
Engineering customized viral receptors for various coronaviruses1

Peng Liu1, #, Mei-Ling Huang1#, Hua Guo2, #, Jun-Yu Si1, Yuan-Mei Chen1, Chun-Li Wang1, Xiao Yu1,2

Lu-Lu Shi1, Qing Xiong1, Cheng-Bao Ma1, Fei Tong1, Chen Liu1, Jing Chen2, Ming Guo1, Jing Li1,3

Zheng-Li Shi2,*, Huan Yan1,*,&4
1State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical5

Sciences, Wuhan University, Wuhan, Hubei, China.6
2Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.7
#These authors contributed equally.8

*Correspondence: e-mail: Huan Yan: huanyan@whu.edu.cn，Zheng-Li Shi: zlshi@wh.iov.cn9

& Lead contact10

11

Summary12

Coronaviruses display versatile receptor usage, yet in-depth characterization of coronaviruses13

lacking known receptor identities has been impeded by the absence of feasible infection models1,2.14

Here, we developed an innovative strategy to engineer functional customized viral receptors (CVRs).15

The modular design relies on building receptor frameworks comprising various function modules16

and generating specific epitope-targeting viral binding domains. We showed the key factors for17

CVRs to efficiently facilitate spike cleavage, membrane fusion, pseudovirus entry, and authentic18

virus propagation for various coronaviruses, resembling their native receptors. Applying this strategy,19

we delineated the accessible receptor binding epitopes for functional SARS-CoV-2 CVR design and20

elucidated the mechanism of entry supported by an amino-terminus domain (NTD) targeting21

S2L20-CVR. Furthermore, we created CVR-expressing cells for assessing antibodies and inhibitors22

against 12 representative coronaviruses from six subgenera, most of which lacking known receptors.23

Notably, a pan-sarbecovirus CVR supported entry of various sarbecoviruses, as well as propagation24

of a replicable HKU3 pseudovirus and the authentic strain RsHuB2019A3. Through combining an25

HKU5-specific CVR with reverse genetics, we successfully rescued and cultured wild-type and26

fluorescence protein-incorporated HKU5, a receptor-unidentified merbecovirus. Our study27

demonstrated the great potential of CVR strategy in establishing native receptor-independent28

infection models, paving the way for studying various viruses that are challenging to culture due to29

the lack of susceptible cells.30
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Introduction34

The Coronaviridae family encompasses hundreds of enveloped viruses categorized into four35

genera, α-, β-, γ- and δ-coronaviruses4. The emergence of human β-coronaviruses has led to three36

significant outbreaks in the 21st century, highlighting the substantial zoonotic risks associated with37

various animal coronaviruses that are poorly studied, primarily infecting bats5–8.38

Coronavirus entry is mediated by the trimerized spike (S) proteins. The full-length S may either39

remain intact or undergo cleavage by furin or other proteases at the S1/S2 cleavage site, yielding S140

and S2 subunits9. The S1 subunit engages in specific interaction with the receptor, leading to41

conformational changes that trigger membrane fusion mediated by the S2 subunit10. The activation of42

S2 fusion machinery is associated with the exposure and proteolytic of the S2' cleavage site, which is43

right upstream of the fusion peptide (FP). A successful fusion involves a dramatic transition of the44

high-energy prefusion conformation to the low-energy post-fusion conformation of the spike trimer,45

with an extended intermediate that refolds and brings the two membranes into proximity to overcome46

the energy barrier for fusion11. Except for MHV, which naturally employs its amino-terminal domain47

(NTD) for receptor engagement, most coronaviruses use their carboxy-terminal domain (CTD) of the48

S1 subunit as their receptor binding domains (RBD), adopting either "down" or "up" conformations49

in the spike trimer12. The "up" conformation is believed to be more accessible for receptor50

engagement13. For example, SARS-CoV-2 recognizes the ACE2 protease domain (or head domain)51

through the extended receptor binding motif (RBM). The ACE2 binding mediated conformational52

change exposes the S2' site, followed by proteolytic cleavage either by cell surface transmembrane53

serine protease 2 (TMPRSS2), the endosome-localized cathepsin L or other proteases14.54

Coronaviruses can employ different receptors or adopt different receptor recognition55

mechanisms to utilize the same receptor15–17. Efforts in the past decades have led to the identification56

of four widely acknowledged protein entry receptors for coronaviruses: ACE2, Aminopeptidase N57

(APN), Dipeptidyl peptidase-4 DPP4, and mCEACAM1a2. TMPRSS2 has also been recently58

reported as an entry receptor for human coronavirus HKU118,19. ACE2 represents the most59

extensively studied receptor supporting entry of various coronaviruses, including NL63,60

SARS-CoV-1, SARS-CoV-2, and several clades of bat sarbecoviruses and merbecoviruses16,20–22.61

Human ACE2 is an 805-aminoacid (aa) type I transmembrane protein consisting of signal peptide,62

head domain, neck domain, spacer sequences, transmembrane domain, and cytosolic domain.63

Cryo-EM structure demonstrated a dimerized structure, with a direct engagement of the head domain64

(protease domain) in SARS-CoV-2 RBD, particularly the α1 and α2-helix and the loop connecting65

the β3- and β4-sheets23. However, the contribution of other sequences for achieving the optimal66

receptor function remains not fully understood. Many alternative receptors capable of mediating67
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SARS-CoV-2 entry have been reported, including CD147, AXL, KREMEN1, ASGR1, NRP1,68

CLEC4M, TMEM106B, etc24–26. However, their entry-supporting efficiency is generally low69

compared with the ACE2 receptor, probably due to the lack of evolutionary viral adaptation.70

Nevertheless, many coronaviruses do not use these reported receptors, and their receptor identity71

remains elusive. Numerous bat coronaviruses are known solely as sequences in databases, limiting72

our knowledge and countermeasures against these animal coronaviruses1,5.73

Remarkably, many coronaviruses with unknown receptors often exhibited narrow cell tropism74

or a complete lack of known susceptible cells1. A primary challenge of conducting in-depth studies is75

the difficulty in culturing these viruses. Functional entry receptors are pivotal for establishing76

infection models for these viruses. However, the conventional strategy for native receptor77

identification is challenging and largely unpredictable. To address this unmet need, the alternative78

approach of establishing feasible infection models independent of native receptors is awaiting79

exploration, with few attempts on MHV reported for this purpose27,28.80

The challenge of designing viral entry receptors with satisfied functionality is impeded by the81

lack of knowledge regarding the optimal viral surface to be targeted, and the critical sequence and82

structural requirements for achieving acceptable conformational changes coupling the downstream83

entry process. Notably, studies focusing on SARS-CoV-2 or MERS-CoV have elucidated several84

scenarios of ACE2 or DPP4-independent entry, either by alternative receptors, antibody-dependent85

FcγR-mediated entry, or membrane-anchored antibodies, either in a productive or nonproductive86

manner24,25,29–32. These findings indicate the specific ACE2-SARS-CoV-2 interaction is dispensable87

for viral entry, making it feasible to design receptors for various coronaviruses without known native88

receptor identities.89

In this study, by dissecting the contributing sequences for ACE2 to support SARS-CoV-2 entry90

efficiently, we demonstrated that each part of the ACE2 contributes to the functionality in different91

ways. Nevertheless, all the ACE2 sequences were replaceable, enabling the rebuilding of various92

receptors with customized specificity by grafting viral binding domains generated by multiple93

methods. By deciphering the key factors affecting the functionality of the receptors, we developed a94

generally applicable modular design strategy to build functional customized viral receptors (CVRs)95

for supporting productive entry of viruses, either the vesicular stomatitis virus (VSV) based96

pseudoviruses or the authentic viral strains. Utilizing the engineered cell culture models expressing97

various CVRs, we demonstrated the advantage of this strategy in various applications, such as98

investigating viral entry mechanisms, assessing the efficacy and breadth of antibodies and other99

antivirals, improving coronavirus culture efficiency, and isolating or rescuing coronaviruses without100

known receptors.101
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102

Results103

Modular design of customized viral receptors104

We set out to delineate the role of each sequence or structural component of human ACE2 in105

functioning as an ideal receptor for SARS-CoV-2. We first tested the feasibility of using106

computationally designed ACE2-mimicking small helical frameworks to replace the ACE2 head107

domain while maintaining its receptor function. Four ACE2 chimeric proteins were created, with the108

head domain or head/neck domains replaced by two previously reported SARS-CoV-2 RBD binding109

helical frameworks, LCB1 and LCB333. The SARS-CoV-2 authentic virus infection assays110

demonstrated that these chimeric proteins effectively supported viral infection (Extended Data Fig.111

1).112

We further investigated the importance of other ACE2 sequences by gradually reducing the113

remaining ACE2 components, including the neck domain, spacer, and cytosolic domain (D2-D5)114

(Fig. 1a). All chimeric proteins showed comparable SARS-CoV-2 RBD binding as examined by115

flow cytometry (Fig. 1b-c). However, the pseudovirus entry-supporting ability declined with116

decreasing ACE2 sequences, although the shortest 132aa protein maintained detectable receptor117

function, approximately 0.5% compared to the ACE2 group and 113-fold compared to vector control118

(Fig. 1d-e).119

Several chimeric proteins were subsequently designed with indicated domains replaced by120

corresponding sequences from other viral receptors or immune receptors (R1-R4), along with a121

construct carrying an endocytosis prevention motif (EPM) to enhance surface distribution (R5) (Fig.122

1f)34. All chimeric proteins demonstrated well expression and efficient RBD binding (Fig. 1g-h).123

Particularly, the chimeric protein with the ACE2 neck domain substituted with triple (3×) 23aa124

tandem repeats (TR23) from CLEC4M or human IgG Fc supported efficient entry (Fig. 1i-j). Further125

substituting the remaining sequence with IL2Rα corresponding sequences maintained similar entry126

efficiency, suggesting that no ACE2-derived sequences are strictly required for SARS-CoV-2 entry127

(Fig. 1i-j). Among 31 tested transmembrane (TM) and several cytosolic domains from different128

receptors, the transmembrane and cytosolic domain (TMC) from the Chikungunya (CHIKV) receptor129

Matrix remodeling-associated protein 8 (Mxra8) exhibited the best performance (Extended Data Fig.130

2)35. Constructs with EPM showed improved cell surface localization and enhanced entry-supporting131

ability (Fig. 1i-j, Extended Data Fig. 3). Additionally, constructs with a type-II transmembrane132

topology also efficiently supported SARS-CoV-2 and MERS-CoV entry, indicating the feasibility of133

both transmembrane topology for supporting coronavirus entry (Extended Data Fig. 4).134

We then explored the impact of spacer length and oligomerization on entry-supporting135
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efficiency by testing spacers with different copies of TR23 tandem repeats or immunoglobulin-like136

domains from human IgG or mCEACAM1a (Fig.1k-l, and Extended Data Fig. 5 and 6). Results137

indicated the triple TR23 or two immunoglobulin (Ig) or Ig-like domains represent the optimal138

spacer length for LCB1, while abolishing dimerization by Fc mutants has no significant impact on139

receptor function (Fig.1m and Extended Data Fig. 5 and 6) 36.140

Subsequently, various SARS-CoV-2 RBD-targeting viral binding domains (VBDs) were tested141

for receptor grafting, including designed helical frameworks, designed ankyrin repeat proteins142

(DARPins), nanobody, scFv, and Fab (Fig.1n and Extended Data Fig. 7). All these VBDs types are143

acceptable, with nanobodies showing superiority due to their small size, single-chain nature, and144

compatibility for bio-panning (Fig.1o, p). We also demonstrated the functionality of a bi-specific145

receptor carrying two VBDs recognizing SARS-CoV-2 and MERS-CoV, respectively, and146

trimerized VBDs recognizing SARS-CoV-2 RBD (Extended Data Fig. 8). Additionally, we show the147

entry facilitated by soluble receptor adapters connecting viral RBD and ACE2 or FcγRIIa,148

respectively (Extended Data Fig. 9).149

The functionality of CVRs compared with ACE2 was demonstrated through a series of150

experiments showing membrane fusion, authentic SARS-CoV-2 infection, and virus specificity in151

different cell types (Extended Data Fig.10). The entry-supporting efficiency of CVRs are152

significantly more efficient than several documented SARS-CoV-2 alternative receptors, coreceptors,153

entry factors, or binding proteins24–26 (Extended Data Fig.11).154

Together, we proposed a modular design strategy for generating customized viral receptors to155

support efficient coronavirus entry, comparable in specificity and efficiency to their native receptors.156

A CVR prototype consisting of Type-1 transmembrane topology carrying signal peptide (SP), VBD,157

spacer, TMC, EPM, and C-terminal tags and its derivatives are delineated (Fig.1q).158

159

Acceptable epitopes for functional CVRs160

In our initial exploration of the relationship between CVR receptor function and binding affinity161

or neutralizing activity, we evaluated 25 neutralizing nanobodies targeting SARS-CoV-2 RBD.162

However, the results did not demonstrate a clear correlation between entry-supporting ability and163

binding affinity or neutralizing activity. These data underscores the influence of other critical factors,164

particularly the binding epitopes that are not clearly defined for the 25 nanobodies (Extended Data165

Fig.12).166

Therefore, we engineered CVRs carrying scFvs derived from 22 well-characterized167

SARS-CoV-2 neutralizing antibodies (Abs) covering most reported neutralizing epitopes on NTD,168

CTD, or S2 (Fig. 2a)37–44. These antibodies were transformed into scFv-based VBDs with N-terminal169
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heavy chain (HL) or N-terminal light chain (LH), resulting in 44 CVRs for evaluation (Fig. 2b). All170

CVRs were well-expressed and verified with SARS-CoV-2 spike trimer binding, except for 76E1171

recognizing a hidden epitope exposed after receptor binding42 (Extended Data Fig.13). The172

scFv-CVRs recognizing epitopes close to the canonical RBM (sites i, ii and iii) supported efficient173

entry, while many other RBD core domain-targeting scFv also exhibited decent entry-supporting174

capabilities (Fig. 2c). However, not all RBD epitopes are suitable for CVR design, such as S309 and175

two antibodies recognizing a quaternary epitope spanning the dual-RBD interface that lock the spike176

in a closed conformation (BG10-19, S2M11)37–39. Unexpectedly, an S2L20-CVR recognizing an177

NTD epitope (site iv) showed potent entry-supporting ability, challenging the previous hypothesis178

that NTD neutralizing antibodies are insufficient to induce SARS-CoV-2 membrane fusion and entry179

in an ACE2-independent manner (Fig. 2c)32,45. We further demonstrated the expression, antigen180

binding, pseudovirus entry, and membrane fusion supported by ten selected CVRs (Fig. 2d).181

To elucidate why only specific epitopes are accessible for CVR design to realize receptor182

function, we proposed a hypothesis: CVR functionality is dependent on whether the interaction can183

induce a proper spike conformational change that leads to down-stream critical entry events required184

for membrane fusion, particularly the exposure and cleavage of S2’ cleavage site for fusion peptide185

activation29,42,46 (Fig. 2e). Consistently, although most of the tested scFv-mFc recombinant proteins186

can bind spike trimer, only scFv-mFc corresponding to the functional CVRs can induce the exposure187

of 76E1 epitope in a dose-dependent manner (Fig. 2e-g, and Extended Data Fig.14).188

We further explored whether the exposure of the 76E1 epitope resulted in higher S2’ protease189

accessibility. After optimizing the experimental conditions for trypsin-based S2’ cleavage, we190

demonstrated that the ability of specific scFv-mFc to induce S2’ cleavage sensitivity aligns with the191

data from 76E1 epitope exposure assays (Fig. 2h and Extended Data Fig.15).192

In summary, our data reveals that most CTD surfaces and specific NTD epitopes are accessible193

receptor binding motifs for generating functional CVRs, and the functionality is primarily194

determined by their capability to induce conformational changes capable of exposing the 76E1195

epitope, which is subject to proteolytic cleavage at the S2’ site, thereby activating the fusion196

machinery.197

198

NTD-mediated sarbecovirus entry by S2L20-CVR199

We next sought to characterize the NTD-mediated coronavirus entry facilitated by S2L20-CVR.200

We first confirmed that S2L20-CVR serves as a fully functional receptor for SARS-CoV-2,201

supporting membrane fusion, pseudovirus entry, and authentic virus infection (Fig. 3a). Additionally,202

S2L20-CVR effectively facilitated pseudovirus entry of the five SARS-CoV-2 variants of concern203

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 4, 2024. ; https://doi.org/10.1101/2024.03.03.583237doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.03.583237
http://creativecommons.org/licenses/by-nc-nd/4.0/


(VOCs) and the other three sarbecoviruses (BANAL-20-52, RaTG13, and GX-P2V) (Fig. 3b-d). As204

expected, SARS-CoV-1 and ZC45 cannot use S2L20-CVR for entry due to the lack of binding205

affinity (Fig. 3 c, d).206

Despite showing similar NTD-binding efficiency, S2L20 showed much lower efficiency in207

supporting RaTG13 and BANAL-20-52 entry than SARS-CoV-2 (Fig. 3 c, d). Since the lack of an208

N370 glycan has been reported as a distinct feature of SARS-CoV-2, we generated CTD swap and209

point mutants to investigate the impact of CTD sequences and N370 glycan on S2L20-CVR210

dependent entry (Fig. 3e)47. Spikes carrying RaTG13 RBD or just a T372A mutation showed lower211

binding efficiency to the soluble forms of human ACE2(shACE2) or S2L20-mFc than those carrying212

SARS-CoV-2 RBD. Please note that RaTG13 has a lower affinity for hACE2 than its host's ACE2213

(Rhinolophus. affinis ACE2, R.aff ACE2) (Fig. 3f)48. The absence of the N370 glycan in214

SARS-CoV-2 due to a T372A mutation was hypothesized to interfere with S2L20 binding since this215

glycan is spatially close to the S2L20 after it binds to the NTD. Consistently, T372A mutation in the216

RaTG13 or BANAL-20-52 spike, abolishing the N370 glycosylation, significantly enhanced217

S2L20-CVR supported viral entry (Fig. 3g-h)49.218

We next investigated whether SARS-CoV-2 CTD-targeting neutralizing antibodies could219

interfere with NTD-mediated entry in cells expressing S2L20-CVR compared to hACE2-expressing220

cells. As expected, S2L20 exhibited higher neutralizing activity in S2L20-CVR-expressing cells.221

Importantly, although several antibodies (LY-COV555, S309, and S2X259) showed reduced222

neutralizing efficiency in S2L20-CVR expressing cells, some CTD-binding antibodies exhibited223

similar neutralizing activity in both models (Fig. 3i).224

These data suggest an association between RBD and S2L20-CVR mediated entry. Interestingly,225

the cryo-EM structure of S2L20 in complex with SARS-CoV-2 BA.5 revealed that S2L20 stabilizes226

the spike trimer in a three RBD "up" conformation, contrasting to the three RBD "down"227

conformation in BA.5 alone50,51. However, the binding of NTD-targeting antibodies, like 4A8, is228

unable to stabilize the RBD "up" conformation (Fig. 3j-k and Extended Data Fig. 17)52. We229

hypothesize the three RBD "up" conformation upon S2L20 binding may be crucial for S2L20-CVR230

receptor functionality. By contrast, mCEACAM1a, a receptor that binds to MHV spike trimer with231

three RBD down conformations, recognizes an NTD surface largely overlapped with the 4A8 epitope232

(Extended Data Fig. 17)52–54. This indicates different coronaviruses can adopt distinct receptor233

recognition mechanisms to achieve NTD-mediated entry.234

235

CVR supports efficient entry of various coronaviruses236

The data presented above demonstrated the capability of CVRs to support efficient entry of237
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ACE2 or DPP4-dependent coronaviruses. We extended our approach to generating CVRs capable of238

facilitating entry of 12 coronaviruses across the phylogeny, representing human, bat, and mouse239

coronaviruses from six distinct subgenera, the receptor for most of which remains unidentified1(Fig.240

4a). To acquire acceptable VBDs for receptor grafting, we utilized magnetic beads and241

immunotube-assisted phage display biopanning to screen coronaviruses-specific nanobodies from the242

naïve libraries (Fig. 4b). Top CVR candidates, generated using a variety of nanobodies with243

validated RBD or S1 binding, demonstrated efficient pseudovirus entry for each coronavirus. Besides,244

we included a characterized broadly-neutralizing nanobody Nb27 for supporting RsHuB2019A.245

Binding kinetics of optimal nanobodies against the antigens from the 12 coronaviruses were246

determined through Bio-layer interferometry (BLI) assays (Fig. 4c and Extended Data Fig. 18).247

Efficient RBD or S1 binding and pseudovirus entry were demonstrated in 293T cells stabling248

expressing the indicated CVRs, achieving approximately 102 to 104-fold increase of entry compared249

with the mock control (Fig. 4d, e). Further examination of the CVR-supported entry of five different250

coronaviruses revealed that CVRs carrying EPM exhibited superior cell surface localization and251

higher entry-supporting ability (Extended Data Fig.19). Moreover, we verified the ability of several252

CVRs designed for 229E and MHV-A59 to support membrane fusion and authentic viral infection253

(Fig. 4f-h). Notably, both MHV-A59 NTD-targeting and CTD-targeting CVRs supported viral254

propagation, albeit with lower efficiency than the mCEACAM1a (Fig. 4i).255

We next evaluated the CVR-based infection models for neutralizing antibody assessment,256

particularly anti-sera and broadly neutralizing antibodies. We compared the neutralizing activity of257

SARS-CoV-2 anti-sera, collected from COVID-19 convalescents or vaccinated individuals, on 293T258

cells expressing ACE2, LCB1-CVR recognizing the classical RBM, and Nb24-CVR recognizing an259

epitope distant from the RBM. The sera neutralization results based on the three receptors displayed260

a generally similar inhibitory profile, with Nb24-CVR showing slight differences (Extended Data261

Fig.20). This indicates the utility of the CVR-based system for evaluating the effectiveness of262

humoral immunity, ideally for CVRs recognizing the classical RBM region. We evaluated the263

cross-reactivity of several pan-β-CoV broadly neutralizing antibodies against several coronaviruses264

lacking conventional infection models, including antibodies recognizing an RBD site v epitope265

(S2H97), a stem region of the fusion machinery (S2P6, B6), and the S2/fusion peptide (76E1), with266

an RBM-targeting antibody REGN 10933 as a control. The results demonstrated that 76E1 exhibited267

the best breadth for cross-neutralization of the tested coronaviruses, consistent with sequence268

similarity of the recognized epitopes (Fig. 4j and Extended Data Fig.21).269

Furthermore, we investigated the potential of the CVR-based infection system for evaluating270

other antivirals targeting different entry steps, including proteolytic cleavage, endosome acidification,271
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and membrane fusion. Comparable inhibitory efficacy was observed when comparing infection272

models based on ACE2 or LCB1-CVR (Extended Data Fig.22). We further tested these inhibitors273

against SARS-CoV-2, HKU1, HKU3, and HKU5 entry in corresponding CVR-based infection274

models. Overall entry inhibitory efficiencies were similar among the four viruses, except for HKU5275

displaying a higher sensitivity to TMPRSS2 inhibitor Camostat mesylate rather than the cathepsin276

inhibitor E64d (Fig. 4k). Our data confirmed the ability of CVR to support efficient entry for various277

coronaviruses. The novel infection models can be useful tools for assessing antibodies and other278

antiviral reagents against viruses lacking conventional infection models.279

280

Culture and rescue authentic coronaviruses through CVRs281

To evaluate the capability of CVR-expressing cells to support multiple-round propagation of282

coronaviruses lacking known receptor identity, we utilized a reverse genetic system to generate283

propagation-competent VSV pseudoviruses with genomically encoded HKU3 or HKU5 spike284

proteins, replacing the VSV-G gene. A GFP-expressing cassette was additionally incorporated into285

the genome to facilitate visualization (Fig. 5a). Successfully rescued of the VSV-HKU3 and286

VSV-HKU5 was achieved with the aid of VSV-G proteins provided in trans (Fig. 5b). Following287

one round of amplification with VSV-G, infection was conducted in Caco2 cells in a VSV-G288

independent manner with or without the expression of Nb27, a pan-sarbecovirus CVRs recognizing289

the conserved site vi epitope on RBD (Fig. 5c-d and Extended Data Fig.23)55. Notably, efficient290

propagation of VSV-HKU3 and VSV-HKU5 can be observed in cells expressing the indicated CVRs,291

as evidenced by the syncytia formation and the accumulation of viral RNA in the supernatant, which292

was further enhanced by the exogenous trypsin treatment (Fig. 5d-g).293

Subsequently, we investigated whether CVRs can facilitate efficient propagation of authentic294

coronavirus requiring strict culture conditions. RsHuB2019A, a relative of HKU3, is an295

ACE2-independent bat sarbecoviruses recently isolated from field samples3. Isolation and296

propagation of this virus was carried out in Huh-7 under a serum-free culture condition with297

exogenous trypsin, with viral infection being difficult to detect while maintaining normal cell298

morphology (Fig. 5h). Our results demonstrated that the Caco2 cells stably expressing Nb27-CVR299

(Caco2-Nb27) efficiently supported RsHuB2019A propagation, even at very low MOIs (Fig. 5i and300

Extended Data Fig.24). Unlike Huh-7, Caco2-Nb27 supported efficient RsHuB2019A propagation in301

trypsin-free culture medium supplemented with 2% FBS, enabling observation of cytopathic effect302

(CPE) (Fig. 5i-j and Extended Data Fig.25).303

Furthermore, we explored the feasibility of rescuing a representative bat merbecovirus, HKU5,304

by combining reverse genetics and the novel CVR-based infection system. Thus, we generated a305
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full-length infectious clone of wild-type (WT) HKU5, along with a fluorescence protein with ORF5306

substituted by a ZsGreen-HiBit reporter (ZGH) (Fig. 5k). Utilizing the same cell line for VSV-HKU5307

propagation (Caco2-1B4), we successfully rescued both the WT and the ZGH version of HKU5308

authentic viruses. Efficient amplification was observed in cells inoculated with HKU5 at different309

MOIs, as indicated by the nucleocapsid (N) protein immunostaining and the accumulation of310

genomic RNA in the supernatant over time (Fig. 5l-m). Electron microscopy revealed typical311

morphology of "crown-shaped" virions with diameters of approximately 100 nm (Fig. 5n). Although312

the HKU5-ZGH exhibited relatively slow amplification kinetics, likely due to the deleted ORF5 and313

foreign gene insertion, the expression of ZGH facilitated real-time visualization and quantification of314

viral amplification (Fig. 5o-q). Consistent with previous reports, HKU5 can amplify in Vero-E6 cells315

only in the presence of exogenous trypsin (Extended Data Fig.27)56.316

Lastly, we assessed several antiviral reagents against HKU5 infection in Caco2-1B4 cells.317

Immunostaining of N protein revealed that trypsin significantly enhanced the infection, while most318

inhibitors blocked HKU5 infection. Consistent with the pseudovirus entry assay data (Fig. 4j), HKU5319

infection was inhibited by Camostat mesylate but not E64d, further demonstrating the TMPRSS2320

dependence for HKU5 infection (Fig. 5r and Extended Data Fig.26). This protease preference is in321

line with the sequence features at the critical cleavage sites for HKU5 (Fig. 5s)56.322

323

Discussion:324

The elusive identity of the receptor used by many coronaviruses presents substantial challenges325

in comprehending their life cycle and spillover risk, particularly those phylogenetically related to326

known high-risk β-coronaviruses. Lessons learned from the COVID-19 pandemic underscore the327

urgent imperative to study these viruses to prepare for future outbreaks. However, in-depth research328

and vaccine/antiviral development for these viruses are hindered by the lack of feasible infection329

models for virus isolation and culture1. Here, we proposed a novel strategy for customizing330

functional viral receptors for various coronaviruses, especially those lacking known native receptor331

identities. Our approach involves the modular design of CVRs in a single open-reading frame format,332

enabling molecular grafting of viral binding domains (VBDs) customized for specific viral surface333

epitopes. By targeting conserved epitopes compatible with CVR design, CVRs could potentially334

exhibit a broad recognition spectrum for coronaviruses from distinct clades or lineages.335

We demonstrated that the VBDs can adopt various structures with binding affinity to viral336

surface proteins. Compared to Fab fragments, single polypeptide chain structures like scFv or337

nanobody are more suitable modules for CVR design and are compatible with the library biopanning338

system. The excellent performance of helical framework or DARPin-based CVRs, highlights the339
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potential of computational de novo design of VBDs for various viruses. Besides efficient binding,340

maintaining an optimal distance between VBD and the cell membrane is critical for CVR341

functionality, although this distance may vary for spacers with distinct structures, orientations, and342

flexibility. Additionally, we demonstrated the soluble adaptor strategy in supporting viral entry,343

realized by a bio-specific adaptor retargeting the viruses to a cell surface-expressed receptor, such as344

ACE2.345

Additionally, the functionality of the CVR highly depends on the acceptable epitopes346

recognized by the VBDs. The ability of the specific viral surface regions to serve as functional347

receptor binding motifs likely depends on whether a VBD recognizing this region can induce proper348

conformational changes leading to membrane fusion. Therefore, CVRs targeting S2, most epitopes of349

NTD, and some epitopes on CTD are nonfunctional. We revealed a close link between the CVR350

functionality and their ability to induce the exposure of 76E1 epitope, encompassing the critical S2’351

cleavage site and part of the fusion peptide. However, the conformational change crucial for352

exposing this epitope remains unclear, although a transition of the RBD from the "down" to "up"353

conformation seems crucial13. Consistently, CVR using antibodies recognizing the three RBD354

"down" epitopes and locking the spike in this conformation showed no entry-supporting ability38,39.355

Future structural studies could be conducted to elucidate this critical event.356

There appears to be no restriction for coronaviruses to employ their NTD or RBD for receptor357

engagement, as exemplified by the receptor function of NTD-targeting S2L20-CVR. Additionally,358

we also showed that MHV infection can be efficiently supported by either NTD or CTD-targeting359

CVRs, suggesting the possibility of MHV, or its relatives, recognizing an alternative receptor through360

their CTD57. It is also possible that SARS-CoV-2, or other sarbecoviruses, may develop361

NTD-mediated entry in the previous or future evolution. Notably, an infection-enhancing antibody362

targeting NTD of SARS-CoV-2, DH105258, was unable to be utilized to build a functional CVR in363

our study. These indicate differences in mechanisms between the soluble antibody-mediated364

antibody-dependent enhancement (ADE) and membrane-anchored CVRs-mediated viral entry.365

Our CVR strategy allows the modular design of customized receptors to manipulate cell366

susceptibility to specific viruses. This approach enables the isolation or rescue of coronaviruses367

regardless of receptor identity or conventional susceptible cells. Overcoming limitations of native368

receptors, such as enhancing affinity, altering epitopes, adjusting specificity, changing structures, or369

getting rid of physiological function interference, underscores the potential of this strategy. However,370

several limitations should be noted when employing CVR-based models. Differences in targeted371

epitopes and protein structures may result in inconsistencies when assessing RBM-targeting372

neutralizing antibodies or sera. Additionally, slight differences in the entry pathway may exist for373
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some CVRs that trigger a conformational change different from those induced by native receptors. It374

is noteworthy that CVR transgenic mice might be useful for evaluating viral pathogenesis and375

vaccine/antiviral protection in vivo. However, the variations in tissue expression patterns may limit376

the mimicking of natural infection.377

To our knowledge, this study demonstrated the first case of rescuing and culturing a coronavirus378

without known receptor identity based on a genetically modified cell culture model independent of379

native receptors. Our findings pave the way for the rapid design of novel viral infection models for380

difficult-to-culture viruses, including those beyond coronaviruses, facilitating further advances in381

basic research, antiviral therapeutics, and vaccine development.382
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553

554

Methods555

Cell lines556

HEK293T (CRL-3216), Vero E6 (CRL-1586), A549 (CCL-185), BHK-21 (CCL-10), Caco-2557

(HTB-37), Neuro2a (CCL-131) and the bat epithelial cell line Tb 1 Lu (CCL-88) were purchased558

from the American Type Culture Collection (ATCC). The human hepatocellular carcinoma cell line559

Huh-7 (SCSP-526) was obtained from the Cell Bank of Type Culture Collection, Chinese Academy560

of Sciences. All cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM, Monad),561

supplemented with 10% fetal bovine serum (FBS). Additionally, an I1-hybridoma cell line562

(CRL-2700), producing a neutralizing mouse monoclonal antibody against VSV-G, was cultured in563

minimum essential medium with Earle's balanced salts solution, 2 mM L-glutamine (Gibco), and 5%564

FBS. All cell lines were incubated at 37℃ in 5% CO2 with regular passage every 2-3 days.565

566

Virus and host gene sequences567

All viral genome or gene sequences were sourced from GenBank or GISAID databases with the568

following accession numbers. Viruses: SARS-CoV-1 (NC_004718), SARS-CoV-2 (NC_045512),569

MERS-CoV (NC_019843), HKU3 (DQ022305), Rp3 (DQ071615), HKU5 (NC_009020), HKU31570

(MK907286), HKU9 (NC_009021), Zhejiang2013 (NC_025217), Rs4081 (KY417143), MHV-A59571

(NC_048217), NL63 (JX504050), 229E (OQ920101), HKU1 (NC_006577), OC43 (AY391777),572

RmYN02 (EPI_ISL_412977), ZC45 (MG772933), RsHuB2019A (OQ503498). The spike protein for573

Rs4075 (KC880993). Receptors: ACE2 (NM_001371415), R.affinis ACE2 (MT394208), DPP4574

(NM_001935), APN (NM_001150), mCEACAM1a (NM_001039186), AXL (NM_001699), NRP1575

(NM_001024628), SCARB1 (BC143319), KREMEN1 (NM_032045), ASGR1 (NM_001671),576

CD147 (AB085790), CLEC4M (KJ902090), LRRC15 (NM_001135057)59, TMEM106B577
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(NM_018374) 60, TMPRSS2 (NM_001135099). All receptor and viral gene sequences utilized in this578

study were commercially synthesized by Genewiz or GenScript.579

580

Plasmids581

All plasmids expressing type-I transmembrane CVRs were constructed by inserting the human582

codon-optimized CVR sequences into a lentiviral transfer vector (pLVX-EF1a-Puro, Genewiz) with583

an N-terminal CD5 secretion leading sequence (MPMGSLQPLATLYLLGMLVASVL) and584

C-terminal 3×FLAG tag (DYKDHD-G-DYKDHD-IDYKDDDDK). For the type-II transmembrane585

CVRs, the C-terminal ectodomains were replaced by corresponding CVR modules, along with a586

C-terminal 3×FLAG tag. Chimeric protein-coding sequences were generated using overlapping PCR,587

direct sequence synthesis, or restriction endonuclease digestion and ligation.588

Plasmids expressing the Spike protein of various coronaviruses for VSV pseudotyping were589

constructed by inserting human codon-optimized spike coding sequences into either the pCAGGS590

vector or pcDNA3.1(-) vectors with C-terminal 13-18 residues substituted with an HA tag591

(YPYDVPDYA) to enhance VSV pseudotyping efficiency and facilitate detection61. Several spike592

genes were also introduced into the pLVX-IRES-ZsGreen vectors for flow cytometry-related assays,593

including the scFv-mFc binding and the 76E1 epitope exposure assays.594

Plasmids expressing secreted fusion proteins, such as coronavirus antigen-Fc, scFv-Fc, and595

nanobody-Fc, were constructed by inserting the coding sequences into pCAGGS. These constructs596

featured an N-terminal CD5 secretion leading sequence (MPMGSLQPLATLY LLGMLVASVL) and597

a C-terminal Twin-Strep Tag II following 3×FLAG tandem sequences598

(WSHPQFEKGGGSGGGSGGSAWSHPQFEK-GGGRS-DYKDHDGDYKDHDIDYKDDDDK) for599

purification or detection. Plasmids encoding codon-optimized anti-ACE2 antibodies H11B1162, B6,600

S2P6, 76E1, S2H97, and REGN10933 were constructed by integrating the heavy-chain and601

light-chain coding sequences into pCAGGS with an N-terminal CD5 leader sequences. For602

DSP-based cell-cell fusion assays, the split protein genes were inserted into pLVX-EF1a-Puro. The603

coding sequences for the dual reporter split proteins, namely RLuc (1-155)-sfGFP (1-157) and sfGFP604

(158-231)-RLuc (156-311), are previously descirbed16.605

606

Stable cell lines607

Cells stably expressing distinct CVRs and other receptors were established through lentivirus608

transduction and subsequent antibiotic selection. Lentiviruses carrying the target genes were609

generated by co-transfecting lentiviral transfer plasmid (pLVX-EF1a-Puro) with packaging plasmids610

pMD2G (Addgene, 12259) and psPAX2 (Addgene, 12260) into HEK293T cells through GeneTwin611
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transfection reagent (Biomed, TG101). The lentivirus-containing supernatant was harvested and612

pooled at 24 and 48 hours post-transfection. Cell transduction was carried out in the presence of 8 613

μg/mL polybrene. Stable cell lines were selected and maintained in a growth medium supplemented614

with puromycin (1 μg/mL). Generally, cells exhibiting stability for at least ten days were utilized in615

subsequent experiments.616

617

SARS-CoV-2 reactive antisera618

SARS-CoV-2 antisera were obtained from vaccinated individuals (SARS-CoV-2 CoronaVac,619

Sinovac), approximately 21 days post-vaccination and Wuhan COVID-19 convalescents around one620

year post-infection, respectively. Ethical approval for the vaccinated individuals was granted by the621

Ethics Committee (seal) of Beijing Youan Hospital, Capital Medical University, with approval622

number LL-2021-042-K. The collection of sera from Wuhan COVID-19 convalescents was623

conducted in collaboration with the Hubei Provincial Center for Disease Control and Prevention and624

Hubei Provincial Academy of Preventive Medicine (HBCDC), following written consent and under625

the approval of the Institutional Review Boards with the identification number 2021-012-01. Sera626

were heat-inactivated at 56℃ for 30 minutes.627

628

Bioinformatic and computational analyses629

Multi-sequence alignment was analyzed by Geneious Prime software or mafft (v7.407) with630

default parameters. Phylogenetic trees were constructed by IQ-TREE (http://igtree.cibiv.univie.ac.at/)631

with the WAG substitution model (1000 Bootstraps) and polished with iTOL (v6)632

(http://itol.embl.de). The cryo-EM structures were displayed and marked by ChimeraX with PDB633

accession numbers indicated in figures or legends.634

635

Protein expression and purification636

The proteins for binding, neutralizing, or biopanning-related assays were produced in HEK293T637

by transient transfection with plasmids using GeneTwin reagent (Biomed, TG101-01), following the638

manufacturer's guidelines. Protein-containing supernatants were harvested every 2-3 days639

post-transfection, pooled, clarified, and proceeded to purification. Proteins fused with Fc were640

captured using Pierce Protein A/G Plus Agarose (Thermo Scientific, 20424), eluted with pH 3.0641

glycine (100 mM in H2O), and immediately pH-balanced by 1/10 volume of UltraPure 1 M Tris-HCI,642

pH 8.0 (15568025, Thermo Fisher Scientific). Proteins with Twin-Strep Tag II were enriched using643

Strep-Tactin XT 4Flow high-capacity resin (IBA, 2-5030-002), washed, and eluted with buffer BXT644

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 4, 2024. ; https://doi.org/10.1101/2024.03.03.583237doi: bioRxiv preprint 

http://itol.embl.de
https://doi.org/10.1101/2024.03.03.583237
http://creativecommons.org/licenses/by-nc-nd/4.0/


(100 mM Tris/HCl, pH 8.0, 150 mM NaCl, 1 mM EDTA, 50 mM biotin). The eluted proteins were645

concentrated and buffer-exchanged to PBS through ultrafiltration, aliquoted, and stored at -80℃.646

Protein concentrations were determined using the Omni-Easy Instant BCA Protein Assay Kit647

(Epizyme, ZJ102).648

649

Western blot650

For detecting the cellular expression of CVRs or other receptors, cells were washed once with651

PBS and lysed using RIPA buffer (50 mM Tris-pH 7.4, 150 mM NaCl, 1%TritonX-100, 0.5% sodium652

deoxycholate, 0.1 % SDS, 25 mM β-glycerophosphate, 1 mM EDTA, and 1 mM PMSF) on ice for653

15 minutes. The lysate was clarified by centrifugation at 12,000g at 4℃ for 15 minutes. The654

supernatant was combined with a 1:5 (v/v) ratio of 5×SDS-loading buffer and incubated at 95℃ for655

10 minutes. For detecting the spike packaging efficiency, the PSV-containing supernatant was656

concentrated with a 30% sucrose cushion (30% sucrose, 15 mM Tris-HCl, 100 mM NaCl, 0.5 mM657

EDTA) at 20,000×g for 1.5 hours at 4℃. The concentrated virus pellet was resuspended in 1×SDS658

loading buffer and incubated at 95℃ for 30 minutes. For detecting the S2’ cleavage site of PSV, the659

concentrated viruses were resuspended in DMEM in the presence of indicated concentrations of660

scFv-mFc or soluble ACE2 for 2 hours at 4 ℃. Then were treated with 10 μg/ml TPCK-trypsin for661

30 minutes at 37℃, followed by mixing with a 1:5 (v/v) ratio 5×SDS-loading buffer and incubated at662

95℃ for 10 minutes.663

After SDS-PAGE and PVDF membrane transfer, blots were blocked with 5% milk in PBS664

containing 0.1% Tween-20 (PBST) at room temperature for 1 h. Primary antibodies targeting FLAG665

tag (Sigma-Aldrich, F1804), HA (BioLegend, 901515), VSV-M [23H12] (Kerafast, EB0011),666

β-tubulin (Immunoway, YM3030) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH)667

(AntGene, ANT325) were applied at concentrations ranging from 1:2000-1:10,000 in PBST with 1%668

milk overnight at 4 ℃. The stem-helix targeting monoclonal antibody S2P6 for coronavirus spike669

detection was used at 1 μg/ml. After three washes with PBST, the blots were incubated with670

horseradish peroxidase (HRP)-conjugated secondary antibodies (1:10,000). After extensive wash,671

blots were visualized using the LI-COR Odyssey CLx or the Omni-ECL Femto Light672

Chemiluminescence Kit (EpiZyme, SQ201) and a ChemiDoc MP Imaging System (Bio-Rad).673

674

Live-cell binding assays675

For detecting coronavirus antigens binding to cell surface expressed CVRs, NTD/CTD/S1-Fc676

fusion proteins were diluted in DMEM and incubated with cells at the indicated concentrations for 1677
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 h at 37℃. Cells were washed twice with Hanks' Balanced Salt solution (HBSS) and incubated with678

2 μg/mL Alexa Fluor 594 or 488-conjugated goat anti-mouse IgG (Thermo Fisher Scientific;679

A32742/A32723) for visualization. For detecting the Twin-Strep Tag II labeled S-trimer or soluble680

ACE2 binding, the incubated cells were treated with 1 μg/mL anti-Twin-Strep Tag II monoclonal681

antibody (Abbkine; ABT2230) for 30 minutes at 4℃, washed twice with HBSS, and then subjected682

to fluorescence-labeled secondary antibody incubation. Finally, cells were incubated with Hoechst683

33342 (1:5,000 dilution in HBSS) for nuclear staining before imaging using a fluorescence684

microscope (MI52-N).685

686

Immunofluorescence assays687

Immunofluorescence assays were performed to assess the expression of the CVRs or other688

receptors carrying the C-terminal 3×FLAG tags. In general, cells expressing the proteins were fixed689

with 100% methanol at room temperature for 10 minutes, washed once with PBS, and incubated with690

a mouse monoclonal antibody [M2] specific to the FLAG-tag (Sigma-Aldrich, F1804) in 1%691

BSA/PBS at 37℃ for 1 hour. After another wash with PBS, cells were incubated with 2 μg/mL Alexa692

Fluor 594-conjugated goat anti-mouse IgG (Thermo Fisher Scientific, A32742) diluted in 1%693

BSA/PBS for 1 hour at 37℃. Nuclei were stained with Hoechst 33342 (1:5,000 dilution in PBS).694

Images were captured and merged using a fluorescence microscope (Mshot, MI52-N).695

696

Biolayer interferometry assays697

Protein binding kinetics were evaluated through Bio-Layer Interferometry (BLI) assays698

conducted on the Octet RED96 instrument (Molecular Devices). Briefly, 20 μg/mL of699

S1/NTD/CTD-hFc recombinant proteins were immobilized on protein A (ProA) biosensors (ForteBio,700

18-5010). Subsequently, the biosensors were washed and incubated with 2-fold serial-diluted701

nanobodies (Twin-Strep Tag II) in the kinetic buffer (PBST) to record the association kinetics,702

followed by recording the dissociation kinetics in the same Kinetic buffer. The background was703

established using a kinetic buffer without the binding proteins. The kinetic parameters and binding704

affinities were determined using the Octet Data Analysis software (v.12.2.0.20) through the705

curve-fitting kinetic analysis or steady-state analysis with global fitting.706

707

Pseudovirus entry and propagation assays708

Single-round VSV-based pseudoviruses carrying the coronavirus spikes were produced709

following a modified version of a well-established protocol63. The VSV-ΔG carrying GFP and firefly710
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luciferase (VSV-ΔG-GFP-fLuc) was rescued using a reverse genetics system in our laboratory, along711

with helper plasmids from Karafast. For packaging coronavirus PSV, HEK293T cells were712

transfected with plasmids overexpressing the spike proteins. At 24-36 hours post-transfection, cells713

were inoculated with 1×106 TCID50/mL VSV-dG-GFP-fLuc for 4 hours at 37℃ with 8 μg/mL714

polybrene. Following two DMEM washes, the culture medium was replenished with DMEM715

containing 1 μg/mL anti-VSV-G neutralizing antibody (from the I1-mouse hybridoma) to minimize716

background signals from parental viruses. The TCID50 of the PSV was calculated using the717

Reed-Muench method.718

For the pseudovirus propagation assays, the replicable PSVs carrying the GFP reporter and the719

genomically encoded HKU3 or HKU5 spikes (pVSV-ΔG-GFP-HKU3-S and720

pVSV-ΔG-GFP-HKU5-S) were generated by the VSV based reverse genetics system. The vector for721

the VSV genomes was modified based on pVSV-ΔG-GFP-fLuc, with fLuc replaced by the S genes.722

In brief, the BHK-21 cells were infected with a recombinant vaccinia virus expressing T7 RNA723

polymerase (vvT7) for 45 minutes at 37℃ (MOI=5). After removing vvT7, the cells were transfected724

with plasmids containing the pVSV-ΔG-GFP-HKU5/HKU3-S vector and helper plasmids from725

Karafast. The virus-containing supernatant (P0) was collected 48 hours post-transfection and726

amplified in Vero E6 cells with in-trans provided VSV-G to yield P1 viruses. The P1 viruses were727

further amplified in Caco2-CVRs cells in a VSV-G independent manner and in the presence of728

anti-VSVG (I1-Hybridoma supernatant), generating P2 viruses that were dependent on the729

genomically encoded HKU3 and HKU5 spike proteins for amplification.730

For pseudovirus entry or entry inhibition assays, susceptible cells were cultured in 96-well731

plates at a density of 5×104 cells per well and then incubated with around 1×106 TCID50/mL of732

pseudovirus (PSV), with 100 μL per well. The incubation allowed for attachment and viral entry with733

or without the indicated concentrations of antibodies or other inhibitors. In some cases,734

TPCK-treated trypsin of indicated concentrations (sigma, T8802) was added to the medium to735

enhance entry efficiency. At 16-20 hour post infection (hpi), 40 μL of One-Glo-EX substrate736

(Promega) was added to the cells and incubated for at least 5 minutes on a plate shaker in the dark.737

Relative light units (RLU) were determined using the GloMax 20/20 Luminometer (Promega). GFP738

intensity was analyzed using a fluorescence microscope (Mshot, MI52-N).739

740

Cell-cell fusion assays741

A cell-cell fusion assay based on dual split proteins (DSPs) was performed on HEK293T or742

BHK21-T7 cells stably expressing the CVRs or the native receptors16. Group A cells were transfected743
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with plasmids expressing spike protein and RLucN(1-155)-sfGFP(1-157), while the group B cells744

were transfection with plasmids expressing spike proteins (same as in group A) and745

sfGFP(158-231)-RLuc(156-311). Cells from both groups were trypsinized and co-cultured in a746

96-well plate at a density of approximately 1×105 cells per well at 12 hours post-transfection. After747

16-24 hours, cell nuclei were stained with Hoechst 33342 (1:5,000 dilution in HBSS) for 30 minutes748

at 37 ℃, and the fluorescent images were captured using a fluorescence microscope (MI52-N;749

Mshot). For the assessment of live-cell luciferase activity after reconstitution of split RlucN, 20 μM750

of EnduRen live-cell substrate (Promega, E6481) was added to the cells in DMEM and incubated for751

at least 1 hour before detection using the Varioskan LUX Multi-well Luminometer (Thermo Fisher752

Scientific).753

754

Flow cytometry analysis755

For flow cytometry analysis, viral antigen-mFc and VBDs-mFc recombinant proteins were756

diluted in DMEM at the indicated concentrations and then incubated with HEK293T cells expressing757

the indicated receptors or coronaviruses spike proteins for 1 hour at 37℃. In live cell binding assays,758

for detecting the cell surface hFc or intracellular ZsGreen, cells were washed with DMEM and759

subsequently incubated with either Alexa Fluor 594-conjugated goat anti-mouse IgG (Thermo Fisher760

Scientific; A32742) or a combination of Alexa Fluor 488-conjugated goat anti-human IgG (Thermo761

Fisher Scientific; A11013). In live cell binding assays, for detecting the cell surface 76E1 epitope762

exposure, the SARS2-CoV-2-S IRES-ZsGreen expressing cells were incubated with indicated763

concentrations of scFv-mFc or soluble receptors for 1 hour at 37℃ before 76E1 antibody incubation764

(1 μg/mL). When detection of the intracellular FLAG tag is necessary, cells were washed once with765

HBSS and fixed with 4% PFA, permeabilized with 0.1% Triton X-100, blocked with 1% BSA/PBS766

at 4℃ for 30 minutes, and subsequently stained with Rabbit anti-Flag tag mAb (CST,14793S)767

diluted in 1% BSA/PBS for 1 hour at 4℃ to visualize the expression of CVRs and other receptors.768

Following extensive washing, the cells were incubated with Alexa Fluor 647-conjugated goat769

anti-rabbit IgG (Thermo Fisher Scientific; A32733) and Alexa Fluor 488-conjugated goat anti-mouse770

IgG (Thermo Fisher Scientific; A32723), both diluted in 1% BSA/PBS, for 1 hour at 4℃. Following771

the completion of all staining procedures, cells washed twice with PBS were subsequently analyzed772

using the CytoFLEX Flow Cytometer (Beckman). In each case, 5,000 cells expressing either773

receptors or spikes, gated based on FLAG/hFc/ZsGreen-fluorescence intensity and SSC/FSC, were774

analyzed with the CytoFLEX Flow Cytometer (Beckman).775

776

Reverse genetics to rescue HKU5-WT and HKU5-ZGH777
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The full-length cDNA clone of HKU5 (GenBank: NC_009020) was designed and synthesized778

as seven (from A to G) contiguous cDNAs flanked by unique class IIS restriction endonuclease site779

(BsaI or BsmBI) and cloned in pUC57 vector. Class II restriction endonuclease sites AvrII and AscI780

were introduced to 5' terminal of HKU5 A and 3' terminal of HKU5 G fragments, respectively.781

Several silent mutations were included to disrupt naturally occurring restriction cleavage sites. A782

poly-A (25 repeats) sequence was introduced to 3’ terminal of HKU5 G fragment. To assemble the783

full-length cDNA clone, HKU5 A-G fragments were digested by endonucleases, resolved on 1%784

agarose gels, purified with a gel extraction kit, extracted with chloroform, and precipitated with785

isopropyl alcohol. Digested HKU5 A-G inserts, and modified pBaloBAC11 vector were mixed,786

ligated overnight at 4℃, and transformed into DH10B competent cells. The correct full-length787

HKU5 cDNA clone was identified and verified by sequencing. The construction of HKU5-ZGH788

utilized the transformation-associated recombination (TAR) cloning technique. Specifically, a789

ZsGreen-HiBit (ZGH) DNA fragment was commercially synthesized (Tsingke) to replace the790

HKU5-ORF5. The PCC1 vector was used to clone the HKU5 genomic DNA carrying the ZGH791

substitution based on three segments amplified using the HKU5-WT infectious clone as a temperate.792

Subsequently, all the products were transformed into yeast using the high-efficiency lithium793

acetate/SS carrier DNA/PEG method. The yeast plasmid was extracted and transformed into EPI300794

electrocompetent cells. The plasmid used for cell transfection was obtained from a 300 mL E. coli795

bacterial culture suspension. For transfection, 4 μg of both HKU5 WT and HKU5-ZGH plasmids796

were separately transfected into Caco2-1B4 cells (1×106 cells) using Lipofectamine 2000. Progeny797

viruses collected from the supernatant at 72 hours post-transfection (P0) were utilized to generate798

stocks for subsequent analyses.799

800

Transmission electron microscopy801

Viral culture supernatant was fixed with formaldehyde (working concentration 0.1%) at 4℃802

overnight. Subsequently, it was concentrated by ultracentrifugation through OptiPrepTM Density803

Gradient Medium (D1556) at 154,000 g at 4℃ for 2.5 hours using a SW41Ti rotor (Beckman). The804

pelleted viral particles were suspended in 100 μL of PBS, stained with 2% phosphotungstic acid (pH805

7.0), and examined using a Tecnai transmission electron microscope (FEI) at 200 kV.806

807

Authentic coronavirus infection assays808

Human coronavirus 229E (VR-740) is obtained from ATCC and amplified in Huh-7 cells.809

MHV-A59 is a gift from Professor Yu Chen’s lab (Wuhan University) and is amplified in Neuro2a810

cells. The SARS-CoV-2-ΔN with N protein substituted with EGFP is rescued using an established811
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protocol, and cultured in Caco2 cells overexpressing the SARS-CoV-2 N protein64. All experiments812

involving RsHuB2019A, HKU5-WT, and HKU5-ZGH authentic viruses infection were conducted in813

the certified negative-pressure Biosafety Level 2 laboratory at Wuhan Institute of Virology.814

RsHuB2019A is amplified in either Huh-7 or in Caco2-Nb27 cells. HKU5-WT and HKU5-ZGH are815

amplified in Caco2-1B4 cells.816

For replication experiments, target cells were initially seeded in 24-well plates and washed with817

DMEM before inoculation, either in the presence or absence of trypsin (100 μg/mL). Following a818

one-hour incubation at 37℃, the cells were washed with DMEM and further incubated for the819

indicated hours at 37℃. For qRT-PCR analysis, cell-free supernatants (50 μL per well each time)820

were collected at indicated time points post-infection and stored at -80℃. Viral RNA was extracted821

using Virus DNA/RNA Extraction Kit (Vazyme: RM501) and subjected to qRT-PCR as previously822

described65. Primers for RsHuB2019A RdRp: 5’-TTGTTCTTGCTCGCAAACATA-3’ (forward) and823

5’-CACACATGACCATCTCACTTAA-3’ (reverse). Primer for HKU5 nsp2:824

5’-CTGCGCTTAATGCCCCATTC-3’ (forward) and 5’-GACGTGTAGACGTAGAGCCG-3’825

(reverse). Primers for VSV L protein, forward primer: 5’-TCTTGAGTTGTGGAGACGGC-3’826

(forward) and 5’- ACCGTCTTGAACATGGGACC-3’ (reverse). Primers for MHV-A59 N827

protein:5’-TATAAGAGTGATTGGCGTCC-3’(forward) and 5’-GAGTAATGGGGAACCACACT-3’828

(reverse). All samples were analyzed in duplicate on two independent runs.829

For immunofluorescence assays, cells were fixed with methanol for 40 minutes at room830

temperature at indicated time points. The expression of RsHuB2019A and HKU5 N proteins was831

detected by rabbit anti-SARS-related CoV Rp3 N protein serum (diluted at 1:2000) and rabbit832

anti-HKU5 N protein serum (diluted at 1:4000), respectively, followed by DL594-conjugated goat833

anti-rabbit IgG (Thermo, 1:1000) staining. MHV-A59 and 229E-VR740 spike proteins were detected834

using their Spike-targeting nanobodies (1A1-mFc for 229E-VR740; 1F7-mFc for MHV-A59),835

followed by DL594-conjugated goat anti-mouse IgG antibodies (Thermo, 1:1000).836

837

Nanobody bio-panning838

Specific viral antigens (30-100 μg) were immobilized on streptavidin-conjugated magnetic839

beads for one-hour incubation at 37℃ and extensively washed to remove unbound antigens.840

Subsequently, the beads were incubated with the nanobody library (1×1010 PFU) (Naïve VHH841

libraries from Camelus bactrianus, Alpaca, and Llama from NBbiolab, China) for 1 hour. The bound842

phages were eluted using an Elution Buffer (50 mM Tris-pH 7.4, 150 mM NaCl, 50 mM biotin) after843

extensive washing with PBST to eliminate nonspecific binders. The eluted phage encoding the844

specific nanobodies was proliferated in E. coli (TG1). After one round of magnetic beads-based845
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selection. 1-3 additional rounds of phage biopanning were conducted using magnetic beads or846

immunotubes. The positive clones were identified through the enzyme-linked immunosorbent assays847

(ELISA), sequenced, and verified by cell-based binding assays.848

849

Biosafety and biosecurity850

Experiments related to authentic human coronavirus 229E, SARS-CoV-2-ΔN, and murine851

MHV-A59 were authorized by the Biosafety Committee of the State Key Laboratory of Virology,852

Wuhan University and conducted in accordance with standard operating procedures (SOPs) in a853

BSL-2 laboratory. SARS-CoV-2 authentic viruses-related experiments were conducted in the854

ABSL-3 facility at Wuhan University with the approval of the Biosafety Committee of the ABSL-3855

laboratory. The SARS-CoV-2 WT strain (IVCAS 6.7512) was provided by the National Virus856

Resource, Wuhan Institute of Virology, Chinese Academy of Sciences and amplified in Vero E6 cells857

in the ABSL-3 facility at Wuhan University. Experiments related to authentic viruses RsHuB2019A,858

HKU5-WT, and HKU5-ZGH were approved by the Wuhan Institute of Virology (WIV) IBCs and859

performed in the BSL-2 laboratory according to SOPs at WIV facilities. All the facilities at both860

Wuhan University and WIV for this work adhere strictly to the safety requirements recommended by861

the China National Accreditation Service for Conformity Assessment.862

863

Statistical analysis864

Most experiments were repeated 2-5 times, each with approximately 3-4 biological replicates.865

Results are presented as mean ± standard deviation (s.d.) or mean ± standard error of the mean866

(s.e.m.), as specified in the figure legends. Statistical analyses were primarily performed using867

GraphPad Prism (V.8) through unpaired two-tailed Student’s t-tests two independent groups or868

One-way ANOVA analysis followed by Dunnett' s test for multiple comparisons. P < 0.05 was869

considered statistically significant; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; ns,870

non-significant.871
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Fig. 1 Modular design of customized viral receptors (CVRs) for efficient SARS-CoV-2 entry.

a-e, Dissecting the importance of ACE2 sequences for its viral receptor function. a, Schematic

representation illustrates the LCB1-ACE2 chimera with stepwise truncated ACE2 sequences. Protein

expression levels (b) and SARS-CoV-2 RBD binding efficiency (c) in HEK293T transiently

expressing the specified chimera. SARS-CoV-2 pseudovirus (PSV) entry in cells expressing the

chimera was demonstrated by intracellular GFP (d) and RLU (e), respectively. f-j, Functionality of

chimeric receptors with remaining ACE2 sequences substituted by domains from other proteins. f,

Schematic representation delineates CVRs carrying exogenous spacer, transmembrane and cytosolic

domain (TMC), and EPM sequences. The CVR expression (g), SARS-CoV-2 RBD-mFc binding (h),

and PSV entry efficiencies (i, j) in HEK293T transiently expressing the indicated receptors. k-m,

The impact of spacer length on CVR receptor function. Schematic representation illustrates CVRs

with various TR23 tandem repeats, displaying predicted spacer length (k). CVR expression (l) and

SARS-CoV-2 PSV entry efficiency (m) were evaluated in cells expressing the indicated CVRs. n-p,

Different types of viral binding domains (VBDs) are compatible with CVR design. The

SARS-CoV-2 RBD binding (o) and PSV entry (p) are supported by indicated CVRs transiently

expressed in HEK293T cells. q, Schematic illustration of the modular design strategy for CVRs.

RLU: relative light units. Scale bars: 200 μm. Data are presented as mean ± SD for n=3 biologically

repeats for c, e, h, j, m, and p. One-way ANOVA analysis followed by Dunnett's test for e and m;

unpaired two-tailed Student's t-tests for j and p.
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Fig. 2 The impact of different binding epitopes on receptor functionality and the underlying

mechanisms. a, Structural display of SARS-CoV-2 neutralizing epitopes in NTD, CTD, and S2

subunit, respectively. Various epitope types of 22 neutralizing antibodies are indicated. FP: fusion

peptide. HR: heptad repeat. b, Schematic representation of 44 single-chain variable fragment

(scFv)-CVRs with N-terminal light chain (LH) or heavy chain (HL), respectively. c, Heat map

displaying SARS-CoV-2 PSV entry efficiency in HEK293T cells transiently expressing the indicated

scFv-CVRs. d, Demonstration of CVR expression, antigen binding, PSV entry, and spike-mediated

cell-cell fusion in HEK293T expressing representative scFv-CVRs. e, Cartoon elucidates the

functional receptor-mediated RBD conformational change and the subsequent exposure of 76E1

binding epitope and cleavage at the S2’ site. f, Flow cytometry analysis of 76E1 epitope exposure in

the presence of indicated soluble scFv-mFc recombinant proteins. Dashed lines denote thresholds for

positive ratio calculation. sACE2: soluble ACE2 ectodomain. g, Dose-independent exposure of 76E1

epitope upon sACE2 or S2L20 coincubation, which was not detected in BG10-19. h,

Trypsin-mediated cleavage of S2’ site in SARS-CoV-2 pseudovirus particles in the presence of

scFv-CVRs with or without receptor function. TPCK-try: 10 μg/mL TPCK-treated trypsin. Scale bars:

100 μm. Data are presented as mean values for n=3 biologically repeats for c. Data are presented as

mean ± SD for n=3 biologically repeats for f.
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Fig. 3 Characterization of NTD-mediated sarbecovirus entry supported by S2L20-CVR. a,

SARS-CoV-2 binding, fusion, and viral entry supported by NTD-targeting S2L20-CVR. The CVR

expression, NTD/CTD-mFc binding, cell-cell fusion, pseudovirus entry, and SARS-CoV-2(ΔN-GFP)

infection in HEK293T stably expressing the indicated CVRs. b, PSV entry of SARS-CoV-2 VOCs in

HEK293T expressing hACE2 or S2L20-CVR. c, d, The PSV entry (c) and NTD-mFc binding (d)

efficiencies of various sarbecoviruses in HEK293T stably expressing hACE2 or S2L20-CVR. e,

Illustration of the SARS-CoV-2 and RaTG13 RBD swap chimera. The residue usage in position 372,

critical for the N370-glycosylation, is indicated. ¥: N-glycan. f, Spike proteins expression levels and

the corresponding human ACE2 (shACE2) and S2L20-mFc binding efficiencies. g, h, Impact of

T372A mutation on S2L20-CVR supported PSV entry of RaTG13 (g) and BANNAL-20-52 (h). i,

Heatmap showing the inhibitory efficacy of indicated SARS-CoV-2 neutralizing antibodies against

PSV entry in HEK293T-hACE2 or HEK293T-S2L20, with BSA as a control. j, Structures of

SARS-CoV-2 BA.4/5 spike trimmer without antibody binding (left), or in complex with S2L20

(right). Dashed boxes highlighted the N370-glycan spatially proximate to the S2L20. k, Structures of

SARS-CoV-2 BA.2 spike trimmers with (right) or without (left) the 4A8 binding. Orange: NTD;

Green: CTD; Red: S2L20; Magenta: 4A8. The ratio of S2L20-supported entry compared to

ACE2-supported entry is indicated in c, g, and h. Scale bars: 100 μm. Data are represented as mean ±

SD with n=3 biological replicates for b, c, g, and h. Data representative of 2-3 independent

experiments for a-d, f-i. Unpaired two-tailed Student's t-tests for c, b, g, and h.
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Fig. 4 CVRs supported efficient entry of various coronaviruses with unidentified receptors. a, 

Phylogenetic tree based on spike protein amino acid sequences of representative coronaviruses. b, 

Workflow demonstrating the customization of nanobody-based CVRs for specific coronaviruses. c, 

Binding kinetics between optimal nanobodies and their respective antigens. d, Coronavirus CTD or 

S1 binding in HEK293T cells transiently expressing the corresponding CVRs. Dashed lines indicate 

thresholds for positive ratio calculation. e, PSV entry efficiencies of 12 representative coronaviruses 

in HEK293T cells transiently expressing the indicated CVRs. f, 229E S1-mFc binding, fusion, and 

authentic infection in HEK293T stably expressing APN or 4H5-CVR. g-i, Evaluation of 

NTD-mediated (g) or CTD-mediated (h) MHV antigen binding, cell-cell fusion, and authentic MHV 

infection in HEK293T cells stably expressing mCEACAM1a or the indicated CVRs. MHV-A59 

RNA copies (N gene) in supernatant was quantified for infected cells expressing mCEACAM1a or 

1B3-CVR (i). j, Summary of the IC50 of several broadly neutralizing antibodies against PSV entry of 

representative coronaviruses in HEK293T stably expressing the corresponding CVRs. The RBD-

targeting REGN 10933 (REGN) was employed as a control. /: no inhibition detected. k, Inhibitory 

efficacy of inhibitors against PSV entry of SARS-CoV-2, HKU1, HKU3 and HKU5 in HEK293T 

cells stably expressing the indicated CVRs. Infection was examined by S protein 

immunofluorescence at 24 hpi for f, g, and h. Scale bars: 100 μm. Data are presented as mean ± SD 

and n=2-3 biologically repeats for d, e, i, and k. One-way ANOVA analysis followed by Dunnett's 

test for k; unpaired two-tailed Student’s t-tests for e.
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Figure 5. CVRs supported efficient propagation of VSV-based pseudotypes and authentic

coronaviruses. a, Genetic organizations and workflow for generating replicable VSV-HKU3-GFP or

VSV-HKU5-GFP. b, Successful rescue (P0) and amplification (P1) of VSV-HKU3-GFP assisted by

VSV-G. c, d, Trypsin-enhanced cell-cell fusion (c) and VSV-G-independence (d) of

VSV-HKU3-S-GFP infection in Caco2-Nb27 (MOI: 0.001). e, f, Accumulation of VSV-HKU3-GFP

(e) or VSV-HKU5-GFP (f) RNA in the supernatant at indicated time points. g, VSV-HKU5-GFP

mediated cell-cell fusion in Caco2 or Caco2-1B4 cells at MOI=0.1. h, Cartoon illustrating

trypsin-independent propagation of RsHuB2019A in Caco2-Nb27 cells as compared with

trypsin-dependence in Huh-7. i, CVR expression (green), RsHuB2019A N protein (red), and

cytopathic effect (CPE, bright field) in cells inoculated with RsHuB2019A at indicated MOI (no

trypsin). j, Accumulation of viral RNA in supernatant of cells infected with RsHuB2019A with or

without trypsin. k, Genetic organizations of the HKU5 ΔORF5-ZsGreen-HiBit (HKU5-ZGH). l,

CVR expression (green), N protein (red), and the CPE in indicated cells inoculated with HKU5 at

different MOI. m, Accumulation of HKU5 RNA in supernatant of cells inoculated with HKU5 at

different MOI. n, Transmission electron microscopy analysis of HKU5-WT virions. o-q, Increase in

ZsGreen intensity (P0) (o), ZsGreen-HitBit signal (p), and supernatant RNA copies of HKU5-ZGH

(q) in Caco2-1B4 cells. r, Efficacy of indicated antiviral reagents against HKU5 infection in

Caco2-1B4 cells assessed by intracellular N proteins at 48 hpi. s, Overview of the protease cleavage

sites of selected coronaviruses. The residue responsible for reduced endosomal cysteine protease

activity（ECP）is marked in red, numbering based on SARS-CoV-2. Scale bars: 125 μm for i, l, and o,

and 100 μm for b-d, g, and r. Data are presented as mean ± SD for n=2 biologically repeats for e, f, j,

m, and q. Unpaired two-tailed Student's t-tests for p.
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Extended Data Fig. 2 Comparison of CVRs carrying transmembrane and cytosolic domains 

from different receptors. a, Details of the 31 different TM sequences examined in this study. b, 

Cartoon illustrating the framework of the CVRs for TM evaluation. c, Immunofluorescence analysis 

of the expression of the 31 CVRs in HEK293T cells by detecting the C-terminal fused 3× FLAG tags. 

d, Evaluation of SARS-CoV-2 PSV entry efficiency supported by the indicated CVRs carrying 

different TMs. Mxra8 TM displaying the best performance was marked in red. e, Cartoon illustrating 

the LCB1-based CVRs with selected TM or TMC substitutions for further verification. f, g, PSV 

entry-supporting efficiencies of the CVRs assessed by RLU(f) or GFP reporters (g) in transiently 

transfected 293T cells. Scare bars: 100 μm. One-way ANOVA analysis followed by Dunnett's test for 

f.
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Extended Data Fig. 3 EPM promotes cell surface distribution and entry-supporting efficiency 

of CVRs. a, Immunofluorescence displaying the subcellular distribution of LCB1-Mxra8TMC-based 

CVRs transiently expressed in HEK293T cells with or without EPM. The white dashed boxes 

highlight the cell surface distribution at a higher magnification. b, Evaluation of the SARS-CoV-2 
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Extended Data Fig. 4 Comparison of CVRs displayed with different transmembrane topologies.

a, Cartoon illustrating CVRs carrying LCB1 or mNb1 displayed in either type I or type Ⅱ

transmembrane topology. b, Evaluation of SARS-CoV-2 or MERS-CoV PSV entry efficiency

supported by the indicated CVRs with different transmembrane topologies in HEK293T cells.

Unpaired two-tailed Student's t-tests for b.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 4, 2024. ; https://doi.org/10.1101/2024.03.03.583237doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.03.583237
http://creativecommons.org/licenses/by-nc-nd/4.0/


SARS-CoV-2 
RBD binding

SARS-CoV-2 
entry

Expression

Mock ACE2 14x 7x 4x 3x 2x 1x 0x

23aa tandem repeats from CLEC4M (TR23)
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Assessment of CVR expression, SARS-CoV-2 RBD-mFc binding, and PSV entry efficiency 

supported by the indicated CVRs transiently expressed in HEK293T cells. Scare bars: 100μm.
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Extended Data Fig. 6 Comparison of CVRs carrying different numbers of immunoglobulin

domains or dimerization-abolished hFc as spacers. a, Schematic representation of the CVRs

carrying different numbers of immunoglobulin (Ig) domains (left) or an Fc mutant with abolished

dimerization ability. b, Western blot analysis of CVRs expression in HEK293T cells under either

reducing or non-reducing conditions, respectively. c, Assessment of SARS-CoV-2 PSV entry

efficiency in HEK293T cells transiently expressing the indicated CVRs. d, Schematic representation

of the CVRs carrying different numbers of Ig-like domains (left) from mCEACAM1a. e, Western

blot analysis of CVRs expression in HEK293T cells. f, SARS-CoV-2 PSV entry efficiency in

HEK293T cells transiently expressing the indicated CVRs. Unpaired two-tailed Student's t-tests for c.

One-way ANOVA analysis followed by Dunnett's test for f.
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Extended Data Fig. 7 Expression levels and entry-supporting efficiency of CVRs carrying

different viral binding domains. a, Schematic representation of the CVRs carrying different

ACE2-mimicking Hf. b, c, Expression (b) and SARS-CoV-2 entry-supporting (c) ability of different

CVRs in 293T cells. d, Immunofluorescence analyzing the expression of the indicated CVRs

transiently expressed in HEK293T cells by detecting the C-terminal fused 3×FLAG tags. Scare bars:

100μm. One-way ANOVA analysis followed by Dunnett's test for c.
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Extended Data Fig. 8 Functionality of CVRs carrying bi-specific VBDs or polymeric VBDs in

supporting coronavirus entry. a-c, Illustration (a), viral RBD binding efficiency (b), and PSV

entry-supporting efficiency (c) of a SARS-CoV-2/MERS-CoV bi-specific CVR transiently expressed

in HEK293T cells. d-f, Illustration (d), expression (b), and PSV entry-supporting efficiencies (c) of

CVRs carrying a single VBD or tandemly connected VBD trimmer. Scare bars: 100μm. Unpaired

two-tailed Student's t-tests for c, and f.
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Extended Data Fig. 9 Coronavirus tropism retargeting mediated by bi-specific soluble adaptor 

proteins. a-c, Schematic illustration of bispecific adaptor protein (a) and MERS-CoV PSV entry 

efficiency in BHK-21-hACE2 cells in the presence of indicated concentrations of adaptor proteins 

(H11B11-mNB1) throughout the infection. PSV entry efficiency is examined based on the GFP 

intensity (b) or RLU (c) in the infected cells. d-f, Schematic illustration of FcγR (CD32a) mediated 

antibody-dependent coronavirus entry (d). CD32a expression, antibody (CB6) binding (e), and 

SARS-CoV-2 PSV entry (f) into HEK293T-CD32 cells, which was pretreated with indicated 

concentration (con.) of the CB6 for 0.5h. Scare bars: 100 μm. One-way ANOVA analysis followed by 

Dunnett's test for c and f.
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Extended Data Fig. 10 Comparison of specificity and receptor functionality between CVRs and

native receptors in different cell types. a-c, Evaluation of the ability of CVRs to induce cell-cell

fusion (a,b) and to support SARS-CoV-2 authentic virus infection (c). Spike-receptor mediated

cell-cell fusion was demonstrated by the reconstituted GFP (a) and Renilla luciferase activity (RLU)

(b). Infection was analyzed by immunofluorescence detecting the intracellular N protein at 24 hpi (c).

d, Entry of different coronavirus PSVs into HEK293T stably expressing the native receptor or the

indicated CVRs. e, SARS-CoV-2 and MERS-CoV PSV entry into various cell types expressing the

indicated receptors. Scare bars: 100 μm. Unpaired two-tailed Student's t-tests for b.
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Extended Data Fig. 11 Comparison of the SARS-CoV-2 entry efficiency supported by ACE2,

CVRs, alternative receptors, or other entry factors. SARS-CoV-2 PSV entry in HEK293T cells

expressing the indicated receptors or entry factors. Unpaired two-tailed Student's t-tests was

employed for analysis.
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Extended Data Fig. 12 Relationship between the antigen binding, soluble antibody neutralizing 

activity, and CVR entry-supporting ability of 25 SARS-CoV-2 RBD targeting nanobodies. a, b, 

Assessment of the entry-supporting ability of 25 nanobody-CVRs in HEK293T cells, indicated by 

GFP(a) and the RLU (b), respectively. c, Comparison of RBD-mFc binding, soluble nanobody-hFc 

neutralization, and PSV entry efficiencies in HEK293T cells. RBD-mFc binding and PSV entry 

assays were conducted in HEK293T transiently expressing the 25 CVRs. The SARS-CoV-2 PSV 

neutralization assay was performed in HEK293T-ACE2 in the presence of indicated nanobody-Fc 

recombinant proteins. Scare bars: 100μm. One-way ANOVA analysis followed by Dunnett's test for 

b.
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Extended Data Fig. 13 Expression and SARS-CoV-2 spike trimmer binding efficiencies in cells

expressing the indicated scFv-CVRs. a,Western blot analysis of the expression levels of indicated

scFv-CVRs transiently expressed in HEK293T cells. b, Binding of SARS-CoV-2 S-trimer to

HEK293T cells expressing the indicated CVRs.
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Extended Data Fig. 14 Binding efficiencies of scFv-mFc targeting different SARS2-CoV-2

epitopes in cells expressing the SARS-CoV-2 spike. Flow cytometry analysis was performed to

assess the binding efficiency of scFv-mFc with HEK293T cells transiently expressing the

SARS-CoV-2 Spike proteins and ZsGreen simultaneously. The ZsGreen positive cells were gated for

subsequent analysis of mFc binding efficiency.
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Extended Data Fig. 15 Trypsin-mediated S2' cleavage of SARS2-CoV-2 PSV in the presence of

soluble receptors or CB6-scFv-mFc. The concentrated SARS-CoV-2 PSV particles were incubated

with 100 μg/mL of soluble receptors or CB6-scFv-mFc for 1 hour, followed by incubation with the

indicated concentration of TPCK-treated trypsin for 30mins. Western blot analysis was conducted by

detecting the S2P6 epitope on the S2 subunit. sDPP4: soluble DPP4 ectodomain proteins.
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Extended Data Fig. 16 Package efficiency of PSVs carrying indicated coronavirus spike

proteins. Western blot detection of concentrated PSV carrying indicated coronaviruses by detecting

the S2P6 epitope conserved among the tested coronaviruses. VSV-M serves as a loading control.
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Extended Data Fig. 17 Cryo-EM structures of NTD-targeting antibodies or soluble

mCEACAM1a in complex with SARS-CoV-2 or MHV spike trimmer, respectively. Illustration

of top-view and side-view cryo-EM structures depicting NTD-targeting antibodies (CV3-13 and

DH1052) or soluble mCEACAM1a in complex with SARS-CoV-2 or MHV spike trimmer,

respectively. The complex structures are annotated with corresponding PDB accession numbers.
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Extended Data Fig. 18 Binding kinetics between representative nanobodies and corresponding

coronavirus antigens. Binding kinetics analyzed through BLI between representative nanobodies

and the RBD or S1 of indicated coronaviruses.
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Extended Data Fig. 19 Comparison of the entry-supporting efficiency of several CVRs with or

without the presence of EPM. a, Expression (a) and entry-supporting efficiency (b) of the indicated

CVRs with or without EPM transiently expressed in the HEK293T cells. EPM: endocytosis

prevention motif. Scare bars: 100μm. Unpaired two-tailed Student’s t-tests for b.
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Extended Data Fig. 20 Comparison of sera neutralization activity using different infection

models. Comparison of neutralization profiles of sera collected from COVID-19 convalescents (a) or

vaccinated individuals (b) based on HEK293T cells expressing ACE2 or two different CVRs. Serum

dilution: 1:200.
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Extended Data Fig. 21 IC50 of selected broadly neutralizing antibodies against PSV entry of

seven indicated coronaviruses supported by corresponding CVRs. Neutralization assays for each

PSV were conducted in HEK293T stably expressing the indicated CVRs.
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Extended Data Fig. 22 Inhibitory efficacy of entry inhibitors based on different infection

models. The IC50 of selected entry inhibitors against SARS-CoV-2 PSV entry were determined in

both HEK293T-ACE2 or HEK293T-LCB1-CVR cells.
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Extended Data Fig. 23 Pan-sarbecovirus entry-supporting ability of CVR-Nb27. The PSV 

entry-supporting ability of CVR-Nb27 was evaluated by six different sarbecoviruses in 293T cells. 

Unpaired two-tailed Student's t-tests was employed for comparisons.
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Extended Data Fig. 24 Demonstration of TCID50 determination assay for RsHuB2019A by

Caco2-Nb27 cells. Caco2-Nb27 cells were inoculated with a 10-fold serial dilution of RsHuB2019A

containing supernatant (Passage 6). The TCID50was determined using immunofluorescence to detect

the presence of N protein expression of the inoculated cells at 4 dpi, employing the Red-Muench

method.
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Extended Data Fig. 25 Trypsin-dependent propagation of RsHuB2019A in Huh-7 cells. The 

RsHuB2019A genomic RNA copies in the supernatant collected at indicated time points of infected 

Huh-7 cells were quantified by RT-qPCR using RdRP-specific primers. Inoculation was conducted at 

an MOI of 0.0001, with or without trypsin treatment. Try: Trypsin treatment.
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Extended Data Fig. 26 Inhibitory effect of selected anti-viral reagents against authentic

HKU5-ZGH infection in Caco2-1B4. Inhibitors were coincubated with either the cells or the

viruses for 1h and present in the culture medium during infection. The HiBit-based luciferase activity

was determined at 48 hpi to assess the inhibitory effect of selected anti-viral reagents against the

infection of authentic HKU5-ZGH in Caco2-1B4. Unpaired two-tailed Student's t-tests was

employed for comparisons.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 4, 2024. ; https://doi.org/10.1101/2024.03.03.583237doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.03.583237
http://creativecommons.org/licenses/by-nc-nd/4.0/


DAPI HKU5-Np Cy3
Vero-E6

M
O

I=
0.

1
H

K
U

5 
W

T

2 
μg

/m
L 

tr
yp

si
n

N
on

tr
ea

te
d

2 
μg

/m
L 

tr
yp

si
n

N
on

tr
ea

te
d

M
O

I=
1

Merge

Extended Data Fig. 27 HKU5-WT propagation in Vero E6 cells with or without trypsin 

treatment. Vero E6 cells were infected with HKU5-WT at a multiplicity of infection (MOI) of 1 or 

0.01, with or without the presence of trypsin at 2 μg/mL. The HKU5 infection efficiency was 

assessed using rabbit polyclonal antibodies targeting the HKU5 N protein(Cy3) at 48 hpi.
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