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Abstract

Structural brain changes underly cognitive changes in older age and contribute to inter-
individual variability in cognition. Here, we assessed how changes in cortical thickness, surface
area, and subcortical volume, are related to cognitive change in cognitively unimpaired older
adults using structural magnetic resonance imaging (MRI) data-driven clustering. Specifically,
we tested (1) which brain structural changes over time predict cognitive change in older age
(2) whether these are associated with core cerebrospinal fluid (CSF) Alzheimer’s disease (AD)
biomarkers phosphorylated tau (p-tau) and amyloid-p (AP42), and (3) the degree of overlap
between clusters derived from different structural features. In total 1899 cognitively healthy
older adults (50 - 93 years) were followed up to 16 years with neuropsychological and structural
MRI assessments, a subsample of which (n = 612) had CSF p-tau and AP42 measurements.
We applied Monte-Carlo Reference-based Consensus clustering to identify subgroups of older
adults based on structural brain change patterns over time. Four clusters for each brain feature
were identified, representing the degree of longitudinal brain decline. Each brain feature
provided a unique contribution to brain aging as clusters were largely independent across
modalities. Cognitive change and baseline cognition were best predicted by cortical area
change, whereas higher levels of p-tau and AP42 were associated with changes in subcortical
volume. These results provide insights into the link between changes in brain morphology and

cognition, which may translate to a better understanding of different aging trajectories.

Keywords
Memory, Ageotypes, Longitudinal MRI, Cognitively unimpaired older adults, CSF AD

biomarkers
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83 1. Introduction

84

85  Cognitive changes in healthy aging are partly explained by age-related macrostructural brain
86  changes that may be quantified using repeated structural magnetic resonance imaging (MRI)
87  assessments (Fjell and Walhovd, 2010). However, the extent of age-related changes in brain
88  and cognition differs among older individuals (Lindenberger, 2014), and such differences may
89  Dbe partly underpinned by different patterns of brain aging. The association between brain
90 changes and cognitive change can be assessed by examining different features of morphometric
91  changes, such as cortical thickness, surface area, and subcortical volume. These features have
92  been associated with different aspects of cognition in aging (Nyberg et al., 2023), and with
93  different cerebrospinal fluid (CSF) biomarkers of Alzheimer’s disease (AD) pathology (Fjell
94  etal., 2010; Pettigrew et al., 2016; Wang et al., 2015). MRI data-driven clustering approaches
95  have proven useful for separating subgroups of healthy older participants (“ageotypes”) with
96 different biological, cognitive, and sociodemographic characteristics (Ahadi et al., 2020; Cox
97 etal.,2021). Hence, in the present study, we applied a Monte-Carlo Reference-based consensus
98 clustering algorithm (John et al., 2020) on longitudinal MRI brain features to identify
99  subgroups of cognitively unimpaired older adults based on different structural brain change
100  patterns over time. Moreover, we tested whether the different features of brain change were
101  associated with cognitive changes and with core AD CSF biomarkers the 42 amino acid-long
102  form of amyloid-f3 (AB42) and phosphorylated tau 181 (p-tau) to gain insight into whether brain

103  changes in normal aging can potentially be explained by the presence of AD biomarkers.

104 In the aging context, longitudinal studies are necessary to capture inter-individual variability
105  in structural brain changes (slope differences), because cross-sectional studies cannot separate
106  aging-specific effects from earlier individual differences (intercept differences) in brain

107  structural measures (Fjell et al., 2014a; Vidal-Pifieiro et al., 2022). This is also supported by a
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108  study that found that the underlying factor structure for intercepts versus slopes across brain
109  regions was different, and the correlation patterns between cortical volumetric change were
110  stronger than those observed at baseline in cross-sectional analysis (Cox et al., 2021). Multiple
111  timepoints and long follow-up times are critical to estimate the association between changes in
112 the brain and cognition (Raz and Lindenberger, 2011), and to better understand the
113 neurobiological mechanisms underlying specific cognitive aging processes (Cox et al., 2021;

114  Fjell et al., 2014a).

115  The use of data-driven clustering, whether based on MRI or cognitive data, is beneficial in
116  assessing the heterogeneity of changes in older participants. This approach was used by
117 Josefsson et al. (2012) who identified ageotypes based on longitudinal trajectories of memory
118  change over 15 years. Participants were divided into maintainers, decliners, and those showing
119  average changes associated with age. Specific environmental and genetic characteristics (such

120  as sex, variance in occupation, education, and physical activity) were related to each group.

121

122 Different morphometric features, such as cortical thickness, surface area, and subcortical
123 volume, have been studied to describe inter and intra-individual variation in brain structures.
124  The different features are thought to be largely unrelated to each other (Lemaitre et al., 2012)
125  or even to be negatively associated, as in Storsve and colleagues (2014) where less decrements
126  in cortical area were associated with more cortical thinning. Cortical thickness, cortical area,
127  and subcortical volume decline in aging (Borgeest et al., 2021; Nyberg et al., 2023; Storsve et
128  al., 2014); yet few studies have assessed longitudinal brain changes, taking into account the
129  different brain features (Borgeest et al., 2021; Nyberg et al., 2023; Sele et al., 2021; Storsve et
130 al., 2014). Indeed, cortical area and thickness seem to reflect distinct underlying

131  neurobiological mechanisms that are differently affected in aging (Storsve et al., 2014), show
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132 specific regional changes, and have a negative genetic correlation (Grasby et al., 2020).
133  Assessing change in the different features of brain aging independently and considering to
134  which degree they complement each other may translate to a better understanding of aging

135  brain heterogeneity.

136  So far, there is inconclusive evidence regarding the association between structural brain
137  changes and cognitive changes in aging, and most of the evidence is based on cross-sectional
138  studies, with few exeptions. Thickness, but not area, changes were related to fluid intelligence
139  changes (Sele et al., 2021) and memory changes, especially in the medial temporal lobe, as
140  described in one study (Fjell et al., 2014b). Other studies found that surface area changes were
141  associated with changes in proxy measures of fluid intelligence (Borgeest et al., 2021). Nyberg
142 et al. (2023) described a significant association of surface area changes with a speed of
143  processing test. Another study found positive associations between a general cognitive ability
144  (GCA) factor and brain features, but with different results: indeed, higher baseline GCA was
145  associated with greater cortical area at baseline and less cortical thinning over time (Walhovd
146 et al., 2022). Finally, there is a general agreement in the literature regarding the positive
147  association between hippocampal volume loss and episodic memory decline (Capogna et al.,

148  2023a; Gorbach et al., 2020, 2017; Persson et al., 2012).

149

150  Decreased CSF AB42 (reflecting amyloid accumulation in the brain tissue) and increased p-tau
151  (reflecting a neuronal response to AP pathology) concentrations are considered two of the key
152  biomarker hallmarks of AD pathology (Jack et al., 2018), and their changes are identified in
153  the early stage of the AD continuum, without the presence of any cognitive symptoms. Hence,
154 it is relevant to understand the relationship between these biomarkers and the different
155  structural features of brain change in cognitively unimpaired older adults, to better identify

156  how these brain changes may be explained by the presence of AD biomarkers along an aging-
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157  disease continuum. CSF AB42 and p-tau biomarker changes have been associated with lower
158  cortical thickness and subcortical volume atrophy in AD-vulnerable regions in cognitively
159  unimpaired older adults (Arenaza-Urquijo et al., 2013; Pettigrew et al., 2016; Wang et al.,
160  2015). However, the relationship between CSF AB42 and brain atrophy is inconclusive (Fjell
161 et al., 2014a), whereas p-tau shows a stronger association with medial temporal lobe (MTL)
162  atrophy, following the time course of cognitive decline (Pettigrew et al., 2017; Vidal-Pifieiro
163 et al., 2022; Wisse et al., 2022). To our knowledge, no study has explored the relationship
164  between CSF core AD biomarkers and surface area changes. Moreover, early CSF AB42 and
165  p-tau biomarker changes (notably for p-tau, unclear for AB42 (Parent et al., 2023)) have been
166  described as predictive of future cognitive decline, especially in episodic memory, although

167  the overall effects were small (Clark et al., 2018; Hedden et al., 2013; Stomrud et al., 2007).

168  In the present study, we investigated the inter-individual patterns of structural brain changes in
169  normal aging using a consensus clustering algorithm. This approach allowed us to identify
170  subgroups, i.e. clusters, among older participants. We used different indices of brain
171  morphology, namely cortical thickness, cortical area, and subcortical volume to better
172 understand the degree to which each modality contributes independently to brain longitudinal
173  decline, and the degree of overlap across them. Moreover, we assessed whether the clusters
174  were related to different trajectories of episodic memory function and global cognition, as
175 measured by dementia screening tools. Finally, we tested the associations between brain
176  changes and baseline concentrations of core AD CSF biomarkers (AB42 and p-tau, as well as
177  the p-tau/AP42 ratio).

178

179

180 2 Material and methods

181
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182 2.1 Participants

183  The total sample included 1899 cognitively healthy older participants (1080 females, mean age
184  =69.88 years, standard deviation [SD] = 7.90, age range = 50.11 — 93.01 years) from 7 cohorts:
185 COGNORM (Idland et al., 2017), the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
186  (Mueller et al., 2005), the Open Access Series of Imaging Studies (OASIS3) (LaMontagne et
187  al., 2019), the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL)
188  (Ellis et al., 2009), the Harvard Aging Brain Study (HABS) (Dagley et al., 2017), the Pre-
189  symptomatic Evaluation of Novel or Experimental Treatments for AD (PREVENT-AD)
190  program (Breitner et al., 2016; Tremblay-Mercier et al., 2021), and the Center for Lifespan
191  Changes in Brain and Cognition (LCBC) dataset (Fjell et al., 2023). Data were collected by
192  previously cited groups. See Table 1 for more details on each dataset. The common inclusion
193  criteria were as follows: minimum age of 50 years, total follow-up time of at least 1 year, and
194  inclusion of scanners with 15 or more measurements to reduce noise and bias in the analysis.
195  Moreover, the participants were required to be cognitively unimpaired at baseline according to
196  a battery of neuropsychological tests. See specific inclusion criteria for each cohort in
197  Supplementary Information (SI). Longitudinal structural MRI scans were available for up to
198  15.84 years (mean = 4.81 [2.81] years). At baseline, participants showing concurrent mild
199  cognitive impairment, AD, or other severe neurological disorders were excluded from the
200  analysis. All participants provided written informed consent, and the studies were approved by

201  the relevant ethical committees and conducted in accordance with the Declaration of Helsinki.

202
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203

Table 1 Cohort characteristics

COGNORM ADNI OASIS 3 AIBL HABS PREVENT- LCBC Total
AD
N (F:M) 95 (52:43) 544 (293:251)  518(292:226) 149 (75:74) 166 (99:67) 229 (161:68) 198 (108:90) 1899
(1080:819)
Mean Age 73.40 (6.21) 73.22 (5.98) 69.00 (8.41)  71.09 (6.34)  72.78 (6.04) 63.56 (5.03) 65.23 (9.64) 69.88 (7.90)
Age range 64.74 — 89.79 55.80-89.90  50.11-93.01 60.00—-87.00 62.50—-87.75 55.13-84.22 50.39-84.47 50.11-93.01
Time MRI 5.94 (2.61) 4.12 (2.68) 5.13 (3.35) 4.04 (1.62) 4.88 (0.97) 2.88(1.13) 6.30 (2.80) 4.81 (2.81)
follow-up
MRI obs (n) 370 (3.90 2492 (4.58 1652 (3.19 498 (3.34 504 (3.04 1203 (5.23 574 (2.90 7293 (3.84
[1.36]) [2.42]) [1.49]) [1.10]) [0.53]) [1.39]) [0.83]) [1.86])
Global cognition 609 (6.41 2614 (4.80 3584 (6.96 598 (4.01 988 (5.95 229 (1 [0]) 525 (2.65 9147 (4.54
obs (n) [0.99]) [2.52]) [3.98]) [1.17]) [0.21]) [0.86]) [1.39])
Memory obs (n) 609 (6.41 2836 (5.21 493 (4.48 507 (3.40 993 (5.98 969 (4.25 420 (2.80 6827 (4.64
[0.99]) [2.67]) [2.68]) [1.13]) [0.807) [1.39]) [0.79]) [1.49])
Education (years)  14.94 (3.97) 16.50 (2.56) 15.89 (2.63) - 16.14 (3.01) 15.25 (3.27) 16.04 (2.77) 15.97 (2.88)

10
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204

205

206

207

APOE ¢4 (-/+) 48:37 368:170

332:186

99:50

118:46

146:83

50:21

1161:593

Descriptive statistics represent mean (SD). N = number of subjects. Obs = total number of observations. The MRI obs row shows the mean ([SD])
of the number of observations per participant and the total number. The same applies to global cognition and memory. Note that the term "global

cognition" specifically pertains to the screening tests outlined below. APOE &4 = non-carriers:carriers. Participants with heterozygous or

homozygous €4 alleles were regarded as carriers.

11
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208

209 2.2 MRI acquisition and preprocessing

210  Structural T1-weighted (T1w) MPRAGE scans were collected using 1.5 and 3 T scanners. See
211  information on scanner parameters and scanners per dataset in the SI. Images were transformed
212 into the Brain Imaging Data Structure (BIDS) format (Gorgolewski et al., 2016). Clinica
213 software was used for the ADNI, AIBL, and HABS BIDS transformations (Routier et al., 2021;
214 Samper-Gonzalez et al., 2018). We used the longitudinal FreeSurfer v.7.1.0 stream (Reuter et
215  al., 2012) for cortical reconstruction of the structural T1w scans (Dale et al., 1999; Fischl et al.,
216 1999). Briefly, the images were processed using the cross-sectional stream, which includes the
217 removal of nonbrain tissues, Talairach transformation, intensity correction, tissue and
218  volumetric segmentation, cortical surface reconstruction, and cortical parcellation. Next, an
219  unbiased within-subject template space based on all cross-sectional images was created for
220  each participant, using robust, inverse-consistent registration (Reuter et al., 2010). The
221  processing of each time point was then reinitialized with common information from the within-
222  subject template, to increase reliability and statistical power. Data were summarized based on
223 the Destrieux atlas (Destrieux et al., 2010) for cortical thickness and cortical area measures (74

224  features) and the aseg atlas for subcortical volumetric data (17 features) (Fischl et al., 2002).

225

226 2.3 Computation of intercept and slope measures for ROIs per participant

227  We focused on three indices of cerebral morphology: cortical thickness, surface area, and
228  subcortical volume. For each region of interest (ROI), we regressed out the effects of mean age
229  across timepoints for each participant using generalized additive mixed models (GAMM)
230  (Wood, 2017), as implemented in the gamm4 package. Age was introduced as a smooth term,
231 while random intercepts were included for each dataset, scanner, and participant. To compute

232 the slope of change for each participant, we fit a linear regression model for each participant

12
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233 and ROI with the GAMM model residuals (as dependent variable) and time equal to the
234  difference between age at a given observation and the individual's mean age. Participants
235  without longitudinal MRI data and those with follow-up intervals of < 1 year were excluded
236 from further analysis and were not included in the final sample. Next, we replaced outlier
237  values (> £5 SD from the mean) using the mice package (Buuren and Groothuis-Oudshoorn,
238 2011) (0.003% of observation values were replaced). The final output yielded a total of 330
239  structural MRI features (148 cortical thickness, 148 surface area, and 34 subcortical volumetric

240  bilateral ROIs that contained slope data). Finally, the values were scaled for each feature.

241

242 2.4 Consensus clustering of brain data

243 Slope data were clustered based on the M3C clustering algorithm — a Monte-Carlo Reference-
244  based Consensus algorithm - as implemented in the M3C package (John et al., 2020).
245  Consensus algorithms (Monti et al., 2003) are based on the idea that the ideal cluster should be
246  stable despite resampling, that is, that individuals should always or never be clustered together
247  in the face of iterative resampling. Such methods have gained popularity as they produce more

248  robust results, reduce bias, and provide estimates of the error.

249  An important challenge in consensus clustering is selecting the number of clusters (K). The
250  most popular criteria either require subjective decisions or show biases towards small or high
251  K-solutions. Furthermore, most approaches cannot test whether the desired solution is better
252  than K =1 (i.e., that the data comes from a single distribution). M3C solves both problems by
253  generating Monte Carlo simulations that preserve the covariance structure. M3C provides null
254  stability scores for a range of K values, which are then compared with real-data solutions. Here,
255  we used the Relative Cluster Stability Index (RCSI) metric to select K based on the proportion

256  of ambiguous clusters (PAC) scores. RCSI p-values were further derived to test the null

13
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257  hypothesis of K = 1 at each value of K. We used a spectral clustering algorithm (Ng et al.,
258  2001) as it is capable of coping with complex data structures. The remaining parameters were
259  set to the default values of M3C version 1.24.0. The algorithm was separately applied to each
260  of the three morphometric brain measures. To explore the data structure, we projected the
261  cluster outcome (i.e., individual assignments) onto main components of brain change (i.e.,
262  components capturing the main axis of variability of brain data) (n = 4) and carried out an
263  ANOVA using cluster assignment as the factor of interest. When significant (Bonferroni-
264  corrected), post-hoc pairwise comparisons were performed. Finally, for each cluster and

265  feature, we estimated the mean values.

266

267 2.5 Degree of overlap between cluster solutions

268  We carried out an analysis to establish whether the different structural modalities were
269  statistically related to each other, i.e., whether participants belonged to different clusters or the
270  same cluster across the various morphometric brain features. The explorative analysis indicated
271  that clustering was based on one principal component from a Principal Component Analysis
272 (PCA), and all the clustering solutions resulted in four groups. See Supplementary Figure 1.
273 Thus, for clarity, we renamed the clusters based on their mean ROIs change values as follows:
274 Decline, Mild Decline, Mild Maintenance, Maintenance. Cohen’s kappa was used to assess the
275  agreement among clusters, as implemented in the psych and irr R-packages. A weighted kappa
276  coefficient was applied because of the ordinal characteristics of the clusters and to stress the

277  large discrepancies in ratings more than the small ones (Sim and Wright, 2005).

278

14
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279 2.6 Cognitive functions over time

280  We focused on memory and global cognitive impairment because of their relevance in aging.
281  For the global cognitive impairment factor, we used the longitudinal scores from the Mini-
282  Mental State Examination (MMSE) (Folstein et al., 1975) for all samples except PREVENT-
283  AD, for which the Montreal Cognitive Assessment (MOCA) was used (Nasreddine et al.,
284 2005). We used these screening tests as a global measure of cognitive function (Garcia-Diaz et
285  al., 2014; Matsushima et al., 2015), acknowledging their sensitivity to dementia and cognitive
286  decline in the aging-disease continuum. The number of participants included was n = 1896.
287  Within cohorts, we scaled the longitudinal scores based on the mean and SD at the first time
288  point (same procedure applied below for the memory scores). Note that PREVENT-AD did
289  not include longitudinal MOCA scores. Moving forward, we will collectively refer to the
290  output of these screening tests as ‘global cognition’, as they are both sensitive to premorbid
291  global cognitive decline. For the memory factor, we selected the precomputed ADNI-MEM
292 (Crane et al., 2012) for the ADNI dataset. For the other datasets, we used the Immediate and
293  Delay scores in the Word List Memory Task (CERAD) (Morris et al., 1989) for COGNORM,
294  and the short delay and delayed score of the Logical Memory Test (Wechsler, 1987) for AIBL,
295 HABS, and OASIS3. For PREVENT-AD, we used the memory index score (Immediate and
296  Delayed) obtained from the Repeatable Battery for Assessment of Neuropsychological Status
297 (RBANS) (Randolph et al., 1998; Tremblay-Mercier et al., 2021) and the short delay, delayed,
298  and total learning from the California Verbal Learning Test (Delis et al., 2000) for LCBC. Then
299  we performed separate PCA on the first timepoint in each dataset with multiple memory
300 variables. The loadings for the first component were used to calculate scores for the first
301  principal component across all timepoints (Capogna et al., 2023b). The prcomp function was
302  used for the PCA. Furthermore, for both memory and global cognition factors, we regressed

303 the effects of age using GAMMs (Wood, 2017). Age was introduced as a smooth term and a
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304 test-retest variable as a dichotomic covariate to account for training effects (Capogna et al.,
305 2023b), and random intercepts were included for each participant in the model. To compute
306 the slope, we first extracted the residuals from the GAMMs, and then we ran a linear regression
307  model for each participant with age as the predictor and residuals as outcome. For the global
308 cognition factor, longitudinal results were available for 1649 participants, and the memory

309  change factor for 1442 participants.

310

311 2.7 CSF collection, analysis and computation of intercept and slope

312  CSF data were available for three cohorts: ADNI, COGNORM, and PREVENT AD (total
313  number of participants available = 612). For ADNI, CSF AB42 and p-tau concentrations were
314 measured using Elecsys phosphorylated-tau 181 (p-tau) and P-amyloid (Ap42) CSF
315  immunoassays (UPENNBIOMKY.csv ADNI file). CSF collection for COGNORM has been
316  thoroughly described previously (Idland et al., 2017). Briefly, CSF samples were analyzed at
317  the Clinical Neurochemistry Laboratory of Sahlgrenska University Hospital (Mdlndal,
318 Sweden). CSF concentrations of AP42 and p-tau were measured using the INNOTEST
319  enzyme-linked immunosorbent assay (ELISA; Fujirebio, Ghent, Belgium). CSF collection for
320 PREVENT-AD has been described previously (Tremblay-Mercier et al., 2021). CSF samples
321  for AP42 and p-tau 181 were measured using an INNOTEST enzyme-linked immunosorbent
322 assay. We had 608 and 611 cross-sectional values for p-tau and AP42 respectively, and
323  longitudinal values available for 327 and 328 participants for p-tau and AP42, respectively.
324  Within each cohort, we first scaled each CSF value based on the mean and SD at the first
325 timepoint. To compute the intercept and slope measure for CSF biomarkers, we fitted a linear
326  regression model for each participant with the CSF scaled value as the dependent variable and
327  time equal to the difference between age at a given observation and age at baseline. Due to the
328  relatively small number of participants with longitudinal CSF data, the longitudinal biomarkers
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analyses are deemed exploratory (see Supplementary Table 3). See Table 2 for descriptive

CSF data.

Table 2 Cross-sectional and longitudinal info CSF AD biomarkers

ADNI PREVENT-AD COGNORM
N 412 106 94
CSF p-tau bsl (pg/mL) 21.51 (8.74) 48.16 (17.67) 61.40 (18.96)

CSF Ap42 bsl (pg/mL)

Time from first MRI (years)
Interval follow- up (range in
years)

N follow-up

CSF p-tau total obs

CSF Ap42 total obs

1359.10 (649.67)

1.47 (2.24)
-3.74-10.28
221
802
809

1152.40 (270.77)
1.43 (1.33)

0.22 —4.58

76

351

350

729.48 (205.77)
0 (0)

2.88-5.69

34
66

66

N = number of participants (with MRI available for clustering) with AD biomarkers available.

Bsl = baseline value. The Time variable represents the mean (SD) of years between CSF

collections and baseline first MRI measurement. The interval follow-up refers to the range of

Time (see above) in years of CSF longitudinal collections, excluding the first CSF assessment.

N follow-up represents the number of participants with at least 2 CSF measurements over time.

Obs = number of total observations for each CSF biomarker of interest.

2.8 Statistical Analysis

All analyses were performed in the R environment (R Core Team, 2022). A chi-square test was

used to assess whether the clusters were associated with specific socio-demographic variables
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343  such as Sex, APOE &4, and Cohort variables. We used the chisq.posthoc.test package (Beasley
344  and Schumacker, 1995) to assess the cluster driving the significant associations. Linear mixed-
345  effects models (LME), as implemented in the /me4 R-package (Bates et al., 2015), were used
346  to assess whether the cluster assignments differed in education and mean age levels. Moreover,
347 we used LME to compute the effect of cluster assignment on memory and global cognition
348 intercept and change. Sex and mean age were introduced as covariates of no interest. Random
349  intercepts per cohort were also included. In addition, 4-group ANOV A models were run on the
350 outputs of the LME models. The models were corrected for multiple comparisons using the
351 false discovery rate and Benjamini-Hochberg correction (pFDR) (Benjamini and Hochberg,
352 1995). Specifically, we corrected the p-values from all the models separately for each
353  dependent domain (memory, global cognition, and CSF AD biomarkers). If the output was
354  significant, we applied multiple comparisons of means, as implemented in the multcomp R-
355  package (Westfall, 2010), that displayed the adjusted p-values, using a single-step method. The
356  same procedure described above was run in a subsample (n = 612) to assess the relationship of
357  brain change clusters with the CSF AD biomarkers. In the p-tau model, we also included

358  Dbaseline CSF AB42 as a covariate. We also tested the association with the p-tau/AB42 ratio.

359

360 2.9 Automated model selection

361 We tested the combined effects of cluster assignments (for changes in thickness, area, and
362  subcortical volume) and their interactions on explaining memory, global cognition, CSF AD
363  biomarkers, intercept, and slope (except for core CSF AD biomarkers). We used a LASSO
364  algorithm (Tibshirani, 1996), that performs a variable selection to maximize the prediction
365 accuracy, as implemented in the gglasso package (Yang and Zou, 2015) to automatically
366 identify the best-performing model to explain the cognitive and biomarker changes. We used
367  grouped LASSO to model the categorical properties of clusters, that is, both the different
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368  regressors for the main effects of clusters and their interactions were grouped, so the outcome
369  either provided coefficients for all the conditions or none. First, we created a matrix of
370  predictors (X) containing the main effects and all the interactions among clusters, while we set
371  Sex and mean Age as fixed variables. We defined the response (y) as the cognitive or AD
372 biomarkers of interest in prediction. We applied the function cv.gglasso, employing 10-folds
373  cross-validation to determine the optimal smoothing A parameter. We report the results at two
374  different A: A at minimum RMSE, and at the largest value of A within 1 standard error of A

375 minimum which leads to more conservative results.

376

377

378 3. Results

379

380 3.1 Clustering solutions for brain features and mean values of each cluster
381 We identified 4 clusters for each brain feature of interest. See Figure 1 for a visual

382  representation of the results and SI in [Zenodo] at https://doi.org/10.5281/zenodo.10365469

383  for the stats of the three features. The PCA and the visual exploration of the results suggested
384  that clusters were defined based on a main axis (component) of decline. See Supplementary
385  Figure 1. We reordered the clusters from those showing a steeper overall decline to those that
386  displayed — comparatively — less decline. For cortical thickness change, we found a high effect
387  of bilateral temporal and inferior parietal regions on cluster assignment. To some degree, we
388  observed a similar pattern for surface area changes, although weaker and more prominent in
389  the left superior frontal and temporal regions. Subcortical volume cluster assignment was
390 especially influenced by hippocampus decline and ventricular expansion. Henceforth, the

391  clusters are renamed as decline, mild decline, mild maintenance, and maintenance. See Figures
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2, 3, and 4 for a visual representation of the differences between the different clusters in each

analysis.

Figure 1 ANOVA output of cluster assignment

a) change in cortical thickness

F I

50 100 150200250

b) change in surface area

o

F I

20 40 60

¢) change in subcortical volume

50 100 150200 250

ANOVA output of brain change respectively for cluster assignments of cortical thickness,
surface area, and subcortical volume. The F-values represent the influence of each region in
the cluster assignment. Yellow regions represent more importance and blue regions represent

less importance. ROIs were based on the Destrieux atlas (Destrieux et al., 2010) for cortical
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401  thickness and cortical area, and the aseg atlas (Fischl et al., 2002) for subcortical volumetric

402  data.
403

404  Figure 2 Mean values for cortical thickness change in each cluster

Mean values for cortical thickness change in each cluster

OOOP

a) Decline

b) Mild decline

¢) Mild maintenance

d) Maintenance

- NN
405 410 05 00 05

406  Mean thickness change (z scores) values for each of the four clusters. Yellow represents more
407  positive values and less change in thickness over time, while indigo represents more negative
408 values and more thinning over time. A) decline cluster; b) mild decline cluster; ¢) mild
409  maintenance cluster; d) maintenance cluster. ROIs were based on the Destrieux atlas (Destrieux

410 etal., 2010) for cortical thickness. ROIs without an overlay are not significant (pFDR < 0.05).

411

412  Figure 3 Mean values for surface area change in each cluster
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Mean values for surface area change in each cluster

SO
HEQ

DR W
@ @S

1 _

-04 -0.2 0.0 0.2 04

a) Decline

b) Mild decline

¢) Mild maintenance

d) Maintenance

Mean area change (z scores) values for each of the four clusters. Yellow represents more
positive values and less change in area over time, while indigo represents more negative values
and more change in area over time. A) decline cluster; b) mild decline cluster; ¢) mild
maintenance cluster; d) maintenance cluster. ROIs were based on the Destrieux atlas (Destrieux

et al., 2010) for surface area. ROIs without an overlay are not significant (pFDR < 0.05).

Figure 4 Mean values for subcortical volume change in each cluster
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Mean values for subcortical volume change in each cluster

a) Decline b) Mild decline
¢) Mild maintenance d) Maintenance

4

$

0.8 -04 00 04

Mean subcortical change (z scores) values for each of the four clusters. Yellow represents more
positive values and less change in subcortical volume, while indigo represents more negative
values and more subcortical volume decline. A) decline cluster; b) mild decline cluster; ¢) mild
maintenance cluster; d) maintenance cluster. ROIs were based on the aseg atlas (Fischl et al.,

2002). ROIs without an overlay are not significant (pFDR < 0.05).

3.2 Degree of overlap between brain features

We next tested whether participants belonged to different clusters or the same cluster across
the various morphometric brain measures. The cluster assignment for each brain feature is
summarized in Figure 5. The weighted Cohen’s kappa coefficient for correspondence in cluster
assignment for thickness and area is k = 0.08 (p < 0.001), which means that the agreement
between clustering of different modalities was slight (as per Landis and Koch, 1977). This
suggests, as also previously reported, that thickness and surface area are two largely unrelated
and independent morphometric characteristics of aging (Storsve et al., 2014). The agreement

between participants being classified on the same clusters for subcortical volume and thickness
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is weighted k = 0.29 (p < 001), often interpreted as “fair” (Landis and Koch, 1977), whereas

the weighted Cohen’s kappa coefficient for subcortical volume and area is k = 0.19 (p <0.001).

Figure 5 Contingency tables for brain cluster assignment
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457  Mosaic plots reflecting the output of the contingency tables (ved R package). The dimensions
458  of each box are proportional to the number of participants grouped into the clusters based on
459  the different structural modality. The kappa value is calculated based on the discrepancy
460 between the diagonal boxes and those that are not located on the diagonal (agreement vs.
461  disagreement). Cells without a number mean 0 participants belonged to the two different
462  clusters. A) Table for clusters based on thickness change versus clusters based on area change;
463  b) table for clusters based on thickness change versus clusters based on subcortical volume
464  change; c) table for clusters based on area change versus clusters based on subcortical volume

465  change.

466

467 3.3 Associations between brain cluster assignment and genetic-environmental variables

468  We then assessed whether the cluster assignment (for brain feature) differed for sex, age,
469  education, APOE €4 status, and cohort. No associations were found with education level.
470  Changes in cortical thickness (cluster assignment) were associated with age (F = 10.97, dfl =
471  1888.8, df2 =3, pFDR < 0.001), and APOE ¢4 status (X*> = 11.86, df residual = 1751, pFDR =
472 0.01). Changes in cortical surface clusters were related to age (F = 32.56, dfl = 1889, df2 =3,
473  pFDR <0.001), sex (x> = 41.44, df residual = 1896, pFDR < 0.001), and APOE &4 status (Y*> =
474  15.34, df residual = 1751, pFDR < 0.01). Changes in subcortical volume clusters were also
475  related to age (F = 19.98, df1 = 1889.5, df2 = 3, pFDR < 0.001), sex (X*> = 52.15, df residuals
476 = 1896, pFDR < 0.001), and APOE ¢4 status (x> = 19.53, df residual = 1751, pFDR < 0.001).
477  Overall, the ANOVA results were in the expected direction, with clusters showing relative
478  brain maintenance having lower age, lower representation of APOE €4 carriers, and less males,
479  whereas clusters showing more brain decline had higher age and a higher representation of

480  APOE €4 carriers and males. See Supplementary Table 1 for the direction of the significant
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481  post-hoc associations between cluster assignment and these genetic and environmental

482  variables.

483

484 3.4 Associations between brain cluster assignment and cognitive functions

485  We then assessed the relationship between cluster assignment, intercept and change in memory
486  and global cognition, using LME and 4-group ANOVA models. The results are presented in
487  Table 3 (including the post-hoc multiple comparisons), for a visual representation see Figure
488 6. We found significant associations between global cognition intercept and changes in cortical
489  area (F =15.69, dfl = 1889, df2 = 3, pFDR < 0.001), thickness (F = 16.21, dfl = 1889, df2 =
490 3, pFDR < 0.001), and subcortical volume (F = 15.88, dfl = 1889, df2 = 3, pFDR < 0.001).
491  The ANOVA results were in the expected direction, with clusters showing relative brain
492  maintenance displaying higher cognition, and those showing more brain decline exhibiting
493  lower cognition. See the post-hoc comparisons across groups, that is, which specific clusters
494  had significantly different values in Table 3 and Supplementary Table 2. Global cognition
495  changes were associated with surface area changes (cluster assignment) over time (F = 4.16,
496  dfl =1605.9, df2 =3, pFDR = 0.009, post-hoc: lower cognition for mild decline cluster). No
497  significant relationship between cluster assignment and memory change and intercept survived

498  correction for multiple comparisons; all the results were above pFDR > 0.05.

499

500 Table 3 Associations between brain cluster assignment and cognitive functions

Cognitive function (F [pFDR]) n? partial

Cluster change thickness Memory change 3.40 (0.10) 7.05 x 1073
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Memory intercept 0.77 (0.67) 1.61 x 1073
Global cognition change 1.73 (0.16) 3.35 x 1073
Global cognition intercept 16.21 (< 0.001) 20 0.02
Cluster change area Memory change 0.85 (0.67) 1.78 x 1073
Memory intercept 2.64 (0.14) 5.50 x 1073
Global cognition change 4.16 (0.009) > 7.71 x 1073
Global cognition intercept 15.69 (< 0.001) b 0.02
Cluster change subvolume Memory change 0.51 (0.67) 1.08 x 1073
Memory intercept 0.52 (0.67) 1.09 x 1073
Global cognition change 1.84 (0.16) 3.62 x 1073
Global cognition intercept ~ 15.88 (< 0.001) (2b:) 0.02

ANOVA models on the LME models output. Sex and Age at baseline (mean-centered) as

covariates of no interest. Statistics represent F-values, pFDR corrected values, and n? partial

represents the effect size eta squared partial. The superscripts represent the significant output

(p < 0.01) of the post hoc multiple comparisons, where each cluster assignment is compared

against all: a) decline cluster > mean; b) mild decline > mean; ¢) mild maintenance > mean; d)

maintenance > mean. A negative sign indicates that the significant comparison was lower than

the mean. Please note that the term '"global cognition" specifically pertains to the

aforementioned screening tests.

Figure 6 Significant associations between brain cluster assignment and global cognition
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Post-hoc comparisons of means (one cluster vs. all) for global cognition intercept and change.

¥ =p <0.01, *** = p < 0.001, ns = non-significant. Note that the term "global cognition"

specifically pertains to the aforementioned screening tests.

3.5 Associations between brain cluster assignment and CSF AD biomarkers

The results are presented in Table 4 (n = 612). Changes in subcortical volume clusters were

significantly related to CSF AB42 (F =8.30, df1= 605, df2 =3, pFDR < 0.001), p-tau (F = 3.95,

dfl = 600, df2 = 3, pFDR = 0.01), and p-taw/AB42 ratio (F = 10.40, dfl = 601, df2 = 3, pFDR

<0.001). We also found significant positive associations between changes in thickness clusters

and the p-taw/AP42 ratio (F = 6.44, dfl = 601, df2 = 3, pFDR < 0.001) and Ap42 (F = 7.08, dfl

= 605, df2 = 3, pFDR < 0.001). Changes in cortical area clusters were significantly related to

CSF AB42 (F = 4.54, df1 = 605, df2 = 3, pFDR = 0.007). The ANOVA results were in the

expected direction, with clusters displaying more brain decline showing lower AB42, higher p-
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tau, and higher p-tau/AB42 ratio, and those showing relative brain maintenance exhibiting

lower p-tau/AP42 ratio, and higher AB42. See Supplementary Table 3, Figure 7 for the

association with CSF AD biomarkers, and Table 4 and Supplementary Table 2 for the post-

hoc comparisons across clusters, showing which specific subgroups had significantly different

values.

Table 4 Associations between brain cluster assignment and CSF AD biomarkers at

baseline

CSF AD biomarkers bsl (F [pFDR]) n? partial

Cluster change thickness AB42 7.08 (< 0.001) ) 0.03

p-tau 0.70 (0.62) 0.003

p-tau/AP42 ratio 6.44 (< 0.001) @-© 0.03

Cluster change area AB42 4.54 (0.007) b 0.02
p-tau 0.16 (0.92) 8.29 x 10

p-tau/AP42 ratio 2.47 (0.08) 0.01

Cluster change subvolume AB42 8.30 (< 0.001) 2 0.04

p-tau 3.95 (0.01)@ 0.02

p-tau/AP42 ratio 10.40 (< 0.001) @9 0.05

ANOVA models on the LME model outputs. Sex and mean age (and AP42 for p-tau change

models) as covariates of no interest. Statistics represent F-values, pFDR corrected values, and
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535  n?partial represents the effect size eta squared partial. The superscripts represent the significant
536 output (p < 0.01) of the post hoc multiple comparisons, where each cluster assignment is
537  compared against all: a) decline cluster > mean; b) mild decline > mean; c¢) mild maintenance
538 >mean; d) maintenance > mean. A negative sign indicates that the significant comparison was
539  lower than the mean.

540

541  Figure 7 Significant associations between brain cluster assignment and AD CSF

542  biomarkers

c

Y
o

Cluster change thickness and CSF Af,; intercept Cluster change thickness and CSF p-tau/Af,; ratio intercept Cluster change area and CSF Af3, intercept
5.0 ns s 61 o 501 ns
8
- > ns ns -
o ns " 2 Ak 8
o * *xx cluster change thickness £, cluster change thickness @ o g cluster change area
o o *
§ 25 decline 2 decline o 25 decline
1S g ) IS ) '
o mild decline S 2 mild decline o mild decline
g = g
:(l 00 mild maintenance < mild maintenance f(" 0.0 mild maintenance
. S5 .
(uﬁ maintenance ] maintenance % maintenance
(6] ao (6]
TR
[%]
-25 O 2.5
— — —
clusters change thickness clusters change thickness clusters change area
d e f .
Cluster change subvol and CSF Af; intercept Cluster change subvol and CSF p-tau,s; intercept Cluster change subvol and CSF p-taw/Ap,; ratio intercept
5.0 ns ns ns ns 5 -
** )
= ’ 54 5
% *** g cluster change subvol g cluster change subvol ‘é 5.0 ns cluster change subvol
o 7}
5 25 decline = decline 2 . decline
c - -
e mild decline s 2 mild decline Y05 * mild decline
g S o 2.
< 0.0 mild maintenance £ mild maintenance < mild maintenance
X S =1
& maintenance w O maintenance S maintenance
O %] 4 00
o w
[9]
25 2 S I
clusters change subvol clusters change subvol clusters change subvol

543
544  Post-hoc comparisons of means (one cluster vs all) for AD CSF biomarkers intercept. * =p <

545  0.05, ** =p <0.01, *** =p <0.001, ns = non-significant.

546

547 3.6 Automated model selection for cognitive functioning and CSF core AD biomarkers

548  When using A within 1 standard error of the minimum (the more conservative criterion), the
549  LASSO models dropped all the predictors. By selecting the less conservative criteria for

550  selecting A (A.min = 0.01), the optimal model for predicting the memory intercept included
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551  only the cluster area change, which had nonzero coefficients. The best model predicting
552  memory change included the main effects of changes in thickness and subcortical volume, and
553 the interactions among the three brain features (A.min = 0.003). The optimal model predicting
554  global cognition at baseline comprised thickness, area, and subcortical volume change main
555  effects (A.min = 0.004), whereas global cognitive change included area and subcortical volume
556  main effects and their interactions (A.min = 0.002). Regarding CSF AD biomarkers, we found
557  that the main effects of changes in thickness, area, and subcortical volume were associated with
558 CSF Ap42 at baseline (A.min = 0.01). Changes in subcortical volume best predicted p-tau
559  (A.min = 0.01), whereas the main effects of changes in thickness and subcortical volume were
560 associated with the p-tau/AB42 ratio (A.min = 0.01). See Supplementary Table 4 for all the

561 stats.

562

563

564 4. Discussion

565

566 ~ We identified four ageotypes for cortical thickness, cortical area, and subcortical volume,
567  grouping participants based on the degree of morphometric change. The overlap across
568  modalities was low, indicating that a comprehensive understanding of structural brain changes
569 in aging requires the integration of different brain features. The analysis of the associations
570  between brain changes and cognitive function, as well as AD biomarkers, was beneficial in
571  comprehending the significance of these brain changes in normal aging. In particular,
572  clustering based on subcortical volumetric change was found to be highly sensitive to both

573  cognition and AD biomarkers. This suggests that ageotypes are relevant in understanding
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574  cognitive decline in aging. Furthermore, the relationship with AD biomarkers indicates that

575  structural brain changes may give rise to an increased risk for later development of AD.

576

577  Clustering was strongly based on a main factor of decline, suggesting that differences in cluster
578 assignment could be attributed to a main “global” component of (modality-specific) brain
579  decline rather than to specific spatial patterns. This finding is consistent with a previous study
580 that used factor analysis on longitudinal volumetric ROIs changes and identified a general
581 factor of cortical volume change in aging (Cox et al., 2021) which accounted for 63% of the
582  longitudinal changes in the different regions. Similarly, Sele and colleagues (2020) found that
583 a component of decline (from PCA) accounted for approximately 35% of the longitudinal

584  volumetric change (slope differences) across different regions, especially temporal.

585

586  Although clusters were primarily determined by a global component of brain decline, some
587  regions were especially critical for cluster assignment. Specifically, we found that subtypes
588  based on both cortical thickness and cortical area change were strongly related to the degree of
589  bilateral decline in the temporal and inferior parietal regions. These regions are among those
590 suffering steeper age-related decline (Fjell et al., 2014b; Thambisetty et al., 2010), as well as
591  exhibiting higher inter-individual variability (Sele et al., 2020). Notable decline in these regions
592  can be seen also independently of APOE status and neurodegenerative processes reflected by
593 AD biomarkers AP42 and tau, and is often considered characteristic of normal aging
594 trajectories (Fjell et al., 2014a). Despite being highly vulnerable to aging, frontal regions did
595 not have a special influence in determining cluster assignment, with the exception of the
596  superior frontal cortex in cortical area change. One possible explanation is that despite showing

597  asteep decline, these regions also showed relatively low inter-individual variability in change.
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598 In other words, older participants tended to show a similar degree of change in these regions
599  (Sele et al., 2021). Finally, we found that inter-individual variability in bilateral hippocampal
600  volume decline and enlargement of the lateral ventricles was relevant for identifying clusters
601  of subcortical volume changes. These regions are both strongly affected by age (Fjell et al.,
602  2014a; Takao et al., 2012) with a high degree of variability across individuals (Sele et al., 2021,
603  2020) and are also commonly affected by AD (Apostolova et al., 2012; Grundman et al., 2002;

604  Thompson et al., 2004).

605

606  Although individuals can be differentiated based on the main component of change within
607  modality, the different modalities provide largely independent information in the context of
608 age-related changes. A comprehensive approach that incorporates multiple measures of brain
609  morphometric changes is essential to understand structural brain changes in older age. Indeed,
610 there was minimal overlap in terms of cluster assignment among the brain features, particularly
611  for cortical thickness and area. These two measures of surface, which together define cortical
612  volume, are among other things thought to reflect the total number of cortical columns (area)
613  and the number of cells within a column (thickness) (Rakic, 1988), respectively. Both area and
614  thickness change are affected by increasing age, as shown by a cross-sectional and longitudinal
615  study (Hogstrom et al., 2013; Storsve et al., 2014), and show a constant negative relationship
616  across the adult lifespan (Storsve et al., 2014). Furthermore, these measures have distinct
617  contributions to the volumetric changes at different stages of life. During development, cortical
618  area changes play a significant role, and cortical thinning is the primary contributor in older
619 age (Walhovd et al., 2016). Nevertheless, they showed an opposite pattern within regions; that
620 s, those regions characterized by more thinning showed less decrease in area, and vice versa.
621  Sele and colleagues (2021) found both null and negative associations between cortical area and
622  cortical thickness change across individuals. Overall, these brain features show a unique
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623  genetic signature (Panizzon et al., 2009), although recently other researchers have reported
624  opposing effects on the impact of genetics on thickness and area (Grasby et al., 2020), and
625  might display specific biological processes that may account for the varying contributions to
626  age-related structural changes. Therefore, although individuals can be differentiated based on
627  the main component of change within modality, the different modalities provide largely

628 independent biological information in the context of age-related changes.

629

630  Our findings showed that participants displaying more thinning, more subcortical volume
631  decline, and/or more cortical area loss showed worse global cognition at baseline. These results
632  can be interpreted in two ways. First, integrating brain reserve (Katzman et al., 1988; Stern et
633 al, 2019) and maintenance (Nyberg et al., 2012) frameworks together within the Matthew
634  principle. The latter posits an interaction between variation in level and change to explain
635  differences in brain and cognition; in other words, it suggests that individuals who begin with
636  an advantage will accumulate and maintain more advantage over time, and vice versa. From
637 this perspective, participants with higher cognition at baseline may have accumulated neural
638 resources that allowed them to counterbalance the effect of age-related brain changes.
639  Consequently, the more neural resources available at our starting point (brain reserve), which
640 accumulate over time, the more the advantages over time, leading to maintenance of brain
641  resources available in aging, which is translated into better cognitive performance in older age.
642  However, education, one of the most popular proxies of cognitive reserve (Stern, 2012) used
643  to explain individual differences in cognition, which correlates with higher cognition in aging,
644  does not seem to have a meaningful impact on structural brain changes in aging (Nyberg et al.,
645  2021), and does not affect the relationship between brain change and cognitive change (Lévdén
646 et al., 2023), as would be predicted from the cognitive reserve account. Another alternative
647  interpretation is that the relationship between global cognition and brain changes may capture
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648  the ongoing changes in the brain and cognition that occur prior to, during, and maybe even
649  after the follow-up period. In other words, the follow-up period can be viewed as a temporal
650 "window" for observing slow trajectories of the brain and cognitive decline. Indeed, we found
651  change in cortical surface area is related to both baseline cognition and cognitive change (as
652  assessed by screening parameters). Further, even the screening tests used assess global
653  cognition, they cannot be considered a pre-morbid cognitive assessment. Thus, brain change —
654  baseline cognition relationships seem to reflect a dynamic sluggish association of paired
655  cognitive and brain change. This might indicate that the global cognition factor captures
656  changes that occurred prior to neuroimaging acquisition and cannot be accounted for by earlier
657  factors. A recent paper (Walhovd et al., 2023) argues that the timing of lifespan influences is
658  crucial to explain individual differences in brain and cognition. In fact, it appears that
659 differences in the trajectories of change in brain and cognition can only partially explain the
660 inter-individual variability in older age. Instead, individual differences may be largely

661  attributed to early life factors that remain relatively stable over the adult lifespan.

662

663  Cortical area changes were significantly related to cognitive changes in contrast to cortical
664  thickness. Cortical area typically may indicate the number of cortical columns and it is related
665  to information-processing capacity, and this was observed in older adults who showed cortical
666  area decline, as they also exhibited more decline in the global cognition factor over time. This
667  finding is supported by other studies (Borgeest et al., 2021; Nyberg et al., 2023), although they
668  used fluid cognition measures (assessed by a speed of processing test and Cattell Culture Fair
669 test). Changes in cortical thickness may be likely due to dendritic atrophy, which occurs with
670  increasing age, and late-onset lower cortical thickness is associated with cognitive decline (de
671  Chastelaine et al., 2019). We speculate that we did not find any positive association between
672  thinning and cognitive change within our temporal interval due to the inclusion of relatively
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673  young older adults (aged 50 years and older). This may lead to relatively minor changes in
674  cortical thickness, which accelerate with higher age, especially after 60 years, as shown in a
675  previous study (Nyberg et al., 2023), where the association with cognitive change was
676  significant only at the final time point, when participants were older. As we can see, the time
677  interval is a critical factor in this context, and it is possible that both brain and cognitive changes
678  occur simultaneously in the same time frame, or, as we speculate in our case, cognitive changes
679  occur both prior to and later than our follow-up period. The global cognition factor, as
680 measured in our case by the MMSE and MOCA scores, appears to be an earlier and valid
681  predictor, capturing more general and systematic changes in the aging-disease continuum
682  compared to memory alone, which generally encompasses more specific and subtle changes.
683  Indeed, we did not observe any effect on memory. The relationship between MTL thinning and
684  hippocampal volume decline with memory changes is well established (Fjell et al., 2014b;
685  Gorbachetal.,2017; Leong et al., 2017). Hence, a possible explanation for this null association
686  might be due to the memory — brain associations being more regionally specific (e.g., medial

687  temporal lobe) than global cognitive scores.

688

689  Our results showed that more rapid cortical thinning, subcortical volume, and cortical area
690 decline over time were related to lower CSF APB42 levels at baseline. Previous studies have
691  reported conflicting results regarding the association between CSF AB42 and brain atrophy in
692  cognitively healthy older adults (Fjell et al., 2014a; Svenningsson et al., 2019; Tosun et al.,
693  2011; Wang et al., 2015). Indeed, some studies found that decreased AP42 levels were
694  associated with hippocampal loss but not cortical thinning in AD-signature regions (Pettigrew
695 etal.,2016; Wangetal., 2015). Conversely, another study (Arenaza-Urquijo et al., 2013) found
696  cortical thinning in AD-vulnerable regions, while another cross-sectional study found no
697  relationship between CSF AB42 positivity, hippocampal volume decline, or cortical thickness
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698  (Svenningsson et al., 2019). A significant association between lower CSF AB42 and surface
699  area decline has not previously been reported. In our study, change in each longitudinal brain
700 feature was associated with AB42 . In addition, subcortical volumetric change was associated
701 also to p-tau. Specifically, participants in the subcortical decline cluster, who showed higher p-
702  tau and p-tau/AP42 ratio, as well as lower AP42 levels, may be at an increased risk for a
703  subsequent clinical diagnosis of AD. Therefore, the association with AD biomarkers helps us
704  understand the significance of these structural brain changes in the context of normal aging.
705  Changes in the hippocampal volume and lateral ventricles are affected early in the disease
706  process as long as AD biomarkers accumulate in the brain (Stricker et al., 2012). Overall,
707  clustering of subcortical volume changes may provide helpful information for identifying
708  individuals with an increased risk for a later clinical AD diagnosis, whereas the clustering of

709  cortical features such as thickness and area may reflect different age-related brain processes.

710

711 4.1 Limitations and technical considerations

712 A strength of the present study is the use of longitudinal data for structural MRI, cognitive
713 assessment, and CSF, which allows for a better capture of intra-individual changes over time.
714  However, longitudinal studies can be affected by selective attrition, which means that results
715  apply to the participants who did not drop out of the studies, who are known to be healthier,
716  more educated, and with higher general cognitive ability than the general population (Beller et
717  al.,2022; Salthouse, 2014). An additional problem with longitudinal data is the less than perfect
718  reliability of the brain and cognitive change estimates. This aspect may help explain the
719  stronger associations between brain change and baseline cognition compared to cognitive
720  change. Additionally, it can be speculated that there is less variation in change than in level,
721  making it more challenging to detect any systematic relationship. Another critical

722 methodological aspect of this study is the merging of multiple cohorts, yielding increased
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723 statistical power and reduced sampling bias compared to meta-analytical approaches. However,
724  this approach may also introduce new sources of error due to differences in measurements or
725  populations (Zuo et al., 2019). This decision leads to the use of different memory and global
726  cognitive tests across the different cohorts, and may lead to small biases because the same

727  underlying construct is not necessarily captured.

728

729

730 5. Conclusions

731

732 In summary, this study identified four distinct ageotypes based on the global pattern of brain
733 changes within cortical thickness, cortical area and subcortical volume measures over time.
734  The minimal overlap across modalities highlights the need to combine all the features to better
735  capture and understand age-related brain changes. Furthermore, the clustering of regional brain
736  changes proved to be a valuable tool for explaining cognitive and biomarker differences in

737  cognitively unimpaired older adults.
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