

1 **Engineering customized viral receptors for various coronaviruses**

2 Peng Liu^{1, #}, Mei-Ling Huang^{1#}, Hua Guo^{2, #}, Jun-Yu Si¹, Yuan-Mei Chen¹, Chun-Li Wang¹, Xiao Yu¹,
3 Lu-Lu Shi¹, Qing Xiong¹, Cheng-Bao Ma¹, Fei Tong¹, Chen Liu¹, Jing Chen², Ming Guo¹, Jing Li¹,
4 Zheng-Li Shi^{2,*}, Huan Yan^{1,*}, &

5 ¹State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical
6 Sciences, Wuhan University, Wuhan, Hubei, China.

7 ²Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.

8 [#]These authors contributed equally.

9 ^{*}Correspondence: e-mail: Huan Yan: huanyan@whu.edu.cn, Zheng-Li Shi: zlshi@whiov.cn

10 & Lead contact

11

12 **Summary**

13 Coronaviruses display versatile receptor usage, yet in-depth characterization of coronaviruses
14 lacking known receptor identities has been impeded by the absence of feasible infection models^{1,2}.
15 Here, we developed an innovative strategy to engineer functional customized viral receptors (CVRs).
16 The modular design relies on building receptor frameworks comprising various function modules
17 and generating specific epitope-targeting viral binding domains. We showed the key factors for
18 CVRs to efficiently facilitate spike cleavage, membrane fusion, pseudovirus entry, and authentic
19 virus propagation for various coronaviruses, resembling their native receptors. Applying this strategy,
20 we delineated the accessible receptor binding epitopes for functional SARS-CoV-2 CVR design and
21 elucidated the mechanism of entry supported by an amino-terminus domain (NTD) targeting
22 S2L20-CVR. Furthermore, we created CVR-expressing cells for assessing antibodies and inhibitors
23 against 12 representative coronaviruses from six subgenera, most of which lacking known receptors.
24 Notably, a pan-sarbecovirus CVR supported entry of various sarbecoviruses, as well as propagation
25 of a replicable HKU3 pseudovirus and the authentic strain RsHuB2019A³. Through combining an
26 HKU5-specific CVR with reverse genetics, we successfully rescued and cultured wild-type and
27 fluorescence protein-incorporated HKU5, a receptor-unidentified merbecovirus. Our study
28 demonstrated the great potential of CVR strategy in establishing native receptor-independent
29 infection models, paving the way for studying various viruses that are challenging to culture due to
30 the lack of susceptible cells.

31

32 **Keywords:** receptors, viral entry, coronaviruses, infection model, customized viral receptor

33

34 **Introduction**

35 The *Coronaviridae* family encompasses hundreds of enveloped viruses categorized into four
36 genera, α -, β -, γ - and δ -coronaviruses⁴. The emergence of human β -coronaviruses has led to three
37 significant outbreaks in the 21st century, highlighting the substantial zoonotic risks associated with
38 various animal coronaviruses that are poorly studied, primarily infecting bats⁵⁻⁸.

39 Coronavirus entry is mediated by the trimerized spike (S) proteins. The full-length S may either
40 remain intact or undergo cleavage by furin or other proteases at the S1/S2 cleavage site, yielding S1
41 and S2 subunits⁹. The S1 subunit engages in specific interaction with the receptor, leading to
42 conformational changes that trigger membrane fusion mediated by the S2 subunit¹⁰. The activation of
43 S2 fusion machinery is associated with the exposure and proteolytic of the S2' cleavage site, which is
44 right upstream of the fusion peptide (FP). A successful fusion involves a dramatic transition of the
45 high-energy prefusion conformation to the low-energy post-fusion conformation of the spike trimer,
46 with an extended intermediate that refolds and brings the two membranes into proximity to overcome
47 the energy barrier for fusion¹¹. Except for MHV, which naturally employs its amino-terminal domain
48 (NTD) for receptor engagement, most coronaviruses use their carboxy-terminal domain (CTD) of the
49 S1 subunit as their receptor binding domains (RBD), adopting either "down" or "up" conformations
50 in the spike trimer¹². The "up" conformation is believed to be more accessible for receptor
51 engagement¹³. For example, SARS-CoV-2 recognizes the ACE2 protease domain (or head domain)
52 through the extended receptor binding motif (RBM). The ACE2 binding mediated conformational
53 change exposes the S2' site, followed by proteolytic cleavage either by cell surface transmembrane
54 serine protease 2 (TMPRSS2), the endosome-localized cathepsin L or other proteases¹⁴.

55 Coronaviruses can employ different receptors or adopt different receptor recognition
56 mechanisms to utilize the same receptor¹⁵⁻¹⁷. Efforts in the past decades have led to the identification
57 of four widely acknowledged protein entry receptors for coronaviruses: ACE2, Aminopeptidase N
58 (APN), Dipeptidyl peptidase-4 DPP4, and mCEACAM1a². TMPRSS2 has also been recently
59 reported as an entry receptor for human coronavirus HKU1^{18,19}. ACE2 represents the most
60 extensively studied receptor supporting entry of various coronaviruses, including NL63,
61 SARS-CoV-1, SARS-CoV-2, and several clades of bat sarbecoviruses and merbecoviruses^{16,20-22}.
62 Human ACE2 is an 805-aminoacid (aa) type I transmembrane protein consisting of signal peptide,
63 head domain, neck domain, spacer sequences, transmembrane domain, and cytosolic domain.
64 Cryo-EM structure demonstrated a dimerized structure, with a direct engagement of the head domain
65 (protease domain) in SARS-CoV-2 RBD, particularly the α 1 and α 2-helix and the loop connecting
66 the β 3- and β 4-sheets²³. However, the contribution of other sequences for achieving the optimal
67 receptor function remains not fully understood. Many alternative receptors capable of mediating

68 SARS-CoV-2 entry have been reported, including CD147, AXL, KREMEN1, ASGR1, NRP1,
69 CLEC4M, TMEM106B, etc²⁴⁻²⁶. However, their entry-supporting efficiency is generally low
70 compared with the ACE2 receptor, probably due to the lack of evolutionary viral adaptation.
71 Nevertheless, many coronaviruses do not use these reported receptors, and their receptor identity
72 remains elusive. Numerous bat coronaviruses are known solely as sequences in databases, limiting
73 our knowledge and countermeasures against these animal coronaviruses^{1,5}.

74 Remarkably, many coronaviruses with unknown receptors often exhibited narrow cell tropism
75 or a complete lack of known susceptible cells¹. A primary challenge of conducting in-depth studies is
76 the difficulty in culturing these viruses. Functional entry receptors are pivotal for establishing
77 infection models for these viruses. However, the conventional strategy for native receptor
78 identification is challenging and largely unpredictable. To address this unmet need, the alternative
79 approach of establishing feasible infection models independent of native receptors is awaiting
80 exploration, with few attempts on MHV reported for this purpose^{27,28}.

81 The challenge of designing viral entry receptors with satisfied functionality is impeded by the
82 lack of knowledge regarding the optimal viral surface to be targeted, and the critical sequence and
83 structural requirements for achieving acceptable conformational changes coupling the downstream
84 entry process. Notably, studies focusing on SARS-CoV-2 or MERS-CoV have elucidated several
85 scenarios of ACE2 or DPP4-independent entry, either by alternative receptors, antibody-dependent
86 Fc γ R-mediated entry, or membrane-anchored antibodies, either in a productive or nonproductive
87 manner^{24,25,29-32}. These findings indicate the specific ACE2-SARS-CoV-2 interaction is dispensable
88 for viral entry, making it feasible to design receptors for various coronaviruses without known native
89 receptor identities.

90 In this study, by dissecting the contributing sequences for ACE2 to support SARS-CoV-2 entry
91 efficiently, we demonstrated that each part of the ACE2 contributes to the functionality in different
92 ways. Nevertheless, all the ACE2 sequences were replaceable, enabling the rebuilding of various
93 receptors with customized specificity by grafting viral binding domains generated by multiple
94 methods. By deciphering the key factors affecting the functionality of the receptors, we developed a
95 generally applicable modular design strategy to build functional customized viral receptors (CVRs)
96 for supporting productive entry of viruses, either the vesicular stomatitis virus (VSV) based
97 pseudoviruses or the authentic viral strains. Utilizing the engineered cell culture models expressing
98 various CVRs, we demonstrated the advantage of this strategy in various applications, such as
99 investigating viral entry mechanisms, assessing the efficacy and breadth of antibodies and other
100 antivirals, improving coronavirus culture efficiency, and isolating or rescuing coronaviruses without
101 known receptors.

102

103 **Results**

104 **Modular design of customized viral receptors**

105 We set out to delineate the role of each sequence or structural component of human ACE2 in
106 functioning as an ideal receptor for SARS-CoV-2. We first tested the feasibility of using
107 computationally designed ACE2-mimicking small helical frameworks to replace the ACE2 head
108 domain while maintaining its receptor function. Four ACE2 chimeric proteins were created, with the
109 head domain or head/neck domains replaced by two previously reported SARS-CoV-2 RBD binding
110 helical frameworks, LCB1 and LCB3³³. The SARS-CoV-2 authentic virus infection assays
111 demonstrated that these chimeric proteins effectively supported viral infection ([Extended Data Fig.](#)
112 [1](#)).

113 We further investigated the importance of other ACE2 sequences by gradually reducing the
114 remaining ACE2 components, including the neck domain, spacer, and cytosolic domain (D2-D5)
115 ([Fig. 1a](#)). All chimeric proteins showed comparable SARS-CoV-2 RBD binding as examined by
116 flow cytometry ([Fig. 1b-c](#)). However, the pseudovirus entry-supporting ability declined with
117 decreasing ACE2 sequences, although the shortest 132aa protein maintained detectable receptor
118 function, approximately 0.5% compared to the ACE2 group and 113-fold compared to vector control
119 ([Fig. 1d-e](#)).

120 Several chimeric proteins were subsequently designed with indicated domains replaced by
121 corresponding sequences from other viral receptors or immune receptors (R1-R4), along with a
122 construct carrying an endocytosis prevention motif (EPM) to enhance surface distribution (R5) ([Fig.](#)
123 [1f](#))³⁴. All chimeric proteins demonstrated well expression and efficient RBD binding ([Fig. 1g-h](#)).
124 Particularly, the chimeric protein with the ACE2 neck domain substituted with triple (3×) 23aa
125 tandem repeats (TR23) from CLEC4M or human IgG Fc supported efficient entry ([Fig. 1i-j](#)). Further
126 substituting the remaining sequence with IL2R α corresponding sequences maintained similar entry
127 efficiency, suggesting that no ACE2-derived sequences are strictly required for SARS-CoV-2 entry
128 ([Fig. 1i-j](#)). Among 31 tested transmembrane (TM) and several cytosolic domains from different
129 receptors, the transmembrane and cytosolic domain (TMC) from the Chikungunya (CHIKV) receptor
130 Matrix remodeling-associated protein 8 (Mxra8) exhibited the best performance ([Extended Data Fig.](#)
131 [2](#))³⁵. Constructs with EPM showed improved cell surface localization and enhanced entry-supporting
132 ability ([Fig. 1i-j](#), [Extended Data Fig. 3](#)). Additionally, constructs with a type-II transmembrane
133 topology also efficiently supported SARS-CoV-2 and MERS-CoV entry, indicating the feasibility of
134 both transmembrane topology for supporting coronavirus entry ([Extended Data Fig. 4](#)).

135 We then explored the impact of spacer length and oligomerization on entry-supporting

136 efficiency by testing spacers with different copies of TR23 tandem repeats or immunoglobulin-like
137 domains from human IgG or mCEACAM1a ([Fig.1k-l, and Extended Data Fig. 5 and 6](#)). Results
138 indicated the triple TR23 or two immunoglobulin (Ig) or Ig-like domains represent the optimal
139 spacer length for LCB1, while abolishing dimerization by Fc mutants has no significant impact on
140 receptor function ([Fig.1m and Extended Data Fig. 5 and 6](#))³⁶.

141 Subsequently, various SARS-CoV-2 RBD-targeting viral binding domains (VBDs) were tested
142 for receptor grafting, including designed helical frameworks, designed ankyrin repeat proteins
143 (DARPins), nanobody, scFv, and Fab ([Fig.1n and Extended Data Fig. 7](#)). All these VBDs types are
144 acceptable, with nanobodies showing superiority due to their small size, single-chain nature, and
145 compatibility for bio-panning ([Fig.1o, p](#)). We also demonstrated the functionality of a bi-specific
146 receptor carrying two VBDs recognizing SARS-CoV-2 and MERS-CoV, respectively, and
147 trimerized VBDs recognizing SARS-CoV-2 RBD ([Extended Data Fig. 8](#)). Additionally, we show the
148 entry facilitated by soluble receptor adapters connecting viral RBD and ACE2 or Fc γ RIIa,
149 respectively ([Extended Data Fig. 9](#)).

150 The functionality of CVRs compared with ACE2 was demonstrated through a series of
151 experiments showing membrane fusion, authentic SARS-CoV-2 infection, and virus specificity in
152 different cell types ([Extended Data Fig.10](#)). The entry-supporting efficiency of CVRs are
153 significantly more efficient than several documented SARS-CoV-2 alternative receptors, coreceptors,
154 entry factors, or binding proteins²⁴⁻²⁶ ([Extended Data Fig.11](#)).

155 Together, we proposed a modular design strategy for generating customized viral receptors to
156 support efficient coronavirus entry, comparable in specificity and efficiency to their native receptors.
157 A CVR prototype consisting of Type-1 transmembrane topology carrying signal peptide (SP), VBD,
158 spacer, TMC, EPM, and C-terminal tags and its derivatives are delineated ([Fig.1q](#)).
159

160 Acceptable epitopes for functional CVRs

161 In our initial exploration of the relationship between CVR receptor function and binding affinity
162 or neutralizing activity, we evaluated 25 neutralizing nanobodies targeting SARS-CoV-2 RBD.
163 However, the results did not demonstrate a clear correlation between entry-supporting ability and
164 binding affinity or neutralizing activity. These data underscores the influence of other critical factors,
165 particularly the binding epitopes that are not clearly defined for the 25 nanobodies ([Extended Data
166 Fig.12](#)).

167 Therefore, we engineered CVRs carrying scFvs derived from 22 well-characterized
168 SARS-CoV-2 neutralizing antibodies (Abs) covering most reported neutralizing epitopes on NTD,
169 CTD, or S2 ([Fig. 2a](#))³⁷⁻⁴⁴. These antibodies were transformed into scFv-based VBDs with N-terminal

170 heavy chain (HL) or N-terminal light chain (LH), resulting in 44 CVRs for evaluation (Fig. 2b). All
171 CVRs were well-expressed and verified with SARS-CoV-2 spike trimer binding, except for 76E1
172 recognizing a hidden epitope exposed after receptor binding⁴² (Extended Data Fig.13). The
173 scFv-CVRs recognizing epitopes close to the canonical RBM (sites i, ii and iii) supported efficient
174 entry, while many other RBD core domain-targeting scFv also exhibited decent entry-supporting
175 capabilities (Fig. 2c). However, not all RBD epitopes are suitable for CVR design, such as S309 and
176 two antibodies recognizing a quaternary epitope spanning the dual-RBD interface that lock the spike
177 in a closed conformation (BG10-19, S2M11)³⁷⁻³⁹. Unexpectedly, an S2L20-CVR recognizing an
178 NTD epitope (site iv) showed potent entry-supporting ability, challenging the previous hypothesis
179 that NTD neutralizing antibodies are insufficient to induce SARS-CoV-2 membrane fusion and entry
180 in an ACE2-independent manner (Fig. 2c)^{32,45}. We further demonstrated the expression, antigen
181 binding, pseudovirus entry, and membrane fusion supported by ten selected CVRs (Fig. 2d).

182 To elucidate why only specific epitopes are accessible for CVR design to realize receptor
183 function, we proposed a hypothesis: CVR functionality is dependent on whether the interaction can
184 induce a proper spike conformational change that leads to down-stream critical entry events required
185 for membrane fusion, particularly the exposure and cleavage of S2' cleavage site for fusion peptide
186 activation^{29,42,46} (Fig. 2e). Consistently, although most of the tested scFv-mFc recombinant proteins
187 can bind spike trimer, only scFv-mFc corresponding to the functional CVRs can induce the exposure
188 of 76E1 epitope in a dose-dependent manner (Fig. 2e-g, and Extended Data Fig.14).

189 We further explored whether the exposure of the 76E1 epitope resulted in higher S2' protease
190 accessibility. After optimizing the experimental conditions for trypsin-based S2' cleavage, we
191 demonstrated that the ability of specific scFv-mFc to induce S2' cleavage sensitivity aligns with the
192 data from 76E1 epitope exposure assays (Fig. 2h and Extended Data Fig.15).

193 In summary, our data reveals that most CTD surfaces and specific NTD epitopes are accessible
194 receptor binding motifs for generating functional CVRs, and the functionality is primarily
195 determined by their capability to induce conformational changes capable of exposing the 76E1
196 epitope, which is subject to proteolytic cleavage at the S2' site, thereby activating the fusion
197 machinery.

198

199 **NTD-mediated sarbecovirus entry by S2L20-CVR**

200 We next sought to characterize the NTD-mediated coronavirus entry facilitated by S2L20-CVR.
201 We first confirmed that S2L20-CVR serves as a fully functional receptor for SARS-CoV-2,
202 supporting membrane fusion, pseudovirus entry, and authentic virus infection (Fig. 3a). Additionally,
203 S2L20-CVR effectively facilitated pseudovirus entry of the five SARS-CoV-2 variants of concern

204 (VOCs) and the other three sarbecoviruses (BANAL-20-52, RaTG13, and GX-P2V) (Fig. 3b-d). As
205 expected, SARS-CoV-1 and ZC45 cannot use S2L20-CVR for entry due to the lack of binding
206 affinity (Fig. 3 c, d).

207 Despite showing similar NTD-binding efficiency, S2L20 showed much lower efficiency in
208 supporting RaTG13 and BANAL-20-52 entry than SARS-CoV-2 (Fig. 3 c, d). Since the lack of an
209 N370 glycan has been reported as a distinct feature of SARS-CoV-2, we generated CTD swap and
210 point mutants to investigate the impact of CTD sequences and N370 glycan on S2L20-CVR
211 dependent entry (Fig. 3e)⁴⁷. Spikes carrying RaTG13 RBD or just a T372A mutation showed lower
212 binding efficiency to the soluble forms of human ACE2(shACE2) or S2L20-mFc than those carrying
213 SARS-CoV-2 RBD. Please note that RaTG13 has a lower affinity for hACE2 than its host's ACE2
214 (*Rhinolophus. affinis* ACE2, R.aff ACE2) (Fig. 3f)⁴⁸. The absence of the N370 glycan in
215 SARS-CoV-2 due to a T372A mutation was hypothesized to interfere with S2L20 binding since this
216 glycan is spatially close to the S2L20 after it binds to the NTD. Consistently, T372A mutation in the
217 RaTG13 or BANAL-20-52 spike, abolishing the N370 glycosylation, significantly enhanced
218 S2L20-CVR supported viral entry (Fig. 3g-h)⁴⁹.

219 We next investigated whether SARS-CoV-2 CTD-targeting neutralizing antibodies could
220 interfere with NTD-mediated entry in cells expressing S2L20-CVR compared to hACE2-expressing
221 cells. As expected, S2L20 exhibited higher neutralizing activity in S2L20-CVR-expressing cells.
222 Importantly, although several antibodies (LY-COV555, S309, and S2X259) showed reduced
223 neutralizing efficiency in S2L20-CVR expressing cells, some CTD-binding antibodies exhibited
224 similar neutralizing activity in both models (Fig. 3i).

225 These data suggest an association between RBD and S2L20-CVR mediated entry. Interestingly,
226 the cryo-EM structure of S2L20 in complex with SARS-CoV-2 BA.5 revealed that S2L20 stabilizes
227 the spike trimer in a three RBD "up" conformation, contrasting to the three RBD "down"
228 conformation in BA.5 alone^{50,51}. However, the binding of NTD-targeting antibodies, like 4A8, is
229 unable to stabilize the RBD "up" conformation (Fig. 3j-k and Extended Data Fig. 17)⁵². We
230 hypothesize the three RBD "up" conformation upon S2L20 binding may be crucial for S2L20-CVR
231 receptor functionality. By contrast, mCEACAM1a, a receptor that binds to MHV spike trimer with
232 three RBD down conformations, recognizes an NTD surface largely overlapped with the 4A8 epitope
233 (Extended Data Fig. 17)⁵²⁻⁵⁴. This indicates different coronaviruses can adopt distinct receptor
234 recognition mechanisms to achieve NTD-mediated entry.

235

236 **CVR supports efficient entry of various coronaviruses**

237 The data presented above demonstrated the capability of CVRs to support efficient entry of

238 ACE2 or DPP4-dependent coronaviruses. We extended our approach to generating CVRs capable of
239 facilitating entry of 12 coronaviruses across the phylogeny, representing human, bat, and mouse
240 coronaviruses from six distinct subgenera, the receptor for most of which remains unidentified¹ (Fig.
241 4a). To acquire acceptable VBDs for receptor grafting, we utilized magnetic beads and
242 immunotube-assisted phage display biopanning to screen coronaviruses-specific nanobodies from the
243 naïve libraries (Fig. 4b). Top CVR candidates, generated using a variety of nanobodies with
244 validated RBD or S1 binding, demonstrated efficient pseudovirus entry for each coronavirus. Besides,
245 we included a characterized broadly-neutralizing nanobody Nb27 for supporting RsHuB2019A.
246 Binding kinetics of optimal nanobodies against the antigens from the 12 coronaviruses were
247 determined through Bio-layer interferometry (BLI) assays (Fig. 4c and Extended Data Fig. 18).
248 Efficient RBD or S1 binding and pseudovirus entry were demonstrated in 293T cells stably
249 expressing the indicated CVRs, achieving approximately 10² to 10⁴-fold increase of entry compared
250 with the mock control (Fig. 4d, e). Further examination of the CVR-supported entry of five different
251 coronaviruses revealed that CVRs carrying EPM exhibited superior cell surface localization and
252 higher entry-supporting ability (Extended Data Fig. 19). Moreover, we verified the ability of several
253 CVRs designed for 229E and MHV-A59 to support membrane fusion and authentic viral infection
254 (Fig. 4f-h). Notably, both MHV-A59 NTD-targeting and CTD-targeting CVRs supported viral
255 propagation, albeit with lower efficiency than the mCEACAM1a (Fig. 4i).

256 We next evaluated the CVR-based infection models for neutralizing antibody assessment,
257 particularly anti-sera and broadly neutralizing antibodies. We compared the neutralizing activity of
258 SARS-CoV-2 anti-sera, collected from COVID-19 convalescents or vaccinated individuals, on 293T
259 cells expressing ACE2, LCB1-CVR recognizing the classical RBM, and Nb24-CVR recognizing an
260 epitope distant from the RBM. The sera neutralization results based on the three receptors displayed
261 a generally similar inhibitory profile, with Nb24-CVR showing slight differences (Extended Data
262 Fig. 20). This indicates the utility of the CVR-based system for evaluating the effectiveness of
263 humoral immunity, ideally for CVRs recognizing the classical RBM region. We evaluated the
264 cross-reactivity of several pan-β-CoV broadly neutralizing antibodies against several coronaviruses
265 lacking conventional infection models, including antibodies recognizing an RBD site v epitope
266 (S2H97), a stem region of the fusion machinery (S2P6, B6), and the S2/fusion peptide (76E1), with
267 an RBM-targeting antibody REGN 10933 as a control. The results demonstrated that 76E1 exhibited
268 the best breadth for cross-neutralization of the tested coronaviruses, consistent with sequence
269 similarity of the recognized epitopes (Fig. 4j and Extended Data Fig. 21).

270 Furthermore, we investigated the potential of the CVR-based infection system for evaluating
271 other antivirals targeting different entry steps, including proteolytic cleavage, endosome acidification,

272 and membrane fusion. Comparable inhibitory efficacy was observed when comparing infection
273 models based on ACE2 or LCB1-CVR ([Extended Data Fig.22](#)). We further tested these inhibitors
274 against SARS-CoV-2, HKU1, HKU3, and HKU5 entry in corresponding CVR-based infection
275 models. Overall entry inhibitory efficiencies were similar among the four viruses, except for HKU5
276 displaying a higher sensitivity to TMPRSS2 inhibitor Camostat mesylate rather than the cathepsin
277 inhibitor E64d ([Fig. 4k](#)). Our data confirmed the ability of CVR to support efficient entry for various
278 coronaviruses. The novel infection models can be useful tools for assessing antibodies and other
279 antiviral reagents against viruses lacking conventional infection models.

280

281 **Culture and rescue authentic coronaviruses through CVRs**

282 To evaluate the capability of CVR-expressing cells to support multiple-round propagation of
283 coronaviruses lacking known receptor identity, we utilized a reverse genetic system to generate
284 propagation-competent VSV pseudoviruses with genomically encoded HKU3 or HKU5 spike
285 proteins, replacing the VSV-G gene. A GFP-expressing cassette was additionally incorporated into
286 the genome to facilitate visualization ([Fig. 5a](#)). Successfully rescued of the VSV-HKU3 and
287 VSV-HKU5 was achieved with the aid of VSV-G proteins provided *in trans* ([Fig. 5b](#)). Following
288 one round of amplification with VSV-G, infection was conducted in Caco2 cells in a VSV-G
289 independent manner with or without the expression of Nb27, a pan-sarbecovirus CVRs recognizing
290 the conserved site vi epitope on RBD ([Fig. 5c-d and Extended Data Fig.23](#))⁵⁵. Notably, efficient
291 propagation of VSV-HKU3 and VSV-HKU5 can be observed in cells expressing the indicated CVRs,
292 as evidenced by the syncytia formation and the accumulation of viral RNA in the supernatant, which
293 was further enhanced by the exogenous trypsin treatment ([Fig. 5d-g](#)).

294 Subsequently, we investigated whether CVRs can facilitate efficient propagation of authentic
295 coronavirus requiring strict culture conditions. RsHuB2019A, a relative of HKU3, is an
296 ACE2-independent bat sarbecoviruses recently isolated from field samples³. Isolation and
297 propagation of this virus was carried out in Huh-7 under a serum-free culture condition with
298 exogenous trypsin, with viral infection being difficult to detect while maintaining normal cell
299 morphology ([Fig. 5h](#)). Our results demonstrated that the Caco2 cells stably expressing Nb27-CVR
300 (Caco2-Nb27) efficiently supported RsHuB2019A propagation, even at very low MOIs ([Fig. 5i and](#)
301 [Extended Data Fig.24](#)). Unlike Huh-7, Caco2-Nb27 supported efficient RsHuB2019A propagation in
302 trypsin-free culture medium supplemented with 2% FBS, enabling observation of cytopathic effect
303 (CPE) ([Fig. 5i-j and Extended Data Fig.25](#)).

304 Furthermore, we explored the feasibility of rescuing a representative bat merbecovirus, HKU5,
305 by combining reverse genetics and the novel CVR-based infection system. Thus, we generated a

306 full-length infectious clone of wild-type (WT) HKU5, along with a fluorescence protein with ORF5
307 substituted by a ZsGreen-HiBit reporter (ZGH) (Fig. 5k). Utilizing the same cell line for VSV-HKU5
308 propagation (Caco2-1B4), we successfully rescued both the WT and the ZGH version of HKU5
309 authentic viruses. Efficient amplification was observed in cells inoculated with HKU5 at different
310 MOIs, as indicated by the nucleocapsid (N) protein immunostaining and the accumulation of
311 genomic RNA in the supernatant over time (Fig. 5l-m). Electron microscopy revealed typical
312 morphology of "crown-shaped" virions with diameters of approximately 100 nm (Fig. 5n). Although
313 the HKU5-ZGH exhibited relatively slow amplification kinetics, likely due to the deleted ORF5 and
314 foreign gene insertion, the expression of ZGH facilitated real-time visualization and quantification of
315 viral amplification (Fig. 5o-q). Consistent with previous reports, HKU5 can amplify in Vero-E6 cells
316 only in the presence of exogenous trypsin (Extended Data Fig.27)⁵⁶.

317 Lastly, we assessed several antiviral reagents against HKU5 infection in Caco2-1B4 cells.
318 Immunostaining of N protein revealed that trypsin significantly enhanced the infection, while most
319 inhibitors blocked HKU5 infection. Consistent with the pseudovirus entry assay data (Fig. 4j), HKU5
320 infection was inhibited by Camostat mesylate but not E64d, further demonstrating the TMPRSS2
321 dependence for HKU5 infection (Fig. 5r and Extended Data Fig.26). This protease preference is in
322 line with the sequence features at the critical cleavage sites for HKU5 (Fig. 5s)⁵⁶.

323

324 **Discussion:**

325 The elusive identity of the receptor used by many coronaviruses presents substantial challenges
326 in comprehending their life cycle and spillover risk, particularly those phylogenetically related to
327 known high-risk β -coronaviruses. Lessons learned from the COVID-19 pandemic underscore the
328 urgent imperative to study these viruses to prepare for future outbreaks. However, in-depth research
329 and vaccine/antiviral development for these viruses are hindered by the lack of feasible infection
330 models for virus isolation and culture¹. Here, we proposed a novel strategy for customizing
331 functional viral receptors for various coronaviruses, especially those lacking known native receptor
332 identities. Our approach involves the modular design of CVRs in a single open-reading frame format,
333 enabling molecular grafting of viral binding domains (VBDs) customized for specific viral surface
334 epitopes. By targeting conserved epitopes compatible with CVR design, CVRs could potentially
335 exhibit a broad recognition spectrum for coronaviruses from distinct clades or lineages.

336 We demonstrated that the VBDs can adopt various structures with binding affinity to viral
337 surface proteins. Compared to Fab fragments, single polypeptide chain structures like scFv or
338 nanobody are more suitable modules for CVR design and are compatible with the library biopanning
339 system. The excellent performance of helical framework or DARPin-based CVRs, highlights the

340 potential of computational de novo design of VBDs for various viruses. Besides efficient binding,
341 maintaining an optimal distance between VBD and the cell membrane is critical for CVR
342 functionality, although this distance may vary for spacers with distinct structures, orientations, and
343 flexibility. Additionally, we demonstrated the soluble adaptor strategy in supporting viral entry,
344 realized by a bio-specific adaptor retargeting the viruses to a cell surface-expressed receptor, such as
345 ACE2.

346 Additionally, the functionality of the CVR highly depends on the acceptable epitopes
347 recognized by the VBDs. The ability of the specific viral surface regions to serve as functional
348 receptor binding motifs likely depends on whether a VBD recognizing this region can induce proper
349 conformational changes leading to membrane fusion. Therefore, CVRs targeting S2, most epitopes of
350 NTD, and some epitopes on CTD are nonfunctional. We revealed a close link between the CVR
351 functionality and their ability to induce the exposure of 76E1 epitope, encompassing the critical S2' cleavage
352 site and part of the fusion peptide. However, the conformational change crucial for
353 exposing this epitope remains unclear, although a transition of the RBD from the "down" to "up"
354 conformation seems crucial¹³. Consistently, CVR using antibodies recognizing the three RBD
355 "down" epitopes and locking the spike in this conformation showed no entry-supporting ability^{38,39}.
356 Future structural studies could be conducted to elucidate this critical event.

357 There appears to be no restriction for coronaviruses to employ their NTD or RBD for receptor
358 engagement, as exemplified by the receptor function of NTD-targeting S2L20-CVR. Additionally,
359 we also showed that MHV infection can be efficiently supported by either NTD or CTD-targeting
360 CVRs, suggesting the possibility of MHV, or its relatives, recognizing an alternative receptor through
361 their CTD⁵⁷. It is also possible that SARS-CoV-2, or other sarbecoviruses, may develop
362 NTD-mediated entry in the previous or future evolution. Notably, an infection-enhancing antibody
363 targeting NTD of SARS-CoV-2, DH1052⁵⁸, was unable to be utilized to build a functional CVR in
364 our study. These indicate differences in mechanisms between the soluble antibody-mediated
365 antibody-dependent enhancement (ADE) and membrane-anchored CVRs-mediated viral entry.

366 Our CVR strategy allows the modular design of customized receptors to manipulate cell
367 susceptibility to specific viruses. This approach enables the isolation or rescue of coronaviruses
368 regardless of receptor identity or conventional susceptible cells. Overcoming limitations of native
369 receptors, such as enhancing affinity, altering epitopes, adjusting specificity, changing structures, or
370 getting rid of physiological function interference, underscores the potential of this strategy. However,
371 several limitations should be noted when employing CVR-based models. Differences in targeted
372 epitopes and protein structures may result in inconsistencies when assessing RBM-targeting
373 neutralizing antibodies or sera. Additionally, slight differences in the entry pathway may exist for

374 some CVRs that trigger a conformational change different from those induced by native receptors. It
375 is noteworthy that CVR transgenic mice might be useful for evaluating viral pathogenesis and
376 vaccine/antiviral protection *in vivo*. However, the variations in tissue expression patterns may limit
377 the mimicking of natural infection.

378 To our knowledge, this study demonstrated the first case of rescuing and culturing a coronavirus
379 without known receptor identity based on a genetically modified cell culture model independent of
380 native receptors. Our findings pave the way for the rapid design of novel viral infection models for
381 difficult-to-culture viruses, including those beyond coronaviruses, facilitating further advances in
382 basic research, antiviral therapeutics, and vaccine development.

383

384 **Author contributions**

385 H.Y., P.L., M.L.H., H.G., and J.L. conceived the study and designed the experiments; P.L., M.L.H.,
386 H.G., J.Y.S., Y.M.C., C.L.W., X.Y., C.L., L.L.S. and J.L. established the assays and methods,
387 designed and cloned receptor and protein constructs and conducted related experiments; P.L., M.L.H.,
388 L.L.S., C.B.M., Q.X., F.T. and C. L. screened the nanobodies; P.L., M.L.H., L.L.S. conducted 229E
389 and MHV authentic viruses related experiments at Wuhan University; P.L. and H.G. conducted the
390 RsHuB2019A and HKU5 authentic viruses and HKU5 negative staining for EM imaging in Wuhan
391 Institute of Virology; J.C. and P.L. constructed the infectious clones of HKU5 and HKU5-ZGH,
392 respectively. M.G. conducted the SARS-CoV-2 authentic viruses infection in ABSL-III in Wuhan
393 University; H.Y., P.L., M.L.H., C.L.W., and X.Y. analyzed the data; H.Y., and P.L., M.L.H. prepared
394 the original draft of the manuscript, H.Y., Z.L.S., P.L. revised the manuscript with input from all
395 authors. H. Y. and Z.L.S. funded this study. H. Y. supervised the project.

396

397 **Acknowledgments**

398 We are grateful for the funding support from the National Key R&D Program of China
399 (2023YFC2605500 to H.Y. and Z.L.S.). National Natural Science Foundation of China (NSFC)
400 projects (82322041, 32270164, 32070160 to H.Y., 32300141 to H.G.), Fundamental Research Funds
401 for the Central Universities (2042023kf0191, 2042022kf1188 to H.Y.), and Natural Science
402 Foundation of Hubei Province (2023AFA015 to H.Y.), and China Postdoctoral Science Foundation
403 (2023M733708 to H.G.). We gratefully acknowledge Xiang-Xi Wang (Institute of Biophysics,
404 Chinese Academy of Sciences) for providing the human sera collected post-vaccination
405 (SARS-CoV-2 CoronaVac, Sinovac) and collected by Beijing Youan Hospital (approval number
406 LL-2021-042-K), and Kun Cai (Hubei Provincial Center for Disease Control and Prevention) for
407 providing sera collected from Wuhan COVID-19 convalescents (identification number 2021-012-01).

408 We gratefully acknowledge Zhao-Hui Qian (Chinese Academy of Medical Sciences and Peking
409 Union Medical College) for providing BANNAL-20-52 related spike expressing plasmids. We also
410 thank Pei Zhang and Bi-Chao Xu (Wuhan Institute of Virology) for their help with the
411 ultracentrifugation and Electron Microscopic analysis. We thank Ying-Jian Li (Wuhan University)
412 for assisting in establishing the yeast cloning methods. We also want to express our gratitude to the
413 ABSL-3 facility and other core facilities of the Key Laboratory of Virology, Wuhan University.
414

415 **Data and code availability**

416 This study did not generate custom computer code.

417 Any additional information required to reanalyze the data reported in this paper is available from the
418 lead contact upon request.
419

420 **Declaration of interests**

421 The authors declare no competing interests.
422

423 **RESOURCE AVAILABILITY**

424 **Lead contact**

425 Further information and requests for resources and reagents should be directed to and will be
426 fulfilled by the lead contact, Huan Yan (huanyan@whu.edu.cn)

427 **Materials availability**

428 All reagents generated in this study are available from the lead contact with a completed Materials
429 Transfer Agreement.
430

431 **References**

1. Millet, J. K., Jaimes, J. A. & Whittaker, G. R. Molecular diversity of coronavirus host cell entry receptors. *FEMS Microbiol. Rev.* **45**, fuaa057 (2021).
2. Li, F. Receptor recognition mechanisms of coronaviruses: a decade of structural studies. *J. Virol.* **89**, 1954–1964 (2015).
3. Guo, H. *et al.* Isolation of ACE2-dependent and -independent sarbecoviruses from Chinese horseshoe bats. *J. Virol.* **97**, e0039523 (2023).
4. V'kovski, P., Kratzel, A., Steiner, S., Stalder, H. & Thiel, V. Coronavirus biology and replication: implications for SARS-CoV-2. *Nat. Rev. Microbiol.* **19**, 155–170 (2021).
5. Cui, J., Li, F. & Shi, Z.-L. Origin and evolution of pathogenic coronaviruses. *Nat. Rev. Microbiol.* **17**, 181–192 (2019).

442 6. Ksiazek, T. G. *et al.* A novel coronavirus associated with severe acute respiratory syndrome. *N.
443 Engl. J. Med.* **348**, 1953–1966 (2003).

444 7. Zaki, A. M., van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D. M. E. & Fouchier, R. A. M.
445 Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. *N. Engl. J. Med.* **367**,
446 1814–1820 (2012).

447 8. Zhou, P. *et al.* A pneumonia outbreak associated with a new coronavirus of probable bat origin.
448 *Nature* **579**, 270–273 (2020).

449 9. Walls, A. C. *et al.* Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein.
450 *Cell* **181**, 281-292.e6 (2020).

451 10. Shang, J. *et al.* Cell entry mechanisms of SARS-CoV-2. *Proc. Natl. Acad. Sci. U. S. A.* **117**,
452 11727–11734 (2020).

453 11. Jackson, C. B., Farzan, M., Chen, B. & Choe, H. Mechanisms of SARS-CoV-2 entry into cells.
454 *Nat. Rev. Mol. Cell Biol.* **23**, 3–20 (2022).

455 12. Peng, G. *et al.* Crystal structure of mouse coronavirus receptor-binding domain complexed with
456 its murine receptor. *Proc. Natl. Acad. Sci. U. S. A.* **108**, 10696–10701 (2011).

457 13. Yan, R. *et al.* Structural basis for the different states of the spike protein of SARS-CoV-2 in
458 complex with ACE2. *Cell Res.* **31**, 717–719 (2021).

459 14. Hoffmann, M. *et al.* SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked
460 by a Clinically Proven Protease Inhibitor. *Cell* **181**, 271-280.e8 (2020).

461 15. Tortorici, M. A. *et al.* Structure, receptor recognition, and antigenicity of the human coronavirus
462 CCoV-HuPn-2018 spike glycoprotein. *Cell* **185**, 2279-2291.e17 (2022).

463 16. Xiong, Q. *et al.* Close relatives of MERS-CoV in bats use ACE2 as their functional receptors.
464 *Nature* **612**, 748–757 (2022).

465 17. Xiong, Q. *et al.* ACE2-using merbecoviruses: Further evidence of convergent evolution of ACE2
466 recognition by NeoCoV and other MERS-CoV related viruses. *Cell Insight* **3**, 100145 (2024).

467 18. Saunders, N. *et al.* TMPRSS2 is a functional receptor for human coronavirus HKU1. *Nature* **624**,
468 207–214 (2023).

469 19. McCallum, M. *et al.* Human Coronavirus HKU1 Recognition of the TMPRSS2 Host Receptor.
470 *Biorxiv*. <http://biorxiv.org/lookup/doi/10.1101/2024.01.09.574565> (2024)

471 20. Hofmann, H. *et al.* Human coronavirus NL63 employs the severe acute respiratory syndrome
472 coronavirus receptor for cellular entry. *Proc. Natl. Acad. Sci. U. S. A.* **102**, 7988–7993 (2005).

473 21. Li, W. *et al.* Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus.
474 *Nature* **426**, 450–454 (2003).

475 22. Starr, T. N. *et al.* ACE2 binding is an ancestral and evolvable trait of sarbecoviruses. *Nature* **603**,

476 913–918 (2022).

477 23. Yan, R. *et al.* Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2.

478 *Science* **367**, 1444–1448 (2020).

479 24. Eslami, N. *et al.* SARS-CoV-2: Receptor and Co-receptor Tropism Probability. *Curr. Microbiol.*

480 **79**, 133 (2022).

481 25. Baggen, J. *et al.* TMEM106B is a receptor mediating ACE2-independent SARS-CoV-2 cell entry.

482 *Cell* **186**, 3427-3442.e22 (2023).

483 26. Lim, S., Zhang, M. & Chang, T. L. ACE2-Independent Alternative Receptors for SARS-CoV-2.

484 *Viruses* **14**, 2535 (2022).

485 27. Verheij, M. H. *et al.* Redirecting coronavirus to a nonnative receptor through a virus-encoded

486 targeting adapter. *J. Virol.* **80**, 1250–1260 (2006).

487 28. Verheij, M. H. *et al.* Coronavirus genetically redirected to the epidermal growth factor receptor

488 exhibits effective antitumor activity against a malignant glioblastoma. *J. Virol.* **83**, 7507–7516

489 (2009).

490 29. Wan, Y. *et al.* Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus

491 Entry. *J. Virol.* **94**, e02015-19 (2020).

492 30. Maemura, T. *et al.* Antibody-Dependent Enhancement of SARS-CoV-2 Infection Is Mediated by

493 the IgG Receptors Fc γ RIIA and Fc γ RIIIA but Does Not Contribute to Aberrant Cytokine Production

494 by Macrophages. *mBio* **12**, e0198721 (2021).

495 31. Wieczorek, L. *et al.* Evaluation of Antibody-Dependent Fc-Mediated Viral Entry, as Compared

496 With Neutralization, in SARS-CoV-2 Infection. *Front. Immunol.* **13**, 901217 (2022).

497 32. Kibria, M. G. *et al.* Antibody-mediated SARS-CoV-2 entry in cultured cells. *EMBO Rep.* **24**,

498 e57724 (2023).

499 33. Cao, L. *et al.* De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. *Science* **370**,

500 426–431 (2020).

501 34. Miettinen, H. M., Rose, J. K. & Mellman, I. Fc receptor isoforms exhibit distinct abilities for

502 coated pit localization as a result of cytoplasmic domain heterogeneity. *Cell* **58**, 317–327 (1989).

503 35. Zhang, R. *et al.* Mxra8 is a receptor for multiple arthritogenic alphaviruses. *Nature* **557**,

504 570–574 (2018).

505 36. Ying, T., Feng, Y., Wang, Y., Chen, W. & Dimitrov, D. S. Monomeric IgG1 Fc molecules

506 displaying unique Fc receptor interactions that are exploitable to treat inflammation-mediated

507 diseases. *mAbs* **6**, 1201–1210 (2014).

508 37. Pinto, D. *et al.* Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV

509 antibody. *Nature* **583**, 290–295 (2020).

510 38. Scheid, J. F. *et al.* B cell genomics behind cross-neutralization of SARS-CoV-2 variants and
511 SARS-CoV. *Cell* **184**, 3205–3221.e24 (2021).

512 39. Tortorici, M. A. *et al.* Ultrapotent human antibodies protect against SARS-CoV-2 challenge via
513 multiple mechanisms. *Science* **370**, 950–957 (2020).

514 40. Cui, Z. *et al.* Structural and functional characterizations of infectivity and immune evasion of
515 SARS-CoV-2 Omicron. *Cell* **185**, 860–871.e13 (2022).

516 41. McCallum, M. *et al.* N-terminal domain antigenic mapping reveals a site of vulnerability for
517 SARS-CoV-2. *Cell* **184**, 2332–2347.e16 (2021).

518 42. Sun, X. *et al.* Neutralization mechanism of a human antibody with pan-coronavirus reactivity
519 including SARS-CoV-2. *Nat. Microbiol.* **7**, 1063–1074 (2022).

520 43. Pinto, D. *et al.* Broad betacoronavirus neutralization by a stem helix-specific human antibody.
521 *Science* **373**, 1109–1116 (2021).

522 44. Sauer, M. M. *et al.* Structural basis for broad coronavirus neutralization. *Nat. Struct. Mol. Biol.*
523 **28**, 478–486 (2021).

524 45. McCallum, M. *et al.* N-terminal domain antigenic mapping reveals a site of vulnerability for
525 SARS-CoV-2. *Cell* **184**, 2332–2347.e16 (2021).

526 46. Qing, E. *et al.* Inter-domain communication in SARS-CoV-2 spike proteins controls
527 protease-triggered cell entry. *Cell Rep.* **39**, 110786 (2022).

528 47. Zhang, S. *et al.* Loss of Spike N370 glycosylation as an important evolutionary event for the
529 enhanced infectivity of SARS-CoV-2. *Cell Res.* **32**, 315–318 (2022).

530 48. Li, P. *et al.* Effect of polymorphism in *Rhinolophus affinis* ACE2 on entry of SARS-CoV-2
531 related bat coronaviruses. *PLoS Pathog.* **19**, e1011116 (2023).

532 49. Ou, X. *et al.* Host susceptibility and structural and immunological insight of S proteins of two
533 SARS-CoV-2 closely related bat coronaviruses. *Cell Discov.* **9**, 78 (2023).

534 50. Chi, X. *et al.* Comprehensive structural analysis reveals broad-spectrum neutralizing antibodies
535 against SARS-CoV-2 Omicron variants. *Cell Discov.* **9**, 37 (2023).

536 51. Cao, Y. *et al.* BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. *Nature*
537 **608**, 593–602 (2022).

538 52. Shang, J. *et al.* Structure of mouse coronavirus spike protein complexed with receptor reveals
539 mechanism for viral entry. *PLoS Pathog.* **16**, e1008392 (2020).

540 53. Chi, X. *et al.* A neutralizing human antibody binds to the N-terminal domain of the Spike protein
541 of SARS-CoV-2. *Science* **369**, 650–655 (2020).

542 54. Saville, J. W. *et al.* Structural analysis of receptor engagement and antigenic drift within the
543 BA.2 spike protein. *Cell Rep.* **42**, 111964 (2023).

544 55. Xu, J. *et al.* Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants. *Nature*
545 **595**, 278–282 (2021).

546 56. Menachery, V. D. *et al.* Trypsin Treatment Unlocks Barrier for Zoonotic Bat Coronavirus
547 Infection. *J. Virol.* **94**, e01774-19 (2020).

548 57. Miura, T. A. *et al.* The spike glycoprotein of murine coronavirus MHV-JHM mediates
549 receptor-independent infection and spread in the central nervous systems of Ceacam1a-/- Mice. *J.*
550 *Virol.* **82**, 755–763 (2008).

551 58. Li, D. *et al.* In vitro and in vivo functions of SARS-CoV-2 infection-enhancing and neutralizing
552 antibodies. *Cell* **184**, 4203-4219.e32 (2021).

553

554

555 **Methods**

556 **Cell lines**

557 HEK293T (CRL-3216), Vero E6 (CRL-1586), A549 (CCL-185), BHK-21 (CCL-10), Caco-2
558 (HTB-37), Neuro2a (CCL-131) and the bat epithelial cell line Tb 1 Lu (CCL-88) were purchased
559 from the American Type Culture Collection (ATCC). The human hepatocellular carcinoma cell line
560 Huh-7 (SCSP-526) was obtained from the Cell Bank of Type Culture Collection, Chinese Academy
561 of Sciences. All cells were maintained in Dulbecco's Modified Eagle Medium (DMEM, Monad),
562 supplemented with 10% fetal bovine serum (FBS). Additionally, an I1-hybridoma cell line
563 (CRL-2700), producing a neutralizing mouse monoclonal antibody against VSV-G, was cultured in
564 minimum essential medium with Earle's balanced salts solution, 2 mM L-glutamine (Gibco), and 5%
565 FBS. All cell lines were incubated at 37°C in 5% CO₂ with regular passage every 2-3 days.

566

567 **Virus and host gene sequences**

568 All viral genome or gene sequences were sourced from GenBank or GISAID databases with the
569 following accession numbers. Viruses: SARS-CoV-1 (NC_004718), SARS-CoV-2 (NC_045512),
570 MERS-CoV (NC_019843), HKU3 (DQ022305), Rp3 (DQ071615), HKU5 (NC_009020), HKU31
571 (MK907286), HKU9 (NC_009021), Zhejiang2013 (NC_025217), Rs4081 (KY417143), MHV-A59
572 (NC_048217), NL63 (JX504050), 229E (OQ920101), HKU1 (NC_006577), OC43 (AY391777),
573 RmYN02 (EPI_ISL_412977), ZC45 (MG772933), RsHuB2019A (OQ503498). The spike protein for
574 Rs4075 (KC880993). Receptors: ACE2 (NM_001371415), R.affinis ACE2 (MT394208), DPP4
575 (NM_001935), APN (NM_001150), mCEACAM1a (NM_001039186), AXL (NM_001699), NRP1
576 (NM_001024628), SCARB1 (BC143319), KREMEN1 (NM_032045), ASGR1 (NM_001671),
577 CD147 (AB085790), CLEC4M (KJ902090), LRRC15 (NM_001135057)⁵⁹, TMEM106B

578 (NM_018374)⁶⁰, TMPRSS2 (NM_001135099). All receptor and viral gene sequences utilized in this
579 study were commercially synthesized by Genewiz or GenScript.

580

581 **Plasmids**

582 All plasmids expressing type-I transmembrane CVRs were constructed by inserting the human
583 codon-optimized CVR sequences into a lentiviral transfer vector (pLVX-EF1a-Puro, Genewiz) with
584 an N-terminal CD5 secretion leading sequence (MPM GSLQPLATLYLLGMLVASVL) and
585 C-terminal 3×FLAG tag (DYKDHD-G-DYKDHD-IDYKDDDDK). For the type-II transmembrane
586 CVRs, the C-terminal ectodomains were replaced by corresponding CVR modules, along with a
587 C-terminal 3×FLAG tag. Chimeric protein-coding sequences were generated using overlapping PCR,
588 direct sequence synthesis, or restriction endonuclease digestion and ligation.

589 Plasmids expressing the Spike protein of various coronaviruses for VSV pseudotyping were
590 constructed by inserting human codon-optimized spike coding sequences into either the pCAGGS
591 vector or pcDNA3.1(-) vectors with C-terminal 13-18 residues substituted with an HA tag
592 (YPYDVPDYA) to enhance VSV pseudotyping efficiency and facilitate detection⁶¹. Several spike
593 genes were also introduced into the pLVX-IRES-ZsGreen vectors for flow cytometry-related assays,
594 including the scFv-mFc binding and the 76E1 epitope exposure assays.

595 Plasmids expressing secreted fusion proteins, such as coronavirus antigen-Fc, scFv-Fc, and
596 nanobody-Fc, were constructed by inserting the coding sequences into pCAGGS. These constructs
597 featured an N-terminal CD5 secretion leading sequence (MPM GSLQPLATLY LLGMLVASVL) and
598 a C-terminal Twin-Strep Tag II following 3×FLAG tandem sequences
599 (WSHPQFEKGGGGSGGGSGGSAWSHPQFEK-GGGRS-DYKDHDGDYKDHDIDYKDDDDK) for
600 purification or detection. Plasmids encoding codon-optimized anti-ACE2 antibodies H11B11⁶², B6,
601 S2P6, 76E1, S2H97, and REGN10933 were constructed by integrating the heavy-chain and
602 light-chain coding sequences into pCAGGS with an N-terminal CD5 leader sequences. For
603 DSP-based cell-cell fusion assays, the split protein genes were inserted into pLVX-EF1a-Puro. The
604 coding sequences for the dual reporter split proteins, namely RLuc (1-155)-sfGFP (1-157) and sfGFP
605 (158-231)-RLuc (156-311), are previously described¹⁶.

606

607 **Stable cell lines**

608 Cells stably expressing distinct CVRs and other receptors were established through lentivirus
609 transduction and subsequent antibiotic selection. Lentiviruses carrying the target genes were
610 generated by co-transfecting lentiviral transfer plasmid (pLVX-EF1a-Puro) with packaging plasmids
611 pMD2G (Addgene, 12259) and psPAX2 (Addgene, 12260) into HEK293T cells through GeneTwin

612 transfection reagent (Biomed, TG101). The lentivirus-containing supernatant was harvested and
613 pooled at 24 and 48 hours post-transfection. Cell transduction was carried out in the presence of 8
614 μ g/mL polybrene. Stable cell lines were selected and maintained in a growth medium supplemented
615 with puromycin (1 μ g/mL). Generally, cells exhibiting stability for at least ten days were utilized in
616 subsequent experiments.

617

618 **SARS-CoV-2 reactive antisera**

619 SARS-CoV-2 antisera were obtained from vaccinated individuals (SARS-CoV-2 CoronaVac,
620 Sinovac), approximately 21 days post-vaccination and Wuhan COVID-19 convalescents around one
621 year post-infection, respectively. Ethical approval for the vaccinated individuals was granted by the
622 Ethics Committee (seal) of Beijing Youan Hospital, Capital Medical University, with approval
623 number LL-2021-042-K. The collection of sera from Wuhan COVID-19 convalescents was
624 conducted in collaboration with the Hubei Provincial Center for Disease Control and Prevention and
625 Hubei Provincial Academy of Preventive Medicine (HBCDC), following written consent and under
626 the approval of the Institutional Review Boards with the identification number 2021-012-01. Sera
627 were heat-inactivated at 56°C for 30 minutes.

628

629 **Bioinformatic and computational analyses**

630 Multi-sequence alignment was analyzed by Geneious Prime software or mafft (v7.407) with
631 default parameters. Phylogenetic trees were constructed by IQ-TREE (<http://igtree.cibiv.univie.ac.at/>)
632 with the WAG substitution model (1000 Bootstraps) and polished with iTOL (v6)
633 (<http://itol.embl.de>). The cryo-EM structures were displayed and marked by ChimeraX with PDB
634 accession numbers indicated in figures or legends.

635

636 **Protein expression and purification**

637 The proteins for binding, neutralizing, or biopanning-related assays were produced in HEK293T
638 by transient transfection with plasmids using GeneTwin reagent (Biomed, TG101-01), following the
639 manufacturer's guidelines. Protein-containing supernatants were harvested every 2-3 days
640 post-transfection, pooled, clarified, and proceeded to purification. Proteins fused with Fc were
641 captured using Pierce Protein A/G Plus Agarose (Thermo Scientific, 20424), eluted with pH 3.0
642 glycine (100 mM in H₂O), and immediately pH-balanced by 1/10 volume of UltraPure 1 M Tris-HCl,
643 pH 8.0 (15568025, Thermo Fisher Scientific). Proteins with Twin-Strep Tag II were enriched using
644 Strep-Tactin XT 4Flow high-capacity resin (IBA, 2-5030-002), washed, and eluted with buffer BXT

645 (100 mM Tris/HCl, pH 8.0, 150 mM NaCl, 1 mM EDTA, 50 mM biotin). The eluted proteins were
646 concentrated and buffer-exchanged to PBS through ultrafiltration, aliquoted, and stored at -80°C.
647 Protein concentrations were determined using the Omni-Easy Instant BCA Protein Assay Kit
648 (Epizyme, ZJ102).

649

650 **Western blot**

651 For detecting the cellular expression of CVRs or other receptors, cells were washed once with
652 PBS and lysed using RIPA buffer (50 mM Tris-pH 7.4, 150 mM NaCl, 1%TritonX-100, 0.5% sodium
653 deoxycholate, 0.1 % SDS, 25 mM β -glycerophosphate, 1 mM EDTA, and 1 mM PMSF) on ice for
654 15 minutes. The lysate was clarified by centrifugation at 12,000g at 4°C for 15 minutes. The
655 supernatant was combined with a 1:5 (v/v) ratio of 5×SDS-loading buffer and incubated at 95°C for
656 10 minutes. For detecting the spike packaging efficiency, the PSV-containing supernatant was
657 concentrated with a 30% sucrose cushion (30% sucrose, 15 mM Tris-HCl, 100 mM NaCl, 0.5 mM
658 EDTA) at 20,000×g for 1.5 hours at 4°C. The concentrated virus pellet was resuspended in 1×SDS
659 loading buffer and incubated at 95°C for 30 minutes. For detecting the S2' cleavage site of PSV, the
660 concentrated viruses were resuspended in DMEM in the presence of indicated concentrations of
661 scFv-mFc or soluble ACE2 for 2 hours at 4 °C. Then were treated with 10 μ g/ml TPCK-trypsin for
662 30 minutes at 37°C, followed by mixing with a 1:5 (v/v) ratio 5×SDS-loading buffer and incubated at
663 95°C for 10 minutes.

664 After SDS-PAGE and PVDF membrane transfer, blots were blocked with 5% milk in PBS
665 containing 0.1% Tween-20 (PBST) at room temperature for 1 h. Primary antibodies targeting FLAG
666 tag (Sigma-Aldrich, F1804), HA (BioLegend, 901515), VSV-M [23H12] (Kerafast, EB0011),
667 β -tubulin (Immunoway, YM3030) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
668 (AntGene, ANT325) were applied at concentrations ranging from 1:2000-1:10,000 in PBST with 1%
669 milk overnight at 4 °C. The stem-helix targeting monoclonal antibody S2P6 for coronavirus spike
670 detection was used at 1 μ g/ml. After three washes with PBST, the blots were incubated with
671 horseradish peroxidase (HRP)-conjugated secondary antibodies (1:10,000). After extensive wash,
672 blots were visualized using the LI-COR Odyssey CLx or the Omni-ECL Femto Light
673 Chemiluminescence Kit (EpiZyme, SQ201) and a ChemiDoc MP Imaging System (Bio-Rad).

674

675 **Live-cell binding assays**

676 For detecting coronavirus antigens binding to cell surface expressed CVRs, NTD/CTD/S1-Fc
677 fusion proteins were diluted in DMEM and incubated with cells at the indicated concentrations for 1

678 h at 37°C. Cells were washed twice with Hanks' Balanced Salt solution (HBSS) and incubated with
679 2 μ g/mL Alexa Fluor 594 or 488-conjugated goat anti-mouse IgG (Thermo Fisher Scientific;
680 A32742/A32723) for visualization. For detecting the Twin-Strep Tag II labeled S-trimer or soluble
681 ACE2 binding, the incubated cells were treated with 1 μ g/mL anti-Twin-Strep Tag II monoclonal
682 antibody (Abbkine; ABT2230) for 30 minutes at 4°C, washed twice with HBSS, and then subjected
683 to fluorescence-labeled secondary antibody incubation. Finally, cells were incubated with Hoechst
684 33342 (1:5,000 dilution in HBSS) for nuclear staining before imaging using a fluorescence
685 microscope (MI52-N).

686

687 **Immunofluorescence assays**

688 Immunofluorescence assays were performed to assess the expression of the CVRs or other
689 receptors carrying the C-terminal 3 \times FLAG tags. In general, cells expressing the proteins were fixed
690 with 100% methanol at room temperature for 10 minutes, washed once with PBS, and incubated with
691 a mouse monoclonal antibody [M2] specific to the FLAG-tag (Sigma-Aldrich, F1804) in 1%
692 BSA/PBS at 37°C for 1 hour. After another wash with PBS, cells were incubated with 2 μ g/mL Alexa
693 Fluor 594-conjugated goat anti-mouse IgG (Thermo Fisher Scientific, A32742) diluted in 1%
694 BSA/PBS for 1 hour at 37°C. Nuclei were stained with Hoechst 33342 (1:5,000 dilution in PBS).
695 Images were captured and merged using a fluorescence microscope (Mshot, MI52-N).

696

697 **Biolayer interferometry assays**

698 Protein binding kinetics were evaluated through Bio-Layer Interferometry (BLI) assays
699 conducted on the Octet RED96 instrument (Molecular Devices). Briefly, 20 μ g/mL of
700 S1/NTD/CTD-hFc recombinant proteins were immobilized on protein A (ProA) biosensors (ForteBio,
701 18-5010). Subsequently, the biosensors were washed and incubated with 2-fold serial-diluted
702 nanobodies (Twin-Strep Tag II) in the kinetic buffer (PBST) to record the association kinetics,
703 followed by recording the dissociation kinetics in the same Kinetic buffer. The background was
704 established using a kinetic buffer without the binding proteins. The kinetic parameters and binding
705 affinities were determined using the Octet Data Analysis software (v.12.2.0.20) through the
706 curve-fitting kinetic analysis or steady-state analysis with global fitting.

707

708 **Pseudovirus entry and propagation assays**

709 Single-round VSV-based pseudoviruses carrying the coronavirus spikes were produced
710 following a modified version of a well-established protocol⁶³. The VSV- Δ G carrying GFP and firefly

711 luciferase (VSV-ΔG-GFP-fLuc) was rescued using a reverse genetics system in our laboratory, along
712 with helper plasmids from Karafast. For packaging coronavirus PSV, HEK293T cells were
713 transfected with plasmids overexpressing the spike proteins. At 24-36 hours post-transfection, cells
714 were inoculated with 1×10^6 TCID₅₀/mL VSV-dG-GFP-fLuc for 4 hours at 37°C with 8 µg/mL
715 polybrene. Following two DMEM washes, the culture medium was replenished with DMEM
716 containing 1 µg/mL anti-VSV-G neutralizing antibody (from the I1-mouse hybridoma) to minimize
717 background signals from parental viruses. The TCID₅₀ of the PSV was calculated using the
718 Reed-Muench method.

719 For the pseudovirus propagation assays, the replicable PSVs carrying the GFP reporter and the
720 genetically encoded HKU3 or HKU5 spikes (pVSV-ΔG-GFP-HKU3-S and
721 pVSV-ΔG-GFP-HKU5-S) were generated by the VSV based reverse genetics system. The vector for
722 the VSV genomes was modified based on pVSV-ΔG-GFP-fLuc, with fLuc replaced by the S genes.
723 In brief, the BHK-21 cells were infected with a recombinant vaccinia virus expressing T7 RNA
724 polymerase (vvT7) for 45 minutes at 37°C (MOI=5). After removing vvT7, the cells were transfected
725 with plasmids containing the pVSV-ΔG-GFP-HKU5/HKU3-S vector and helper plasmids from
726 Karafast. The virus-containing supernatant (P0) was collected 48 hours post-transfection and
727 amplified in Vero E6 cells with in-trans provided VSV-G to yield P1 viruses. The P1 viruses were
728 further amplified in Caco2-CVRs cells in a VSV-G independent manner and in the presence of
729 anti-VSVG (I1-Hybridoma supernatant), generating P2 viruses that were dependent on the
730 genetically encoded HKU3 and HKU5 spike proteins for amplification.

731 For pseudovirus entry or entry inhibition assays, susceptible cells were cultured in 96-well
732 plates at a density of 5×10^4 cells per well and then incubated with around 1×10^6 TCID₅₀/mL of
733 pseudovirus (PSV), with 100 µL per well. The incubation allowed for attachment and viral entry with
734 or without the indicated concentrations of antibodies or other inhibitors. In some cases,
735 TPCK-treated trypsin of indicated concentrations (sigma, T8802) was added to the medium to
736 enhance entry efficiency. At 16-20 hour post infection (hpi), 40 µL of One-Glo-EX substrate
737 (Promega) was added to the cells and incubated for at least 5 minutes on a plate shaker in the dark.
738 Relative light units (RLU) were determined using the GloMax 20/20 Luminometer (Promega). GFP
739 intensity was analyzed using a fluorescence microscope (Mshot, MI52-N).

740

741 **Cell-cell fusion assays**

742 A cell-cell fusion assay based on dual split proteins (DSPs) was performed on HEK293T or
743 BHK21-T7 cells stably expressing the CVRs or the native receptors¹⁶. Group A cells were transfected

744 with plasmids expressing spike protein and RLucN(1-155)-sfGFP(1-157), while the group B cells
745 were transfection with plasmids expressing spike proteins (same as in group A) and
746 sfGFP(158-231)-RLuc(156-311). Cells from both groups were trypsinized and co-cultured in a
747 96-well plate at a density of approximately 1×10^5 cells per well at 12 hours post-transfection. After
748 16-24 hours, cell nuclei were stained with Hoechst 33342 (1:5,000 dilution in HBSS) for 30 minutes
749 at 37 °C, and the fluorescent images were captured using a fluorescence microscope (MI52-N;
750 Mshot). For the assessment of live-cell luciferase activity after reconstitution of split RlucN, 20 μ M
751 of EnduRen live-cell substrate (Promega, E6481) was added to the cells in DMEM and incubated for
752 at least 1 hour before detection using the Varioskan LUX Multi-well Luminometer (Thermo Fisher
753 Scientific).

754

755 **Flow cytometry analysis**

756 For flow cytometry analysis, viral antigen-mFc and VBDs-mFc recombinant proteins were
757 diluted in DMEM at the indicated concentrations and then incubated with HEK293T cells expressing
758 the indicated receptors or coronaviruses spike proteins for 1 hour at 37°C. In live cell binding assays,
759 for detecting the cell surface hFc or intracellular ZsGreen, cells were washed with DMEM and
760 subsequently incubated with either Alexa Fluor 594-conjugated goat anti-mouse IgG (Thermo Fisher
761 Scientific; A32742) or a combination of Alexa Fluor 488-conjugated goat anti-human IgG (Thermo
762 Fisher Scientific; A11013). In live cell binding assays, for detecting the cell surface 76E1 epitope
763 exposure, the SARS2-CoV-2-S IRES-ZsGreen expressing cells were incubated with indicated
764 concentrations of scFv-mFc or soluble receptors for 1 hour at 37°C before 76E1 antibody incubation
765 (1 μ g/mL). When detection of the intracellular FLAG tag is necessary, cells were washed once with
766 HBSS and fixed with 4% PFA, permeabilized with 0.1% Triton X-100, blocked with 1% BSA/PBS
767 at 4°C for 30 minutes, and subsequently stained with Rabbit anti-Flag tag mAb (CST,14793S)
768 diluted in 1% BSA/PBS for 1 hour at 4°C to visualize the expression of CVRs and other receptors.
769 Following extensive washing, the cells were incubated with Alexa Fluor 647-conjugated goat
770 anti-rabbit IgG (Thermo Fisher Scientific; A32733) and Alexa Fluor 488-conjugated goat anti-mouse
771 IgG (Thermo Fisher Scientific; A32723), both diluted in 1% BSA/PBS, for 1 hour at 4°C. Following
772 the completion of all staining procedures, cells washed twice with PBS were subsequently analyzed
773 using the CytoFLEX Flow Cytometer (Beckman). In each case, 5,000 cells expressing either
774 receptors or spikes, gated based on FLAG/hFc/ZsGreen-fluorescence intensity and SSC/FSC, were
775 analyzed with the CytoFLEX Flow Cytometer (Beckman).

776

777 **Reverse genetics to rescue HKU5-WT and HKU5-ZGH**

778 The full-length cDNA clone of HKU5 (GenBank: NC_009020) was designed and synthesized
779 as seven (from A to G) contiguous cDNAs flanked by unique class IIS restriction endonuclease site
780 (BsaI or BsmBI) and cloned in pUC57 vector. Class II restriction endonuclease sites AvrII and AscI
781 were introduced to 5' terminal of HKU5 A and 3' terminal of HKU5 G fragments, respectively.
782 Several silent mutations were included to disrupt naturally occurring restriction cleavage sites. A
783 poly-A (25 repeats) sequence was introduced to 3' terminal of HKU5 G fragment. To assemble the
784 full-length cDNA clone, HKU5 A-G fragments were digested by endonucleases, resolved on 1%
785 agarose gels, purified with a gel extraction kit, extracted with chloroform, and precipitated with
786 isopropyl alcohol. Digested HKU5 A-G inserts, and modified pBaloBAC11 vector were mixed,
787 ligated overnight at 4°C, and transformed into DH10B competent cells. The correct full-length
788 HKU5 cDNA clone was identified and verified by sequencing. The construction of HKU5-ZGH
789 utilized the transformation-associated recombination (TAR) cloning technique. Specifically, a
790 ZsGreen-HiBit (ZGH) DNA fragment was commercially synthesized (Tsingke) to replace the
791 HKU5-ORF5. The PCC1 vector was used to clone the HKU5 genomic DNA carrying the ZGH
792 substitution based on three segments amplified using the HKU5-WT infectious clone as a temperate.
793 Subsequently, all the products were transformed into yeast using the high-efficiency lithium
794 acetate/SS carrier DNA/PEG method. The yeast plasmid was extracted and transformed into EPI300
795 electrocompetent cells. The plasmid used for cell transfection was obtained from a 300 mL E. coli
796 bacterial culture suspension. For transfection, 4 µg of both HKU5 WT and HKU5-ZGH plasmids
797 were separately transfected into Caco2-1B4 cells (1×10^6 cells) using Lipofectamine 2000. Progeny
798 viruses collected from the supernatant at 72 hours post-transfection (P0) were utilized to generate
799 stocks for subsequent analyses.

800

801 **Transmission electron microscopy**

802 Viral culture supernatant was fixed with formaldehyde (working concentration 0.1%) at 4°C
803 overnight. Subsequently, it was concentrated by ultracentrifugation through OptiPrep™ Density
804 Gradient Medium (D1556) at 154,000 g at 4°C for 2.5 hours using a SW41Ti rotor (Beckman). The
805 pelleted viral particles were suspended in 100 µL of PBS, stained with 2% phosphotungstic acid (pH
806 7.0), and examined using a Tecnai transmission electron microscope (FEI) at 200 kV.

807

808 **Authentic coronavirus infection assays**

809 Human coronavirus 229E (VR-740) is obtained from ATCC and amplified in Huh-7 cells.
810 MHV-A59 is a gift from Professor Yu Chen's lab (Wuhan University) and is amplified in Neuro2a
811 cells. The SARS-CoV-2-ΔN with N protein substituted with EGFP is rescued using an established

812 protocol, and cultured in Caco2 cells overexpressing the SARS-CoV-2 N protein⁶⁴. All experiments
813 involving RsHuB2019A, HKU5-WT, and HKU5-ZGH authentic viruses infection were conducted in
814 the certified negative-pressure Biosafety Level 2 laboratory at Wuhan Institute of Virology.
815 RsHuB2019A is amplified in either Huh-7 or in Caco2-Nb27 cells. HKU5-WT and HKU5-ZGH are
816 amplified in Caco2-1B4 cells.

817 For replication experiments, target cells were initially seeded in 24-well plates and washed with
818 DMEM before inoculation, either in the presence or absence of trypsin (100 µg/mL). Following a
819 one-hour incubation at 37°C, the cells were washed with DMEM and further incubated for the
820 indicated hours at 37°C. For qRT-PCR analysis, cell-free supernatants (50 µL per well each time)
821 were collected at indicated time points post-infection and stored at -80°C. Viral RNA was extracted
822 using Virus DNA/RNA Extraction Kit (Vazyme: RM501) and subjected to qRT-PCR as previously
823 described⁶⁵. Primers for RsHuB2019A RdRp: 5'-TTGTTCTTGCTCGCAAACATA-3' (forward) and
824 5'-CACACATGACCATCTCACTTAA-3' (reverse). Primer for HKU5 nsp2:
825 5'-CTGCGCTTAATGCCCATTC-3' (forward) and 5'-GACGTGTAGACGTAGAGCCG-3'
826 (reverse). Primers for VSV L protein, forward primer: 5'-TCTTGAGTTGTGGAGACGGC-3'
827 (forward) and 5'-ACCGTCTTGAACATGGGACC-3' (reverse). Primers for MHV-A59 N
828 protein: 5'-TATAAGAGTGATTGGCGTCC-3' (forward) and 5'-GAGTAATGGGAAACCACACT-3'
829 (reverse). All samples were analyzed in duplicate on two independent runs.

830 For immunofluorescence assays, cells were fixed with methanol for 40 minutes at room
831 temperature at indicated time points. The expression of RsHuB2019A and HKU5 N proteins was
832 detected by rabbit anti-SARS-related CoV Rp3 N protein serum (diluted at 1:2000) and rabbit
833 anti-HKU5 N protein serum (diluted at 1:4000), respectively, followed by DL594-conjugated goat
834 anti-rabbit IgG (Thermo, 1:1000) staining. MHV-A59 and 229E-VR740 spike proteins were detected
835 using their Spike-targeting nanobodies (1A1-mFc for 229E-VR740; 1F7-mFc for MHV-A59),
836 followed by DL594-conjugated goat anti-mouse IgG antibodies (Thermo, 1:1000).

837

838 **Nanobody bio-panning**

839 Specific viral antigens (30-100 µg) were immobilized on streptavidin-conjugated magnetic
840 beads for one-hour incubation at 37°C and extensively washed to remove unbound antigens.
841 Subsequently, the beads were incubated with the nanobody library (1×10^{10} PFU) (Naïve VHH
842 libraries from Camelus bactrianus, Alpaca, and Llama from NBbiolab, China) for 1 hour. The bound
843 phages were eluted using an Elution Buffer (50 mM Tris-pH 7.4, 150 mM NaCl, 50 mM biotin) after
844 extensive washing with PBST to eliminate nonspecific binders. The eluted phage encoding the
845 specific nanobodies was proliferated in E. coli (TG1). After one round of magnetic beads-based

846 selection. 1-3 additional rounds of phage biopanning were conducted using magnetic beads or
847 immunotubes. The positive clones were identified through the enzyme-linked immunosorbent assays
848 (ELISA), sequenced, and verified by cell-based binding assays.

849

850 **Biosafety and biosecurity**

851 Experiments related to authentic human coronavirus 229E, SARS-CoV-2-ΔN, and murine
852 MHV-A59 were authorized by the Biosafety Committee of the State Key Laboratory of Virology,
853 Wuhan University and conducted in accordance with standard operating procedures (SOPs) in a
854 BSL-2 laboratory. SARS-CoV-2 authentic viruses-related experiments were conducted in the
855 ABSL-3 facility at Wuhan University with the approval of the Biosafety Committee of the ABSL-3
856 laboratory. The SARS-CoV-2 WT strain (IVCAS 6.7512) was provided by the National Virus
857 Resource, Wuhan Institute of Virology, Chinese Academy of Sciences and amplified in Vero E6 cells
858 in the ABSL-3 facility at Wuhan University. Experiments related to authentic viruses RsHuB2019A,
859 HKU5-WT, and HKU5-ZGH were approved by the Wuhan Institute of Virology (WIV) IBCs and
860 performed in the BSL-2 laboratory according to SOPs at WIV facilities. All the facilities at both
861 Wuhan University and WIV for this work adhere strictly to the safety requirements recommended by
862 the China National Accreditation Service for Conformity Assessment.

863

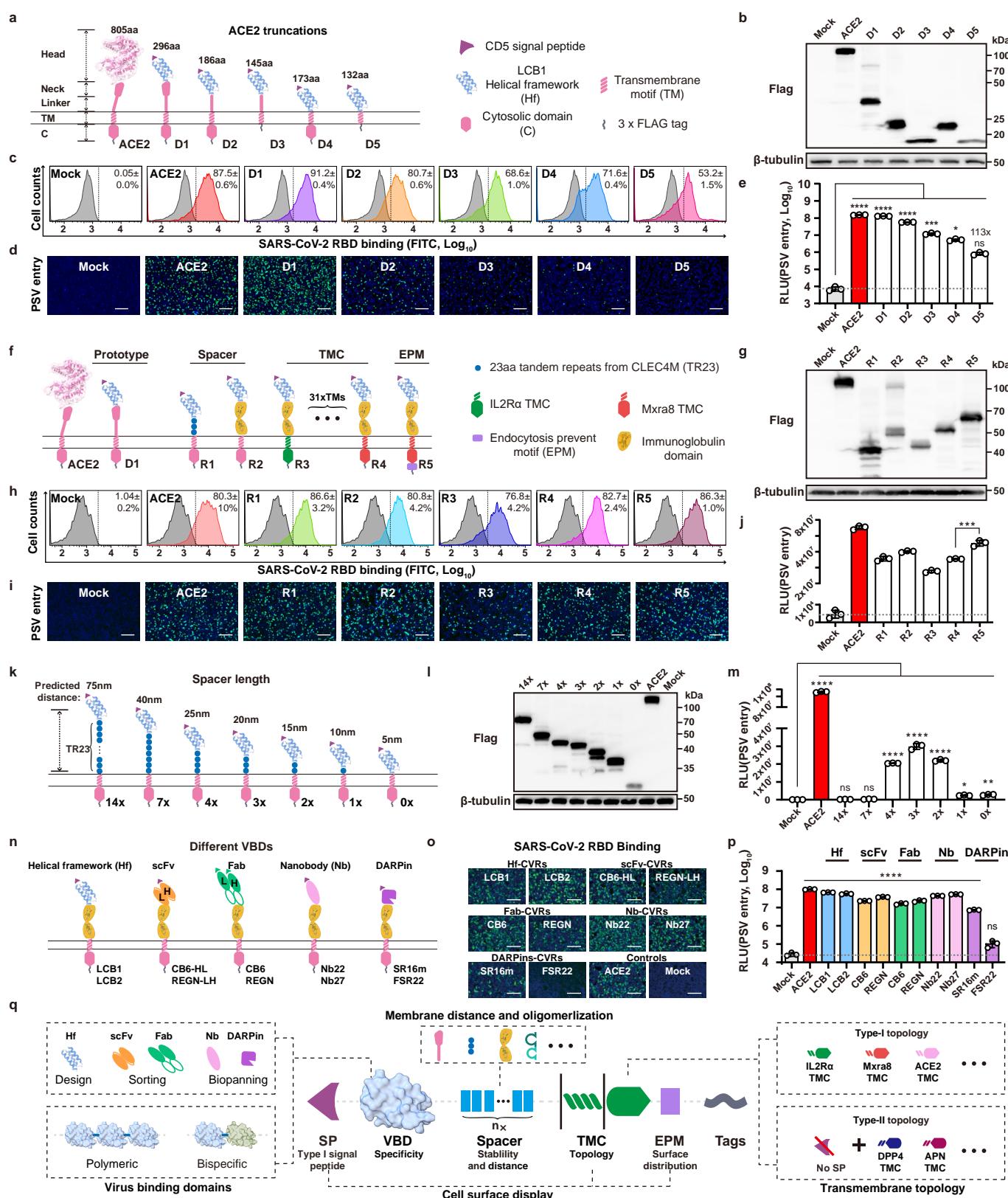
864 **Statistical analysis**

865 Most experiments were repeated 2-5 times, each with approximately 3-4 biological replicates.
866 Results are presented as mean \pm standard deviation (s.d.) or mean \pm standard error of the mean
867 (s.e.m.), as specified in the figure legends. Statistical analyses were primarily performed using
868 GraphPad Prism (V.8) through unpaired two-tailed Student's t-tests two independent groups or
869 One-way ANOVA analysis followed by Dunnett's test for multiple comparisons. $P < 0.05$ was
870 considered statistically significant; * $P < 0.05$; ** $P < 0.01$; *** $P < 0.001$; **** $P < 0.0001$; ns,
871 non-significant.

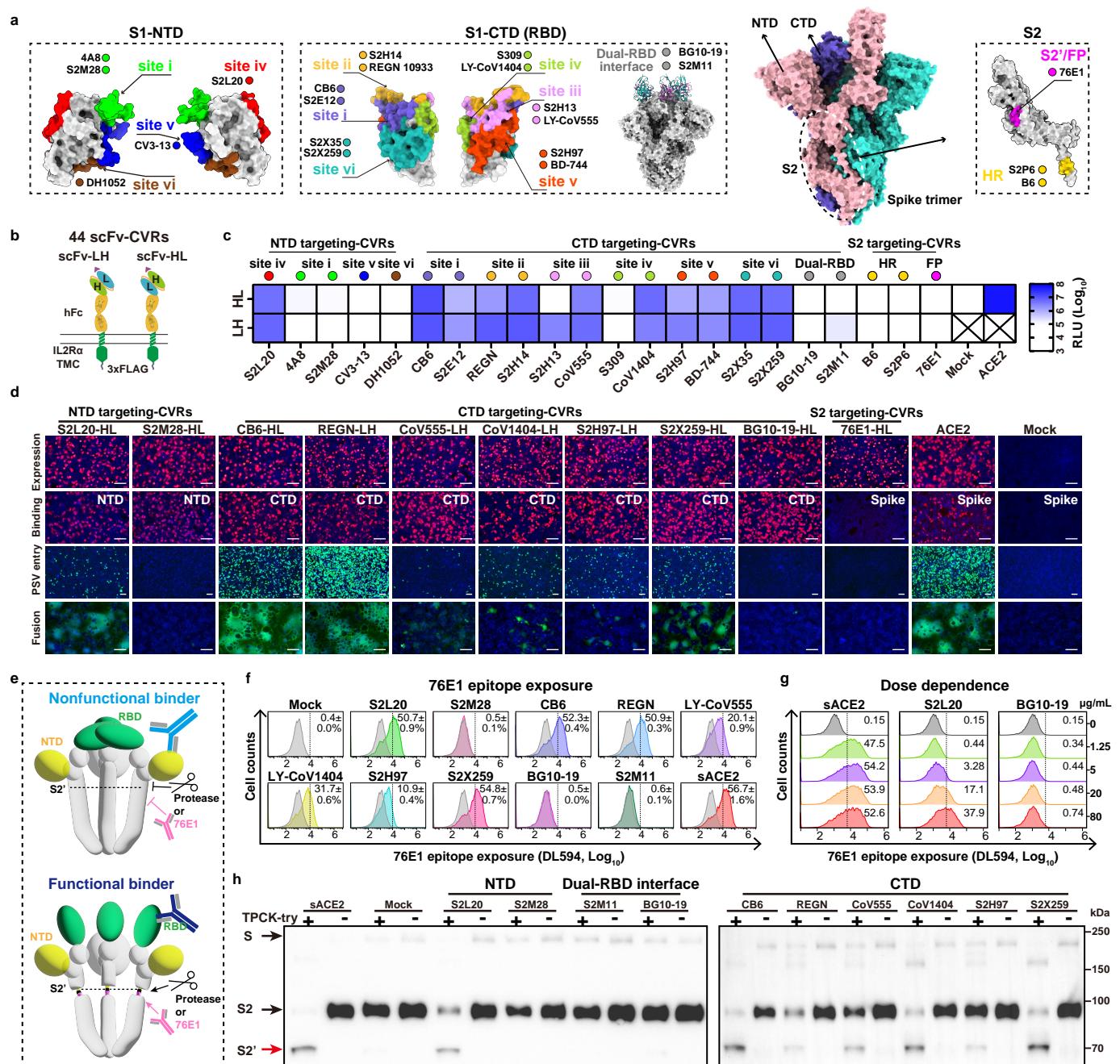
872

873 59. Loo, L. *et al.* Fibroblast-expressed LRRC15 is a receptor for SARS-CoV-2 spike and controls
874 antiviral and antifibrotic transcriptional programs. *PLoS Biol.* **21**, e3001967 (2023).

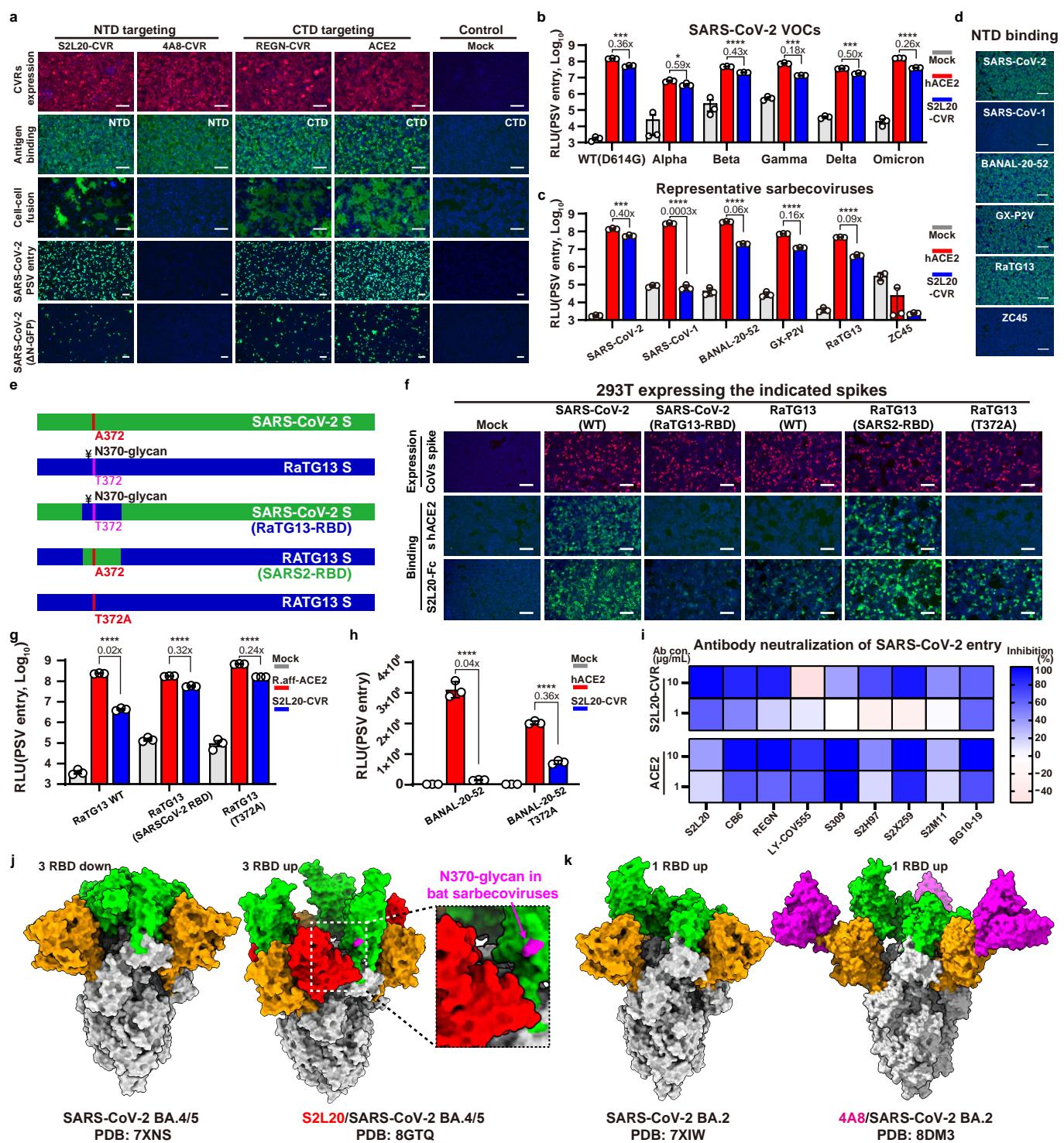
875 60. Baggen, J. *et al.* TMEM106B is a receptor mediating ACE2-independent SARS-CoV-2 cell entry.
876 *Cell* **186**, 3427-3442.e22 (2023).

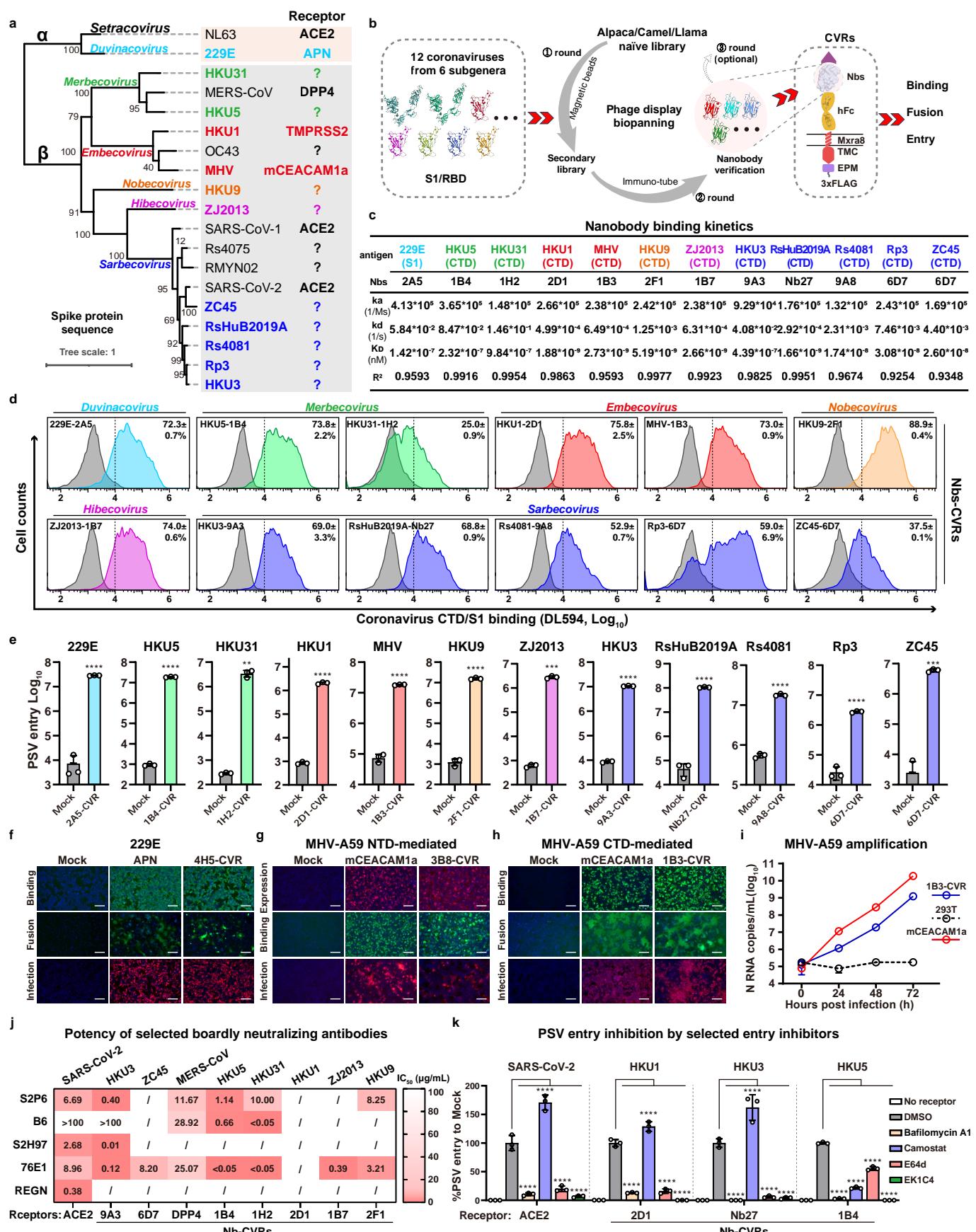

877 61. Schwegmann-Weßels, C. *et al.* Comparison of vesicular stomatitis virus pseudotyped with the S
878 proteins from a porcine and a human coronavirus. *J. Gen. Virol.* **90**, 1724–1729 (2009).

879 62. Du, Y. *et al.* A broadly neutralizing humanized ACE2-targeting antibody against SARS-CoV-2
880 variants. *Nat. Commun.* **12**, 5000 (2021).


881 63. Whitt, M. A. Generation of VSV pseudotypes using recombinant ΔG-VSV for studies on virus
882 entry, identification of entry inhibitors, and immune responses to vaccines. *J. Virol. Methods* **169**,
883 365–374 (2010).

884 64. Ju, X. *et al.* A novel cell culture system modeling the SARS-CoV-2 life cycle. *PLoS Pathog.* **17**,
885 e1009439 (2021).


886 65. Guo, H. *et al.* ACE2-Independent Bat Sarbecovirus Entry and Replication in Human and Bat
887 Cells. *mBio* **13**, e0256622 (2022).


Fig. 1 Modular design of customized viral receptors (CVRs) for efficient SARS-CoV-2 entry.
a-e, Dissecting the importance of ACE2 sequences for its viral receptor function. **a**, Schematic representation illustrates the LCB1-ACE2 chimera with stepwise truncated ACE2 sequences. Protein expression levels (**b**) and SARS-CoV-2 RBD binding efficiency (**c**) in HEK293T transiently expressing the specified chimera. SARS-CoV-2 pseudovirus (PSV) entry in cells expressing the chimera was demonstrated by intracellular GFP (**d**) and RLU (**e**), respectively. **f-j**, Functionality of chimeric receptors with remaining ACE2 sequences substituted by domains from other proteins. **f**, Schematic representation delineates CVRs carrying exogenous spacer, transmembrane and cytosolic domain (TMC), and EPM sequences. The CVR expression (**g**), SARS-CoV-2 RBD-mFc binding (**h**), and PSV entry efficiencies (**i, j**) in HEK293T transiently expressing the indicated receptors. **k-m**, The impact of spacer length on CVR receptor function. Schematic representation illustrates CVRs with various TR23 tandem repeats, displaying predicted spacer length (**k**). CVR expression (**l**) and SARS-CoV-2 PSV entry efficiency (**m**) were evaluated in cells expressing the indicated CVRs. **n-p**, Different types of viral binding domains (VBDs) are compatible with CVR design. The SARS-CoV-2 RBD binding (**o**) and PSV entry (**p**) are supported by indicated CVRs transiently expressed in HEK293T cells. **q**, Schematic illustration of the modular design strategy for CVRs. RLU: relative light units. Scale bars: 200 μ m. Data are presented as mean \pm SD for n=3 biologically repeats for **c, e, h, j, m**, and **p**. One-way ANOVA analysis followed by Dunnett's test for **e** and **m**; unpaired two-tailed Student's t-tests for **j** and **p**.

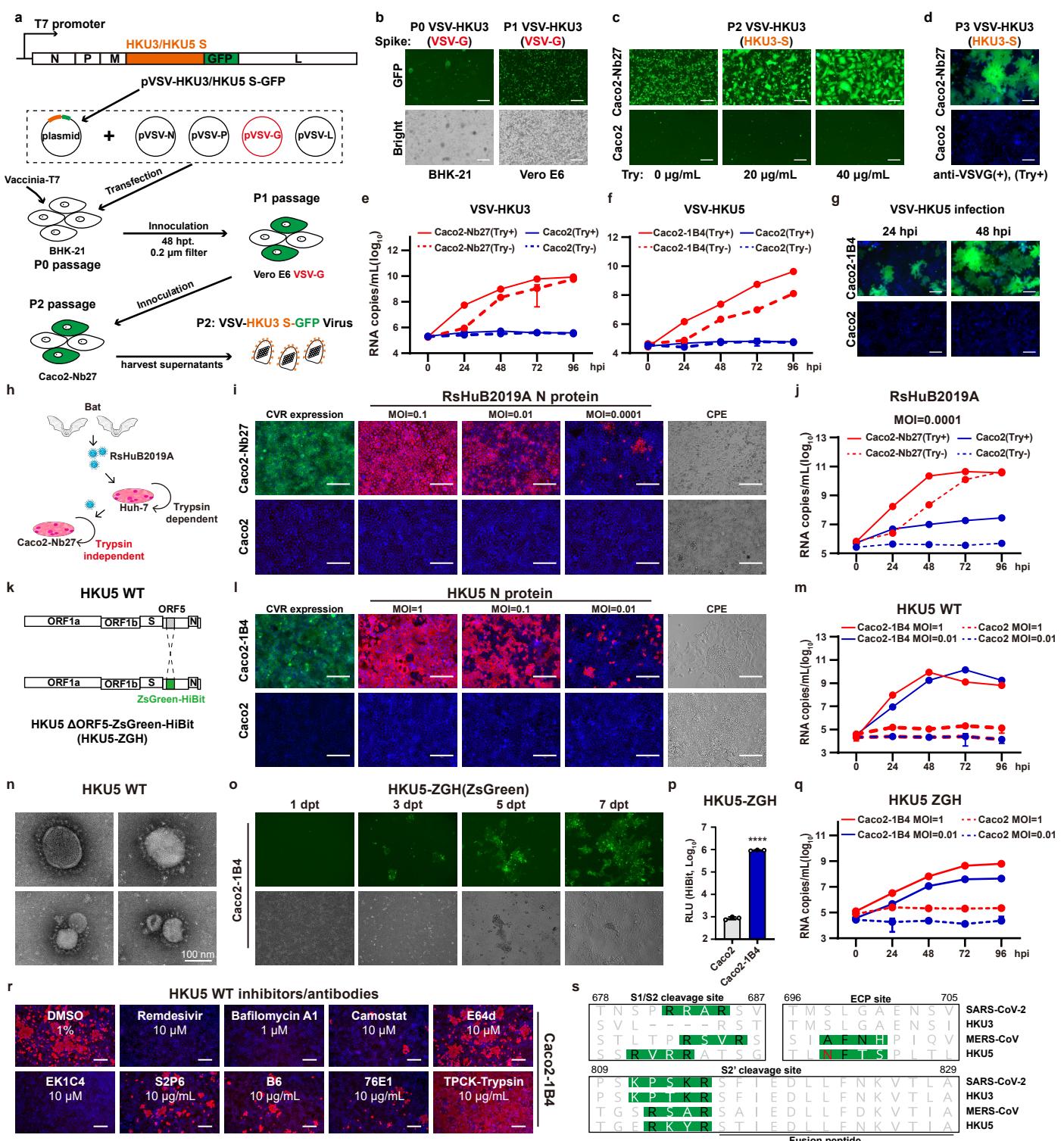
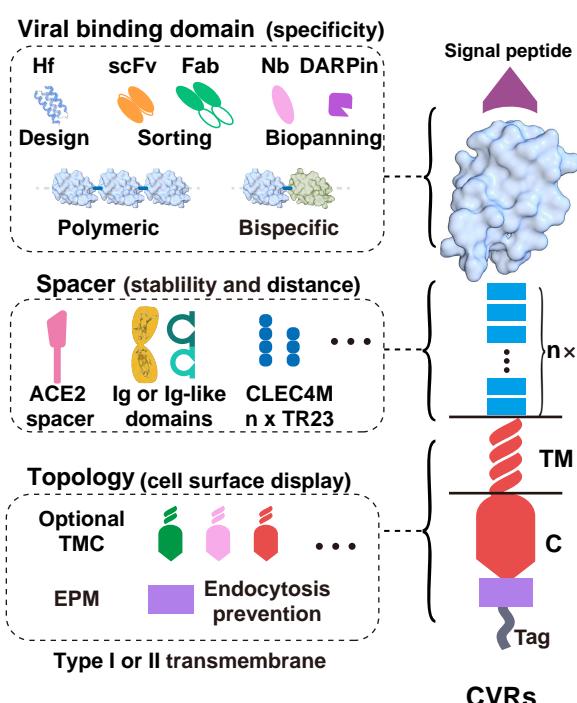
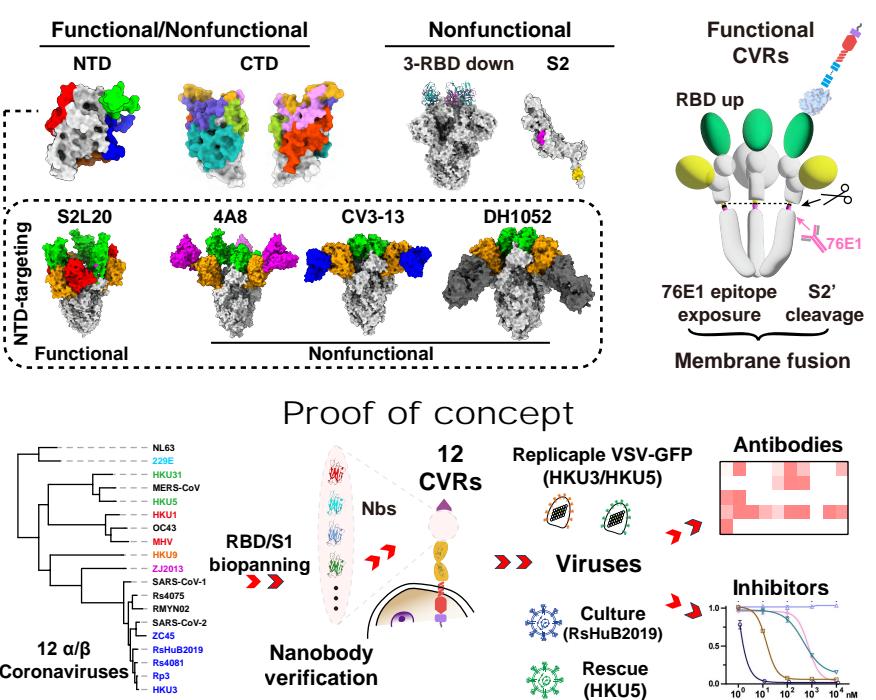
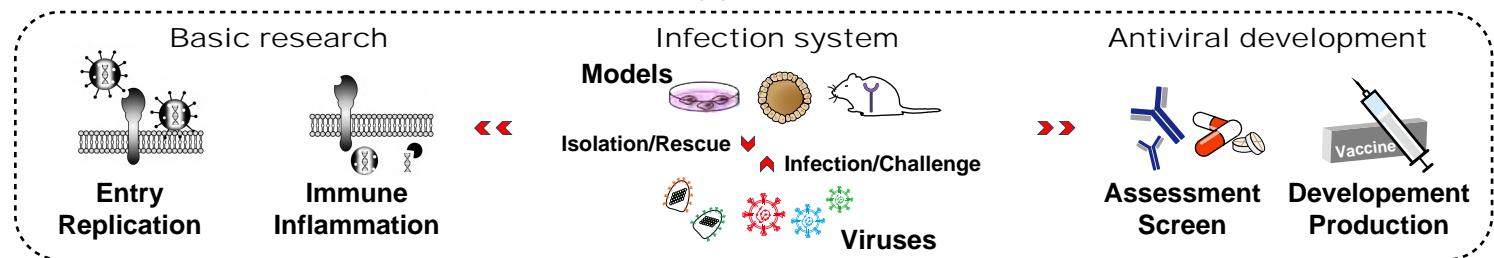

Fig. 2 The impact of different binding epitopes on receptor functionality and the underlying mechanisms. **a**, Structural display of SARS-CoV-2 neutralizing epitopes in NTD, CTD, and S2 subunit, respectively. Various epitope types of 22 neutralizing antibodies are indicated. FP: fusion peptide. HR: heptad repeat. **b**, Schematic representation of 44 single-chain variable fragment (scFv)-CVRs with N-terminal light chain (LH) or heavy chain (HL), respectively. **c**, Heat map displaying SARS-CoV-2 PSV entry efficiency in HEK293T cells transiently expressing the indicated scFv-CVRs. **d**, Demonstration of CVR expression, antigen binding, PSV entry, and spike-mediated cell-cell fusion in HEK293T expressing representative scFv-CVRs. **e**, Cartoon elucidates the functional receptor-mediated RBD conformational change and the subsequent exposure of 76E1 binding epitope and cleavage at the S2' site. **f**, Flow cytometry analysis of 76E1 epitope exposure in the presence of indicated soluble scFv-mFc recombinant proteins. Dashed lines denote thresholds for positive ratio calculation. sACE2: soluble ACE2 ectodomain. **g**, Dose-independent exposure of 76E1 epitope upon sACE2 or S2L20 coincubation, which was not detected in BG10-19. **h**, Trypsin-mediated cleavage of S2' site in SARS-CoV-2 pseudovirus particles in the presence of scFv-CVRs with or without receptor function. TPCK-try: 10 µg/mL TPCK-treated trypsin. Scale bars: 100 µm. Data are presented as mean values for n=3 biologically repeats for **c**. Data are presented as mean ± SD for n=3 biologically repeats for **f**.

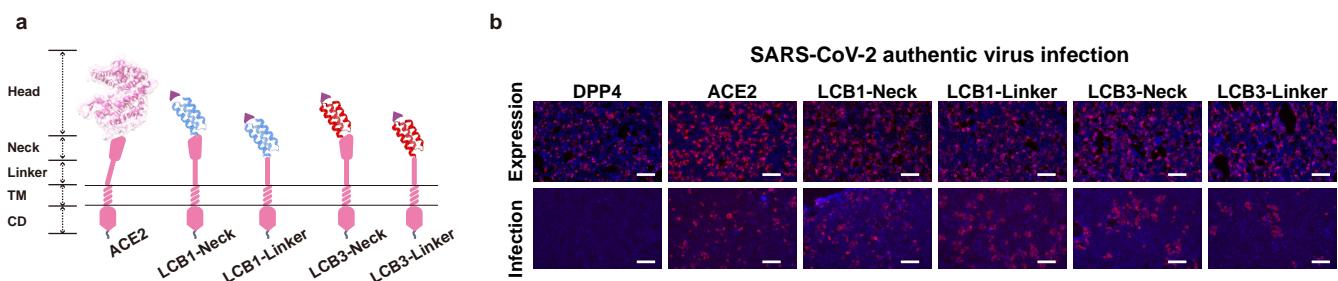
Fig. 3 Characterization of NTD-mediated sarbecovirus entry supported by S2L20-CVR. **a**, SARS-CoV-2 binding, fusion, and viral entry supported by NTD-targeting S2L20-CVR. The CVR expression, NTD/CTD-mFc binding, cell-cell fusion, pseudovirus entry, and SARS-CoV-2(ΔN-GFP) infection in HEK293T stably expressing the indicated CVRs. **b**, PSV entry of SARS-CoV-2 VOCs in HEK293T expressing hACE2 or S2L20-CVR. **c**, **d**, The PSV entry (**c**) and NTD-mFc binding (**d**) efficiencies of various sarbecoviruses in HEK293T stably expressing hACE2 or S2L20-CVR. **e**, Illustration of the SARS-CoV-2 and RaTG13 RBD swap chimera. The residue usage in position 372, critical for the N370-glycosylation, is indicated. ¥: N-glycan. **f**, Spike proteins expression levels and the corresponding human ACE2 (shACE2) and S2L20-mFc binding efficiencies. **g**, **h**, Impact of T372A mutation on S2L20-CVR supported PSV entry of RaTG13 (**g**) and BANNAL-20-52 (**h**). **i**, Heatmap showing the inhibitory efficacy of indicated SARS-CoV-2 neutralizing antibodies against PSV entry in HEK293T-hACE2 or HEK293T-S2L20, with BSA as a control. **j**, Structures of SARS-CoV-2 BA.4/5 spike trimmer without antibody binding (left), or in complex with S2L20 (right). Dashed boxes highlighted the N370-glycan spatially proximate to the S2L20. **k**, Structures of SARS-CoV-2 BA.2 spike trimmers with (right) or without (left) the 4A8 binding. Orange: NTD; Green: CTD; Red: S2L20; Magenta: 4A8. The ratio of S2L20-supported entry compared to ACE2-supported entry is indicated in **c**, **g**, and **h**. Scale bars: 100 μm. Data are represented as mean ± SD with n=3 biological replicates for **b**, **c**, **g**, and **h**. Data representative of 2-3 independent experiments for **a-d**, **f-i**. Unpaired two-tailed Student's t-tests for **c**, **b**, **g**, and **h**.


Fig. 4 CVRs supported efficient entry of various coronaviruses with unidentified receptors. **a**, Phylogenetic tree based on spike protein amino acid sequences of representative coronaviruses. **b**, Workflow demonstrating the customization of nanobody-based CVRs for specific coronaviruses. **c**, Binding kinetics between optimal nanobodies and their respective antigens. **d**, Coronavirus CTD or S1 binding in HEK293T cells transiently expressing the corresponding CVRs. Dashed lines indicate thresholds for positive ratio calculation. **e**, PSV entry efficiencies of 12 representative coronaviruses in HEK293T cells transiently expressing the indicated CVRs. **f**, 229E S1-mFc binding, fusion, and authentic infection in HEK293T stably expressing APN or 4H5-CVR. **g-i**, Evaluation of NTD-mediated (**g**) or CTD-mediated (**h**) MHV antigen binding, cell-cell fusion, and authentic MHV infection in HEK293T cells stably expressing mCEACAM1a or the indicated CVRs. MHV-A59 RNA copies (N gene) in supernatant was quantified for infected cells expressing mCEACAM1a or 1B3-CVR (**i**). **j**, Summary of the IC_{50} of several broadly neutralizing antibodies against PSV entry of representative coronaviruses in HEK293T stably expressing the corresponding CVRs. The RBD-targeting REGN 10933 (REGN) was employed as a control. /: no inhibition detected. **k**, Inhibitory efficacy of inhibitors against PSV entry of SARS-CoV-2, HKU1, HKU3 and HKU5 in HEK293T cells stably expressing the indicated CVRs. Infection was examined by S protein immunofluorescence at 24 hpi for **f**, **g**, and **h**. Scale bars: 100 μ m. Data are presented as mean \pm SD and n=2-3 biologically repeats for **d**, **e**, **i**, and **k**. One-way ANOVA analysis followed by Dunnett's test for **k**; unpaired two-tailed Student's t-tests for **e**.


Figure 5. CVRs supported efficient propagation of VSV-based pseudotypes and authentic coronaviruses. **a**, Genetic organizations and workflow for generating replicable VSV-HKU3-GFP or VSV-HKU5-GFP. **b**, Successful rescue (P0) and amplification (P1) of VSV-HKU3-GFP assisted by VSV-G. **c**, **d**, Trypsin-enhanced cell-cell fusion (**c**) and VSV-G-independence (**d**) of VSV-HKU3-S-GFP infection in Caco2-Nb27 (MOI: 0.001). **e**, **f**, Accumulation of VSV-HKU3-GFP (**e**) or VSV-HKU5-GFP (**f**) RNA in the supernatant at indicated time points. **g**, VSV-HKU5-GFP mediated cell-cell fusion in Caco2 or Caco2-1B4 cells at MOI=0.1. **h**, Cartoon illustrating trypsin-independent propagation of RsHuB2019A in Caco2-Nb27 cells as compared with trypsin-dependence in Huh-7. **i**, CVR expression (green), RsHuB2019A N protein (red), and cytopathic effect (CPE, bright field) in cells inoculated with RsHuB2019A at indicated MOI (no trypsin). **j**, Accumulation of viral RNA in supernatant of cells infected with RsHuB2019A with or without trypsin. **k**, Genetic organizations of the HKU5 Δ ORF5-ZsGreen-HiBit (HKU5-ZGH). **l**, CVR expression (green), N protein (red), and the CPE in indicated cells inoculated with HKU5 at different MOI. **m**, Accumulation of HKU5 RNA in supernatant of cells inoculated with HKU5 at different MOI. **n**, Transmission electron microscopy analysis of HKU5-WT virions. **o-q**, Increase in ZsGreen intensity (P0) (**o**), ZsGreen-HitBit signal (**p**), and supernatant RNA copies of HKU5-ZGH (**q**) in Caco2-1B4 cells. **r**, Efficacy of indicated antiviral reagents against HKU5 infection in Caco2-1B4 cells assessed by intracellular N proteins at 48 hpi. **s**, Overview of the protease cleavage sites of selected coronaviruses. The residue responsible for reduced endosomal cysteine protease activity (ECP) is marked in red, numbering based on SARS-CoV-2. Scale bars: 125 μ m for **i**, **l**, and **o**, and 100 μ m for **b-d**, **g**, and **r**. Data are presented as mean \pm SD for n=2 biologically repeats for **e**, **f**, **j**, **m**, and **q**. Unpaired two-tailed Student's t-tests for **p**.

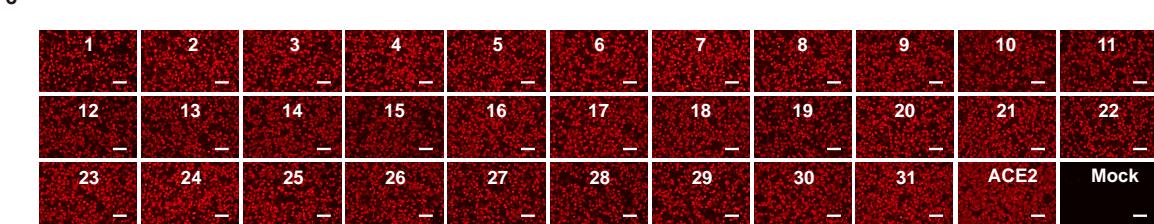
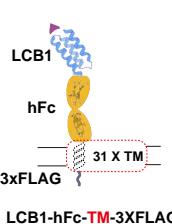
Graphic abstract


CVR design strategy


Entry supporting mechanism

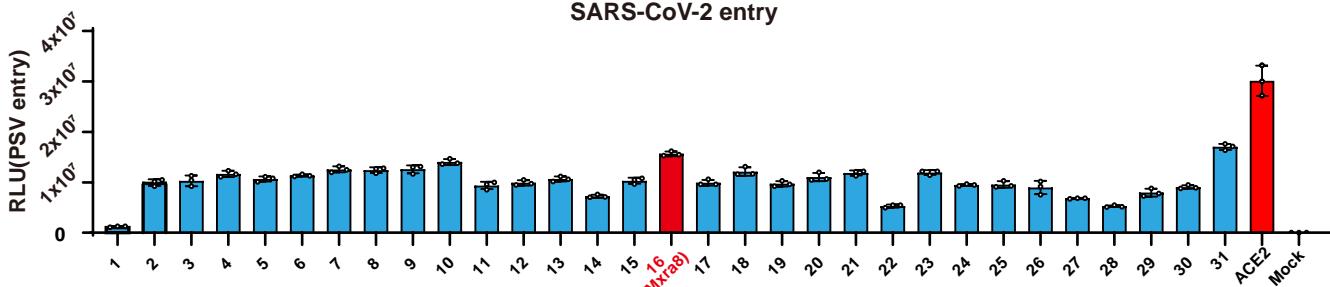
Applications

Graphic Abstract: The design strategy, entry-supporting mechanism, and potential applications of Customized Viral Receptors (CVRs).

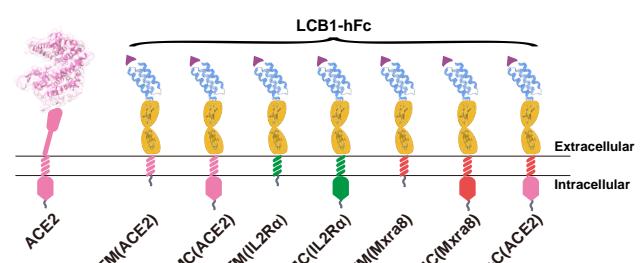



Extended Data Fig. 1 Efficient authentic SARS-CoV-2 infection supported by chimeric ACE2 with viral binding domain substituted by ACE2-mimicking helical frameworks (Hf). **a**, Schematic illustration illustrating the four Hf-based CVRs. **b**, Immunofluorescence analysis of ACE2 or CVRs expression levels stably expressed in HEK293T cells, detected by C-terminal fused 3×FLAG tags. **c**, Immunofluorescence analysis of authentic SARS-CoV-2 infection efficiencies in indicated cells by detecting intracellular SARS-CoV-2 N proteins at 24 hour post infection (hpi). Scar bars: 100 μm.

a

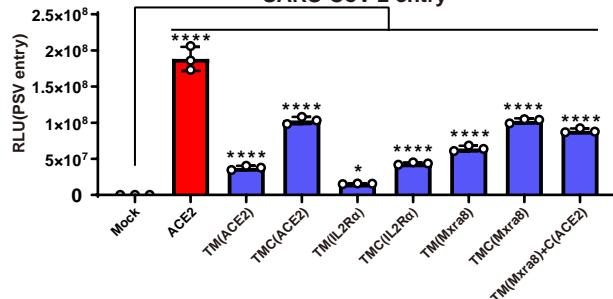

TMD No.	Source	Reference(NCBI)	TMD Protein sequence	Virus
1	CD80	NP_005182	LLPSWAITLISVNGIFVICCL	Adenovirus type B
2	CD46(MCP)	NP_758861	VWVIAVIVIAVVGAVAVICVVPPY	Adenovirus type B; Bovine viral diarrhea virus; Human herpesvirus 6A (HHV-6A)
3	CXADR(CAR)	NP_001329	LIAGAIGITLLALALIGLIIF	Adenovirus type C; Coxsackievirus B1 to B6
4	TIM1	AAL35774	IYAGVCISVLVLLALLGVIIA	Ebolavirus; Dengue; ZIKA; HAV
5	F11R	NP_058642	IVAAVLVTLLLGLVFGIWF	Feline calicivirus; Mammalian reovirus; Human Rotavirus strain Wa
6	CD4	NP_000607	MALIVLGGVAGLLLFIGLGIFF	HIV-1
7	Poliiovirus receptor	NP_006496	AIIFVLVGLVFLILLGIYFWY	Bovine herpesvirus
8	EFNB2	NP_004084	GIASGCCIFIVIITLVLVLLL	Hendra virus; Nipah virus
9	SLAMF1	NP_003028	WAVYAGLLGGVIMILIMVIL	Measles virus
10	ICAM1	NP_000192	IVIITVVAAVAVIMTAGLSTLY	Coxsackievirus A21
11	Neonatal Fc receptor	AAG31421	VLVVGIVGVLLTAAVGGALLW	Echovirus 5, 6, 7, 9, 11, 13, 25 and 29
12	MOG	NP_996532	VLVLLAVLPVLLLQITVGLIF	Rubella virus
13	CD300lf	NP_620587	VLLPLIFTILLLLVAASLLA	Norovirus
14	LDLRAD3	NP_777562	YAIIGSSVIFLVVALLALVL	Venezuelan equine encephalitis virus
15	MHC class I (HLA-A)	NP_001303327	VGIIAGLVLLGAVITGAVVAAVMW	Equine herpesvirus-4
16	Mxra8	NP_115724	LGVVLATLLLFLILLTVLLA	Chikungunya virus(CHIKV)
17	Nectin 1 (PVRL1)	NP_002846	IIGGVAGSILLVIVVGGIVV	Herpes simplex virus 1/HHV-1; herpes simplex virus 2/HHV-2; pseudorabies virus/PRV
18	AXL	NP_068713	YVLLGAVVAAACVLLALFLV	/
19	Ceacam1	NP_001703	AIAGIVGVVVALVALIAVALACFL	Murine coronavirus
20	LDLR	NP_000518	ALSIVLPVFLVFLCLGVFLWW	Vesicular stomatitis virus
21	EGFR	NP_005219	IATGIVGALLLVLVALIGLFM	/
22	Basigin	NP_723346	ALWPFLGIVAEVLVLTIIIFI	/
23	LAMP1	NP_005552	LIPIAVGGALAGLVLVILAYLV	/
24	CD43	AAA51949	GMLPVAVFLVALLAVIVLVALLLL	/
25	CD162	NP_02997	LLAIIILALVATIFFVCTVLL	enterovirus 71
26	CD62L	NP_000646	PLFIPVAVMVTAFLGFLFIIWLA	/
27	CD49d	NP_000876	IVIISLSSLLGLIVLLISYVMWK	/
28	LFA-1	NP_002200	YLYVLSGIGGLLIFIVL	/
29	HLA-DRA	NP_061984	NVVCALGLTVGLVGIIGTIFII	/
30	IL2R α	NP_000408	VAVAGCVFLLISVLLSGL	/
31	ACE2	NP_001358344	IWLVIFGVVVMGVIVVGVILI	SARS-CoV; SARS-CoV-2; human coronavirus NL63/HCoV-NL63

b



c

SARS-CoV-2 entry

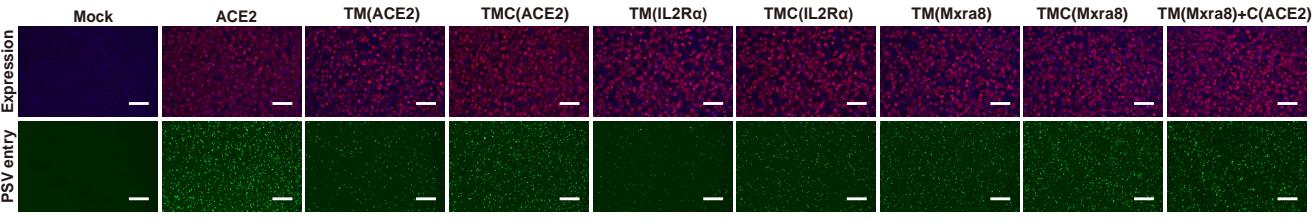


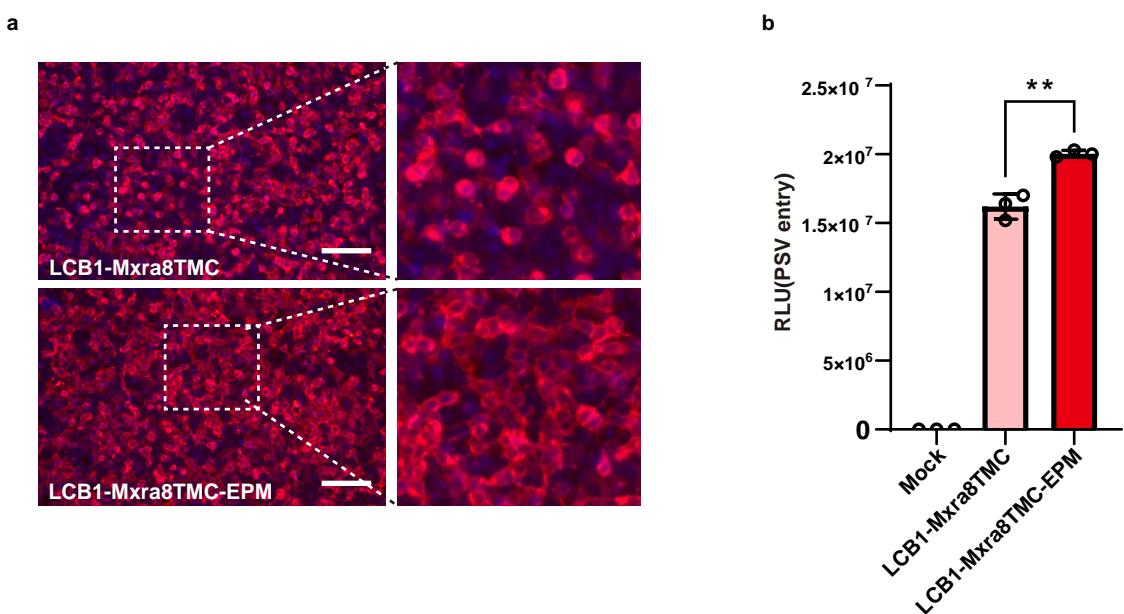
d

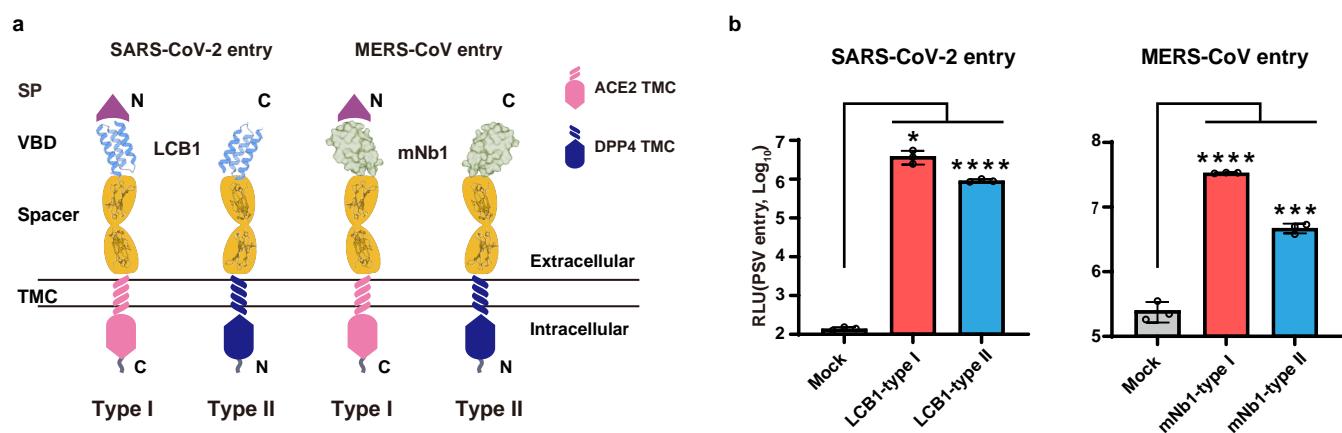


SARS-CoV-2 entry

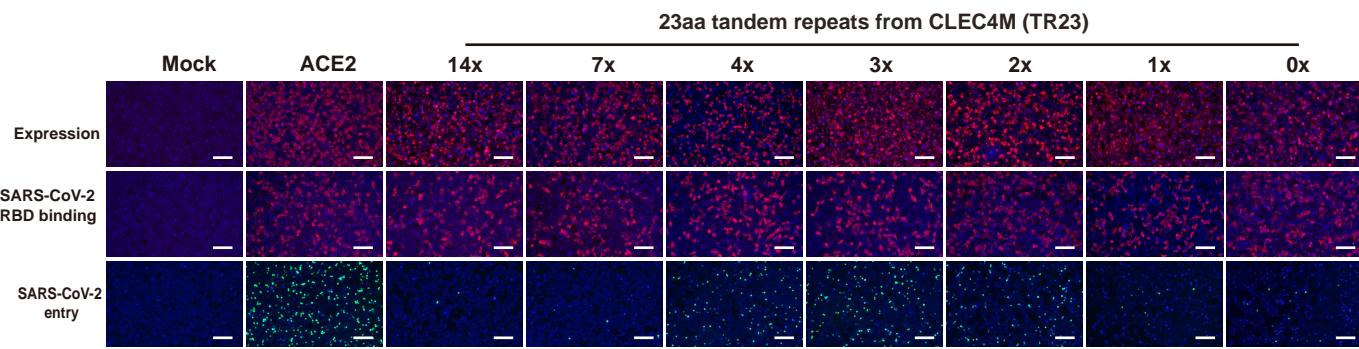

SARS-CoV-2 entry


e

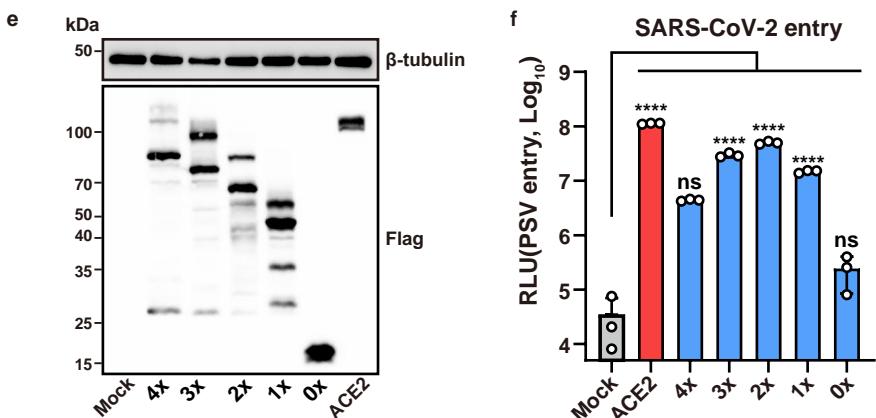
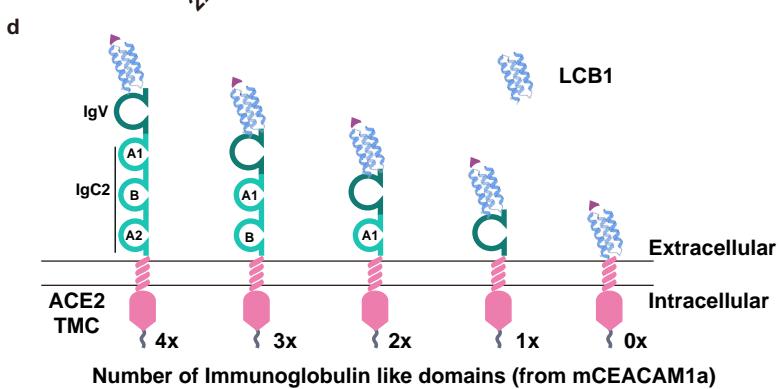
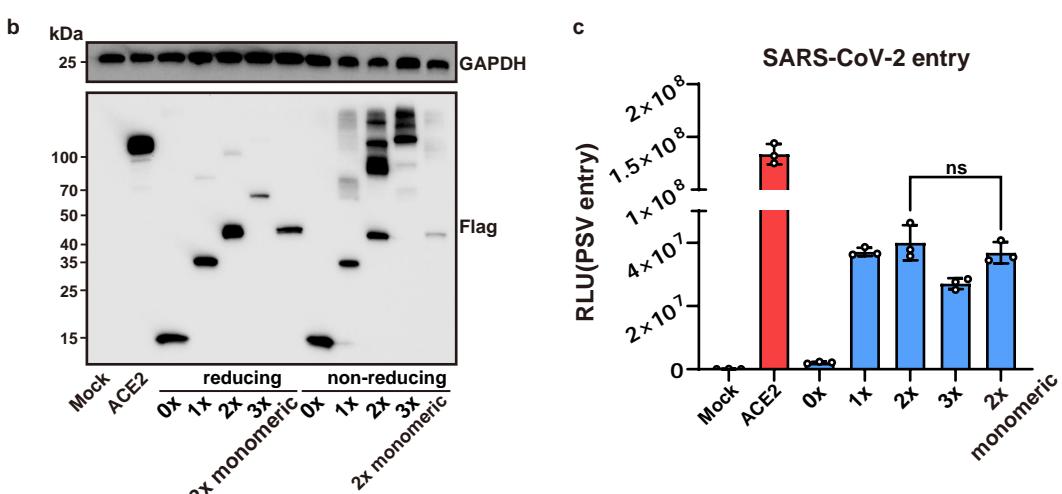
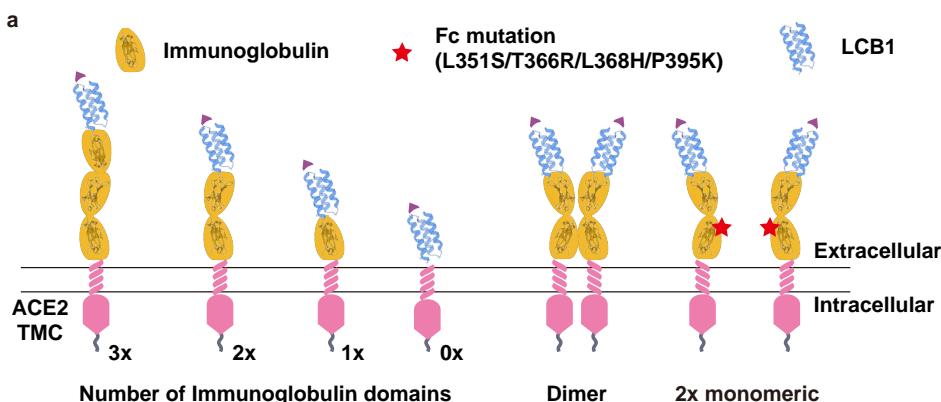

f


g

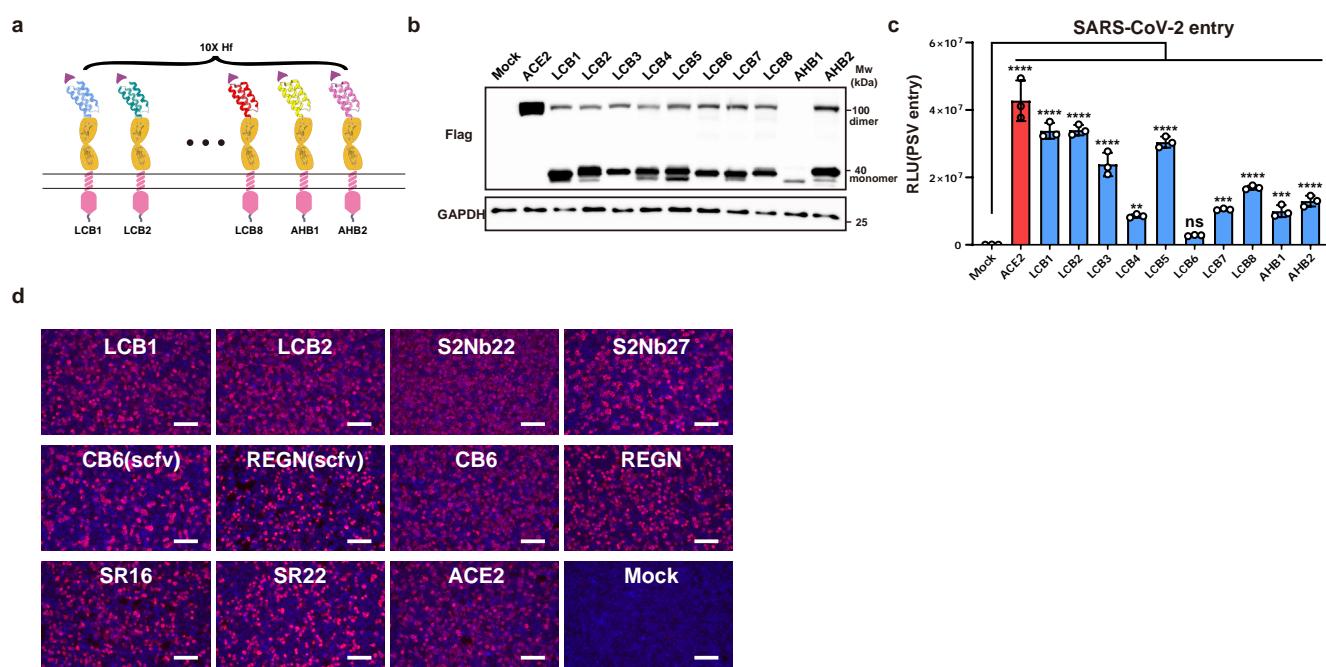
Extended Data Fig. 2 Comparison of CVRs carrying transmembrane and cytosolic domains from different receptors. **a**, Details of the 31 different TM sequences examined in this study. **b**, Cartoon illustrating the framework of the CVRs for TM evaluation. **c**, Immunofluorescence analysis of the expression of the 31 CVRs in HEK293T cells by detecting the C-terminal fused 3× FLAG tags. **d**, Evaluation of SARS-CoV-2 PSV entry efficiency supported by the indicated CVRs carrying different TMs. Mxra8 TM displaying the best performance was marked in red. **e**, Cartoon illustrating the LCB1-based CVRs with selected TM or TMC substitutions for further verification. **f**, **g**, PSV entry-supporting efficiencies of the CVRs assessed by RLU(**f**) or GFP reporters (**g**) in transiently transfected 293T cells. Scare bars: 100 μ m. One-way ANOVA analysis followed by Dunnett's test for **f**.



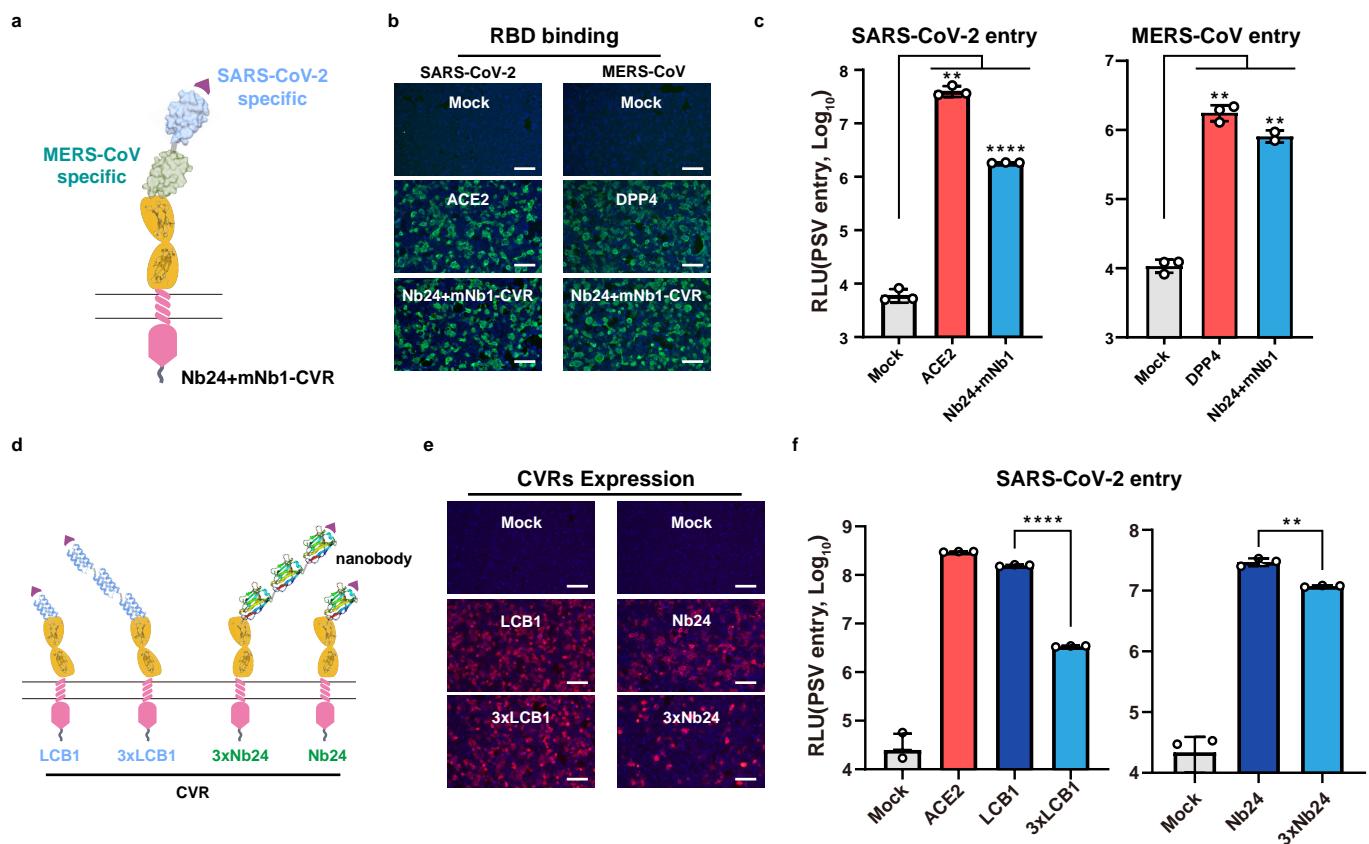
Extended Data Fig. 3 EPM promotes cell surface distribution and entry-supporting efficiency of CVRs. **a**, Immunofluorescence displaying the subcellular distribution of LCB1-Mxra8TMC-based CVRs transiently expressed in HEK293T cells with or without EPM. The white dashed boxes highlight the cell surface distribution at a higher magnification. **b**, Evaluation of the SARS-CoV-2 PSV entry efficiency of the CVRs with or without the EPM. Scale bars: 100 μ m. Unpaired two-tailed Student's t-tests for **b**.

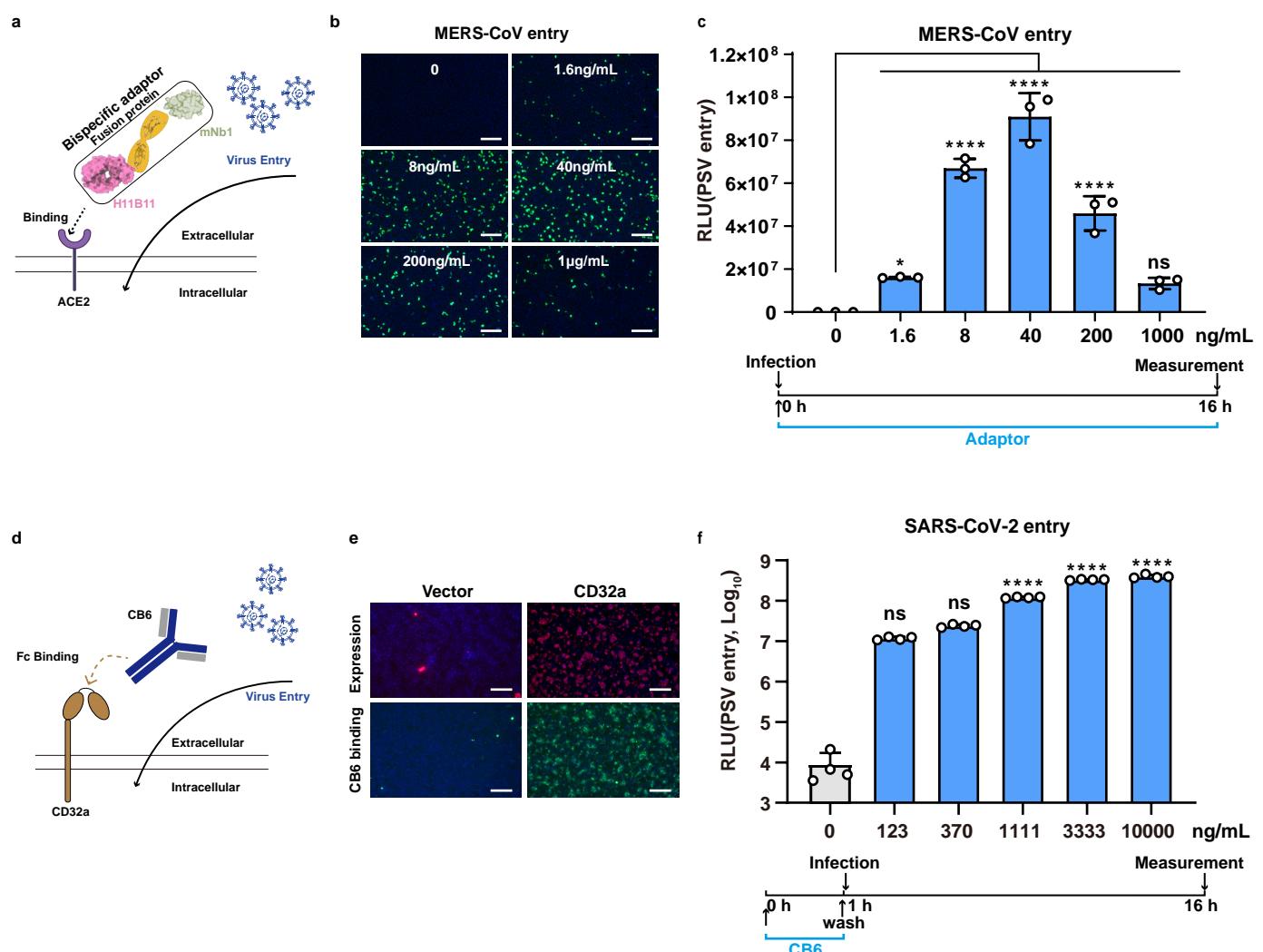




Extended Data Fig. 4 Comparison of CVRs displayed with different transmembrane topologies.

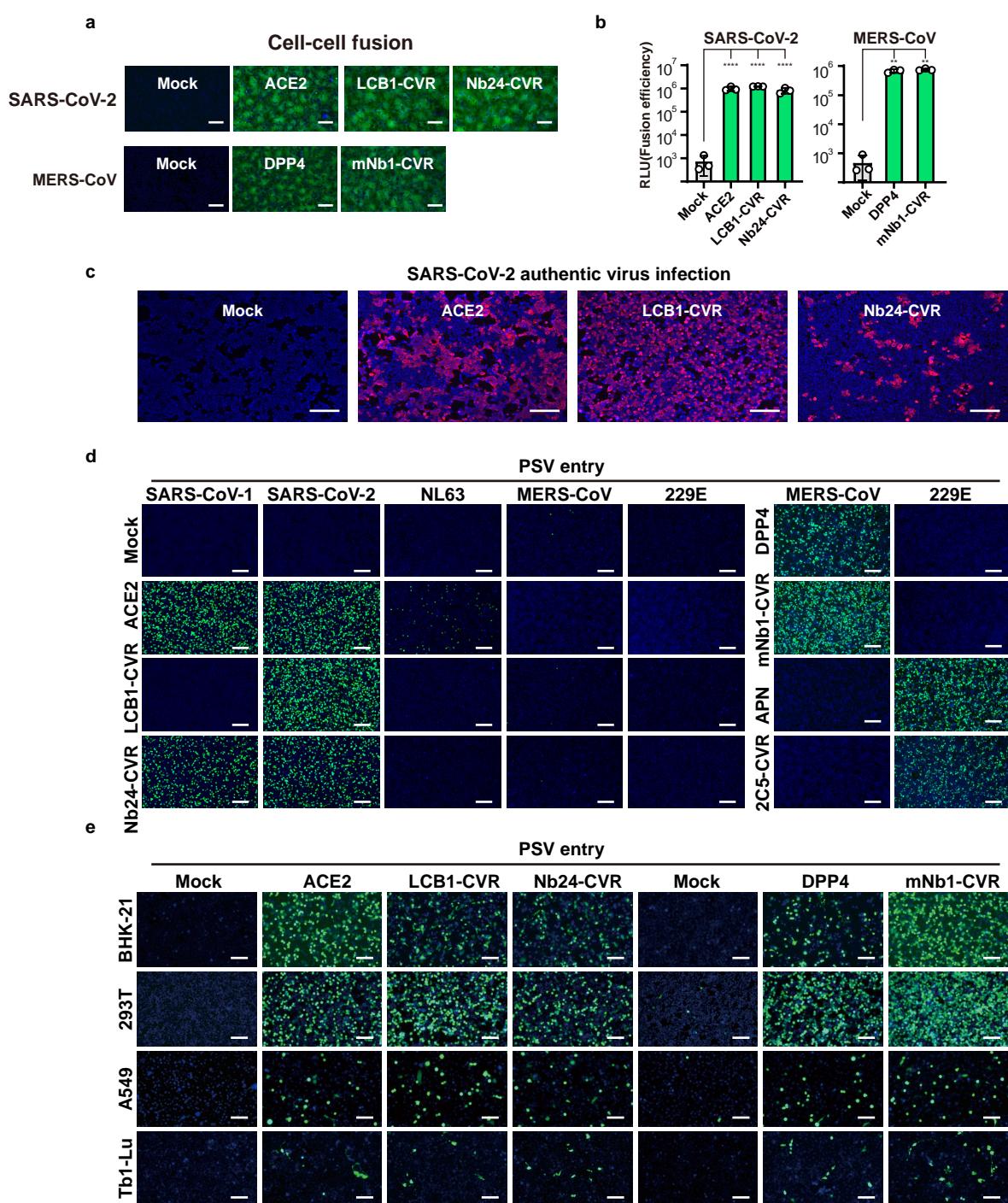
a, Cartoon illustrating CVRs carrying LCB1 or mNb1 displayed in either type I or type II transmembrane topology. **b**, Evaluation of SARS-CoV-2 or MERS-CoV PSV entry efficiency supported by the indicated CVRs with different transmembrane topologies in HEK293T cells. Unpaired two-tailed Student's t-tests for **b**.

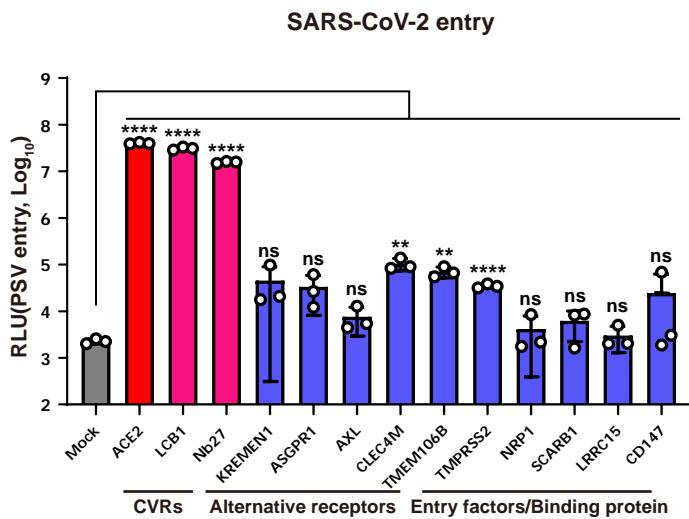


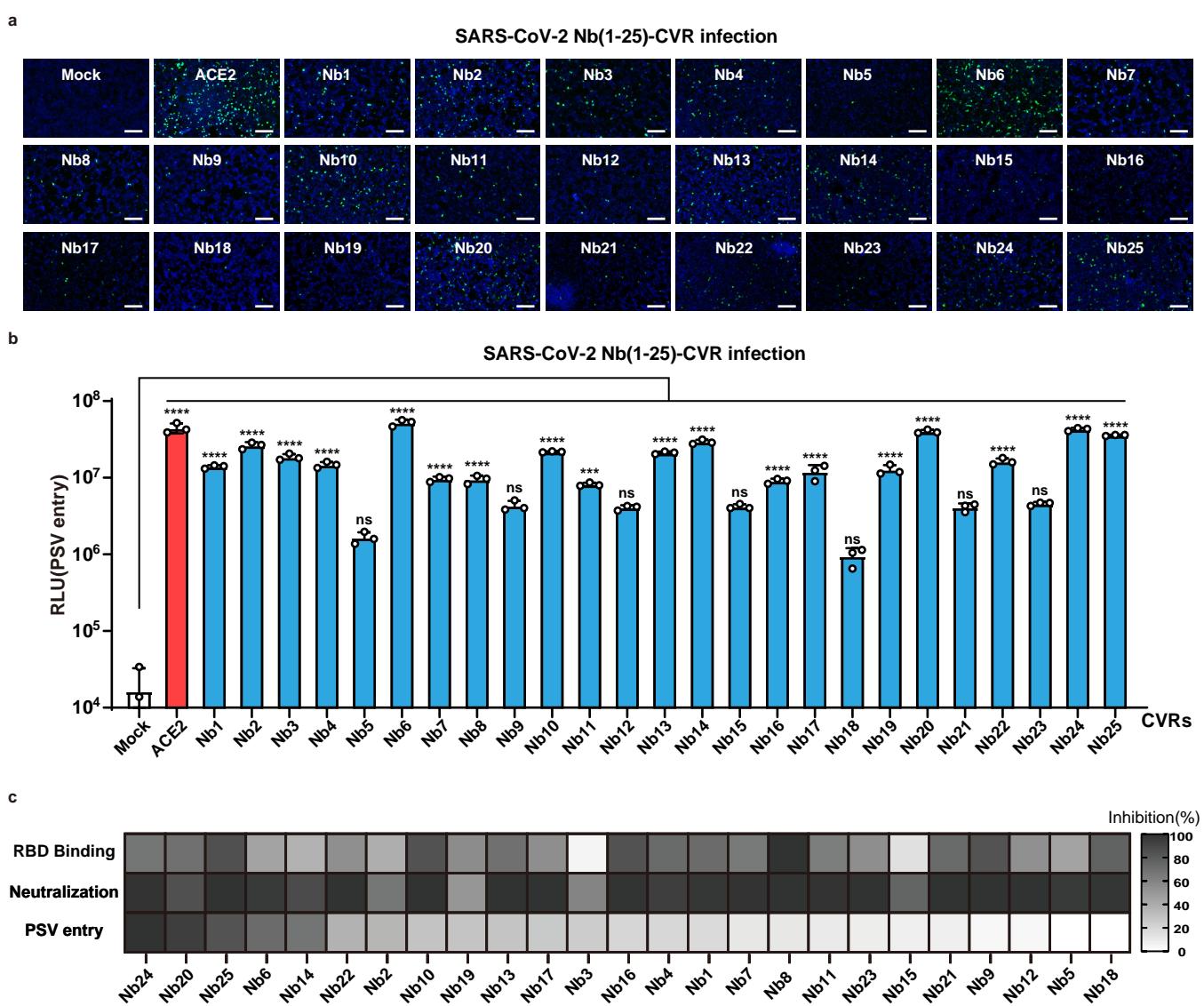
Extended Data Fig. 5 Comparison of CVRs carrying varying copies of TR23 repeats as spacers.

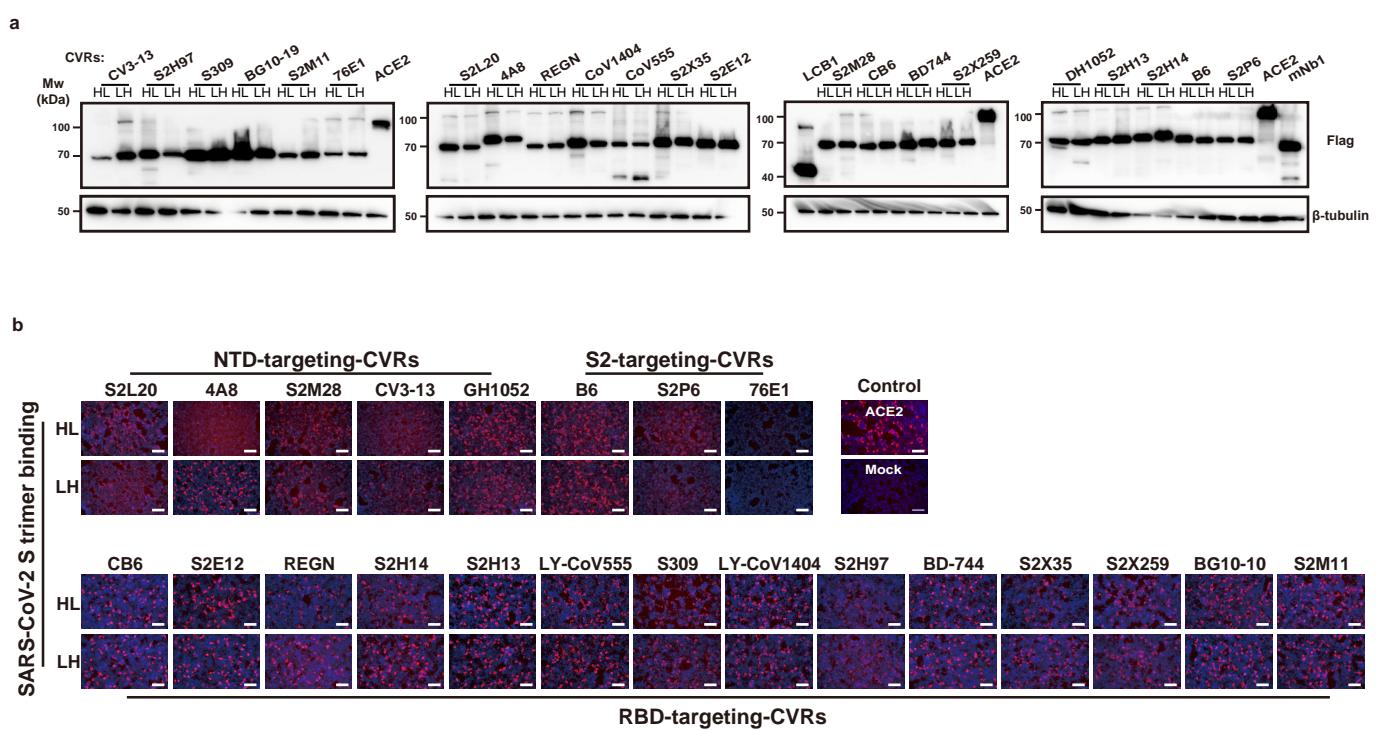

Assessment of CVR expression, SARS-CoV-2 RBD-mFc binding, and PSV entry efficiency supported by the indicated CVRs transiently expressed in HEK293T cells. Scare bars: 100 μ m.

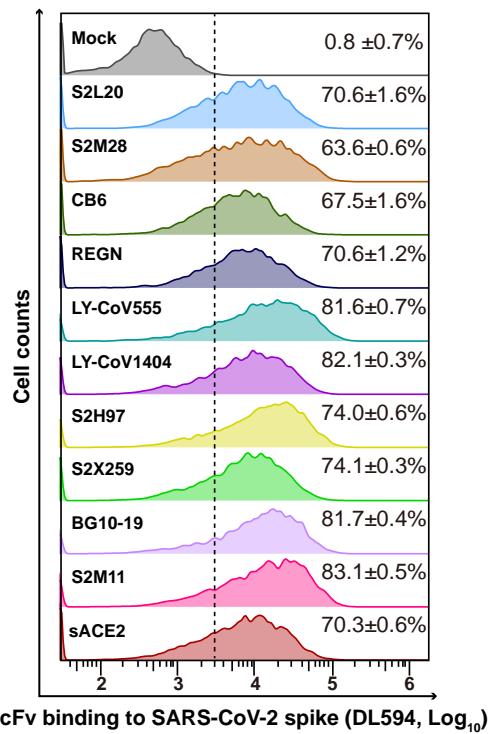

Extended Data Fig. 6 Comparison of CVRs carrying different numbers of immunoglobulin domains or dimerization-abolished hFc as spacers. **a**, Schematic representation of the CVRs carrying different numbers of immunoglobulin (Ig) domains (left) or an Fc mutant with abolished dimerization ability. **b**, Western blot analysis of CVRs expression in HEK293T cells under either reducing or non-reducing conditions, respectively. **c**, Assessment of SARS-CoV-2 PSV entry efficiency in HEK293T cells transiently expressing the indicated CVRs. **d**, Schematic representation of the CVRs carrying different numbers of Ig-like domains (left) from mCEACAM1a. **e**, Western blot analysis of CVRs expression in HEK293T cells. **f**, SARS-CoV-2 PSV entry efficiency in HEK293T cells transiently expressing the indicated CVRs. Unpaired two-tailed Student's t-tests for **c**. One-way ANOVA analysis followed by Dunnett's test for **f**.

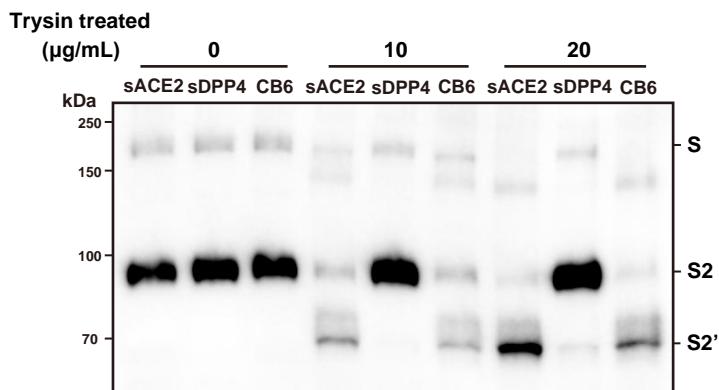

Extended Data Fig. 7 Expression levels and entry-supporting efficiency of CVRs carrying different viral binding domains. **a**, Schematic representation of the CVRs carrying different ACE2-mimicking Hf. **b, c**, Expression (b) and SARS-CoV-2 entry-supporting (c) ability of different CVRs in 293T cells. **d**, Immunofluorescence analyzing the expression of the indicated CVRs transiently expressed in HEK293T cells by detecting the C-terminal fused 3×FLAG tags. Scale bars: 100μm. One-way ANOVA analysis followed by Dunnett's test for **c**.

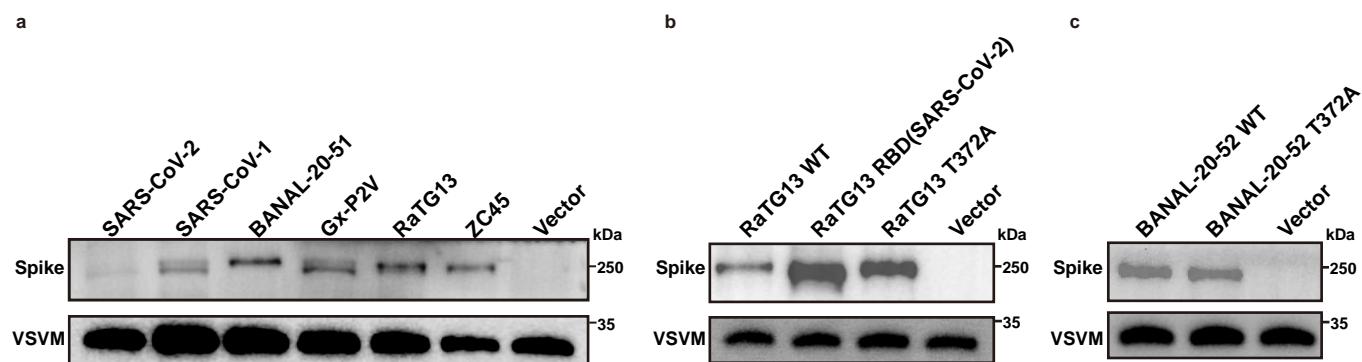

Extended Data Fig. 8 Functionality of CVRs carrying bi-specific VBDs or polymeric VBDs in supporting coronavirus entry. **a-c**, Illustration (a), viral RBD binding efficiency (b), and PSV entry-supporting efficiency (c) of a SARS-CoV-2/MERS-CoV bi-specific CVR transiently expressed in HEK293T cells. **d-f**, Illustration (d), expression (b), and PSV entry-supporting efficiencies (c) of CVRs carrying a single VBD or tandemly connected VBD trimmer. Scare bars: 100 μ m. Unpaired two-tailed Student's t-tests for **c**, and **f**.

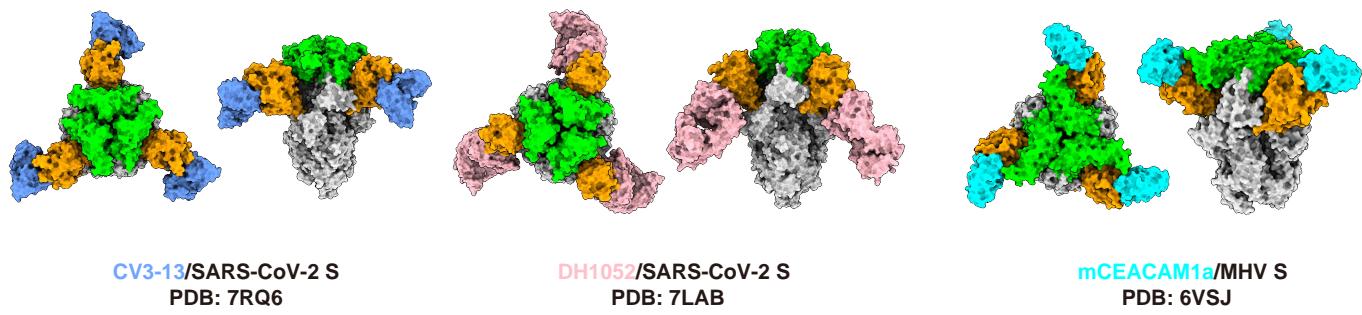

Extended Data Fig. 9 Coronavirus tropism retargeting mediated by bi-specific soluble adaptor proteins. **a-c**, Schematic illustration of bispecific adaptor protein (a) and MERS-CoV PSV entry efficiency in BHK-21-hACE2 cells in the presence of indicated concentrations of adaptor proteins (H11B11-mNB1) throughout the infection. PSV entry efficiency is examined based on the GFP intensity (b) or RLU (c) in the infected cells. **d-f**, Schematic illustration of Fc γ R (CD32a) mediated antibody-dependent coronavirus entry (d). CD32a expression, antibody (CB6) binding (e), and SARS-CoV-2 PSV entry (f) into HEK293T-CD32 cells, which was pretreated with indicated concentration (con.) of the CB6 for 0.5h. Scare bars: 100 μ m. One-way ANOVA analysis followed by Dunnett's test for c and f.

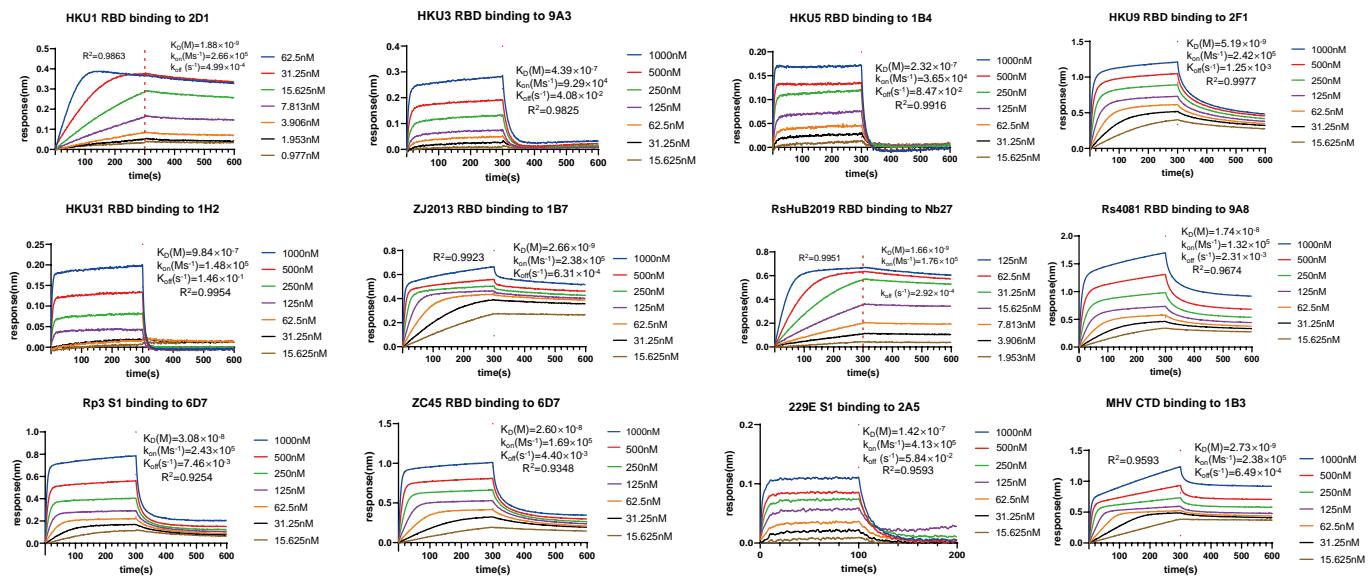

Extended Data Fig. 10 Comparison of specificity and receptor functionality between CVRs and native receptors in different cell types. **a-c**, Evaluation of the ability of CVRs to induce cell-cell fusion (**a,b**) and to support SARS-CoV-2 authentic virus infection (**c**). Spike-receptor mediated cell-cell fusion was demonstrated by the reconstituted GFP (**a**) and Renilla luciferase activity (RLU) (**b**). Infection was analyzed by immunofluorescence detecting the intracellular N protein at 24 hpi (**c**). **d**, Entry of different coronavirus PSVs into HEK293T stably expressing the native receptor or the indicated CVRs. **e**, SARS-CoV-2 and MERS-CoV PSV entry into various cell types expressing the indicated receptors. Scale bars: 100 μ m. Unpaired two-tailed Student's t-tests for **b**.

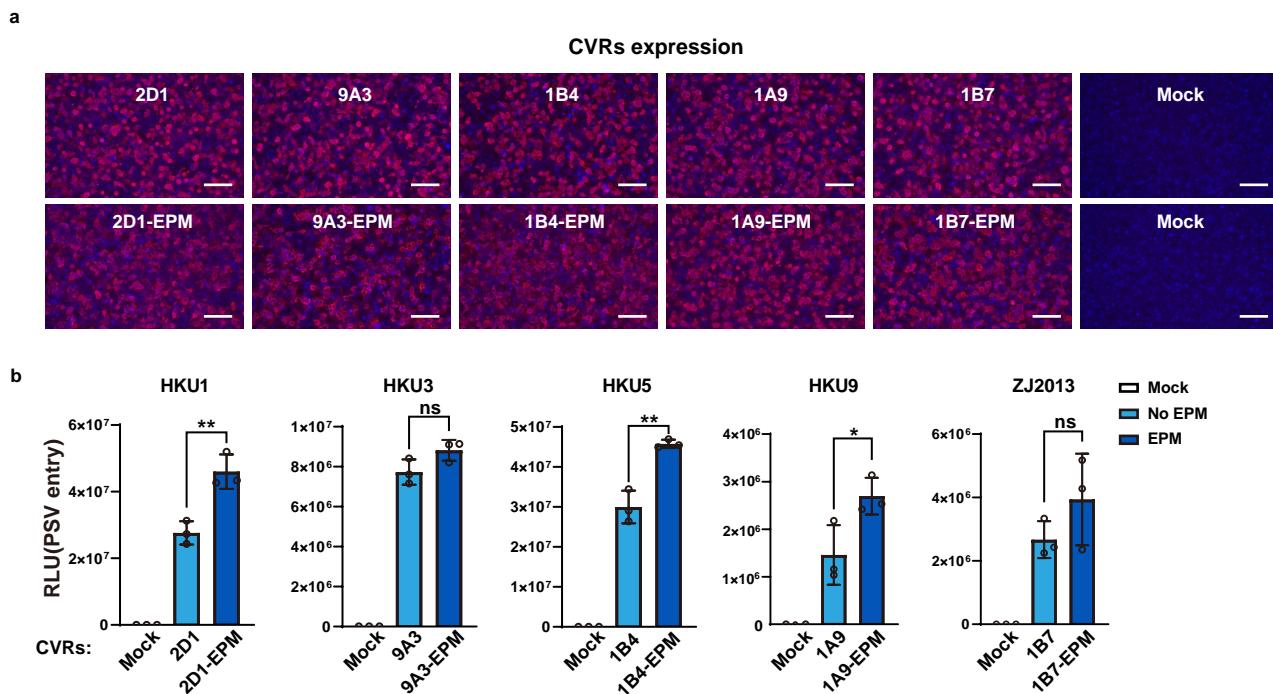

Extended Data Fig. 11 Comparison of the SARS-CoV-2 entry efficiency supported by ACE2, CVRs, alternative receptors, or other entry factors. SARS-CoV-2 PSV entry in HEK293T cells expressing the indicated receptors or entry factors. Unpaired two-tailed Student's t-tests was employed for analysis.

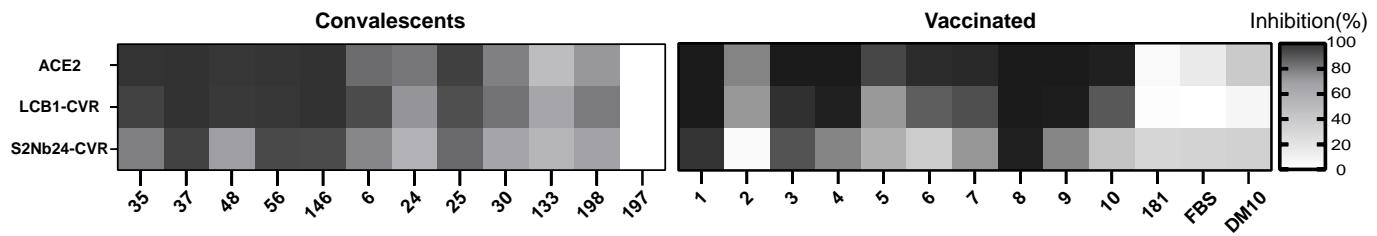

Extended Data Fig. 12 Relationship between the antigen binding, soluble antibody neutralizing activity, and CVR entry-supporting ability of 25 SARS-CoV-2 RBD targeting nanobodies. a, b, Assessment of the entry-supporting ability of 25 nanobody-CVRs in HEK293T cells, indicated by GFP(a) and the RLU (b), respectively. **c,** Comparison of RBD-mFc binding, soluble nanobody-hFc neutralization, and PSV entry efficiencies in HEK293T cells. RBD-mFc binding and PSV entry assays were conducted in HEK293T transiently expressing the 25 CVRs. The SARS-CoV-2 PSV neutralization assay was performed in HEK293T-ACE2 in the presence of indicated nanobody-Fc recombinant proteins. Scale bars: 100μm. One-way ANOVA analysis followed by Dunnett's test for b.

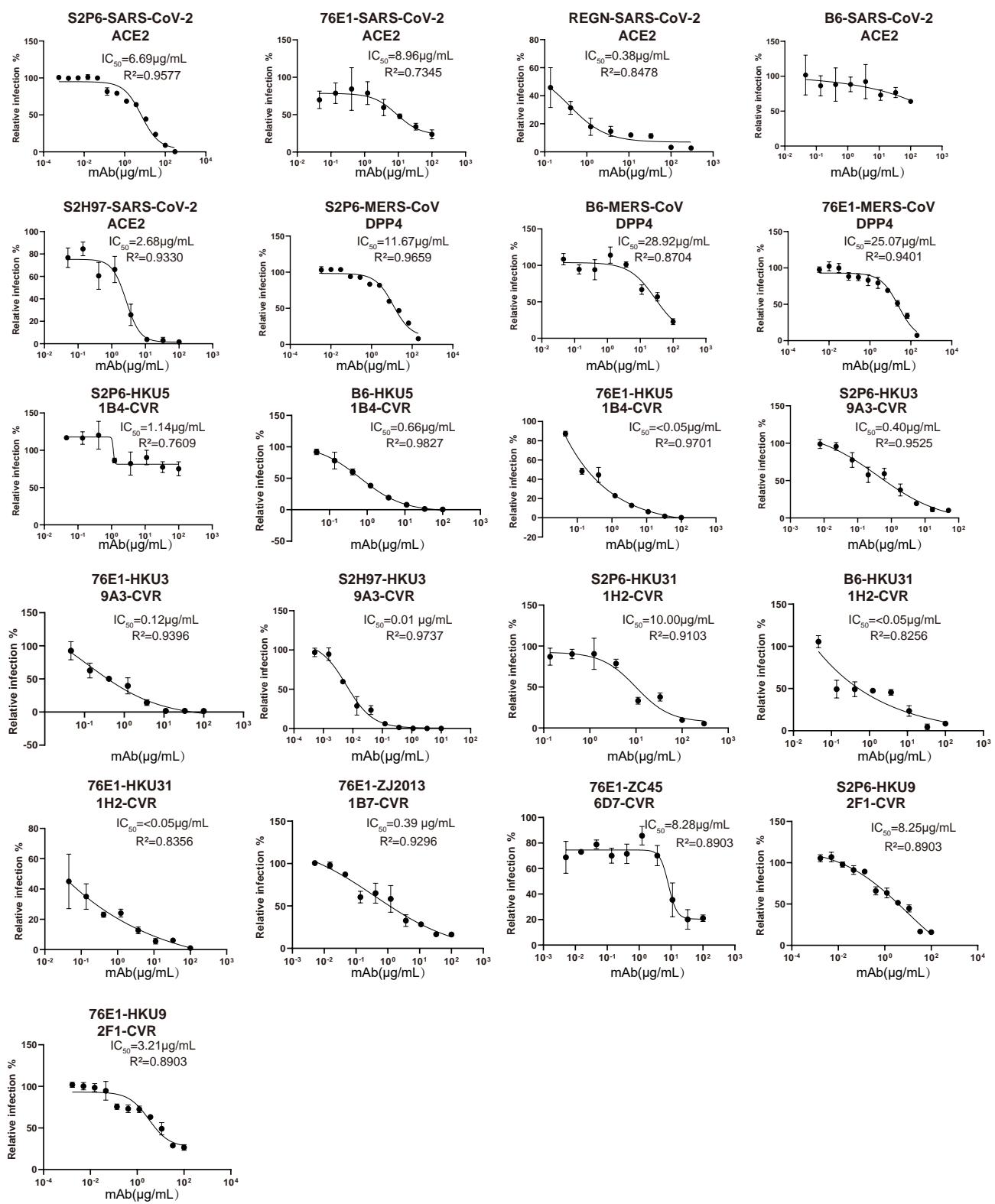

Extended Data Fig. 13 Expression and SARS-CoV-2 spike trimmer binding efficiencies in cells expressing the indicated scFv-CVRs. **a**, Western blot analysis of the expression levels of indicated scFv-CVRs transiently expressed in HEK293T cells. **b**, Binding of SARS-CoV-2 S-trimer to HEK293T cells expressing the indicated CVRs.

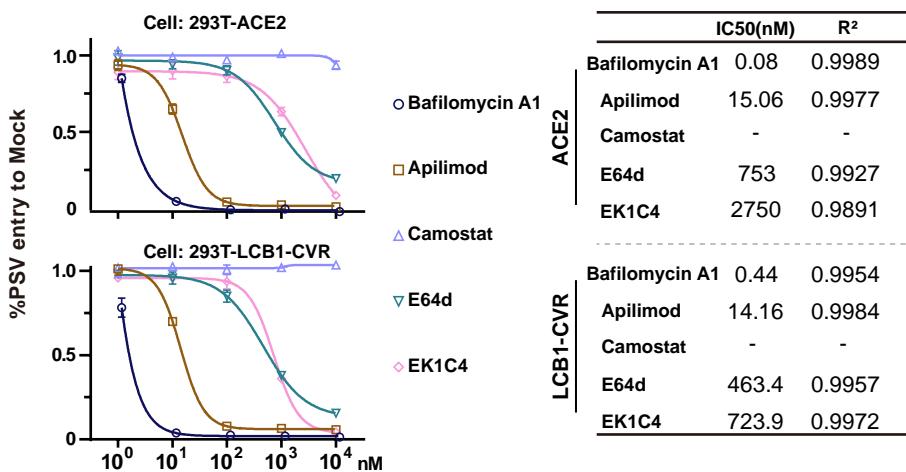

Extended Data Fig. 14 Binding efficiencies of scFv-mFc targeting different SARS-CoV-2 epitopes in cells expressing the SARS-CoV-2 spike. Flow cytometry analysis was performed to assess the binding efficiency of scFv-mFc with HEK293T cells transiently expressing the SARS-CoV-2 Spike proteins and ZsGreen simultaneously. The ZsGreen positive cells were gated for subsequent analysis of mFc binding efficiency.

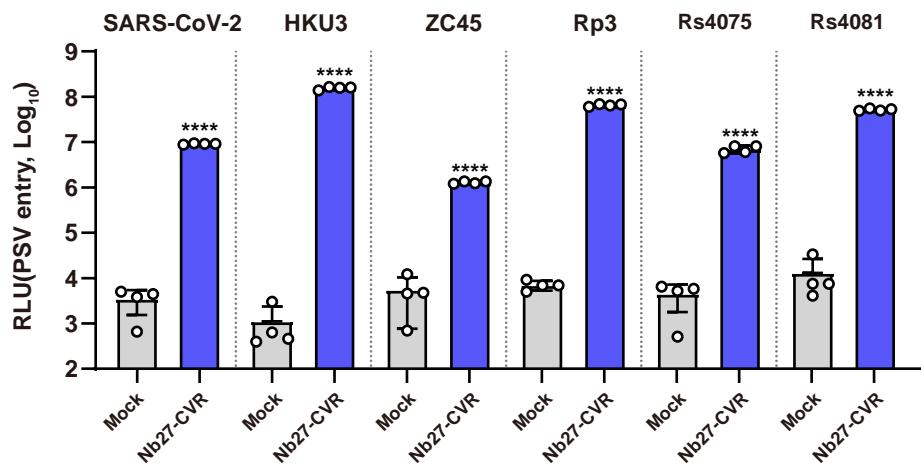

Extended Data Fig. 15 Trypsin-mediated S2' cleavage of SARS2-CoV-2 PSV in the presence of soluble receptors or CB6-scFv-mFc. The concentrated SARS-CoV-2 PSV particles were incubated with 100 $\mu\text{g/mL}$ of soluble receptors or CB6-scFv-mFc for 1 hour, followed by incubation with the indicated concentration of TPCK-treated trypsin for 30mins. Western blot analysis was conducted by detecting the S2P6 epitope on the S2 subunit. sDPP4: soluble DPP4 ectodomain proteins.

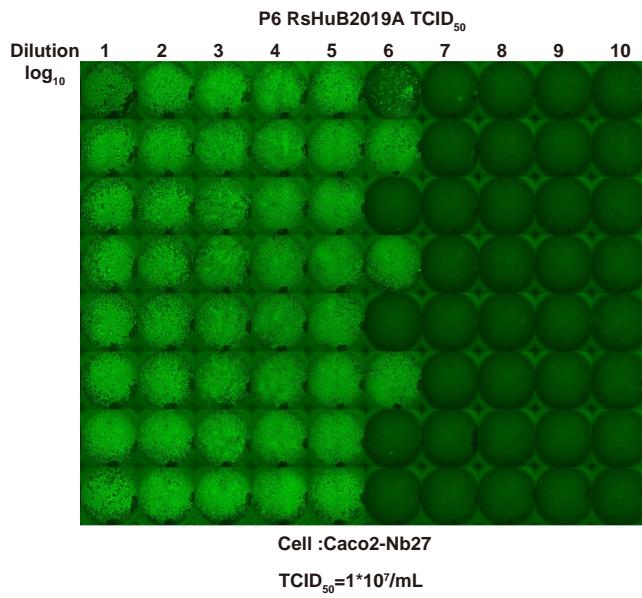

Extended Data Fig. 16 Package efficiency of PSVs carrying indicated coronavirus spike proteins. Western blot detection of concentrated PSV carrying indicated coronaviruses by detecting the S2P6 epitope conserved among the tested coronaviruses. VSV-M serves as a loading control.

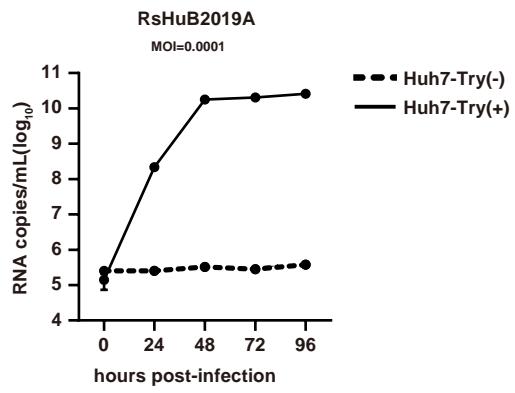

Extended Data Fig. 17 Cryo-EM structures of NTD-targeting antibodies or soluble mCEACAM1a in complex with SARS-CoV-2 or MHV spike trimers, respectively. Illustration of top-view and side-view cryo-EM structures depicting NTD-targeting antibodies (CV3-13 and DH1052) or soluble mCEACAM1a in complex with SARS-CoV-2 or MHV spike trimers, respectively. The complex structures are annotated with corresponding PDB accession numbers.

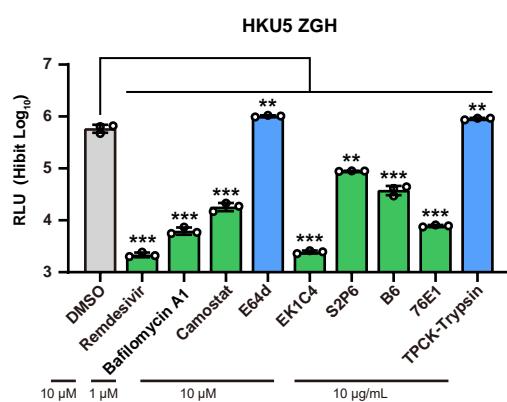

Extended Data Fig. 18 Binding kinetics between representative nanobodies and corresponding coronavirus antigens. Binding kinetics analyzed through BLI between representative nanobodies and the RBD or S1 of indicated coronaviruses.

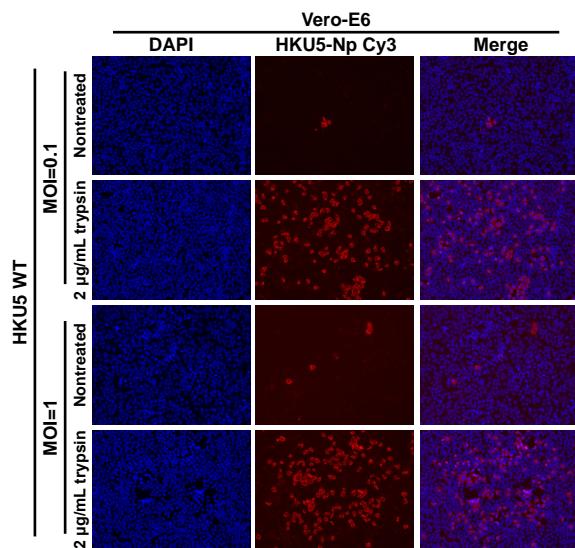

Extended Data Fig. 19 Comparison of the entry-supporting efficiency of several CVRs with or without the presence of EPM. a, Expression (a) and entry-supporting efficiency (b) of the indicated CVRs with or without EPM transiently expressed in the HEK293T cells. EPM: endocytosis prevention motif. Scare bars: 100 μ m. Unpaired two-tailed Student's t-tests for b.


Extended Data Fig. 20 Comparison of sera neutralization activity using different infection models. Comparison of neutralization profiles of sera collected from COVID-19 convalescents (a) or vaccinated individuals (b) based on HEK293T cells expressing ACE2 or two different CVRs. Serum dilution: 1:200.


Extended Data Fig. 21 IC_{50} of selected broadly neutralizing antibodies against PSV entry of seven indicated coronaviruses supported by corresponding CVRs. Neutralization assays for each PSV were conducted in HEK293T stably expressing the indicated CVRs.


Extended Data Fig. 22 Inhibitory efficacy of entry inhibitors based on different infection models. The IC₅₀ of selected entry inhibitors against SARS-CoV-2 PSV entry were determined in both HEK293T-ACE2 or HEK293T-LCB1-CVR cells.


Extended Data Fig. 23 Pan-sarbecovirus entry-supporting ability of CVR-Nb27. The PSV entry-supporting ability of CVR-Nb27 was evaluated by six different sarbecoviruses in 293T cells. Unpaired two-tailed Student's t-tests was employed for comparisons.


Extended Data Fig. 24 Demonstration of TCID₅₀ determination assay for RsHuB2019A by Caco2-Nb27 cells. Caco2-Nb27 cells were inoculated with a 10-fold serial dilution of RsHuB2019A containing supernatant (Passage 6). The TCID₅₀ was determined using immunofluorescence to detect the presence of N protein expression of the inoculated cells at 4 dpi, employing the Red-Muench method.

Extended Data Fig. 25 Trypsin-dependent propagation of RsHuB2019A in Huh-7 cells. The RsHuB2019A genomic RNA copies in the supernatant collected at indicated time points of infected Huh-7 cells were quantified by RT-qPCR using RdRP-specific primers. Inoculation was conducted at an MOI of 0.0001, with or without trypsin treatment. Try: Trypsin treatment.

Extended Data Fig. 26 Inhibitory effect of selected anti-viral reagents against authentic HKU5-ZGH infection in Caco2-1B4. Inhibitors were coincubated with either the cells or the viruses for 1h and present in the culture medium during infection. The HiBit-based luciferase activity was determined at 48 hpi to assess the inhibitory effect of selected anti-viral reagents against the infection of authentic HKU5-ZGH in Caco2-1B4. Unpaired two-tailed Student's t-tests was employed for comparisons.

Extended Data Fig. 27 HKU5-WT propagation in Vero E6 cells with or without trypsin treatment. Vero E6 cells were infected with HKU5-WT at a multiplicity of infection (MOI) of 1 or 0.01, with or without the presence of trypsin at 2 µg/mL. The HKU5 infection efficiency was assessed using rabbit polyclonal antibodies targeting the HKU5 N protein(Cy3) at 48 hpi.