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Abstract  58 

 59 

Structural brain changes underly cognitive changes in older age and contribute to inter-60 

individual variability in cognition. Here, we assessed how changes in cortical thickness, surface 61 

area, and subcortical volume, are related to cognitive change in cognitively unimpaired older 62 

adults using structural magnetic resonance imaging (MRI) data-driven clustering. Specifically, 63 

we tested (1) which brain structural changes over time predict cognitive change in older age 64 

(2) whether these are associated with core cerebrospinal fluid (CSF) Alzheimer’s disease (AD) 65 

biomarkers phosphorylated tau (p-tau) and amyloid-β (Aβ42), and (3) the degree of overlap 66 

between clusters derived from different structural features. In total 1899 cognitively healthy 67 

older adults (50 - 93 years) were followed up to 16 years with neuropsychological and structural 68 

MRI assessments, a subsample of which (n = 612) had CSF p-tau and Aβ42 measurements. 69 

We applied Monte-Carlo Reference-based Consensus clustering to identify subgroups of older 70 

adults based on structural brain change patterns over time. Four clusters for each brain feature 71 

were identified, representing the degree of longitudinal brain decline. Each brain feature 72 

provided a unique contribution to brain aging as clusters were largely independent across 73 

modalities. Cognitive change and baseline cognition were best predicted by cortical area 74 

change, whereas higher levels of p-tau and Aβ42 were associated with changes in subcortical 75 

volume. These results provide insights into the link between changes in brain morphology and 76 

cognition, which may translate to a better understanding of different aging trajectories.	 77 

 78 

 79 

Keywords  80 

Memory, Ageotypes, Longitudinal MRI, Cognitively unimpaired older adults, CSF AD 81 

biomarkers  82 
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1. Introduction  83 

 84 

Cognitive changes in healthy aging are partly explained by age-related macrostructural brain 85 

changes that may be quantified using repeated structural magnetic resonance imaging (MRI) 86 

assessments (Fjell and Walhovd, 2010). However, the extent of age-related changes in  brain 87 

and cognition differs among older individuals (Lindenberger, 2014), and such differences may 88 

be partly underpinned by different patterns of brain aging. The association between brain 89 

changes and cognitive change can be assessed by examining different features of morphometric 90 

changes, such as cortical thickness, surface area, and subcortical volume. These features have 91 

been associated with different aspects of cognition in aging (Nyberg et al., 2023), and with 92 

different cerebrospinal fluid (CSF) biomarkers of Alzheimer’s disease (AD) pathology (Fjell 93 

et al., 2010; Pettigrew et al., 2016; Wang et al., 2015). MRI data-driven clustering approaches 94 

have proven useful for separating subgroups of healthy older participants (“ageotypes”) with 95 

different biological, cognitive, and sociodemographic characteristics (Ahadi et al., 2020; Cox 96 

et al., 2021). Hence, in the present study, we applied a Monte-Carlo Reference-based consensus 97 

clustering algorithm (John et al., 2020) on longitudinal MRI brain features to identify 98 

subgroups of cognitively unimpaired older adults based on different structural brain change 99 

patterns over time. Moreover, we tested whether the different features of brain change were 100 

associated with cognitive changes and with core AD CSF biomarkers the 42 amino acid-long 101 

form of amyloid-β (Aβ42) and phosphorylated tau 181 (p-tau) to gain insight into whether brain 102 

changes in normal aging can potentially be explained by the presence of AD biomarkers. 103 

In the aging context, longitudinal studies are necessary to capture inter-individual variability 104 

in structural brain changes (slope differences), because cross-sectional studies cannot separate 105 

aging-specific effects from earlier individual differences (intercept differences) in brain 106 

structural measures (Fjell et al., 2014a; Vidal-Piñeiro et al., 2022). This is also supported by a 107 
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study that found that the underlying factor structure for intercepts versus slopes across brain 108 

regions was different, and the correlation patterns between cortical volumetric change were 109 

stronger than those observed at baseline in cross-sectional analysis (Cox et al., 2021). Multiple 110 

timepoints and long follow-up times are critical to estimate the association between changes in 111 

the brain and cognition (Raz and Lindenberger, 2011), and to better understand the 112 

neurobiological mechanisms underlying specific cognitive aging processes (Cox et al., 2021; 113 

Fjell et al., 2014a).  114 

The use of data-driven clustering, whether based on MRI or cognitive data, is beneficial in 115 

assessing the heterogeneity of changes in older participants. This approach was used by 116 

Josefsson et al. (2012) who identified ageotypes based on longitudinal trajectories of memory 117 

change over 15 years. Participants were divided into maintainers, decliners, and those showing 118 

average changes associated with age. Specific environmental and genetic characteristics (such 119 

as sex, variance in occupation, education, and physical activity) were related to each group.  120 

 121 

Different morphometric features, such as cortical thickness, surface area, and subcortical 122 

volume, have been studied to describe inter and intra-individual variation in brain structures. 123 

The different features are thought to be largely unrelated to each other (Lemaitre et al., 2012) 124 

or even to be negatively associated, as in Storsve and colleagues (2014) where less decrements 125 

in cortical area were associated with more cortical thinning. Cortical thickness, cortical area, 126 

and subcortical volume decline in aging (Borgeest et al., 2021; Nyberg et al., 2023; Storsve et 127 

al., 2014); yet few studies have assessed longitudinal brain changes, taking into account the 128 

different brain features (Borgeest et al., 2021; Nyberg et al., 2023; Sele et al., 2021; Storsve et 129 

al., 2014). Indeed, cortical area and thickness seem to reflect distinct underlying 130 

neurobiological mechanisms that are differently affected in aging (Storsve et al., 2014), show 131 
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specific regional changes, and have a negative genetic correlation (Grasby et al., 2020). 132 

Assessing change in the different features of brain aging independently and considering to 133 

which degree they complement each other may translate to a better understanding of aging 134 

brain heterogeneity.  135 

So far, there is inconclusive evidence regarding the association between structural brain 136 

changes and cognitive changes in aging, and most of the evidence is based on cross-sectional 137 

studies, with few exeptions. Thickness, but not area, changes were related to fluid intelligence 138 

changes (Sele et al., 2021) and memory changes, especially in the medial temporal lobe, as 139 

described in one study (Fjell et al., 2014b). Other studies found that surface area changes were 140 

associated with changes in proxy measures of fluid intelligence (Borgeest et al., 2021). Nyberg 141 

et al. (2023) described a significant association of surface area changes with a speed of 142 

processing test. Another study found positive associations between a general cognitive ability 143 

(GCA) factor and brain features, but with different results: indeed, higher baseline GCA was 144 

associated with greater cortical area at baseline and less cortical thinning over time (Walhovd 145 

et al., 2022). Finally, there is a general agreement in the literature regarding the positive 146 

association between hippocampal volume loss and episodic memory decline (Capogna et al., 147 

2023a; Gorbach et al., 2020, 2017; Persson et al., 2012). 148 

  149 

Decreased CSF Aβ42 (reflecting amyloid accumulation in the brain tissue) and increased p-tau 150 

(reflecting a neuronal response to Aβ pathology) concentrations are considered two of the key 151 

biomarker hallmarks of AD pathology (Jack et al., 2018), and their changes are identified in 152 

the early stage of the AD continuum, without the presence of any cognitive symptoms. Hence, 153 

it is relevant to understand the relationship between these biomarkers and the different 154 

structural features of brain change in cognitively unimpaired older adults, to better identify 155 

how these brain changes may be explained by the presence of AD biomarkers along an aging-156 
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disease continuum. CSF Aβ42 and p-tau biomarker changes have been associated with lower 157 

cortical thickness and subcortical volume atrophy in AD-vulnerable regions in cognitively 158 

unimpaired older adults (Arenaza-Urquijo et al., 2013; Pettigrew et al., 2016; Wang et al., 159 

2015). However, the relationship between CSF Aβ42 and brain atrophy is inconclusive (Fjell 160 

et al., 2014a), whereas p-tau shows a stronger association with medial temporal lobe (MTL) 161 

atrophy, following the time course of cognitive decline (Pettigrew et al., 2017; Vidal-Piñeiro 162 

et al., 2022; Wisse et al., 2022). To our knowledge, no study has explored the relationship 163 

between CSF core AD biomarkers and surface area changes. Moreover, early CSF Aβ42 and 164 

p-tau biomarker changes (notably for p-tau, unclear for Aβ42 (Parent et al., 2023)) have been 165 

described as predictive of future cognitive decline, especially in episodic memory, although 166 

the overall effects were small (Clark et al., 2018; Hedden et al., 2013; Stomrud et al., 2007). 167 

In the present study, we investigated the inter-individual patterns of structural brain changes in 168 

normal aging using a consensus clustering algorithm. This approach allowed us to identify 169 

subgroups, i.e. clusters, among older participants. We used different indices of brain 170 

morphology, namely cortical thickness, cortical area, and subcortical volume to better 171 

understand the degree to which each modality contributes independently to brain longitudinal 172 

decline, and the degree of overlap across them. Moreover, we assessed whether the clusters 173 

were related to different trajectories of episodic memory function and global cognition, as 174 

measured by dementia screening tools. Finally, we tested the associations between brain 175 

changes and baseline concentrations of core AD CSF biomarkers (Aβ42 and p-tau, as well as 176 

the p-tau/Aβ42 ratio).  177 

 178 

 179 

2 Material and methods 180 

 181 
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2.1 Participants 182 

The total sample included 1899 cognitively healthy older participants (1080 females, mean age 183 

= 69.88 years, standard deviation [SD] = 7.90, age range = 50.11 – 93.01 years) from 7 cohorts: 184 

COGNORM (Idland et al., 2017), the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 185 

(Mueller et al., 2005), the Open Access Series of Imaging Studies (OASIS3) (LaMontagne et 186 

al., 2019), the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL) 187 

(Ellis et al., 2009), the Harvard Aging Brain Study (HABS) (Dagley et al., 2017), the Pre-188 

symptomatic Evaluation of Novel or Experimental Treatments for AD (PREVENT-AD) 189 

program (Breitner et al., 2016; Tremblay-Mercier et al., 2021), and the Center for Lifespan 190 

Changes in Brain and Cognition (LCBC) dataset (Fjell et al., 2023). Data were collected by 191 

previously cited groups. See Table 1 for more details on each dataset. The common inclusion 192 

criteria were as follows: minimum age of 50 years, total follow-up time of at least 1 year, and 193 

inclusion of scanners with 15 or more measurements to reduce noise and bias in the analysis. 194 

Moreover, the participants were required to be cognitively unimpaired at baseline according to 195 

a battery of neuropsychological tests. See specific inclusion criteria for each cohort in 196 

Supplementary Information (SI). Longitudinal structural MRI scans were available for up to 197 

15.84 years (mean = 4.81 [2.81] years). At baseline, participants showing concurrent mild 198 

cognitive impairment, AD, or other severe neurological disorders were excluded from the 199 

analysis. All participants provided written informed consent, and the studies were approved by 200 

the relevant ethical committees and conducted in accordance with the Declaration of Helsinki.  201 

  202 
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Table 1 Cohort characteristics  203 

 COGNORM ADNI OASIS 3 AIBL  HABS PREVENT-

AD 

LCBC  Total 

N (F:M) 95 (52:43) 544 (293:251) 518 (292:226) 149 (75:74) 166 (99:67) 229 (161:68) 198 (108:90) 1899 

(1080:819) 

Mean Age 73.40 (6.21) 73.22 (5.98) 69.00 (8.41) 71.09 (6.34) 72.78 (6.04) 63.56 (5.03) 65.23 (9.64) 69.88 (7.90) 

Age range 64.74 – 89.79 55.80 – 89.90 50.11 – 93.01 60.00 – 87.00 62.50 – 87.75 55.13 – 84.22 50.39 – 84.47 50.11 – 93.01 

Time MRI 

follow-up 

5.94 (2.61) 4.12 (2.68) 5.13 (3.35) 4.04 (1.62) 4.88 (0.97) 2.88 (1.13) 6.30 (2.80) 4.81 (2.81) 

MRI obs (n) 370 (3.90 

[1.36]) 

2492 (4.58 

[2.42]) 

1652 (3.19 

[1.49]) 

498 (3.34 

[1.10]) 

504 (3.04 

[0.53]) 

1203 (5.23 

[1.39]) 

574 (2.90 

[0.83]) 

7293 (3.84 

[1.86]) 

Global cognition 

obs (n) 

609 (6.41 

[0.99]) 

2614 (4.80 

[2.52]) 

3584 (6.96 

[3.98]) 

598 (4.01 

[1.17]) 

988 (5.95 

[0.21]) 

229 (1 [0]) 525 (2.65 

[0.86]) 

9147 (4.54 

[1.39]) 

Memory obs (n)  609 (6.41 

[0.99]) 

2836 (5.21 

[2.67]) 

493 (4.48 

[2.68]) 

507 (3.40 

[1.13]) 

993 (5.98 

[0.80]) 

969 (4.25 

[1.39]) 

420 (2.80 

[0.79]) 

6827 (4.64 

[1.49]) 

Education (years) 14.94 (3.97) 16.50 (2.56) 15.89 (2.63) - 16.14 (3.01) 15.25 (3.27) 16.04 (2.77) 15.97 (2.88) 
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APOE ε4 (-/+) 48:37 368:170 332:186 99:50 118:46 146:83 50:21 1161:593 

Descriptive statistics represent mean (SD). N = number of subjects. Obs = total number of observations. The MRI obs row shows the mean ([SD]) 204 

of the number of observations per participant and the total number. The same applies to global cognition and memory. Note that the term "global 205 

cognition" specifically pertains to the screening tests outlined below. APOE ε4 = non-carriers:carriers. Participants with heterozygous or 206 

homozygous ε4 alleles were regarded as carriers. 207 
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  208 

2.2 MRI acquisition and preprocessing 209 

Structural T1-weighted (T1w) MPRAGE scans were collected using 1.5 and 3 T scanners. See 210 

information on scanner parameters and scanners per dataset in the SI. Images were transformed 211 

into the Brain Imaging Data Structure (BIDS) format (Gorgolewski et al., 2016). Clinica 212 

software was used for the ADNI, AIBL, and HABS BIDS transformations (Routier et al., 2021; 213 

Samper-González et al., 2018). We used the longitudinal FreeSurfer v.7.1.0 stream (Reuter et 214 

al., 2012) for cortical reconstruction of the structural T1w scans (Dale et al., 1999; Fischl et al., 215 

1999). Briefly, the images were processed using the cross-sectional stream, which includes the 216 

removal of nonbrain tissues, Talairach transformation, intensity correction, tissue and 217 

volumetric segmentation, cortical surface reconstruction, and cortical parcellation. Next, an 218 

unbiased within-subject template space based on all cross-sectional images was created for 219 

each participant, using robust, inverse-consistent registration (Reuter et al., 2010). The 220 

processing of each time point was then reinitialized with common information from the within-221 

subject template, to increase reliability and statistical power. Data were summarized based on 222 

the Destrieux atlas (Destrieux et al., 2010) for cortical thickness and cortical area measures (74 223 

features) and the aseg atlas for subcortical volumetric data (17 features) (Fischl et al., 2002). 224 

 225 

2.3 Computation of intercept and slope measures for ROIs per participant 226 

We focused on three indices of cerebral morphology: cortical thickness, surface area, and 227 

subcortical volume. For each region of interest (ROI), we regressed out the effects of mean age 228 

across timepoints for each participant using generalized additive mixed models (GAMM) 229 

(Wood, 2017), as implemented in the gamm4 package. Age was introduced as a smooth term, 230 

while random intercepts were included for each dataset, scanner, and participant. To compute 231 

the slope of change for each participant, we fit a linear regression model for each participant 232 
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and ROI with the GAMM model residuals (as dependent variable) and time equal to the 233 

difference between age at a given observation and the individual's mean age. Participants 234 

without longitudinal MRI data and those with follow-up intervals of < 1 year were excluded 235 

from further analysis and were not included in the final sample. Next, we replaced outlier 236 

values (> ±5 SD from the mean) using the mice package (Buuren and Groothuis-Oudshoorn, 237 

2011) (0.003% of observation values were replaced). The final output yielded a total of 330 238 

structural MRI features (148 cortical thickness, 148 surface area, and 34 subcortical volumetric 239 

bilateral ROIs that contained slope data). Finally, the values were scaled for each feature. 240 

 241 

2.4 Consensus clustering of brain data 242 

Slope data were clustered based on the M3C clustering algorithm – a Monte-Carlo Reference-243 

based Consensus algorithm - as implemented in the M3C package (John et al., 2020). 244 

Consensus algorithms (Monti et al., 2003) are based on the idea that the ideal cluster should be 245 

stable despite resampling, that is, that individuals should always or never be clustered together 246 

in the face of iterative resampling. Such methods have gained popularity as they produce more 247 

robust results, reduce bias, and provide estimates of the error.  248 

An important challenge in consensus clustering is selecting the number of clusters (K). The 249 

most popular criteria either require subjective decisions or show biases towards small or high 250 

K-solutions. Furthermore, most approaches cannot test whether the desired solution is better 251 

than K = 1 (i.e., that the data comes from a single distribution). M3C solves both problems by 252 

generating Monte Carlo simulations that preserve the covariance structure. M3C provides null 253 

stability scores for a range of K values, which are then compared with real-data solutions. Here, 254 

we used the Relative Cluster Stability Index (RCSI) metric to select K based on the proportion 255 

of ambiguous clusters (PAC) scores. RCSI p-values were further derived to test the null 256 
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hypothesis of K = 1 at each value of K. We used a spectral clustering algorithm (Ng et al., 257 

2001) as it is capable of coping with complex data structures. The remaining parameters were 258 

set to the default values of M3C version 1.24.0. The algorithm was separately applied to each 259 

of the three morphometric brain measures. To explore the data structure, we projected the 260 

cluster outcome (i.e., individual assignments) onto main components of brain change (i.e., 261 

components capturing the main axis of variability of brain data) (n = 4) and carried out an 262 

ANOVA using cluster assignment as the factor of interest. When significant (Bonferroni-263 

corrected), post-hoc pairwise comparisons were performed. Finally, for each cluster and 264 

feature, we estimated the mean values.  265 

 266 

2.5 Degree of overlap between cluster solutions 267 

We carried out an analysis to establish whether the different structural modalities were 268 

statistically related to each other, i.e., whether participants belonged to different clusters or the 269 

same cluster across the various morphometric brain features. The explorative analysis indicated 270 

that clustering was based on one principal component from a Principal Component Analysis 271 

(PCA), and all the clustering solutions resulted in four groups. See Supplementary Figure 1. 272 

Thus, for clarity, we renamed the clusters based on their mean ROIs change values as follows: 273 

Decline, Mild Decline, Mild Maintenance, Maintenance. Cohen’s kappa was used to assess the 274 

agreement among clusters, as implemented in the psych and irr R-packages. A weighted kappa 275 

coefficient was applied because of the ordinal characteristics of the clusters and to stress the 276 

large discrepancies in ratings more than the small ones (Sim and Wright, 2005).  277 

 278 
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2.6 Cognitive functions over time 279 

We focused on memory and global cognitive impairment because of their relevance in aging. 280 

For the global cognitive impairment factor, we used the longitudinal scores from the Mini-281 

Mental State Examination (MMSE) (Folstein et al., 1975) for all samples except PREVENT-282 

AD, for which the Montreal Cognitive Assessment (MOCA) was used (Nasreddine et al., 283 

2005). We used these screening tests as a global measure of cognitive function (Garcia-Diaz et 284 

al., 2014; Matsushima et al., 2015), acknowledging their sensitivity to dementia and cognitive 285 

decline in the aging-disease continuum. The number of participants included was n = 1896. 286 

Within cohorts, we scaled the longitudinal scores based on the mean and SD at the first time 287 

point (same procedure applied below for the memory scores). Note that PREVENT-AD did 288 

not include longitudinal MOCA scores. Moving forward, we will collectively refer to the 289 

output of these screening tests as ‘global cognition’, as they are both sensitive to premorbid 290 

global cognitive decline. For the memory factor, we selected the precomputed ADNI-MEM 291 

(Crane et al., 2012) for the ADNI dataset. For the other datasets, we used the Immediate and 292 

Delay scores in the Word List Memory Task (CERAD) (Morris et al., 1989) for COGNORM, 293 

and the short delay and delayed score of the Logical Memory Test (Wechsler, 1987) for AIBL, 294 

HABS, and OASIS3. For PREVENT-AD, we used the memory index score (Immediate and 295 

Delayed) obtained from the Repeatable Battery for Assessment of Neuropsychological Status 296 

(RBANS) (Randolph et al., 1998; Tremblay-Mercier et al., 2021) and the short delay, delayed, 297 

and total learning from the California Verbal Learning Test (Delis et al., 2000) for LCBC. Then 298 

we performed separate PCA on the first timepoint in each dataset with multiple memory 299 

variables. The loadings for the first component were used to calculate scores for the first 300 

principal component across all timepoints (Capogna et al., 2023b). The prcomp function was 301 

used for the PCA. Furthermore, for both memory and global cognition factors, we regressed 302 

the effects of age using GAMMs (Wood, 2017). Age was introduced as a smooth term and a 303 
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test-retest variable as a dichotomic covariate to account for training effects (Capogna et al., 304 

2023b), and random intercepts were included for each participant in the model. To compute 305 

the slope, we first extracted the residuals from the GAMMs, and then we ran a linear regression 306 

model for each participant with age as the predictor and residuals as outcome. For the global 307 

cognition factor, longitudinal results were available for 1649 participants, and the memory 308 

change factor for 1442 participants.  309 

 310 

2.7 CSF collection, analysis and computation of intercept and slope  311 

CSF data were available for three cohorts: ADNI, COGNORM, and PREVENT AD (total 312 

number of participants available = 612). For ADNI, CSF Aβ42 and p-tau concentrations were 313 

measured using Elecsys phosphorylated-tau 181 (p-tau) and β-amyloid (Aβ42) CSF 314 

immunoassays (UPENNBIOMK9.csv ADNI file). CSF collection for COGNORM has been 315 

thoroughly described previously (Idland et al., 2017). Briefly, CSF samples were analyzed at 316 

the Clinical Neurochemistry Laboratory of Sahlgrenska University Hospital (Mölndal, 317 

Sweden). CSF concentrations of Aβ42 and p-tau were measured using the INNOTEST 318 

enzyme-linked immunosorbent assay (ELISA; Fujirebio, Ghent, Belgium). CSF collection for 319 

PREVENT-AD has been described previously (Tremblay-Mercier et al., 2021). CSF samples 320 

for Aβ42 and p-tau 181 were measured using an INNOTEST enzyme-linked immunosorbent 321 

assay. We had 608 and 611 cross-sectional values for p-tau and Aβ42 respectively, and 322 

longitudinal values available for 327 and 328 participants for p-tau and Aβ42, respectively. 323 

Within each cohort, we first scaled each CSF value based on the mean and SD at the first 324 

timepoint. To compute the intercept and slope measure for CSF biomarkers, we fitted a linear 325 

regression model for each participant with the CSF scaled value as the dependent variable and 326 

time equal to the difference between age at a given observation and age at baseline. Due to the 327 

relatively small number of participants with longitudinal CSF data, the longitudinal biomarkers 328 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 7, 2024. ; https://doi.org/10.1101/2024.03.04.583291doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.04.583291
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

analyses are deemed exploratory (see Supplementary Table 3). See Table 2 for descriptive 329 

CSF data.  330 

 331 

Table 2 Cross-sectional and longitudinal info CSF AD biomarkers  332 

 ADNI PREVENT-AD COGNORM 

N  412 106 94 

CSF p-tau bsl (pg/mL) 21.51 (8.74) 48.16 (17.67) 61.40 (18.96) 

CSF Aβ42 bsl (pg/mL) 1359.10 (649.67) 1152.40 (270.77) 729.48 (205.77) 

Time from first MRI (years) 1.47 (2.24) 1.43 (1.33) 0 (0) 

Interval follow- up (range in 

years) 

-3.74– 10.28 0.22 – 4.58 2.88 – 5.69 

N follow-up  221 76 34 

CSF p-tau total obs 802 351 66 

CSF Aβ42 total obs 809 350 66 

N = number of participants (with MRI available for clustering) with AD biomarkers available. 333 

Bsl = baseline value. The Time variable represents the mean (SD) of years between CSF 334 

collections and baseline first MRI measurement. The interval follow-up refers to the range of 335 

Time (see above) in years of CSF longitudinal collections, excluding the first CSF assessment. 336 

N follow-up represents the number of participants with at least 2 CSF measurements over time. 337 

Obs = number of total observations for each CSF biomarker of interest. 338 

 339 

2.8 Statistical Analysis 340 

All analyses were performed in the R environment (R Core Team, 2022). A chi-square test was 341 

used to assess whether the clusters were associated with specific socio-demographic variables 342 
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such as Sex, APOE ε4, and Cohort variables. We used the chisq.posthoc.test package (Beasley 343 

and Schumacker, 1995) to assess the cluster driving the significant associations. Linear mixed-344 

effects models (LME), as implemented in the lme4 R-package (Bates et al., 2015), were used 345 

to assess whether the cluster assignments differed in education and mean age levels. Moreover, 346 

we used LME to compute the effect of cluster assignment on memory and global cognition 347 

intercept and change. Sex and mean age were introduced as covariates of no interest. Random 348 

intercepts per cohort were also included. In addition, 4-group ANOVA models were run on the 349 

outputs of the LME models. The models were corrected for multiple comparisons using the 350 

false discovery rate and Benjamini-Hochberg correction (pFDR) (Benjamini and Hochberg, 351 

1995). Specifically, we corrected the p-values from all the models separately for each 352 

dependent domain (memory, global cognition, and CSF AD biomarkers). If the output was 353 

significant, we applied multiple comparisons of means, as implemented in the multcomp R-354 

package (Westfall, 2010), that displayed the adjusted p-values, using a single-step method. The 355 

same procedure described above was run in a subsample (n = 612) to assess the relationship of 356 

brain change clusters with the CSF AD biomarkers. In the p-tau model, we also included 357 

baseline CSF Aβ42 as a covariate. We also tested the association with the p-tau/Aβ42 ratio.  358 

 359 

2.9 Automated model selection 360 

We tested the combined effects of cluster assignments (for changes in thickness, area, and 361 

subcortical volume) and their interactions on explaining memory, global cognition, CSF AD 362 

biomarkers, intercept, and slope (except for core CSF AD biomarkers). We used a LASSO 363 

algorithm (Tibshirani, 1996), that performs a variable selection to maximize the prediction 364 

accuracy, as implemented in the gglasso package (Yang and Zou, 2015) to automatically 365 

identify the best-performing model to explain the cognitive and biomarker changes. We used 366 

grouped LASSO to model the categorical properties of clusters, that is, both the different 367 
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regressors for the main effects of clusters and their interactions were grouped, so the outcome 368 

either provided coefficients for all the conditions or none. First, we created a matrix of 369 

predictors (X) containing the main effects and all the interactions among clusters, while we set 370 

Sex and mean Age as fixed variables. We defined the response (y) as the cognitive or AD 371 

biomarkers of interest in prediction. We applied the function cv.gglasso, employing 10-folds 372 

cross-validation to determine the optimal smoothing λ parameter. We report the results at two 373 

different λ: λ at minimum RMSE, and at the largest value of λ within 1 standard error of λ 374 

minimum which leads to more conservative results. 375 

 376 

 377 

3. Results  378 

 379 

3.1 Clustering solutions for brain features and mean values of each cluster  380 

We identified 4 clusters for each brain feature of interest. See Figure 1 for a visual 381 

representation of the results and SI in [Zenodo] at https://doi.org/10.5281/zenodo.10365469 382 

for the stats of the three features. The PCA and the visual exploration of the results suggested 383 

that clusters were defined based on a main axis (component) of decline. See Supplementary 384 

Figure 1. We reordered the clusters from those showing a steeper overall decline to those that 385 

displayed – comparatively – less decline. For cortical thickness change, we found a high effect 386 

of bilateral temporal and inferior parietal regions on cluster assignment. To some degree, we 387 

observed a similar pattern for surface area changes, although weaker and more prominent in 388 

the left superior frontal and temporal regions. Subcortical volume cluster assignment was 389 

especially influenced by hippocampus decline and ventricular expansion. Henceforth, the 390 

clusters are renamed as decline, mild decline, mild maintenance, and maintenance. See Figures 391 
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2, 3, and 4 for a visual representation of the differences between the different clusters in each 392 

analysis. 393 

 394 

Figure 1 ANOVA output of cluster assignment  395 

 396 

ANOVA output of brain change respectively for cluster assignments of cortical thickness, 397 

surface area, and subcortical volume. The F-values represent the influence of each region in 398 

the cluster assignment. Yellow regions represent more importance and blue regions represent 399 

less importance. ROIs were based on the Destrieux atlas (Destrieux et al., 2010) for cortical 400 
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thickness and cortical area, and the aseg atlas (Fischl et al., 2002) for subcortical volumetric 401 

data. 402 

 403 

Figure 2 Mean values for cortical thickness change in each cluster 404 

 405 

Mean thickness change (z scores) values for each of the four clusters. Yellow represents more 406 

positive values and less change in thickness over time, while indigo represents more negative 407 

values and more thinning over time. A) decline cluster; b) mild decline cluster; c) mild 408 

maintenance cluster; d) maintenance cluster. ROIs were based on the Destrieux atlas (Destrieux 409 

et al., 2010) for cortical thickness. ROIs without an overlay are not significant (pFDR < 0.05). 410 

 411 

Figure 3 Mean values for surface area change in each cluster 412 
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 413 

Mean area change (z scores) values for each of the four clusters. Yellow represents more 414 

positive values and less change in area over time, while indigo represents more negative values 415 

and more change in area over time. A) decline cluster; b) mild decline cluster; c) mild 416 

maintenance cluster; d) maintenance cluster. ROIs were based on the Destrieux atlas (Destrieux 417 

et al., 2010) for surface area. ROIs without an overlay are not significant (pFDR < 0.05). 418 

 419 

Figure 4 Mean values for subcortical volume change in each cluster 420 
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 421 

Mean subcortical change (z scores) values for each of the four clusters. Yellow represents more 422 

positive values and less change in subcortical volume, while indigo represents more negative 423 

values and more subcortical volume decline. A) decline cluster; b) mild decline cluster; c) mild 424 

maintenance cluster; d) maintenance cluster. ROIs were based on the aseg atlas (Fischl et al., 425 

2002). ROIs without an overlay are not significant (pFDR < 0.05). 426 

 427 

3.2 Degree of overlap between brain features 428 

We next tested whether participants belonged to different clusters or the same cluster across 429 

the various morphometric brain measures. The cluster assignment for each brain feature is 430 

summarized in Figure 5. The weighted Cohen’s kappa coefficient for correspondence in cluster 431 

assignment for thickness and area is k = 0.08 (p < 0.001), which means that the agreement 432 

between clustering of different modalities was slight (as per Landis and Koch, 1977). This 433 

suggests, as also previously reported,  that thickness and surface area are two largely unrelated 434 

and independent morphometric characteristics of aging (Storsve et al., 2014). The agreement 435 

between participants being classified on the same clusters for subcortical volume and thickness 436 
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is weighted k = 0.29 (p < 001), often interpreted as “fair” (Landis and Koch, 1977), whereas 437 

the weighted Cohen’s kappa coefficient for subcortical volume and area is k = 0.19 (p < 0.001). 438 

 439 

 440 

 441 

 442 

 443 

 444 

 445 

 446 

 447 

 448 

 449 

 450 

 451 

 452 

 453 

 454 

Figure 5 Contingency tables for brain cluster assignment 455 
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 456 
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Mosaic plots reflecting the output of the contingency tables (vcd R package). The dimensions 457 

of each box are proportional to the number of participants grouped into the clusters based on 458 

the different structural modality. The kappa value is calculated based on the discrepancy 459 

between the diagonal boxes and those that are not located on the diagonal (agreement vs. 460 

disagreement). Cells without a number mean 0 participants belonged to the two different 461 

clusters. A) Table for clusters based on thickness change versus clusters based on area change; 462 

b) table for clusters based on thickness change versus clusters based on subcortical volume 463 

change; c) table for clusters based on area change versus clusters based on subcortical volume 464 

change.  465 

 466 

3.3 Associations between brain cluster assignment and genetic-environmental variables 467 

We then assessed whether the cluster assignment (for brain feature) differed for sex, age, 468 

education, APOE ε4 status, and cohort. No associations were found with education level. 469 

Changes in cortical thickness (cluster assignment) were associated with age (F = 10.97, df1 = 470 

1888.8, df2 = 3, pFDR < 0.001), and APOE ε4 status (χ2 = 11.86, df residual = 1751, pFDR = 471 

0.01). Changes in cortical surface clusters were related to age (F = 32.56, df1 = 1889, df2 = 3, 472 

pFDR < 0.001), sex (χ2 = 41.44, df residual = 1896, pFDR < 0.001), and APOE ε4 status (χ2 = 473 

15.34, df residual = 1751, pFDR < 0.01). Changes in subcortical volume clusters were also 474 

related to age (F = 19.98, df1 = 1889.5, df2 = 3, pFDR < 0.001), sex (χ2 = 52.15, df residuals 475 

= 1896, pFDR < 0.001), and APOE ε4 status (χ2 = 19.53, df residual = 1751, pFDR < 0.001). 476 

Overall, the ANOVA results were in the expected direction, with clusters showing relative 477 

brain maintenance having lower age, lower representation of APOE ε4 carriers, and less males, 478 

whereas clusters showing more brain decline had higher age and a higher representation of 479 

APOE ε4 carriers and males. See Supplementary Table 1 for the direction of the significant 480 
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post-hoc associations between cluster assignment and these genetic and environmental 481 

variables.  482 

 483 

3.4 Associations between brain cluster assignment and cognitive functions  484 

We then assessed the relationship between cluster assignment, intercept and change in memory 485 

and global cognition, using LME and 4-group ANOVA models. The results are presented in 486 

Table 3 (including the post-hoc multiple comparisons), for a visual representation see Figure 487 

6. We found significant associations between global cognition intercept and changes in cortical 488 

area (F = 15.69, df1 = 1889, df2 = 3, pFDR < 0.001), thickness (F = 16.21, df1 = 1889, df2 = 489 

3, pFDR < 0.001), and subcortical volume (F = 15.88, df1 = 1889, df2 = 3, pFDR < 0.001). 490 

The ANOVA results were in the expected direction, with clusters showing relative brain 491 

maintenance displaying higher cognition, and those showing more brain decline exhibiting 492 

lower cognition. See the post-hoc comparisons across groups, that is, which specific clusters 493 

had significantly different values in Table 3 and Supplementary Table 2. Global cognition 494 

changes were associated with surface area changes (cluster assignment) over time (F = 4.16, 495 

df1 = 1605.9, df2 = 3, pFDR = 0.009, post-hoc: lower cognition for mild decline cluster). No 496 

significant relationship between cluster assignment and memory change and intercept survived 497 

correction for multiple comparisons; all the results were above pFDR > 0.05. 498 

 499 

Table 3 Associations between brain cluster assignment and cognitive functions 500 

 Cognitive function (F [pFDR]) η2 partial 

Cluster change thickness Memory change 3.40 (0.10) 7.05 × 10-3 
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 Memory intercept 0.77 (0.67) 1.61 × 10-3 

 Global cognition change 1.73 (0.16) 3.35 × 10-3 

 Global cognition intercept 16.21 (< 0.001) (-a,c) 0.02 

Cluster change area Memory change 0.85 (0.67) 1.78 × 10-3 

 Memory intercept 2.64 (0.14) 5.50 × 10-3 

 Global cognition change 4.16 (0.009) (-b) 7.71 × 10-3 

 Global cognition intercept 15.69 (< 0.001) (-b,c) 0.02 

Cluster change subvolume Memory change 0.51 (0.67) 1.08 × 10-3 

 Memory intercept 0.52 (0.67) 1.09 × 10-3 

 Global cognition change 1.84 (0.16) 3.62 × 10-3 

 Global cognition intercept 15.88 (< 0.001) (-a,b,c) 0.02 

ANOVA models on the LME models output. Sex and Age at baseline (mean-centered) as 501 

covariates of no interest. Statistics represent F-values, pFDR corrected values, and η2 partial 502 

represents the effect size eta squared partial. The superscripts represent the significant output 503 

(p < 0.01) of the post hoc multiple comparisons, where each cluster assignment is compared 504 

against all: a) decline cluster > mean; b) mild decline > mean; c) mild maintenance > mean; d) 505 

maintenance > mean. A negative sign indicates that the significant comparison was lower than 506 

the mean. Please note that the term "global cognition" specifically pertains to the 507 

aforementioned screening tests. 508 

 509 

Figure 6 Significant associations between brain cluster assignment and global cognition 510 
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 511 

Post-hoc comparisons of means (one cluster vs. all) for global cognition intercept and change. 512 

** = p < 0.01, *** = p < 0.001, ns = non-significant. Note that the term "global cognition" 513 

specifically pertains to the aforementioned screening tests. 514 

 515 

3.5 Associations between brain cluster assignment and CSF AD biomarkers  516 

The results are presented in Table 4 (n = 612). Changes in subcortical volume clusters were 517 

significantly related to CSF Aβ42 (F = 8.30, df1= 605, df2 = 3, pFDR < 0.001), p-tau (F = 3.95, 518 

df1 = 600, df2 = 3, pFDR = 0.01), and p-tau/Aβ42 ratio (F = 10.40, df1 = 601, df2 = 3, pFDR 519 

< 0.001). We also found significant positive associations between changes in thickness clusters 520 

and the p-tau/Aβ42 ratio (F = 6.44, df1 = 601, df2 = 3, pFDR < 0.001) and Aβ42 (F = 7.08, df1 521 

= 605, df2 = 3, pFDR < 0.001). Changes in cortical area clusters were significantly related to 522 

CSF Aβ42 (F = 4.54, df1 = 605, df2 = 3, pFDR = 0.007). The ANOVA results were in the 523 

expected direction, with clusters displaying more brain decline showing lower Aβ42, higher p-524 
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tau, and higher p-tau/Aβ42 ratio, and those showing relative brain maintenance exhibiting 525 

lower p-tau/Aβ42 ratio, and higher Aβ42. See Supplementary Table 3, Figure 7 for the 526 

association with CSF AD biomarkers, and Table 4 and Supplementary Table 2 for the post-527 

hoc comparisons across clusters, showing which specific subgroups had significantly different 528 

values. 529 

 530 

Table 4 Associations between brain cluster assignment and CSF AD biomarkers at 531 

baseline 532 

 CSF AD biomarkers bsl (F [pFDR]) η2 partial 

Cluster change thickness Aβ42  7.08 (< 0.001) (-a, c) 0.03 

 p-tau 0.70 (0.62) 0.003 

 p-tau/Aβ42 ratio 6.44 (< 0.001) (a, -c) 0.03 

Cluster change area Aβ42  4.54 (0.007) (-b, c) 0.02 

 p-tau 0.16 (0.92) 8.29 × 10-4 

 p-tau/Aβ42 ratio 2.47 (0.08) 0.01 

Cluster change subvolume Aβ42  8.30 (< 0.001) (-a, c) 0.04 

 p-tau 3.95 (0.01) (a) 0.02 

 p-tau/Aβ42 ratio 10.40 (< 0.001) (a, -c, -d) 0.05 

ANOVA models on the LME model outputs. Sex and mean age (and Aβ42 for p-tau change 533 

models) as covariates of no interest. Statistics represent F-values, pFDR corrected values, and 534 
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η2 partial represents the effect size eta squared partial. The superscripts represent the significant 535 

output (p < 0.01) of the post hoc multiple comparisons, where each cluster assignment is 536 

compared against all: a) decline cluster > mean; b) mild decline > mean; c) mild maintenance 537 

> mean; d) maintenance > mean. A negative sign indicates that the significant comparison was 538 

lower than the mean.  539 

 540 

Figure 7 Significant associations between brain cluster assignment and AD CSF 541 

biomarkers 542 

 543 

Post-hoc comparisons of means (one cluster vs all) for AD CSF biomarkers intercept. * = p < 544 

0.05, ** = p < 0.01, *** = p < 0.001, ns = non-significant. 545 

 546 

3.6 Automated model selection for cognitive functioning and CSF core AD biomarkers 547 

When using λ within 1 standard error of the minimum (the more conservative criterion), the 548 

LASSO models dropped all the predictors. By selecting the less conservative criteria for 549 

selecting λ (λ.min = 0.01), the optimal model for predicting the memory intercept included 550 
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only the cluster area change, which had nonzero coefficients. The best model predicting 551 

memory change included the main effects of changes in thickness and subcortical volume, and 552 

the interactions among the three brain features (λ.min = 0.003). The optimal model predicting 553 

global cognition at baseline comprised thickness, area, and subcortical volume change main 554 

effects (λ.min = 0.004), whereas global cognitive change included area and subcortical volume 555 

main effects and their interactions (λ.min = 0.002). Regarding CSF AD biomarkers, we found 556 

that the main effects of changes in thickness, area, and subcortical volume were associated with 557 

CSF Aβ42 at baseline (λ.min = 0.01). Changes in subcortical volume best predicted p-tau 558 

(λ.min = 0.01), whereas the main effects of changes in thickness and subcortical volume were 559 

associated with the p-tau/Aβ42 ratio (λ.min = 0.01). See Supplementary Table 4 for all the 560 

stats. 561 

 562 

 563 

4. Discussion 564 

 565 

We identified four ageotypes for cortical thickness, cortical area, and subcortical volume, 566 

grouping participants based on the degree of morphometric change. The overlap across 567 

modalities was low, indicating that a comprehensive understanding of structural brain changes 568 

in aging requires the integration of different brain features. The analysis of the associations 569 

between brain changes and cognitive function, as well as AD biomarkers, was beneficial in 570 

comprehending the significance of these brain changes in normal aging. In particular, 571 

clustering based on subcortical volumetric change was found to be highly sensitive to both 572 

cognition and AD biomarkers. This suggests that ageotypes are relevant in understanding 573 
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cognitive decline in aging. Furthermore, the relationship with AD biomarkers indicates that 574 

structural brain changes may give rise to an increased risk for later development of AD.  575 

 576 

Clustering was strongly based on a main factor of decline, suggesting that differences in cluster 577 

assignment could be attributed to a main “global” component of (modality-specific) brain 578 

decline rather than to specific spatial patterns. This finding is consistent with a previous study 579 

that used factor analysis on longitudinal volumetric ROIs changes and identified a general 580 

factor of cortical volume change in aging (Cox et al., 2021) which accounted for 63% of the 581 

longitudinal changes in the different regions. Similarly, Sele and colleagues (2020) found that 582 

a component of decline (from PCA) accounted for approximately 35% of the longitudinal 583 

volumetric change (slope differences) across different regions, especially temporal. 584 

 585 

Although clusters were primarily determined by a global component of brain decline, some 586 

regions were especially critical for cluster assignment. Specifically, we found that subtypes 587 

based on both cortical thickness and cortical area change were strongly related to the degree of 588 

bilateral decline in the temporal and inferior parietal regions. These regions are among those 589 

suffering steeper age-related decline (Fjell et al., 2014b; Thambisetty et al., 2010), as well as 590 

exhibiting higher inter-individual variability (Sele et al., 2020). Notable decline in these regions 591 

can be seen also independently of APOE status and neurodegenerative processes reflected by 592 

AD biomarkers Aβ42 and tau, and is often considered characteristic of normal aging 593 

trajectories (Fjell et al., 2014a). Despite being highly vulnerable to aging, frontal regions did 594 

not have a special influence in determining cluster assignment, with the exception of the 595 

superior frontal cortex in cortical area change. One possible explanation is that despite showing 596 

a steep decline, these regions also showed relatively low inter-individual variability in change. 597 
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In other words, older participants tended to show a similar degree of change in these regions 598 

(Sele et al., 2021). Finally, we found that inter-individual variability in bilateral hippocampal 599 

volume decline and enlargement of the lateral ventricles was relevant for identifying clusters 600 

of subcortical volume changes. These regions are both strongly affected by age (Fjell et al., 601 

2014a; Takao et al., 2012) with a high degree of variability across individuals (Sele et al., 2021, 602 

2020) and are also commonly affected by AD (Apostolova et al., 2012; Grundman et al., 2002; 603 

Thompson et al., 2004). 604 

 605 

Although individuals can be differentiated based on the main component of change within 606 

modality, the different modalities provide largely independent information in the context of 607 

age-related changes. A comprehensive approach that incorporates multiple measures of brain 608 

morphometric changes is essential to understand structural brain changes in older age. Indeed, 609 

there was minimal overlap in terms of cluster assignment among the brain features, particularly 610 

for cortical thickness and area. These two measures of surface, which together define cortical 611 

volume, are among other things thought to reflect the total number of cortical columns (area) 612 

and the number of cells within a column (thickness) (Rakic, 1988), respectively. Both area and 613 

thickness change are affected by increasing age, as shown by a cross-sectional and longitudinal 614 

study (Hogstrom et al., 2013; Storsve et al., 2014), and show a constant negative relationship 615 

across the adult lifespan (Storsve et al., 2014). Furthermore, these measures have distinct 616 

contributions to the volumetric changes at different stages of life. During development, cortical 617 

area changes play a significant role, and cortical thinning is the primary contributor in older 618 

age (Walhovd et al., 2016). Nevertheless, they showed an opposite pattern within regions; that 619 

is, those regions characterized by more thinning showed less decrease in area, and vice versa. 620 

Sele and colleagues (2021) found both null and negative associations between cortical area and 621 

cortical thickness change across individuals. Overall, these brain features show a unique 622 
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genetic signature (Panizzon et al., 2009), although recently other researchers have reported 623 

opposing effects on the impact of genetics on thickness and area (Grasby et al., 2020), and 624 

might display specific biological processes that may account for the varying contributions to 625 

age-related structural changes. Therefore, although individuals can be differentiated based on 626 

the main component of change within modality, the different modalities provide largely 627 

independent biological information in the context of age-related changes.  628 

 629 

Our findings showed that participants displaying more thinning, more subcortical volume 630 

decline, and/or more cortical area loss showed worse global cognition at baseline. These results 631 

can be interpreted in two ways. First, integrating brain reserve (Katzman et al., 1988; Stern et 632 

al., 2019) and maintenance (Nyberg et al., 2012) frameworks together within the Matthew 633 

principle. The latter posits an interaction between variation in level and change to explain 634 

differences in brain and cognition; in other words, it suggests that individuals who begin with 635 

an advantage will accumulate and maintain more advantage over time, and vice versa. From 636 

this perspective, participants with higher cognition at baseline may have accumulated neural 637 

resources that allowed them to counterbalance the effect of age-related brain changes. 638 

Consequently, the more neural resources available at our starting point (brain reserve), which 639 

accumulate over time, the more the advantages over time, leading to maintenance of brain 640 

resources available in aging, which is translated into better cognitive performance in older age. 641 

However, education, one of the most popular proxies of cognitive reserve (Stern, 2012) used 642 

to explain individual differences in cognition, which correlates with higher cognition in aging, 643 

does not seem to have a meaningful impact on structural brain changes in aging (Nyberg et al., 644 

2021), and does not affect the relationship between brain change and cognitive change (Lövdén 645 

et al., 2023), as would be predicted from the cognitive reserve account. Another alternative 646 

interpretation is that the relationship between global cognition and brain changes may capture 647 
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the ongoing changes in the brain and cognition that occur prior to, during, and maybe even 648 

after the follow-up period. In other words, the follow-up period can be viewed as a temporal 649 

"window" for observing slow trajectories of the brain and cognitive decline. Indeed, we found 650 

change in cortical surface area is related to both baseline cognition and cognitive change (as 651 

assessed by screening parameters). Further, even the screening tests used assess global 652 

cognition, they cannot be considered a pre-morbid cognitive assessment. Thus, brain change – 653 

baseline cognition relationships seem to reflect a dynamic sluggish association of paired 654 

cognitive and brain change. This might indicate that the global cognition factor captures 655 

changes that occurred prior to neuroimaging acquisition and cannot be accounted for by earlier 656 

factors. A recent paper (Walhovd et al., 2023) argues that the timing of lifespan influences is 657 

crucial to explain individual differences in brain and cognition. In fact, it appears that 658 

differences in the trajectories of change in brain and cognition can only partially explain the 659 

inter-individual variability in older age. Instead, individual differences may be largely 660 

attributed to early life factors that remain relatively stable over the adult lifespan. 661 

 662 

Cortical area changes were significantly related to cognitive changes in contrast to cortical 663 

thickness. Cortical area typically may indicate the number of cortical columns and it is related 664 

to information-processing capacity, and this was observed in older adults who showed cortical 665 

area decline, as they also exhibited more decline in the global cognition factor over time. This 666 

finding is supported by other studies (Borgeest et al., 2021; Nyberg et al., 2023), although they 667 

used fluid cognition measures (assessed by a speed of processing test and Cattell Culture Fair 668 

test). Changes in cortical thickness may be likely due to dendritic atrophy, which occurs with 669 

increasing age, and late-onset lower cortical thickness is associated with cognitive decline (de 670 

Chastelaine et al., 2019). We speculate that we did not find any positive association between 671 

thinning and cognitive change within our temporal interval due to the inclusion of relatively 672 
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young older adults (aged 50 years and older). This may lead to relatively minor changes in 673 

cortical thickness, which accelerate with higher age, especially after 60 years, as shown in a 674 

previous study (Nyberg et al., 2023), where the association with cognitive change was 675 

significant only at the final time point, when participants were older. As we can see, the time 676 

interval is a critical factor in this context, and it is possible that both brain and cognitive changes 677 

occur simultaneously in the same time frame, or, as we speculate in our case, cognitive changes 678 

occur both prior to and later than our follow-up period. The global cognition factor, as 679 

measured in our case by the MMSE and MOCA scores, appears to be an earlier and valid 680 

predictor, capturing more general and systematic changes in the aging-disease continuum 681 

compared to memory alone, which generally encompasses more specific and subtle changes. 682 

Indeed, we did not observe any effect on memory. The relationship between MTL thinning and 683 

hippocampal volume decline with memory changes is well established (Fjell et al., 2014b; 684 

Gorbach et al., 2017; Leong et al., 2017). Hence, a possible explanation for this null association 685 

might be due to the memory – brain associations being more regionally specific (e.g., medial 686 

temporal lobe) than global cognitive scores.  687 

 688 

Our results showed that more rapid cortical thinning, subcortical volume, and cortical area 689 

decline over time were related to lower CSF Aβ42 levels at baseline. Previous studies have 690 

reported conflicting results regarding the association between CSF Aβ42 and brain atrophy in 691 

cognitively healthy older adults (Fjell et al., 2014a; Svenningsson et al., 2019; Tosun et al., 692 

2011; Wang et al., 2015). Indeed, some studies found that decreased Aβ42 levels were 693 

associated with hippocampal loss but not cortical thinning in AD-signature regions (Pettigrew 694 

et al., 2016; Wang et al., 2015). Conversely, another study (Arenaza-Urquijo et al., 2013) found 695 

cortical thinning in AD-vulnerable regions, while another cross-sectional study found no 696 

relationship between CSF Aβ42 positivity, hippocampal volume decline, or cortical thickness 697 
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(Svenningsson et al., 2019). A significant association between lower CSF Aβ42 and surface 698 

area decline has not previously been reported. In our study, change in each longitudinal brain 699 

feature was associated with Aβ42 . In addition, subcortical volumetric change was associated 700 

also to p-tau. Specifically, participants in the subcortical decline cluster, who showed higher p-701 

tau and p-tau/Aβ42 ratio, as well as lower Aβ42 levels, may be at an increased risk for a 702 

subsequent clinical diagnosis of AD. Therefore, the association with AD biomarkers helps us 703 

understand the significance of these structural brain changes in the context of normal aging. 704 

Changes in the hippocampal volume and lateral ventricles are affected early in the disease 705 

process as long as AD biomarkers accumulate in the brain (Stricker et al., 2012). Overall, 706 

clustering of subcortical volume changes may provide helpful information for identifying 707 

individuals with an increased risk for a later clinical AD diagnosis, whereas the clustering of 708 

cortical features such as thickness and area may reflect different age-related brain processes.  709 

 710 

4.1 Limitations and technical considerations 711 

A strength of the present study is the use of longitudinal data for structural MRI, cognitive 712 

assessment, and CSF, which allows for a better capture of intra-individual changes over time. 713 

However, longitudinal studies can be affected by selective attrition, which means that results 714 

apply to the participants who did not drop out of the studies, who are known to be healthier, 715 

more educated, and with higher general cognitive ability than the general population (Beller et 716 

al., 2022; Salthouse, 2014). An additional problem with longitudinal data is the less than perfect 717 

reliability of the brain and cognitive change estimates. This aspect may help explain the 718 

stronger associations between brain change and baseline cognition compared to cognitive 719 

change. Additionally, it can be speculated that there is less variation in change than in level, 720 

making it more challenging to detect any systematic relationship. Another critical 721 

methodological aspect of this study is the merging of multiple cohorts, yielding increased 722 
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statistical power and reduced sampling bias compared to meta-analytical approaches. However, 723 

this approach may also introduce new sources of error due to differences in measurements or 724 

populations (Zuo et al., 2019). This decision leads to the use of different memory and global 725 

cognitive tests across the different cohorts, and may lead to small biases because the same 726 

underlying construct is not necessarily captured.  727 

 728 

 729 

5. Conclusions 730 

 731 

In summary, this study identified four distinct ageotypes based on the global pattern of brain 732 

changes within cortical thickness, cortical area and subcortical volume measures over time. 733 

The minimal overlap across modalities highlights the need to combine all the features to better 734 

capture and understand age-related brain changes. Furthermore, the clustering of regional brain 735 

changes proved to be a valuable tool for explaining cognitive and biomarker differences in 736 

cognitively unimpaired older adults.  737 
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