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Abstract

Dimension reduction on neural activity paves a way for unsupervised neural decoding

by dissociating the measurement of internal neural state repetition from the measure-

ment of external variable tuning. With assumptions only on the smoothness of latent

dynamics and of internal tuning curves, the Poisson Gaussian-process latent variable

model (P-GPLVM) (Wu et al., 2017) is a powerful tool to discover the low-dimensional
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latent structure for high-dimensional spike trains. However, when given novel neural

data, the original model lacks a method to infer their latent trajectories in the learned

latent space, limiting its ability for estimating the internal state repetition. Here, we

extend the P-GPLVM to enable the latent variable inference of new data constrained

by previously learned smoothness and mapping information. We also describe a princi-

pled approach for the constrained latent variable inference for temporally-compressed

patterns of activity, such as those found in population burst events (PBEs) during hip-

pocampal sharp-wave ripples, as well as metrics for assessing whether the inferred new

latent variables are congruent with a previously learned manifold in the latent space.

Applying these approaches to hippocampal ensemble recordings during active maze

exploration, we replicate the result that P-GPLVM learns a latent space encoding the

animal’s position. We further demonstrate that this latent space can differentiate one

maze context from another. By inferring the latent variables of new neural data during

running, certain internal neural states are observed to repeat, which is in accordance

with the similarity of experiences encoded by its nearby neural trajectories in the train-

ing data manifold. Finally, repetition of internal neural states can be estimated for

neural activity during PBEs as well, allowing the identification for replay events of ver-

satile behaviors and more general experiences. Thus, our extension of the P-GPLVM

framework for unsupervised analysis of neural activity can be used to answer critical

questions related to scientific discovery.
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1 Introduction

Memory critically requires firing of neurons in the hippocampus both during ongo-

ing experiences and afterwards, as the resultant memories are consolidated. While

rodent studies have focused on spatial memories, hippocampal neurons can be gen-

erally understood to represent the conjunction of the sensory features associated with

a particular context (Moser et al., 2015), and the temporal sequences that connect lo-

cal contexts across time during an experience (Eichenbaum and Cohen, 2014; Eichen-

baum, 2017). Importantly, sequential firing patterns of neural ensembles reactivate in

a time-compressed manner during some of the population burst events (PBEs) that oc-

cur during sharp-wave ripple oscillations in sleep or quiet wakefulness (Wilson and

McNaughton, 1994; Skaggs and McNaughton, 1996; Kudrimoti et al., 1999; Nádasdy

et al., 1999). By decoding those events, it has been shown the replay trajectories show a

continuum of conformity to the original experience, including variability in momentum

and both forward and reverse re-expression (Lee and Wilson, 2002; Foster and Wilson,

2006; Diba and Buzsáki, 2007; Csicsvari et al., 2007; Davidson et al., 2009; Krause

and Drugowitsch, 2022). Traditionally, individual replay events have been identified

based on a strong assumption of ordered consistency with patterns expressed during

exploration. Consequently, un-ordered replay of contexts, or ordered replay of more

complicated routes are often excluded from subsequent analysis. Thus, while much has

been learned about memory consolidation and recall from the study of replay, existing

approaches have colored our understanding. Therefore, a technique for decoding neural

activity without strongly stereotyping the patterns represented or requiring a specifically

spatial encoding model would be a powerful tool for understanding memory.
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To extract the information from spike trains with minimal prior assumptions, one

practicable approach is to find a low-dimensional embedding that can reveal the un-

derlying dynamics. The Poisson Gaussian-process latent variable model (P-GPLVM)

proposed by Wu et al. (2017) is a probabilistic, nonlinear, and dynamic dimension re-

duction approach. It infers temporally smooth low-dimensional latent neural trajecto-

ries and smooth, non-parametric internal tuning curves from spike trains without re-

ferring to external variables. This model consists of Poisson spiking observations and

two Gaussian processes, one governing the temporal evolution of latent variables and

another governing the nonlinear mapping from high-dimensional neural data to the low-

dimensional latent variables.

In the learned low-dimensional latent space, (1) by mapping any possible external

variable unto the embedding, how external variables are represented in this latent space

can be revealed; (2) by measuring the repetition of internal neural state (relative loca-

tions to the low-dimensional training data embedding), the repetition of neural activity

encoding external experiences can be detected (Yu et al., 2009; Rubin et al., 2019; Nieh

et al., 2021). Unsupervised neural decoding can be achieved by dissociating the mea-

surement of internal neural state repetition from the measurement of external variable

tuning. However, an approach for inferring latent variables of new data points in the

learned latent space is lacking from the original P-GPLVM model, limiting its utility

for decoding.

In this paper, we extend the P-GPLVM framework to enable the latent variable in-

ference of new inputs constrained by the learned smoothness parameters and tuning

curves (Figure 1), and develop subsequent analyses to evaluate the new input data in
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Figure 1: Schematic diagram of the extended P-GPLVM model. Internal tuning curves
and smoothness information learned from training data are then used to constrain the
inference of test data latent variables in the same latent space.

the latent space. We also present a preprocessing pipeline for PBE decoding when us-

ing models trained from behavioral data. The original P-GPLVM can be used to reveal

encoded information in neural activity and discover neural trajectory evolution but only

within the given training data. This extended model and PBE preprocessing pipeline,

especially, makes use of information learned in the model and enables the effective and

unsupervised decoding of new neural activity both during behavior and during PBEs.

2 Poisson Gaussian-process latent variable model

2.1 Model structure

Binning spike counts into M time bins from N neurons creates the matrix of spike

trains Y = {ym}Mm=1,ym ∈ RN×1. The mth time bin was recorded at time tm, m ∈

(1, · · · ,M). In this model, two latent variable matrices will be learned: the log firing

rate for Poisson spiking, F = {fm}Mm=1, fm ∈ RN×1, and the P -dimensional latent

variables, X = {xm}Mm=1,xm ∈ RP×1.
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Latent dynamics Each feature of the latent variable matrix X evolves according to

a Gaussian process depending on time t, xp(t) ∼ GP(0, kt), p ∈ (1, · · · , P ), where

kt(t, t
′) = r exp(−|t − t′|/l), governing the temporal smoothness of xp. Writing as a

multivariate normal distribution,

xp,1:M |t1:M ∼ N (0, Kt). (1)

The covariance Kt is an M ×M matrix with entries kt at all pairs of time bins.

Nonlinear mapping Let h : RP → R be a nonlinear mapping function, describing

the firing rate of a neuron in the mth time bin as λm = h(xm). The log tuning curve of

the nth cell in response to the latent variable x is modeled as another Gaussian process

as fn(x) = log hn(x) ∼ GP(0, kx), n ∈ (1, · · · , N). This process has kx(x,x
′) =

ρexp(−∥x − x′∥22/2δ2) as a spatial covariance function. Therefore, the log firing rates

of the nth neuron in all time bins have the multivariate normal distribution

fn,1:M |x1:M ∼ N (0, Kx) (2)

with the M ×M covariance matrix Kx, whose entries are kx evaluated for all pairs of

x. By combining f over all the neurons, F ∈ RN×M as firing rates in units of spike

counts per time bin are obtained. Note that this is per bin, rather than per second. This

has consequences for PBE decoding, as described below.

Poisson spiking Finally, for the nth neuron in the mth time bin, observed spike counts

yn,m are assumed to be drawn from a Poisson process given the latent firing rate λn,m =

exp(fn(xm)),

yn,m|fn,xm ∼ Poisson(exp(fn(xm))). (3)
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2.2 Model training

During training, the model iteratively infers latent variables of training data without

mapping constraints and optimizes smoothness parameters. In each iteration, X is first

fixed and F is optimized. For each neuron, the posterior over fn is given by

p(fn|yn,X) ∝ p(yn|fn)p(fn|X). (4)

The optimal f̂n is found by maximizing the log conditional distribution

log p(fn|yn,X) = log p(yn|fn)−
1

2
f⊤n K

−1
x fn −

1

2
log |Kx|+ constant. (5)

Then, fixing F, the optimal X is discovered by maximizing the conditional likelihood

XMAP = argmaxX

N∑
n=1

p(yn|X)p(X), (6)

where p(yn|X) is given by

p(yn|X) ∝
∫

p(yn|fn)p(fn|X)dfn. (7)

Using Laplace’s method, the approximated log likelihood conditioned on X is

log q(yn|X) = log p(yn|f̂n)−
1

2
f̂⊤n K

−1
x f̂n −

1

2
log |IM +KxWn|. (8)

where Wn = −∇∇ log p(yn|fn). Hyperparameters θ = {ρ, δ, r, l} are found by maxi-

mizing the same likelihood function.

3 Extensions of P-GPLVM

3.1 Constrained latent variable inference of new data

Latent variable initialization During model training, P-GPLVM learns smoothness

parameters, θ, and internal mapping function, log hn : RP → R, parameterized by
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latent variables f̂train = {f̂m}Mm=1 for each cell and X̂train = {x̂m}Mm=1 from training

data. In the original P-GPLVM paper, the tuning curve vectors fgrid are evaluated at the

grid of latent variables Xgrid = {xg}Gg=1 using a joint Gaussian distribution with X̂train

and f̂train. f̂train
fgrid

 ∼ N (0,

Ktrain k

k⊤ Kgrid

), (9)

where Ktrain = kx(X̂train, X̂train), Kgrid = kx(Xgrid,Xgrid), and k = kx(X̂train,Xgrid),

are the covariance matrices. The entry kx(X1,X2)m,g = kx(x1m,x2g). The posterior

distribution of fgrid can then be written as

fgrid|Xgrid, f̂train, X̂train ∼ N (k⊤K−1
trainf̂train, diag(Kgrid)− k⊤K−1

traink). (10)

Given new input data from the same group of neurons, Ynew = {yt}Tt=1,yt ∈ RN×1,

the latent variables Xnew = {xt}Tt=1,xt ∈ RP×1, are initialized with elements in Xgrid

that maximize the posterior probability using a Bayesian approach. At the tth time bin,

the posterior over each element in Xgrid is

p(xg|yt, F̂train, X̂train) ∝ p(yt|xg, F̂train, X̂train)p(xg), (11)

where we’ve assumed a uniform prior over xg during initialization. The prior over yt is

p(yt|xg, F̂train, X̂train) =
N∏

n=1

p(yn,t|fn,g)p(fn,g|xg, f̂trainn, X̂train), (12)

The latent variable xt corresponding to yt is initialized with the xg with maximum

posterior.

Impose smoothness constraints Merely using MAP tuning curves to constrain the

latent variable inference of new input data omits the learned temporal smoothness in the
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latent space. To impose both temporal smoothness and tuning constraints, subsequent

iterations are needed. We noted that employing fgrid and Xgrid as tuning curve vectors

is computationally expensive – considering a samples per dimension, a P -dimensional

Xgrid contains aP elements. Moreover, a majority of the grid elements contain minimal

information as no x̂train locate nearby. To save computational costs during iterations

and to preserve the tuning details of f̂train in response to X̂train as much as possible,

F̂train and X̂train were directly used as the tuning curve vectors (TC), F̂TC and their

encoded latent variables X̂TC.

Iterations are similar to those during unconstrained inference as described in Section

2.2, but the smoothness parameters are fixed as learned and the mapping function log hn

is constrained by f̂TC and X̂TC. This is achieved by substituting p(fn|X, f̂TC, X̂TC) for

p(fn|X) in Eq. 4 and 7. As in Eq. 9, the joint distribution with f̂TC and X̂TC gives

posterior of fn as

fn|X, f̂TCn , X̂TC ∼ N (µn, σ
2IT ) (13)

where µn = k⊤K−1
TCf̂TCn, k = kx(X̂TC,X), KTC = kx(X̂TC, X̂TC) and σ2 is the

observation noise. Correspondingly, Eq. 5 is modified as

log p(fn|yn,X, f̂TCn, X̂TC) = log p(yn|fn)−
1

2σ2
(fn−µn)

⊤(fn−µn)−
T

2
log σ2. (14)

Finally, obtaining the optimal f̂n, Eq. 8 is modified as

log q(yn|X, f̂TCn, X̂TC) = log p(yn|f̂n)−
1

2σ2
(f̂n−µn)

⊤(f̂n−µn)−
1

2
log |IT +σ2Wn|.

(15)
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3.2 Preprocessing for PBE decoding

Critically for our model, neural activity during PBEs is temporally-compressed relative

to that expressed during exploration. Consequently, the firing rate model learned on

exploration-related neural activity will not properly model PBEs. This is addressed

in two steps, choosing a shorter time bin (implicitly compressing time) and explicitly

scaling the model parameters. Temporal compression implies that the time intervals

between pairs of place cells activating during exploration running are expected to be

proportional to those during replay. Thus, the cross-correlation histogram (Harrison

et al., 2013; Karlsson and Frank, 2009) of spike trains from place cell pairs is used to

find the PBE time bin size that would best match the binned behavioral data. Place

cells are identified in either running direction and then are pooled. For each place cell

pair with spike trains s1, · · · , sM from one cell and t1, · · · , tN from another, time lags

between any pairs of spikes (sm, tn) within 4 seconds are recorded. The histogram

of all these spike time lags is the cross-correlation histogram (CCH) for this cell pair.

All histograms are centered at 0s time lag and share the same number of bins. For

ease, the histogram bin size of CCH during active exploration is set as the same as that

used for P-GPLVM analysis of this data. Among all pairwise combinations of place

cells, cell pairs with place field (where peak firing rate occurs) distances larger than

the 80th percentile of the distribution of travel distance in 4 seconds are excluded from

subsequent analysis. For each included cell pair, the Pearson correlation between CCH

during exploration and CCH during PBEs is evaluated. The optimal bin size for PBEs is

found by maximizing the sum of all significant positive Pearson correlation coefficients

using a range of possible PBE bin sizes.
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As the unit of our tuning curves is spike counts per time bin, for PBE-decoding,

the firing rates of P-GPLVM tuning curves learned using neural activity during active

exploration must be further scaled. Scaling by the ratio of the time bin sizes is found to

yield good PBE-decoding performance.

3.3 Analysis in latent space

3.1 Number of well-separated manifolds

The hippocampus ”remaps” between different environments, meaning that whether a

given neuron is active, and if so, how its spatial tuning will relate to that of other neurons

is essentially random between different environments (Moser et al., 2015; Alme et al.,

2014) (though recent studies have challenged this concept (Cai et al., 2016)). This

implies that different environments should correspond to well-separated manifolds in

latent space. This idea intuitively leads to the investigation that if the low-dimensional

latent variable X̂train is organized in a single manifold or in multiple well-separated

manifolds. This procedure consists of constructing a K-nearest neighbor graph in X̂train

and then counting the number of connected components in the graph. Components con-

taining less than 3% of total number of points are considered ”residual components”.

Starting with a small number, K is gradually increased until there are no residual com-

ponents left. The number of well-separated manifolds will stabilize as K continues

to increase for a multiple times. This stabilized number is defined as the number of

connected components in X̂train. Each separated manifold is denoted as X̂(i) hereafter.
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3.2 Congruence with the learned manifold(s)

In the latent space, similar trajectories indicate repetition of neural state encoding sim-

ilar external experiences. To assess new test data, whether or not their latent variables

have similar spatial distribution and dynamics to those of the training data is investi-

gated. Training and test data can contain multiple continuous recording segments. Each

continuous segment is a single neural trajectory in the latent space. When the neural

patterns and dynamics of new inputs Ynew match the learned model perfectly, their

estimated latent trajectories Xnew will (i) span the manifold of X̂TC and (ii) progress

smoothly along it. Three measures are proposed to evaluate congruence of new input

data with a learned model.

Log likelihood We use log likelihood to measure how well the learned P-GPLVM

model fits the test data. The joint probability of Y, F, X for test data is computed as

p(Y,F,X|F̂TC, X̂TC,θ) = p(Y|F)p(F|X, F̂TC, X̂TC, ρ, δ)p(X|r, l). (16)

The log likelihood (LLH) of a continuous segment in test data is written as

LLH = log p(Y,F,X|F̂TC, X̂TC,θ)

=
N∑

n=1

T∑
t=1

log p(yn,t|fn,t) +
N∑

n=1

log p(fn|X, f̂TCn , X̂TC, ρ, δ) +
P∑

p=1

log p(xp|r, l).

(17)

Recall that

yn,t|fn,t ∼ Poisson(exp(fn,t)), (18)

fn|X, f̂TCn , X̂TC, ρ, δ ∼ N (kx(X̂TC,X)⊤kx(X̂TC, X̂TC)
−1f̂TCn, σ

2IT ), (19)

xp|r, l ∼ N (0, Kt). (20)
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Spatial consistency This metric measures how well a latent trajectory, Xnew = {xt}Tt=1,

spans the latent variable manifold(s) of the tuning curve vector, X̂TC = {x̂m}Mm=1.

Firstly, for each point xt in the trajectory, its K-nearest neighbors are searched in the

manifold X̂TC, obtaining the set of its nearest neighbors St = {x̂mk
}Kk=1 and its dis-

tances to those neighbors {||xt − x̂mk
||2}Kk=1. When the trajectory spans the manifold

nicely, the union of neighbor sets,
⋃T

t=1 St, should have much more elements than by

chance. The number of all identified neighbors is then weighted by the neighbor dis-

tances to integrate the neighborhood quality into the measure.

For each x̂m ∈
⋃T

t=1 St, its distance to its closest point in Xnew, dm = mint,k ||xt −

x̂mk
||2 is estimated. Then, the spatial consistency of this trajectory in the latent space is

computed as

consistency =
M∑

m=1

wm (21)

where

wm =


c

c+dm
, if x̂m ∈

⋃T
t=1 St

0, otherwise

(22)

which means, when one x̂m is identified as a neighbor, it contributes to the spatial

consistency. This contribution is weighted by the distance to its nearest neighbor on the

trajectory, which is 1 when the distance is 0, and then decay as the distance increases,

reaching at 0.5 when the distance is c. The parameter c is set as 20% of the standard

deviation of X̂TC. When X̂TC contains more than one separated manifold, the standard

deviation is computed as the average within-manifold standard deviation:
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c = 20%

√√√√ 1

M

∑
i

∑
x̂m∈X̂(i)

||x̂m − µi||22 (23)

where µi is the center of manifold X̂(i).

Higher value of spatial consistency indicates that this trajectory travels a long way

along the tuning curve manifold(s) rather than only jiggling at a small local area or

locating far away. The spatial consistency to X̂TC is first used to evaluate the neural

trajectory behavior in the latent space. Further, when X̂TC contains more than one

well-separated manifold X̂(i), we also estimate the manifold contribution ratio to the

consistency value, which is computed as in Eq. 21 but only for x̂m ∈ X̂(i). The

ratio between these contribution values from manifolds indicate to which manifold the

trajectory belongs.

Average step distance This metric reveals the consistency between temporal adja-

cency and pattern-matched location adjacency. The average Euclidean distance of each

step in each latent trajectory of Xnew is estimated. In general, the tuning curve con-

straint tends to drive Xnew towards their pattern-matched locations on the X̂TC man-

ifold. When the new data have different temporal sequences from the training data,

pattern-matched locations of temporally adjacent points are mostly distant, leading to

longer step distances.

4 Experiments and results

The dataset used in this paper is a neural recording collected in the dorsal hippocampal

CA1 and CA3 areas from a rat. The recording started with a 3 hours rest session (pre),
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and then the animal was exposed to a novel maze (maze1) for 50 minutes, running back

and forth to get rewards at the two ends. Following another two hours rest (post1), the

animal explored another novel maze (maze2) for 50 minutes. Lastly, the animal went

through a 5 hours rest session (post2). Spike trains during the two maze exploration

sessions were binned into 500 ms time bins. Animal positions were linearized and then

running periods (speed>3cm/s and peak speed>5cm/s) were extracted along with their

corresponding time bin indices.

4.1 Exploration in one maze

We first examined this P-GPLVM with the neural activity when the animal was exposed

to only one maze (maze1). The linearized animal positions during running in maze1

exploration session are shown in Figure 2A and corresponding original positions in

Figure 2B. One chunk of spike trains was selected as training data to train the model

(orange lines in Figure 2A, colored scatters in Figure 2B) and then the spike trains of

a continuous running segment in maze1 was used as test data to evaluate the decoding

performance (black line in Figure 2A,B).

After fitting the model, smoothness parameters θ and latent variables of training

data, X̂train and F̂train, were obtained. Only one well-separated manifold is found in

X̂train, suggesting that there is no multiple distinctly different neural processes found

in this training data. Given the known spatial tuning in hippocampus, to examine the

information encoded in the latent space, X̂train are color-coded with the correspond-

ing animal linearized positions. Position information appears to be encoded along the

manifold smoothly (Figure 2C). The latent neural trajectories seem to be a bit unkempt,
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Figure 2: (A) Linearized animal position during running periods in maze1 exploration
session. The orange / black lines indicate the segments used as training / test data. The
starting of each continuous segment is marked by a big filled circle. Each step in the test
data is marked by small dots. Scatters are color-coded by linearized animal positions,
same in subsequent panels (B-D, G-I). (B) Colored scatters of original animal positions
in training data. The black line indicates the same test data segment in (A). (C) Latent
variables of training data in the learned P-GPLVM. Continuous segments are connected
by lines as latent neural trajectories. (D) Inferred neural trajectory of test data in the
learned latent space. The semi-transparent markers are identical with the dot scatters in
(C), which, in this panel, indicates the latent variable manifold of tuning curve vectors,
X̂TC. The black line depicts the inferred neural trajectory of test data, progressing along
the manifold X̂TC in accordance with the real animal positions (from blue to purple).
(E) Log likelihood of the original test data (dashed red line) and its shuffled versions
(histograms). (F) Estimated step distances vs. spatial consistency to X̂TC of the inferred
neural trajectory in (D) compared with its cell ID-shuffled, individual circular-shuffled,
and time-shuffled versions. The three black-edged circles indicate one example of cell
ID-shuffled test data (ex.1), of individual circular-shuffled test data (ex.2), and of time-
shuffled test data (ex.3), respectively. (G, H, I) Same presentation as in (D), but the
inferred latent trajectories of ex.1-3 in (F).
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which is still reasonable because this was the animal’s first exposure to maze1.

Next, we estimated the internal state repetition of the test data in the learned la-

tent space. In Figure 2D, the manifold of tuning curve vector latent variables X̂TC,

which is X̂train in this setting, is shown as the colored semi-transparent markers. Using

the Bayesian approach, the initialized latent variables of test data appears as a bumpy

trajectory (light red line). Applying the constrained inference, the latent variables con-

verged to a smooth latent trajectory after 15 iterations (black line). By comparing the

color in Figure 2B and Figure 2D, it is obvious that, the inferred neural trajectory of

test data proceeds closely along those of training data with similar experiences, where

the animal traveled from positions in blue to positions in purple, in accordance with the

repetition of similar internal neural state.

To validate this internal neural state repetition and contrast the inferred latent vari-

ables of test data, three kinds of surrogate data were generated:

• Cell identity(ID)-shuffled data, by randomly permuting the cell identity of the

test data, which scrambles the original neural coactivation patterns and permutes

neuronal firing rates, but preserves the temporal sequences.

• Local individual circular-shuffled (cir-shuf) data, by randomly and circularly per-

muting the test data of each cell individually within each continuous segment,

which scrambles coactivation patterns but preserves the temporal smoothness and

local neuronal firing rates.

• Local time-shuffled data, by randomly permuting the temporal order of the test

data within each continuous segment, which preserves the coactivation patterns
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but scrambles the time sequences.

For each shuffle type, we generated 500 surrogate test data. Metric values and example

latent trajectories of the original and surrogate data are shown in Figure 2.

Figure 2E depicts the distribution of LLH values of the inferred latent variables of

original test data and of the surrogate test data. Overall, the original test data has a

higher LLH value than all the surrogate data. Figure 2F shows their step distance and

spatial consistency values in scatters. Inferred latent trajectories of example surrogate

data are shown in Figure 2G-I, whose metric values are indicated in the black-edged

scatter in Figure 2F. In the latent space, the trajectories of cell ID-shuffled and of time-

shuffled test data look distinct from that of the original test data trajectory, while the

circular-shuffled test data trajectory has visually similar behavior.

Note that, the iterative inference process searches for an optimal balance between

temporal smoothness and tuning curve constraints. Because of the changed relative

firing rates among cells in cell ID-shuffled data, the tuning curve constraints push the

trajectories far away from X̂TC, where temporal smoothness constraint dominates, lead-

ing to small step distances, diminutive spatial consistency values, and the lowest LLHs

among all types of shuffled data. With preserved local neuronal firing rates, circular-

shuffled data trajectories stay in the similar area as the original data, but due to the

scrambled coactivation patterns and preserved temporal smoothness, the tuning curve

constraints are compromised by the temporal smoothness constraint, resulting in less

likely but smooth trajectories with step distances comparable to the original test data,

slightly lower spatial consistency values, and significantly lower LLH values. As for

time-shuffled data, with intact coactivation patterns at each time point, the tuning curve
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constraints are dominating during the inference, driving the latent variables to the cor-

responding locations on the manifold of X̂TC as the original test data does, while the

temporal smoothness is sacrificed, resulting in spiky trajectories with large step dis-

tances, comparable spatial consistency, and slightly lower LLH values.

We contrast the original test data with its shuffled versions using a modified z-scored

LLH, calculated by dividing the difference from the median by the median absolute

deviation of shuffled data LLH. The z-scored LLH of the original test data among its

cir-shuf versions is 13.56, and among its time-shuffled versions, 8.98, indicating that the

test data is a valid sequential repetition of internal neural states captured in the training

data. This measure separately verifies the matching of coactivation patterns between

test data and tuning curves (when compared with cir-shuf test data), and the matching

of temporal sequences (when compared with time-shuffled test data).

4.2 Exploration in two mazes

Next, we asked if our approach can still work well for neural activity during explo-

ration in more than one environment context. One chunk of neural data during running

in maze1 (orange lines in Figure 3A, colored scatters on the left in Figure 3B) and an-

other in maze2 (blue lines in Figure 3A, colored scatters on the right in Figure 3B) are

selected and concatenated as the training data to train a new P-GPLVM. The test data

is from maze1, the same as in the previous section (black line in Figure 3A, B). All the

semi-transparent markers in the scatter plot are colored by the corresponding linearized

animal positions.

In X̂train of the newly learned model, two well-separated manifolds, m1 (X̂(1))
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Figure 3: (A) Linearized animal position during running periods in maze1 and maze2
exploration sessions. The orange / blue lines indicate the segments in maze1 / maze2
used as training data. The black line indicates the test data. Scatters are color-coded by
contexts and linearized animal positions, same in (B-C, G-J). (B) Scatters of original
animal positions in training data from maze1 (left) and maze2 (right). The black line
indicates the same test data segment as in (A). (C) Following fitting the training data,
latent variables are separated into two distinct manifolds, m1 and m2. Each data point is
colored by its corresponding linearized animal position as in (A). (D) Log likelihoods
(LLH) of test data (red dashed line), cell ID-shuffled (purple histogram), individual
circular-shuffled (blue histogram), and time-shuffled surrogate data (green histogram).
(E) Inferred latent neural trajectory step distance vs. spatial consistency to X̂TC of orig-
inal test data (red +), of cell ID-shuffled (purple scatters), of individual circular-shuffled
(blue scatters), and of time-shuffled (green scatters) surrogate data. Example surrogate
data indicated in one black-edged circle from either shuffle type is then shown for visu-
alization. (F) Manifold contribution to neural trajectory spatial consistency from m1 vs.
from m2, of original and surrogate test data. (G) Latent neural trajectories as initialized
(light red line) and optimized after iterations (black line) of test data in the latent space.
Latent variables of tuning curve vectors, X̂TC, are shown in semi-transparent markers
color-coded by the animal positions, same as in (C). Both initialized and optimized tra-
jectories of test data are associated with the corresponding context manifold. Unlike the
bumpy initialization, optimized neural trajectory is smooth and progresses according to
the animal positions. (H-J) Same representations as in (G), inferred trajectory of (H)
ex.1 for cell ID-shuffled test data, (I) ex.2 for individual circular-shuffled test data, and
(J) ex.3 for time-shuffled test data, as indicated in black-edged circles in (E,F).
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and m2 (X̂(2)), are found, each of whom turns out to contain all data points from one

of the maze contexts. Using the same color code as in Figure 3A and B on X̂train,

position information appears to be encoded along the corresponding context manifold

smoothly (Figure 3C). Thus, this approach is capable of detecting the presence of two

environment contexts as well as capturing the encoded position information merely

from the neural activity in the training data.

Again, cell ID-shuffled, individual circular-shuffled, and time-shuffled surrogate test

data were generated. Along with the original test data, their latent variables in the new

latent space are inferred, which behave quite similarly to those in Section 4.1. Figure

3D depicts the distribution of LLH values of the original test data and the surrogate

test data. Cell ID-shuffled test data have much lower LLHs than all the other type of

data. Circular-shuffled data have slightly smaller LLHs than time-shuffled data. The

original test data has a higher LLH value than all surrogate data, where z-scored LLH

among its circular-shuffled versions is 11.75, and among its time-shuffled versions,

8.40, confirming that the test data is a valid internal neural state repetition.

Next, we investigated the content of this state repetition by looking into the latent

variable locations relative to X̂train. The inferred latent trajectory of the test data and its

initialization in this new latent space are shown in Figure 3G. The trajectory is similar

to those neural trajectories of training data with similar experiences, traversing the same

arm of maze1, from positions blue to purple just as in Figure 3B.

As a high-level summary of the spatial distribution and dynamics of these neural

trajectories, Figure 3E shows the step distance and spatial consistency values to X̂train,

while Figure 3F shows the manifold contribution to spatial consistency values from m1
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versus from m2. Examples are shown in Figure 3H-J (metric values indicated in black-

edged scatters in Figure 3E,F). The inferred cell ID-shuffled test data trajectories tend

to have small steps and locate far away from both manifolds, having diminutive spatial

consistency values. Compared with original test data trajectory, circular-shuffled data

have smooth trajectories around the same area, with slightly smaller spatial consistency

values and comparable step distances. Latent variables of time-shuffled test data has

similar location as the original test data does, but are mostly taking big jumps across

time. Just like the original test data, both circular-shuffled and time-shuffled test data

have similarly high m1 contribution to spatial consistency and diminutive m2 contri-

bution, suggesting the test data is repeating neural state encoding experience in maze1

rather than maze2. Recall that circular-shuffled data have scrambled coactivation pat-

terns, which indicates that local neuronal firing rates can already distinguish animal

contexts.

4.3 PBE decoding

In the previous two sections, it has been demonstrated that the model learned from

training data during running can capture the neural state repetition in test data during

running well. Next, we evaluated whether this running-state model could be used to

estimate the internal state repetition in neural data during PBEs, which occurred when

the animal had paused running in the exploration session.

First, the best time bin size for PBE data was searched. Both in the maze1 and

maze2 exploration sessions, the 80th percentile of 4 seconds’ travel distance is 86-87cm.

Therefore, only place cell pairs with their place field distances less than 87cm are in-
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cluded in the subsequent analysis. It turns out that, for both maze sessions, the sum of

significant (p < 0.01) positive Pearson correlation coefficient r between CCH during

running and CCH during PBEs across cell pairs reached its peak when the PBE time

bin size is 17 ms. Therefore, PBEs were binned into 17 ms time bins.

Next, in the latent space learned using running data from the two maze exploration

sessions described in Section 4.2, we examined whether the inferred latent trajectories

of binned PBE data could be identified as neural state repetitions. Firing rates of the

tuning curve vectors were scaled by the time bin size ratio 17/500. Among 562 PBEs

detected within the maze1 exploration session, we randomly selected 100 PBEs as test

data. To evaluate the resulting latent trajectories, for each PBE, 200 surrogate data for

each of the three shuffling types were generated and metric values were assessed.

The first question to ask about the PBE latent trajectories is the validity of neural

state repetition. We consider a PBE to be a significant replay event, when its LLH value

is larger than all of those of its circular-shuffled versions and its modified z-scored LLH

is greater than 3. Moreover, a significant replay event should have a latent trajectory lo-

cated closely to the tuning curve latent variable X̂TC manifolds to guarantee the strength

of the tuning curve constraint. Therefore, the average distance of the latent trajectory to

its nearest neighbors identified during measuring the spatial consistency value is esti-

mated. PBEs with average nearest neighbor distance larger than the standard deviation

of X̂TC are excluded. Given that neuron firings of a replay are not exactly the time-

compressed version of those during corresponding behavior, this criterion is a strict

indicator of the ensemble activity pattern reactivation, and therefore, a strict indicator

of the validity of being a replay event. Following the identification as a replay, z-scored

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 7, 2024. ; https://doi.org/10.1101/2024.03.04.583340doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.04.583340
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 20 40
number of time bins

0

10

20

30

40

50

co
ns

is
te

nc
y 

va
lu

e

all 100 PBEs
sig. PBEs

co
un

t

80

60

40

20

0
0% m1

100% m2
100% m1

0% m2
manifold contribution ratio

PBE No.27

2 6 10
time bin

m
az

e1
m

az
e2

-50

0

50

PC
3

-50 -100
PC2

0 0
PC1

10050

100-50 50
PC1
0 -50 -100

PC2
0

PC
3

50

60

20

-20

-60

PBE No.40

2 6 10 14 18 22
time bin

m
az

e1
m

az
e2

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ilit

y

-50

0

50

PC
3

-50 -100
PC2

0 0
PC1

10050

100-50 50
PC1
0 -50 -100

PC2
0

PC
3

50

60

20

-20

-60

PBE No.96

2 6 10 14 18 22 26
time bin

m
az

e1
m

az
e2

-50

0

50

PC
3

-50 -1000
PC2

0
PC1

50 100

100-50 50
PC1
0 -50 -1000

PC2
50

PC
3

50

0

-50

-10 0 10 20
z-scored LLH (cir-shuf)

-10

-5

0

5

10

15
z-

sc
or

ed
 L

LH
 (t

im
e-

sh
uf

) n.s.
sig replay
PBE No.27
PBE No.96
PBE No.40
maze1 run

2

4

6

8

10

z-
sc

or
ed

 L
LH

 (t
im

e-
sh

uf
)

view angle1

view angle2

view angle1

view angle2

view angle1

view angle2

A. B. C.

D. E. F.

G. H. I.TC
initialized X
optimized X

Figure 4: Inferring latent trajectories of PBE data in the P-GPLVM latent space learned
from running data. (A) Modified z-scored LLH values among circular-shuffled versions
versus among time-shuffled versions, of the 100 selected PBEs and of 8 continuous
running segments in maze1 for comparison. The size of each circle indicates the spa-
tial consistency value of the PBE. PBEs not meeting the replay criterion are in gray
and PBEs identified as significant replay events are colored according to their z-scored
LLH among time-shuffled versions. (B) Number of time bins of each test data versus
their spatial consistency to the latent variable manifolds of tuning curve vector, X̂TC.
Dots are presented in the same way as in (A). (C) Histogram of ratio of manifold con-
tribution to spatial consistency. Most of the PBEs are associated with maze1. (D-F)
For comparison, we use traditional Bayesian decoding to render the posterior position
distribution of the example PBEs (No.27, No.96, No.40) indicated in markers in (A-B).
Corresponding context and position colors are indicated on the left side, same color
code as Figure 3A. (G-I) Inferred latent trajectories of the example PBEs in (D-F) in
the P-GPLVM latent space. While the initialized trajectories are jumpy, after iterations,
the trajectories of the PBEs all converge to the maze1 manifold (same representation as
in Figure 3G).
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LLH among its time-shuffled versions suggests the likeliness of being a sequential re-

play. Figure 4A shows the LLH values z-scored by circular-shuffled versions versus

z-scored by time-shuffled versions, of the 100 selected PBEs and of 8 continuous run-

ning segments in maze1 for comparison. Each PBE is depicted as a dot, whose size

stands for its spatial consistency value. 50 out of the selected 100 PBEs meet the re-

play criterion and are considered significant replay events, colored according to their

z-scored LLH among time-shuffled versions. Insignificant PBEs are colored in gray.

Next, the spatial distribution and dynamics features of each PBE were investigated.

Since it had been shown that position information is encoded along the manifolds in

latent space, for comparison, we estimated spatial tuning curves in the two running di-

rections separately and used a Bayesian model to decode the PBE positions following

the traditional method. Among those probable replay events, three example PBEs of dif-

ferent trajectory behaviors are highlighted by different markers in Figure 4A-B, whose

Bayesian decoding results and inferred latent trajectories are visualized subsequently

in Figure 4D-I. Figure 4B shows the number of time bins of each PBE and its spatial

consistency to X̂TC. Visually, there is a trend that more time bins lead to larger spatial

consistency values, which is intuitive because longer trajectory can travel through more

area. PBEs in this trend indicate one-directional replays of experiences. For example,

PBE No.96 in Figure 4E and H is a continuous replay of experience traveling from lo-

cation in purple all the way to location in green, consistent with the Bayesian decoded

results. PBEs with fewer time bins relative to those with comparable spatial consistency

values (top left side of the chart) indicate that their trajectories might be of high speed

or even have leaps. PBE No.27 in Figure 4D and G is shown as an example of this kind,
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whose Bayesian decoded results suggest a travel from location green to location purple

with a leap in the middle. On the contrary, PBEs with more time bins relative to those

with comparable spatial consistency values (bottom right side of the chart) indicate that

their trajectories might be stationary or slightly oscillating. One example is PBE No.40

in Figure 4F and I, whose Bayesian decoded positions are first unfathomable (which

might not be able to be decoded by a spatial decoder) and then travel around location

green. Its latent trajectory at the first major part jiggled around location purple and then

traveled to location green. Figure 4C shows the manifold contribution to spatial con-

sistency value from m1 manifold versus from m2 manifold of each PBE. As expected,

since the animal hadn’t experienced maze2 yet, almost all of the probable replay events

belong to m1 manifold rather than to m2 manifold, indicating that they are replay events

of maze1 experience.

Combining the observation of metric values, we can estimate the validity of neural

state repetition, evaluate the pattern of this repetition, and infer the external variables

of the replayed experience. Note that we have not used position data in any of our

analyses. This approach is the first presentation of a method for continuously decoding

and identifying replay events without relying on external variables.

Finally, with no need of assuming external variables that drive the neural activity

or predetermining replay behavior patterns, the summary of replay behavior through

out all sessions in this experiment can be revealed by applying the extended P-GPLVM

model to all PBEs detected. Latent neural trajectories of all PBEs are inferred. For each

PBE, 100 circular-shuffled versions were generated to for identifying significant replay

events. PBE occurrence time vs. the ratio of manifold contribution to PBE spatial
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Figure 5: PBE occurrence time vs. ratio of manifold contribution for PBE latent tra-
jectories in all sessions. The top solid line indicates 100% of the trajectory nearest
neighbors are from maze1 manifold (m1). The bottom solid line indicated 100% of
the nearest neighbors are from maze2 manifold (m2). Each circle indicate one detected
PBE. Significant replay events are colored in black to light red according to their z-
scored LLH values among their circular-shuffled versions.
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consistency value is shown in Figure 5 from pre session to post2 session in time order,

where each PBE is depicted as a circle, whose size indicates its spatial consistency value

to X̂TC. Circles on the top / bottom line means 100% of identified nearest neighbors

for the latent neural trajectories are from m1 / m2 manifold, indicating affiliation with

maze1 / maze2 context experience. Circles located in between suggest mixtures. PBEs

identified as significant replay events are colored according to its z-scored LLH value

among their circular-shuffled versions. In the pre rest session, identified significant re-

play events are comparably sparse and have small spatial consistency values. In maze1

and maze2 exploration sessions, as expected, almost all the significant replay events

are associated with their current contexts and have comparably larger consistency and

z-scored LLH values, which indicates long and sequential experience replay. In post1

rest session, the majority of significant replay events are associated with maze1 context

and most of them have small consistency values. Those replay events became less asso-

ciated with maze1 as the rest time increased. In post2 rest session, replay events seem

to be more frequent and most of them are associated with maze2 context.

Conclusion

As the results have shown, without referring to any external variables, P-GPLVM is a

powerful tool to capture nonlinear neural population dynamics in the hippocampus by

discovering the low-dimensional structure underlying the neural activity, which reveals

important encoded external variables such as the number of contexts and the topology of

animal spatial behavior (i.e. position). In this paper, this model is extended to leverage
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those advantages in the neural decoding scenario by enabling the constrained latent

variable inference of new neural data and proposing a family of analyses for result

evaluations. This constrained inference approach requires much less computational

cost than relearning the model with training data combining old and new data. This

extended model is flexible that, for new neural data either during running or during

PBEs, neural trajectories can be inferred in the latent space learned from training data

during running and internal neural state repetition can be evaluated. External variables

can then be decoded based on the external experiences corresponding to the repeated

neural states. Metrics are defined that for the first time enable the identification of

continuously-decoded replay using a model trained only with neural activity (and refine

this definition to allow for both sequential and non-sequential events).
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