primary structure of ammodytin L, a
1196 myotoxic phospholipase A2 homologue from *Vipera ammodytes* venom. *European Journal of*
1197 *Biochemistry* **1991**, *202*, 1165–1168.

1198 (85) Faure, G.; Saul, F. Crystallographic characterization of functional sites of crototoxin and
1199 ammodytoxin, potent β -neurotoxins from Viperidae venom. *Toxicon* **2012**, *60*, 531–538.

1200 (86) Eble, J. A. Structurally Robust and Functionally Highly Versatile-C-Type Lectin (-Related)
1201 Proteins in Snake Venoms. *Toxins* **2019**, *11*.

1202 (87) Yamazaki, Y.; Matsunaga, Y.; Tokunaga, Y.; Obayashi, S.; Saito, M.; Morita, T. Snake
1203 venom Vascular Endothelial Growth Factors (VEGF-Fs) exclusively vary their structures and
1204 functions among species. *The Journal of Biological Chemistry* **2009**, *284*, 9885–9891.

1205 (88) Thanou, E.; Jablonski, D.; Korniliou, P. Genome-wide single nucleotide polymorphisms
1206 reveal recurrent waves of speciation in niche-pockets, in Europe's most venomous snake.
1207 *Molecular ecology* **2023**, *32*, 3624–3640.

1208 (89) Paolino, G.; Di Nicola, M. R.; Pontara, A.; Didona, D.; Moliterni, E.; Mercuri, S. R.; Grano,
1209 M.; Borgianni, N.; Kumar, R.; Pampena, R. *Vipera* snakebite in Europe: a systematic review of a
1210 neglected disease. *J Eur Acad Dermatol Venereol* **2020**, *18*, 485.

1211 (90) Lamb, T.; Haro, L. de; Lonati, D.; Brvar, M.; Eddleston, M. Antivenom for European *Vipera*
1212 species envenoming. *Clinical Toxicology (Philadelphia, Pa.)* **2017**, *55*, 557–568.

1213 (91) Kasturiratne, A.; Wickremasinghe, A. R.; Silva, N. de; Gunawardena, N. K.; Pathmeswaran,
1214 A.; Premaratna, R.; Savioli, L.; Laloo, D. G.; Silva, H. J. de. The global burden of snakebite: a

1216 literature analysis and modelling based on regional estimates of envenoming and deaths. *PLoS*
1217 *medicine* **2008**, *5*, e218.

1218 (92) Siigur, J.; Siigur, E. Biochemistry and toxicology of proteins and peptides purified from the
1219 venom of *Vipera berus berus*. *Toxicon: X* **2022**, *15*, 100131.

1220 (93) Al-Shekhadat, R. I.; Lopushanskaya, K. S.; Segura, Á.; Gutiérrez, J. M.; Calvete, J. J.; Pla,
1221 D. *Vipera berus berus* Venom from Russia: Venomics, Bioactivities and Preclinical Assessment
1222 of Microgen Antivenom. *Toxins* **2019**, *11*.

1223 (94) Latinović, Z.; Leonardi, A.; Šribar, J.; Sajevic, T.; Žužek, M. C.; Frangež, R.; Halassy, B.;
1224 Trampuš-Bakija, A.; Pungerčar, J.; Križaj, I. Venomics of *Vipera berus berus* to explain
1225 differences in pathology elicited by *Vipera ammodytes ammodytes* envenomation: Therapeutic
1226 implications. *Journal of Proteomics* **2016**, *146*, 34–47.

1227 (95) Bocian, A.; Urbanik, M.; Hus, K.; Łyskowski, A.; Petrilla, V.; Andrejčáková, Z.; Petrillová,
1228 M.; Legath, J. Proteome and Peptidome of *Vipera berus berus* Venom. *Molecules* **2016**, *21*.

1229 (96) Kovalchuk, S. I.; Ziganshin, R. H.; Starkov, V. G.; Tsetlin, V. I.; Utkin, Y. N. Quantitative
1230 Proteomic Analysis of Venoms from Russian Vipers of *Pelias* Group: Phospholipases A₂ are the
1231 Main Venom Components. *Toxins* **2016**, *8*, 105.

1232 (97) Ramazanova, A. S.; Fil'kin, S. I.; Starkov, V. G.; Utkin, I. N. Molecular cloning and analysis
1233 of cDNA sequences encoding serine proteinase and Kunitz type inhibitor in venom gland of *Vipera*
1234 *nikolskii* viper. *Bioorganicheskaiia khimiia* **2011**, *37*, 374–385.

1235 (98) Latinović, Z.; Leonardi, A.; Koh, C. Y.; Kini, R. M.; Trampuš Bakija, A.; Pungerčar, J.;
1236 Križaj, I. The Procoagulant Snake Venom Serine Protease Potentially Having a Dual, Blood
1237 Coagulation Factor V and X-Activating Activity. *Toxins* **2020**, *12*.

1238 (99) Turkmen, S.; Karaca, Y.; Tatli, O.; Aksut, N.; Bulbul, U. Diplopia and Ptosis in Consequence
1239 of Probable *Vipera barani* Bite. *JAEMCR* **2015**, *6*, 26–28.

1240 (100) Casewell, N. R.; Al-Abdulla, I.; Smith, D.; Coxon, R.; Landon, J. Immunological cross-
1241 reactivity and neutralisation of European viper venoms with the monospecific *Vipera berus*
1242 antivenom ViperaTAB. *Toxins* **2014**, *6*, 2471–2482.

1243 (101) Westerström, A.; Petrov, B.; Tzankov, N. Envenoming following bites by the Balkan adder
1244 *Vipera berus bosniensis* - first documented case series from Bulgaria. *Toxicon* **2010**, *56*, 1510–
1245 1515.

1246 (102) Malina, T.; Krechsel, L.; Warrell, D. A. Neurotoxicity and hypertension following European
1247 adder (*Vipera berus berus*) bites in Hungary: case report and review. *QJM : monthly journal of the*
1248 *Association of Physicians* **2008**, *101*, 801–806.

1249 (103) Nițescu, G. V.; Ulmeanu, C. E.; Crăciun, M.-D.; Ciucă, A. M.; Ulici, A.; Ghira, I.; Lonati,
1250 D. Neurotoxicity and Other Clinical Manifestations of a Common European Adder (*Vipera berus*)
1251 Bite in Romania. *Toxins* **2022**, *14*.

1252 (104) Ferquel, E.; Haro, L. de; Jan, V.; Guillemin, I.; Jourdain, S.; Teynié, A.; d'Alayer, J.;
1253 Choumet, V. Reappraisal of *Vipera aspis* venom neurotoxicity. *PloS One* **2007**, *2*, e1194.

1254 (105) Malina, T.; Krechsel, L.; Westerström, A.; Szemán-Nagy, G.; Gyémánt, G.; M-Hamvas, M.;
1255 Rowan, E. G.; Harvey, A. L.; Warrell, D. A.; Pál, B.; *et al.* Individual variability of venom from
1256 the European adder (*Vipera berus berus*) from one locality in Eastern Hungary. *Toxicon* **2017**, *135*,
1257 59–70.

1258 (106) Dyachenko, I. A.; Murashev, A. N.; Andreeva, T. V.; Tsetlin, V. I.; Utkin, Y. N. Analysis
1259 of nociceptive effects of neurotoxic phospholipase A2 from *Vipera nikolskii* venom in mice.
1260 *Journal of Venom Research* **2013**, *4*, 1–4.

1261 (107) Logonder, U.; Križaj, I.; Rowan, E. G.; Harris, J. B. Neurotoxicity of Ammodytoxin A in
1262 the Envenoming Bites of *Vipera Ammodytes Ammodytes*. *J Neuropathol Exp Neurol* **2008**, *67*,
1263 1011–1019.

1264 (108) Serrano, S. M. T. The long road of research on snake venom serine proteinases. *Toxicon*
1265 **2013**, *62*, 19–26.

1266 (109) Boels, D.; Hamel, J. F.; Bretaudeau Deguigne, M.; Harry, P. European viper envenomings:
1267 Assessment of Viperfav™ and other symptomatic treatments. *Clinical Toxicology (Philadelphia,*
1268 *Pa.)* **2012**, *50*, 189–196.

1269 (110) García-Arredondo, A.; Martínez, M.; Calderón, A.; Saldívar, A.; Soria, R. Preclinical
1270 Assessment of a New Polyvalent Antivenom (Inoserp Europe) against Several Species of the
1271 Subfamily Viperinae. *Toxins* **2019**, *11*.

1272 (111) Habib, A. G.; Brown, N. I. The snakebite problem and antivenom crisis from a health-
1273 economic perspective. *Toxicon* **2018**, *150*, 115–123.

1274 (112) Senji Laxme, R. R.; Khochare, S.; Souza, H. F. de; Ahuja, B.; Suranse, V.; Martin, G.;
1275 Whitaker, R.; Sunagar, K. Beyond the 'big four': Venom profiling of the medically important yet
1276 neglected Indian snakes reveals disturbing antivenom deficiencies. *PLoS Neglected Tropical*
1277 *Diseases* **2019**, *13*, e0007899.

1278 (113) Avella, I.; Damm, M.; Freitas, I.; Wüster, W.; Lucchini, N.; Zuazo, Ó.; Süssmuth, R. D.;
1279 Martínez-Freiría, F. One Size Fits All-Venomics of the Iberian Adder (*Vipera seoanei*, Lataste
1280 1878) Reveals Low Levels of Venom Variation across Its Distributional Range. *Toxins* **2023**, *15*.

1281 (114) Avella, I.; Calvete, J. J.; Sanz, L.; Wüster, W.; Licata, F.; Quesada-Bernat, S.; Rodríguez,
1282 Y.; Martínez-Freiría, F. Interpopulational variation and ontogenetic shift in the venom composition

1283 of Lataste's viper (*Vipera latastei*, Boscá 1878) from northern Portugal. *Journal of Proteomics*
1284 **2022**, *263*, 104613.

1285 (115) Tadokoro, T.; Modahl, C. M.; Maenaka, K.; Aoki-Shioi, N. Cysteine-Rich Secretory
1286 Proteins (CRISPs) From Venomous Snakes: An Overview of the Functional Diversity in A Large
1287 and Underappreciated Superfamily. *Toxins* **2020**, *12*.

1288 (116) Krishnarjuna, B.; MacRaild, C. A.; Sunanda, P.; Morales, R. A. V.; Peigneur, S.; Macrander,
1289 J.; Yu, H. H.; Daly, M.; Raghothama, S.; Dhawan, V.; *et al.* Structure, folding and stability of a
1290 minimal homologue from *Anemonia sulcata* of the sea anemone potassium channel blocker ShK.
1291 *Peptides* **2018**, *99*, 169–178.

1292 (117) Fox, J. W.; Serrano, S. M. T. Insights into and speculations about snake venom
1293 metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution
1294 to venom complexity. *The FEBS journal* **2008**, *275*, 3016–3030.

1295 (118) Olaoba, O. T.; Karina Dos Santos, P.; Selistre-de-Araujo, H. S.; Ferreira de Souza, D. H.
1296 Snake Venom Metalloproteinases (SVMPs): A structure-function update. *Toxicon: X* **2020**, *7*,
1297 100052.

1298 (119) Požek, K.; Leonardi, A.; Pungerčar, J.; Rao, W.; Gao, Z.; Liu, S.; Laustsen, A. H.; Trampuš
1299 Bakija, A.; Reberšek, K.; Podgornik, H.; *et al.* Genomic Confirmation of the P-IIIe Subclass of
1300 Snake Venom Metalloproteinases and Characterisation of Its First Member, a Disintegrin-
1301 Like/Cysteine-Rich Protein. *Toxins* **2022**, *14*.

1302 (120) Sciani, J. M.; Pimenta, D. C. The modular nature of bradykinin-potentiating peptides
1303 isolated from snake venoms. *The journal of Venomous Animals and Toxins Including Tropical
1304 Diseases* **2017**, *23*, 45.

1305 (121) Hassanian-Moghaddam, H.; Monzavi, S. M.; Shirazi, F. M.; Warrell, D. A.; Mehrpour, O.

1306 First report of a confirmed case of *Montivipera latifi* (Latifi's viper) envenoming and a literature

1307 review of envenoming by *Montivipera* species. *Toxicon* **2022**, *207*, 48–51.

1308 (122) Tabbara, F.; Abdul Nabi, S. S.; Sadek, R.; Kazzi, Z.; El Zahran, T. A Case Report of a

1309 Lebanon Viper (*Montivipera bornmuelleri*) Envenomation in a Child. *Clinical practice and cases*

1310 *in emergency medicine* **2022**, *6*, 318–322.

1311 (123) Anil, A. B.; Anil, M.; Kara, O. D.; Bal, A.; Özhan, B.; Aksu, N. Mannitol Therapy in Three

1312 Cases with Severe Edema Due to Snakebite: Case Report. *Turkiye Klinikleri J Med Sci* **2011**, *31*,

1313 720–723.

1314 (124) Sanz, L.; Ayvazyan, N.; Calvete, J. J. Snake venomics of the Armenian mountain vipers

1315 *MacroVIPERA lebetina obtusa* and *Vipera raddei*. *Journal of Proteomics* **2008**, *71*, 198–209.

1316 (125) Latifi, M. Variation in yield and lethality of venoms from Iranian snakes. *Toxicon* **1984**, *22*,

1317 373–380.

1318 (126) Chowdhury, A.; Zdenek, C. N.; Lewin, M. R.; Carter, R.; Jagar, T.; Ostanek, E.; Harjen, H.;

1319 Aldridge, M.; Soria, R.; Haw, G.; *et al.* Venom-Induced Blood Disturbances by Palearctic Viperid

1320 Snakes, and Their Relative Neutralization by Antivenoms and Enzyme-Inhibitors. *Frontiers in*

1321 *Immunology* **2021**, *12*, 688802.

1322 (127) Sindaco, R.; Jeremenko, V. K.; Venchi, A.; Grieco, C. *The reptiles of the Western*

1323 *Palearctic*; Edizioni Belvedere: Latina, 2013.

1324 (128) Ananjeva, N. B. *The reptiles of North Eurasia: Taxonomic diversity, distribution,*

1325 *conservation status*; Pensoft: Sofia, 2006.

1326 (129) Schulte, L.; Damm, M.; Avella, I.; Uhrig, L.; Erkoc, P.; Schiffmann, S.; Fürst, R.; Timm,

1327 T.; Lochnit, G.; Vilcinskas, A.; *et al.* Venomics of the milos viper (*MacroVIPERA schweizeri*)

1328 unveils patterns of venom composition and exochemistry across blunt-nosed viper venoms.

1329 *Frontiers in Molecular Biosciences* **2023**, *10*, 1254058.

1330 (130) Siigur, J.; Aaspõllu, A.; Siigur, E. Biochemistry and pharmacology of proteins and peptides

1331 purified from the venoms of the snakes *MacroVIPERA lebetina* subspecies. *Toxicon* **2019**, *158*, 16–

1332 32.

1333 (131) Moreno-Murciano, M. P.; Monleón, D.; Calvete, J. J.; Celda, B.; Marcinkiewicz, C. Amino

1334 acid sequence and homology modeling of obtustatin, a novel non-RGD-containing short

1335 disintegrin isolated from the venom of *Vipera lebetina obtusa*. *Protein Science* **2003**, *12*, 366–371.

1336 (132) Khamessi, O.; Ben Mabrouk, H.; Kamoun, S.; Hkimi, C.; Ghedira, K.; Kharrat, R. The First

1337 Snake Venom KTS/Disintegrins-Integrin Interactions Using Bioinformatics Approaches.

1338 *Molecules* **2022**, *28*.

1339 (133) Vasconcelos, A. A.; Estrada, J. C.; David, V.; Wermelinger, L. S.; Almeida, F. C. L.;

1340 Zingali, R. B. Structure-Function Relationship of the Disintegrin Family: Sequence Signature and

1341 Integrin Interaction. *Frontiers in Molecular Biosciences* **2021**, *8*, 783301.

1342 (134) Jestrzemski, D.; Athanasiadou, M.; Scoutellas, V.; Ghezellou, P.; Spengler, B.; Gessler, F.;

1343 Kuch, U. Hospital admissions due to snake envenomation in the Republic of Cyprus: a 7-year

1344 retrospective review. *Journal of occupational medicine and toxicology (London, England)* **2022**,

1345 *17*, 25.

1346 (135) Kazemi, S. M.; Al-Sabi, A.; Long, C.; Shoulkamy, M. I.; Abd El-Aziz, T. M. Case Report:

1347 Recent Case Reports of Levant Blunt-Nosed Viper *MacroVIPERA lebetina obtusa* Snakebites in

1348 Iran. *The American journal of tropical medicine and hygiene* **2021**, *104*, 1870–1876.

1349 (136) Warrell, D. A.; Gutiérrez, J. M.; Calvete, J. J.; Williams, D. New approaches & technologies
1350 of venomics to meet the challenge of human envenoming by snakebites in India. *The Indian*
1351 *Journal of Medical Research* **2013**, *138*, 38–59.

1352 (137) Momic, T.; Arlinghaus, F. T.; Arien-Zakay, H.; Katzhendler, J.; Eble, J. A.; Marcinkiewicz,
1353 C.; Lazarovici, P. Pharmacological aspects of *Vipera xantina palestinae* venom. *Toxins* **2011**, *3*,
1354 1420–1432.

1355 (138) Senji Laxme, R. R.; Khochare, S.; Attarde, S.; Kaur, N.; Jaikumar, P.; Shaikh, N. Y.;
1356 Aharoni, R.; Primor, N.; Hawlena, D.; Moran, Y.; *et al.* The Middle Eastern Cousin: Comparative
1357 Venomics of *Daboia palaestinae* and *Daboia russelii*. *Toxins* **2022**, *14*.

1358 (139) Klainbart, S.; Kelmer, E.; Beeri-Cohen, I.; Keinan, Y.; Segev, G.; Aroch, I. Serum
1359 Cholesterol Concentration on Admission in 415 Dogs Envenomated by *Daboia* (*Vipera*)
1360 *palaestinae* as a Marker of Envenomation Severity and Outcome-A Retrospective Study. *Toxins*
1361 **2023**, *15*.

1362 (140) Tirosh-Levy, S.; Solomovich, R.; Comte, J.; Sutton, G. A.; Steinman, A. *Daboia* (*Vipera*)
1363 *palaestinae* envenomation in horses: Clinical and hematological signs, risk factors for mortality
1364 and construction of a novel severity scoring system. *Toxicon* **2017**, *137*, 58–64.

1365 (141) El Zahran, T.; Kazzi, Z.; Chehadeh, A.-H.; Sadek, R.; El Sayed, M. Snakebites in Lebanon:
1366 a descriptive study of snakebite victims treated at a tertiary care center in Beirut, Lebanon. *Journal*
1367 *of Emergencies, Trauma, and Shock* **2018**, *11*, 119.

1368 (142) Agajany, N.; Kozer, E.; Agajany, N.; Trotzky, D.; Abu-Kishk, I.; Youngster, I. Is severity
1369 of *Daboia* (*Vipera*) *palaestinae* snakebites influenced by season of exposure? *Toxicon* **2022**, *206*,
1370 51–54.

1371 (143) Op den Brouw, B.; Coimbra, F. C. P.; Casewell, N. R.; Ali, S. A.; Vonk, F. J.; Fry, B. G. A
1372 Genus-Wide Bioactivity Analysis of *Daboia* (Viperinae: Viperidae) Viper Venoms Reveals
1373 Widespread Variation in Haemotoxic Properties. *International journal of molecular sciences*
1374 **2021**, *22*.

1375 (144) Tasoulis, T.; Isbister, G. K. A Review and Database of Snake Venom Proteomes. *Toxins*
1376 **2017**, *9*.

1377 (145) Villar-Briones, A.; Aird, S. D. Organic and Peptidyl Constituents of Snake Venoms: The
1378 Picture Is Vastly More Complex Than We Imagined. *Toxins* **2018**, *10*.

1379 (146) Munawar, A.; Ali, S. A.; Akrem, A.; Betzel, C. Snake Venom Peptides: Tools of
1380 Biodiscovery. *Toxins* **2018**, *10*.

1381 (147) Wagstaff, S. C.; Favreau, P.; Cheneval, O.; Laing, G. D.; Wilkinson, M. C.; Miller, R. L.;
1382 Stöcklin, R.; Harrison, R. A. Molecular characterisation of endogenous snake venom
1383 metalloproteinase inhibitors. *Biochemical and Biophysical Research Communications* **2008**, *365*,
1384 650–656.

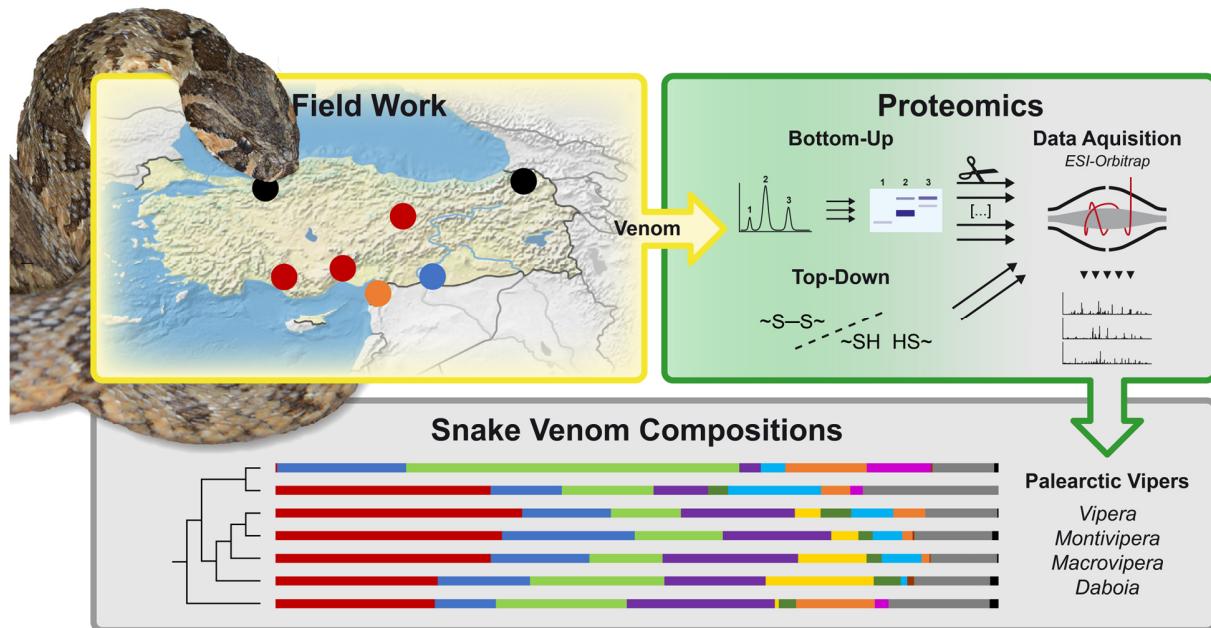
1385 (148) Francis, B.; Kaiser, I. I. Inhibition of metalloproteinases in *Bothrops asper* venom by
1386 endogenous peptides. *Toxicon* **1993**, *31*, 889–899.

1387 (149) Huang, K. F.; Hung, C. C.; Wu, S. H.; Chiou, S. H. Characterization of three endogenous
1388 peptide inhibitors for multiple metalloproteinases with fibrinogenolytic activity from the venom
1389 of Taiwan habu (*Trimeresurus mucrosquamatus*). *Biochemical and Biophysical Research*
1390 *Communications* **1998**, *248*, 562–568.

1391 (150) Vink, S.; Jin, A. H.; Poth, K. J.; Head, G. A.; Alewood, P. F. Natriuretic peptide drug leads
1392 from snake venom. *Toxicon* **2012**, *59*, 434–445.

1393 (151) Ang, W. F.; Koh, C. Y.; Kini, R. M. From Snake Venoms to Therapeutics: A Focus on
1394 Natriuretic Peptides. *Pharmaceuticals (Basel, Switzerland)* **2022**, *15*.

1395 (152) Barbouche, R.; Marrakchi, N.; Mansuelle, P.; Krifi, M.; Fenouillet, E.; Rochat, H.; El Ayeb,
1396 M. Novel anti-platelet aggregation polypeptides from *Vipera lebetina* venom: isolation and
1397 characterization. *FEBS Letters* **1996**, *392*, 6–10.


1398 (153) Marrakchi, N.; Mabrouk, K.; Regaya, I.; Sarray, S.; Fathallah, M.; Rochat, H.; El Ayeb, M.
1399 Lebetin peptides: potent platelet aggregation inhibitors. *Haemostasis* **2001**, *31*, 207–210.

1400

1401

For Table of Contents Only

1402

1403