

Role of Hepatocyte RIPK1 in Maintaining Liver Homeostasis during Metabolic Challenges

Weigao Zhang¹, Hu Liu¹, Danyang Zhang¹, Yuguo Yi⁵, Liang Tao⁶, Shuxian Huang¹, Xunan Zhao¹, Qianchao Shao¹, Peiqi Li¹, Jianfa Zhang¹, Yan Pan⁷, Wei Lu⁴, Haibing Zhang^{3*}, Yuxin Chen^{2*}, Dan Weng^{1*}

¹*School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China*

²*Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China*

³CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health,

⁵School of medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107,

Correspondence: Dan Weng, School of Environmental and Biological Engineering, Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing, China.

Tel: +862584318533; Fax: +862584318533.

Email: danweng@njust.edu.cn

Yuxin Chen, Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University

23 Medical School, Nanjing 210008, China

24 Tel: +862568162671; Email: yuxin.chen@nju.edu.cn

25 **Haibing Zhang**, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of
26 Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences,
27 Shanghai 100864, China

28 Email: hbzhang@sibs.ac.cn

29 **Conflict of interest**

30 The authors declare no conflict of interest with the contents of this article.

31

32 **Abstract:**

33 As a central hub for metabolism, the liver exhibits strong adaptability to maintain homeostasis in response to
34 food fluctuations throughout evolution. However, the mechanisms governing this resilience remain
35 incompletely understood. In this study, we identified Receptor interacting protein kinase 1 (RIPK1) in
36 hepatocytes as a critical regulator in preserving hepatic homeostasis during metabolic challenges, such as
37 short-term fasting or high-fat dieting. Our results demonstrated that hepatocyte-specific deficiency of RIPK1
38 sensitized the liver to short-term fasting-induced liver injury and hepatocyte apoptosis in both male and female
39 mice. Despite being a common physiological stressor that typically does not induce liver inflammation, short-
40 term fasting triggered hepatic inflammation and compensatory proliferation in hepatocyte-specific RIPK1-
41 deficient (*Ripk1*^{Δhep}) mice. Transcriptomic analysis revealed that short-term fasting oriented the hepatic
42 microenvironment into an inflammatory state in *Ripk1*^{Δhep} mice, with upregulated expression of inflammation
43 and immune cell recruitment-associated genes. Single-cell RNA sequencing further confirmed the altered
44 cellular composition in the liver of *Ripk1*^{Δhep} mice during fasting, highlighting the increased recruitment of
45 macrophages to the liver. Mechanically, our results indicated that ER stress was involved in fasting-induced
46 liver injury in *Ripk1*^{Δhep} mice. Overall, our findings revealed the role of RIPK1 in maintaining liver
47 homeostasis during metabolic fluctuations and shed light on the intricate interplay between cell death,
48 inflammation, and metabolism.

49 **Keywords:** Fasting; RIPK1; liver homeostasis; inflammation; ER stress

50

51 Introduction

52 During the long evolutionary history, mammals have frequently encountered various metabolic stresses arising
53 from fluctuations in food availability. The liver, functioning as the central hub for metabolism, exhibits
54 remarkable adaptability in maintaining both hepatic and systemic homeostasis when faced with these
55 metabolic challenges [1]. Acute fasting, as one of the main causes of metabolic stress, is known to trigger
56 hepatic glycogen depletion, increased production of hepatic glucose and ketone bodies, adipose tissue lipolysis,
57 and the influx and accumulation of lipids in the liver [2-4]. Under normal circumstances, the liver possesses the
58 capability to shield itself from hepatic lipotoxicity caused by the elevated lipid influx and accumulation during
59 fasting [5, 6]. Nevertheless, the underlying mechanisms governing the liver's adaptive capacity to counteract
60 lipotoxicity induced by metabolic stress are not fully understood.

61 The serine/threonine kinase RIPK1 is a crucial mediator of cell death and inflammation [7]. It manifests two
62 distinct, even opposing functions: its scaffold function regulates cell survival and activation of NF- κ B pathway,
63 while its kinase activity promotes cell death including apoptosis and necroptosis [8, 9]. Both functions play
64 crucial regulatory roles across a spectrum of physiological and pathological scenarios. Notably, the kinase
65 activity of RIPK1 has been extensively studied due to its association with the deleterious effects in
66 pathological situations [10-13]. In contrast, the scaffold function of RIPK1 is less studied and current evidences
67 suggest that it plays an essential role in maintaining tissue homeostasis within physiological context [14, 15].
68 The scaffold function of RIPK1 has been studied using *Ripk1*^{-/-} cells or RIPK1 deficient mice [14-18]. The
69 postnatality death of *Ripk1*^{-/-} mice suggested that the scaffold function of RIPK1 plays an essential role in
70 normal development, acting as a brake to prevent cell death and inflammation in different tissues [16-18].
71 Deletion of RIPK1 results in the loss of its scaffold function and unleashes the release of subsequent
72 deleterious part with cell death and inflammation. Generation of conditional knockout mice with RIPK1
73 deletion in different tissues or cell types results in different phenotypes, suggesting that the role of RIPK1
74 scaffold in different tissues is dependent on the context in tissue or cells [19-22]. In contrast to the severe
75 phenotype observed in mice with RIPK1 deletion in epithelial cells, mice lacking RIPK1 in hepatocytes
76 (*Ripk1*^{Δhep}) exhibit a surprising state of health and normal under steady conditions [19, 20]. Nonetheless, when
77 confronted with pathogen-associated molecular patterns (PAMPs) or viral challenges, *Ripk1*^{Δhep} mice display
78 heightened inflammation and cell death [19, 23, 24]. However, the precise role of hepatocellular RIPK1 in liver
79 physiology remains unknown.

80 This study aimed to investigate the physiological functions of RIPK1 in the liver. Hepatocyte-specific RIPK1-
81 deficient mice (*Ripk1*^{Δhep}) were generated and subjected to a 12-hour fasting period. Surprisingly, we observed

82 that RIPK1 deficiency in hepatocytes sensitized the liver to acute liver injury and hepatocyte apoptosis.
83 Remarkably, both male and female *Ripk1*^{Δhep} mice exhibited fasting-induced liver injury and apoptosis,
84 emphasizing the robustness of this phenotype across genders. Furthermore, short-term fasting triggered
85 hepatic inflammation in *Ripk1*^{Δhep} mice, as indicated by elevated expression of inflammatory markers and
86 increased compensatory proliferation, potentially linked to hepatocellular carcinoma markers.
87 Transcriptomic profiling of liver tissues revealed that RIPK1 deficiency amplified the proinflammatory
88 response during fasting, with upregulated expression of inflammation-associated genes and enhanced
89 recruitment of immune cells to the liver. Single-cell RNA sequencing further dissected the altered cellular
90 composition in *Ripk1*^{Δhep} mice, highlighting an expansion of recruited macrophages and NK&T cells. Sub-
91 clustering of macrophages unveiled an increased presence of recruited macrophages in *Ripk1*^{Δhep} mice during
92 fasting, suggesting their role in driving the fasting-induced inflammatory state. In summary, our study sheds
93 light on the critical role of RIPK1 in maintaining liver homeostasis during short-term fasting and provides
94 insights into the intricate interplay between cell death, inflammation, and liver adaptation to metabolic
95 challenges.

96 Material & Methods

97 2.1 Key Resources Table

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Critical Commercial Assays		
Serum alanine transaminase (ALT)	Nanjing Jiancheng Bioengineering Institute	C009-2-1
Serum aspartate transaminase (AST)	Nanjing Jiancheng Bioengineering Institute	C010-2-1
Serum triglyceride (TG)	Nanjing Jiancheng Bioengineering Institute	A110-1-1
Serum cholesterol (TC)	Nanjing Jiancheng Bioengineering Institute	A111-1-1
Serum free fatty acid (FFA)	Solarbio	BC0595
Ketone Body Assay Kit	Abcam	ab272541
Hepatic triglyceride (TG)	Solarbio	BC0625
TUNEL Assay Kits	Vazyme	A113-02
Fixation/Permeabilization Buffer	ABclonal	RK50005
Antibodies		
anti-Caspase-3	Cell Signaling Technology	9662S
anti-MLKL	Cell Signaling Technology	37705S
anti-cleaved-Caspase-3	Cell Signaling Technology	9661S
anti-phospho-MLKL (S345)	Cell Signaling Technology	37333S
anti-F4/80	Servicebio	GB113373
anti-CD11b	Servicebio	GB11058

anti-CCR2	Servicebio	GB11326
anti-CX3CR1	Servicebio	GB11861
anti-Ki67	Bioss	bs-2130R
anti-Alb	Servicebio	GB122080
anti-TNF α	proteintech	60291-1-Ig
anti-RIPK1	Cell Signaling Technology	3493S
anti-phospho-IRE1 α	Abcam	ab48187
anti-IRE1 α	Cell Signaling Technology	3294S
anti-GRP78	Cell Signaling Technology	3177S
anti-CHOP	Cell Signaling Technology	2895S
anti-CD11b(FC)	ABclonal	A24095
anti-F4/80(FC)	ABclonal	A25659
anti-Ki67(FC)	ABclonal	A26239
anti-GAPDH	Servicebio	GB12002

98

99 **2.2 Mouse models**

100 *Ripk1 $^{fl/fl}$* and *Albumin-cre* transgenic mice on C57BL/6J background as previously described were kindly
101 provided by Prof. Haibing Zhang (Chinese Academy of Sciences, Shanghai, China), both male and female
102 littermates were used in the experiments [25]. Liver-specific RIPK1 knockout mice (*Ripk1 Ahep* mice) were
103 generated by crossing *Ripk1 $^{fl/fl}$* and *Albumin-cre* mice. Then *Ripk1 $^{fl/fl}$* mice were bred with *Ripk1 $^{fl/fl}$ Cre $^{+/+}$* mice
104 to generate *Ripk1 $^{fl/fl}$* and *Ripk1 $^{fl/fl}$ Cre $^{+/+}$* mice as littermates. All mice were maintained in the standard laboratory
105 conditions with temperature $22 \pm 2^\circ\text{C}$, strict 12 hours dark-light cycles (7:00 a.m. to 7:00 p.m.). All mice had
106 ad libitum access to food and water, and before the start of experiments all mice were maintained on a regular
107 chow diet (LAD 0011, Trophic Animal Feed, China). All experiments were conducted following the Animal
108 Care and Use Committee at Nanjing University of Science & Technology.

109 For the fasting studies involving *Ripk1 $^{fl/fl}$* and *Ripk1 Ahep* mice, 6-week-old littermates of *Ripk1 $^{fl/fl}$* or
110 *Ripk1 Ahep* were randomly assigned to groups. The fed group was allowed ad libitum access to both food and
111 water. The fasted group, on the other hand, was deprived of food but not water from 8:00 p.m. since then, and
112 this deprivation continued for a period of 12 hours.

113 For the endoplasmic reticulum stress inhibitor experiment, 6-week-old *Ripk1 $^{fl/fl}$* and *Ripk1 Ahep* mice were
114 divided into separate groups and administered either 80 mg/kg of 4-PBA (SML0309, Sigma, Germany) or
115 saline vehicle via intraperitoneal injection at 8:00 a.m. Fasting was initiated for all groups by removing food
116 at 8:00 p.m., while water was still available, for a duration of 12 hours. At 10:00 p.m., the mice were

117 intraperitoneally injected with 80 mg/kg of 4-PBA.

118 For the high-fat diet (HFD) experiment, separate groups of *Ripk1*^{fl/fl} and *Ripk1*^{Ahep} mice were fed either a
119 HFD (TP201482; Trophic Animal Feed, China) or a normal diet (LAD 0011, Trophic Animal Feed, China) for
120 a period of 6 days. On the last day, a 3-hour fast was initiated at 7 a.m. and the mice were sacrificed thereafter.

121 For the adenovirus-associated virus (AAV) experiment, 6-week-old littermates of *Ripk1*^{fl/fl} were randomly
122 divided into two groups. One group was administered serotype 8 AAV-thyroxine-binding globulin (TBG)-Cre
123 (AAV-TBG-Cre, 1.5×10¹¹ gene copies per mouse, intravenously) (H5721, Obio Technology, China), while the
124 other group was injected with AAV-TBG-null (H20594, Obio Technology, China). After 4 weeks, the mice
125 were subjected to the same fasting rationale as described earlier.

126 At the end of the experiment of each different model, mice were sacrificed following blood collection.
127 Subsequently, the mice were dissected and the liver tissues were harvested. Some portions of the tissues were
128 fixed in 4% paraformaldehyde tissue fixation solution for further histological examination, while others were
129 stored at -80 °C for additional detection. All mice used for experiments displayed general health. The total
130 number of mice analyzed for each experiment is detailed in the figure legends.

131 **2.3 Serum and liver assays**

132 Plasma was maintained at room temperature for 1 h, and then centrifuged at 4,000 rpm for 10 min to take
133 the supernatant as serum. Serum alanine transaminase (ALT), aspartate transaminase (AST), triglyceride (TG),
134 cholesterol (TC), free fatty acid (FFA) and β-hydroxybutyrate (BOH) were measured according to the
135 manufacturer's instructions. For measurements of liver triglyceride (TG) levels, 50 mg liver was homogenized
136 in lysis buffer (isopropanol: chloroform = 1:1) using a high speed low temperature tissue grinding machine
137 (Servicebio, China) and supernatant was centrifuged 8,000 g for 10 min at 4°C for measurement according to
138 the manufacturer's instructions.

139 **2.4 TUNEL assay**

140 TUNEL Assay Kits were used to measure apoptotic cells in livers. Briefly, paraffin-embedded liver tissue
141 sections were dried for 30 min at 60 °C, and soaked in xylene to deparaffinized completely. Deparaffinized
142 sections were pretreated by proteinase K for 20 min at 25 °C. Then PBS was used to wash tissue sections and
143 the mixture of reaction buffer with TdT enzyme was used to incubate in dark for 60 min at 25 °C. Meanwhile
144 the cell nucleuses were stained with DAPI. The tissue sections were observed and photographed using the
145 fluorescence microscope (NIKON ECLIPSE 80i). The number of apoptotic cells was quantified in at least
146 three random fields of the same size.

147 **2.5 RNA isolation and RT-qPCR**

148 Liver tissue (10-20 mg) was homogenized directly in TRIzol (Invitrogen) using a high speed low
149 temperature tissue grinding machine (Servicebio, China), then total mRNA was extracted according to the
150 manufacturer's instructions. Next cDNA was synthesized using one-step reverse transcription kit (5x All-In-
151 One-RT Naster Mix, Abm). RT-qPCR reactions were performed on the iQ5 real-time PCR system (Bio-Rad,
152 USA) using Hieff™ qPCR SYBR® Green Master Mix (Yeasen Biotech, China). GAPDH mRNA was used
153 as an internal control to normalize mRNA expression. The sequences of primers for qPCR were as follows:

Name	Forward (5'-3')	Reverse (5'-3')
<i>Mcp-1</i>	CACTCACCTGCTGCTACTCA	AGACCTTAGGGCAGATGCAG
<i>Tnfa</i>	GTAGCCCACGTCGTAGCAAA	TAGCAAATCGGCTGACGGTG
<i>Il-1β</i>	GCCACCTTTGACAGTGATGAG	ACGGGAAAGACACAGGTAGC
<i>Ifny</i>	ATGAACGCTACACACTGCATC	CCATCCTTTGCCAGTTCCCTC
<i>Il-6</i>	TGATGGATGCTACCAAACTGGA	GGAAATTGGGGTAGGAAGGACT
<i>Afp</i>	ACCTCCAGGCAACAAACCATT	GTTTGACGCCATTCTCTGCG
<i>Ki67</i>	AACCATCATTGACCGCTCCT	AGGCCCTGGCATACACAAA
<i>Grp78</i>	CGAGGAGGAGGACAAGAAGG	TCAAGAACGGCAAGTCCAC
<i>Xbp1s</i>	GAGTCCGCAGCAGGTG	AGGGTACCTGAGACTGTG
<i>Chop</i>	CTGCCTTCACCTGGAGAC	ATAGAGTAGGGGTCTTGC
<i>Gapdh</i>	AGGTCGGTGTGAACGGATTG	TGTAGACCATGTAGTTGAGGTCA

154

155 **2.6 Histological analysis**

156 Liver tissues were fixed in 4% paraformaldehyde and embedded in paraffin for
157 immunohistochemistry/immunofluorescence. For histopathology, frozen sections of liver tissues were stained
158 by Oil Red O working solution to determine the steatosis in liver tissues.

159 **2.7 Immunohistochemistry and immunofluorescence analysis**

160 For immunohistochemistry in liver tissues, paraffin embedded mouse liver sections (3.5 - 4 µm) were
161 dried for 30 min at 60 °C, and soaked in xylene to deparaffinized completely. Then boiled the liver sections
162 in citrate buffer (pH = 6.0) for antigen retrieval, followed by hydrogen peroxide blocking of endogenous

163 peroxidase. Then sections were incubated with primary antibody (anti-Ki67) at 4 °C overnight. The slides
164 were then washed with PBS (PH=7.4) and incubated with secondary antibody for 1 h at 25°C, and then stained
165 with DAB substrate after 5 min with streptavidin-HRP. The cell nuclei were stained with hematoxylin for 3
166 min at 25°C. For immunofluorescence, after being incubated with primary antibodies (anti-cleaved-Caspase-
167 3, anti-phospho-MLKL (S345), anti-F4/80, anti-CD11b, anti-CCR2 and anti-CX3CR1) at 4 °C overnight,
168 slides were washed with PBS (PH = 7.4) for three times and then incubated with fluorescent secondary
169 antibodies in dark for 60 min at 25°C. The cell nuclei were stained in dark by DAPI for 5 min at 25°C. Finally,
170 the slides were observed and photographed using the fluorescence microscope (NIKON ECLIPSE 80i). The
171 number of positive cells was quantified in at least three random fields of the same size.

172 **2.8 Western blotting**

173 Total protein was extracted from liver tissues with RIPA lysis buffer (Beyotime, China) with protease
174 inhibitor (P1005; Beyotime, China) and phosphatase inhibitor (P1081; Beyotime, China). BCA Protein Assays
175 kits(Yeasen, China) were used to measure the protein concentrations. Equal amounts of proteins were
176 separated on sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) on 4–12% acrylamide
177 gel (Yeasen, China) and transferred onto 0.22 μm PVDF membranes (Millipore Corporation, USA).
178 Membranes were incubated with primary antibodies (anti-RIPK1, anti-MLKL, anti-Caspase-3, anti-TNF α ,
179 anti- phospho-IRE1 α , anti-IRE1 α , anti- GRP78 and anti-CHOP) overnight at 4°C, washed with TBS-T (0.1%
180 TWEEN-20) and incubated with suitable secondary antibodies (Goat anti-Mouse IgG HRP or Goat anti-Rabbit
181 IgG HRP) at room temperature for 1 h. A chemiluminescent reagent (Beyotime, China) and a ChemiDoc MP
182 Imaging System (CLiNX, China) were used for detection.

183 **2.9 Flow cytometry assay**

184 Single-cell suspensions were prepared from 6-week-old *Ripk1*^{fl/fl} and *Ripk1*^{Δhep} mice that had been fasted
185 for 12 hours, utilizing the retrograde perfusion method ^[26]. The harvested cells were washed twice with
186 phosphate-buffered saline (PBS). To assess immune cell recruitment in liver tissue, F4/80 was employed to
187 label immune cells, while CD11b was used to label myeloid cells, following the manufacturer's instructions
188 for flow cytometry. For the detection of Ki67-positive cells, fixation and permeabilization were performed
189 using Fixation/Permeabilization Buffer (ABclonal, China) prior to flow cytometry analysis.

190 **2.10 Liver tissue transcriptome sequencing**

191 **2.10.1 Isolation of RNA for sequencing**

192 6-week-old *Ripk1*^{fl/fl} and *Ripk1*^{Δhep} male mice were fasted for 12 h. At end of the fast, mice were sacrificed
193 and dissected. Approximately 200 mg of liver tissue at the left lateral lobe was cut, weighed and harvested for

194 each mouse. Total RNA was extracted from mouse liver using TRIzol reagent (Invitrogen) following the
195 manufacturer's instructions. The isolated RNA was further quantified using a NanoDrop 2000
196 spectrophotometer (ThermoFisher Scientific). Then the total RNA was subjected to sequencing for
197 transcriptome analysis.

198 **2.10.2 cDNA Library construction and sequencing**

199 The RNA-seq library was generated using the TruSeq Stranded Total RNA Sample Preparation kit from
200 Illumina (NEB, USA) following the manufacturer's recommendations for 150-bp paired-end sequencing.
201 Poly-A-containing mRNA were purified and fragmented from DNase-treated total RNA using oligo(dT)
202 magnetic beads. Following the purification step, mRNAs were fragmented to 300 bp nucleotides and used for
203 synthesis of single-stranded cDNAs by means of random hexamer priming. With the constructed single-
204 stranded cDNAs as templates, second strand cDNA synthesis was performed to prepare double-stranded
205 cDNAs. These cDNAs were then amplified with end-pair repair, addition of A-tail, and adapter ligation using
206 polymerase chain reaction (PCR). The quality control of cDNA library was evaluated by Agilent 2100
207 BioAnalyzer (Agilent Technologies). After quality control, sequencing was performed with Illumina
208 HiSeq3000.

209 **2.10.3 Transcript data analysis**

210 Illumina sequencing analysis viewer was used for data quality check and Illumina Bcl2fastq2 program
211 was used for demultiplexing. Then the high-quality filtered sequencing data was aligned with mouse reference
212 genome (GRCm38) by TopHat (version 2.1.1). To profile differential gene expression (DEG), reads per kilo-
213 base per million mapped reads (RKM) were calculated for each transcript. Paired sample t-tests followed by
214 Benjamini-Hochberg correction were performed to identify DEGs. Genes with >2-fold changes ($|\log_2 \text{fold}$
215 $\text{change}| >1$) and false discovery rate <0.05 were defined as DEGs by DESeq2 (version 1.18.1). Enrichment
216 analysis of DEGs was performed by Kyoto Encyclopedia of Genes and Genomes (KEGG)
217 (<http://www.kegg.jp/>) pathway enrichment analysis to identify the affected metabolic pathways and signal
218 transduction pathways.

219 **2.11 Single-cell RNA sequencing**

220 Male mice of 6 weeks old with *Ripk1*^{fl/fl} and *Ripk1*^{Δhep} genotypes were subjected to a 12-hour fast, after
221 which they were sacrificed and dissected. Liver tissue samples were collected from the left lateral lobe, right
222 lateral lobe, and right medial lobe of each mouse and weighed, with approximately 600 mg of tissue per sample.
223 Liver tissue samples were mechanically dissociated and digested in lysis buffer containing collagenase/dispase
224 and 0.001% deoxyribonuclease I, after which the samples were processed. Isolated cells passed through 70

225 μ m cell strainer were treated with Red Blood Cell Lysis Solution (10 \times) (Miltenyi Biotec) for 5 min to lyse
226 blood cells. To acquire cells with >90% viability, dead cells were removed with Dead Cell Removal Kit
227 (Miltenyi Biotec) according to the manufacturer's instructions and cell pellet was resuspended in 2%
228 FBS/phosphate-buffered saline. Then live cells were counted with Countstar and adjusted the cell
229 concentration to 1000 cells/ μ l. For scRNA-seq, chromium microfluidic chips were loaded with cell suspension
230 with 3' chemistry and barcoded with a 10 \times Chromium Controller (10 \times Genomics). RNA was reverse-
231 transcribed from the barcoded cells. Qubit dsDNA HS Assay Kit (Invitrogen) was used to quantify cDNA
232 concentration and single- cell transcriptome libraries were constructed using the 10 \times Chromium Single Cell
233 3' Library (10 \times Genomics, v3 barcoding chemistry). Quality control was performed with Agilent
234 2100(Agilent Technologies). Libraries were then purified, pooled, and analyzed on Illumina NovaSeq 6000
235 S2 Sequencing System with 150 bp paired-end reads according to the manufacturer's instructions.

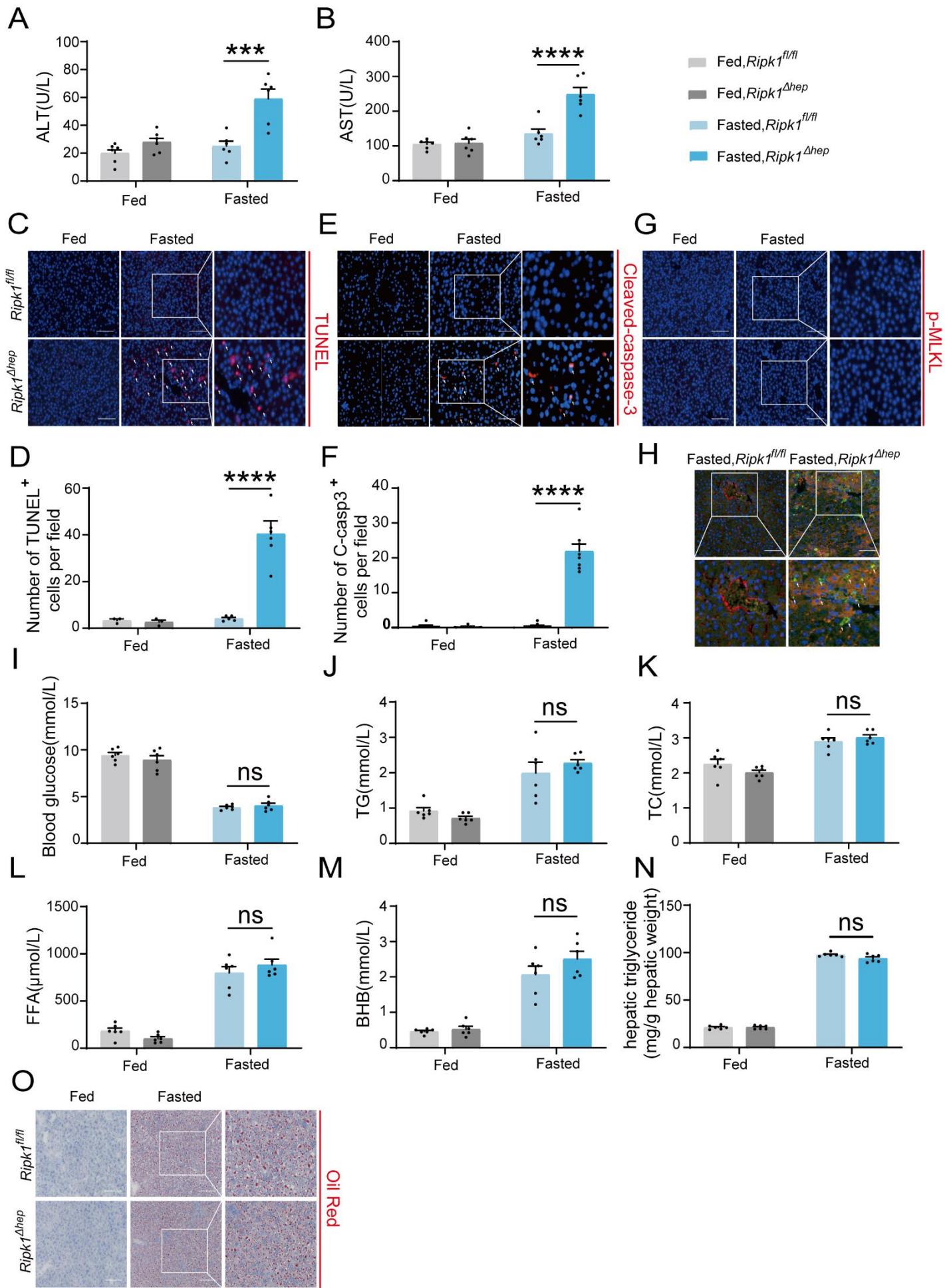
236 For analysis of scRNA-seq data, briefly, cellRanger single- cell software suite (v3.1.0) were used to
237 process and analysis scRNA-seq reads with the default parameters. Base calling files generated by Illumina
238 sequencer were demultiplexed according to the sample index. Sequences were then aligned to mouse reference
239 genome mm10 reference for whole transcriptome analysis. CellRanger 3.1.0 were used to conducted Filtering,
240 barcode counting, and UMI counting. For the following analysis multiple samples were aggregated.
241 Visualization, quality control, normalization, scaling, PCA dimension reduction, clustering, and differential
242 expression analysis were used by Loupe browser and Seurat (v4.0.0) to perform. Cells with a detected gene
243 number of <200 or >10000, mitochondrion gene percentage of <10, hemoglobin gene percentage of <10, and
244 doublet nucleus were removed by package Seurat (v4.0.0). Data were subsequently log-normalized (divided
245 by the total expression and amplified scaling factor 10,000) before further analyses. The remaining 22,274
246 cells were unsupervised clustered after aligning the top 30 dimensions and setting resolution to 0.9. Loupe
247 browser software (10X Genomics) were used to demonstrate UMAP and T-SNE. The identity for each cluster
248 was assigned according to marker genes for known cell types in the mouse liver. Differentially expressed
249 genes with absolute log-fold change greater than 1.5 and p value less than 0.05 were used for pathway and
250 network enrichment analysis on the Kyoto Encyclopedia of Genes and Genomes website (KEGG)
251 (<http://www.kegg.jp/>). The R package CellChat was used to infer potential intercellular communication among
252 different major cellular clusters^[27]. We first identified significant ligand-receptor pairs that mediate signaling.
253 CellChat then analyzed the information flows and revealed both incoming and outgoing communication
254 patterns for selected cells. To compare cellular interactions across different samples, we conducted separate
255 analyses on *Ripk1*^{fl/fl} and *Ripk1*^{4hep} mice liver samples. The inferred cellular interactions were then merged to
256 visualize and highlight the differences between the two samples.

257 **2.12 Statistical analysis**

258 All the results in this study are expressed as mean \pm standard error of the mean (SEM). Unpaired Student's
259 t test or one/two-way ANOVA (for more than 2 groups) analysis were used to calculate the differences in mean
260 values, using GraphPad Prism ® 8.2.1 software (San Diego, USA). $p < 0.05$ was considered as statistically
261 significant.

262 **Results**

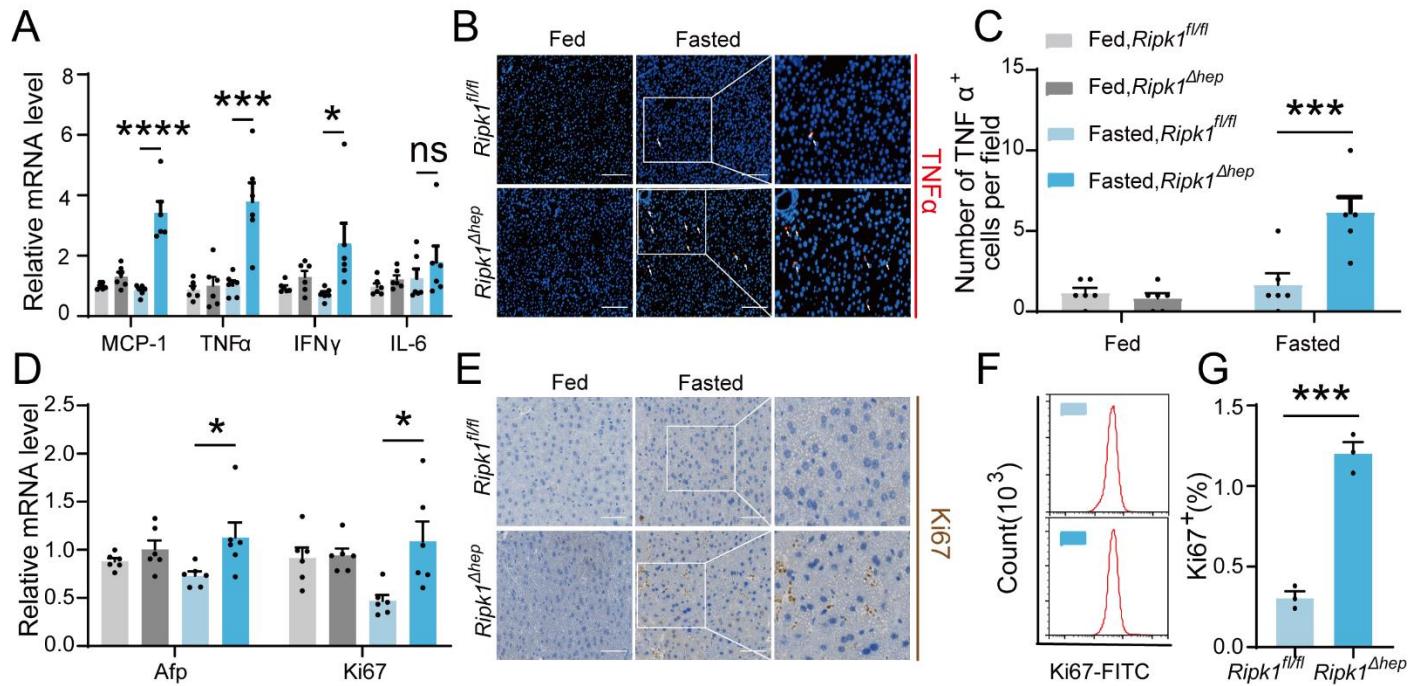
263 **3.1. RIPK1 deficiency in hepatocytes sensitizes the liver to short-term fasting-induced liver injury and**
264 **hepatocyte apoptosis**

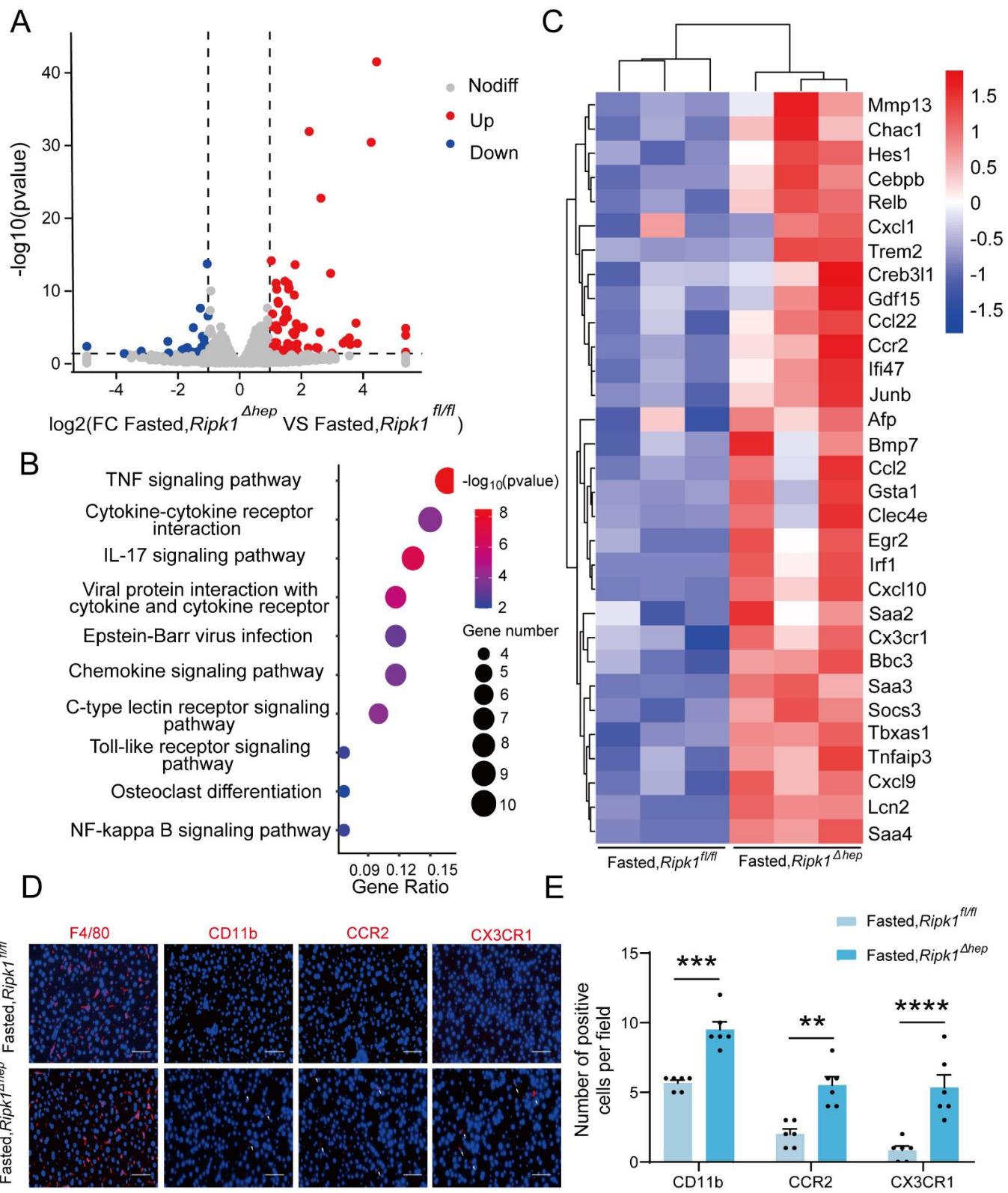

265 To investigate the physiological functions of RIPK1 in liver homeostasis, hepatocyte-specific RIPK1
266 deficient mice (*Ripk1*^{Δhep} mice) were generated by crossing *Ripk1*^{fl/fl} mice with Albumin-Cre transgenic mice.
267 Deletion of RIPK1 in hepatocytes was confirmed by the analysis of RIPK1 expression in the liver tissue (Fig.
268 S1A). Consistent with previous reports^[19], *Ripk1*^{Δhep} mice were normal and healthy. Then both *Ripk1*^{Δhep} mice
269 and their control littermates were subjected to short-term 12-hour fasting from 8:00 pm-8:00 am. To our
270 surprise, short-term fasting induced a significant increase in serum transaminase (alanine amino-transferase
271 (ALT) and aspartate amino-transferase (AST)) levels in *Ripk1*^{Δhep} mice but not in their wild type controls,
272 suggesting that RIPK1 deficiency sensitizes the liver to short-term fasting, inducing acute liver injury
273 (Fig. 1A&B). Since RIPK1 is a key player regulating cell death including caspase-8-mediated apoptosis and
274 RIPK3-MLKL-mediated necroptosis, we next examined whether the liver injury was due to cell apoptosis or
275 necroptosis. As Fig. 1C&D shown, the number of TUNEL-positive cells in the liver of *Ripk1*^{Δhep} mice was
276 significantly higher compared to the control mice. Cleaved caspase-3 and phospho-MLKL are widely
277 recognized as key proteins involved in the execution of apoptosis and necroptosis, respectively, and are
278 commonly used as markers to detect these types of cell death. However, we were unable to detect the
279 expression of cleaved caspase-3 and phospho-MLKL using the western blot, possibly due to their low
280 expression levels (Fig. S1A). Instead, we employed an immunofluorescence assay, which might be more
281 sensitive for such detections. As indicated in Fig. 1E&F, the number of cleaved caspase-3-positive cells was
282 significantly higher in *Ripk1*^{Δhep} mice compared to controls. In contrast, we did not observe any change in the
283 number of phospho-MLKL-positive cells in *Ripk1*^{Δhep} mice (Fig. 1G). These results suggest that fasting-
284 induced acute liver injury in *Ripk1*^{Δhep} mice might be due to apoptosis rather than necroptosis. To further
285 investigate which cell types were undergoing apoptosis, we conducted the co-staining with TUNEL and Alb
286 immunofluorescence, and the results demonstrated that most of TUNEL-positive cells co-localized with Alb-

287 positive staining (Fig. 1H), suggesting that short-term fasting induced apoptosis mainly in hepatic
288 parenchymal cells in *Ripk1^{Δhep}* mice.

289 It is known that fasting induces hypoglycemia and adipose tissue lipolysis, leading to the release of free
290 fatty acids, which are transported to liver to facilitate the production of ketone bodies through fatty acid beta
291 oxidation. We next investigated whether RIPK1 deficiency in hepatocytes affected the metabolic parameters
292 during fasting. As Fig. 1I-O shown, short-term fasting significantly decreased the blood glucose level, elevated
293 the plasma levels of triglycerides (TG), total cholesterol (TC), free fatty acids (FFA), β -hydroxybutyrate (BHB)
294 and hepatic triglyceride (TG), and there was no obvious difference between wild type control and *Ripk1^{Δhep}*
295 mice, suggesting that RIPK1 deficiency did not affect the lipid metabolism in liver during fasting.

296 We next investigated whether sex difference affects fasting-induced acute liver injury in *Ripk1^{Δhep}* mice.
297 Female *Ripk1^{fl/fl}* mice and their *Ripk1^{Δhep}* littermates were subjected to short-term fasting. Consistent with male
298 mice, we observed a significant increase in serum ALT/AST levels and hepatic TUNEL-positive cells in
299 *Ripk1^{Δhep}* female mice (Fig. S1B-F), suggesting that RIPK1 deficiency sensitizes the liver to short-term
300 fasting-induced liver injury and hepatocyte apoptosis in both male and female mice.


301 Considering the complex and contrasting roles of RIPK1's scaffold function and kinase activity, to
302 investigate whether the kinase activity of RIPK1 also contributes to maintaining hepatic homeostasis during
303 fasting, RIPK1 kinase-dead (*Ripk1^{K45A/K45A}*) mice were utilized and subjected for short-term fasting. As shown
304 in Fig. S2A&B, we observed no increase in serum ALT/AST levels in *Ripk1^{K45A/K45A}* mice after 12 hours of
305 fasting, suggesting that short-term fasting did not cause acute liver injury in these mice, unlike in *Ripk1^{Δhep}*
306 mice. Additionally, short-term fasting resulted in elevated plasma levels of triglycerides (TG), total cholesterol
307 (TC) and hepatic triglyceride (TG), with no significant differences between wild-type controls and
308 *Ripk1^{K45A/K45A}* mice (Fig. S2C-E). This suggests that the inactivation of RIPK1 kinase does not affect lipid
309 metabolism in the liver during fasting and this was consistent with *Ripk1^{Δhep}* mice.


311 **Figure 1.** RIPK1 deficiency in hepatocytes sensitizes the liver to short-term fasting-induced liver injury and hepatocyte
312 apoptosis. (A) Serum alanine amino-transferase (ALT) levels. (B) Serum aspartate amino-transferase (AST) levels. (C&D)
313 Representative images and quantification of TUNEL staining. Scale bar, 100 μ m. (E&F) Representative images and
314 quantification of liver sections stained with anti-cleaved caspase 3 antibody (red) and DAPI (blue). Scale bar, 100 μ m. (G)
315 Representative images of liver sections stained with anti- phospho-MLKL antibody (red) and DAPI (blue). Scale bar, 100
316 μ m. (H) Fluorescence microscopy images of the liver stained with anti-Alb antibody (red), TUNEL (green), and DAPI (blue).
317 Scale bar, 100 μ m. (I) Blood glucose levels. (J) Serum triglycerides (TG) levels. (K) Serum total cholesterol (TC) levels. (L)
318 Serum free fatty acids (FFA) levels. (M) Serum β -hydroxybutyrate (BHB) levels. (N) Hepatic triglyceride (TG) levels (mg/g
319 tissue). (O) Liver tissue was stained by Oil Red O. Scale bar, 100 μ m. The data was analyzed via two-way ANOVA or one-
320 way ANOVA. Data are expressed as mean \pm SEM (n = 6 per group). Asterisks denote statistical significance. ns, no significant,
321 * P < 0.05, *** P < 0.001, **** P < 0.0001.

322 **3.2. Short-term fasting induced hepatic inflammation and compensatory proliferation in *Ripk1*^{Δhep} mice**

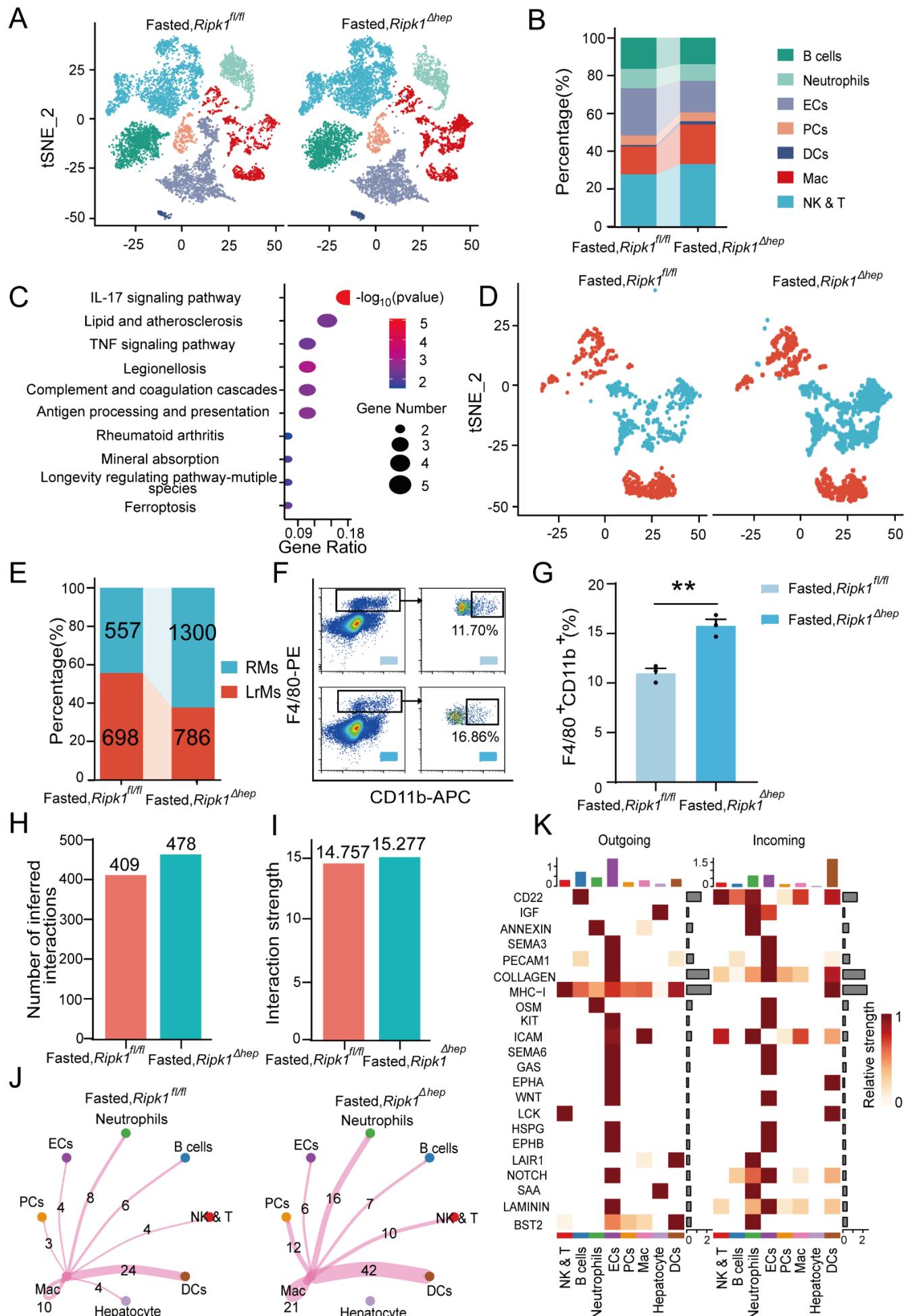
323 As a central hub for metabolism and many other physiological processes, liver coordinates a series of
324 adaptations to maintain tissue homeostasis during food and energy fluctuations. Normally, short-term or
325 temporary fasting will not disrupt liver homeostasis and cause tissue cell death and inflammation. However,
326 consistent with liver injury and hepatocyte death, short-term fasting induced hepatic inflammation in *Ripk1*^{Δhep}
327 mice. As demonstrated in Fig. 2A, the transcriptional expression of inflammatory markers, including MCP-1,
328 TNF- α , IFN- γ , and IL-6, was all significantly induced in *Ripk1*^{Δhep} mouse liver tissue, in contrast to wild type
329 littermates. We also examined the protein level of TNF α by histological staining (Fig. 2B&C). As liver damage
330 is known to activate compensatory proliferation, which is thought to promote hepatocarcinogenesis [28, 29], we
331 also evaluated the expression of AFP, a marker gene of hepatocellular carcinoma, and Ki67, a proliferation-
332 related antigen, and found a significant increase in both markers in *Ripk1*^{Δhep} mice after fasting (Fig. 2D). To
333 validate these findings at the protein level, we used immunohistochemistry of Ki67 to measure the rate of
334 compensatory proliferation in livers and found a significant increase in the number of Ki67-positive cells in
335 *Ripk1*^{Δhep} mice after 12 hours of fasting when liver injury was detected (Fig. 2E). Similarly, flow cytometric
336 analysis of liver tissue from mice after 12 hours of fasting also revealed a significant increase in the number
337 of Ki67-positive cells in *Ripk1*^{Δhep} mice compared to control mice. (Fig. 2F&G). In contrast, no changes were
338 observed in the transcriptional expression of inflammatory markers (MCP-1, TNF- α , IFN- γ , and IL-6) or
339 compensatory proliferation markers (Afp and Ki67) in the liver tissue of *Ripk1*^{K45A/K45A} mice during fasting
340 (Fig. S2F&G). Taken together, these results suggested that short-term fasting ignited inflammation and caused
341 compensatory proliferation in *Ripk1*^{Δhep} mice.

362 in hepatocytes did not greatly affect the gene expression profiles when food was available and there were 25
363 up-regulated and 54 down-regulated genes which were mostly associated with alcoholic liver disease, vascular
364 smooth muscle contraction and cardiomyopathy in *Ripk1^{Δhep}* mice compared to wild type control at fed state
365 (Fig. S3D&E). However, when subjected to metabolic fluctuation with short-term fasting, loss of RIPK1 in
366 hepatocytes amplified the affect, and there were additional 85 up-regulated and 29 down-regulated genes
367 identified in *Ripk1^{Δhep}* mice compared to the *Ripk1^{fl/fl}* group ($p < 0.05$, $|\log_2(\text{fold change})| \geq 1$) (Fig. 3A).
368 Pathway enrichment (KEGG) analysis revealed that these differentially expressed genes (DEGs) were
369 primarily enriched in inflammation-associated pathways, including TNF signaling pathway, IL-17 signaling
370 pathway, toll-like receptor signaling pathway and NF-kappa B signaling pathway, etc. (Fig. 3B). Cluster
371 analysis of the differentially expressed genes revealed that hepatocyte-specific deletion of RIPK1 significantly
372 induced the expression of many genes involved in the inflammatory process after fasting, including Ccl2,
373 Clec4e, Ikbke, and Tnfaip3 etc (Fig. 3C). Through further analysis of the transcriptome data, we observed a
374 significant increase in the expression chemokine-related genes involved in the recruitment of immune cells,
375 such as ITGAM, CCR2, and CX3CR1 (Fig. 3C). To validate these findings at the protein level, we conducted
376 immunofluorescence staining for F4/80, a marker for liver-resident immune cells, and CD11b, CCR2, and
377 CX3CR1, markers for liver-recruited immune cells. Our results demonstrated a significant increase in the
378 number of CD11b, CCR2, and CX3CR1 positive cells in *Ripk1^{Δhep}* mice after fasting, while F4/80 expression
379 remained unchanged (Fig. 3D&E). These results suggested that in contrast to the immunosuppression state of
380 liver during fasting, RIPK1 deficiency sensitize the liver into a proinflammatory state, with induced expression
381 of inflammation and immune cell recruitment-associated genes. Hepatic gene expression profile reflected the
382 dynamics of recruited macrophages into liver in *Ripk1^{Δhep}* mice. RIPK1 might be act as an important protein
383 to maintain the immune tolerant homeostasis in liver during metabolism changes.

384

385 **Figure 3.** Transcriptome sequencing of the liver tissue from *Ripk1*^{fl/fl} and *Ripk1*^{Δhep} mice. (A) The volcano plot of differentially
386 expressed genes was illustrated. The blue spots represent the down-regulated genes in *Ripk1*^{Δhep} group compared with control
387 (*Ripk1*^{fl/fl}) group, and the red spots represent the up-regulated genes in *Ripk1*^{Δhep} group. (B) The altered signaling pathways
388 were enriched by KEGG analysis. (C) The genes which expression were significantly altered in *Ripk1*^{Δhep} group were depicted
389 in the heat map. (D&E) Representative fluorescence microscopy images and quantification of the liver stained with anti-F4/80
390 antibody (red), anti-CD11b antibody (red), anti-CCR2 antibody (red), anti-CX3CR1 antibody (red) and DAPI (blue),

391 respectively. Scale bar, 100 μ m. The data was analyzed via two-way ANOVA or one-way ANOVA. Data are expressed as
392 mean \pm SEM (n = 6 per group). ns, no significant, * P < 0.05, *** P < 0.001, **** P < 0.0001.

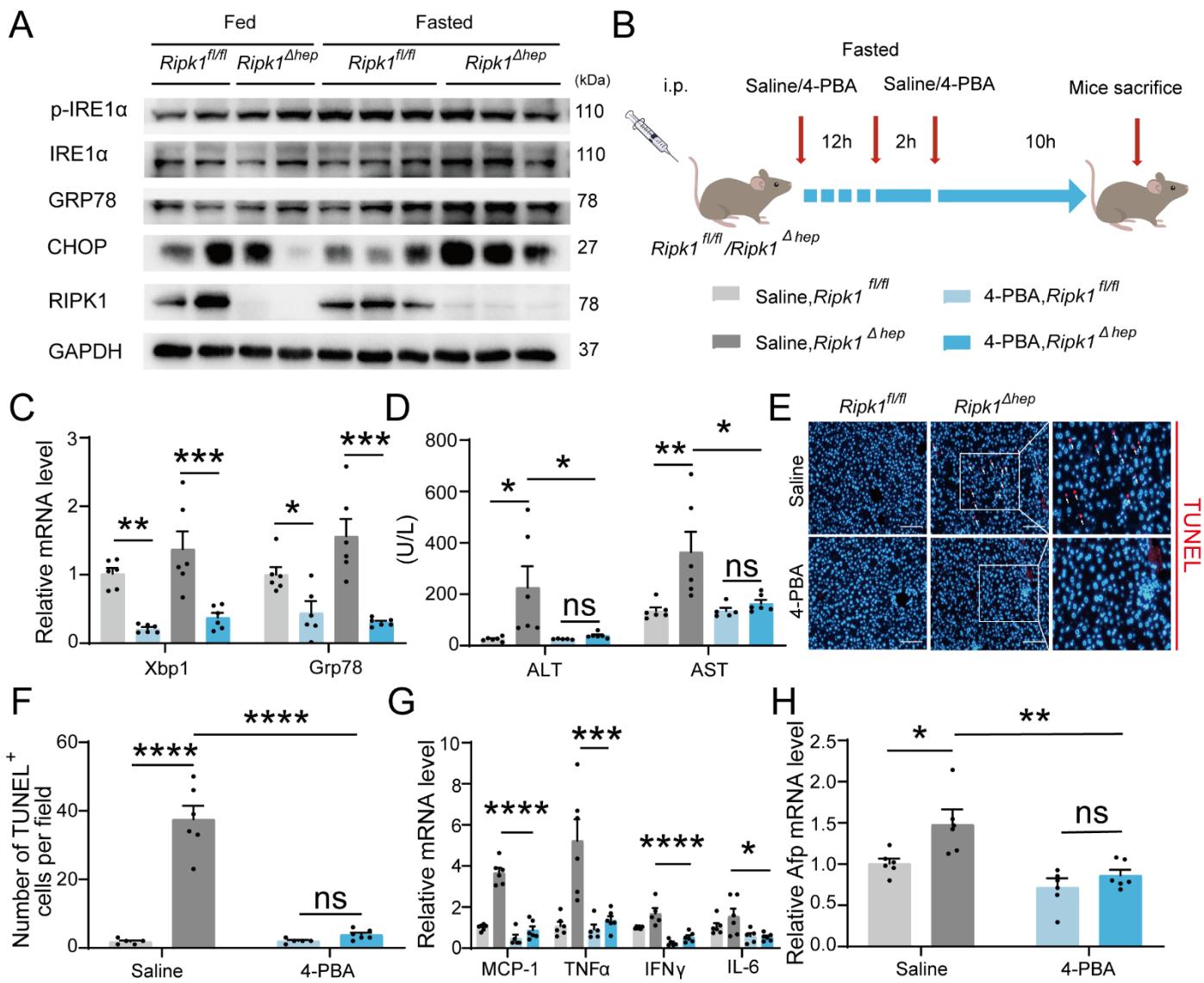

393 **3.4. Single-cell RNA sequencing analysis of the mouse liver tissue**

394 Transcriptomic profiling of whole liver tissue revealed that hepatic inflammation induced by fasting in
395 *Ripk1*^{Δhep} mice was likely arising from enhanced recruitment of immune cells to the liver. To confirm this
396 hypothesis, we performed single-cell RNA sequencing of liver non-parenchymal cells isolated from *Ripk1*^{Δhep}
397 or *Ripk1*^{fl/fl} mice upon fasting. A total of 22274 single-cell transcriptomes (10374 *Ripk1*^{fl/fl}; 11900 *Ripk1*^{Δhep})
398 were obtained, and thirty major clusters were identified by T-distributed stochastic neighbor embedding (t-
399 SNE) visualization, representing different cell types based on marker gene expression (Fig. S4A&B). As the
400 result shown, short-term fasting led to significant changes in the cellular composition of the liver in *Ripk1*^{Δhep}
401 mice, characterized by an increase in the number of cells in clusters 12, 14, 19, 22, and 28 and a decrease in
402 the number of cells in clusters 9, 11, 22, 26, and 29, compared to control mice (Fig. S4C&4D). In order to
403 further explore the significance of these changes, we identified 8 major cellular clusters in 12-hour fasted
404 control liver, including B cells (Cd19, Cd79a, Fcmr, Cd79b, Ebfl), neutrophils (S100a8, Csf3r, S100a9,
405 Mmp9), ECs (Igfbp7, Ptprb, Clec4g, Kdr), PCs (SDC1, CD138), DCs (Ly6d, Siglech, Rnase6, H2-Ab1),
406 NK&T cells (Nkg7, Xcl1, Cd3d, Gzma), macrophages (Adgre1, Csf1r, Sdc3, Ifitm2) and hepatocytes (Alb,
407 Saa1, Apoc1, Mup20) (Fig. 4A) ^[30, 31]. As the result shown, the numbers of macrophages and NK&T cells
408 were increased in the liver of *Ripk1*^{Δhep} mice compared to that of *Ripk1*^{fl/fl} mice upon short-term fasting,
409 suggesting the dynamics of recruited immune cells into liver in *Ripk1*^{Δhep} mice (Fig. 4B). We next focused on
410 liver macrophages, which might contribute to the fasting-induced inflammatory state in *Ripk1*^{Δhep} mice.

411 As expected, pathway enrichment (KEGG) analysis based on macrophage differential genes revealed that
412 these differentially expressed genes were primarily enriched in inflammation-associated pathways, including
413 IL-17 signaling pathway, Antigen processing and presentation and TNF signaling pathway, etc. (Fig. 4C). We
414 performed sub-clustering of macrophages to further dissect changes in the landscape of macrophages upon
415 RIPK1 deficiency in hepatocytes. This cluster can be further divided into two groups of cells representing
416 liver-resident macrophages (LrMs: KCs) and recruited macrophages (RMs) based on their marker gene
417 expression profile (Fig. 4D). LrMs were characterized by high expression of Adgre1 (encoding F4/80) and
418 Clec4f, whereas RMs exhibited high expression of Itgam (encoding Cd11b, an important marker gene of bone
419 marrow derived macrophages), Ccr2 (a chemokine receptor important for infiltration of circulating monocytes)
420 and CX3CR1^[32]. We observed that while the number of LrMs remained almost unchanged in *Ripk1*^{Δhep} mice
421 after short-term fasting compared to *Ripk1*^{fl/fl} mice, the number of RMs significantly increased (Fig. 4E). This

422 was further confirmed by flow cytometry analysis, which revealed a significant increase in the proportion of
423 F4/80⁺CD11b⁺ cells among all F4/80⁺ cells in *Ripk1*^{Δhep} mice compared to control mice (Fig. 4F&G). Taken
424 together, these results suggest that fasting-induced hepatic inflammation in *Ripk1*^{Δhep} mice is characterized by
425 altered hepatic gene expression profiles and changes in liver cell composition, marked by increased
426 recruitment of immune cells to the liver.

427 To gain further insights, we employed CellChat to analyze cell-cell communication pathways between
428 different cell types, focusing on ligand-receptor pairs [27]. We identified a total of 478 significant ligand-
429 receptor pairs across eight cell types, which were categorized into 53 signaling pathways (Fig. S4E & F). By
430 comparing the information flow of cell-cell communication between *Ripk1*^{fl/fl} and *Ripk1*^{Δhep} mice, we found
431 that both the number of ligand-receptor pairs and the interaction strength among the eight cell types were
432 higher in the liver tissue of *Ripk1*^{Δhep} mice compared to control mice. This was particularly evident in the
433 enhanced crosstalk between macrophages and other cell clusters (Fig. 4H-J). To analyze the detailed
434 communication within individual pathways, we performed a network analysis that was visualized using a
435 heatmap. This heatmap illustrated the signals between various cell types specifically enriched in *Ripk1*^{Δhep}
436 mice (Fig. 4K). These signals were predominantly linked to inflammation-related pathways, such as MHC I,
437 OSM, GAS, and HSPG, as well as proliferation-related pathways including IGF, KIT, NOTCH, and LAMININ.
438 Interestingly, we discovered that fasting amplified SAA signaling in the hepatocytes of *Ripk1*^{Δhep} mice. This
439 increase in SAA signaling was consistent with elevated transcription levels of SAA2, SAA3, and SAA4, as
440 evidenced by liver transcriptome data (Fig. 3C). The SAA released by hepatocytes has been reported to play
441 a role in regulating immune responses and tumor development [33, 34]. These above results suggest that fasting-
442 induced liver injury in RIPK1 knockout mice of hepatic parenchymal cells may exacerbate the inflammatory
443 response in liver tissue through enhanced SAA signaling.

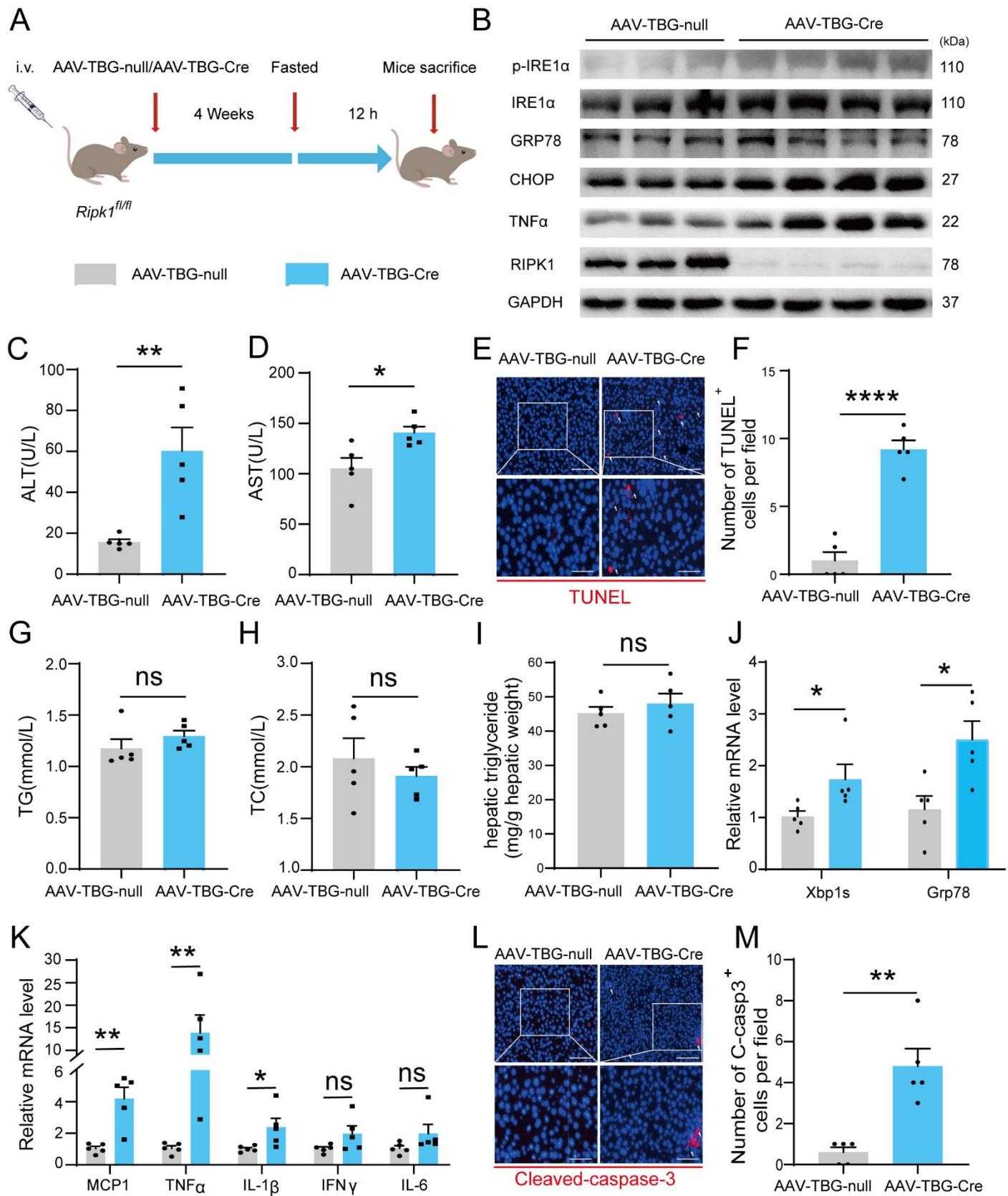


445 **Figure 4.** Single-cell RNA sequencing of liver tissue from *Ripk1^{fl/fl}* and *Ripk1^{Δhep}* mice. (A) t-SNE plots display color-coded
446 cell subtypes of cells in the *Ripk1^{fl/fl}* (left) and *Ripk1^{Δhep}* (right) mice liver tissues. (B) Bar charts display the proportion of
447 major cell subtypes within all different genotypes after fasting. (C) The altered signaling pathways associated with differential
448 gene changes in macrophages were enriched by KEGG analysis. (D) t-SNE plots display color-coded cell subtypes of
449 macrophages in the *Ripk1^{fl/fl}* (left) and *Ripk1^{Δhep}* (right) mice liver tissues. (E) Bar charts display the proportion of major cell
450 subtypes within macrophages after fasting. (F) Representative flow cytometry plots of F4/80-positive and CD11b-positive
451 cells in the liver tissue (n = 3 per group). (G) Relative increase of F4/80-positive and CD11b-positive cells in the liver tissue
452 of *Ripk1^{Δhep}* mice after 12 hours of fasting, compared to that in *Ripk1^{fl/fl}* mice. (n = 3 per group; unpaired t test). (H) Bar charts
453 display the number of interactions among cell types across the experiments. (I) Bar charts displaying the interaction strength
454 among cell types across the experiments. (J) Circle plots displaying the brand link pairs between macrophages and other cell
455 types, along with their corresponding event counts. (K) Heatmaps summarizing specific signals among interacting cell types
456 in the liver tissue of *Ripk1^{Δhep}* mice after 12 hours of fasting, compared to that in *Ripk1^{fl/fl}* mice.. Interactions are categorized
457 into outgoing and incoming events for specific cell types. The color gradient indicates the relative strength of these
458 interactions.(NK&T : Natural Killer cells and T cells; ECs : Endothelial Cells; PCs : Plasma Cells; Mac : Macrophages; DCs :
459 Dendritic Cells)

460 **3.5. Endoplasmic reticulum stress is required for fasting-induced liver injury and inflammation in** 461 ***Ripk1^{Δhep}* mice**

462 We next aimed to investigate the underlying mechanism of short-term fasting-induced liver injury and
463 inflammation in *Ripk1^{Δhep}* mice. It is known that fasting-induced lipolysis in peripheral adipose tissue will
464 lead to hepatic lipid burden, and excessive free fatty acids deposition has been shown to induce endoplasmic
465 reticulum stress (ER stress) in liver. In addition, previous studies have shown that RIPK1 promotes apoptosis
466 in response to unresolved ER stress [35]. As Fig. 1N&O indicated, the fasting strategy we employed indeed
467 increased the lipid content in liver tissue. We also detected the expression of ER stress markers in the liver
468 tissues of fed- or fasted-mice, respectively. As Fig. 5A indicated, short-term fasting indeed increased the
469 expression of CHOP, GRP78, IRE1a and phosphor-IRE1a at protein levels, suggesting that short-term fasting
470 caused ER stress in liver. To investigate whether ER stress is involved in the fasting-induced liver injury in
471 *Ripk1^{Δhep}* mice, *Ripk1^{fl/fl}* and *Ripk1^{Δhep}* mice were pretreated with the ER stress inhibitor 4-PBA and then the
472 mice were subjected to short-term fasting for 12 hours (Fig. 5B). As Fig. 5C shown, 4-PBA treatment
473 successfully reduced the expression of ER stress markers, confirming the efficiency of 4-PBA to inhibit ER
474 stress. Interestingly, 4-PBA pretreatment effectively reduced serum ALT/AST levels and the number of
475 TUNEL-positive cells in the liver of fasted *Ripk1^{Δhep}* mice, suggesting that ER stress was involved in fasting-

476 induced liver injury and hepatocyte apoptosis in *Ripk1*^{Δhep} mice (Fig. 5D-5F). Furthermore, 4-PBA
 477 pretreatment also effectively inhibited the increased expression of inflammatory markers (MCP-1, TNF- α ,
 478 IFN- γ and IL-6) and proliferation markers AFP in the liver tissue of fasted *Ripk1*^{Δhep} mice (Fig. 5G&H). These
 479 results indicated that 4-PBA not only prevented hepatocyte apoptosis and liver injury induced by fasting in
 480 *Ripk1*^{Δhep} mice, but also mitigated the hepatic inflammation and compensatory proliferation, suggesting that
 481 ER stress was involved in the process of fasting-induced liver injury and inflammation in *Ripk1*^{Δhep} mice.



482

483 **Figure 5.** Inhibitor of ER stress 4-PBA effectively rescued the fasting-induced liver injury and inflammation in *Ripk1*^{Δhep}
 484 mice. (A) Western blot analysis of p-IRE1 α , IRE1 α , GRP78, CHOP, RIPK1 and GAPDH in liver tissue. (B) Experiment
 485 schema. (C) Transcriptional expression of ER stress genes in mouse liver. (D) Serum alanine amino-transferase (ALT) and
 486 aspartate amino-transferase (AST) levels. (E&F) Fluorescence microscopy image and quantification of TUNEL staining.
 487 Scale bar, 100 μ m. (G) Expression (qPCR) of inflammatory genes in the livers. (H) Expression (qPCR) of Afp in the livers.
 488 The data was analyzed via two-way ANOVA or one-way ANOVA. Data are expressed as mean \pm SEM (n = 6 per group). ns,
 489 no significant, * P < 0.05, *** P < 0.001, **** P < 0.0001.

490 **3.6. AAV-TBG-Cre-mediated liver-specific RIPK1 knockout confirms fasting-induced acute liver injury**
491 **in mice**

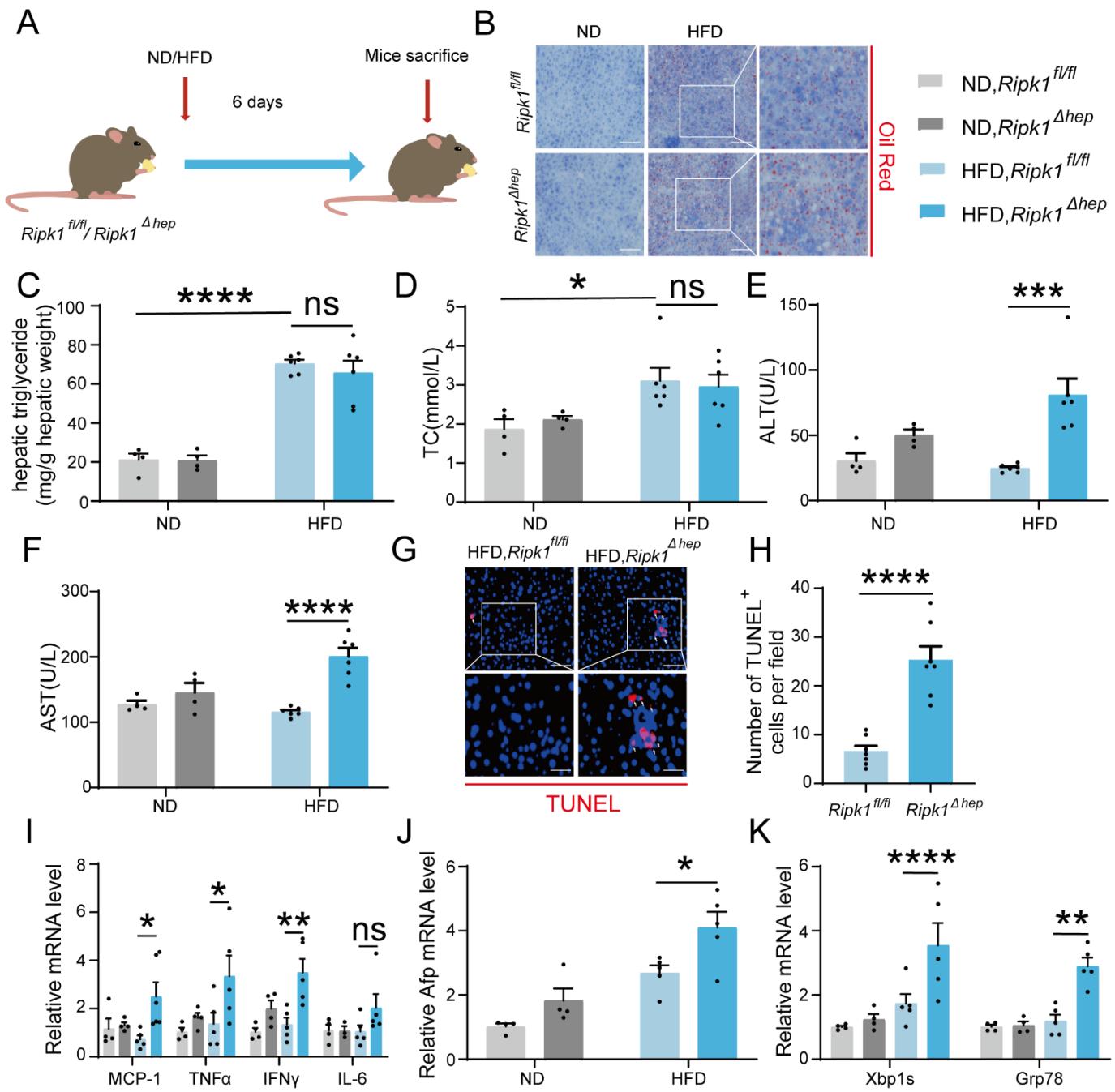
492 We employed another different approach to conditionally delete RIPK1 from hepatocytes by injecting
493 AAV8-TBG-Cre virus into *Ripk1^{fl/fl}* mice. Four weeks after virus injection, the mice were subjected for short-
494 term fasting as above studies, and then serum and liver tissue were harvested (Fig. 6A). Immunoblot analysis
495 confirmed that RIPK1 was specifically deleted in hepatocytes by AAV8-TBG-Cre virus treatment, in contrast
496 to the control virus AAV8-TBG-null (Fig. 6B). Our results indicated that AAV8-TBG-Cre virus-induced
497 RIPK1 deficient mice phenocopied *Ripk1^{Ahep}* mice, that hepatocyte-specific loss of RIPK1 sensitized the mice
498 to short-term fasting-induced acute liver injury and hepatocyte apoptosis (Fig. 6C-F). Consistently, there was
499 no significant alteration in serum TG, TC and liver TG levels of *Ripk1^{fl/fl}* mice injected with AAV8-TBG-Cre
500 or control AAV8-TBG-null virus (Fig. 6G-I). We also detected the expression of ER stress markers in the liver
501 tissue of AAV8-TBG-null or AAV8-TBG-Cre mice, respectively. As Fig. 6B&J indicated, short-term fasting
502 indeed increased the expression of CHOP, GRP78, IRE1 α and phosphor- IRE1 α at both mRNA and protein
503 levels, indicating that fasting induced the occurrence of ER stress in RIPK1-deleted livers. As demonstrated
504 in Fig. 6B&K, transcriptional expression of inflammatory markers, including MCP-1, TNF- α and IL-1 β , were
505 also significantly induced in AAV8-TBG-Cre-mouse liver tissue, in contrast to AAV8-TBG-null-mouse.
506 Consistent with previous results, the number of cleaved caspase-3-positive cells was significantly higher in
507 AAV8-TBG-Cre-mouse compared to controls (Fig. 6L&M). Taken together, these results suggested that
508 hepatocyte-specific loss of RIPK1, achieved by different strategies, made the mice fragile to metabolic
509 disturbance, and even short-term fasting would result in liver injury, hepatocyte cell death, hepatic
510 inflammation and ER stress.

511

512 **Figure 6.** AAV-TBG-Cre-mediated liver-specific RIPK1 knockout confirms fasting-induced acute liver injury in mice (A)

513 Schema of AAV8-TBG-Cre administration. (B) Western blot analysis of p-IRE1 α , IRE1 α , GRP78, CHOP, TNF α , RIPK1 and

514 GAPDH in liver tissue. (C) Serum alanine amino-transferase (ALT) levels. (D) Serum aspartate amino-transferase (AST)


515 levels. (E&F) Fluorescence microscopy image and quantification of TUNEL staining. Scale bar, 100 μ m. (G) Serum

516 triglycerides (TG) levels. (H) Serum total cholesterol (TC) levels. (I) Hepatic triglyceride (TG) levels (mg/g tissue). (J)
517 Expression (qPCR) of ER stress genes in the livers. (K) Expression (qPCR) of inflammatory genes in the livers. (L&M)
518 Fluorescence microscopy images and quantification of liver of *Ripk1^{Δhep}* and control mice stained with anti-cleaved caspase
519 3 antibody (red) and DAPI (blue). Scale bar, 100 μ m. The data was analyzed via two-way ANOVA or one-way ANOVA. Data
520 are expressed as mean \pm SEM (n = 6 per group). ns, no significant, * P < 0.05, *** P < 0.001, **** P < 0.0001.

521 **3.7. Short-term high fat diet feeding induced liver injury, hepatic apoptosis, inflammation and**
522 **endoplasmic reticulum stress in *Ripk1^{Δhep}* mice**

523 We next aimed to explore whether other metabolic disturbance exhibited similar effect as short-term
524 fasting in *Ripk1^{Δhep}* mice. It's known that short-term fasting leads to lipolysis in adipose tissue and temporary
525 lipid burden to hepatocytes. We therefore created a short-term high fat diet (HFD) feeding model in both wild-
526 type control and *Ripk1^{Δhep}* mice, to mimic the dietary-induced lipid metabolism disturbance. *Ripk1^{fl/fl}* and
527 *Ripk1^{Δhep}* mice were fed with HFD or normal diet (ND) for 6 days respectively (Fig. 7A). We observed a
528 significant increase in liver lipid deposition, liver triglyceride (TG), and serum total cholesterol (TC) in mice
529 fed with HFD compared to those fed with ND (Fig. 7B-D). Previous studies reported that short-term HFD
530 feeding was not enough to induce hepatic disorder, without obvious effects on the serum ALT/AST, liver
531 histology, and our results with *Ripk1^{fl/fl}* mice were in agreement with these findings (Fig. 7E&F). In contrast,
532 upon 6-day HFD feeding, the serum ALT/AST levels, hepatocyte apoptosis as measured by TUNEL and
533 hepatic inflammation were significantly elevated in *Ripk1^{Δhep}* mice (Fig. 7E-I). Additionally, HFD feeding
534 significantly induced the expression of AFP in *Ripk1^{Δhep}* mice, suggesting that HFD feeding promoted
535 tumorigenesis in *Ripk1^{Δhep}* mice (Fig. 7J). We also found that the expression of ER stress-related genes was
536 obviously increased in *Ripk1^{Δhep}* mice after 6 days of HFD feeding (Fig. 7K).

537 Collectively, these results suggest that hepatocyte RIPK1 is essential for the maintenance of hepatic
538 homeostasis against the disturbance induced by different metabolism behaviours, including fasting and
539 temporary high-fat diet feeding.

540

541

542

543

544

545

546

547

548

Figure 7. Short-term high fat diet feeding induced liver injury, hepatic apoptosis, inflammation and endoplasmic reticulum stress in *Ripk1*^{Δhep} mice. (A) Schema of HFD administration. (B) Liver tissue was stained by Oil Red O. Scale bar, 100 μ m. (C) Hepatic triglyceride (TG) levels (mg/g tissue). (D) Serum total cholesterol (TC) levels. (E) Serum alanine aminotransferase (ALT) levels. (F) Serum aspartate amino-transferase (AST) levels. (G&H) Fluorescence microscopy image and quantification of TUNEL staining. Scale bar, 50 μ m. (I) Expression (qPCR) of inflammatory genes in the livers. (J) Expression (qPCR) of Afp in the livers. (K) Expression (qPCR) of ER stress markers in the livers. The data was analyzed via two-way ANOVA or one-way ANOVA. Data are expressed as mean \pm SEM (n = 6 per group). ns, no significant, * P < 0.05, *** P < 0.001, **** P < 0.0001.

549

4 Discussion

550

In this study, we demonstrated that the specific deletion of RIPK1 in hepatocytes exacerbated the liver's vulnerability to metabolic disturbances, such as short-term fasting and high-fat diet feeding, resulting in increased liver damage, apoptosis, inflammation, and compensatory proliferation. We utilized single-cell RNA sequencing and bulk RNA sequencing to characterize the hepatic cellular profiles and transcriptional profiles in response to the physiological inflammation induced by the disruption of homeostasis. Furthermore, we presented evidence indicating the involvement of ER stress in sensitizing RIPK1-deleted liver tissue. In summary, we revealed a novel physiological role of RIPK1 as a scaffold in maintaining liver homeostasis during fasting and other nutritional disturbance. These findings could prove valuable in tailoring intermittent fasting or calorie restriction regimens for specific populations based on their *Ripk1* gene polymorphism or expression profiles.

560

Our work shed light on the intricate interplay between cell death, inflammation, and metabolism. While the pathophysiological roles of RIPK1 have primarily been studied in inflammatory diseases and pathogen infections, emerging evidence suggests its involvement in metabolism-related pathways [14, 15, 36]. Previous studies, including our own, have linked RIPK1's kinase activity to the pathogenesis of metabolic diseases like NASH, indicating a metabolic regulatory role of RIPK1 kinase [12, 13, 37]. Subsequently, UDP-glucose 6-dehydrogenase (UGDH) and UDP-glucuronate metabolism are found to suppress NASH pathogenesis and control hepatocyte apoptosis through inhibiting RIPK1 kinase activity, further solidifying the connection between RIPK1 kinase activity and metabolism during the pathogenesis of NASH [38]. In addition to its pathological roles, RIPK1's involvement in metabolism physiology has become increasingly apparent. Mei et al. found that the postnatal lethality of *Ripk1*^{-/-} mice was attributed to dysregulated aspartate metabolism, leading to impaired starvation-induced autophagy [14]. Zhang et al. recently reported that the classical energy sensor AMPK is able to phosphorylate RIPK1 at S416 in response to metabolic stress like glucose deprivation in vitro and fasting in vivo, and this phosphorylation of RIPK1 by AMPK represents a survival mechanism to keep the kinase activity of RIPK1 in check to prevent RIPK1 kinase-mediated cell death. AMPK deficiency sensitized cells to glucose deprivation-induced cell death [36]. Their results directly linked RIPK1 to key metabolism regulator AMPK. Together with our results, it suggested that hepatic AMPK-RIPK1 axis function as a mechanism to maintain liver homeostasis during suffering metabolic stress. Moreover, *Tak1*^{-/-} mice has been shown to exhibit similar phenotypes, suggesting that the key components in the complex I faction in the scaffold complex, all contribute to maintain tissue homeostasis [2]. These findings, together with our study, emphasize the critical role of RIPK1's scaffold function in sensing nutrient stress and maintaining metabolic

580 homeostasis during various starvation conditions, both in neonatal stages and adulthood. Zhang et al. also
581 noted that RIPK1 knockout MEFs were more susceptible to cell death induced by glucose starvation compared
582 to WT MEFs, further underscoring the importance of RIPK1 in nutrient stress responses.

583 Our study also posited that hepatocyte RIPK1 plays a crucial role in preventing liver damage and
584 inflammation triggered by metabolic stress. Prior investigations have indicated that deficiencies in TAK1 or
585 NEMO in hepatocytes result in spontaneous liver injury and carcinogenesis in mice, with a more severe
586 phenotype than that observed in RIPK1-deficient mice [28, 39, 40]. This is attributed to the deletion of TAK1 or
587 NEMO unleashing the kinase activity of RIPK1, leading to the activation of RIPK1 kinase and the associated
588 cell death pathways. Our findings, combined with these earlier studies, suggested that the RIPK1-TAK1-NF-
589 kB axis constitutes an essential scaffold platform necessary for the liver's adaptation to metabolic fluctuations.
590 Any improper inactivation or deletion of any component within this scaffold axis disrupts the delicate balance
591 between cell death, inflammation, and normal function, rendering the liver vulnerable to metabolic changes
592 and resulting in liver damage, hepatic inflammation, and compensatory proliferation.

593 Regarding the upstream signal of RIPK1, both short-term fasting and high-fat diet can increase free fatty
594 acids in the bloodstream, leading to their influx and accumulation in the liver. This accumulation may cause
595 lipotoxicity in hepatocytes through endoplasmic reticulum stress [41, 42]. Thus, we hypothesize that lipotoxic
596 stress might result in hepatocyte cell death. We observed that treatment with palmitic acid (PA) led to a higher
597 rate of apoptosis in *Ripk1*^{-/-} AML12 liver cells compared to wild-type control cells (data not shown). Moreover,
598 in contrast to organs such as the small intestine and lungs, the liver typically maintains immune tolerance and
599 does not incite inflammation in response to various endogenous and exogenous pathogen-associated molecular
600 patterns (PAMPs) or antigens present in the bloodstream. Recent years have witnessed the increasing attention
601 towards physiological inflammation, which implications have been greatly broadened [43, 44]. Our research
602 revealed that hepatocyte RIPK1 serves as a critical mechanism for preserving immune tolerance within the
603 liver microenvironment. Furthermore, we identify an instance of physiological inflammation induced by loss
604 of regulation in normal tissue. The physiological inflammation observed in RIPK1-deficient livers during
605 short-term fasting is milder but akin to hepatic inflammation induced by pathogenic infections and other
606 pathological conditions. It is characterized by the upregulation of typical molecules, including MCP-1, TNF-
607 α , IFN- γ , and IL-6 etc, and the recruitment of macrophages into liver tissue, indicating systemic adaptive
608 responses.

609 In summary, our study revealed the multifaceted role of RIPK1 in maintaining liver homeostasis in the
610 face of metabolic challenges, shedding light on the intricate interplay between cell death, inflammation, and

611 metabolism. Our findings provide new insights into the role of RIPK1 in various physiological contexts.

612 **5 Acknowledgement**

613 This study was supported by the National Science and Technology Major Project under Grant
614 2023ZD0508802 and the National Natural Science Foundation of China under Grant 22376100 and 31970897.

615
616 **Reference**

617 [1] Bernardo-Seisdedos G, Bilbao J, et al. Metabolic Landscape of the Mouse Liver by Quantitative (31) P
618 Nuclear Magnetic Resonance Analysis of the Phosphorome [J]. Hepatology, 2021, 74(1): 148-63.

619 [2] Inokuchi-Shimizu S, Park E J, et al. TAK1-mediated autophagy and fatty acid oxidation prevent
620 hepatosteatosis and tumorigenesis [J]. J Clin Invest, 2014, 124(8): 3566-78.

621 [3] Petersen M C, Vatner D F, et al. Regulation of hepatic glucose metabolism in health and disease [J]. Nat
622 Rev Endocrinol, 2017, 13(10): 572-87.

623 [4] Zoncu R, Efeyan A, et al. mTOR: from growth signal integration to cancer, diabetes and ageing [J]. Nat
624 Rev Mol Cell Biol, 2011, 12(1): 21-35.

625 [5] Fromenty B, Roden M. Mitochondrial alterations in fatty liver diseases [J]. J Hepatol, 2023, 78(2): 415-
626 29.

627 [6] Cotter D G, Ercal B, et al. Impairments of hepatic gluconeogenesis and ketogenesis in PPARalpha-
628 deficient neonatal mice [J]. Am J Physiol Endocrinol Metab, 2014, 307(2): E176-85.

629 [7] Mifflin L, Ofengeim D, et al. Receptor-interacting protein kinase 1 (RIPK1) as a therapeutic target [J].
630 Nat Rev Drug Discov, 2020, 19(8): 553-71.

631 [8] Clucas J, Meier P. Roles of RIPK1 as a stress sentinel coordinating cell survival and immunogenic cell
632 death [J]. Nat Rev Mol Cell Biol, 2023, 24(11): 835-52.

633 [9] Ofengeim D, Yuan J. Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell
634 death [J]. Nat Rev Mol Cell Biol, 2013, 14(11): 727-36.

635 [10] Yin H, Guo X, et al. TAB2 deficiency induces dilated cardiomyopathy by promoting RIPK1-dependent
636 apoptosis and necroptosis [J]. J Clin Invest, 2022, 132(4):

637 [11] Xu G, Li Y, et al. SARS-CoV-2 promotes RIPK1 activation to facilitate viral propagation [J]. Cell Res,
638 2021, 31(12): 1230-43.

639 [12] Tao L, Yi Y, et al. RIP1 kinase activity promotes steatohepatitis through mediating cell death and
640 inflammation in macrophages [J]. Cell Death Differ, 2021, 28(4): 1418-33.

641 [13]Majdi A, Aoudjehane L, et al. Inhibition of receptor-interacting protein kinase 1 improves experimental
642 non-alcoholic fatty liver disease [J]. *J Hepatol*, 2020, 72(4): 627-35.

643 [14]Mei X, Guo Y, et al. RIPK1 regulates starvation resistance by modulating aspartate catabolism [J]. *Nat*
644 *Commun*, 2021, 12(1): 6144.

645 [15]Najafov A, Luu H S, et al. RIPK1 Promotes Energy Sensing by the mTORC1 Pathway [J]. *Mol Cell*, 2021,
646 81(2): 370-85 e7.

647 [16]Rickard J A, O'Donnell J A, et al. RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and
648 emergency hematopoiesis [J]. *Cell*, 2014, 157(5): 1175-88.

649 [17]Silke J, Rickard J A, et al. The diverse role of RIP kinases in necroptosis and inflammation [J]. *Nat*
650 *Immunol*, 2015, 16(7): 689-97.

651 [18]Kelliher M A, Grimm S, et al. The death domain kinase RIP mediates the TNF-induced NF-kappaB signal
652 [J]. *Immunity*, 1998, 8(3): 297-303.

653 [19]Filliol A, Piquet-Pelorce C, et al. RIPK1 protects from TNF-alpha-mediated liver damage during hepatitis
654 [J]. *Cell Death Dis*, 2016, 7(11): e2462.

655 [20]Dannappel M, Vlantis K, et al. RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and
656 necroptosis [J]. *Nature*, 2014, 513(7516): 90-4.

657 [21]Imanishi T, Unno M, et al. RIPK1 blocks T cell senescence mediated by RIPK3 and caspase-8 [J]. *Sci*
658 *Adv*, 2023, 9(4): eadd6097.

659 [22]Lu Y, Leng Y, et al. Endothelial RIPK1 protects artery bypass graft against arteriosclerosis by regulating
660 SMC growth [J]. *Sci Adv*, 2023, 9(35): eadh8939.

661 [23]Filliol A, Farooq M, et al. RIPK1 protects hepatocytes from death in Fas-induced hepatitis [J]. *Sci Rep*,
662 2017, 7(1): 9205.

663 [24]Farooq M, Filliol A, et al. Depletion of RIPK1 in hepatocytes exacerbates liver damage in fulminant viral
664 hepatitis [J]. *Cell Death Dis*, 2019, 10(1): 12.

665 [25]Schneider A T, Gautheron J, et al. RIPK1 Suppresses a TRAF2-Dependent Pathway to Liver Cancer [J].
666 *Cancer Cell*, 2017, 31(1): 94-109.

667 [26]Aparicio-Vergara M, Tencerova M, et al. Isolation of Kupffer Cells and Hepatocytes from a Single Mouse
668 Liver [J]. *Methods Mol Biol*, 2017, 1639(161-71).

669 [27]Jin S, Guerrero-Juarez C F, et al. Inference and analysis of cell-cell communication using CellChat [J].
670 *Nat Commun*, 2021, 12(1): 1088.

671 [28]Yang L, Inokuchi S, et al. Transforming growth factor-beta signaling in hepatocytes promotes hepatic
672 fibrosis and carcinogenesis in mice with hepatocyte-specific deletion of TAK1 [J]. *Gastroenterology*, 2013,

673 144(5): 1042-54 e4.

674 [29] Inokuchi S, Aoyama T, et al. Disruption of TAK1 in hepatocytes causes hepatic injury, inflammation,
675 fibrosis, and carcinogenesis [J]. Proc Natl Acad Sci U S A, 2010, 107(2): 844-9.

676 [30] Sun X, Wu J, et al. Transcriptional switch of hepatocytes initiates macrophage recruitment and T-cell
677 suppression in endotoxemia [J]. J Hepatol, 2022, 77(2): 436-52.

678 [31] Zhao J, Zhang S, et al. Single-cell RNA sequencing reveals the heterogeneity of liver-resident immune
679 cells in human [J]. Cell Discov, 2020, 6(22).

680 [32] Krenkel O, Tacke F. Liver macrophages in tissue homeostasis and disease [J]. Nat Rev Immunol, 2017,
681 17(5): 306-21.

682 [33] Li M, Kim Y M, et al. Serum amyloid A expression in liver promotes synovial macrophage activation and
683 chronic arthritis via NFAT5 [J]. J Clin Invest, 2024, 134(5):

684 [34] Stone M L, Lee J, et al. Hepatocytes coordinate immune evasion in cancer via release of serum amyloid
685 A proteins [J]. Nat Immunol, 2024, 25(5): 755-63.

686 [35] Estornes Y, Aguilera M A, et al. RIPK1 promotes death receptor-independent caspase-8-mediated
687 apoptosis under unresolved ER stress conditions [J]. Cell Death Dis, 2014, 5(12): e1555.

688 [36] Zhang T, Xu D, et al. Metabolic orchestration of cell death by AMPK-mediated phosphorylation of RIPK1
689 [J]. Science, 2023, 380(6652): 1372-80.

690 [37] Yan L, Zhang T, et al. SENP1 prevents steatohepatitis by suppressing RIPK1-driven apoptosis and
691 inflammation [J]. Nat Commun, 2022, 13(1): 7153.

692 [38] Zhang T, Zhang N, et al. UDP-glucuronate metabolism controls RIPK1-driven liver damage in
693 nonalcoholic steatohepatitis [J]. Nat Commun, 2023, 14(1): 2715.

694 [39] Bettermann K, Vucur M, et al. TAK1 suppresses a NEMO-dependent but NF-kappaB-independent
695 pathway to liver cancer [J]. Cancer Cell, 2010, 17(5): 481-96.

696 [40] Luedde T, Beraza N, et al. Deletion of NEMO/IKKgamma in liver parenchymal cells causes
697 steatohepatitis and hepatocellular carcinoma [J]. Cancer Cell, 2007, 11(2): 119-32.

698 [41] Piccolis M, Bond L M, et al. Probing the Global Cellular Responses to Lipotoxicity Caused by Saturated
699 Fatty Acids [J]. Mol Cell, 2019, 74(1): 32-44 e8.

700 [42] Geng Y, Faber K N, et al. How does hepatic lipid accumulation lead to lipotoxicity in non-alcoholic fatty
701 liver disease? [J]. Hepatol Int, 2021, 15(1): 21-35.

702 [43] Meizlish M L, Franklin R A, et al. Tissue Homeostasis and Inflammation [J]. Annu Rev Immunol, 2021,
703 39(557-81).

704 [44] Medzhitov R. The spectrum of inflammatory responses [J]. Science, 2021, 374(6571): 1070-5.

705

706