
- 1 - 

GRASPS: a simple-to-operate translatome technology reveals omics-hidden disease-

associated pathways in TDP-43-related amyotrophic lateral sclerosis 

 

 

Ya-Hui Lin1,16, Jennifer E. Dodd1,2,16, Luisa Cutillo1,3, Lydia M. Castelli1, Simeon R. Mihaylov1,4, Karl 

Norris5,6, Adrian Higginbottom1, Matthew J. Walsh1,7, Johnathan Cooper-Knock1,8,9, J. Robin Highley1,8,9, 

Ilaria Granata10, Caroline A. Evans11, Mario R. Guarracino12, Susan G. Campbell5, Mark J. Dickman8,11, 

Pamela J. Shaw1,8,13,17, Marta Milo14,15,17 and Guillaume M. Hautbergue1,8,9,17 

 
1 Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of 

Sheffield, 385 Glossop Road, Sheffield S10 2HQ, United Kingdom.  
2 Present address: Motor Neurone Disease Association, Francis Crick House, 6 Summerhouse Road, 

Moulton Park, Northampton NN3 6BJ, United Kingdom. 
3 Present address: School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom. 
4 Present address: Kinases and Brain Development Laboratory, The Francis Crick Institute, 1 Midland 

Road, London NW1 1AT, United Kingdom. 
5 Biomolecular Sciences Research Centre, Industry and Innovation Research Institute, Sheffield Hallam 

University, Sheffield S1 1WB, United Kingdom. 
6 Present address: School of Molecular and Cellular Biology, Faculty of Biological Sciences, University 

of Leeds, Leeds LS2 9JT, United Kingdom. 
7 Present address: Potter Clarkson, The Belgrave Centre, Talbot Street, Nottingham NG1 5GG, United 

Kingdom. 
8 Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom. 
9 Healthy Lifespan Institute (HELSI), University of Sheffield, Western Bank, Sheffield S10 2TN, United 

Kingdom. 
10 High Performance Computing and Networking Institute (ICAR-CNR), National Research Council of 

Italy, 111 Via Pietro Castellino, 80131 Naples, Italy. 
11 ChELSI Institute, Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, 

United Kingdom. 
12 Laboratory of Algorithms and Technologies for Network Analysis, National Research University 

Higher School of Economics (HSE), Nizhny Novgorod, 136 Rodionova Ulitsa 603093, Russia. 
13 NIHR Sheffield Biomedical Research Centre, Sheffield Teaching Hospitals NHS Foundation Trust, 

Sheffield S10 2JF, United Kingdom. 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2024. ; https://doi.org/10.1101/2024.03.04.583294doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.04.583294
http://creativecommons.org/licenses/by-nd/4.0/


- 2 - 

14 Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield S10 

2TN, United Kingdom. 
15 Present address: AstraZeneca PLC, Oncology Data Science, Cambridge Biomedical Campus, 1 Francis 

Crick Avenue, Cambridge CB2 0AA, United Kingdom. 
16 These authors contributed equally: Ya-Hui Lin, Jennifer E. Dodd. 
17 These authors have jointly supervised the work. 

Correspondence: g.hautbergue@sheffield.ac.uk 

 

Abstract 

Transcriptomes and translatomes measure genome-wide levels of total and ribosome-associated 

RNAs. A few hundred translatomes were reported over >250,000 transcriptomes highlighting the 

challenges of identifying translating RNAs. Here, we used a human isogenic inducible model of TDP-

43-linked amyotrophic lateral sclerosis, which exhibits altered expression of thousands of transcripts, 

as a paradigm for the direct comparison of whole-cell, cytoplasmic and translating RNAs, showing 

broad uncoupling and poor correlation between disease-altered transcripts. Moreover, based on 

precipitation of endogenous ribosomes, we developed GRASPS (Genome-wide RNA Analysis of Stalled 

Protein Synthesis), a simple-to-operate translatome technology. Remarkably, GRASPS identified three 

times more differentially-expressed transcripts with higher fold changes and statistical significance, 

providing unprecedented opportunities for data modeling at stringent filtering and discovery of 

previously omics-missed disease-relevant pathways, which functionally map on dense gene regulatory 

networks of protein-protein interactions. Based on its simplicity and robustness, GRASPS is widely 

applicable across disciplines in the biotechnologies and biomedical sciences. 

 

Introduction 

Transcriptomics has been widely used to interrogate prokaryotic and eukaryotic transcriptomes over 

the past 25 years. However, up-regulation of mRNA levels does not necessarily correlate with 

increased levels of the corresponding proteins, but rather down regulation as cells attempt to 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2024. ; https://doi.org/10.1101/2024.03.04.583294doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.04.583294
http://creativecommons.org/licenses/by-nd/4.0/


- 3 - 

compensate for the down-regulated proteins. Genome-wide investigation of human gene expression 

involves quantifying the expression levels of ∼200,000 transcripts assigned to ∼58,000 genes, 

including 145,571 protein-coding transcripts expressed from 19,591 protein-coding genes1-3 using 

next generation RNA sequencing technologies (RNA-seq). Approximately 70,000 proteins are 

annotated in Ensembl4 while post-translational modifications, which modulate the function or activity 

of proteins, give rise to hundreds of thousands of protein variants5. On the other hand, the abundance 

of mammalian proteins is mostly regulated by their biosynthesis and turnover/degradation6, 7 while 

less than one third can be attributed to total mRNA concentrations8. The genome-wide identification 

of mRNA molecules associated with ribosomes in translatomes is thus expected to functionally reflect 

the directionality of protein expression changes in developing tissues, cellular homeostasis or 

diseases. Methodologies identifying translatomes include polysome profiling, ribosome profiling and 

ribosome affinity purification9. 

Polysome profiling, the first methodology developed 20 years ago to investigate the translatome 

of the yeast Saccharomyces cerevisiae, is based on the qualitative separation of polysomes through 

sedimentation in a sucrose gradient10. Extracted RNA molecules are then identified using qRT-PCR, 

micro-arrays or RNA-seq. More recently, ribosome profiling allowed genome-wide mapping of 

ribosomes onto RNA molecules at near nucleotide resolution through sequence identification of 

ribosome-protected RNA fragments generated upon limited RNAse treatment11, 12. This technique 

greatly informed our knowledge of the cellular translational activity, including association of 

ribosomes with short open reading frames in long intergenic non-coding (linc) RNA13, annotating 

coding parts of genomes12 and the finding that miRNAs mainly trigger decreased mRNA levels rather 

than translational inhibition in mammals14. On the other hand, translating ribosome affinity 

purification (TRAP) allows cell type-specific purification of tagged ribosome subunits15. It was 

particularly successfully applied in vivo to identify translatomes specific for various neuronal cell 

populations through promoter-restricted expression of GFP-, YFP- or HA-tagged ribosomal proteins 

L10a or L22 in rodent brains16-18. 
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However, current translatome technologies present technical challenges as illustrated by the 

relatively low number of publications compared to transcriptome studies (∼500 versus >250,000 over 

the past 20-25 years). Major drawbacks include9, 19: (i) low throughput; (ii) large volume and high 

variability in sucrose gradient-dependent size fractionation of polysomes; (iii) engineering of 

transgenic models overexpressing tagged ribosome subunits which likely alter functionality and does 

not allow purification of the cellular fraction of untagged ribosomes; (iv) requirement for "freezing" 

inhibitors, such as cycloheximide, to maintain ribosome-mRNA associations during the course of 

purification but which cause translational stress artefacts20. It is generally assumed that RNAs 

associated with ribosomes are translated into proteins. However, non-translated RNA molecules can 

be co-purified from paused/stalled ribosomes or by indirect binding to ribosomes via other RNA-

processing proteins. For example, the multi-functional DNA/RNA-binding protein TDP-43 (TAR DNA-

binding protein-43) interacts with ribosomes under stress21, 22, potentially contaminating ribosome 

preparations with hundreds of indirectly bound mRNA molecules transported by TDP-4323, 24. Non-

translating, initiating and elongating ribosomes are all purified from whole-cell extracts used to 

perform ribosome affinity purification or ribosome profiling. In the latter case, ribosome-protected 

RNA fragments are also particularly short (approximately 25-30 nucleotides) presenting added 

challenges for mapping reads to repeated sequences and alternatively spliced transcripts19. 

Despite the aforementioned limitations, translatomes present unique opportunities to interrogate 

the expression of genes at a functional level, benefiting from the high genome coverage permitted by 

RNA-seq (identifying 60-80% RNAs) while the dynamic molecular range of proteomes is limited by 

protein abundance and the lower number of proteins quantified by mass spectrometry25 (typically 

∼10% expressed proteins). The Human Protein Atlas project, a world-wide initiative started 20 years 

ago for the characterization of all human proteins, showed a low correlation between transcriptomes 

and proteomes in 29 human tissues in which the expression of genes was characterized through the 

identification of 18,072 transcripts and 13,640 proteins25 due to: (i) the aforementioned difference in 

the dynamic molecular ranges between RNA-seq and mass spectrometry leading to limited detection 
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of lower-expressed proteins; (ii) the number of molecules of proteins produced per molecule of mRNA 

depends on the abundance of the given mRNA i.e. higher for mRNAs with increased expression25. A 

few studies also reported a low correlation between transcriptomes and translatomes, showing 

extensive uncoupling across 20 paired mammalian transcriptome-translatome datasets26. More 

recently, gene ontology indicated that the network of genes built at transcriptional level is rewired at 

translational level27 while total mRNA levels are less dynamic than translating mRNAs28. Accordingly, 

the translatome is better correlated with the proteome in a parasite study29. 

Here, we developed a novel translatome methodology easily scalable to any biochemistry or 

molecular biology laboratory and we provide 4 high-depth RNA-seq datasets as a resource for the 

direct comparison of total, cytoplasmic and translating RNAs using transcriptome and translatome 

approaches. For this investigation, we engineered human cells with isogenic inducible expression of 

TDP-43 Q331K, a DNA/RNA-binding mutant protein causing the neurodegenerative disease 

amyotrophic lateral sclerosis (ALS)30 and which causes altered expression of hundreds to thousands 

of RNAs in mouse and human ALS brains31-35. Despite a large number of transcriptome studies, the 

functional consequences of widespread dysregulation of RNA metabolism in ALS remain poorly 

investigated. 

 

Results 

Engineering a human isogenic TDP-43 ALS-inducible cell model. We engineered a plasmid expressing 

the TDP-43 Q331K ALS mutant30 under a tetracycline-regulated cytomegalovirus (CMV) promoter 

prior to integration into a human embryonic kidney (HEK) cell line harboring the Flp-In™ T-REx system 

which allows the generation of stable cell lines by homologous recombination at the engineered Flp 

Recognition Target (FRT) locus (Methods). The backbone plasmid was also integrated into the HEK 

Flp-In™ cells to generate an isogenic sham control line36-40. Adding tetracycline to the cell culture for 

48 hours leads to specific promoter de-repression and induction of the TDP-43 Q331K mutant protein 

detected alongside the endogenous TDP-43 protein (Fig. 1a). Quantification showed moderate 
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overexpression with a 3-fold increase in total TDP-43 proteins and ALS-relevant co-expression of both 

wild type and mutant proteins (Fig. 1b). The transcriptional induction of TDP-43 Q331K was further 

validated in tetracycline-treated lines at mRNA level (Fig. 1c). Immunofluorescence microscopy 

further confirmed the low level of TDP-43 overexpression upon induction, while endogenous TDP-43 

and TDP-43 Q331K proteins remain predominantly nuclear (Fig. 1d), in agreement with a previous 

study which reported a mass spectrometry investigation of TDP-43 complexes in isogenic HeLa Flp-

In™ cells41. The growth of non-induced and tetracycline-induced sham control and TDP-43 Q331K cell 

lines was measured over 15 days, showing that expression of TDP-43 Q331K specifically inhibits the 

cell proliferation of this model of TDP-43-mediated cytotoxicity (Fig. 1e).  

 

Widespread and uncoupled alteration of total, cytoplasmic and translating RNAs in human TDP-43 

ALS-inducible cells. Sham control (Ctrl) and TDP-43 Q331K (ALS) cell lines were induced with 

tetracycline for 48 hours prior to cellular fractionation and purification of whole-cell, cytoplasmic and 

polysome-associated RNAs. Total RNAs were extracted from whole lysed cells while the cytoplasmic 

fraction was isolated upon hypotonic lysis40, 42, 43. The quality of the fractionation was validated by the 

absence of detectable nuclear contamination in the cytoplasmic fractions probed with the chromatin 

remodeling factor SSRP1 (Supplementary Fig. 1a). We also performed polysome profiling experiments 

to isolate the actively translating fraction of RNAs (Supplementary Fig. 1b). RNA samples were used 

for the preparation of RNA sequencing libraries which were subjected to high depth next generation 

Illumina sequencing (Methods) covering the human transcriptome and translatome by 40-fold and 

400-fold respectively – 10% of the genome being transcribed44, 45 while less than 2% is considered 

translated46 (Supplementary Data 1). Over 34,000 annotated transcripts were sequenced in the whole 

cell transcriptome (WCT), cytoplasmic transcriptome (CyT) and polysome profiling (PoP) experiments 

(Supplementary Data 2 tabs 1-3). Protein-coding mRNAs (83%), nonsense-mediated decay (NMD) 

transcripts (11-12%) and long non-coding (lnc) lncRNAs (4-5%) were predominantly sequenced with 

the same proportion in all datasets, providing further evidence that many lncRNAs are translated or 
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regulate translation47, 48 while in agreement with these data, NMD is linked to translation 

termination49 (Fig. 1f). These transcript isoforms map 11,889 genes which were commonly sequenced 

across all conditions, thus validating the identification of high-quality datasets without notable 

sequencing bias (Fig. 1g). Sequencing reads were aligned on GRCh38 (hg38) using Bowtie50. Changes 

in RNA expression levels were quantified between the transcriptomes and translatomes of the 

tetracycline-induced Ctrl and ALS cell lines using BitSeq51 and Limma52. For the statistical analysis, 

differentially-expressed (DE) transcripts were filtered for fold change (FC) log2FC>1 (equivalent to 

FC>2), p-value p<0.05 and false discovery rate FDR<0.2. Lists of differentially-expressed transcripts 

and genes (DEGs) are provided in Supplementary Data 3 tabs 1-3 for annotated transcripts in 

WCT/CyT transcriptomes and PoP translatomes respectively. Expression levels of 2,200–2,750 total, 

cytoplasmic and translating RNAs are altered upon induction of TDP-43 Q331K in the human ALS 

disease model with 900–1,500 transcripts being either up- or down-regulated in each dataset (Fig. 

1h). Overall, the expression of 1434, 2101 and 1724 genes is altered at total, cytoplasmic and 

translating levels (Supplementary Data 3, columns labeled DEGs) with only 20% or 30% of gene 

expression changes shared across all or with another dataset respectively, in agreement with recent 

reports26-28 (Fig. 1i). However, this study also highlights a poor correlation between cytoplasmic 

transcriptomes and translatomes which are counter-intuitively distant from each other. Increasing the 

stringency of filtering using higher FC thresholds leads to drastic reduction of significantly altered 

genes in all datasets with the identification of only 150-200 DEGs at FC>4 and 20 or less at FC>8 (Fig. 

1i), a known bottleneck of RNA-seq studies typically requiring filtering data on low fold change 

thresholds of 1.3-2.0 which may not reflect significant biological effects. 

 

GRASPS: a translatome technology based on stringent pelleting of ribosomes. Despite higher 

statistical power for the above polysome profiling with a genome coverage of 400 fold compared to 

40 fold for the transcriptomes (less than 2% of the genome considered coding46 over 10% 

transcribed44, 45; Supplementary Data 1), the number of DEGs did not noticeably increase for the PoP 
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translatome (Fig. 1h, Supplementary data 3 tabs 1-3). Other translatome studies related to 

polysome26, ribosome53 or TRAP54 profiling experiments identified a similar range of expression 

changes in varied models. We hypothesized that higher experimental variability in longer and more 

complex to operate translatome technologies is a potential factor for reduced statistical power and 

identification of translating RNA changes. Therefore, to avoid using a translation inhibitor and sucrose 

gradients or immunoprecipitation, we developed an alternative approach based on ultraviolet (UV) 

irradiation and stringent pelleting of ribosomes covalently crosslinked to RNAs. Briefly, this protocol 

involves hypotonic lysis of cells to isolate a cytoplasmic fraction which is subjected to UV irradiation 

and differential centrifugation in high salt to remove mitochondria and further pelleting of 

ribosome:RNA complexes through a sucrose cushion. This protocol is simple and time efficient with 

ribosome-associated RNA being purified in one tube within 6 hours, in contrast to approximately 24-

30 hours and multiple RNA samples per condition while using a sucrose gradient in polysome profiling 

(Fig. 2, Methods). The buffer conditions were optimized for selective enrichment of actively 

translating RNA molecules using transient incubation of human HEK cells at 42˚C, which is well-known 

to induce rapid transcription and translation of the HSPA1A mRNA encoding cytoplasmic-inducible 

heat shock protein HSP72/HSP70.155, 56. Accordingly, a time course experiment showed that 

expression levels of the HSP72 protein is markedly increased 2 hours after heat shock, while those of 

the control GAPDH protein (glyceraldehyde-3-phosphate dehydrogenase) are not changed (Fig. 3a). 

Quantification of western blots and total RNA levels by qRT-PCR indicated that both HSP72 protein 

and HSPA1A mRNA are induced by approximately 5-fold over the 2-hour time course, while control 

GAPDH levels do not significantly vary (Fig. 3b-c). Consistently, GRASPS measured a 5-fold induction 

in the translation of the HSPA1A mRNA while translating GAPDH transcripts remained unaltered after 

the heat shock (Fig. 3d). Mass spectrometry analysis of GRASPS-purified complexes identified 120 

proteins (Supplementary Data 4). Strikingly, 70 and 6 of these were respectively ribosomal proteins 

and involved in translation. Overall, the 70 ribosomal proteins and eukaryotic elongation factor 2 

(eEF2) map over the 82 subunits of the human 80S ribosome structure57, highlighting a high degree of 
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purity and stoichiometry (Figs. 3e-f). Gel electrophoresis analysis confirmed enrichment in typically 

low molecular weight ribosomal proteins, while it also validated the mass spectrometry data and 

stringent purification of ribosomes with absence of detectable accessory proteins such as eukaryotic 

initiation translation factor eIF4A (Fig. 3g). 

 

Applying GRASPS to the identification of gene expression changes in the human TDP-43 ALS-

inducible cell model. Tetracycline-induced control and TDP-43 Q331K cell lines were subjected to 

GRASPS and RNA-seq with a translating genome coverage of 180-fold (Supplementary Data 1). 

Approximately 30,000 annotated transcripts were sequenced in GRASPS (Supplementary Data 2 tab 

4). Compared to previous datasets, the same proportion of protein-coding mRNAs (84%), NMD 

transcripts (10%) and lncRNAs (5%) were sequenced (Fig. 3h). These transcript isoforms map 11,643 

genes which were commonly sequenced across all conditions without notable sequencing bias (Fig. 

3i). Lists of differentially-expressed annotated transcripts and genes, quantified using same thresholds 

as above, are provided in Supplementary Data 3 tab 4. In contrast to the transcriptomes and the PoP 

translatome, GRASPS identified over 3 times more DEGs at FC>2 with expression levels of 4077 and 

2583 transcripts respectively up- and down-regulated upon induction of TDP-43 Q331K in the human 

ALS disease model (Fig. 3j). Strikingly, the vast majority of transcripts are all significantly differentially-

expressed (red dots) having very low p-values and high fold changes compared to the transcriptomes 

or the PoP (Fig. 1h) that show a large proportion of non-significantly differentially-expressed 

transcripts (blue and green dots). Overall, 4406 annotated and 4117 protein-coding genes were 

differentially expressed in GRASPS. Reminiscent of the PoP translatome integration in Fig. 1i, only a 

small proportion of GRASPS-identified DEGs are shared with the transcriptomes (Fig. 3k). However, in 

contrast to the striking reduction observed while increasing the filtering threshold in the other 

datasets, the expression of over 650 altered genes is still significantly quantified as dysregulated with 

FC>8 in GRASPS (Fig. 3k), thus allowing the characterization of highly-altered pathways and gene 

expression changes which are expected to have higher functional relevance at the biological level. 
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Integrating GRASPS translatomes with transcriptomes and polysome profiling. Reminiscent of the 

above RNA-seq investigations, 11,581 genes were commonly sequenced across the 4 datasets 

(Supplementary Fig. 2). Compared with the WCT transcriptome and the Venn diagrams in Figs. 1i and 

2k, GRASPS identified approximately 3, 5, 10 and 26 times more gene expression changes when DEGs 

were respectively filtered for fold changes over 2.0, 2.8, 4.0 and 8.0 while the sizes of the CyT 

transcriptome and PoP translatome remained similar to WCT ranging between 0.9 - 1.4 (Fig. 4a). This 

indicates that GRASPS is a much more sensitive technology compare to transcriptomics and profiling 

of actively translated RNAs. The majority of gene expression changes is rather specific for the 

transcriptomes or translatomes, showing broad uncoupling between total, cytoplasmic and 

translating RNAs. 30-55% gene expression changes are only quantified in one of the transcriptomes 

or the PoP translatome while, due to its larger size, 75-90% of DEGs are only identified in GRASPS (Fig. 

4b). Interestingly, GRASPS and CyT share the highest number of DEGs with the same direction of 

changes (20.8%) while only 2.9% with the WCT, in expectation with the cytoplasmic pool of RNAs 

reflecting better the translated fraction. Only 113 genes over the dysregulation of thousands are 

commonly affected in all datasets (Supplementary Fig. 3, Supplementary Data 5 tab 1). To assess the 

degree of correlation between the datasets, the differential expression of genes quantified in WCT, 

CyT and PoP were tabulated alongside the lists of GRASPS or PoP DEGs and further sorted out by fold 

changes in PoP or GRASPS respectively. Two conserved blocks of 430 and 356 up- and down-regulated 

genes are commonly identified between the 2 translatomes, while the transcriptomes show distinct 

patterns with approximately half of the translatome changes not detected as differentially-expressed 

(Fig. 4c). On the other hand, sorting out the differential gene expression tabulated alongside GRASPS 

or PoP by fold changes in WCT highlights altered expression of two conserved blocks of 280 and 266 

up- and down-regulated genes commonly detected in the translatomes but not differentially-

expressed in the WCT (Fig. 4d). Overall, this analysis showed that the expression levels of 546 out of 

786 (69%) of genes commonly detected as altered in the disease model by both translatome 
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technologies were, however, not detected to be changed at the global transcriptome level. 

Reciprocally, the differential expression of genes quantified in CyT, PoP and GRASPS was tabulated 

alongside WCT and sorted out by fold changes in PoP or GRASPS respectively. Two blocks of 373 and 

335 up- and down-regulated genes in WCT were not changed in the translatomes, indicating that 47% 

of differentially-expressed transcripts in the global transcriptome (708 out of 1,521 changes) are not 

changed in the translatomes (Fig. 4e). The full lists of gene IDs and fold change values in the clustered 

heatmaps presented in Figs 4c-e are provided in Supplementary Data 5 tab2. Taken together, this 

analysis validated that both translatomes were related, with a vast majority of gene expression 

changes not observed in the global transcriptome while reciprocally half of the RNA expression 

changes in the transcriptome did not occur at the translating level. 

 

GRASPS reveals a greater number of functionally better-defined biological processes. A gene 

ontology (GO) investigation was performed with the protein-coding changes identified in the different 

datasets to further interrogate the apparent lack of correlation between translatomes and 

transcriptomes. Since, some transcript isoforms are up-regulated while others corresponding to the 

same gene are down-regulated, we performed the ontology on transcripts with either increased or 

decreased expression changes at gene level using the functional annotation clustering tool in DAVID 

(Database for Annotation, Visualization and Integrated Discovery)58, 59 for each of the differential 

expression change thresholds (Supplementary Data 6). Enrichment scores relating to biological 

processes in the most prominent clusters were plotted in heatmaps to statistically summarize the 

ranking of altered pathways in each of the transcriptomes, PoP and GRASPS at fold changes over 2.0, 

2.8, 4.0 and 8.0 for up- and down-regulated gene expression changes (Figs. 5a and 5b respectively). 

First of all, the same pathways are found to be enriched in either up- or down-regulated DEGs, in line 

with both increased or decreased expression of various gene products being involved in the regulation 

of a biological process, and in agreement with ALS leading to dysregulation of multiple biological 

processes rather than specifically affecting just one or a few from functioning. Cellular stress 
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responses, cell death/apoptosis, DNA damage/repair, transcription, RNA splicing, cell 

cycle/cytoskeleton, proteolysis, autophagy and neuronal-related are known to be altered in ALS and 

have previously been reported in previous transcriptomics studies60-62. Interestingly, additional 

pathways relevant to ALS, but not typically identified in transcriptomics studies, are also highlighted 

by GRASPS. They relate to cytoplasmic stress granules, mRNA transport, cell aging or neuron death, 

together with others not thoroughly investigated in ALS, such as mRNA export from nucleus, mRNA 

stabilization/destabilization, translation initiation and tRNA biosynthesis. Moreover, this investigation 

confirmed that GRASPS is more sensitive, allowing detection of an increased number of biological 

pathways with higher confidence at higher fold changes. As expected, the functional annotation 

clustering combining both up- and down-regulated DEGs, except for the allowed inclusion of only 

3,000 GRASPS DEGs (over 4,117), highlighted the same dysregulated pathways (Supplementary Data 

6). 

The KEGG (Kyoto Encyclopedia of Genes and Genomes)63 database was also interrogated to 

define pathways at high organism or biological level. Pathways involved in neurodegeneration and 

cancer are often shared in an opposite state of alteration and cancer-related terms are typically 

retrieved in ALS transcriptomes as in our present study (Fig. 5c). However, neurodegeneration is also 

identified by both translatomes while GRASPS strikingly showed high enrichment in 

neurodegenerative disease terms including amyotrophic lateral sclerosis (Fig. 5c), highlighting once 

again its higher sensitivity in the detection of relevant disease-associated pathways. The expression 

of genes is regulated in networks with gene products, the proteins, physically or functionally 

interacting with one another64-66. We further used STRING67 to functionally map our lists of DEGs for 

the different fold change thresholds in protein association networks based on known experimentally-

evidenced protein-protein interactions. Approximately half of the DEGs identified by GRASPS for FC>2 

and 2.8 strikingly matched with cellular protein networks, while a smaller proportion of DEGs with a 

much smaller proportion of total interactions are included in networks formed by the transcriptomes 

or the PoP translatome (Fig. 5d, Supplementary Fig. 4), showing that the higher number of expression 
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changes quantified by GRASPS does also better correlate with gene regulatory networks and 

regulation/alteration of biological processes at a functional level. Interestingly, over 30% of GRASPS 

DEGs are still included in functional protein-association networks for FC>8 while no network is 

detected for WCT, CyT or PoP. Overall, GRASPS respectively shows over 5-, 15- and 60-fold enrichment 

in functional protein networks compared with the other datasets for fold changes >2, >2.8 and >4 

respectively (Fig. 5e). No data is available for FC >8 since the few DEGs identified in the transcriptomes 

and PoP translatome are not sufficient to map onto any functional network at this high stringency of 

filtering (Supplementary Fig. 4). Taken together, our data highlight that both TDP-43 Q331K ALS-linked 

up-regulation and down-regulation of transcripts contribute to the same altered biological processes 

consistent with our current knowledge of gene expression regulation/alteration at pathway levels 

involving integrated modules of genetically and/or physically interacting proteins68, 69. Strikingly, 

approximately half of the differentially-expressed transcripts identified by GRASPS form gene 

regulatory networks. 

 

ALS-altered response to oxidative stress and retinoic acid regulated differentiation of neurons  

To represent the identified IDs of DEGs across datasets, we generated scatter plots which compare 

the fold changes of transcripts commonly-altered within 2 datasets: (i) CyT versus WCT (Fig. 6a), (ii) 

PoP versus WCT or CyT (Fig. 6b) and (iii) GRASPS versus WCT, CyT or PoP (Fig. 6c). As highlighted in 

the volcano plots and Venn diagrams in Figs. 3j-k, GRASPS identified an increased number of DEGs 

spanning higher fold changes compared to the other datasets which identified less ALS-altered 

transcripts with lower fold changes. TARDBP mRNAs encoding TDP-43 are up-regulated in all datasets 

in full expectation with the tetracycline-mediated induction of TDP-43 Q331K which was validated in 

the ALS-inducible cell model at both RNA and protein levels (Figs. 1a-c). On the other hand, the 

Spearman correlation values confirm the broad uncoupling across datasets. The much higher number 

of DEGs in GRASPS also contributes to increasing this effect including when comparing to the PoP 
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despite the two conserved blocks of 430 and 356 up- and down-regulated genes commonly identified 

in both translatomes (Fig. 4c). 

 GSTP1 (Glutathione S-Transferase Pi 1), one of the most up-regulated transcripts at total, 

cytoplasmic and translating levels, encodes a protein counteracting oxidative stress but also 

associated with a role in susceptibility to cancers and neurodegenerative diseases70, 71. On the other 

hand, the expression levels of the most down-regulated translating transcript, CRABP1 (Cellular 

Retinoic Acid Binding Protein 1), recently reported to be decreased in ALS and motor neuron 

degeneration72, 73, are not detected as differentially expressed in the whole-cell or cytoplasmic 

transcriptomes. The genome-wide investigation also predicted that the translation but not the total 

or cytoplasmic expression levels of VDAC1-3 (voltage dependent anion channel) and IPO5 (importin 5) 

transcripts are increased, while the translation of XPO1 (exportin 1, also known as CRM1 for 

chromosomal region maintenance 1) is reduced in the ALS-inducible cell model. Interestingly, the 

nucleocytoplasmic transport pathway which involves XPO1 and IPO5 is affected in neuronal aging74 

while overexpression of VDAC1 was recently reported in an Alzheimer’s disease model of 

neurodegeneration75; while VDACs dysfunction has been linked with carcinogenesis and 

neurodegenerative diseases including ALS76. 

 To experimentally validate these bioinformatics-predicted findings, particularly those showing 

altered translation of specific transcripts without changes in their whole-cell or cytoplasmic 

expression, we performed polysome profiling experiments with qRT-PCR quantification of transcripts 

of interest as an established gold-standard methodology to investigate actively translated RNA 

molecules in the 80S translation initiation complexes and the translating polysomal fractions of 

tetracycline-induced control and ALS cell lines (Fig. 6d). Accordingly, we observed that the translation 

of TARDBP, GSTP1 and IPO5 transcripts is higher in the ALS-induced compared to the control cells 

while the translation of VDAC2, XPO1 and CRABP1 mRNAs is indeed reduced in the ALS cell model. We 

further used qRT-PCR to directly quantify these transcripts in GRASPS-purified ribosomes isolated 

from the tetracycline-induced control and ALS cell lines and confirmed the previous polysome profiling 
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validation and bioinformatics prediction (Fig. 6e). Consequently, we also found that the expression 

levels of TDP-43, GSTP1 and IPO5 proteins are increased while those of VDAC, XPO1 and CRABP1 are 

reduced in the ALS-inducible cell model (Fig. 6f, quantification in Fig. 6g), thus providing functional 

relevance to the predicted alteration of translatomes and gene expression changes identified by 

GRASPS. 

 

Discussion 

To our knowledge, this study compares for the first-time head-to-head genome-wide abundance of 

whole-cell (total), cytoplasmic and translating RNAs using a stable isogenic inducible human cell model 

which allows for low and time-controllable induction of the TDP43 Q331K-linked ALS mutant protein 

to identify the most upstream disease-altered expression of genes in a 48h window of expression. It 

also provides high-depth RNA-seq datasets which can be used by the scientific community as a 

resource for multiple other comparative biological and computational investigations. While it is known 

that transcriptomes and proteomes significantly differ, we also found that the cytoplasmic expression 

levels of RNAs also do not correlate with the abundance of translating transcripts associated with 

ribosomes. Overall, this suggests that the proportion of RNA translated in a cell represents only a small 

proportion of the total or cytoplasmic amounts of RNA molecules. Strikingly, approximately half of the 

gene expression alterations identified by transcriptomics are not dysregulated in the translatomes 

while, reciprocally, the levels of 69% of transcripts found to be commonly affected in both translatome 

methodologies are not changed in the whole-cell transcriptome. 

 Despite broad uncoupling in the differentially-expressed transcript IDs characterized among the 

various datasets, it is worth noting that the altered pathways are common with the identification of 

biological processes known to be altered in ALS tissues or patient-derived neurons. These include	cell 

death/apoptosis, responses to cellular stress, DNA damage/repair and cell cycle, altered RNA 

metabolism, dysregulated protein homeostasis and neuronal-related damages among others60-62. In 

addition to validation of this stable TDP-43 ALS-inducible HEK cell line as a relevant model of disease, 
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our findings show that the widespread dysregulation of gene expression occurs in a fast process, 

within 48 hours, and simultaneously affects multiple cellular processes with altered expression of 

approximately 1,400 and 4,400 genes in the global transcriptome and the GRASPS translatome 

respectively. Other studies including the ribosome profiling investigation of TDP-43 A315T ALS-linked 

translatome reported the differential expression of 26 and 51 genes in motor neuron-like cells and 

primary cultures of cortical neurons respectively77 while TRAP translatomes identified 616 specific 

gene expression changes in a TDP-43 G298S ALS Drosophila model together with another 1,892 DEGs 

due to TDP-43 overexpression78. On the other hand, TRAP investigations have identified translatomes 

in the spinal cord motor neurons of a TDP-43 A315T ALS mouse model with specific alteration of 1,061 

DEGs in 14-week old symptomatic mice79 while 28 gene expression changes were reported in 10-

month old mice80. 

 Here, we also present a novel translatome methodology, GRASPS, to bypass:  (i) the very limited 

throughput and requirement for specific equipment and expert skills that restrain the universal 

investigation of translatomes; (ii) the addition of artefact-causing chemical stressors; (iii) the use of 

sucrose gradients which requires delicate manipulation and hinders accurate fractionation and 

reproducibility; (iv) or the necessary tagging of ribosomal subunits and time-consuming generation of 

transgenic cell lines or animal models9, 19. Strikingly, GRASPS led to the detection of approximately 3.5 

times more gene expression changes with higher fold changes and lower p-values compared to the 

WCT/ CyT transcriptomes and the polysome profiling method. The simplicity and faster purification of 

ribosome-associated RNAs is attributed to the higher reproducibility and improved statistical power 

of GRASPS, in contrast to more complex protocols involving sucrose gradient fractionation or affinity 

purification. Moreover, our data shows that GRASPS identified large blocks of up- and down-regulated 

gene expression changes (430 and 356 respectively) which are commonly conserved with actively 

translated RNAs characterized in the polysome fractions, thus providing a genome-wide level 

validation for the new methodology. In addition, we show that GRASPS-altered gene expression 

changes map to better-defined dysregulated biological processes at a functional protein-association 
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level with approximately half of DEGs forming known gene regulatory networks. Interestingly, 

additional pathways relevant to ALS are also highlighted by GRASPS such as cytoplasmic stress 

granules, mRNA transport, mRNA export from nucleus, cell aging and neuronal death. Exceeding our 

best expectations in the KEGG pathway investigation, GRASPS was the only method to retrieve the 

term “amyotrophic lateral sclerosis” in a human embryonic kidney cell model of ALS. We and others 

applied GRASPS to other mammalian cell types including mouse motor-neuron like NSC34 cells and 

patient-derived astrocytes or neurons. Future work will aim to further test and optimize this 

technology in animal or human post-mortem tissues. 
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Methods 

Cell culture. TDP-43 Q331K (ALS) and sham control (Ctrl) HEK293T Flp-In cell lines were generated 

according to the manufacturer’s instructions from Invitrogen. In brief, HEK FRT host cells harboring 

the Flp-In™ T-REx system were maintained in culture medium (DMEM-high glucose (Sigma) medium, 

10% tetracycline-free FBS (Biosera) and 1% penicillin/ streptomycin (Lonza)) with selection antibiotics 

blasticidin S (15 μg/ml, Calbiochem) and zeocin (100 μg/ml, Invitrogen). To establish the tetracycline-

inducible TDP-43 Q331K ALS cell line or control cell lines, HEK FRT cells were plated in 10-cm dish with 

culture medium containing only blasticidin S following co-transfection with Flp recombinase 
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expressed plasmid pPGKFLPobpA and tetracycline-responsive plasmid pcDNA5FRT/TO containing 

TDP-43 Q331K or pcDNA5FRT/TO only as isogenic sham control in the ratio 6:4 using PEI 

(polyethyleneimine; Sigma) transfection method. The fresh medium containing blasticidin was 

changed 24 hours post-transfection. After another 24 hours, the transfected cells were split and plated 

into three 10-cm dishes in culture medium containing selection antibiotics blasticidin S (15 μg/ml, 

Calbiochem) and hygromycin B (100 μg/ml, Invitrogen). The selection medium was changed every 3 

days until foci were identified. Hygromycin resistant foci were expanded before verifying that the 

pcDNA5/FRT/TO construct had integrated into the FRT site by testing each clone for zeocin sensitivity. 

The picked colonies for control sham and TDP-43 Q331K ALS were later maintained in T75 flask (2x106 

cells) in culture medium containing blasticidin S (15 μg/ml) and hygromycin B (100 μg/ml). Cells were 

plated on 10 cm dishes (2x106 cells), 6 well plates (2x105 cells/well) or 24 well plates (5x104 cells/well) 

with or without coverslip and induced with tetracycline (10 μg/ml, Invitrogen) for 48 hours. 

Tetracycline-containing medium was changed every 48 hours if a longer induction time was needed.  

 

Cell growth curve. HEK293T Flp-In cells (1 x 106 cells) were plated in 10 cm dishes in the presence or 

absence of tetracycline. At three-day intervals the cells were trypsinised and resuspended in 5 ml of 

media. The cells were then counted using a haemocytometer and the total number of cells in each 

plate calculated. After counting, 1 x 106 cells were returned to the 10 cm plate and given fresh media 

containing tetracycline where required. This was repeated for the duration of the growth curve. 

 

Total and cytoplasmic RNA fractionation and extraction. HEK Flp-In cell models were grown in 10-cm 

dishes for 24 hours before induction with tetracycline. Cells were lysed post tetracycline induction 

when an approximate confluency of 70-80 % had been achieved. Total RNAs were collected from a 

10-cm dish directly in 400 μl of 1x Reporter lysis buffer (Promega) containing 0.16 U/μl Ribosafe RNase 

inhibitors (Bioline), 2 mM PMSF and cOmplete™ EDTA-free Protease Inhibitor Cocktail and lysed for 

10 min on ice before refrigerated centrifugation at 17,000g for 5 min. The supernatant was collected. 
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For cytoplasmic fractions, cells were lifted from a 10-cm dish in PBS and centrifuged at 400g for 5 min, 

4°C to pellet cells prior to fractionation. Cell pellets were quickly washed with hypotonic lysis buffer 

(10 mM HEPES pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 0.5 mM DTT) prior to lysing cells in 400 μl hypotonic 

lysis buffer containing 0.16 U/μl RNasin, 2 mM PMSF and cOmplete™ EDTA-free Protease Inhibitor 

Cocktail. Cells were resuspended gently using a cut P1000 tip and left on ice for 10 mins. The 

cytoplasmic fraction was collected after differential centrifugation at 4°C (3 min at 1500g, 8 min at 

3500g, and 1 min at 17,000g). PureZole (Bio-Rad) was added to total fractions and cytoplasmic 

fractions and RNA was extracted using Direct Zol RNA Miniprep Plus (Zymo Research) for RNA 

sequencing or using the standard chloroform and ethanol protocol for cDNA synthesis and RT-qPCR. 

 

Polysome profiling. HEK Flp-In cells were plated at a cell density of 2.5 x 106 in T175, with four T175 

flasks per cell line. After 48 h of tetracycline induction, cells were treated with cycloheximide (100 

µg/ml) on ice for 30 min to stall the ribosome on the mRNAs. Cells were scraped in the cell medium 

and collected into a 50 ml falcon tube. After refrigerated centrifugation at 500 x g for 5 min, the 

medium was discarded. Cell pellets were resuspended with 7 ml polysome buffer (20 mM HEPES 

pH7.4, 100 mM KOAc, 2 mM MgOAc, 0.5 mM DTT, 100 μg/ml cycloheximide) and transferred to a 15 

ml falcon tube. Cells were pelleted by refrigerated centrifugation at 500 g for 5 min. The supernatant 

was discarded and cell pellets were resuspended in 800 µl polysome lysis buffer before transfer to 1.5 

ml microtubes. Cells were pelleted by refrigerated centrifugation at 500 g for 5 min. After complete 

removal of the supernatant, the cells were lysed with polysome lysis buffer containing 0.5% Triton X-

100, 0.16 U/μl RNase inhibitor (Bioline), 2 mM PMSF and cOmplete™ EDTA-free Protease Inhibitor 

Cocktail. Cell lysates were passed through a 25G needle 10 times and left on ice for 10 min. Cell 

extracts were transferred to fresh 1.5 ml microtubes and centrifuged at 10,000 rpm, 4°C for 15 min. 

The OD260 unit of cell lysate was determined using a Nano drop. Cell extracts (~12 OD260 unit) were 

loaded onto 15-50% sucrose gradient and ribosomes pelleted by ultracentrifugation (Th-641 swing-

out rotor, Sorvall WX) at 80,000 rpm, 4°C for 2 h. Ribosome fractions (0.5 ml/ fraction) were collected 
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into PureZole containing spiking luciferase RNA using a ISCO gradient collection and fractionation 

system which continuously measures the A254 to provide the polysome traces. RNAs were extracted 

from each fraction using Direct Zol RNA Miniprep Plus (Zymo Research) for RNA sequencing.  

 

Genome-wide RNA Analysis of Stalled Protein Synthesis (GRASPS). HEK Flp-In sham and TDP-43 

Q331K cells were induced with 10 μg/ml tetracycline for 48 h after plating cells in four 10 cm plates 

per line for 48 h (2 x 106 cells per plate). Cells were washed with cold DEPC-treated PBS on ice and 

collected using a cell scraper in 2 ml cold DEPC-treated PBS. Cells were pelleted by centrifugation at 

400 x g for 5 min at 4°C. The PBS was discarded, and the leftover of PBS was removed by carefully 

adding 200 μl GRASPS buffer A (250 mM sucrose, 5 mM KCl, 50 mM Tris-HCl pH 7.4) without disturbing 

the pellet. A volume of GRASPS buffer A1 containing 0.16 U/μl RNase inhibitor (Bioline), 2 mM PMSF 

and cOmplete™ EDTA-free Protease Inhibitor Cocktail corresponding to approximately three times the 

volume of the cell pellet (600 μl) was added to resuspend the pellet by pipetting up and down with a 

cut p1000 tip. Cells were lysed by pipetting up and down 56 μl 10% NP-40 with a cut p200 tip to reach 

a final concentration of 0.7% v/v. The lysis is achieved on ice for 10 min swirling gently the tubes from 

time to time. The lysates were transferred to one well of a 6-well plate for each condition and UV-

irradiated at 0.3 J/cm2 on ice. Nuclei are pelleted by centrifugation at 750 x g, 4°C for 10 min and the 

supernatants were carefully transferred to prechilled RNase-free tubes before centrifugation at 

12,500 x g, 4°C for 10 min to pellet the mitochondria. Typically, 480-500 μl of supernatants, containing 

the organelle-free cytoplasmic fraction, were transferred to fresh prechilled tubes. All conditions were 

adjusted with GRASPS buffer A1 to 500 μl and 71 μl 4 M KCl solution was added to a final concentration 

of 0.5 M KCl. 429 μl GRASPS buffer B (250 mM sucrose, 500 mM KCl, 50 mM Tris-HCl pH 7.4, 5 mM 

MgCl2) is added to top up to 1 ml before carefully loading onto 1 ml sucrose cushions (1 M sucrose, 5 

mM MgCl2, 50 mM Tris-HCl pH 7.4) in cold TLA100 centrifuge tubes. Ribosomes were pelleted by 

ultracentrifugation at 250,000 x g, 4°C for 2 h. After discarding the supernatants, the leftover of 

sucrose was washed carefully by adding 150 μl cold DEPC-treated water and removed immediately. 
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The glossy pellets of ribosomes were resuspended in 250 μl cold ribosome resuspension buffer (50 

mM HEPES pH 7.9, 150 mM NaCl, 1 mM DTT, 1 mM EDTA) and transferred to fresh RNAse-free tubes. 

Proteinase K was added to a final concentration of 100 μg/ml (1.25 μl of stock at 20 mg/ml) with 0.16 

U/μl Ribosafe RNase inhibitor (Bioline). The reactions were incubated at 37°C for 30 min after pulse 

vortex to digest the ribosomal proteins. The proteinase K was inactivated by adding 5 μl of 0.5 M EDTA 

(final concentration 10 mM) and 4.2 μl of 3 M NaAc (final concentration 50 mM). PureZole (Bio-Rad) 

was added to each GRASPS-purified RNA fraction and RNA was extracted using Direct Zol RNA 

Miniprep Plus columns (Zymo Research) for RNA sequencing or a standard chloroform and ethanol 

precipitation for cDNA synthesis and RT-qPCR. 

 

Liquid chromatography tandem mass spectrometry (LC-MS/MS). Trypsin-digested peptides were 

analyzed by nano-HPLC (UltiMate 3000 HPLC system; Thermo, Hemel Hempstead, UK) coupled to an 

amaZon ETD MS ion trap spectrometer (Bruker Daltonics, Bremen, Germany) using a nano-ESI spray. 

The nano-HPLC system and the ion trap spectrometer were controlled using Bruker Compass HyStar 

v3.2-SR2 software. The liquid chromatography system comprised of a reversed-phase precolumn (LC 

Packings, Dionex) for sample desalting and a PepMap 100 reversed-phase C18 column (75 μm by 

15 cm; Thermo) for peptide fractionation. The flow rate for precolumn loading was 30 μl/min of 

loading buffer (97% [vol/vol] ACN and 0.1% [vol/vol] TFA). Peptides were analyzed at a flow rate of 

300 nl/min and separated by gradient elution using buffer A (3% [vol/vol] ACN and 0.1% [vol/vol] FA) 

and buffer B (97% ACN and 0.1% FA [vol/vol]) as follows: 4% buffer B (0 to 5 min), 5 to 38% buffer B 

(5 to 65 min), 38 to 90% buffer B (65 to 68 min), and 90% buffer B (68 to 73 min), followed by re-

equilibration at 4% buffer B. The electrospray was operated in positive-ion mode with a 4,500-V spray 

voltage, 10-lb/in2 gas pressure, and 150°C dry gas. The end plate offset of the mass spectrometer was 

set to −500 V and data acquisition using standard method Proteomics Auto MSMS. 

Protein database searching: Mass spectra were first converted to Mascot Generic Files using scripts 

provided by Bruker (Bremen, Germany). The Mascot server v2.5 database search engine81 was used 
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for peptide and protein identification. Databases used were the cRAP 

(https://www.thegpm.org/crap/) 116 entries (downloaded on 26th February 2024) and UniProt Homo 

sapiens proteome database (82,485 entries downloaded on 26th February 2024). The search 

parameters were trypsin/P digest, 2 missed cleavages, 1.2 Da precursor tolerance, 0.6 Da fragment 

tolerance, carbamidomethyl cysteine modification set to fixed, and methionine oxidation and N-Acetyl 

modifications as variable. Charge states included +2, + 3, and +4.  Data was searched using Mascot’s 

integrated reversed decoy database method to calculate FDR. A Mascot-integrated decoy database 

search calculated an FDR of 1%. The Percolator algorithm in MASCOT was applied to improve the 

distinction between correct and incorrect spectral matching82. The resulting protein list is available in 

Supplementary Data 4. 

 

Purification of poly(A)+ mRNA extracted from GRASPS samples. NEB Next® Poly(A)+ mRNA Magnetic 

Isolation Module (New England BioLabs Inc.) was used to purify mRNA based upon on the coupling of 

oligo d(T)25 to 1 μm paramagnetic beads which were then used as the solid support for the direct 

binding of poly(A)+ RNA. Beads were separated from the supernatant using a magnetic rack. The 

integrity of total RNA was assessed using an RNA Pico Chip (Agilent Technlogies, Inc.). The purification 

protocol for the poly(A)+ RNA was optimized from the manufacturer (NEB) as ribosomes have very 

high content of rRNAs. 20 μl of Oligo d(T)25 beads were placed in 0.2 ml PCR tube and washed twice 

with 100 μl of 2 X RNA binding buffer to remove the supernatant. A 100 μl volume of 2 X RNA binding 

buffer was then added to the beads. Total RNA was diluted with DEPC- treated water to a final volume 

of 50 μl and added to the magnetic beads in 50 μl RNA binding buffer. Samples were incubated at 65°C 

for 5 min and placed on ice for 2 min to denature RNA and facilitate the binding of poly(A)+ RNA to 

the beads. Samples were incubated at RT for 5 min to allow RNA to bind to the beads. The tubes were 

then placed on the magnetic rack for 2 min to separate poly(A)+ RNA bound to the beads from the 

solution. The supernatant was taken and kept. At this point the protocol was optimized, and an 

additional binding step carried out which increased the yield of ribosome-associated poly(A)+ RNA. 
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The beads were washed twice with 200 μl wash buffer, pipetting the volume up and down 6 times to 

ensure thorough mixing and placing on the rack for 2 min to ensure proper separation of unbound 

RNA. The beads were then stored on ice. The saved supernatant (from the initial binding) was then 

incubated at 65°C for 5 min and placing on ice for 2 min. The binding of poly(A) + RNA was then 

repeated as above with the beads stored on ice. The beads were then washed twice with 200 μl wash 

buffer, pipetting the volume up and down 6 times to ensure thorough mixing and placed on the rack 

for 2 min to ensure proper separation of unbound RNA. After ensuring total removal of wash buffer, 

50 μl elution buffer was added to the beads and mixed well by pipetting. Tubes were placed at 80°C 

for 2 min then placed at RT immediately to elute the poly(A) + RNA from the beads. 50 μl of 2 X RNA 

binding buffer was added to each sample pipetting the volume up and down 6 times to ensure 

thorough mixing to allow RNA to bind to the beads. Samples were incubated at RT for 5 min with 

agitation every few minutes during the incubation. The tubes were allowed to stand on the magnetic 

rack for 2 min before removing the supernatant and washing the beads twice with 200 μl wash buffer, 

pipetting the volume up and down 6 times to ensure thorough mixing and placed on the rack for 2 

min to ensure proper separation of unbound RNA. The mRNA was eluted by adding 20 μl of elution 

buffer to the beads and incubating at 80°C for 2 min before immediately putting the samples onto the 

magnetic rack for 2 min. Purified mRNA was transferred to a clean nuclease-free PCR tube before the 

yield and size distribution was assessed using an RNA Pico Chip (Agilent Technologies, Inc.). 

 

Next generation RNA sequencing and quantification of transcript abundance. Total RNAs and 

polyA(+)-enriched RNA samples were sent to the Centre for Genomic Research at the University of 

Liverpool for the preparation of dual-indexed strand-specific RNA-seq libraries (projects LIMS4821 and 

LIMS20433). Paired-end multiplexed sequencing runs were performed on Illumina Hi-Seq platform (2x 

100bp, generating data of in excess of 120M clusters per lane; WCT, CyT, GRASPS) or Illumina HiSeq 

4000 (2x150 bp sequencing, generating data from >280 M clusters per lane; PoP). Sequencing reads 

were aligned on GRCh38 (hg38) using Bowtie50. RNA expression levels were quantified using BitSeq51 
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and Limma52. For the statistical analysis, differentially-expressed (DE) transcripts were filtered for 

log2FC>1, p-value p<0.05 and false discovery rate FDR<0.2. 

 

Quantitative RT-PCR (qRT-PCR). Following RNA extraction and quantification, 2 μg of DNase I (Roche) 

treated RNA was converted to cDNA using BioScript Reverse Transcriptase (Bioline) with (dN)6 random 

primers or dT18 primers as described in40, 42, 43. qRT-PCR reactions were performed in duplicate using 

the Brilliant III Ultra-Fast SYBR Green QPCR Master Mix (Agilent Technologies) on a C1000 Touch™ 

thermos Cycler using the CFX96™ Real-Time System (BioRAD) using an initial denaturation step, 45 

cycles of amplification (95°C for 30 s; 60°C for 30 s; 72°C for 1 min) prior to recording melting curves. 

qRT–PCR data was analyzed using CFX Manager™ software (Version 3.1) (BioRAD) and GraphPad Prism 

(Version 9.0). Primers used in this study are provided in Supplementary Table 1. 

 

SDS-PAGE electrophoresis and Western Blot. HEK293T Flp-In cell lines, Ctrl and ALS, were plated in 

6-well plate (5x104/well) and induced with or without tetracycline (10 μg/ml) for 48 hours prior to 

harvest. Cells were washed in ice-cold PBS and lysed in lysis buffer (50 mM HEPES pH 7.5, 150 mM 

NaCl, 1 mM DTT, 0.5 % Triton X-100, 1 mM EDTA) supplemented with 2 mM phenylmethylsulfonyl 

fluoride (PMSF, Sigma) and cOmplete™, EDTA-free Protease Inhibitor Cocktail (Roche) and left on ice 

for 10 mins. Proteins were collected by centrifugation at 13,300 rpm for 5 mins in the refrigerated 

centrifuge. Protein concentration was quantified using Bradford reagent (Bio-Rad). Proteins were 

separated using SDS-PAGE, electroblotted onto nitrocellulose membrane and probed with indicated 

primary antibodies. Target protein signals were amplified with the relevant secondary antibody 

conjugated with HRP (Horseradish peroxidase) and chemiluminescence signals were captured by LI-

COR Odyssey imaging system and intensity was quantified by Image Studio Lite software. Antibodies 

used in this study are described in Supplementary Table 2. 
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Immuno-fluorescence microscopy. HEK293T Flp-In cells (5x104/well) were plated on coverslip in 24-

well plate and induced with tetracycline for 48 h. Cells were fixed and permeabilized with 4 % 

paraformaldehyde (PFA) containing 0.2 % Triton-X at room temperature for 20 mins. After blocking in 

2 % w/v bovine serum albumin (BSA, Sigma) in PBS at room temperature for 1 hour, cells were 

incubated in primary antibody at room temperature for 1 hour. Cells were washed three times with 

PBS prior to incubation with the relevant fluorophore-labelled conjugated secondary antibody at room 

temperature for 30 mins. The cells were washed with PBS three times and incubated with Hoechst 

(Sigma 33258) for 10 min at room temperature. The coverslips were then mounted onto glass slides 

using fluorescent mounting medium (Dako). Images were captured using fluorescence microscopy 

(Nikon). 

 

Statistics and reproducibility. Two-way ANOVA (analysis of variance) with the recommended Tukey’s 

correction for multiple comparison tests (GraphPad Prism) were used for all normally-distributed data 

which involved more than 2 experimental conditions. Quantification of qRT-PCR and western 

immunoblot comparing various primers or proteins in 2 cell lines used unpaired multiple t tests with 

the recommended Holm-Šídák method (assuming both groups have same standard deviation of the 

mean). At least 3 independent biological replicate experiments were generated for statistical analysis. 

Data were plotted using GraphPad Prism version 9. Significance is indicated as follows; NS: non-

significant, p≥0.05; *: p<0.05; **: p<0.01; ***: p<0.001; ****: p<0.0001. 
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Figures and Figure legends 

Figure 1 
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Fig. 1 ∣ Genome-wide RNA expression and translation in human isogenic TDP-43 ALS-inducible cells. 

Control (Ctrl) and TDP-43 Q331K (ALS) cell lines were treated with tetracycline to induce transgene 

expression for 48 hours. (a) TDP-43 and α-tubulin protein levels were analyzed by western 

immunoblotting with (+Tet.) or without (-Tet.) tetracycline induction. (b) Quantification of TDP-43 wild 

type and mutant protein expression following normalization to α-tubulin in three biological replicates 

(Mean ± SEM; two-way ANOVA with Tukey's correction for multiple comparisons; ****: p<0.0001; 

N=3). (c) qRT-PCR quantification of TARDBP mRNA encoding TDP-43 proteins following normalization 

to U1 snRNA in three biological replicates (Mean ± SEM; unpaired t test; ***: p=0.0005; N=3). (d) 

Immunofluorescence microscopy. Cells were stained with Hoechst to label nuclei (blue), TDP-43 

(green) and α-tubulin (red). Scale bar: 20 μm. (e) Growth curves. Non-induced (-Tet.)  and tetracycline-

induced (+Tet.) cells were split every 72 hours for the indicated number of days. Total cell numbers 

were counted before splitting and quantified in three biological replicates (Mean ± SEM; two-way 

ANOVA with Tukey's correction for multiple comparisons; ****: p<0.0001; N=3). (f) Pie charts 

representing the distribution and main categories of annotated transcripts sequenced in WCT, CyT 

and PoP. (g) Venn diagram of sequenced genes in WCT, CyT and PoP. (h) Volcano plots representing 

differentially-expressed transcripts according to p-values and fold changes (FC) in WCT, CyT and PoP. 

NS: non-significant. Red labels indicate the numbers of significantly down- and up-regulated 

transcripts. (i) Venn diagrams representing the distribution of DEGs in WCT (blue), CyT (green) and 

PoP (purple) at increasing FC thresholds. 

 

 

 

 

 

 

 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2024. ; https://doi.org/10.1101/2024.03.04.583294doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.04.583294
http://creativecommons.org/licenses/by-nd/4.0/


- 34 - 

Figure 2 

 

Fig. 2 ∣ Diagrammatic overview of the GRASPS methodology compared to polysome profiling. UV 

irradiation is carried out in GRASPS to rapidly stall translating RNA-ribosomes complexes, thus 

bypassing the reliance on the addition of translation inhibitors such as cycloheximide used in the other 

translatome technologies. UV cross-linked RNA-ribosomes are further pelleted by ultracentrifugation 

prior to proteinase K treatment and RNA extraction under 6 hours in contrast to lengthy and delicate 

sucrose gradient preparation and fractionation which also requires extraction of RNA from multiple 

fractions for each experimental condition (approximately 24-30 hours). 
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Figure 3 
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Fig. 3 ∣ Development of the GRASPS translatome technology and application to the human TDP-43 

ALS-inducible cells. (a) Heat-shock inducible HSP72 and control GAPDH protein levels were analyzed 

by western immunoblotting in HEK cells shifted to 42˚C for the indicated times. (b) Quantification of 

HSP72 and GAPDH protein levels in four biological replicates (Mean ± SEM; two-way ANOVA with 

Tukey's correction for multiple comparisons; ****: p<0.0001; N=4). (c-d) qRT-PCR quantification of 

total (c) and GRASPS-purified (d) GAPDH and HSPA1A mRNA encoding the HSP72 protein in heat-

shocked HEK cells in four biological replicate experiments (Mean ± SEM; two-way ANOVA with Tukey's 

correction for multiple comparisons; ****: p<0.0001; N=4). (e) Liquid chromatography tandem mass 

spectrometry (LC-MS/MS) analysis of GRASPS-purified samples identified 115 proteins with a Mascot 

score >25 and at least two different peptides. Among these, 76 were large (RPL) and small (RPS) 

ribosomal proteins. 5 additional RPLs were identified manually. (f) GRASPS-identified RPL/RPS 

subunits (70) and eEF2 were mapped onto the cryo-EM structure of the 80S human ribosome57 

(Protein Data Bank accession 4V6X; 87% coverage, 71 over 82 proteins). Identified large 60S and small 

40S ribosome subunits are labeled in red and orange respectively. Elongation factor eEF2 is labeled in 

blue. 44 other proteins including RNA-binding proteins (hnRNPs) and other abundant cytoskeleton 

proteins typically contaminating mass spectrometry samples were also identified (Supplementary 

Data 4). (g) SDS-PAGE stained with coomassie blue highlighted enrichment in small molecular weight 

ribosomal proteins in GRASPS-purified ribosome pellets in comparison to input (total protein extract) 

and sucrose cushion supernatant. Samples were also analyzed by western immunoblotting probed for 

eIF4A, RPL26 and RPL29. (h) Pie charts representing the distribution and main categories of annotated 

transcripts sequenced in WCT, CyT and GRASPS. (i) Venn diagram of sequenced genes in WCT, CyT and 

GRASPS. (j) Volcano plots representing differentially-expressed transcripts according to p-values and 

fold changes (FC) in WCT, CyT and GRASPS. NS: non-significant. Red labels indicate the numbers of 

significantly down- and up-regulated transcripts. (k) Venn diagrams representing the distribution of 

DEGs in WCT (blue), CyT (green) and GRASPS (salmon) at increasing FC thresholds. 
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Fig. 4 ∣ Genome-wide integration of transcriptomes and translatomes. (a) Bar chart representing the 

fold-enrichment in the number of DEGs identified in each dataset at increasing FC threshold. The size 

of WCT DEGs is setup as 1. (b) Barplots representing the percentage of uncoupling between the DEGs 

identified in pairwise dataset combinations. Blue, green, purple and red show DEGs specific to WCT, 

CyT, PoP and GRASPS respectively. Orange or brown indicate commonly-identified DEGs with same or 

opposite direction of changes respectively. (c-e) Heatmaps representing the degree of correlation 

between DEGs identified in the 4 datasets. They show DEGs commonly identified in the PoP and 

GRASPS translatomes (c), DEGs specific to the translatomes i.e. not differentially-expressed in the 

transcriptomes (d) and transcriptome-altered DEGs which are not changed in the translatomes (e). To 

generate these heatmaps, the values of fold changes quantified in the lists of DEGs were 

aligned/tabulated on the DEG lists identified in GRASPS and PoP (bold, c-d) or WCT (bold, e) and 

further sorted by fold changes on PoP and GRASPS (c, underlined), WCT (d, underlined) or GRASPS and 

PoP (e, underlined). A gradient of blue and red respectively indicate significantly up- and down-

regulated gene expression changes for FC>2, the darker the colour the higher the FC. Grey represents 

genes which are not differentially-expressed. Heatmaps representing the top 750 up- and down-

regulated DEGs are represented in panels c-d. Numbers indicate all DEGs counts for each list. Bold 

solid-line rectangles show DEGs common to translatomes (c), specific to translatomes (d) and not 

changed in translatomes (e). Dash-line rectangles highlight common DEGs between transcriptomes 

and translatomes. 
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Fig. 5 ∣ GRASPS reveals a greater number of functionally better-defined biological processes. (a-b) 

Heatmaps representing gene ontology (GO) enrichment scores (ES) for transcriptome and translatome 

datasets using the lists of up-regulated (a) and down-regulated (b) protein-coding DEGs filtered at 

various FC thresholds. The Functional Annotation Clustering tool was used in DAVID58, 59 based on 

GOTERM_ BP_FAT, GOTERM_MF_FAT, GOTERM_CC_FAT and KEGG pathways with default medium 

classification stringency scale. A gradient of blue and red respectively indicate significantly up- and 

down-regulated pathways, the darker the colour the higher the ES. Grey represents pathways not 

altered in the corresponding dataset. ES of 1.3 and above are considered statistically significant58, 59. 

Numbers highlight altered pathways detected with ES comprised between 1 and 1.3. (c) KEGG 

pathway analysis using the protein-coding lists of DEGs altered in the ALS-inducible cell model (FC>2). 

ES of 1.3 and above are statistically significant58, 59 and represented by a gradient of green, the darker 

the color the higher the ES. Numbers highlight altered pathways detected with ES comprised between 

1 and 1.3. (d) The protein-coding lists of DEGs (log2FC>1.5) identified in each dataset were mapped 

onto the STRING protein-protein interaction database67 using Cytoscope with default Edge setting 

based on experimental protein-protein interactions. The percentage of DEGs forming functional gene 

regulatory networks and the numbers of interactions are indicated. See Supplementary Fig. 5 for the 

same investigation at various FC. (e) Bar chart representing fold-enrichments of DEGs mapping 

protein-protein interaction networks at increasing FC thresholds. Data is not presented for log2FC>3 

as no DEG mapped to a network in the WCT, CyT and PoP datasets. 
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Figure 6 
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Fig. 6 ∣ Experimental validation of key predicted DEG alterations in the human TDP-43 ALS-inducible 

cells. (a-c) Scatter plots of WCT, CyT, PoP and GRASPS log2-transformed fold changes for common 

transcripts in pairwise dataset comparisons. Each circle represents one transcript. Blue, green, purple 

and red circles show DEGs which are specific to WCT, CyT, PoP and GRASPS respectively. Orange or 

brown circles indicate DEGs showing same or opposite direction of changes respectively, while grey 

circles highlight transcripts which are not differentially-expressed in the datasets. Transcripts 

highlighted by arrows are either predicted to be altered in all datasets or specifically up- or down-

regulated in the translatomes. They are selected for experimental validation in panels d-g. (d) 

Polysome profiling experiments in human Ctrl and TDP-43-linked ALS cell lines induced with 

tetracycline for 48h. Traces highlight the small 40S and large 60S ribosome subunits, the 80S initiating 

complexes and the actively-translating polysome fractions. Expression levels of TARDBP encoding 

TDP-43, GSTP1, IPO5, VDAC2, XPO1 and CRABP1 are quantified by qRT-PCR in each sucrose gradient 

fraction and normalised to a spiked luciferase RNA control for each cell lines (Ctrl in blue and ALS in 

blue). (e) GRASPS-purified mRNAs of interest (TARDBP, GSTP1, IPO5, VDAC2, XPO1 and CRABP1) from 

tetracycline-induced (48h) Ctrl and TDP-43-linked ALS cell lines were quantified by qRT-PCR and 

normalised to GAPDH mRNA levels in three biological replicates (Mean ± SEM; unpaired multiple t 

tests with Holm-Šídák correction; *: p=007226, ***: p=0.001669; ****: p<0.0001, N=3). (f) Protein 

extracts from tetracycline-induced (48h) Ctrl and TDP-43-linked ALS cell lines were analysed by 

western immunoblotting probed with antibodies against TDP-43, GSTP1, VDAC1-3, IPO5, XPO1, 

CRABP1 and loading control α-tubulin. (g) Quantification of protein expression levels in panel (f) 

following normalization to α-tubulin in three biological replicates (Mean ± SEM; unpaired multiple t 

tests with Holm-Šídák correction; *: p=0.005108, **: p=0.002098, ****: p<0.0001, N=3).  
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Supplementary Information 

 

 

 

 

 

Supplementary Fig. 1 ∣ Generating a TDP-43-linked ALS-inducible stable cell model for the genome-

wide identification of altered expressed and translating RNAs. (a) Protein extracts from tetracycline-

induced (48h) Ctrl and TDP-43-linked ALS cell lines were analyzed by western immunoblotting probed 

with antibodies against nuclear chromatin-associated SSRP1 protein and cytoskeleton marker Tuj1. 

(b) UV traces corresponding to the polysome sucrose gradient fractionation in tetracycline-induced 

(48h) Ctrl and TDP-43-linked ALS cell lines. RNA was extracted from fractions 6-9, which contain 

actively translating polysomes (4 ml), prior to precipitation and resuspension for preparation of RNA-

seq libraries. 
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Supplementary Fig. 2 ∣ Venn diagram comparing sequenced genes across WCT, CyT, PoP and 

GRASPS. The Venn diagram was made using the multiple comparators online tool 

(https://molbiotools.com/listcompare.php). 
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Supplementary Fig. 3 ∣ Heatmap highlighting common 

differentially-expressed protein-coding genes across all 

datasets. Genes down-regulated and up-regulated in the TDP-

43 ALS-inducible cells are labelled using a gradient of red and 

blue colors respectively (darker the color higher the altered 

fold change of expression). Detailed list of genes and fold 

change values are provided in Supplementary Data 5 tab 1). 
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Supplementary Fig. 4 ∣ Functional gene regulatory network mapping of DEGs identified in WCT, CyT, 

PoP and GRASPS. Lists of protein-coding DEGs from each dataset were analysed at various FC 

thresholds using the String physical network database (version11.5). Identified DEGs were mapped 

onto functional human protein-protein interaction networks using known protein-protein interactions 

based on “experimental” data and default confidence Edge settings (cutoff 0.4) in the Cytoscape 

software environment. DEGs mapped to known gene regulatory networks are represented by solid 

circles while the interactions between DEGs are depicted with solid lines. The percentage of DEGs 

forming functional gene regulatory networks and the numbers of interactions are indicated.  
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Supplementary Table 1 ∣ List of qPCR primers used in this study. 
 

Gene target Sequences Origin 

Human TARDBP Fwd: 5’- TGGGATGAACTTTGGTGCGT -3’ 

Rev: 5’- TTTGGCTCCCTCTGCATGTT -3’ 

Primer-BLAST (NCBI) 

Human VDAC2 Fwd: 5’- CTTTGCAGTGGGCTACAGGACT -3’ 

Rev: 5’- CGAGTGCAGTTGGTACCTGATG -3’ 

Origene 

Human GSTP1 #3 Fwd: 5’- AATACCATCCTGCGTCACCTG -3’ 

Rev: 5’- ATGTATTTGCAGCGGAGGTC -3’ 

Primer-BLAST (NCBI)  

Human IPO5 #2 Fwd: 5’- TATGCAGCCTGTAATGCCGT -3’ 

Rev: 5’- TGCCTTGGTCTTCCATGGTC -3’ 

Primer-BLAST (NCBI) 

Human CRABP1 #1 Fwd: 5’- GAACAAGATCCACTGCACGC -3’ 

Rev: 5’- CTGCCTTCACTCTCGGACAT -3’ 

Primer-BLAST (NCBI) 

Human XPO1 #2 Fwd: 5’- TTCCAAGGAACCAGTGCGAA -3’ 

Rev: 5’- GCTGGTCCTACTTGCTCCAA-3’ 

Primer-BLAST (NCBI) 

Human HSPA1A Fwd: 5’- ACCTTCGACGTGTCCATCCTGA -3’ 

Rev: 5’- TCCTCCACGAAGTGGTTCACCA-3’ 

Origene 

Human GAPDH Fwd: 5’- CAACTTTGGTATCGTGGAAGGAC -3’ 

Rev: 5’- ACAGTCTTCTGGGTGGCAGTG -3’ 

Primer-BLAST (NCBI) 
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Supplementary Table 2 ∣ List of antibodies used in this study. 
 

Antibody Host species Dilution Supplier 

TDP-43 Rabbit 1:1,000 
Proteintech 

#12892-1-AP  

HSP-72 Mouse 1:1,000 
Merck 

#386032 

eIF4A Rabbit 1:1,000 
Cell Signaling 

#2490 

eEF2 Rabbit 1:10,000 
Abcam 

Ab#75748 

RPL26 Rabbit 1:500 
Sigma 

#R0655 

RPL29 Rabbit 1:2,000 
A gift from Prof. Stuart A. Wilson 

(University of Sheffield) 

GSTP1 Rabbit 1:2,000 
Proteintech 

#15902-1-AP 

VDAC 1-3 Rabbit 1:2,000 
Proteintech 

#11663-1-AP 

IPO5 Rabbit 1:2,000 
Invitrogen 

#PA5-30076 

XPO1 Rabbit 1:2,000 
Abcam 

#ab180144 

CRABP1 Mouse 1:1,000 Abcam #ab2816 

𝛼-Tubulin 

(clone DM1A) 
Mouse 1:2,000 

Insight 

#sc32293 

𝛼-Tubulin 

(11H10, for IF) 
Rabbit 1:2,000 

Cell Signaling 

##2125 

GAPDH 

(14C10) 
Rabbit 1:1,000 

Cell Signaling 

mAb #2118 
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