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Summary

Coronaviruses display versatile receptor usage, yet in-depth characterization of coronaviruses
lacking known receptor identities has been impeded by the absence of feasible infection models'2.
Here, we developed an innovative strategy to engineer functional customized viral receptors (CVRs).
The modular design relies on building receptor frameworks comprising various function modules
and generating specific epitope-targeting viral binding domains. We showed the key factors for
CVRs to efficiently facilitate spike cleavage, membrane fusion, pseudovirus entry, and authentic
virus propagation for various coronaviruses, resembling their native receptors. Applying this strategy,
we delineated the accessible receptor binding epitopes for functional SARS-CoV-2 CVR design and
elucidated the mechanism of entry supported by an amino-terminus domain (NTD) targeting
S2L20-CVR. Furthermore, we created CVR-expressing cells for assessing antibodies and inhibitors
against 12 representative coronaviruses from six subgenera, most of which lacking known receptors.
Notably, a pan-sarbecovirus CVR supported entry of various sarbecoviruses, as well as propagation
of a replicable HKU3 pseudovirus and the authentic strain RsHuB2019A3. Through combining an
HKUS-specific CVR with reverse genetics, we successfully rescued and cultured wild-type and
fluorescence protein-incorporated HKUS, a receptor-unidentified merbecovirus. Our study
demonstrated the great potential of CVR strategy in establishing native receptor-independent
infection models, paving the way for studying various viruses that are challenging to culture due to

the lack of susceptible cells.
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Introduction

The Coronaviridae family encompasses hundreds of enveloped viruses categorized into four
genera, a-, B-, y- and d-coronaviruses*. The emergence of human B-coronaviruses has led to three
significant outbreaks in the 21% century, highlighting the substantial zoonotic risks associated with
various animal coronaviruses that are poorly studied, primarily infecting bats>-.

Coronavirus entry is mediated by the trimerized spike (S) proteins. The full-length S may either
remain intact or undergo cleavage by furin or other proteases at the S1/S2 cleavage site, yielding S1
and S2 subunits’. The S1 subunit engages in specific interaction with the receptor, leading to
conformational changes that trigger membrane fusion mediated by the S2 subunit!'®. The activation of
S2 fusion machinery is associated with the exposure and proteolytic of the S2' cleavage site, which is
right upstream of the fusion peptide (FP). A successful fusion involves a dramatic transition of the
high-energy prefusion conformation to the low-energy post-fusion conformation of the spike trimer,
with an extended intermediate that refolds and brings the two membranes into proximity to overcome
the energy barrier for fusion'!. Except for MHV, which naturally employs its amino-terminal domain
(NTD) for receptor engagement, most coronaviruses use their carboxy-terminal domain (CTD) of the
S1 subunit as their receptor binding domains (RBD), adopting either "down" or "up" conformations
in the spike trimer'2. The "up" conformation is believed to be more accessible for receptor
engagement!®. For example, SARS-CoV-2 recognizes the ACE2 protease domain (or head domain)
through the extended receptor binding motif (RBM). The ACE2 binding mediated conformational
change exposes the S2' site, followed by proteolytic cleavage either by cell surface transmembrane
serine protease 2 (TMPRSS?2), the endosome-localized cathepsin L or other proteases'*.

Coronaviruses can employ different receptors or adopt different receptor recognition
mechanisms to utilize the same receptor'>~!7. Efforts in the past decades have led to the identification
of four widely acknowledged protein entry receptors for coronaviruses: ACE2, Aminopeptidase N
(APN), Dipeptidyl peptidase-4 DPP4, and mCEACAMI1a2. TMPRSS2 has also been recently
reported as an entry receptor for human coronavirus HKUI'®$!°, ACE2 represents the most
extensively studied receptor supporting entry of various coronaviruses, including NL63,
SARS-CoV-1, SARS-CoV-2, and several clades of bat sarbecoviruses and merbecoviruses!'®2022,
Human ACE2 is an 805-aminoacid (aa) type I transmembrane protein consisting of signal peptide,
head domain, neck domain, spacer sequences, transmembrane domain, and cytosolic domain.
Cryo-EM structure demonstrated a dimerized structure, with a direct engagement of the head domain
(protease domain) in SARS-CoV-2 RBD, particularly the al and a2-helix and the loop connecting
the B3- and P4-sheets?’. However, the contribution of other sequences for achieving the optimal

receptor function remains not fully understood. Many alternative receptors capable of mediating
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SARS-CoV-2 entry have been reported, including CD147, AXL, KREMEN1, ASGRI1, NRPI,
CLEC4M, TMEMI106B, etc**2%. However, their entry-supporting efficiency is generally low
compared with the ACE2 receptor, probably due to the lack of evolutionary viral adaptation.
Nevertheless, many coronaviruses do not use these reported receptors, and their receptor identity
remains elusive. Numerous bat coronaviruses are known solely as sequences in databases, limiting
our knowledge and countermeasures against these animal coronaviruses'.

Remarkably, many coronaviruses with unknown receptors often exhibited narrow cell tropism
or a complete lack of known susceptible cells!. A primary challenge of conducting in-depth studies is
the difficulty in culturing these viruses. Functional entry receptors are pivotal for establishing
infection models for these viruses. However, the conventional strategy for native receptor
identification is challenging and largely unpredictable. To address this unmet need, the alternative
approach of establishing feasible infection models independent of native receptors is awaiting
exploration, with few attempts on MHV reported for this purpose?”-2%,

The challenge of designing viral entry receptors with satisfied functionality is impeded by the
lack of knowledge regarding the optimal viral surface to be targeted, and the critical sequence and
structural requirements for achieving acceptable conformational changes coupling the downstream
entry process. Notably, studies focusing on SARS-CoV-2 or MERS-CoV have elucidated several
scenarios of ACE2 or DPP4-independent entry, either by alternative receptors, antibody-dependent
FcyR-mediated entry, or membrane-anchored antibodies, either in a productive or nonproductive
manner’*22932_ These findings indicate the specific ACE2-SARS-CoV-2 interaction is dispensable
for viral entry, making it feasible to design receptors for various coronaviruses without known native
receptor identities.

In this study, by dissecting the contributing sequences for ACE2 to support SARS-CoV-2 entry
efficiently, we demonstrated that each part of the ACE2 contributes to the functionality in different
ways. Nevertheless, all the ACE2 sequences were replaceable, enabling the rebuilding of various
receptors with customized specificity by grafting viral binding domains generated by multiple
methods. By deciphering the key factors affecting the functionality of the receptors, we developed a
generally applicable modular design strategy to build functional customized viral receptors (CVRs)
for supporting productive entry of viruses, either the vesicular stomatitis virus (VSV) based
pseudoviruses or the authentic viral strains. Utilizing the engineered cell culture models expressing
various CVRs, we demonstrated the advantage of this strategy in various applications, such as
investigating viral entry mechanisms, assessing the efficacy and breadth of antibodies and other
antivirals, improving coronavirus culture efficiency, and isolating or rescuing coronaviruses without

known receptors.
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Results
Modular design of customized viral receptors

We set out to delineate the role of each sequence or structural component of human ACE2 in
functioning as an ideal receptor for SARS-CoV-2. We first tested the feasibility of using
computationally designed ACE2-mimicking small helical frameworks to replace the ACE2 head
domain while maintaining its receptor function. Four ACE2 chimeric proteins were created, with the
head domain or head/neck domains replaced by two previously reported SARS-CoV-2 RBD binding
helical frameworks, LCB1 and LCB33). The SARS-CoV-2 authentic virus infection assays
demonstrated that these chimeric proteins effectively supported viral infection (Extended Data Fig.
1).

We further investigated the importance of other ACE2 sequences by gradually reducing the
remaining ACE2 components, including the neck domain, spacer, and cytosolic domain (D2-D5)
(Fig. la). All chimeric proteins showed comparable SARS-CoV-2 RBD binding as examined by
flow cytometry (Fig. 1b-c). However, the pseudovirus entry-supporting ability declined with
decreasing ACE2 sequences, although the shortest 132aa protein maintained detectable receptor
function, approximately 0.5% compared to the ACE2 group and 113-fold compared to vector control
(Fig. 1d-e).

Several chimeric proteins were subsequently designed with indicated domains replaced by
corresponding sequences from other viral receptors or immune receptors (R1-R4), along with a
construct carrying an endocytosis prevention motif (EPM) to enhance surface distribution (R5) (Fig.
10)3*. All chimeric proteins demonstrated well expression and efficient RBD binding (Fig. 1g-h).
Particularly, the chimeric protein with the ACE2 neck domain substituted with triple (3%) 23aa
tandem repeats (TR23) from CLEC4M or human IgG Fc supported efficient entry (Fig. 1i-j). Further
substituting the remaining sequence with IL2Ra corresponding sequences maintained similar entry
efficiency, suggesting that no ACE2-derived sequences are strictly required for SARS-CoV-2 entry
(Fig. 1i-j). Among 31 tested transmembrane (TM) and several cytosolic domains from different
receptors, the transmembrane and cytosolic domain (TMC) from the Chikungunya (CHIKV) receptor
Matrix remodeling-associated protein 8 (Mxra8) exhibited the best performance (Extended Data Fig.
2)%. Constructs with EPM showed improved cell surface localization and enhanced entry-supporting
ability (Fig. 1i-j, Extended Data Fig. 3). Additionally, constructs with a type-II transmembrane
topology also efficiently supported SARS-CoV-2 and MERS-CoV entry, indicating the feasibility of
both transmembrane topology for supporting coronavirus entry (Extended Data Fig. 4).

We then explored the impact of spacer length and oligomerization on entry-supporting
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efficiency by testing spacers with different copies of TR23 tandem repeats or immunoglobulin-like
domains from human IgG or mCEACAMI1a (Fig.1k-1, and Extended Data Fig. 5 and 6). Results
indicated the triple TR23 or two immunoglobulin (Ig) or Ig-like domains represent the optimal
spacer length for LCB1, while abolishing dimerization by Fc mutants has no significant impact on
receptor function (Fig.Im and Extended Data Fig. 5 and 6) 36,

Subsequently, various SARS-CoV-2 RBD-targeting viral binding domains (VBDs) were tested
for receptor grafting, including designed helical frameworks, designed ankyrin repeat proteins
(DARPIns), nanobody, scFv, and Fab (Fig.1n and Extended Data Fig. 7). All these VBDs types are
acceptable, with nanobodies showing superiority due to their small size, single-chain nature, and
compatibility for bio-panning (Fig.lo, p). We also demonstrated the functionality of a bi-specific
receptor carrying two VBDs recognizing SARS-CoV-2 and MERS-CoV, respectively, and
trimerized VBDs recognizing SARS-CoV-2 RBD (Extended Data Fig. 8). Additionally, we show the
entry facilitated by soluble receptor adapters connecting viral RBD and ACE2 or FcyRlIla,
respectively (Extended Data Fig. 9).

The functionality of CVRs compared with ACE2 was demonstrated through a series of
experiments showing membrane fusion, authentic SARS-CoV-2 infection, and virus specificity in
different cell types (Extended Data Fig.10). The entry-supporting efficiency of CVRs are
significantly more efficient than several documented SARS-CoV-2 alternative receptors, coreceptors,
entry factors, or binding proteins?42¢ (Extended Data Fig.11).

Together, we proposed a modular design strategy for generating customized viral receptors to
support efficient coronavirus entry, comparable in specificity and efficiency to their native receptors.
A CVR prototype consisting of Type-1 transmembrane topology carrying signal peptide (SP), VBD,
spacer, TMC, EPM, and C-terminal tags and its derivatives are delineated (Fig.1q).

Acceptable epitopes for functional CVRs

In our initial exploration of the relationship between CVR receptor function and binding affinity
or neutralizing activity, we evaluated 25 neutralizing nanobodies targeting SARS-CoV-2 RBD.
However, the results did not demonstrate a clear correlation between entry-supporting ability and
binding affinity or neutralizing activity. These data underscores the influence of other critical factors,
particularly the binding epitopes that are not clearly defined for the 25 nanobodies (Extended Data
Fig.12).

Therefore, we engineered CVRs carrying scFvs derived from 22 well-characterized
SARS-CoV-2 neutralizing antibodies (Abs) covering most reported neutralizing epitopes on NTD,
CTD, or S2 (Fig. 2a)**. These antibodies were transformed into scFv-based VBDs with N-terminal
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heavy chain (HL) or N-terminal light chain (LH), resulting in 44 CVRs for evaluation (Fig. 2b). All
CVRs were well-expressed and verified with SARS-CoV-2 spike trimer binding, except for 76E1
recognizing a hidden epitope exposed after receptor binding*? (Extended Data Fig.13). The
scFv-CVRs recognizing epitopes close to the canonical RBM (sites i, ii and iii) supported efficient
entry, while many other RBD core domain-targeting scFv also exhibited decent entry-supporting
capabilities (Fig. 2¢). However, not all RBD epitopes are suitable for CVR design, such as S309 and
two antibodies recognizing a quaternary epitope spanning the dual-RBD interface that lock the spike
in a closed conformation (BG10-19, S2M11)*7%*. Unexpectedly, an S2L.20-CVR recognizing an
NTD epitope (site iv) showed potent entry-supporting ability, challenging the previous hypothesis
that NTD neutralizing antibodies are insufficient to induce SARS-CoV-2 membrane fusion and entry
in an ACE2-independent manner (Fig. 2¢)%2%, We further demonstrated the expression, antigen
binding, pseudovirus entry, and membrane fusion supported by ten selected CVRs (Fig. 2d).

To elucidate why only specific epitopes are accessible for CVR design to realize receptor
function, we proposed a hypothesis: CVR functionality is dependent on whether the interaction can
induce a proper spike conformational change that leads to down-stream critical entry events required
for membrane fusion, particularly the exposure and cleavage of S2’ cleavage site for fusion peptide
activation?#>46 (Fig. 2e). Consistently, although most of the tested scFv-mFc recombinant proteins
can bind spike trimer, only scFv-mFc corresponding to the functional CVRs can induce the exposure
of 76E1 epitope in a dose-dependent manner (Fig. 2e-g, and Extended Data Fig.14).

We further explored whether the exposure of the 76E1 epitope resulted in higher S2’ protease
accessibility. After optimizing the experimental conditions for trypsin-based S2’ cleavage, we
demonstrated that the ability of specific scFv-mFc to induce S2’ cleavage sensitivity aligns with the
data from 76E1 epitope exposure assays (Fig. 2h and Extended Data Fig.15).

In summary, our data reveals that most CTD surfaces and specific NTD epitopes are accessible
receptor binding motifs for generating functional CVRs, and the functionality is primarily
determined by their capability to induce conformational changes capable of exposing the 76E1
epitope, which is subject to proteolytic cleavage at the S2’ site, thereby activating the fusion

machinery.

NTD-mediated sarbecovirus entry by S2L20-CVR

We next sought to characterize the NTD-mediated coronavirus entry facilitated by S2L.20-CVR.
We first confirmed that S2L.20-CVR serves as a fully functional receptor for SARS-CoV-2,
supporting membrane fusion, pseudovirus entry, and authentic virus infection (Fig. 3a). Additionally,

S2L20-CVR effectively facilitated pseudovirus entry of the five SARS-CoV-2 variants of concern
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(VOCs) and the other three sarbecoviruses (BANAL-20-52, RaTG13, and GX-P2V) (Fig. 3b-d). As
expected, SARS-CoV-1 and ZC45 cannot use S2L20-CVR for entry due to the lack of binding
affinity (Fig. 3 ¢, d).

Despite showing similar NTD-binding efficiency, S2L.20 showed much lower efficiency in
supporting RaTG13 and BANAL-20-52 entry than SARS-CoV-2 (Fig. 3 ¢, d). Since the lack of an
N370 glycan has been reported as a distinct feature of SARS-CoV-2, we generated CTD swap and
point mutants to investigate the impact of CTD sequences and N370 glycan on S2L.20-CVR
dependent entry (Fig. 3¢)*’. Spikes carrying RaTG13 RBD or just a T372A mutation showed lower
binding efficiency to the soluble forms of human ACE2(shACE2) or S2L.20-mFc than those carrying
SARS-CoV-2 RBD. Please note that RaTG13 has a lower affinity for hACE2 than its host's ACE2
(Rhinolophus. affinis ACE2, R.aff ACE2) (Fig. 3)®. The absence of the N370 glycan in
SARS-CoV-2 due to a T372A mutation was hypothesized to interfere with S2L.20 binding since this
glycan is spatially close to the S2L.20 after it binds to the NTD. Consistently, T372A mutation in the
RaTG13 or BANAL-20-52 spike, abolishing the N370 glycosylation, significantly enhanced
S2L.20-CVR supported viral entry (Fig. 3g-h)%.

We next investigated whether SARS-CoV-2 CTD-targeting neutralizing antibodies could
interfere with NTD-mediated entry in cells expressing S2L20-CVR compared to hACE2-expressing
cells. As expected, S2L.20 exhibited higher neutralizing activity in S2L20-CVR-expressing cells.
Importantly, although several antibodies (LY-COVS555, S309, and S2X259) showed reduced
neutralizing efficiency in S2L20-CVR expressing cells, some CTD-binding antibodies exhibited
similar neutralizing activity in both models (Fig. 31).

These data suggest an association between RBD and S2L20-CVR mediated entry. Interestingly,
the cryo-EM structure of S2L20 in complex with SARS-CoV-2 BA.5 revealed that S2L.20 stabilizes
the spike trimer in a three RBD "up" conformation, contrasting to the three RBD "down"
conformation in BA.5 alone’®!. However, the binding of NTD-targeting antibodies, like 4A8, is
unable to stabilize the RBD "up" conformation (Fig. 3j-k and Extended Data Fig. 17)2. We
hypothesize the three RBD "up" conformation upon S2L20 binding may be crucial for S2L20-CVR
receptor functionality. By contrast, mCEACAMIa, a receptor that binds to MHV spike trimer with
three RBD down conformations, recognizes an NTD surface largely overlapped with the 4A8 epitope
(Extended Data Fig. 17)°*74 This indicates different coronaviruses can adopt distinct receptor

recognition mechanisms to achieve NTD-mediated entry.

CVR supports efficient entry of various coronaviruses

The data presented above demonstrated the capability of CVRs to support efficient entry of
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ACE2 or DPP4-dependent coronaviruses. We extended our approach to generating CVRs capable of
facilitating entry of 12 coronaviruses across the phylogeny, representing human, bat, and mouse
coronaviruses from six distinct subgenera, the receptor for most of which remains unidentified!(Fig.
4a). To acquire acceptable VBDs for receptor grafting, we utilized magnetic beads and
immunotube-assisted phage display biopanning to screen coronaviruses-specific nanobodies from the
naive libraries (Fig. 4b). Top CVR candidates, generated using a variety of nanobodies with
validated RBD or S1 binding, demonstrated efficient pseudovirus entry for each coronavirus. Besides,
we included a characterized broadly-neutralizing nanobody Nb27 for supporting RsHuB2019A.
Binding kinetics of optimal nanobodies against the antigens from the 12 coronaviruses were
determined through Bio-layer interferometry (BLI) assays (Fig. 4c and Extended Data Fig. 18).
Efficient RBD or S1 binding and pseudovirus entry were demonstrated in 293T cells stabling
expressing the indicated CVRs, achieving approximately 10? to 10*-fold increase of entry compared
with the mock control (Fig. 4d, ¢). Further examination of the CVR-supported entry of five different
coronaviruses revealed that CVRs carrying EPM exhibited superior cell surface localization and
higher entry-supporting ability (Extended Data Fig.19). Moreover, we verified the ability of several
CVRs designed for 229E and MHV-A59 to support membrane fusion and authentic viral infection
(Fig. 4f-h). Notably, both MHV-A59 NTD-targeting and CTD-targeting CVRs supported viral
propagation, albeit with lower efficiency than the mCEACAMI1a (Fig. 41).

We next evaluated the CVR-based infection models for neutralizing antibody assessment,
particularly anti-sera and broadly neutralizing antibodies. We compared the neutralizing activity of
SARS-CoV-2 anti-sera, collected from COVID-19 convalescents or vaccinated individuals, on 293T
cells expressing ACE2, LCB1-CVR recognizing the classical RBM, and Nb24-CVR recognizing an
epitope distant from the RBM. The sera neutralization results based on the three receptors displayed
a generally similar inhibitory profile, with Nb24-CVR showing slight differences (Extended Data
Fig.20). This indicates the utility of the CVR-based system for evaluating the effectiveness of
humoral immunity, ideally for CVRs recognizing the classical RBM region. We evaluated the
cross-reactivity of several pan-B-CoV broadly neutralizing antibodies against several coronaviruses
lacking conventional infection models, including antibodies recognizing an RBD site v epitope
(S2H97), a stem region of the fusion machinery (S2P6, B6), and the S2/fusion peptide (76E1), with
an RBM-targeting antibody REGN 10933 as a control. The results demonstrated that 76E1 exhibited
the best breadth for cross-neutralization of the tested coronaviruses, consistent with sequence
similarity of the recognized epitopes (Fig. 4] and Extended Data Fig.21).

Furthermore, we investigated the potential of the CVR-based infection system for evaluating

other antivirals targeting different entry steps, including proteolytic cleavage, endosome acidification,
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and membrane fusion. Comparable inhibitory efficacy was observed when comparing infection
models based on ACE2 or LCB1-CVR (Extended Data Fig.22). We further tested these inhibitors
against SARS-CoV-2, HKUI, HKU3, and HKUS entry in corresponding CVR-based infection
models. Overall entry inhibitory efficiencies were similar among the four viruses, except for HKUS5
displaying a higher sensitivity to TMPRSS2 inhibitor Camostat mesylate rather than the cathepsin
inhibitor E64d (Fig. 4k). Our data confirmed the ability of CVR to support efficient entry for various
coronaviruses. The novel infection models can be useful tools for assessing antibodies and other

antiviral reagents against viruses lacking conventional infection models.

Culture and rescue authentic coronaviruses through CVRs

To evaluate the capability of CVR-expressing cells to support multiple-round propagation of
coronaviruses lacking known receptor identity, we utilized a reverse genetic system to generate
propagation-competent VSV pseudoviruses with genomically encoded HKU3 or HKUS spike
proteins, replacing the VSV-G gene. A GFP-expressing cassette was additionally incorporated into
the genome to facilitate visualization (Fig. 5a). Successfully rescued of the VSV-HKU3 and
VSV-HKUS was achieved with the aid of VSV-G proteins provided in trans (Fig. 5b). Following
one round of amplification with VSV-G, infection was conducted in Caco2 cells in a VSV-G
independent manner with or without the expression of Nb27, a pan-sarbecovirus CVRs recognizing
the conserved site vi epitope on RBD (Fig. 5¢-d and Extended Data Fig.23)%. Notably, efficient
propagation of VSV-HKU3 and VSV-HKUS can be observed in cells expressing the indicated CVRs,
as evidenced by the syncytia formation and the accumulation of viral RNA in the supernatant, which
was further enhanced by the exogenous trypsin treatment (Fig. 5d-g).

Subsequently, we investigated whether CVRs can facilitate efficient propagation of authentic
coronavirus requiring strict culture conditions. RsHuB2019A, a relative of HKU3, is an
ACE2-independent bat sarbecoviruses recently isolated from field samples®. Isolation and
propagation of this virus was carried out in Huh-7 under a serum-free culture condition with
exogenous trypsin, with viral infection being difficult to detect while maintaining normal cell
morphology (Fig. 5h). Our results demonstrated that the Caco2 cells stably expressing Nb27-CVR
(Caco2-Nb27) efficiently supported RsHuB2019A propagation, even at very low MOIs (Fig. 5i and
Extended Data Fig.24). Unlike Huh-7, Caco2-Nb27 supported efficient RsHuB2019A propagation in
trypsin-free culture medium supplemented with 2% FBS, enabling observation of cytopathic effect
(CPE) (Fig. 51-j and Extended Data Fig.25).

Furthermore, we explored the feasibility of rescuing a representative bat merbecovirus, HKUS,

by combining reverse genetics and the novel CVR-based infection system. Thus, we generated a
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full-length infectious clone of wild-type (WT) HKUS, along with a fluorescence protein with ORFS
substituted by a ZsGreen-HiBit reporter (ZGH) (Fig. 5k). Utilizing the same cell line for VSV-HKUS5
propagation (Caco2-1B4), we successfully rescued both the WT and the ZGH version of HKUS
authentic viruses. Efficient amplification was observed in cells inoculated with HKUS at different
MOIs, as indicated by the nucleocapsid (N) protein immunostaining and the accumulation of
genomic RNA in the supernatant over time (Fig. 5l-m). Electron microscopy revealed typical
morphology of "crown-shaped" virions with diameters of approximately 100 nm (Fig. 5n). Although
the HKUS-ZGH exhibited relatively slow amplification kinetics, likely due to the deleted ORFS5 and
foreign gene insertion, the expression of ZGH facilitated real-time visualization and quantification of
viral amplification (Fig. 50-q). Consistent with previous reports, HKUS can amplify in Vero-E6 cells
only in the presence of exogenous trypsin (Extended Data Fig.27)%.

Lastly, we assessed several antiviral reagents against HKUS infection in Caco2-1B4 cells.
Immunostaining of N protein revealed that trypsin significantly enhanced the infection, while most
inhibitors blocked HKUS infection. Consistent with the pseudovirus entry assay data (Fig. 4j), HKUS
infection was inhibited by Camostat mesylate but not E64d, further demonstrating the TMPRSS2
dependence for HKUS infection (Fig. 5r and Extended Data Fig.26). This protease preference is in

line with the sequence features at the critical cleavage sites for HKUS5 (Fig. 5s)°°.

Discussion:

The elusive identity of the receptor used by many coronaviruses presents substantial challenges
in comprehending their life cycle and spillover risk, particularly those phylogenetically related to
known high-risk B-coronaviruses. Lessons learned from the COVID-19 pandemic underscore the
urgent imperative to study these viruses to prepare for future outbreaks. However, in-depth research
and vaccine/antiviral development for these viruses are hindered by the lack of feasible infection
models for virus isolation and culture'. Here, we proposed a novel strategy for customizing
functional viral receptors for various coronaviruses, especially those lacking known native receptor
identities. Our approach involves the modular design of CVRs in a single open-reading frame format,
enabling molecular grafting of viral binding domains (VBDs) customized for specific viral surface
epitopes. By targeting conserved epitopes compatible with CVR design, CVRs could potentially
exhibit a broad recognition spectrum for coronaviruses from distinct clades or lineages.

We demonstrated that the VBDs can adopt various structures with binding affinity to viral
surface proteins. Compared to Fab fragments, single polypeptide chain structures like scFv or
nanobody are more suitable modules for CVR design and are compatible with the library biopanning

system. The excellent performance of helical framework or DARPin-based CVRs, highlights the
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potential of computational de novo design of VBDs for various viruses. Besides efficient binding,
maintaining an optimal distance between VBD and the cell membrane is critical for CVR
functionality, although this distance may vary for spacers with distinct structures, orientations, and
flexibility. Additionally, we demonstrated the soluble adaptor strategy in supporting viral entry,
realized by a bio-specific adaptor retargeting the viruses to a cell surface-expressed receptor, such as
ACE2.

Additionally, the functionality of the CVR highly depends on the acceptable epitopes
recognized by the VBDs. The ability of the specific viral surface regions to serve as functional
receptor binding motifs likely depends on whether a VBD recognizing this region can induce proper
conformational changes leading to membrane fusion. Therefore, CVRs targeting S2, most epitopes of
NTD, and some epitopes on CTD are nonfunctional. We revealed a close link between the CVR
functionality and their ability to induce the exposure of 76E1 epitope, encompassing the critical S2’
cleavage site and part of the fusion peptide. However, the conformational change crucial for
exposing this epitope remains unclear, although a transition of the RBD from the "down" to "up"
conformation seems crucial'®. Consistently, CVR using antibodies recognizing the three RBD
"down" epitopes and locking the spike in this conformation showed no entry-supporting ability35-°,
Future structural studies could be conducted to elucidate this critical event.

There appears to be no restriction for coronaviruses to employ their NTD or RBD for receptor
engagement, as exemplified by the receptor function of NTD-targeting S2L.20-CVR. Additionally,
we also showed that MHV infection can be efficiently supported by either NTD or CTD-targeting
CVRs, suggesting the possibility of MHYV, or its relatives, recognizing an alternative receptor through
their CTD*. It is also possible that SARS-CoV-2, or other sarbecoviruses, may develop
NTD-mediated entry in the previous or future evolution. Notably, an infection-enhancing antibody
targeting NTD of SARS-CoV-2, DH1052%, was unable to be utilized to build a functional CVR in
our study. These indicate differences in mechanisms between the soluble antibody-mediated
antibody-dependent enhancement (ADE) and membrane-anchored CVRs-mediated viral entry.

Our CVR strategy allows the modular design of customized receptors to manipulate cell
susceptibility to specific viruses. This approach enables the isolation or rescue of coronaviruses
regardless of receptor identity or conventional susceptible cells. Overcoming limitations of native
receptors, such as enhancing affinity, altering epitopes, adjusting specificity, changing structures, or
getting rid of physiological function interference, underscores the potential of this strategy. However,
several limitations should be noted when employing CVR-based models. Differences in targeted
epitopes and protein structures may result in inconsistencies when assessing RBM-targeting

neutralizing antibodies or sera. Additionally, slight differences in the entry pathway may exist for
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some CVRs that trigger a conformational change different from those induced by native receptors. It
is noteworthy that CVR transgenic mice might be useful for evaluating viral pathogenesis and
vaccine/antiviral protection in vivo. However, the variations in tissue expression patterns may limit
the mimicking of natural infection.

To our knowledge, this study demonstrated the first case of rescuing and culturing a coronavirus
without known receptor identity based on a genetically modified cell culture model independent of
native receptors. Our findings pave the way for the rapid design of novel viral infection models for
difficult-to-culture viruses, including those beyond coronaviruses, facilitating further advances in

basic research, antiviral therapeutics, and vaccine development.
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Methods

Cell lines

HEK293T (CRL-3216), Vero E6 (CRL-1586), A549 (CCL-185), BHK-21 (CCL-10), Caco-2
(HTB-37), Neuro2a (CCL-131) and the bat epithelial cell line Tb 1 Lu (CCL-88) were purchased
from the American Type Culture Collection (ATCC). The human hepatocellular carcinoma cell line
Huh-7 (SCSP-526) was obtained from the Cell Bank of Type Culture Collection, Chinese Academy
of Sciences. All cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM, Monad),
supplemented with 10% fetal bovine serum (FBS). Additionally, an Il1-hybridoma cell line
(CRL-2700), producing a neutralizing mouse monoclonal antibody against VSV-G, was cultured in
minimum essential medium with Earle's balanced salts solution, 2 mM L-glutamine (Gibco), and 5%

FBS. All cell lines were incubated at 37°C in 5% CO- with regular passage every 2-3 days.

Virus and host gene sequences

All viral genome or gene sequences were sourced from GenBank or GISAID databases with the
following accession numbers. Viruses: SARS-CoV-1 (NC _004718), SARS-CoV-2 (NC _045512),
MERS-CoV (NC 019843), HKU3 (DQ022305), Rp3 (DQ071615), HKUS (NC_009020), HKU31
(MK907286), HKU9 (NC _009021), Zhejiang2013 (NC_025217), Rs4081 (KY417143), MHV-A59
(NC_048217), NL63 (JX504050), 229E (0Q920101), HKU1 (NC _006577), OC43 (AY391777),
RmYNO2 (EPI_ISL 412977), ZC45 (MG772933), RsHuB2019A (0Q503498). The spike protein for
Rs4075 (KC880993). Receptors: ACE2 (NM _001371415), R.affinis ACE2 (MT394208), DPP4
(NM_001935), APN (NM_001150), mCEACAMI1a (NM_001039186), AXL (NM_001699), NRP1
(NM_001024628), SCARB1 (BC143319), KREMEN1 (NM 032045), ASGR1 (NM_001671),
CDI147 (AB085790), CLEC4M (KJ902090), LRRCI15 (NM 001135057)°, TMEMI106B
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(NM_018374) °°, TMPRSS2 (NM_001135099). All receptor and viral gene sequences utilized in this

study were commercially synthesized by Genewiz or GenScript.

Plasmids

All plasmids expressing type-I transmembrane CVRs were constructed by inserting the human
codon-optimized CVR sequences into a lentiviral transfer vector (pLVX-EF1a-Puro, Genewiz) with
an N-terminal CDS5 secretion leading sequence (MPMGSLQPLATLYLLGMLVASVL) and
C-terminal 3XFLAG tag (DYKDHD-G-DYKDHD-IDYKDDDDK). For the type-II transmembrane
CVRs, the C-terminal ectodomains were replaced by corresponding CVR modules, along with a
C-terminal 3XxFLAG tag. Chimeric protein-coding sequences were generated using overlapping PCR,
direct sequence synthesis, or restriction endonuclease digestion and ligation.

Plasmids expressing the Spike protein of various coronaviruses for VSV pseudotyping were
constructed by inserting human codon-optimized spike coding sequences into either the pCAGGS
vector or pcDNA3.1(-) vectors with C-terminal 13-18 residues substituted with an HA tag
(YPYDVPDYA) to enhance VSV pseudotyping efficiency and facilitate detection®!. Several spike
genes were also introduced into the pLVX-IRES-ZsGreen vectors for flow cytometry-related assays,
including the scFv-mFc¢ binding and the 76E1 epitope exposure assays.

Plasmids expressing secreted fusion proteins, such as coronavirus antigen-Fc, scFv-Fc, and
nanobody-Fc, were constructed by inserting the coding sequences into pCAGGS. These constructs
featured an N-terminal CDS5 secretion leading sequence (MPMGSLQPLATLY LLGMLVASVL) and
a C-terminal Twin-Strep Tag II following 3XxFLAG tandem sequences
(WSHPQFEKGGGSGGGSGGSAWSHPQFEK-GGGRS-DYKDHDGDYKDHDIDYKDDDDK) for
purification or detection. Plasmids encoding codon-optimized anti-ACE2 antibodies H11B11%%, B6,
S2P6, 76E1, S2H97, and REGN10933 were constructed by integrating the heavy-chain and
light-chain coding sequences into pCAGGS with an N-terminal CD5 leader sequences. For
DSP-based cell-cell fusion assays, the split protein genes were inserted into pLVX-EF1a-Puro. The
coding sequences for the dual reporter split proteins, namely RLuc (1-155)-sfGFP (1-157) and sfGFP
(158-231)-RLuc (156-311), are previously descirbed!®.

Stable cell lines

Cells stably expressing distinct CVRs and other receptors were established through lentivirus
transduction and subsequent antibiotic selection. Lentiviruses carrying the target genes were
generated by co-transfecting lentiviral transfer plasmid (pLVX-EF1a-Puro) with packaging plasmids
pMD2G (Addgene, 12259) and psPAX2 (Addgene, 12260) into HEK293T cells through GeneTwin
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transfection reagent (Biomed, TG101). The lentivirus-containing supernatant was harvested and
pooled at 24 and 48 hours post-transfection. Cell transduction was carried out in the presence of 8

ug/mL polybrene. Stable cell lines were selected and maintained in a growth medium supplemented
with puromycin (1 pg/mL). Generally, cells exhibiting stability for at least ten days were utilized in

subsequent experiments.

SARS-CoV-2 reactive antisera

SARS-CoV-2 antisera were obtained from vaccinated individuals (SARS-CoV-2 CoronaVac,
Sinovac), approximately 21 days post-vaccination and Wuhan COVID-19 convalescents around one
year post-infection, respectively. Ethical approval for the vaccinated individuals was granted by the
Ethics Committee (seal) of Beijing Youan Hospital, Capital Medical University, with approval
number LL-2021-042-K. The collection of sera from Wuhan COVID-19 convalescents was
conducted in collaboration with the Hubei Provincial Center for Disease Control and Prevention and
Hubei Provincial Academy of Preventive Medicine (HBCDC), following written consent and under
the approval of the Institutional Review Boards with the identification number 2021-012-01. Sera

were heat-inactivated at 56°C for 30 minutes.

Bioinformatic and computational analyses

Multi-sequence alignment was analyzed by Geneious Prime software or mafft (v7.407) with
default parameters. Phylogenetic trees were constructed by IQ-TREE (http://igtree.cibiv.univie.ac.at/)
with the WAG substitution model (1000 Bootstraps) and polished with 1TOL (v6)
(http://itol.embl.de). The cryo-EM structures were displayed and marked by ChimeraX with PDB

accession numbers indicated in figures or legends.

Protein expression and purification

The proteins for binding, neutralizing, or biopanning-related assays were produced in HEK293T
by transient transfection with plasmids using GeneTwin reagent (Biomed, TG101-01), following the
manufacturer's guidelines. Protein-containing supernatants were harvested every 2-3 days
post-transfection, pooled, clarified, and proceeded to purification. Proteins fused with Fc were
captured using Pierce Protein A/G Plus Agarose (Thermo Scientific, 20424), eluted with pH 3.0
glycine (100 mM in H>0O), and immediately pH-balanced by 1/10 volume of UltraPure 1 M Tris-HCI,
pH 8.0 (15568025, Thermo Fisher Scientific). Proteins with Twin-Strep Tag II were enriched using
Strep-Tactin XT 4Flow high-capacity resin (IBA, 2-5030-002), washed, and eluted with buffer BXT
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(100 mM Tris/HCI, pH 8.0, 150 mM NaCl, 1 mM EDTA, 50 mM biotin). The eluted proteins were
concentrated and buffer-exchanged to PBS through ultrafiltration, aliquoted, and stored at -80°C.
Protein concentrations were determined using the Omni-Easy Instant BCA Protein Assay Kit

(Epizyme, ZJ102).

Western blot

For detecting the cellular expression of CVRs or other receptors, cells were washed once with
PBS and lysed using RIPA buffer (50 mM Tris-pH 7.4, 150 mM NaCl, 1%TritonX-100, 0.5% sodium
deoxycholate, 0.1 % SDS, 25 mM B-glycerophosphate, | mM EDTA, and 1 mM PMSF) on ice for

15 minutes. The lysate was clarified by centrifugation at 12,000g at 4°C for 15 minutes. The
supernatant was combined with a 1:5 (v/v) ratio of 5xSDS-loading buffer and incubated at 95°C for
10 minutes. For detecting the spike packaging efficiency, the PSV-containing supernatant was
concentrated with a 30% sucrose cushion (30% sucrose, 15 mM Tris-HCI, 100 mM NacCl, 0.5 mM
EDTA) at 20,000%g for 1.5 hours at 4°C. The concentrated virus pellet was resuspended in 1xSDS
loading buffer and incubated at 95°C for 30 minutes. For detecting the S2’ cleavage site of PSV, the
concentrated viruses were resuspended in DMEM in the presence of indicated concentrations of
scFv-mFc or soluble ACE2 for 2 hours at 4 °C. Then were treated with 10 pg/ml TPCK-trypsin for
30 minutes at 37°C, followed by mixing with a 1:5 (v/v) ratio 5xSDS-loading buffer and incubated at
95°C for 10 minutes.

After SDS-PAGE and PVDF membrane transfer, blots were blocked with 5% milk in PBS
containing 0.1% Tween-20 (PBST) at room temperature for 1 h. Primary antibodies targeting FLAG
tag (Sigma-Aldrich, F1804), HA (BioLegend, 901515), VSV-M [23H12] (Kerafast, EB0O11),
B-tubulin (Immunoway, YM3030) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
(AntGene, ANT325) were applied at concentrations ranging from 1:2000-1:10,000 in PBST with 1%
milk overnight at 4 °C. The stem-helix targeting monoclonal antibody S2P6 for coronavirus spike
detection was used at 1 pg/ml. After three washes with PBST, the blots were incubated with
horseradish peroxidase (HRP)-conjugated secondary antibodies (1:10,000). After extensive wash,
blots were visualized using the LI-COR Odyssey CLx or the Omni-ECL Femto Light
Chemiluminescence Kit (EpiZyme, SQ201) and a ChemiDoc MP Imaging System (Bio-Rad).

Live-cell binding assays
For detecting coronavirus antigens binding to cell surface expressed CVRs, NTD/CTD/S1-Fc

fusion proteins were diluted in DMEM and incubated with cells at the indicated concentrations for 1
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h at 37°C. Cells were washed twice with Hanks' Balanced Salt solution (HBSS) and incubated with

2 pg/mL Alexa Fluor 594 or 488-conjugated goat anti-mouse IgG (Thermo Fisher Scientific;
A32742/A32723) for visualization. For detecting the Twin-Strep Tag II labeled S-trimer or soluble
ACE?2 binding, the incubated cells were treated with 1 pg/mL anti-Twin-Strep Tag II monoclonal
antibody (Abbkine; ABT2230) for 30 minutes at 4°C, washed twice with HBSS, and then subjected

to fluorescence-labeled secondary antibody incubation. Finally, cells were incubated with Hoechst
33342 (1:5,000 dilution in HBSS) for nuclear staining before imaging using a fluorescence

microscope (MI52-N).

Immunofluorescence assays

Immunofluorescence assays were performed to assess the expression of the CVRs or other
receptors carrying the C-terminal 3XxFLAG tags. In general, cells expressing the proteins were fixed
with 100% methanol at room temperature for 10 minutes, washed once with PBS, and incubated with
a mouse monoclonal antibody [M2] specific to the FLAG-tag (Sigma-Aldrich, F1804) in 1%
BSA/PBS at 37°C for 1 hour. After another wash with PBS, cells were incubated with 2 pg/mL Alexa
Fluor 594-conjugated goat anti-mouse IgG (Thermo Fisher Scientific, A32742) diluted in 1%
BSA/PBS for 1 hour at 37°C. Nuclei were stained with Hoechst 33342 (1:5,000 dilution in PBS).

Images were captured and merged using a fluorescence microscope (Mshot, MI52-N).

Biolayer interferometry assays

Protein binding kinetics were evaluated through Bio-Layer Interferometry (BLI) assays
conducted on the Octet RED96 instrument (Molecular Devices). Briefly, 20 pg/mL of
S1/NTD/CTD-hFc recombinant proteins were immobilized on protein A (ProA) biosensors (ForteBio,
18-5010). Subsequently, the biosensors were washed and incubated with 2-fold serial-diluted
nanobodies (Twin-Strep Tag II) in the kinetic buffer (PBST) to record the association kinetics,
followed by recording the dissociation kinetics in the same Kinetic buffer. The background was
established using a kinetic buffer without the binding proteins. The kinetic parameters and binding
affinities were determined using the Octet Data Analysis software (v.12.2.0.20) through the

curve-fitting kinetic analysis or steady-state analysis with global fitting.

Pseudovirus entry and propagation assays
Single-round VSV-based pseudoviruses carrying the coronavirus spikes were produced

following a modified version of a well-established protocol®. The VSV-AG carrying GFP and firefly
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luciferase (VSV-AG-GFP-fLuc) was rescued using a reverse genetics system in our laboratory, along
with helper plasmids from Karafast. For packaging coronavirus PSV, HEK293T cells were
transfected with plasmids overexpressing the spike proteins. At 24-36 hours post-transfection, cells

were inoculated with 1x10% TCIDso/mL VSV-dG-GFP-fLuc for 4 hours at 37°C with 8 pg/mL
polybrene. Following two DMEM washes, the culture medium was replenished with DMEM
containing 1 pg/mL anti-VSV-G neutralizing antibody (from the I1-mouse hybridoma) to minimize
background signals from parental viruses. The TCIDso of the PSV was calculated using the
Reed-Muench method.

For the pseudovirus propagation assays, the replicable PSVs carrying the GFP reporter and the
genomically encoded HKU3 or HKUS5  spikes  (pVSV-AG-GFP-HKU3-S  and
pVSV-AG-GFP-HKUS5-S) were generated by the VSV based reverse genetics system. The vector for
the VSV genomes was modified based on pVSV-AG-GFP-fLuc, with fLuc replaced by the S genes.
In brief, the BHK-21 cells were infected with a recombinant vaccinia virus expressing T7 RNA
polymerase (vvT7) for 45 minutes at 37°C (MOI=5). After removing vvT7, the cells were transfected
with plasmids containing the pVSV-AG-GFP-HKUS/HKU3-S vector and helper plasmids from
Karafast. The virus-containing supernatant (P0) was collected 48 hours post-transfection and
amplified in Vero E6 cells with in-trans provided VSV-G to yield P1 viruses. The P1 viruses were
further amplified in Caco2-CVRs cells in a VSV-G independent manner and in the presence of
anti-VSVG (I1-Hybridoma supernatant), generating P2 viruses that were dependent on the
genomically encoded HKU3 and HKUS spike proteins for amplification.

For pseudovirus entry or entry inhibition assays, susceptible cells were cultured in 96-well
plates at a density of 5x10* cells per well and then incubated with around 1x10° TCIDso/mL of
pseudovirus (PSV), with 100 uL per well. The incubation allowed for attachment and viral entry with
or without the indicated concentrations of antibodies or other inhibitors. In some cases,
TPCK-treated trypsin of indicated concentrations (sigma, T8802) was added to the medium to
enhance entry efficiency. At 16-20 hour post infection (hpi), 40 uL of One-Glo-EX substrate
(Promega) was added to the cells and incubated for at least 5 minutes on a plate shaker in the dark.
Relative light units (RLU) were determined using the GloMax 20/20 Luminometer (Promega). GFP

intensity was analyzed using a fluorescence microscope (Mshot, MI52-N).

Cell-cell fusion assays
A cell-cell fusion assay based on dual split proteins (DSPs) was performed on HEK293T or
BHK21-T7 cells stably expressing the CVRs or the native receptors'®. Group A cells were transfected
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with plasmids expressing spike protein and RLucN(1-155)-sfGFP(1-157), while the group B cells
were transfection with plasmids expressing spike proteins (same as in group A) and
sfGFP(158-231)-RLuc(156-311). Cells from both groups were trypsinized and co-cultured in a
96-well plate at a density of approximately 1x10° cells per well at 12 hours post-transfection. After
16-24 hours, cell nuclei were stained with Hoechst 33342 (1:5,000 dilution in HBSS) for 30 minutes
at 37 °C, and the fluorescent images were captured using a fluorescence microscope (MI52-N;
Mshot). For the assessment of live-cell luciferase activity after reconstitution of split RIucN, 20 uM
of EnduRen live-cell substrate (Promega, E6481) was added to the cells in DMEM and incubated for
at least 1 hour before detection using the Varioskan LUX Multi-well Luminometer (Thermo Fisher

Scientific).

Flow cytometry analysis

For flow cytometry analysis, viral antigen-mFc and VBDs-mFc recombinant proteins were
diluted in DMEM at the indicated concentrations and then incubated with HEK293T cells expressing
the indicated receptors or coronaviruses spike proteins for 1 hour at 37°C. In live cell binding assays,
for detecting the cell surface hFc or intracellular ZsGreen, cells were washed with DMEM and
subsequently incubated with either Alexa Fluor 594-conjugated goat anti-mouse IgG (Thermo Fisher
Scientific; A32742) or a combination of Alexa Fluor 488-conjugated goat anti-human IgG (Thermo
Fisher Scientific; A11013). In live cell binding assays, for detecting the cell surface 76E1 epitope
exposure, the SARS2-CoV-2-S IRES-ZsGreen expressing cells were incubated with indicated
concentrations of scFv-mFc or soluble receptors for 1 hour at 37°C before 76E1 antibody incubation
(1 pg/mL). When detection of the intracellular FLAG tag is necessary, cells were washed once with
HBSS and fixed with 4% PFA, permeabilized with 0.1% Triton X-100, blocked with 1% BSA/PBS
at 4°C for 30 minutes, and subsequently stained with Rabbit anti-Flag tag mAb (CST,14793S)
diluted in 1% BSA/PBS for 1 hour at 4°C to visualize the expression of CVRs and other receptors.
Following extensive washing, the cells were incubated with Alexa Fluor 647-conjugated goat
anti-rabbit IgG (Thermo Fisher Scientific; A32733) and Alexa Fluor 488-conjugated goat anti-mouse
IgG (Thermo Fisher Scientific; A32723), both diluted in 1% BSA/PBS, for 1 hour at 4°C. Following
the completion of all staining procedures, cells washed twice with PBS were subsequently analyzed
using the CytoFLEX Flow Cytometer (Beckman). In each case, 5,000 cells expressing either
receptors or spikes, gated based on FLAG/hFc/ZsGreen-fluorescence intensity and SSC/FSC, were
analyzed with the CytoFLEX Flow Cytometer (Beckman).

Reverse genetics to rescue HKUS-WT and HKUS-ZGH
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The full-length cDNA clone of HKU5 (GenBank: NC 009020) was designed and synthesized
as seven (from A to G) contiguous cDNAs flanked by unique class IIS restriction endonuclease site
(Bsal or BsmBI) and cloned in pUC57 vector. Class II restriction endonuclease sites Avrll and Ascl
were introduced to 5' terminal of HKUS5 A and 3' terminal of HKUS5 G fragments, respectively.
Several silent mutations were included to disrupt naturally occurring restriction cleavage sites. A
poly-A (25 repeats) sequence was introduced to 3’ terminal of HKUS G fragment. To assemble the
full-length ¢cDNA clone, HKUS A-G fragments were digested by endonucleases, resolved on 1%
agarose gels, purified with a gel extraction kit, extracted with chloroform, and precipitated with
isopropyl alcohol. Digested HKUS A-G inserts, and modified pBaloBAC11 vector were mixed,
ligated overnight at 4°C, and transformed into DH10B competent cells. The correct full-length
HKUS5 cDNA clone was identified and verified by sequencing. The construction of HKU5-ZGH
utilized the transformation-associated recombination (TAR) cloning technique. Specifically, a
ZsGreen-HiBit (ZGH) DNA fragment was commercially synthesized (Tsingke) to replace the
HKUS5-ORFS5. The PCCI1 vector was used to clone the HKUS genomic DNA carrying the ZGH
substitution based on three segments amplified using the HKUS5-WT infectious clone as a temperate.
Subsequently, all the products were transformed into yeast using the high-efficiency lithium
acetate/SS carrier DNA/PEG method. The yeast plasmid was extracted and transformed into EPI300
electrocompetent cells. The plasmid used for cell transfection was obtained from a 300 mL E. coli
bacterial culture suspension. For transfection, 4 pug of both HKU5 WT and HKU5-ZGH plasmids
were separately transfected into Caco2-1B4 cells (1x10° cells) using Lipofectamine 2000. Progeny
viruses collected from the supernatant at 72 hours post-transfection (PO) were utilized to generate

stocks for subsequent analyses.

Transmission electron microscopy

Viral culture supernatant was fixed with formaldehyde (working concentration 0.1%) at 4°C
overnight. Subsequently, it was concentrated by ultracentrifugation through OptiPrepTM Density
Gradient Medium (D1556) at 154,000 g at 4°C for 2.5 hours using a SW41Ti rotor (Beckman). The
pelleted viral particles were suspended in 100 pL of PBS, stained with 2% phosphotungstic acid (pH

7.0), and examined using a Tecnai transmission electron microscope (FEI) at 200 kV.

Authentic coronavirus infection assays

Human coronavirus 229E (VR-740) is obtained from ATCC and amplified in Huh-7 cells.
MHV-AS9 is a gift from Professor Yu Chen’s lab (Wuhan University) and is amplified in Neuro2a
cells. The SARS-CoV-2-AN with N protein substituted with EGFP is rescued using an established
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protocol, and cultured in Caco2 cells overexpressing the SARS-CoV-2 N protein®. All experiments
involving RsHuB2019A, HKUS5-WT, and HKUS5-ZGH authentic viruses infection were conducted in
the certified negative-pressure Biosafety Level 2 laboratory at Wuhan Institute of Virology.
RsHuB2019A is amplified in either Huh-7 or in Caco2-Nb27 cells. HKU5-WT and HKUS-ZGH are
amplified in Caco2-1B4 cells.

For replication experiments, target cells were initially seeded in 24-well plates and washed with
DMEM before inoculation, either in the presence or absence of trypsin (100 pg/mL). Following a
one-hour incubation at 37°C, the cells were washed with DMEM and further incubated for the
indicated hours at 37°C. For qRT-PCR analysis, cell-free supernatants (50 uL per well each time)
were collected at indicated time points post-infection and stored at -80°C. Viral RNA was extracted
using Virus DNA/RNA Extraction Kit (Vazyme: RM501) and subjected to qRT-PCR as previously
described®. Primers for RsHuB2019A RdRp: 5’-TTGTTCTTGCTCGCAAACATA-3’ (forward) and
5’-CACACATGACCATCTCACTTAA-3’ (reverse). Primer for HKUS nsp2:
5’-CTGCGCTTAATGCCCCATTC-3* (forward) and 5-GACGTGTAGACGTAGAGCCG-3’
(reverse). Primers for VSV L protein, forward primer: 5’-TCTTGAGTTGTGGAGACGGC-3’
(forward) and 5’- ACCGTCTTGAACATGGGACC-3’ (reverse). Primers for MHV-A59 N
protein:5’-TATAAGAGTGATTGGCGTCC-3’(forward) and 5’-GAGTAATGGGGAACCACACT-3’
(reverse). All samples were analyzed in duplicate on two independent runs.

For immunofluorescence assays, cells were fixed with methanol for 40 minutes at room
temperature at indicated time points. The expression of RsHuB2019A and HKUS5 N proteins was
detected by rabbit anti-SARS-related CoV Rp3 N protein serum (diluted at 1:2000) and rabbit
anti-HKUS N protein serum (diluted at 1:4000), respectively, followed by DL594-conjugated goat
anti-rabbit IgG (Thermo, 1:1000) staining. MHV-A59 and 229E-VR740 spike proteins were detected
using their Spike-targeting nanobodies (1Al-mFc for 229E-VR740; 1F7-mFc for MHV-AS9),
followed by DL594-conjugated goat anti-mouse IgG antibodies (Thermo, 1:1000).

Nanobody bio-panning

Specific viral antigens (30-100 pg) were immobilized on streptavidin-conjugated magnetic
beads for one-hour incubation at 37°C and extensively washed to remove unbound antigens.
Subsequently, the beads were incubated with the nanobody library (1x10'° PFU) (Naive VHH
libraries from Camelus bactrianus, Alpaca, and Llama from NBbiolab, China) for 1 hour. The bound
phages were eluted using an Elution Buffer (50 mM Tris-pH 7.4, 150 mM NaCl, 50 mM biotin) after
extensive washing with PBST to eliminate nonspecific binders. The eluted phage encoding the

specific nanobodies was proliferated in E. coli (TGI). After one round of magnetic beads-based
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selection. 1-3 additional rounds of phage biopanning were conducted using magnetic beads or
immunotubes. The positive clones were identified through the enzyme-linked immunosorbent assays

(ELISA), sequenced, and verified by cell-based binding assays.

Biosafety and biosecurity

Experiments related to authentic human coronavirus 229E, SARS-CoV-2-AN, and murine
MHV-A59 were authorized by the Biosafety Committee of the State Key Laboratory of Virology,
Wuhan University and conducted in accordance with standard operating procedures (SOPs) in a
BSL-2 laboratory. SARS-CoV-2 authentic viruses-related experiments were conducted in the
ABSL-3 facility at Wuhan University with the approval of the Biosafety Committee of the ABSL-3
laboratory. The SARS-CoV-2 WT strain (IVCAS 6.7512) was provided by the National Virus
Resource, Wuhan Institute of Virology, Chinese Academy of Sciences and amplified in Vero E6 cells
in the ABSL-3 facility at Wuhan University. Experiments related to authentic viruses RsHuB2019A,
HKUS5-WT, and HKUS5-ZGH were approved by the Wuhan Institute of Virology (WIV) IBCs and
performed in the BSL-2 laboratory according to SOPs at WIV facilities. All the facilities at both
Wuhan University and WIV for this work adhere strictly to the safety requirements recommended by

the China National Accreditation Service for Conformity Assessment.

Statistical analysis

Most experiments were repeated 2-5 times, each with approximately 3-4 biological replicates.
Results are presented as mean + standard deviation (s.d.) or mean + standard error of the mean
(s.e.m.), as specified in the figure legends. Statistical analyses were primarily performed using
GraphPad Prism (V.8) through unpaired two-tailed Student’s t-tests two independent groups or
One-way ANOVA analysis followed by Dunnett' s test for multiple comparisons. P < 0.05 was
considered statistically significant; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; ns,

non-significant.
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Fig. 1 Modular design of customized viral receptors (CVRs) for efficient SARS-CoV-2 entry.
a-e, Dissecting the importance of ACE2 sequences for its viral receptor function. a, Schematic
representation illustrates the LCB1-ACE2 chimera with stepwise truncated ACE2 sequences. Protein
expression levels (b) and SARS-CoV-2 RBD binding efficiency (¢) in HEK293T transiently
expressing the specified chimera. SARS-CoV-2 pseudovirus (PSV) entry in cells expressing the
chimera was demonstrated by intracellular GFP (d) and RLU (e), respectively. f-j, Functionality of
chimeric receptors with remaining ACE2 sequences substituted by domains from other proteins. f,
Schematic representation delineates CVRs carrying exogenous spacer, transmembrane and cytosolic
domain (TMC), and EPM sequences. The CVR expression (g), SARS-CoV-2 RBD-mFc binding (h),
and PSV entry efficiencies (i, j) in HEK293T transiently expressing the indicated receptors. k-m,
The impact of spacer length on CVR receptor function. Schematic representation illustrates CVRs
with various TR23 tandem repeats, displaying predicted spacer length (k). CVR expression (I) and
SARS-CoV-2 PSV entry efficiency (m) were evaluated in cells expressing the indicated CVRs. n-p,
Different types of viral binding domains (VBDs) are compatible with CVR design. The
SARS-CoV-2 RBD binding (o) and PSV entry (p) are supported by indicated CVRs transiently
expressed in HEK293T cells. q, Schematic illustration of the modular design strategy for CVRs.
RLU: relative light units. Scale bars: 200 um. Data are presented as mean + SD for n=3 biologically
repeats for ¢, e, h, j, m, and p. One-way ANOVA analysis followed by Dunnett's test for e and m;

unpaired two-tailed Student's t-tests for j and p.
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Fig. 2 The impact of different binding epitopes on receptor functionality and the underlying
mechanisms. a, Structural display of SARS-CoV-2 neutralizing epitopes in NTD, CTD, and S2
subunit, respectively. Various epitope types of 22 neutralizing antibodies are indicated. FP: fusion
peptide. HR: heptad repeat. b, Schematic representation of 44 single-chain variable fragment
(scFv)-CVRs with N-terminal light chain (LH) or heavy chain (HL), respectively. ¢, Heat map
displaying SARS-CoV-2 PSV entry efficiency in HEK293T cells transiently expressing the indicated
scFv-CVRs. d, Demonstration of CVR expression, antigen binding, PSV entry, and spike-mediated
cell-cell fusion in HEK293T expressing representative scFv-CVRs. e, Cartoon elucidates the
functional receptor-mediated RBD conformational change and the subsequent exposure of 76E1
binding epitope and cleavage at the S2’ site. f, Flow cytometry analysis of 76E1 epitope exposure in
the presence of indicated soluble scFv-mFc recombinant proteins. Dashed lines denote thresholds for
positive ratio calculation. SACE2: soluble ACE2 ectodomain. g, Dose-independent exposure of 76E1
epitope upon SsACE2 or S2L20 coincubation, which was not detected in BG10-19. h,
Trypsin-mediated cleavage of S2’ site in SARS-CoV-2 pseudovirus particles in the presence of
scFv-CVRs with or without receptor function. TPCK-try: 10 pg/mL TPCK-treated trypsin. Scale bars:
100 um. Data are presented as mean values for n=3 biologically repeats for ¢. Data are presented as

mean + SD for n=3 biologically repeats for f.
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Fig. 3 Characterization of NTD-mediated sarbecovirus entry supported by S2L20-CVR. a,
SARS-CoV-2 binding, fusion, and viral entry supported by NTD-targeting S2L20-CVR. The CVR
expression, NTD/CTD-mFc binding, cell-cell fusion, pseudovirus entry, and SARS-CoV-2(AN-GFP)
infection in HEK293T stably expressing the indicated CVRs. b, PSV entry of SARS-CoV-2 VOCs in
HEK293T expressing hACE2 or S2L20-CVR. ¢, d, The PSV entry (¢) and NTD-mFc binding (d)
efficiencies of various sarbecoviruses in HEK293T stably expressing hACE2 or S2L20-CVR. e,
[lustration of the SARS-CoV-2 and RaTG13 RBD swap chimera. The residue usage in position 372,
critical for the N370-glycosylation, is indicated. ¥: N-glycan. f, Spike proteins expression levels and
the corresponding human ACE2 (shACE2) and S2L20-mFc binding efficiencies. g, h, Impact of
T372A mutation on S2L20-CVR supported PSV entry of RaTG13 (g) and BANNAL-20-52 (h). i,
Heatmap showing the inhibitory efficacy of indicated SARS-CoV-2 neutralizing antibodies against
PSV entry in HEK293T-hACE2 or HEK293T-S2L20, with BSA as a control. j, Structures of
SARS-CoV-2 BA.4/5 spike trimmer without antibody binding (left), or in complex with S2L.20
(right). Dashed boxes highlighted the N370-glycan spatially proximate to the S2L.20. k, Structures of
SARS-CoV-2 BA.2 spike trimmers with (right) or without (left) the 4A8 binding. Orange: NTD;
Green: CTD; Red: S2L.20; Magenta: 4A8. The ratio of S2L.20-supported entry compared to
ACE2-supported entry is indicated in ¢, g, and h. Scale bars: 100 um. Data are represented as mean +
SD with n=3 biological replicates for b, ¢, g, and h. Data representative of 2-3 independent

experiments for a-d, f-i. Unpaired two-tailed Student's t-tests for ¢, b, g, and h.
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Fig. 4 CVRs supported efficient entry of various coronaviruses with unidentified receptors. a,
Phylogenetic tree based on spike protein amino acid sequences of representative coronaviruses. b,
Workflow demonstrating the customization of nanobody-based CVRs for specific coronaviruses. ¢,
Binding kinetics between optimal nanobodies and their respective antigens. d, Coronavirus CTD or
S1 binding in HEK293T cells transiently expressing the corresponding CVRs. Dashed lines indicate
thresholds for positive ratio calculation. e, PSV entry efficiencies of 12 representative coronaviruses
in HEK293T cells transiently expressing the indicated CVRs. f, 229E S1-mFc binding, fusion, and
authentic infection in HEK293T stably expressing APN or 4H5-CVR. g-i, Evaluation of
NTD-mediated (g) or CTD-mediated (h) MHV antigen binding, cell-cell fusion, and authentic MHV
infection in HEK293T cells stably expressing mCEACAMI1a or the indicated CVRs. MHV-A59
RNA copies (N gene) in supernatant was quantified for infected cells expressing mCEACAM]Ia or
1B3-CVR (i). j, Summary of the ICso of several broadly neutralizing antibodies against PSV entry of
representative coronaviruses in HEK293T stably expressing the corresponding CVRs. The RBD-
targeting REGN 10933 (REGN) was employed as a control. /: no inhibition detected. k, Inhibitory
efficacy of inhibitors against PSV entry of SARS-CoV-2, HKU1, HKU3 and HKUS in HEK293T
cells stably expressing the indicated CVRs. Infection was examined by S protein
immunofluorescence at 24 hpi for f, g, and h. Scale bars: 100 um. Data are presented as mean + SD
and n=2-3 biologically repeats for d, e, i, and k. One-way ANOVA analysis followed by Dunnett's

test for k; unpaired two-tailed Student’s t-tests for e.
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Figure 5. CVRs supported efficient propagation of VSV-based pseudotypes and authentic
coronaviruses. a, Genetic organizations and workflow for generating replicable VSV-HKU3-GFP or
VSV-HKUS5-GFP. b, Successful rescue (P0) and amplification (P1) of VSV-HKU3-GFP assisted by
VSV-G. ¢, d, Trypsin-enhanced cell-cell fusion (¢) and VSV-G-independence (d) of
VSV-HKU3-S-GFP infection in Caco2-Nb27 (MOI: 0.001). e, f, Accumulation of VSV-HKU3-GFP
(e) or VSV-HKUS-GFP (f) RNA in the supernatant at indicated time points. g, VSV-HKU5-GFP
mediated cell-cell fusion in Caco2 or Caco2-1B4 cells at MOI=0.1. h, Cartoon illustrating
trypsin-independent propagation of RsHuB2019A in Caco2-Nb27 cells as compared with
trypsin-dependence in Huh-7. i, CVR expression (green), RsHuB2019A N protein (red), and
cytopathic effect (CPE, bright field) in cells inoculated with RsHuB2019A at indicated MOI (no
trypsin). j, Accumulation of viral RNA in supernatant of cells infected with RsHuB2019A with or
without trypsin. k, Genetic organizations of the HKUS5 AORF5-ZsGreen-HiBit (HKUS5-ZGH). 1,
CVR expression (green), N protein (red), and the CPE in indicated cells inoculated with HKUS at
different MOIL. m, Accumulation of HKUS5 RNA in supernatant of cells inoculated with HKUS at
different MOI. n, Transmission electron microscopy analysis of HKUS-WT virions. 0-q, Increase in
ZsGreen intensity (PO) (o), ZsGreen-HitBit signal (p), and supernatant RNA copies of HKU5-ZGH
(q) in Caco2-1B4 cells. r, Efficacy of indicated antiviral reagents against HKUS infection in
Caco2-1B4 cells assessed by intracellular N proteins at 48 hpi. s, Overview of the protease cleavage
sites of selected coronaviruses. The residue responsible for reduced endosomal cysteine protease

activity CECP)is marked in red, numbering based on SARS-CoV-2. Scale bars: 125 um for i, 1, and o,

and 100 um for b-d, g, and r. Data are presented as mean + SD for n=2 biologically repeats for e, f, j,

m, and q. Unpaired two-tailed Student's t-tests for p.
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Extended Data Fig. 1 Efficient authentic SARS-CoV-2 infection supported by chimeric ACE2
with viral binding domain substituted by ACE2-mimicking helical frameworks (Hf). a,
Schematic illustration illustrating the four Hf-based CVRs. b, Immunofluorescence analysis of ACE2
or CVRs expression levels stably expressed in HEK293T cells, detected by C-terminal fused
3xFLAG tags. ¢, Immunofluorescence analysis of authentic SARS-CoV-2 infection efficiencies in
indicated cells by detecting intracellular SARS-CoV-2 N proteins at 24 hour post infection (hpi).
Scar bars:100 pm.
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TMD No. [Sourse Reference(NCBI) [TMD Protein sequence Virus
1 CD80 NP_005182 LLPSWAITLISVNGIFVICCL Adenovirus type B
2 CD46(MCP) NP_758861 VWVIAVIVIAIVVGVAVICVVPY  |Adenovirus type B; Bovine viral diarrhea virus; Human herpesvirus 6A (HHV-6A)
3 CXADR(CAR) NP_001329 LIAGAIIGTLLALALIGLIIF Adenovirus type C; Coxsackievirus B1 to B6
4 TIM1 AAL35774 IYAGVCISVLVLLALLGVIIA Ebolavirus; Dengue; ZIKA; HAV
5 F11R NP_058642 IVAAVLVTLILLGILVFGIWF Feline calicivirus; Mammalian reovirus; Human Rotavirus strain Wa
6 CD4 NP_000607 MALIVLGGVAGLLLFIGLGIFF HIV-1
7 Poliovirus receptor |NP_006496 AIFLVLGILVFLILLGIYFYW Bovine herpesvirus
8 EFNB2 NP_004084 GIASGCIIFIVIITLVVLLLL Hendra virus; Nipah virus
9 SLAMF1 NP_003028 WAVYAGLLGGVIMILIMVVIL Measles virus
10 ICAM1 NP_000192 IVIITVVAAAVIMGTAGLSTYLY Coxsackievirus A21
11 Neonatal Fc receptor AAG31421 VLVVGIVIGVLLLTAAAVGGALLW |Echovirus 5, 6, 7,9, 11, 13, 25 and 29
12 MOG NP_996532 VLVLLAVLPVLLLQITVGLIF Rubella virus
13 CD300If NP_620587 VLLPLIFTILLLLLVAASLLA Norovirus
14 LDLRAD3 NP_777562 YAIGSSVIFLVVALLALVL Venezuelan equine encephalitis virus
15 MHC class | (HLA-A) |[NP_001303327 |VGIIAGLVLLGAVITGAVVAAVMWEquine herpesvirus-4
16 Mxra8 NP_115724 LGYVLATLLLFILLLVTVLLA Chikungunya virus(CHIKV)
17 Nectin 1 (PVRL1) NP_002846 IIGGVAGSILLVLIVVGGIVV herpes simplex virus 1/HHV-1; herpes simplex virus 2/HHV-2; pseudorabies virus/PRV
18 AXL NP_068713 YVLLGAVVAAACVLILALFLV /
19 Ceacaml NP_001703 AIAGIVIGVVALVALIAVALACFL |Murine coronavirus
20 LDLR NP_000518 ALSIVLPIVLLVFLCLGVFLLW Vesicular stomatitis virus
21 EGFR NP_005219 IATGMVGALLLLLVVALGIGLFM |/
22 Basigin NP_723346 ALWPFLGIVAEVLVLVTIIFI /
23 LAMP1 NP_005552 LIPIAVGGALAGLVLIVLIAYLV /
24 CD43 AAA51949 GMLPVAVLVALLAVIVLVALLLL |/
25 CD162 NP_002997 LLAILILALVATIFFVCTVVL enterovirus 71
26 CD62L NP_000646 PLFIPVAVMVTAFSGLAFIIWLA |/
27 CD49d NP_000876 IVIISSSLLLGLIVLLLISYYMWK /
28 LFA-1 NP_002200 YLYVLSGIGGLLLLIFIVL /
29 HLA-DRA NP_061984 NVVCALGLTVGLVGIIIGTIFII /
30 IL2Ra NP_000408 VAVAGCVFLLISVLLLSGL /
31 ACE2 NP_001358344 [IWLIVFGVVMGVIVVGIVILI SARS-CoV; SARS-CoV-2; human coronavirus NL63/HCoV-NL63
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Extended Data Fig. 2 Comparison of CVRs carrying transmembrane and cytosolic domains

from different receptors. a, Details of the 31 different TM sequences examined in this study. b,

Cartoon illustrating the framework of the CVRs for TM evaluation. ¢, Immunofluorescence analysis

of the expression of the 31 CVRs in HEK293T cells by detecting the C-terminal fused 3x FLAG tags.
d, Evaluation of SARS-CoV-2 PSV entry efficiency supported by the indicated CVRs carrying

different TMs. Mxra8 TM displaying the best performance was marked in red. e, Cartoon illustrating

the LCB1-based CVRs with selected TM or TMC substitutions for further verification. f, g, PSV

entry-supporting efficiencies of the CVRs assessed by RLU(f) or GFP reporters (g) in transiently
transfected 293T cells. Scare bars: 100 um. One-way ANOVA analysis followed by Dunnett's test for
f.
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Extended Data Fig. 3 EPM promotes cell surface distribution and entry-supporting efficiency
of CVRs. a, Immunofluorescence displaying the subcellular distribution of LCB1-Mxra8TMC-based
CVRs transiently expressed in HEK293T cells with or without EPM. The white dashed boxes
highlight the cell surface distribution at a higher magnification. b, Evaluation of the SARS-CoV-2
PSV entry efficiency of the CVRs with or without the EPM. Scare bars: 100 um. Unpaired two-tailed

Student's t-tests for b.
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Extended Data Fig. 4 Comparison of CVRs displayed with different transmembrane topologies.
a, Cartoon illustrating CVRs carrying LCB1 or mNbl displayed in either type I or type II
transmembrane topology. b, Evaluation of SARS-CoV-2 or MERS-CoV PSV entry efficiency
supported by the indicated CVRs with different transmembrane topologies in HEK293T cells.
Unpaired two-tailed Student's t-tests for b.
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Extended Data Fig. 6 Comparison of CVRs carrying different numbers of immunoglobulin
domains or dimerization-abolished hFc as spacers. a, Schematic representation of the CVRs
carrying different numbers of immunoglobulin (Ig) domains (left) or an Fc mutant with abolished
dimerization ability. b, Western blot analysis of CVRs expression in HEK293T cells under either
reducing or non-reducing conditions, respectively. ¢, Assessment of SARS-CoV-2 PSV entry
efficiency in HEK293T cells transiently expressing the indicated CVRs. d, Schematic representation
of the CVRs carrying different numbers of Ig-like domains (left) from mCEACAMI1a. e, Western
blot analysis of CVRs expression in HEK293T cells. f, SARS-CoV-2 PSV entry efficiency in
HEK293T cells transiently expressing the indicated CVRs. Unpaired two-tailed Student's t-tests for ¢.
One-way ANOVA analysis followed by Dunnett's test for f.
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Extended Data Fig. 7 Expression levels and entry-supporting efficiency of CVRs carrying
different viral binding domains. a, Schematic representation of the CVRs carrying different
ACE2-mimicking Hf. b, ¢, Expression (b) and SARS-CoV-2 entry-supporting (c) ability of different
CVRs in 293T cells. d, Immunofluorescence analyzing the expression of the indicated CVRs

transiently expressed in HEK293T cells by detecting the C-terminal fused 3XFLAG tags. Scare bars:
100pm. One-way ANOVA analysis followed by Dunnett's test for c.
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Extended Data Fig. 8 Functionality of CVRs carrying bi-specific VBDs or polymeric VBDs in
supporting coronavirus entry. a-c, Illustration (a), viral RBD binding efficiency (b), and PSV
entry-supporting efficiency (c) of a SARS-CoV-2/MERS-CoV bi-specific CVR transiently expressed
in HEK293T cells. d-f, Illustration (d), expression (b), and PSV entry-supporting efficiencies (c) of
CVRs carrying a single VBD or tandemly connected VBD trimmer. Scare bars: 100pum. Unpaired

two-tailed Student's t-tests for ¢, and f.


https://doi.org/10.1101/2024.03.03.583237
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.03.583237; this version posted March 4, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

b c
MERS-CoV entry MERS-CoV entry
1.2x108 |
K,k Kk
N 1x108 o
% 8x107 *kkok
>
& 6x107 H *kkk
: 5 o
Binding .~ -
\"’ Extracellular E’ 4x107 _$_
/ 2x107 5 ns
Intracellular
ACE2 I l
0 e T T T T T
0 1.6 8 40 200 1000 ng/mL
Infection Measurement
10h 16 h
Adaptor
d o § SARS-CoV-2 entry
9= *x kK
s — *x Kk
Lot > 0000 ©R0Q
L3 Vector CD32a o o g
cB6 Ko o 8 ns ns
NI 5 ;‘ 600Q
'3 7 -
Fc Binding .- g = 7
/I o S
v Z g
“ Virus Entry >
2 £ 5
Extracellular E 3
/ P T 4-
/ Intracellular 8

3 T T T T T T
0 123 370 1111 3333 10000 ng/mL

CD32a

Infection Measurement
Oh  tin 6h
1 wash
CB6

Extended Data Fig. 9 Coronavirus tropism retargeting mediated by bi-specific soluble adaptor
proteins. a-c, Schematic illustration of bispecific adaptor protein (a) and MERS-CoV PSV entry
efficiency in BHK-21-hACE2 cells in the presence of indicated concentrations of adaptor proteins
(H11B11-mNBI1) throughout the infection. PSV entry efficiency is examined based on the GFP
intensity (b) or RLU (¢) in the infected cells. d-f, Schematic illustration of FcyR (CD32a) mediated
antibody-dependent coronavirus entry (d). CD32a expression, antibody (CB6) binding (e), and
SARS-CoV-2 PSV entry (f) into HEK293T-CD32 cells, which was pretreated with indicated
concentration (con.) of the CB6 for 0.5h. Scare bars: 100 um. One-way ANOVA analysis followed by

Dunnett's test for ¢ and f.
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Extended Data Fig. 10 Comparison of specificity and receptor functionality between CVRs and
native receptors in different cell types. a-c, Evaluation of the ability of CVRs to induce cell-cell
fusion (a,b) and to support SARS-CoV-2 authentic virus infection (c). Spike-receptor mediated
cell-cell fusion was demonstrated by the reconstituted GFP (a) and Renilla luciferase activity (RLU)
(b). Infection was analyzed by immunofluorescence detecting the intracellular N protein at 24 hpi (c).
d, Entry of different coronavirus PSVs into HEK293T stably expressing the native receptor or the
indicated CVRs. e, SARS-CoV-2 and MERS-CoV PSV entry into various cell types expressing the

indicated receptors. Scare bars: 100 pm. Unpaired two-tailed Student's t-tests for b.
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Extended Data Fig. 11 Comparison of the SARS-CoV-2 entry efficiency supported by ACE2,
CVRs, alternative receptors, or other entry factors. SARS-CoV-2 PSV entry in HEK293T cells

expressing the indicated receptors or entry factors. Unpaired two-tailed Student's t-tests was

employed for analysis.
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Extended Data Fig. 12 Relationship between the antigen binding, soluble antibody neutralizing
activity, and CVR entry-supporting ability of 25 SARS-CoV-2 RBD targeting nanobodies. a, b,
Assessment of the entry-supporting ability of 25 nanobody-CVRs in HEK293T cells, indicated by
GFP(a) and the RLU (b), respectively. ¢, Comparison of RBD-mFc binding, soluble nanobody-hFc
neutralization, and PSV entry efficiencies in HEK293T cells. RBD-mFc binding and PSV entry
assays were conducted in HEK293T transiently expressing the 25 CVRs. The SARS-CoV-2 PSV
neutralization assay was performed in HEK293T-ACE2 in the presence of indicated nanobody-Fc

recombinant proteins. Scare bars: 100um. One-way ANOVA analysis followed by Dunnett's test for

b.
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Extended Data Fig. 14 Binding efficiencies of scFv-mFc targeting different SARS2-CoV-2
epitopes in cells expressing the SARS-CoV-2 spike. Flow cytometry analysis was performed to
assess the binding efficiency of scFv-mFc with HEK293T cells transiently expressing the
SARS-CoV-2 Spike proteins and ZsGreen simultaneously. The ZsGreen positive cells were gated for

subsequent analysis of mFc binding efficiency.
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Extended Data Fig. 15 Trypsin-mediated S2' cleavage of SARS2-CoV-2 PSV in the presence of
soluble receptors or CB6-scFv-mFc. The concentrated SARS-CoV-2 PSV particles were incubated
with 100 pg/mL of soluble receptors or CB6-scFv-mFc for 1 hour, followed by incubation with the
indicated concentration of TPCK-treated trypsin for 30mins. Western blot analysis was conducted by

detecting the S2P6 epitope on the S2 subunit. sSDPP4: soluble DPP4 ectodomain proteins.
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Extended Data Fig. 16 Package efficiency of PSVs carrying indicated coronavirus spike
proteins. Western blot detection of concentrated PSV carrying indicated coronaviruses by detecting

the S2P6 epitope conserved among the tested coronaviruses. VSV-M serves as a loading control.
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Extended Data Fig. 17 Cryo-EM structures of NTD-targeting antibodies or soluble
mCEACAMI1a in complex with SARS-CoV-2 or MHV spike trimmer, respectively. Illustration
of top-view and side-view cryo-EM structures depicting NTD-targeting antibodies (CV3-13 and
DH1052) or soluble mCEACAMIla in complex with SARS-CoV-2 or MHV spike trimmer,

respectively. The complex structures are annotated with corresponding PDB accession numbers.
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Extended Data Fig. 18 Binding Kinetics between representative nanobodies and corresponding

coronavirus antigens. Binding kinetics analyzed through BLI between representative nanobodies

and the RBD or S1 of indicated coronaviruses.
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Extended Data Fig. 19 Comparison of the entry-supporting efficiency of several CVRs with or

without the presence of EPM. a, Expression (a) and entry-supporting efficiency (b) of the indicated

CVRs with or without EPM transiently expressed in the HEK293T cells. EPM: endocytosis

prevention motif. Scare bars: 100um. Unpaired two-tailed Student’s t-tests for b.
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Extended Data Fig. 20 Comparison of sera neutralization activity using different infection
models. Comparison of neutralization profiles of sera collected from COVID-19 convalescents (a) or

vaccinated individuals (b) based on HEK293T cells expressing ACE2 or two different CVRs. Serum
dilution: 1:200.
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Extended Data Fig. 21 ICso of selected broadly neutralizing antibodies against PSV entry of
seven indicated coronaviruses supported by corresponding CVRs. Neutralization assays for each

PSV were conducted in HEK293T stably expressing the indicated CVRs.
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Extended Data Fig. 22 Inhibitory efficacy of entry inhibitors based on different infection
models. The ICso of selected entry inhibitors against SARS-CoV-2 PSV entry were determined in
both HEK293T-ACE2 or HEK293T-LCB1-CVR cells.
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Extended Data Fig. 23 Pan-sarbecovirus entry-supporting ability of CVR-Nb27. The PSV
entry-supporting ability of CVR-Nb27 was evaluated by six different sarbecoviruses in 293T cells.

Unpaired two-tailed Student's t-tests was employed for comparisons.
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Extended Data Fig. 24 Demonstration of TCIDso determination assay for RsHuB2019A by
Caco2-Nb27 cells. Caco2-Nb27 cells were inoculated with a 10-fold serial dilution of RsHuB2019A
containing supernatant (Passage 6). The TCIDso was determined using immunofluorescence to detect
the presence of N protein expression of the inoculated cells at 4 dpi, employing the Red-Muench

method.
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Extended Data Fig. 25 Trypsin-dependent propagation of RsHuB2019A in Huh-7 cells. The
RsHuB2019A genomic RNA copies in the supernatant collected at indicated time points of infected
Huh-7 cells were quantified by RT-qPCR using RdRP-specific primers. Inoculation was conducted at
an MOI of 0.0001, with or without trypsin treatment. Try: Trypsin treatment.
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Extended Data Fig. 26 Inhibitory effect of selected anti-viral reagents against authentic
HKUS-ZGH infection in Caco2-1B4. Inhibitors were coincubated with either the cells or the
viruses for 1h and present in the culture medium during infection. The HiBit-based luciferase activity
was determined at 48 hpi to assess the inhibitory effect of selected anti-viral reagents against the

infection of authentic HKUS5-ZGH in Caco2-1B4. Unpaired two-tailed Student's t-tests was

employed for comparisons.
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Extended Data Fig. 27 HKUS-WT propagation in Vero E6 cells with or without trypsin
treatment. Vero E6 cells were infected with HKUS-WT at a multiplicity of infection (MOI) of 1 or
0.01, with or without the presence of trypsin at 2 pg/mL. The HKUS infection efficiency was
assessed using rabbit polyclonal antibodies targeting the HKUS N protein(Cy3) at 48 hpi.
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