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Abstract

Dimension reduction on neural activity paves a way for unsupervised neural decoding
by dissociating the measurement of internal neural state repetition from the measure-
ment of external variable tuning. With assumptions only on the smoothness of latent
dynamics and of internal tuning curves, the Poisson Gaussian-process latent variable

model (P-GPLVM) (Wu et al., 2017) is a powerful tool to discover the low-dimensional
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latent structure for high-dimensional spike trains. However, when given novel neural
data, the original model lacks a method to infer their latent trajectories in the learned
latent space, limiting its ability for estimating the internal state repetition. Here, we
extend the P-GPLVM to enable the latent variable inference of new data constrained
by previously learned smoothness and mapping information. We also describe a princi-
pled approach for the constrained latent variable inference for temporally-compressed
patterns of activity, such as those found in population burst events (PBEs) during hip-
pocampal sharp-wave ripples, as well as metrics for assessing whether the inferred new
latent variables are congruent with a previously learned manifold in the latent space.
Applying these approaches to hippocampal ensemble recordings during active maze
exploration, we replicate the result that P-GPLVM learns a latent space encoding the
animal’s position. We further demonstrate that this latent space can differentiate one
maze context from another. By inferring the latent variables of new neural data during
running, certain internal neural states are observed to repeat, which is in accordance
with the similarity of experiences encoded by its nearby neural trajectories in the train-
ing data manifold. Finally, repetition of internal neural states can be estimated for
neural activity during PBEs as well, allowing the identification for replay events of ver-
satile behaviors and more general experiences. Thus, our extension of the P-GPLVM
framework for unsupervised analysis of neural activity can be used to answer critical

questions related to scientific discovery.
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1 Introduction

Memory critically requires firing of neurons in the hippocampus both during ongo-
ing experiences and afterwards, as the resultant memories are consolidated. While
rodent studies have focused on spatial memories, hippocampal neurons can be gen-
erally understood to represent the conjunction of the sensory features associated with
a particular context (Moser et al., 2015), and the temporal sequences that connect lo-
cal contexts across time during an experience (Eichenbaum and Cohen, 2014; Eichen-
baum, 2017). Importantly, sequential firing patterns of neural ensembles reactivate in
a time-compressed manner during some of the population burst events (PBEs) that oc-
cur during sharp-wave ripple oscillations in sleep or quiet wakefulness (Wilson and
McNaughton, 1994; Skaggs and McNaughton, 1996; Kudrimoti et al., 1999; Nadasdy
et al., 1999). By decoding those events, it has been shown the replay trajectories show a
continuum of conformity to the original experience, including variability in momentum
and both forward and reverse re-expression (Lee and Wilson, 2002; Foster and Wilson,
2006; Diba and Buzsaki, 2007; Csicsvari et al., 2007; Davidson et al., 2009; Krause
and Drugowitsch, 2022). Traditionally, individual replay events have been identified
based on a strong assumption of ordered consistency with patterns expressed during
exploration. Consequently, un-ordered replay of contexts, or ordered replay of more
complicated routes are often excluded from subsequent analysis. Thus, while much has
been learned about memory consolidation and recall from the study of replay, existing
approaches have colored our understanding. Therefore, a technique for decoding neural
activity without strongly stereotyping the patterns represented or requiring a specifically

spatial encoding model would be a powerful tool for understanding memory.
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To extract the information from spike trains with minimal prior assumptions, one
practicable approach is to find a low-dimensional embedding that can reveal the un-
derlying dynamics. The Poisson Gaussian-process latent variable model (P-GPLVM)
proposed by Wu et al. (2017) is a probabilistic, nonlinear, and dynamic dimension re-
duction approach. It infers temporally smooth low-dimensional latent neural trajecto-
ries and smooth, non-parametric internal tuning curves from spike trains without re-
ferring to external variables. This model consists of Poisson spiking observations and
two Gaussian processes, one governing the temporal evolution of latent variables and
another governing the nonlinear mapping from high-dimensional neural data to the low-
dimensional latent variables.

In the learned low-dimensional latent space, (1) by mapping any possible external
variable unto the embedding, how external variables are represented in this latent space
can be revealed; (2) by measuring the repetition of internal neural state (relative loca-
tions to the low-dimensional training data embedding), the repetition of neural activity
encoding external experiences can be detected (Yu et al., 2009; Rubin et al., 2019; Nieh
et al., 2021). Unsupervised neural decoding can be achieved by dissociating the mea-
surement of internal neural state repetition from the measurement of external variable
tuning. However, an approach for inferring latent variables of new data points in the
learned latent space is lacking from the original P-GPLVM model, limiting its utility
for decoding.

In this paper, we extend the P-GPLVM framework to enable the latent variable in-
ference of new inputs constrained by the learned smoothness parameters and tuning

curves (Figure 1), and develop subsequent analyses to evaluate the new input data in
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Figure 1: Schematic diagram of the extended P-GPLVM model. Internal tuning curves
and smoothness information learned from training data are then used to constrain the
inference of test data latent variables in the same latent space.

the latent space. We also present a preprocessing pipeline for PBE decoding when us-
ing models trained from behavioral data. The original P-GPLVM can be used to reveal
encoded information in neural activity and discover neural trajectory evolution but only
within the given training data. This extended model and PBE preprocessing pipeline,
especially, makes use of information learned in the model and enables the effective and

unsupervised decoding of new neural activity both during behavior and during PBEs.

2 Poisson Gaussian-process latent variable model

2.1 Model structure

Binning spike counts into M time bins from N neurons creates the matrix of spike
trains Y = {y,}M_,,y.m € RY*!. The m" time bin was recorded at time t,,, m €
(1,--+, M). In this model, two latent variable matrices will be learned: the log firing
rate for Poisson spiking, F = {f,,}»_, f,, € RY*! and the P-dimensional latent

variables, X = {x,,}M_  x,, € RP*L
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Latent dynamics Each feature of the latent variable matrix X evolves according to
a Gaussian process depending on time ¢, x,(t) ~ GP(0,k),p € (1,---,P), where
ky(t,t') = r exp(—|t — t'|/l), governing the temporal smoothness of z,. Writing as a

multivariate normal distribution,

Xp1:m |t ~ N (0, K). (1)

The covariance K is an M x M matrix with entries k; at all pairs of time bins.

Nonlinear mapping Let  : R” — R be a nonlinear mapping function, describing
the firing rate of a neuron in the m®™ time bin as \,, = h(x,,). The log tuning curve of
the n'* cell in response to the latent variable x is modeled as another Gaussian process
as fn(x) = logh,(x) ~ GP(0,k,), n € (1,--- ,N). This process has k,(x,x') =
pexp(—||x — x’||3/246?) as a spatial covariance function. Therefore, the log firing rates

of the n*" neuron in all time bins have the multivariate normal distribution

fn,l:M|X1:M ~ N(O, Kx) (2)

with the M x M covariance matrix K ,, whose entries are k, evaluated for all pairs of

x. By combining f over all the neurons, F € RV*M

as firing rates in units of spike
counts per time bin are obtained. Note that this is per bin, rather than per second. This

has consequences for PBE decoding, as described below.

Poisson spiking  Finally, for the n'* neuron in the m'" time bin, observed spike counts
Yn,m are assumed to be drawn from a Poisson process given the latent firing rate A, ,, =
exp(fn(Xm)),

Ynm| frs Xm ~ Poisson(exp(f,,(xm)))- 3)

6
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2.2 Model training

During training, the model iteratively infers latent variables of training data without
mapping constraints and optimizes smoothness parameters. In each iteration, X is first

fixed and F is optimized. For each neuron, the posterior over f,, is given by
P(Ealyn, X) o< p(yalfa)p(£a] X). )
The optimal f, is found by maximizing the log conditional distribution
" 1
log p(E, |y X) = g p(yalfi) = 567K, F, = 5 log || + constant. — (5)

Then, fixing F', the optimal X is discovered by maximizing the conditional likelihood

N
XMAP = argmaxx ZP(YH‘X)p<X)7 (6)
n=1
where p(y,|X) is given by
P30 o [ Bl )X, )

Using Laplace’s method, the approximated log likelihood conditioned on X is
. Lorqp 1
log ¢(yn|X) = log p(y.|f.) — §fn K 'f, — 3 log |1y + K, W,|. (8)

where W,, = —VV log p(y,|f.). Hyperparameters 6 = {p, §, r, [} are found by maxi-

mizing the same likelihood function.

3 Extensions of P-GPLVM

3.1 Constrained latent variable inference of new data

Latent variable initialization During model training, P-GPLVM learns smoothness
parameters, 6, and internal mapping function, log h,, : RY — R, parameterized by

7
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latent variables fi.;, = { fm}%zl for each cell and Xipain = {%,,}M_, from training
data. In the original P-GPLVM paper, the tuning curve vectors fg,iq are evaluated at the
grid of latent variables Xgyiq = {Xg}gG:1 using a joint Gaussian distribution with Xtrain

and £,

E"cmin Ktrain k
~ N(0, ), )
fgrid kT Kgrid

where Ktrain = kr (Xtraina Xtrain>’ Kgrid = k:r: (Xgricb Xgrid)a and k = kx(Xtraina Xgrid),
are the covariance matrices. The entry k,(X1,X2)m g = kz(X1m,X2,). The posterior

distribution of fy,iq can then be written as

fgrid|Xgrid7 f‘trainu Xtrain ~ N(kTKt_l iA:tmin) diag(Kgrid) - kTK_I k) (10)

rain train

Given new input data from the same group of neurons, Yo = {y:},,y: € RV*L,
the latent variables X, = {x;}1;, %, € RP*!, are initialized with elements in Xgiq
that maximize the posterior probability using a Bayesian approach. At the ¢** time bin,

the posterior over each element in Xg,4q 18

p(xg|Yt7 Ftrain, Xtrain) X p(yt|Xg7 Ftrainv Xtrain)p(xg>> (1 1)

where we’ve assumed a uniform prior over x, during initialization. The prior over y, is

N
p(yt |Xga Ftraim Xtrain) = H p(yn,t‘fn,g>p<fn,g‘xg7 ftrainn7 Xtrain)a (12)
n=1

The latent variable x; corresponding to y; is initialized with the x, with maximum

posterior.

Impose smoothness constraints Merely using MAP tuning curves to constrain the

latent variable inference of new input data omits the learned temporal smoothness in the
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latent space. To impose both temporal smoothness and tuning constraints, subsequent
iterations are needed. We noted that employing f,;q and X,,iq as tuning curve vectors
is computationally expensive — considering a samples per dimension, a P-dimensional
Xgria contains a” elements. Moreover, a majority of the grid elements contain minimal
information as no Xy,,;, locate nearby. To save computational costs during iterations
and to preserve the tuning details of ftrain in response to Xtrain as much as possible,
Ftrain and Xtrain were directly used as the tuning curve vectors (TC), ]?‘Tc and their
encoded latent variables XTC.

Iterations are similar to those during unconstrained inference as described in Section
2.2, but the smoothness parameters are fixed as learned and the mapping function log h,,
is constrained by frc and Xc. This is achieved by substituting p(f,|X, ch, XTC) for
p(f,|X) in Bq. 4 and 7. As in Eq. 9, the joint distribution with fr¢ and Xy gives
posterior of f,, as

£.|X, fro,, Xre ~ N(w,, 0*I7) (13)

where p,, = kTKT_échn, k = ky(Xre, X), Krc = ku(Xre, Xre) and o2 is the

observation noise. Correspondingly, Eq. 5 is modified as

. N 1 T
logp(fn]yn, X7 fTCm XTC) = logp(yn’fn) _ﬁ<fn_un>T(fn_un) - 5 1Og 02- (14)

Finally, obtaining the optimal f,, Eq. 8 is modified as

R . . 1 . A 1
1Og Q(YTZ|X7 fTCn) XTC) = logp(yn‘fn> - W(fn _/*l’n)T(fn _ll’n) - 5 1Og |IT+U2Wn|-

(15)
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3.2 Preprocessing for PBE decoding

Critically for our model, neural activity during PBEs is temporally-compressed relative
to that expressed during exploration. Consequently, the firing rate model learned on
exploration-related neural activity will not properly model PBEs. This is addressed
in two steps, choosing a shorter time bin (implicitly compressing time) and explicitly
scaling the model parameters. Temporal compression implies that the time intervals
between pairs of place cells activating during exploration running are expected to be
proportional to those during replay. Thus, the cross-correlation histogram (Harrison
et al., 2013; Karlsson and Frank, 2009) of spike trains from place cell pairs is used to
find the PBE time bin size that would best match the binned behavioral data. Place
cells are identified in either running direction and then are pooled. For each place cell
pair with spike trains sq, - - - , s); from one cell and ¢4, - - - , ¢y from another, time lags
between any pairs of spikes (s,,,t,) within 4 seconds are recorded. The histogram
of all these spike time lags is the cross-correlation histogram (CCH) for this cell pair.
All histograms are centered at Os time lag and share the same number of bins. For
ease, the histogram bin size of CCH during active exploration is set as the same as that
used for P-GPLVM analysis of this data. Among all pairwise combinations of place
cells, cell pairs with place field (where peak firing rate occurs) distances larger than
the 80" percentile of the distribution of travel distance in 4 seconds are excluded from
subsequent analysis. For each included cell pair, the Pearson correlation between CCH
during exploration and CCH during PBEs is evaluated. The optimal bin size for PBEs is
found by maximizing the sum of all significant positive Pearson correlation coefficients

using a range of possible PBE bin sizes.

10
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As the unit of our tuning curves is spike counts per time bin, for PBE-decoding,
the firing rates of P-GPLVM tuning curves learned using neural activity during active
exploration must be further scaled. Scaling by the ratio of the time bin sizes is found to

yield good PBE-decoding performance.

3.3 Analysis in latent space
3.1 Number of well-separated manifolds

The hippocampus “remaps” between different environments, meaning that whether a
given neuron is active, and if so, how its spatial tuning will relate to that of other neurons
is essentially random between different environments (Moser et al., 2015; Alme et al.,
2014) (though recent studies have challenged this concept (Cai et al., 2016)). This
implies that different environments should correspond to well-separated manifolds in
latent space. This idea intuitively leads to the investigation that if the low-dimensional
latent variable Xtram is organized in a single manifold or in multiple well-separated
manifolds. This procedure consists of constructing a K -nearest neighbor graph in X train
and then counting the number of connected components in the graph. Components con-
taining less than 3% of total number of points are considered “residual components”.
Starting with a small number, K is gradually increased until there are no residual com-
ponents left. The number of well-separated manifolds will stabilize as K continues
to increase for a multiple times. This stabilized number is defined as the number of

connected components in Xtram. Each separated manifold is denoted as X(@) hereafter.

11
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3.2 Congruence with the learned manifold(s)

In the latent space, similar trajectories indicate repetition of neural state encoding sim-
ilar external experiences. To assess new test data, whether or not their latent variables
have similar spatial distribution and dynamics to those of the training data is investi-
gated. Training and test data can contain multiple continuous recording segments. Each
continuous segment is a single neural trajectory in the latent space. When the neural
patterns and dynamics of new inputs Y., match the learned model perfectly, their
estimated latent trajectories X, Will (i) span the manifold of XTC and (i1) progress
smoothly along it. Three measures are proposed to evaluate congruence of new input

data with a learned model.

Log likelihood We use log likelihood to measure how well the learned P-GPLVM
model fits the test data. The joint probability of Y, F, X for test data is computed as

p(Ya Fa X|FTC7 XTC) 0) = p(Y|F)p(F|X7 FTC; XTC? P, 5>p<X|T7 l) (16)
The log likelihood (LLH) of a continuous segment in test data is written as

LLH =1logp(Y,F,X[Frc, Xrc, 0)

N T N P
=3 log plynil fue) + D log p(£.| X, frc,, Xrc, p.6) + > log p(x,|r, 1).
n=1 t=1 n=1 p=1
(17)
Recall that
Yn.t| frr ~ Poisson(exp(fnt)), (18)

fn|Xa chnv XTC) P, 5 ~ N(kx<XTCa X)Tkx(XTC7 XTC)_lfTC'rm U2IT)7 (19)

x,p|r, 1 ~ N(0, K,). (20)

12
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Spatial consistency This metric measures how well a latent trajectory, Xpew = {X:}2_;,
spans the latent variable manifold(s) of the tuning curve vector, XTC = {f{m}%:l.
Firstly, for each point x; in the trajectory, its K -nearest neighbors are searched in the
manifold X, obtaining the set of its nearest neighbors S, = {Xm, 1, and its dis-
tances to those neighbors {||x; — X, ||2}2,. When the trajectory spans the manifold
nicely, the union of neighbor sets, Uthl S, should have much more elements than by
chance. The number of all identified neighbors is then weighted by the neighbor dis-
tances to integrate the neighborhood quality into the measure.

For each x,,, € Uthl St, its distance to its closest point in Xpew, d,, = ming  ||x; —
Xm, ||2 18 estimated. Then, the spatial consistency of this trajectory in the latent space is

computed as

M
consistency = Z Wiy 21)

m=1

where

c—ijim ! if )A(m < Uthl St
Wy, = (22)

0, otherwise

which means, when one X, is identified as a neighbor, it contributes to the spatial
consistency. This contribution is weighted by the distance to its nearest neighbor on the
trajectory, which is 1 when the distance is 0, and then decay as the distance increases,
reaching at 0.5 when the distance is ¢. The parameter c is set as 20% of the standard
deviation of XTC. When XTC contains more than one separated manifold, the standard

deviation is computed as the average within-manifold standard deviation:

13
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1 )
c=20% |0 D )me—uilli (23)

i xmeX(i
where p, is the center of manifold X (i).

Higher value of spatial consistency indicates that this trajectory travels a long way
along the tuning curve manifold(s) rather than only jiggling at a small local area or
locating far away. The spatial consistency to X1 is first used to evaluate the neural
trajectory behavior in the latent space. Further, when Xr¢ contains more than one
well-separated manifold X(z), we also estimate the manifold contribution ratio to the
consistency value, which is computed as in Eq. 21 but only for x,, € X(z) The
ratio between these contribution values from manifolds indicate to which manifold the

trajectory belongs.

Average step distance This metric reveals the consistency between temporal adja-
cency and pattern-matched location adjacency. The average Euclidean distance of each
step in each latent trajectory of X, is estimated. In general, the tuning curve con-
straint tends to drive X, towards their pattern-matched locations on the XTC man-
ifold. When the new data have different temporal sequences from the training data,
pattern-matched locations of temporally adjacent points are mostly distant, leading to

longer step distances.

4 Experiments and results

The dataset used in this paper is a neural recording collected in the dorsal hippocampal
CA1 and CA3 areas from a rat. The recording started with a 3 hours rest session (pre),

14
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and then the animal was exposed to a novel maze (mazel) for 50 minutes, running back
and forth to get rewards at the two ends. Following another two hours rest (postl), the
animal explored another novel maze (maze2) for 50 minutes. Lastly, the animal went
through a 5 hours rest session (post2). Spike trains during the two maze exploration
sessions were binned into 500 ms time bins. Animal positions were linearized and then
running periods (speed>3cm/s and peak speed>5cm/s) were extracted along with their

corresponding time bin indices.

4.1 Exploration in one maze

We first examined this P-GPLVM with the neural activity when the animal was exposed
to only one maze (mazel). The linearized animal positions during running in mazel
exploration session are shown in Figure 2A and corresponding original positions in
Figure 2B. One chunk of spike trains was selected as training data to train the model
(orange lines in Figure 2A, colored scatters in Figure 2B) and then the spike trains of
a continuous running segment in mazel was used as test data to evaluate the decoding
performance (black line in Figure 2A,B).

After fitting the model, smoothness parameters 6 and latent variables of training
data, Xtrain and ﬁ‘train, were obtained. Only one well-separated manifold is found in
Xtmm, suggesting that there is no multiple distinctly different neural processes found
in this training data. Given the known spatial tuning in hippocampus, to examine the
information encoded in the latent space, Xtrain are color-coded with the correspond-
ing animal linearized positions. Position information appears to be encoded along the

manifold smoothly (Figure 2C). The latent neural trajectories seem to be a bit unkempt,

15


https://doi.org/10.1101/2024.03.04.583340
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.04.583340; this version posted March 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A. B. C.
400 «——training data 100 training data
o test data o— test data 50
5 50
S300
7
o
2200 0
©
£ -
£ 100 -50
oMLV ¢ — i
20s -100 -50 0 50 100
D. E. TTD-shuf F.
504 arshat | cell ID-shuf / ex.1
TC 50 2 time-shuf ' 40 cir-shuf  /ex.2
initialized X R 203 ——.on : ?30 tin_\e_-shuf /ex.3
e—— optimized X 0 7 g , g original
- 1
50 S 002 ' %20
- = 1 o
50 e 5 01 : S0
0 50 - |l 0
50 50 -4000  -3000 -2000 0 20 40
log likelihood of test data step distance
H. ex.2 individual circular-shuffled . ex.3 time-shuffled

Figure 2: (A) Linearized animal position during running periods in mazel exploration
session. The orange / black lines indicate the segments used as training / test data. The
starting of each continuous segment is marked by a big filled circle. Each step in the test
data is marked by small dots. Scatters are color-coded by linearized animal positions,
same in subsequent panels (B-D, G-I). (B) Colored scatters of original animal positions
in training data. The black line indicates the same test data segment in (A). (C) Latent
variables of training data in the learned P-GPLVM. Continuous segments are connected
by lines as latent neural trajectories. (D) Inferred neural trajectory of test data in the
learned latent space. The semi-transparent markers are identical with the dot scatters in
(C), which, in this panel, indicates the latent variable manifold of tuning curve vectors,
Xr¢. The black line depicts the inferred neural trajectory of test data, progressing along
the manifold X in accordance with the real animal positions (from blue to purple).
(E) Log likelihood of the original test data (dashed red line) and its shuffled versions
(histograms). (F) Estimated step distances vs. spatial consistency to X1 of the inferred
neural trajectory in (D) compared with its cell ID-shuffled, individual circular-shuffled,
and time-shuffled versions. The three black-edged circles indicate one example of cell
ID-shuffled test data (ex.1), of individual circular-shuffled test data (ex.2), and of time-
shuffled test data (ex.3), respectively. (G, H, I) Same presentation as in (D), but the
inferred latent trajectories of ex.1-3 in (F).
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which is still reasonable because this was the animal’s first exposure to mazel.

Next, we estimated the internal state repetition of the test data in the learned la-
tent space. In Figure 2D, the manifold of tuning curve vector latent variables Xre,
which is Xtrain in this setting, is shown as the colored semi-transparent markers. Using
the Bayesian approach, the initialized latent variables of test data appears as a bumpy
trajectory (light red line). Applying the constrained inference, the latent variables con-
verged to a smooth latent trajectory after 15 iterations (black line). By comparing the
color in Figure 2B and Figure 2D, it is obvious that, the inferred neural trajectory of
test data proceeds closely along those of training data with similar experiences, where
the animal traveled from positions in blue to positions in purple, in accordance with the
repetition of similar internal neural state.

To validate this internal neural state repetition and contrast the inferred latent vari-

ables of test data, three kinds of surrogate data were generated:

* Cell identity(ID)-shuffled data, by randomly permuting the cell identity of the
test data, which scrambles the original neural coactivation patterns and permutes

neuronal firing rates, but preserves the temporal sequences.

* Local individual circular-shuffled (cir-shuf) data, by randomly and circularly per-
muting the test data of each cell individually within each continuous segment,
which scrambles coactivation patterns but preserves the temporal smoothness and

local neuronal firing rates.

* Local time-shuffled data, by randomly permuting the temporal order of the test

data within each continuous segment, which preserves the coactivation patterns
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but scrambles the time sequences.

For each shuffle type, we generated 500 surrogate test data. Metric values and example
latent trajectories of the original and surrogate data are shown in Figure 2.

Figure 2E depicts the distribution of LLH values of the inferred latent variables of
original test data and of the surrogate test data. Overall, the original test data has a
higher LLH value than all the surrogate data. Figure 2F shows their step distance and
spatial consistency values in scatters. Inferred latent trajectories of example surrogate
data are shown in Figure 2G-I, whose metric values are indicated in the black-edged
scatter in Figure 2F. In the latent space, the trajectories of cell ID-shuffled and of time-
shuffled test data look distinct from that of the original test data trajectory, while the
circular-shuffled test data trajectory has visually similar behavior.

Note that, the iterative inference process searches for an optimal balance between
temporal smoothness and tuning curve constraints. Because of the changed relative
firing rates among cells in cell ID-shuffled data, the tuning curve constraints push the
trajectories far away from X r¢, where temporal smoothness constraint dominates, lead-
ing to small step distances, diminutive spatial consistency values, and the lowest LLHs
among all types of shuffled data. With preserved local neuronal firing rates, circular-
shuffled data trajectories stay in the similar area as the original data, but due to the
scrambled coactivation patterns and preserved temporal smoothness, the tuning curve
constraints are compromised by the temporal smoothness constraint, resulting in less
likely but smooth trajectories with step distances comparable to the original test data,
slightly lower spatial consistency values, and significantly lower LLH values. As for

time-shuffled data, with intact coactivation patterns at each time point, the tuning curve
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constraints are dominating during the inference, driving the latent variables to the cor-
responding locations on the manifold of Xr¢ as the original test data does, while the
temporal smoothness is sacrificed, resulting in spiky trajectories with large step dis-
tances, comparable spatial consistency, and slightly lower LLH values.

We contrast the original test data with its shuffled versions using a modified z-scored
LLH, calculated by dividing the difference from the median by the median absolute
deviation of shuffled data LLH. The z-scored LLH of the original test data among its
cir-shuf versions is 13.56, and among its time-shuffled versions, 8.98, indicating that the
test data is a valid sequential repetition of internal neural states captured in the training
data. This measure separately verifies the matching of coactivation patterns between
test data and tuning curves (when compared with cir-shuf test data), and the matching

of temporal sequences (when compared with time-shuffled test data).

4.2 Exploration in two mazes

Next, we asked if our approach can still work well for neural activity during explo-
ration in more than one environment context. One chunk of neural data during running
in mazel (orange lines in Figure 3A, colored scatters on the left in Figure 3B) and an-
other in maze?2 (blue lines in Figure 3A, colored scatters on the right in Figure 3B) are
selected and concatenated as the training data to train a new P-GPLVM. The test data
is from mazel, the same as in the previous section (black line in Figure 3A, B). All the
semi-transparent markers in the scatter plot are colored by the corresponding linearized
animal positions.

In Xtrain of the newly learned model, two well-separated manifolds, m1 (X(l))
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Figure 3: (A) Linearized animal position during running periods in mazel and maze2
exploration sessions. The orange / blue lines indicate the segments in mazel / maze2
used as training data. The black line indicates the test data. Scatters are color-coded by
contexts and linearized animal positions, same in (B-C, G-J). (B) Scatters of original
animal positions in training data from mazel (left) and maze2 (right). The black line
indicates the same test data segment as in (A). (C) Following fitting the training data,
latent variables are separated into two distinct manifolds, m1 and m2. Each data point is
colored by its corresponding linearized animal position as in (A). (D) Log likelihoods
(LLH) of test data (red dashed line), cell ID-shuffled (purple histogram), individual
circular-shuffled (blue histogram), and time-shuffled surrogate data (green histogram).
(E) Inferred latent neural trajectory step distance vs. spatial consistency to Xpe of orig-
inal test data (red +), of cell ID-shuffled (purple scatters), of individual circular-shuffled
(blue scatters), and of time-shuffled (green scatters) surrogate data. Example surrogate
data indicated in one black-edged circle from either shuffle type is then shown for visu-
alization. (F) Manifold contribution to neural trajectory spatial consistency from m1 vs.
from m2, of original and surrogate test data. (G) Latent neural trajectories as initialized
(light red line) and optimized after iterations (black line) of test data in the latent space.
Latent variables of tuning curve vectors, XTC, are shown in semi-transparent markers
color-coded by the animal positions, same as in (C). Both initialized and optimized tra-
jectories of test data are associated with the corresponding context manifold. Unlike the
bumpy initialization, optimized neural trajectory is smooth and progresses according to
the animal positions. (H-J) Same representations as in (G), inferred trajectory of (H)
ex.1 for cell ID-shuffled test data, (I) ex.2 for individual circular-shuffled test data, and
(J) ex.3 for time-shuffled test data, as indicated in black-edged circles in (E,F).
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and m2 (X(2)), are found, each of whom turns out to contain all data points from one
of the maze contexts. Using the same color code as in Figure 3A and B on Xtraina
position information appears to be encoded along the corresponding context manifold
smoothly (Figure 3C). Thus, this approach is capable of detecting the presence of two
environment contexts as well as capturing the encoded position information merely
from the neural activity in the training data.

Again, cell ID-shuffled, individual circular-shuffled, and time-shuffled surrogate test
data were generated. Along with the original test data, their latent variables in the new
latent space are inferred, which behave quite similarly to those in Section 4.1. Figure
3D depicts the distribution of LLH values of the original test data and the surrogate
test data. Cell ID-shuffled test data have much lower LLHs than all the other type of
data. Circular-shuffled data have slightly smaller LLHs than time-shuffled data. The
original test data has a higher LLH value than all surrogate data, where z-scored LLH
among its circular-shuffled versions is 11.75, and among its time-shuffled versions,
8.40, confirming that the test data is a valid internal neural state repetition.

Next, we investigated the content of this state repetition by looking into the latent
variable locations relative to Xtrain- The inferred latent trajectory of the test data and its
initialization in this new latent space are shown in Figure 3G. The trajectory is similar
to those neural trajectories of training data with similar experiences, traversing the same
arm of mazel, from positions blue to purple just as in Figure 3B.

As a high-level summary of the spatial distribution and dynamics of these neural
trajectories, Figure 3E shows the step distance and spatial consistency values to X irains

while Figure 3F shows the manifold contribution to spatial consistency values from m1
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versus from m2. Examples are shown in Figure 3H-J (metric values indicated in black-
edged scatters in Figure 3E,F). The inferred cell ID-shuffled test data trajectories tend
to have small steps and locate far away from both manifolds, having diminutive spatial
consistency values. Compared with original test data trajectory, circular-shuffled data
have smooth trajectories around the same area, with slightly smaller spatial consistency
values and comparable step distances. Latent variables of time-shuffled test data has
similar location as the original test data does, but are mostly taking big jumps across
time. Just like the original test data, both circular-shuffled and time-shuffled test data
have similarly high m1 contribution to spatial consistency and diminutive m2 contri-
bution, suggesting the test data is repeating neural state encoding experience in mazel
rather than maze2. Recall that circular-shuffled data have scrambled coactivation pat-
terns, which indicates that local neuronal firing rates can already distinguish animal

contexts.

4.3 PBE decoding

In the previous two sections, it has been demonstrated that the model learned from
training data during running can capture the neural state repetition in test data during
running well. Next, we evaluated whether this running-state model could be used to
estimate the internal state repetition in neural data during PBEs, which occurred when
the animal had paused running in the exploration session.

First, the best time bin size for PBE data was searched. Both in the mazel and
maze2 exploration sessions, the 80" percentile of 4 seconds’ travel distance is 86-87cm.

Therefore, only place cell pairs with their place field distances less than 87cm are in-
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cluded in the subsequent analysis. It turns out that, for both maze sessions, the sum of
significant (p < 0.01) positive Pearson correlation coefficient » between CCH during
running and CCH during PBEs across cell pairs reached its peak when the PBE time
bin size is 17 ms. Therefore, PBEs were binned into 17 ms time bins.

Next, in the latent space learned using running data from the two maze exploration
sessions described in Section 4.2, we examined whether the inferred latent trajectories
of binned PBE data could be identified as neural state repetitions. Firing rates of the
tuning curve vectors were scaled by the time bin size ratio 17/500. Among 562 PBEs
detected within the mazel exploration session, we randomly selected 100 PBEs as test
data. To evaluate the resulting latent trajectories, for each PBE, 200 surrogate data for
each of the three shuffling types were generated and metric values were assessed.

The first question to ask about the PBE latent trajectories is the validity of neural
state repetition. We consider a PBE to be a significant replay event, when its LLH value
is larger than all of those of its circular-shuffled versions and its modified z-scored LLH
is greater than 3. Moreover, a significant replay event should have a latent trajectory lo-
cated closely to the tuning curve latent variable X ¢ manifolds to guarantee the strength
of the tuning curve constraint. Therefore, the average distance of the latent trajectory to
its nearest neighbors identified during measuring the spatial consistency value is esti-
mated. PBEs with average nearest neighbor distance larger than the standard deviation
of X are excluded. Given that neuron firings of a replay are not exactly the time-
compressed version of those during corresponding behavior, this criterion is a strict
indicator of the ensemble activity pattern reactivation, and therefore, a strict indicator

of the validity of being a replay event. Following the identification as a replay, z-scored
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Figure 4: Inferring latent trajectories of PBE data in the P-GPLVM latent space learned
from running data. (A) Modified z-scored LLH values among circular-shuffled versions
versus among time-shuffled versions, of the 100 selected PBEs and of 8 continuous
running segments in mazel for comparison. The size of each circle indicates the spa-
tial consistency value of the PBE. PBEs not meeting the replay criterion are in gray
and PBEs identified as significant replay events are colored according to their z-scored
LLH among time-shuffled versions. (B) Number of time bins of each test data versus
their spatial consistency to the latent variable manifolds of tuning curve vector, Xrc.
Dots are presented in the same way as in (A). (C) Histogram of ratio of manifold con-
tribution to spatial consistency. Most of the PBEs are associated with mazel. (D-F)
For comparison, we use traditional Bayesian decoding to render the posterior position
distribution of the example PBEs (No0.27, N0.96, No0.40) indicated in markers in (A-B).
Corresponding context and position colors are indicated on the left side, same color
code as Figure 3A. (G-I) Inferred latent trajectories of the example PBEs in (D-F) in
the P-GPLVM latent space. While the initialized trajectories are jumpy, after iterations,
the trajectories of the PBEs all converge to the mazel manifold (same representation as
in Figure 3G).
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LLH among its time-shuffled versions suggests the likeliness of being a sequential re-
play. Figure 4A shows the LLH values z-scored by circular-shuffled versions versus
z-scored by time-shuffled versions, of the 100 selected PBEs and of 8 continuous run-
ning segments in mazel for comparison. Each PBE is depicted as a dot, whose size
stands for its spatial consistency value. 50 out of the selected 100 PBEs meet the re-
play criterion and are considered significant replay events, colored according to their
z-scored LLH among time-shuffled versions. Insignificant PBEs are colored in gray.
Next, the spatial distribution and dynamics features of each PBE were investigated.
Since it had been shown that position information is encoded along the manifolds in
latent space, for comparison, we estimated spatial tuning curves in the two running di-
rections separately and used a Bayesian model to decode the PBE positions following
the traditional method. Among those probable replay events, three example PBEs of dif-
ferent trajectory behaviors are highlighted by different markers in Figure 4A-B, whose
Bayesian decoding results and inferred latent trajectories are visualized subsequently
in Figure 4D-I. Figure 4B shows the number of time bins of each PBE and its spatial
consistency to Xrc. Visually, there is a trend that more time bins lead to larger spatial
consistency values, which is intuitive because longer trajectory can travel through more
area. PBEs in this trend indicate one-directional replays of experiences. For example,
PBE No0.96 in Figure 4E and H is a continuous replay of experience traveling from lo-
cation in purple all the way to location in green, consistent with the Bayesian decoded
results. PBEs with fewer time bins relative to those with comparable spatial consistency
values (top left side of the chart) indicate that their trajectories might be of high speed

or even have leaps. PBE No.27 in Figure 4D and G is shown as an example of this kind,
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whose Bayesian decoded results suggest a travel from location green to location purple
with a leap in the middle. On the contrary, PBEs with more time bins relative to those
with comparable spatial consistency values (bottom right side of the chart) indicate that
their trajectories might be stationary or slightly oscillating. One example is PBE No.40
in Figure 4F and I, whose Bayesian decoded positions are first unfathomable (which
might not be able to be decoded by a spatial decoder) and then travel around location
green. Its latent trajectory at the first major part jiggled around location purple and then
traveled to location green. Figure 4C shows the manifold contribution to spatial con-
sistency value from m1 manifold versus from m2 manifold of each PBE. As expected,
since the animal hadn’t experienced maze?2 yet, almost all of the probable replay events
belong to m1 manifold rather than to m2 manifold, indicating that they are replay events
of mazel experience.

Combining the observation of metric values, we can estimate the validity of neural
state repetition, evaluate the pattern of this repetition, and infer the external variables
of the replayed experience. Note that we have not used position data in any of our
analyses. This approach is the first presentation of a method for continuously decoding
and identifying replay events without relying on external variables.

Finally, with no need of assuming external variables that drive the neural activity
or predetermining replay behavior patterns, the summary of replay behavior through
out all sessions in this experiment can be revealed by applying the extended P-GPLVM
model to all PBEs detected. Latent neural trajectories of all PBEs are inferred. For each
PBE, 100 circular-shuffled versions were generated to for identifying significant replay

events. PBE occurrence time vs. the ratio of manifold contribution to PBE spatial

26


https://doi.org/10.1101/2024.03.04.583340
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.04.583340; this version posted March 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

pre
100% m1 Woooo e PO 0L P o -a0 gg@mow—gg & g e %g%?& n.s.
(V895 & %00 s a 3 o 0 G e ey O sig replay =
& oo o B e’ g 0% & &’ 2
100% m2 $ooats S oot an:orbigs: o S 8%
3
62
maze1 5
100% m1 JoTPEESEEGIEO0- 4 E’:
- o S
° o O
o 100%m2 e K
S
&
= 100% m1
> 3
a o
=
S 100% m2
o o m
o
L maze2
§  100%m1 po—————
S | © .08 o %
22 R %O
100% m2
1000s
post2
100% M1 o oo et e o S ——————te s D DS P e ———o6 —apeoa—g

time

Figure 5: PBE occurrence time vs. ratio of manifold contribution for PBE latent tra-
jectories in all sessions. The top solid line indicates 100% of the trajectory nearest
neighbors are from mazel manifold (m1). The bottom solid line indicated 100% of
the nearest neighbors are from maze2 manifold (m2). Each circle indicate one detected
PBE. Significant replay events are colored in black to light red according to their z-
scored LLH values among their circular-shuffled versions.
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consistency value is shown in Figure 5 from pre session to post2 session in time order,
where each PBE is depicted as a circle, whose size indicates its spatial consistency value
to XTC. Circles on the top / bottom line means 100% of identified nearest neighbors
for the latent neural trajectories are from m1 / m2 manifold, indicating affiliation with
mazel / maze2 context experience. Circles located in between suggest mixtures. PBEs
identified as significant replay events are colored according to its z-scored LLH value
among their circular-shuffled versions. In the pre rest session, identified significant re-
play events are comparably sparse and have small spatial consistency values. In mazel
and maze2 exploration sessions, as expected, almost all the significant replay events
are associated with their current contexts and have comparably larger consistency and
z-scored LLH values, which indicates long and sequential experience replay. In postl
rest session, the majority of significant replay events are associated with mazel context
and most of them have small consistency values. Those replay events became less asso-
ciated with mazel as the rest time increased. In post2 rest session, replay events seem

to be more frequent and most of them are associated with maze2 context.

Conclusion

As the results have shown, without referring to any external variables, P-GPLVM is a
powerful tool to capture nonlinear neural population dynamics in the hippocampus by
discovering the low-dimensional structure underlying the neural activity, which reveals
important encoded external variables such as the number of contexts and the topology of

animal spatial behavior (i.e. position). In this paper, this model is extended to leverage

28


https://doi.org/10.1101/2024.03.04.583340
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.04.583340; this version posted March 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

those advantages in the neural decoding scenario by enabling the constrained latent
variable inference of new neural data and proposing a family of analyses for result
evaluations. This constrained inference approach requires much less computational
cost than relearning the model with training data combining old and new data. This
extended model is flexible that, for new neural data either during running or during
PBEs, neural trajectories can be inferred in the latent space learned from training data
during running and internal neural state repetition can be evaluated. External variables
can then be decoded based on the external experiences corresponding to the repeated
neural states. Metrics are defined that for the first time enable the identification of
continuously-decoded replay using a model trained only with neural activity (and refine

this definition to allow for both sequential and non-sequential events).

Acknowledgments

This research was supported by ROINS115233.

References

Alme, C. B., Miao, C., Jezek, K., Treves, A., Moser, E. 1., and Moser, M.-B. (2014).
Place cells in the hippocampus: eleven maps for eleven rooms. Proceedings of the

National Academy of Sciences, 111(52):18428—18435.

Cai, D. J., Aharoni, D., Shuman, T., Shobe, J., Biane, J., Song, W., Wei, B., Veshkini,
M., La-Vu, M., Lou, J., Flores, S. E., Kim, L., Sano, Y., Zhou, M., Baumgaertel, K.,

Lavi, A., Kamata, M., Tuszynski, M., Mayford, M., Golshani, P., and Silva, A. J.

29


https://doi.org/10.1101/2024.03.04.583340
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.04.583340; this version posted March 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(2016). A shared neural ensemble links distinct contextual memories encoded close

in time. Nature, 534(7605):115-118.

Csicsvari, J., O’Neill, J., Allen, K., and Senior, T. (2007). Place-selective firing con-
tributes to the reverse-order reactivation of cal pyramidal cells during sharp waves in

open-field exploration. European Journal of Neuroscience, 26(3):704-716.

Davidson, T. J., Kloosterman, F., and Wilson, M. A. (2009). Hippocampal replay of

extended experience. Neuron, 63(4):497-507.

Diba, K. and Buzséki, G. (2007). Forward and reverse hippocampal place-cell se-

quences during ripples. Nature neuroscience, 10(10):1241-1242.

Eichenbaum, H. (2017). The role of the hippocampus in navigation is memory. Journal

of Neurophysiology, 117(4):1785-1796.

Eichenbaum, H. and Cohen, N. J. (2014). Can We Reconcile the Declarative Memory

and Spatial Navigation Views on Hippocampal Function? Neuron, 83(4):764-770.

Foster, D. J. and Wilson, M. A. (2006). Reverse replay of behavioural sequences in

hippocampal place cells during the awake state. Nature, 440(7084):680-683.

Harrison, M. T., Amarasingham, A., and Kass, R. E. (2013). of synchronous spiking.

Spike Timing: Mechanisms and Function, page 77.

Karlsson, M. P. and Frank, L. M. (2009). Awake replay of remote experiences in the

hippocampus. Nature neuroscience, 12(7):913-918.

Krause, E. L. and Drugowitsch, J. (2022). A large majority of awake hippocampal

30


https://doi.org/10.1101/2024.03.04.583340
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.04.583340; this version posted March 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

sharp-wave ripples feature spatial trajectories with momentum. Neuron, 110(4):722—

733.e8.

Kudrimoti, H. S., Barnes, C. A., and McNaughton, B. L. (1999). Reactivation of hip-
pocampal cell assemblies: effects of behavioral state, experience, and eeg dynamics.

Journal of Neuroscience, 19(10):4090—4101.

Lee, A. K. and Wilson, M. A. (2002). Memory of sequential experience in the hip-

pocampus during slow wave sleep. Neuron, 36(6):1183-1194.

Moser, M.-B., Rowland, D. C., and Moser, E. I. (2015). Place Cells, Grid Cells, and

Memory. Cold Spring Harbor Perspectives in Biology, 7(2):a021808.

Nédasdy, Z., Hirase, H., Czurkd, A., Csicsvari, J., and Buzsaki, G. (1999). Replay
and time compression of recurring spike sequences in the hippocampus. Journal of

Neuroscience, 19(21):9497-9507.

Nieh, E. H., Schottdorf, M., Freeman, N. W., Low, R. J., Lewallen, S., Koay, S. A.,
Pinto, L., Gauthier, J. L., Brody, C. D., and Tank, D. W. (2021). Geometry of abstract

learned knowledge in the hippocampus. Nature, 595(7865):80—84.

Rubin, A., Sheintuch, L., Brande-Eilat, N., Pinchasof, O., Rechavi, Y., Geva, N., and
Ziv, Y. (2019). Revealing neural correlates of behavior without behavioral measure-

ments. Nature communications, 10(1):1-14.

Skaggs, W. E. and McNaughton, B. L. (1996). Replay of neuronal firing sequences in rat
hippocampus during sleep following spatial experience. Science, 271(5257):1870—

1873.

31


https://doi.org/10.1101/2024.03.04.583340
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.04.583340; this version posted March 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Wilson, M. A. and McNaughton, B. L. (1994). Reactivation of hippocampal ensemble

memories during sleep. Science, 265(5172):676-679.

Wu, A., Roy, N. A., Keeley, S., and Pillow, J. W. (2017). Gaussian process based
nonlinear latent structure discovery in multivariate spike train data. Advances in

neural information processing systems, 30.

Yu, B. M., Cunningham, J. P., Santhanam, G., Ryu, S. L., Shenoy, K. V., and Sahani,
M. (2009). Gaussian-process factor analysis for low-dimensional single-trial analysis
of neural population activity. Journal of Neurophysiology, 102(1):614-635. PMID:

19357332.

32


https://doi.org/10.1101/2024.03.04.583340
http://creativecommons.org/licenses/by-nc-nd/4.0/

