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Abstract  
 

A defining feature of human cognition is our ability to respond flexibly to what we see and 

hear, changing how we respond depending on our current goals. In fact, we can rapidly 

associate almost any input stimulus with any arbitrary behavioural response. This remarkable 

ability is thought to depend on a frontoparietal “multiple demand” circuit which is engaged 

by many types of cognitive demand and widely referred to as domain general. However, it is 

not clear how responses to multiple input modalities are structured within this system. 

Domain generality could be achieved by holding information in an abstract form that 

generalises over input modality, or in a modality-tagged form, which uses similar resources 

but produces unique codes to represent the information in each modality. We used a stimulus-

response task, with conceptually identical rules in two sensory modalities (visual and 

auditory), to distinguish between these possibilities. Multivariate decoding of functional 

magnetic resonance imaging data showed that representations of visual and auditory rules 

recruited overlapping neural resources but were expressed in modality-tagged non-

generalisable neural codes. Our data suggest that this frontoparietal system may draw on the 

same or similar resources to solve multiple tasks, but does not create modality-general 

representations of task rules, even when those rules are conceptually identical between 

domains.  

 

Introduction 
 
  Our sensory environment holds an abundance of information. This information is 

partly processed in specialised neural structures whose architecture supports a particular 

domain of processing, for example, primarily auditory input. However, flexible human 

cognition is generally thought to also require domain-general processing areas, capable of 

representing and integrating inputs from multiple modalities. Candidate domain general areas 

of the brain have long been identified (Duncan & Owen, 2000; Fedorenko, Duncan, & 

Kanwisher, 2013), but we do not know much about how information from multiple 

modalities is processed in these regions. For example, it is not clear to what extent cells in 

domain general regions exhibit preferences for sensory input from one modality over another, 

and to what extent they can be fully re-allocated to code different types of sensory 

information. Moreover, even if the neural resources are shared, it is not known to what extent 
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information is represented in a similar or different way for each modality. In principle, the 

same information, arising from two different modalities, could be represented abstractly, with 

shared underlying neural codes, or independently, with non-generalisable patterns.  

 

  The frontal-parietal multiple-demand (MD) network is a functionally integrated 

neural circuit that is recruited by many types of cognitive demand (Duncan & Owen, 2000; 

Duncan, 2010; Fedorenko et al., 2013; Assem, Shashidhara, Glasser, & Duncan, 2022). It is 

thought to play a key role in cognitive control by integrating the relevant information from 

multiple more-specialised systems, as needed for the current cognitive operation (Cole & 

Schneider, 2007; Cole et al., 2013; Cocuzza, Ito, Schultz, Bassett, & Cole, 2020; Duncan, 

Assem, & Shashidhara, 2020). The regions of this system show high correlations of their 

functional timeseries both with and in the absence of a cognitive task (Power et al., 2011; Ji 

et al., 2019; Cocuzza et al., 2020), and co-activate during different demanding tasks including 

those associated with working memory, selective attention, and problem solving (Fedorenko 

et al., 2013; Assem, Glasser, Van Essen, & Duncan, 2020; Shashidhara, Spronkers, & Erez, 

2020). Single-unit work in non-human primates has shown that information from different 

modalities is represented within this network, with prefrontal and parietal neurons encoding 

information about both auditory (Azuma & Suzuki, 1984; Romanski, 2007) and visual 

stimuli (Rao, Rainer, & Miller, 1997; Freedman, Riesenhuber, Poggio, & Miller, 2001; 

Freedman & Assad, 2006). Similarly in human brain studies, the MD network codes a variety 

of task features including task relevant information from tactile (Woolgar & Zopf, 2017), 

visual, auditory, rule, and motor domains (Woolgar, Jackson, & Duncan, 2016; Pischedda, 

Görgen, Haynes, & Reverberi, 2017; Vaidya, Jones, Castillo, & Badre, 2021; Schultz, Ito, & 

Cole, 2022), consistent with the idea of a domain general network.  

 

 Within the domain of vision, we know that MD responses are flexible. For example, 

the representation of visual and rule information in these regions adjusts according to task 

demands (Woolgar, Hampshire, Thompson, & Duncan, 2011; Woolgar, Afshar, Williams, & 

Rich, 2015). Visual studies have also shown that these regions exhibit preferential coding for 

attended over unattended objects (e.g., Woolgar, Williams, & Rich, 2015) and relevant over 

irrelevant dimensions of visual objects (Jackson, Rich, Williams, & Woolgar, 2017; Jackson 

& Woolgar, 2018). The neural patterns in these MD regions appear to be important for 

behaviour (Woolgar, Dermody, Afshar, Williams, & Rich, 2019; Robinson, Rich, & 

Woolgar, 2022) and causal for flexible coding elsewhere in the network (Jackson, Feredoes, 
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Rich, Lindner, & Woolgar, 2021). We have previously shown that codes for different visual 

stimuli are held by overlapping MD voxels (Jackson & Woolgar, 2018). In addition, recent 

work using high-precision functional magnetic resonance imaging (fMRI) has reported 

almost identical activation maps for hard compared to easy versions of auditory and visual 

tasks, even at the single-subject level (Assem et al., 2022). These studies suggest that 

resources in the MD network can be flexibly allocated to represent relevant task information. 

 

 Based on this prior literature, the MD network appears to be domain general, flexibly 

representing relevant rules and stimuli regardless of the source modality. However, there are 

different possibilities for how information from distinct modalities is structured within these 

regions. This is important because there are several possible conceptualisations of domain 

generality. First, at the most basic level, a network could be considered domain general 

merely because it responds to multiple inputs. This aligns with the original observation of the 

MD network (Duncan & Owen, 2000; Fedorenko et al., 2013), which is defined as a network 

that responds during different cognitively challenging tasks. Such a result could arise if 

activity in these regions reflected task-general processes such as effort or error monitoring, 

common to many tasks. Second, a stronger requirement for domain generality might be that 

the network not only responds to, but also represents, multiple types of information. For 

example, it could show specific patterns of activity from which it is possible to decode the 

details of, for example, both visual and auditory stimuli (Woolgar et al., 2016). This could 

arise because the network comprises dedicated resources responding to each modality-

specific task that are co-located in the same network or regions (Buschman, 2021), giving 

rise to generality at the region or network, but not the single cell, level. Third, domain 

generality could be defined as when a network re-uses the same resources to process these 

different types of information in different situations. This could arise if general-purpose 

resources are flexibly allocated to process information from each of the two modality-specific 

tasks (for example, as in Manohar, Zokaei, Fallon, Vogels, & Husain, 2019; Bocincova, 

Buschman, Stokes, & Manohar, 2022). This is challenging to assess with fMRI (as even our 

highest resolution protocols capture the activity of tens of thousands of neurons) but we can 

at least ask whether patterns from multiple modalities load onto the same or different voxels 

(Jackson & Woolgar, 2018). Finally, a network showing flexible re-use of general-purpose 

resources may express this domain generality in different ways. It could hold information in 

an abstract form that generalises over input modality, or in a modality-tagged form, which re-

uses the same resources but utilises unique codes to represent the information in each 
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modality. In the former case, the same resources would be used in the same way between 

modalities, and in the latter, the same resources may be used, but in different ways. 

Information about the input modality could be preserved in either scheme, in the former by 

inclusion of a separate modality-signalling code (an additional dimension in the 

representational scheme (Badre, Bhandari, Keglovits, & Kikumoto, 2021)), and in the latter 

by changing the content code sufficiently between modalities so that codes do not generalise. 

 

 Here, we distinguished between these possibilities by considering how information 

from two different sensory modalities is represented in the MD network. Participants applied 

identical stimulus-response mapping rules to visual or auditory stimuli. Using multivariate 

pattern analysis (MVPA) to characterise the MD representation of these rules, we asked 1) 

whether the MD network codes for rule information for both auditory and visual tasks; 2) 

whether the same voxels contribute to both sets of codes; and 3) whether the codes 

underlying these rule representations are modality-specific, or abstract and modality-

independent. This allowed us to assess whether visual and auditory task rules are represented 

in this network by independent codes, or whether MD representation of task rules is 

abstracted away from the input modality, with codes that generalise between auditory and 

visual tasks. Aligning with the concept of the MD system as a flexible resource, but against 

the intuition that conceptually identical rules should be represented in an abstract, 

generalisable form, our results show strongly decodable rules in the two modalities that draw 

on overlapping resources but are represented in modality-tagged non-generalisable codes.  

 

Methods 
Participants 

 
  We recruited 49 volunteers for the experiment. Of these, 17 were excluded for not 

passing the training or for not completing all the sessions (2 behavioural training sessions plus 

1 fMRI session). The final cohort therefore consisted of 32 participants (mean age 24 years, 

SD = 4.1 years; 2 left-handed; 9 men, 24 women). Participants were required to pass MRI 

safety screening, have normal or corrected-to-normal vision and no history of neurological or 

psychiatric disorder. Participants were recruited through word of mouth and from the 

Macquarie University SONA participation pool at the Department of Cognitive Science, 

Macquarie University. They gave written informed consent to participate and were 
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compensated for their time. The experiment was approved by the University of Macquarie 

Research Ethics Committee (reference: 5201300541).  

 

Task design 

 
  Participants completed a task with visual or auditory stimuli (based on Jiang & 

Kanwisher, 2003), with trials from the two modalities randomly interleaved (Figure 1a). Before 

the start of each trial a tone was played, and simultaneously a white cross was displayed on the 

screen (500ms) followed by a black cross (500ms) to indicate the upcoming trial. At the start 

of each trial, the trial type (auditory/visual), and current stimulus-response mapping rule, was 

indicated by a word (auditory trials) or a symbol (visual trials) for 540ms. In the auditory trials, 

participants then heard four consecutive tones (200ms each, 200ms between tones) and had to 

identify which tone (1-4) had the highest pitch. A black fixation cross was displayed throughout 

the auditory trials. In the visual trials, participants observed 4 consecutive vertical lines (200ms 

each, 200ms between displays) and had to identify which was shortest (1-4). Participants 

responded by pressing one of four response buttons using the index and middle fingers on both 

hands. There were two different stimulus-response mapping rules (Figure 1b). Each rule had 

two cues per modality (e.g., for auditory trials for a specific participant, two words “dogs/post” 

for rule 1, and two words “milk/wish” for rule 2; cue-rule association counterbalanced over 

participants, see Figure 1c). This was to avoid the classifiers using activity related to the 

specifics of the cue to distinguish the rule conditions. There was an equal number of trial types 

in each run (modality, rule, cue, and target position; 32 trials, in total 6 runs and 192 trials). 
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Figure 1. Task design. Panel a) depicts a trial from the main task. Participants were presented with a rule 

cue for 540ms. This was either a word (auditory task) or a symbol (visual task). In the auditory trials 

participants were asked which tone had the highest pitch out of four consecutive tones. A black fixation cross 

was presented on the screen through the duration of the auditory trial (not depicted here). In the visual trials, 

participants were asked which line was the shortest out of four consecutive vertical lines. Stimulus 

presentation was 200ms with a 200ms gap in between each presentation. Panel b) shows the two stimulus-

response mappings (rules). For example, under rule 1, to indicate that the highest tone or shortest line was 

in the second temporal position (as shown), the participant should press the first (far left) button. Under rule 

2, they should instead press the third button. Each rule had two cues per modality. The spoken words used 

for the rule cues are from Petit et al., (2020). Panel c) shows the cues for the auditory and visual modalities, 

which we assigned to the two rules in a manner that was counterbalanced over participants.  

 

Procedure 

Overview 

 
  Participants completed three sessions in total. In the first two sessions (training, 1 hour 

each) participants completed titration and training for the main task. During these sessions, 

task difficulty was equated for the auditory and visual stimuli using a staircase procedure, and 

participants practiced the different stimulus-response mappings (rules). In the final session 

participants completed the main task in the scanner. Below we outline the procedure in more 

detail.  

b. 
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Session 1 and 2 (training) 

 

  The training in this first session had five separate stages. In the first stage participants 

practised identifying the temporal position of the highest tone or shortest line, without the 

stimulus-response mappings or associated rule cues, separately for the two task modalities. 

Participants were presented with a block of trials for each modality and responded by saying 

number 1-4, depending on which tone had the highest pitch (auditory) or which line was the 

shortest (visual). The experimenter would then enter the number reported. There were two 

blocks in total (20 trials). Participants did not respond using the keyboard to avoid them 

explicitly practicing a stimulus-response mapping that would conflict with the stimulus-

response mapping used in the scanning session. Participants received feedback on every trial 

(fixation cross changed to green or red, 500ms) and there was no response time out.  In all 

stages of the experiment the starting modality was counterbalanced by participant number.   

 

  In the second stage of training, participants repeated the first stage but this time with a 

staircase to equate task difficulty for the auditory and visual stimuli. We ran 2 (4-down, 1-up) 

staircases per modality (4 staircases total). The 4-down, 1-up staircase was chosen to ensure 

high task accuracy. The 4 staircases were blocked and each staircase ended after a maximum 

of 10 reversals. The threshold was calculated by averaging the threshold at the final reversals 

for each staircase (discarding the first 4 reversals if there was an even number of reversals, or 

discarding the first 3 if there was an odd number of reversals). The 2 threshold estimates per 

modality were then averaged. Participants received feedback on every trial (fixation cross 

changed to green or red, 500ms) and there was no response time out.   

 

  In the third stage of training, participants were shown the stimulus-response mappings 

and were required to enter responses themselves using the keyboard. Participants used the A, 

S, K, and L buttons on the keyboard to respond using the same fingers as in the fMRI task. 

Each stimulus-response mapping was introduced sequentially (e.g., rule 1 visual stimuli, rule 

1 auditory stimuli, rule 2 visual stimuli, rule 2 auditory stimuli), and the participants learnt to 

associate the rule cues with each rule. The starting rule was selected pseudorandomly. 

Participants completed 4 blocks (12 trials per block) and after the first 2 trials of each block 
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they were shown a reminder of the rule. Participants received feedback on every trial (fixation 

cross changed to green or red, 500ms) and there was a response time out after 6s.   

 

  In the fourth stage of training, participants practiced the task with the two rule cues 

combined and had to use the cues to differentiate which rule to apply. In this stage participants 

completed 4 blocks (40 trials in total). The rule-cue mapping was kept the same for each 

participant throughout all sessions of the experiment. In the final fifth stage, the modalities 

were also interleaved making the task very similar to that in the scanning session. Participants 

still received feedback in this fifth stage, and they completed a minimum of 80 trials.  

 

  At the start of the second training session participants were asked again to sign a 

behavioural consent form. They then practised the (stage 5) task until the time for that session 

had ended. 

 

Session 3 (MRI)  

 
  In session 3, participants filled out an MRI consent and screening form. To remind them 

of the task, participants practised the task with feedback outside the scanner room (minimum 

of 80 trials). They then received instructions on the button box, and we acquired a structural 

scan. To get familiar with the scanner setup and button box participants practised the task in 

the scanner for 8 trials in total (with feedback).  Following this they completed 6 runs of the 

main task without feedback (refer to section: Task design).  

 

Data acquisition 

 
  We collected the data with a Siemens (Erlangen, Germany) 3-T Verio scanner at 

Macquarie Medical Imaging, Macquarie University Hospital, Sydney, Australia. We acquired 

a T1-weighted structural image for each participant (1mm isotropic voxels, repetition time (TR) 

2000ms, echo time (TE) 2.36ms). To avoid acoustic noise from the scanner during presentation 

of the auditory (and visual) stimuli, we used an interleaved steady state (ISSS) imaging 

sequence (Peelle, Eason, Schmitter, Schwarzbauer, & Davis, 2010; Peelle, 2014), with a delay 

of 1 TR (RF and pulsed steady state silent mode, with 60us ramp time) after every 4 volumes. 

Volumes were acquired using interleaved T2*-weighted EPI acquisition with the following 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 7, 2024. ; https://doi.org/10.1101/2024.03.04.583318doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.04.583318
http://creativecommons.org/licenses/by/4.0/


 10 

parameters:  TR 3000ms; TE 33ms; 32 slices of 4.5 mm slice thickness with no interslice gap; 

in-plane resolution 3.0 × 3.0mm; field of view 250mm. 

 

Preprocessing 

 
  We preprocessed the MRI data using SPM 12 (Wellcome Department of Imaging 

Neuroscience, www. fil.ion.ucl.ac.uk/spm) in MatLab 2018a. We converted functional MRI 

data from DICOM to NIFTI format and spatially realigned to the first functional scan. We did 

not perform slice-timing correction due to the non-continuous acquisition (ISSS sequence) (as 

in Perrachione & Ghosh, 2013). We co-registered structural images to the mean EPI. We 

smoothed the EPIs in-plane (in the x and y, but not in the z direction) with a 4 mm FWHM 

Gaussian kernel. We also high pass filtered (128s) the data. Finally, we normalised the 

structural scans to the T1 template of SPM12 (Wellcome Department of Imaging 

Neuroscience, London, UK; www.fil.ion.ucl.ac.uk), using SPM12’s segment and normalise 

routine. This was to derive the individual participant normalisation parameters needed for 

transformation of ROIs into native space and to normalise the searchlight classification maps 

derived in native space. 

 

ROIs 

 
  We took 13 frontal and parietal MD ROIs from the parcellated map provided by 

Fedorenko et al (2013; available online at imaging.mrc-cbu.cam.ac.uk/imaging/MDsystem). 

This map consists of regions that show increased activation with task demands across a range 

of tasks. This definition of the MD network shares a high degree of overlap with the previous 

definition (Duncan & Owen, 2000) derived from meta-analytic data, that we used in previous 

work (Woolgar, Afshar, et al., 2015; Woolgar, Williams, et al., 2015; Jackson et al., 2017; 

Jackson & Woolgar, 2018; Jackson et al., 2021). MD ROIs comprised left and right anterior 

inferior frontal sulcus (aIFS; centre of mass (COM) = ±35 47 19, volume = 5.0 cm3), left and 

right posterior inferior frontal sulcus (pIFS; COM ±40 32 27, 5.7 cm3), left and right premotor 

cortex (PM; COM ±28 −2 56, 9.0 cm3), left and right inferior frontal junction (IFJ; COM ±44 

4 32, 10.1 cm3), left and right anterior insula/frontal operculum (AI/FO; COM ±34 19 2, 7.9 

cm3), left and right intraparietal sulcus (IPS; COM ±29 −56 46, 34.0 cm3), and bilateral pre-

supplementary motor area/anterior cingulate cortex (pre-SMA/ACC; COM 0 15 46, 18.6 cm3). 

For the main analyses we combined these ROIs into one MD network ROI using FSL v5.08 
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functions (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012). For decoding results 

from individual MD ROIs see supplementary materials.  

 

  We defined early visual cortex (BA17: COM −1 −79 6, 31 cm3) and primary motor 

cortex (BA4: COM ±27.8 −23 60, 51.6 cm3) from the Brodmann template provided with 

MRICroN (Rorden, 2007). We also defined primary auditory cortex (A1) as a spherical ROI 

(radius 10 mm) placed at the intersection of BA 41 and 42 within Heschl’s gyrus (COM ±50 

−22 10, 31.9 cm3). The decoding results for the visual and auditory ROIs can be found in the 

supplementary materials.  

 

  All ROIs were deformed into native space by applying the inverse of the normalisation 

parameters for each participant. 

 

First-Level Model 

 
  To obtain activation patterns for MVPA, we estimated two separate GLMs for each 

participant (SPM12). For the main model, we estimated the activity associated with the two 

visual, and two auditory rules, using correct trials only (4 regressors). To account for trial by 

trial variation in reaction time (Todd, Nystrom, & Cohen, 2013), trials were modelled as events 

lasting from the offset of the fourth stimulus until response convolved with the hemodynamic 

response.  

 

  We then ran a second model designed to capture button press responses. We used this 

as a sanity check for whether we could successfully decode the given response (inner vs outer 

finger position) in each task modality separately (within-modality decoding), and whether this 

information could be cross-generalised across modality (between-modality decoding) in motor 

regions. For this we estimated the activity associated with the inner and outer finger responses 

across both hands, for the visual and auditory tasks separately (4 regressors total, modelled as 

events lasting from fourth stimulus offset until response convolved with the hemodynamic 

response).  

 

  For both GLMs we included dummy scans and movement parameters (translation and 

rotation) as covariates of no interest (totalling 7 regressors). We maintained the correct 

relationship between events and fMRI volumes by adding dummy volumes into the time series 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 7, 2024. ; https://doi.org/10.1101/2024.03.04.583318doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.04.583318
http://creativecommons.org/licenses/by/4.0/


 12 

to occupy the silent time periods where no data were collected. As a reminder, the purpose of 

the silent time periods was to avoid acoustic noise from the scanner during stimulus 

presentation (see section Data acquisition). We then removed their influence on parameter 

estimation by perfectly modelling them with a single regressor (0 for actual volumes, 1 for 

dummy volumes) that was not convolved with the haemodynamic response function (as 

described in Peelle, 2014). As we did not perform slice-timing correction (ISSS sequence), we 

also estimated temporal derivatives to account for slice-time differences. Temporal derivatives 

were estimated for the main task (the visual and auditory rules in the first GLM, and the inner 

and outer finger responses in the second GLM) and for the dummy regressors. We combined 

the two parameter estimates (e.g. visual rule 1, and its temporal derivative) by the root mean 

squared (Calhoun, Stevens, Pearlson, & Kiehl, 2004) and took these estimates forward for our 

decoding analysis.  

 

Analysis 
 

  We used MVPA to examine the representation of the rules applied to the visual and 

auditory stimuli. Of central interest was 1) whether the MD regions coded both visual and 

auditory-based rule information; 2) whether the same voxels were re-used for both sets of 

codes; and 3) whether rule representations generalised across modality, suggesting modality-

independent rule representations. 

 

  We implemented MVPA using the Decoding Toolbox (Hebart, Görgen, & Haynes, 

2015). To address our first question of whether the MD regions coded both visual and 

auditory rule information, we trained the classifier to discriminate the two stimulus-response 

mappings (rules) for each modality separately (within-modality decoding). We did this in the 

combined MD ROI, in each MD ROI separately, and in the visual and auditory ROIs.  

 

  For our second question, we asked to what extent the same voxels contributed 

maximally to the classification of rule in each modality (auditory and visual). For this we 

extracted the transformed classifier weights for each classification scheme (visual 

rule/auditory rule). Raw classifier weights are not a simple reflection of the signal at each 

voxel, but an index of signal strength that can be recovered by multiplying the raw classifier 

weights by the data covariance (transformed classifier weights, Haufe et al., 2014). We 

identified the voxels with the highest (top 10%) of these signal-reflecting transformed 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 7, 2024. ; https://doi.org/10.1101/2024.03.04.583318doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.04.583318
http://creativecommons.org/licenses/by/4.0/


 13 

classifier weights for visual rule coding and the top 10% of voxels with the highest 

transformed weights for auditory rule coding, and asked how many of these were the same 

voxels (expressed as a proportion, as in Jackson & Woolgar, 2018). We then used a two-step 

permutation test (Stelzer, Chen, & Turner, 2013) to test whether the proportion of voxels that 

contributed to both classification schemes in our data exceeded the proportion expected by 

chance. For each person, we trained a classifier on the permuted condition labels for each 

classification scheme (visual rule 1/visual rule 2, and auditory rule 1/auditory rule 2) which 

resulted in 32 unique combinations. We then built a voxel re-use null distribution for each 

participant by randomly selecting one of the 32 unique combinations from each classification 

scheme and calculating the proportion of overlap in the top 10% of voxels with the highest 

transformed weights. We ran 10,000 permutations of this. We then built a group level null 

distribution by sampling (with replacement) 1000 samples per participant from these 

permutations and then finally averaging the 1000 samples across participants. From the group 

null distribution, we then calculated the probability of observing the actual voxel re-use value 

by means of the Monte-Carlo approach (p = k+1/(n+1)) where k is the number of 

permutations in the null with equal or higher accuracy to the actual voxel re-use value and n 

is the number of all permutations. The estimate we used is slightly more conservative than 

the unbiased estimate (p = k / n) and avoids returning a p value of 0 (Phipson & Smyth, 2010; 

Hemerik & Goeman, 2018). Separate to this analysis we also averaged the transformed 

weights in each region of the MD network to depict the relative weighting, or contribution, of 

individual MD ROIs to the two classification schemes. 

 

   To address the third question of whether auditory and visual rule information cross-

generalised, we trained a classifier to distinguish the visual rules (visual rule 1 vs visual rule 

2) and tested performance on discriminating the auditory rules (auditory rule 1 vs auditory 

rule 2), and vice versa, training on the auditory rules and testing on the visual rules (between-

modality decoding). Next, as a positive control and to assess whether we could distinguish 

between the codes representing the two modalities, we trained a classifier to discriminate 

between the auditory (rule 1 and rule 2 data) and visual task (rule 1 and rule 2 data). We 

performed these analyses in the combined MD network ROI, in each MD ROI separately, 

and in the visual and auditory ROIs. To check whether there were additional regions that 

showed cross-generalisation, we also performed an exploratory analysis in which we carried 

out classification across the whole brain using a roaming searchlight (Kriegeskorte, Goebel, 

& Bandettini, 2006). For each participant, data were extracted from a spherical ROI (radius 
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5mm) that was centred on each voxel in the brain. A classifier was trained and tested using 

data from each sphere, and the classification accuracies were assigned to the central voxel. 

This yielded whole-brain accuracy maps for each individual. Accuracy maps were 

normalised and smoothed (8mm FWHM Gaussian kernel) for group-level analysis (one-

sample t-test at each voxel). The results were thresholded at p < 0.005 with an extent 

threshold of 20 voxels.  

 

  For the final classification schemes and as a sanity check, we assessed whether we 

could decode motor responses in the visual and auditory-based tasks separately (within-

modality decoding), and whether these representations cross-generalised from the auditory to 

the visual task and vice versa (between-modality decoding). For this we trained the classifier 

to discriminate inner vs outer finger responses, training and testing within modality 

(visual/auditory), followed by training the classifier on inner vs outer responses in the visual 

task and testing the classifier on inner vs outer responses in the auditory task (and vice versa). 

We looked at information pertaining to these motor responses in the primary motor cortex 

(BA4).   

 

  For all classification analyses we used a linear support vector machine and a leave-

one-out six-fold splitter. For the within-modality decoding analysis the classifier was trained 

using the data from five of six runs (e.g., for the visual modality: visual rule 1 vs rule 2) and 

subsequently tested on its accuracy at classifying the unseen data from the remaining run 

(visual rule 1 vs rule 2), iterating over all possible combinations of training and testing runs. 

For the between-modality decoding analysis the classifier was trained using the data from 

five of six runs from one modality (e.g., visual rule 1 vs rule 2, runs 1:5) and tested on its 

accuracy at classifying the left out run from the other modality (e.g., auditory rule 1 vs rule 2, 

run 6), iterating over all possibilities (and vice versa; train on auditory rules, test on visual 

rules).  For our positive control to test if we could distinguish auditory from visual 

information, we again trained the classifier on five runs (visual rule 1 and 2 vs auditory rule 1 

and 2) and tested on a final sixth run (visual rule 1 and 2 vs auditory rule 1 and 2) with all 

possible iterations. The accuracies were averaged to give a mean accuracy score. This was 

repeated for each condition, participant, and ROI separately. 

 We used Bayesian statistics (Kass & Raftery, 1995; Rouder, Speckman, Sun, Morey, 

& Iverson, 2009; Dienes, 2011; Morey, Romeijn, & Rouder, 2016) to determine the evidence 
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for above-chance decoding (alternative hypothesis) and chance decoding (null hypothesis) for 

each classification scheme and ROI using the Bayes Factor (BF) R package (Morey et al., 

2016).  We used a half-Cauchy prior for the alternative hypothesis to capture directional 

(above chance) effects. The prior was centred around chance (δ  = 0, i.e., 50% decoding 

accuracy), and had the default width of 0.707 (Jeffreys, 1998; Wetzels et al., 2011). We 

excluded the interval ranging δ = 0-0.5 from the prior to determine very small effect sizes as 

irrelevant (Teichmann, Moerel, Baker, & Grootswagers, 2021). We interpreted BFs below 

1/3 or above 3 as evidence for the null or the alternative hypothesis respectively (Wetzels et 

al., 2011). 

Results 
Behavioural data 

 
  Reaction time and accuracy data from the scanning session are depicted in Figure 2. 

Participants performed with a high degree of accuracy (mean percent correct for the visual 

rules = 93.6%, SD = 4.9, mean percent correct for the auditory rules = 94.7%, SD = 5.3). 

There was evidence for no difference in accuracy scores between the two modalities at the 

group level (Bayesian paired t-test BF10  = 0.3). There was strong evidence that participants 

took longer to respond on the auditory task than the visual task (mean auditory RT = 

1699.3ms, mean visual RT = 1165.6ms, Bayesian paired t-test BF10  = 391002.3). This was 

also the case for 28/32 participants at the single subject level.  

 
Figure 2. RT (correct trials only) and accuracy (percent correct, %) data. Boxplots (plotted in JASP (Team, 2024)) 

with individual data points (open circles) in Panel a) show RT (ms) data and Panel b) show accuracy data. 

Boxplot inner line depicts median, and the box spans the range from the 25th to the 75th percentile. The whiskers 

extend to the 25th percentile - (1.5* interquartile range) for the lower boundary, and 75th percentile + (1.5* 

interquartile range) for the upper boundary. If the value for either is 0 then the whiskers extend to the data 
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extremes. Participants performed with a high degree of accuracy overall due to the extensive training and 

performance criteria for progressing to the fMRI session.  

 

Coding of visual and auditory-based rule information  

 
  To address our first question of whether the MD network codes rule information in 

both visual and auditory tasks, we used MVPA to differentiate the patterns pertaining to the 

visual (visual rule 1 vs visual rule 2) and the auditory rules (auditory rule 1 vs auditory rule 

2) separately. The resulting classification accuracies and associated BFs are shown in Figure 

3a. Rule information was encoded in the MD network (combined ROI) when participants 

completed the task in the visual (mean classification accuracy 58.4%, BF10 = 233.8) and the 

auditory domains (mean classification accuracy 57.4%, BF10  = 3.1). For individual MD ROI 

results refer to supplementary figure 1. 
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Figure 3. Decoding results and transformed weights for combined MD network ROI. Panel a) shows coding 

(classification accuracy, %) of visual rules (upper) and auditory rules (lower) (within-modality decoding). The 

lower parts of the plots show the associated BFs on a logarithmic scale, generated using custom code (from 

Teichmann et al., 2021). BF10 < 1/3 are marked in blue and BF10 > 3 are marked in purple-coloured circles. 

There was evidence to indicate that the MD network encoded rule information in both the auditory and visual 

tasks. Panel b) depicts a projection of the transformed weights (absolute) for each classification scheme (visual 

rules, auditory rules) averaged in the individual MD ROIs. These plots indicate that classification of the auditory 

and visual rules was not driven by any region of this network in particular. For plotting purposes, we bootstrapped 

95% confidence intervals across participants using 10,000 bootstrap samples.  

 
  Next, we plotted the average of the transformed absolute classifier weights for each 

classification scheme (visual/auditory; Figure 3b) across the individual MD ROIs to assess 
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their relative contributions. The weights were evenly distributed over ROIs, indicating that 

classification performance was not driven by any subset of ROIs.  

 

Voxel re-use across auditory and visual tasks 

 

  Thus far the results show that the MD network holds information pertaining to both 

the auditory and visual rules. However, it is possible that information about these two 

modalities is still carried by independent populations of neurons within this network. In this 

model, individual MD voxels might have structured preferences for rule coding in the two 

modalities. We examined the overlap (re-use) in the 10% of voxels that contributed the most 

signal to each classification scheme and ran permutation tests allowing us to compare the 

observed proportion of voxel re-use to that expected by chance. The MD network displayed a 

higher proportion of voxels used in both classification schemes (33.4%, p < .0001) than what 

would be expected by chance (26.9%, group null average), suggesting that the same voxels 

were used to encode information about both task modalities.  

 
Cross-generalisation of visual and auditory information  

 

  Our next question was whether the representation of rules cross-generalised between 

modalities, that is, whether the MD network codes for rule information in the same manner 

regardless of the input modality. Alternatively, it may be that while overlapping voxels in this 

network encode information about both modalities, the codes are not shared and are 

independent. Consistent with this latter possibility, the data presented in Figure 4a show 

evidence for the null that there was no cross-generalisation of auditory and visual rule 

information in this network. The mean classification accuracy for training on the visual rules 

and testing on the auditory rules was 48.4%, (BF10 = 0.16), and for training on auditory and 

testing on visual, it was 51.1%, (BF10 = 0.11). We further tested the complementary question 

of whether this network holds modality-distinguishing representations by training the 

classifier to distinguish auditory from visual information. There was strong evidence (Figure 

4b) that this network exhibited differential activation for the auditory and visual tasks (mean 

classification accuracy 79.3%, BF10 = 4.96*1012). The data for the individual MD ROIs 

(supplementary figure 2) show a similar pattern. To identify if there were any regions 

showing cross-generalisation outside of this network, we conducted an exploratory analysis 

using a roaming searchlight and assessed the results with cluster-level family wise error 
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correction for multiple comparisons (voxelwise threshold: p < 0.005 uncorrected). No 

clusters survived this correction.   

 
Figure 4. Decoding results for cross-generalisation (between modality decoding) vs modality-specific 

representations. For Panel a) the classifier was trained on the visual rules (visual rule 1 vs visual rule 2) and 

tested on the auditory rules (auditory rule 1 vs auditory rule 2) (left panel) and vice-versa (right panel). The lower 

parts of the plots show the associated BFs on a logarithmic scale, generated using custom code (from Teichmann 

et al., 2021). BF10 < 1/3 are marked in blue and BF10 > 3 are marked in purple-coloured circles.  The BFs for 

cross-generalisation indicate evidence for the null (BF10 [0.16, 0.11]) that the MD network does not hold an 

abstract modality-independent representation of the rules with cross-generalisable underlying codes. Panel b) 

shows classification of the auditory (rule 1 and rule 2) vs the visual task (rule 1 and rule 2). This positive control 

shows evidence that this network distinguishes between information pertaining to the two modalities (BF10 = 

4.96*1012). For plotting purposes, we bootstrapped 95% confidence intervals across participants using 10,000 

bootstrap samples. 

   

  Finally, we performed a sanity check for our cross-generalisation classification 

analyses, assessing whether we could generalise motor responses in BA4 across the auditory 

and visual tasks. We anticipated that we should not only be able to successfully decode the 

given response (inner vs outer finger position) in BA4 but moreover that this information would 

not be encoded differentially based on sensory modality (i.e., it would cross-generalise) and 
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this would therefore be a good test of the cross-generalisation analysis. As depicted in Figure 

5 were able to decode the inner vs. outer responses in both the visual and auditory tasks, and 

cross-generalise between them.   

 

 
Figure 5. Decoding and BF results for the motor cortex. We performed a sanity check to assess whether we could 

decode motor responses and whether this was independent of modality. From left to right we decoded inner vs. 

outer finger responses 1) in the visual task 2) in the auditory task 3) training in the visual, testing in the auditory, 

and 4) training in the auditory, testing in the visual. For plotting purposes, we bootstrapped 95% confidence 

intervals across participants using 10,000 bootstrap samples. The lower parts of the plots show the associated 

BFs on a logarithmic scale, generated using custom code (from Teichmann et al., 2021). BF10 < 1/3 are marked 

in blue and BF10 > 3 are marked in purple-coloured circles.   

Discussion  
 
  In this study we wanted to understand how domain generality arises in the 

frontoparietal MD network, including whether information that could theoretically be 

abstracted away from the input modality would be coded in a modality-general abstract form. 

We tested 1) whether the MD network of the human brain encodes information about both 

auditory and visual-based rules; 2) whether the same neural resources (voxels) contribute to 

both sets of codes; and 3) whether the codes underlying these task-relevant rule 

representations are shared across modality or remain modality-specific. There was evidence 

that this network coded rule information for both auditory and visual tasks, corresponding 
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with the dominant view of this network as domain general. Further, more of the most strongly 

responding voxels than would be expected by chance contributed to both classification 

schemes, suggesting that some MD resources may be re-allocated to code task information 

pertaining to different sensory inputs. However, there was evidence that the patterns 

underlying coding of auditory and visual rules did not cross-generalise. Alongside this, there 

was evidence from our positive control that the classifier could distinguish between the same 

rules applied to the two modalities. These data suggest that although this domain general 

network holds information pertaining to distinct sensory inputs, and the same neural 

resources are implicated in doing so, the codes underlying the representation of this 

information are independent and tagged by modality, rather than shared and abstracted to the 

level of the rule.  

 

  The findings from this study complement ongoing research showing that the MD 

network processes information from not only a wide-range of tasks, but also across 

modalities (Duncan & Owen, 2000; Duncan, 2010; Duncan et al., 2020; Assem et al., 2022; 

Schultz et al., 2022). The data also fit well with the theory that this network is key to 

integration of various types of information (Duncan et al., 2020). This is thought to be the 

case due to strong connectivity between the core regions of the network (Assem et al., 2020) 

and task-dependent connections to other networks (Cole & Schneider, 2007; Cole et al., 

2013; Cocuzza et al., 2020). Our data add to this base by showing that not only are both 

visual and auditory rules encoded in these regions, but the patterns for each tend to load onto 

the same MD voxels.  

 

 These results showed that, even with a presumably imperfect MD definition, more 

voxels than would be expected by chance, contributed to the representation of both types of 

information (rule encoding in the auditory, and in the visual domain). By contrast, other work 

has shown modality biased subregions in and around the MD network (Michalka, Kong, 

Rosen, Shinn-Cunningham, & Somers, 2015; Braga, Hellyer, Wise, & Leech, 2017; Mayer, 

Ryman, Hanlon, Dodd, & Ling, 2017; Noyce, Cestero, Michalka, Shinn-Cunningham, & 

Somers, 2017). For example, contrasting visual and auditory attention tasks has revealed two 

visual-biased regions along the superior and inferior precentral sulcus (PCS), interleaved with 

two auditory-biased regions along the transverse gyrus intersecting the PCS and along the 

caudal portion of the IFS (Michalka et al., 2015; Noyce et al., 2017). Other MD regions (e.g. 

anterior cingulate and insula) have not shown sensory biases (Noyce et al., 2017) and using 
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high precision fMRI methods, sensory-biased areas identified around lateral frontal cortex 

appear to lie adjacent to the MD borders (Assem et al., 2022). Taken together this previous 

work and the findings from the present study emphasise that MD neurons may differ in their 

relative potential for coding different types of information, and thus show sensory biases 

under specific circumstances, but that they are also highly adaptable (Duncan, 2001) and can 

therefore potentially encode many different types of information. What types of information 

are encoded may depend on many factors, for example the nature of the task. Our data 

suggests that there is a flexible allocation of neural resources between our two tasks at least, 

perhaps reflective of mixed selectivity (Rigotti et al., 2013). Although, it is important to note 

that while our voxel re-use analysis allows greater spatial specificity than looking at whole 

regions, we cannot draw conclusions at the neural level as independent populations may 

underlie these voxel responses. The current picture suggests that while there may be sub-

preferences towards different types of information, MD cells are highly adaptable and can be 

flexibly allocated to encode different types of information, perhaps depending on the nature 

of the task.  

 

  While some of the voxels with the strongest signal were the same across the two 

classification schemes, they did not appear to be used to form similar, modality-independent, 

codes. Instead, there was evidence for the null: there was no cross-generalisation between the 

auditory rules and visual rules, indicative of independent neural representations of modality-

based rule information. By contrast, motor responses were decodable in the motor cortex, and 

it was possible to cross-generalise motor responses between the two modality-based tasks. In 

domain general areas, independent representations of task rule for each modality would arise 

if general-processing resources randomly or systematically become associated with particular 

inputs and outputs, forming bespoke conjunctions. This aligns with recent recurrent models 

of working memory in higher cortical regions (Bouchacourt & Buschman, 2019; Manohar et 

al., 2019; Buschman, 2021). In these models, general-purpose “conjunction” units come to 

represent conjunctions of stimuli due to fixed random recurrent connections (Buschman, 

2021) or flexibly through rapid Hebbian updating of synaptic weights that form bespoke 

conjunctions depending on the current task (Manohar et al., 2019). Accordingly, neurons in 

these regions have been shown to respond to a conjunction of different sensory inputs, in 

different contexts and at particular points in time (Mante, Sussillo, Shenoy, & Newsome, 

2013; Rigotti et al., 2013; Aoi, Mante, & Pillow, 2020; Bocincova et al., 2022). These mixed- 

selectivity properties result in high dimensional spaces for representing cognitive variables 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 7, 2024. ; https://doi.org/10.1101/2024.03.04.583318doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.04.583318
http://creativecommons.org/licenses/by/4.0/


 23 

and maintaining a unique combination of inputs, capturing the diversity of information from 

different brain regions (Bouchacourt & Buschman, 2019; Badre et al., 2021; Buschman, 

2021). One possibility is that recurrent conjunctive coding in the MD system extends also to 

combinations of stimuli and responses. Moreover, if this is underpinned by a flexible 

association process (Manohar et al., 2019), it could provide a basis for the human ability to 

respond flexibly according to current task rules. This would then align with the proposal that 

a key role of the MD system may be to create the necessary associations between the 

information and actions needed for the current task (Duncan et al., 2020). Our data fit well 

within this framework, suggesting that the system flexibly responded here, using the same 

resources to form independent representations of the stimulus-response rules in the auditory 

and visual tasks, rather than abstract, modality-independent, codes.  

 

  The choice of task design, imaging technique, and analysis will influence how 

information about different modalities is processed, represented, and read out. For example, 

in Assem and colleagues’ (2022) work, MD hard-minus-easy visual and auditory activation 

maps were close to identical, suggesting that the MDs can respond to both types of 

information, comparable to the present data, but also suggestive that responses to control 

demands in auditory and visual tasks may be similar. However, not only did the task design 

differ (n-back working memory) to the present study, but so did the analysis, which was 

univariate and does not provide insight about the level of representation. Our multivariate 

analysis suggests that while domain general areas encode information from both modalities, 

the information is represented in independent neural codes. In support of this, there was also 

strong evidence that the MD network patterns were clearly distinguishable between auditory 

and visual information. This analysis informs us that the network responds differently for 

auditory and visual trials. However, this result could have been driven by many factors, as the 

two tasks were well-matched but not identical. It could, for example, be driven by differences 

in difficulty, even though we attempted to match difficulty with a staircase procedure. 

Another aspect to consider is to what extent rule decoding could have been driven by visual 

and auditory properties of the cues. However, this is unlikely to explain the current results as, 

in addition to using two cues per modality, the cue occurred a few seconds earlier than the 

time that we modelled, with several stimulus events occurring in between. 

 

  Our cross-generalisation analysis appears to align with the idea that MD neurons can 

encode multiple task features (here, modality*rule) in a nonlinear, conjunctive fashion. 
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However, we do not know the extent of this potential nonlinearity, only that it is sufficient to 

prevent cross-generalisation of the fMRI data. This leaves open the possibility that some MD 

cells do respond to different modalities in a more linear fashion, which we were not sensitive 

to here. The percentage of neurons that exhibit mixed selectivity is unknown, and it may vary 

from one region to the next, and in any given task (Parthasarathy et al., 2017; Dang, Li, Pu, 

Qi, & Constantinidis, 2022). We also cannot address here whether non-generalisable coding 

is a general property of the MD system. It could be unique to specific features such as 

modality, while in other cases, task features are combined linearly. For example, following 

training, monkey prefrontal neurons have shown increased nonlinear mixed selectivity for 

task features in a spatial but not in a shape-based working memory task (Dang, Jaffe, Qi, & 

Constantinidis, 2021). The way that task demands change over time may also impact the 

level of abstraction at which representations are held. For example, again in monkey 

prefrontal cortex (e.g., Bernardi et al., 2020) it was shown that the level of abstraction at 

which various task representations are held changes before and during the course of a trial. 

Here, we used a low temporal resolution technique (fMRI) but future work could use neural 

measurements with sufficient resolution, such as magnetoencephalography, to assess how 

these types of representations change over time.  

 

  The MD network is widely known thought of as domain general but there are many 

different possible conceptualisations of what domain generality is. Here we sought to 

characterise domain generality in the MD system in terms of how information from multiple 

sensory modalities is represented. Our findings confirm that the MD network encodes 

information from multiple modalities, here rules pertaining to both visual and auditory tasks. 

As far as the resolution of fMRI permits, the data also suggested that similar neural resources 

were used to code for both sets of rules. However, the underling neural codes reflecting task 

rules in the context of each modality were not integrated to such a level of abstraction that we 

could cross-generalise between them. We therefore suggest that while neural resources in the 

MD system may be flexibly assigned to represent arbitrary conjunctions of stimuli and 

responses, providing a basis for the human ability to respond flexibly to what we see and 

hear, this ability does not rely on forming abstract representations of rules that generalise 

over input modalities.  
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