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 23 

Abstract 24 

Background: Calibrated electromyography (EMG)-driven musculoskeletal models can provide 25 

great insight into internal quantities (e.g., muscle forces) that are difficult or impossible to measure 26 

experimentally. However, the need for EMG data from all involved muscles presents a significant 27 

barrier to the widespread application of EMG-driven modeling methods. Synergy extrapolation 28 

(SynX) is a computational method that can estimate a single missing EMG signal with reasonable 29 

accuracy during the EMG-driven model calibration process, yet its performance in estimating a 30 

larger number of missing EMG signals remains unclear.  31 

Methods: This study assessed the accuracy with which SynX can use eight measured EMG signals 32 

to estimate muscle activations and forces associated with eight missing EMG signals in the same 33 

leg during walking while simultaneously performing EMG-driven model calibration. 34 

Experimental gait data collected from two individuals post-stroke, including 16 channels of EMG 35 

data per leg, were used to calibrate an EMG-driven musculoskeletal model, providing “gold 36 

standard” muscle activations and forces for evaluation purposes. SynX was then used to predict 37 

the muscle activations and forces associated with the eight missing EMG signals while 38 

simultaneously calibrating EMG-driven model parameter values. Due to its widespread use, static 39 

optimization (SO) was also utilized to estimate the same muscle activations and forces. Estimation 40 

accuracy for SynX and SO was evaluated using root mean square errors (RMSE) to quantify 41 

amplitude errors and correlation coefficient r values to quantify shape similarity, each calculated 42 

with respect to “gold standard” muscle activations and forces.  43 
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Results: On average, SynX produced significantly more accurate amplitude and shape estimates 44 

for unmeasured muscle activations (RMSE 0.08 vs. 0.15, r value 0.55 vs. 0.12) and forces (RMSE 45 

101.3 N vs. 174.4 N, r value 0.53 vs. 0.07) compared to SO. SynX yielded calibrated Hill-type 46 

muscle-tendon model parameter values for all muscles and activation dynamics model parameter 47 

values for measured muscles that were similar to “gold standard” calibrated model parameter 48 

values.  49 

Conclusions: These findings suggest that SynX could make it possible to calibrate EMG-driven 50 

musculoskeletal models for all important lower-extremity muscles with as few as eight carefully 51 

chosen EMG signals and eventually contribute to the design of personalized rehabilitation and 52 

surgical interventions for mobility impairments. 53 

Key words: EMG-driven model, Synergy extrapolation, Static optimization, Model 54 

personalization, Muscle force, Muscle activation, Stroke 55 

 56 

 57 

 58 

 59 

 60 

 61 

 62 

 63 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2024. ; https://doi.org/10.1101/2024.03.03.583228doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.03.583228
http://creativecommons.org/licenses/by-nd/4.0/


4 

 

 64 

 65 

Background  66 

Muscle forces are essential for maintaining body posture and engaging in functional activities. 67 

Knowledge of the forces exerted by individual muscles is crucial for understanding the internal 68 

biomechanical mechanisms and motor control involved in human movement [1–3]. More 69 

importantly, knowledge of muscle forces could be useful for identifying musculoskeletal 70 

pathologies [4,5] and neurological disorders [6,7] as well as for designing effective rehabilitation 71 

or surgical interventions [8–10]. However, unlike joint moments, which can be measured in vivo 72 

directly using dynamometers or indirectly using inverse dynamics, muscle forces cannot currently 73 

be measured easily in vivo, though ongoing research is seeking to develop new experimental 74 

methods that can measure muscle or tendon forces in vivo during human movement [11,12]. 75 

Unfortunately, these research efforts have been hindered by technical challenges, high cost, and 76 

ethical considerations[11,12], motivating the search for computational methods that can enhance 77 

our knowledge of muscle forces.  78 

Musculoskeletal modeling enables computational estimation of unmeasurable or difficult to 79 

measure internal biomechanical quantities, such as muscle forces and joint contact forces, that 80 

influence human movement generation. The estimation process uses musculoskeletal computer 81 

models that represent the bones, muscles, joints, neural control, and external forces specific to the 82 

subject and task being modeled [13–15]. These computer models typically employ a geometric 83 

model of the musculoskeletal system actuated by Hill-type muscle-tendon models [16]. The 84 

control inputs to these muscle-tendon models are either muscle excitations, which are equivalent 85 
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to processed experimental electromyographic (EMG) data, or muscle activations, which are 86 

muscle excitations that have been time delayed and passed through an activation dynamics 87 

model[17]. In addition to estimating unmeasurable time-varying internal quantities (e.g., muscle 88 

activations and forces), musculoskeletal modeling can be used to estimate unmeasurable time-89 

invariant model parameter values (e.g., optimal muscle fiber length, tendon slack length) that have 90 

a significant influence on muscle force generation [18]. 91 

The two computational methods most commonly employed for estimating muscle activations and 92 

forces using a musculoskeletal model are EMG-driven modeling [6,19–25] and static optimization 93 

(SO) [26–32]. Both methods utilize nonlinear optimization to resolve the “muscle redundancy 94 

problem” [33] (i.e., many more muscles than degrees of freedom (DOFs) in the skeleton, resulting 95 

in control indeterminacy), both require experimental joint kinematics and moments as inputs, and 96 

both find muscle activations and forces such that predicted net joint moments from a 97 

musculoskeletal model match experimental net joint moments calculated via inverse dynamics as 98 

closely as possible. However, the optimization problem formulations for these two methods are 99 

quite different (Table 1). For EMG-driven modeling, the design variables are time-invariant model 100 

parameter values (i.e., EMG scale factors, electromechanical delays, activation dynamics 101 

parameter values, Hill-type muscle-tendon model parameter values), the cost function minimizes 102 

the sum of squares of errors between model and experimental joint moments, the constraints bound 103 

muscle activations to be less than or equal to one, and the optimization problem is solved over all 104 

time frames together. For SO, the design variables are time-varying muscle activations, the cost 105 

function typically minimizes the sum of squares of muscle activations [26,34], the constraints 106 

enforce no errors between model and experimental joint moments in addition to bounds on muscle 107 

activations, and the optimization problem is solved for each time frame separately.  108 
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These optimization problem formulation differences, which stem from using experimental muscle 109 

excitations as inputs for EMG-driven modeling but not SO, have important implications for the 110 

capabilities and limitations of both methods. Since EMG-driven modeling uses experimental 111 

muscle excitations to constrain the time-varying shapes (and often amplitudes) of the predicted 112 

muscle excitations, model joint moments never match experimental joint moments perfectly. 113 

Consequently, minimization of this joint moment mismatch allows for calibration of 114 

musculoskeletal model parameter values when the optimization is performed over all time frames 115 

together. In contrast, since SO finds muscle activations that make model joint moments match 116 

experimental joint moments perfectly, there are no joint moment errors that can be used for 117 

calibrating musculoskeletal model parameter values. Furthermore, optimization of each time frame 118 

separately can sometimes produce muscle activation discontinuities between time frames [14,15], 119 

while minimization of muscle activations with no constraints on the time-varying shapes of the 120 

predicted muscle activations produces the smallest possible muscle activations, resulting in 121 

minimum co-contraction solutions [27,31] that may not be physiologically realistic for some 122 

subjects or movement conditions. Nonetheless, because of its simplicity and the ease with which 123 

it can be implemented and performed, SO remains the most commonly used computational method 124 

for estimating muscle activations and forces. 125 

Table 1: Comparison of optimization problem formulations and solutions for EMG-driven 

modeling and static optimization in their most fundamental forms. 

 EMG-driven Modeling Static Optimization 

Design Variables EMG scale factors 

Electromechanical delays 

Activation dynamics parameters 

Muscle-tendon model parameters 

Muscle activations 

Cost Function Min sum of squares of errors between 

model and experimental joint moments 

Min sum of squares of muscle 

activations 

Constraints Muscle activations  1 Muscle activations  1 

Errors between model and experimental 

joint moments = 0 

Experimental Inputs Muscle excitations Joint kinematics 
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Joint kinematics 

Joint moments 

Joint moments 

Solution Process All time frames together Each time frame separately 

Solution Quantities Muscle excitations 

Muscle activations 

Muscle forces 

Muscle activations 

Muscle forces 

Although EMG-driven modeling possesses the advantages noted above and produces 126 

physiologically reasonable estimates of muscle activations and forces [24], missing EMG data 127 

from muscles that contribute significantly to a measured movement has limited the adoption of 128 

EMG-driven modeling for routine clinical gait analysis and biomechanical research. This issue is 129 

the result of two practical challenges. First, surface electrodes are incapable of measuring EMG 130 

signals from deep muscles. Despite their non-invasive nature and easy application, surface 131 

electrodes are unable to measure EMG signals from important deep muscles that contribute 132 

significantly to joint moments, such as the iliacus and psoas muscles during walking. While fine 133 

wire electrodes can capture EMG signals from deep muscles, their invasive nature, the need for 134 

specialized insertion skills, the substantial preparation time required for insertion, and the potential 135 

for discomfort and pain to the subject have limited their utilization. Furthermore, in certain 136 

scenarios, deep muscles may be inaccessible even with fine wire electrodes. For instance, the use 137 

of a fine wire electrode is contraindicated for safety reasons in subjects with a cancerous tumor 138 

near the muscle to be measured. Second, EMG systems possess a limited number of channels for 139 

collecting EMG data. Many EMG systems available in human movement labs provide support for 140 

16 channels of data, which means only eight channels of EMG data can be collected per leg when 141 

measuring activities such as walking or running. However, EMG-driven lower extremity models 142 

close to 16 channels per leg to inform the model without omitting any important large muscles. 143 

These challenges are significant as the absence of EMG data from important muscles can have a 144 

negative impact on the reliability of force estimates for other muscles that span the same joints 145 

[25,29]. To address the issue of missing EMG signals when performing EMG-driven modeling, 146 
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researchers either exclude muscles with missing EMG data from the musculoskeletal model 147 

[28,35], include such muscles in the model but assume that they generate only passive force [25], 148 

or include such muscles and use SO to estimate the associated muscle activations [28,29]. 149 

To provide a better alternative for addressing missing EMG signals, researchers have recently 150 

developed a modified EMG-driven modeling approach called “Synergy Extrapolation” (SynX) 151 

that uses muscle synergy concepts to estimate missing muscle excitation data [36–38]. The 152 

theoretical basis for SynX is that a large number (e.g., 8 or 16) of experimentally measured muscle 153 

excitations can be represented by a smaller number (e.g., 4 or 5) of muscle synergies composed of 154 

time-varying synergy excitations and associated time-invariant synergy vectors, where the weights 155 

in each synergy vector define how the associated synergy excitation contributes to all muscle 156 

excitations. The synergy excitations provide information about the timing of muscle contractions, 157 

while the synergy vectors provide information about the coordination of muscle contractions. 158 

Given 16 experimental muscle excitations, if a lower dimensional set of 4 or 5 muscle synergies 159 

are calculated using either all 16 excitations or a subset of 8 carefully selected excitations, the 160 

resulting synergy excitations will be almost the same in both cases [36]. This observation 161 

demonstrates that the time-varying synergy excitations extracted from the first 8 muscle 162 

excitations can be used as basis functions for constructing the remaining 8 muscle excitations. 163 

Based on this observation, the historical development of SynX followed a logical sequence of three 164 

studies. First, SynX was shown to work in theory for fitting eight missing muscle excitations using 165 

synergy excitations extracted from eight measured muscle excitations [36]. For this study, 16 166 

muscle excitations per leg measured experimentally from three subjects during walking were split 167 

into two groups of eight “measured” and eight “missing” excitations, and synergy excitations 168 

calculated from the eight measured excitations were used to fit the eight missing excitations. This 169 
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study only established the theoretical feasibility of SynX, since the fitting process required the use 170 

of the missing muscle excitations. Second, SynX was shown to work in practice for predicting a 171 

single missing muscle excitation if a musculoskeletal model with pre-calibrated parameter values 172 

was used in the process [37]. The same sets of 16 experimental muscle excitations were again split 173 

into two groups, where 15 muscle excitations were treated as “measured” and one muscle 174 

excitation at a time collected from a fine wire electrode was treated as “missing.” A key limitation 175 

of this study was the need for a pre-existing calibrated musculoskeletal model before the missing 176 

muscle excitation could be predicted reliably, which necessitates a priori knowledge of the missing 177 

muscle excitation for initial model calibration. Third, SynX was shown to work in practice for 178 

predicting a single missing muscle excitation while simultaneously calibrating musculoskeletal 179 

model parameter values [38]. The same sets of 16 experimental muscle excitations were again split 180 

into groups of 15 “measured” muscle excitations and one “missing” fine wire muscle excitation. 181 

A multi-objective optimization problem was designed to predict the missing muscle excitation 182 

while simultaneously calibrating time-invariant musculoskeletal model parameter values and time-183 

varying residual muscle activations needed to account for small errors in the measured muscle 184 

excitations. This study resolved the main limitation of the previous study by allowing EMG-driven 185 

model calibration and prediction of a single missing muscle excitation to be performed 186 

simultaneously. SynX has been used more recently to predict the activation of a single unmeasured 187 

upper-extremity muscle (e.g. biceps long head), achieving a Pearson’s correlation coefficient of 188 

up to 0.99 with the same muscle activation calculated from experimental EMG data  withheld for 189 

evaluation purposes [39]. The next logical study in this progression is to evaluate how well SynX 190 

works in practice for predicting multiple missing muscle excitations while simultaneously 191 

calibrating musculoskeletal model parameter values. If SynX can predict missing muscle 192 

excitations reliably using a low number of EMG signals collected using only surface electrodes, 193 
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the applicability of EMG-driven modeling to research and clinical questions will be greatly 194 

expanded. 195 

This study evaluated how well SynX can estimate muscle activations associated with eight 196 

channels of missing EMG data using synergy excitations extracted from muscle excitations 197 

associated with eight channels of measured EMG data while simultaneously calibrating 198 

musculoskeletal model parameter values. Experimental walking data collected from two subjects 199 

post-stroke were used for the evaluation. Time-varying quantities (muscle activations and forces 200 

along with net joint moments) and time-invariant model parameter values (activation dynamics 201 

and Hill-type muscle-tendon model parameter values) predicted by SynX were compared to “gold 202 

standard” results produced by EMG-driven model calibration using a complete set of EMG data 203 

where no EMG signals were regarded as missing. Time-varying quantities (muscle activations and 204 

forces) predicted by SO were also compared to the “gold standard” results to determine which 205 

method provides the most reliable predictions. In addition, the reliability with which SynX and SO 206 

can predict muscle activations and forces when using pre-calibrated musculoskeletal models was 207 

evaluated to assess how model calibration affects muscle activation and force estimates from both 208 

methods. 209 

Methods 210 

Experimental Data Collection 211 

Two previously published experimental walking datasets collected from a high-functioning 212 

hemiparetic subject (S1, male, 1.70 m tall, mass 80.5 kg, age 79 years, right side hemiparesis, 213 

lower extremity Fugl-Meyer Motor Assessment score of 32 out of 34) and a low-functioning 214 

hemiparetic subject post-stroke (S2, male, 1.83 m tall, mass 88.5 kg, age 62 years, right side 215 

hemiparesis, lower extremity Fugl-Meyer Motor Assessment score of 25 out of 34) were used for 216 
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this study [23,40]. After giving written informed consent, both subjects walked on a split-belt 217 

instrumented treadmill (Bertec Corp., Columbus, OH, United States) at their self-selected speed 218 

(0.5 m/s for S1 and 0.35 m/s for S2) and fastest-comfortable speed (0.8 m/s for S1 and 0.65 m/s 219 

for S2). All experimental procedures were approved by the University of Florida Health Science 220 

Center Institutional Review Board (IRB-01). 221 

Sixteen channels of EMG data were collected from each leg of both subjects using both surface 222 

and fine wire electrodes (Motion Lab Systems, Baton Rouge, LA, United States). These extensive 223 

EMG data enabled every muscle in each leg of each subject’s musculoskeletal model (see below) 224 

to have an associated experimental EMG signal, providing an opportunity to verify the reliability 225 

 

Figure 1 The assumption about “measured” and “unmeasured” EMG channels when performing 

SynX and SO as well as the associated muscles in the OpenSim model for each subject. The EMG 

channels assumed “measured” are denoted by blue boxes, while those assumed “unmeasured” are 

indicated by orange italic texts. The superscripts 1 and 2 represent the assumption of “unmeasured” 

EMG channels for subject S1 and S2, respectively. The muscles were categorized based on their 

actuating degrees of freedom (DOFs).  
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of muscle activations and forces estimated by SynX and SO. Surface EMG data were collected 226 

from the following superficial muscle groups (figure 1): 1) GlutMax, including gluteus maximus 227 

superior (glmax1), gluteus maximus middle (glmax2) and gluteus maximus inferior (glmax3); 2) 228 

GlutMedMin, including gluteus medius anterior (glmed1), gluteus medius middle (glmed2), 229 

gluteus medius posterior (glmed3), gluteus minimus anterior (glmin1), gluteus minimus middle 230 

(glmin2), and gluteus minimus posterior (glmin3); 3) SemiMembTen, including semimembranosus 231 

(semimem) and semitendinosus(semiten); 4) RecFem, including rectus femoris (recfem); 5) Bicfem, 232 

including biceps femoris long head (bflh) and biceps femoris short head (bfsh); 6) VasMedInt, 233 

including vastus medialis (vasmed) and vastus intermedius (vasint); 7) VasLat, including vastus 234 

lateralis (vaslat); 8) TibAnt, including tibialis anterior (tibant); 9) Peroneus, including peroneus 235 

brevis (perbrev) and peroneus long (perlong); 10) Sol, including soleus (soleus). Additionally, fine-236 

wire EMG data were collected from the following deep muscle groups (Fig.2): 1) iliopsoas, 237 

including iliacus (iliacus) and psoas (psoas); 2) Adductors, including adductor brevis (addbrev), 238 

adductor longus (addlong), adductor magnus distal (addmagDist), adductor magnus ischial 239 

(addmagIsch), adductor magnus middle (addmagMid), and adductor magnus proximal 240 

(addmagProx); 3)Tibpost, including tibialis posterior (tibpost). Small differences existed in the 241 

EMG data collect from the two subjects. For the high-functioning subject (S1), a surface EMG 242 

signal (referred as GasMed) was also collected and expanded to medial gastrocnemius (gasmed) 243 

and lateral gastrocnemius (gaslat), and two fine-wire EMG signals (referred as ExtDigLong and 244 

FlexDigLong) were recorded from extensor digitorum longus (edl) and flexor digitorum longus 245 

(fdl) respectively. For the low-functioning subject (S2), two surface EMG signals (referred as 246 

GasMed and GasLat) were recorded from medial gastrocnemius (gasmed) and lateral 247 

gastrocnemius (gaslat) respectively, and a fine-wire EMG signal (referred as TensFascLat) was 248 

recorded from tensor fasciae latae (tfl). Raw EMG data were high-pass filtered at 40 Hz, demeaned, 249 
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full-wave rectified, and low-pass filtered at 3.5/tf Hz, where where tf is the period of the gait cycle 250 

[23].Processed EMG data were then normalized to the maximum values across all experimental 251 

gait cycles. The resulting processed EMG data will henceforth be referred to as “experimental 252 

muscle excitations” [23,41]. 253 

A three-dimensional motion capture system (Vicon Corp., Oxford, United Kingdom) operating at 254 

100 Hz was used to measure reflective surface marker trajectories, while two treadmill force plates 255 

(Bertec Corp., Columbus, OH, United States) recording at 1000 Hz were used to measure ground 256 

reaction forces and moments. Raw motion capture and ground reaction data were low-pass filtered 257 

with a variable cut-off frequency of 7/tf Hz [42], where tf is the period of the gait cycle. Data from 258 

ten gait cycles (five cycles per speed) per leg were randomly chosen to simultaneously calibrate 259 

the EMG-driven models and evaluate the accuracy of estimated muscle activations and forces. 260 

Following pre-processing, data from each gait cycle were resampled to 101 time points from heel-261 

strike (0%) to subsequent heel-strike (100%) of the same foot. An extra 20 time frames, accounting 262 

for a maximum electromechanical delay of approximately 100 ms, were retained prior to the start 263 

of each gait cycle, yielding 121 time points for each of the 10 gait cycles. 264 

Musculoskeletal Model Creation 265 

A generic full-body OpenSim musculoskeletal model [43] was used as the starting point to create 266 

a personalized model of each subject. This generic model possessed 37 degrees of freedom (DOFs), 267 

80 muscle-tendon actuators to control lower limb motion, and 17 ideal torque actuators to control 268 

the upper body motion. For each subject, a sequence of four analyses were performed using 269 

OpenSim 4.0 [44,45] to prepare the model for EMG-driven modeling with SynX. First, OpenSim 270 

model scaling was performed so that the generic model’s anthropometry would more closely match 271 

that of each subject. Second, repeated OpenSim inverse kinematics (IK) analyses within a 272 
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nonlinear optimization were performed to calibrate the locations and orientations of lower body 273 

joint centers and axes such that errors between model and experimental surface marker positions 274 

were minimized for isolated joint motion and walking trials [46]. The lower body DOFs affected 275 

by this calibration process were hip flexion/extension (HipFE), hip adduction/abduction (HipAA), 276 

hip internal/external rotation (HipRot), knee flexion/extension (KneeFE), ankle 277 

plantarflexion/dorsiflexion (AnklePD), and ankle inversion/eversion (AnkleIE). These six low-278 

extremity DOFs were targeted because their associated experimental joint moments were needed 279 

for performing SynX and SO. Third, additional OpenSim IK analyses were performed using 280 

experimental marker data from the walking trials to obtain joint angle time histories. Fourth, 281 

OpenSim inverse dynamic (ID) analyses were performed using the previously calculated joint 282 

kinematics and the experimental ground reaction data from the walking trials to calculate 283 

experimental joint moments.  284 

Muscle Activation and Force Estimation  285 

SynX and SO were both utilized to estimate muscle activations and forces, and the resulting 286 

estimates from both methods were compared to a “gold standard” for evaluation purposes. As 287 

illustrated in figure 2, both approaches take joint kinematics and associated musculoskeletal 288 

geometries (i.e., muscle-tendon lengths and moment arms) as inputs to estimate muscle activations, 289 

muscle forces, and net joint moments. Subsequently, the estimated predicted net joint moments 290 

are iteratively compared to the inverse dynamic joint moments through an optimization process, 291 

leading to the estimation of the time-varying muscle activations and forces for SynX and SO, as 292 

well as time-invariant musculoskeletal model and SynX-related parameter values for SynX. 293 
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Synergy Extrapolation Solution Process 294 

The SynX solution process involved four tasks as summarized below. 295 

⚫ Muscle activation estimation 296 

For the first task of the SynX solution process, muscle activations were found for muscles with 297 

and without experimental EMG data. The transformation of excitations from measured muscles 298 

into activations of all muscles itself involved four distinct steps [37,38]. First, muscle excitations 299 
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( )musc

me t  for muscles with experimental EMG data were adjusted using a muscle-specific scale 300 

factor ranging from 0.05 to 1, acknowledging that actual maximum activation levels tend to 301 

surpass those observed experimentally during walking. 302 

 

Figure 2 The workflow for EMG-driven modeling with SynX (left panel with a green background) 

and SO (right panel with an orange background) as performed in this study. Both methods employ 

experimental joint kinematics and moments as inputs and aim to determine muscle activations and forces 

in such a way that the predicted net joint moments from a musculoskeletal model closely match the 

experimental net joint moments calculated via inverse dynamics. However, there are notable differences 

in the optimization problem formulations for these two methods. In EMG-driven modeling with SynX, 

the design variables consist of time-invariant model parameter values and SynX variables, with the 

optimization problem being solved across all time frames together. Conversely, for SO, the design 

variables encompass time-varying muscle activations, typically utilizing model parameter values from 

scaled generic models or literature references, and the optimization problem is solved for each time frame 

separately. Subsequently, both techniques leverage the Hill-type muscle-tendon model to estimate 

muscle forces and their respective contributions to the joint moments. 
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Second, muscle synergy analysis (MSA) was conducted on the scaled muscle excitations using 303 

principal component analysis (PCA) to extract a small number of muscle synergies, specifically 304 

six for the present study: 305 

( ) ( ) ( )musc

m m m m me t W t H t = + +                                                     (1) 306 

where ( )mW t  specifies the time-varying measured synergy excitations, mH specifies the 307 

associated measured synergy vector weights, m stands for the average values of each measured 308 

muscle excitation, and ( )m t  stands for the decomposition residuals that could not be accounted 309 

for by ( )m m mW t H + . Following MSA, both unmeasured muscle excitations ( )musc

SynXe t  and residual 310 

muscle excitations ( )rese t  added to the measured muscle excitations were constructed from the 311 

measured synergy excitations: 312 

( ) ( )

( ) ( )

musc

SynX m SynX SynX

res

m res res

e t W t H

e t W t H





 = +


= +

                                                  (2) 313 

where SynXH  represents the unmeasured synergy vector weights, SynX  represents the average 314 

values of each unmeasured muscle excitation, resH  represents the residual synergy vector weights, 315 

and res  represents the average values of each residual muscle excitation. Henceforth, we denote 316 

the union of SynXH , SynX  , resH and res  as SynX variables, which were all time-invariant and 317 

determined through an optimization process implemented within the EMG-driven model 318 

calibration process (Figure 2). Once unmeasured and residual muscle excitations were constructed, 319 

two sets of muscle excitations were calculated when residual muscle excitations were and were 320 

not included: 321 
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 

 

( ) ( ), ( )

( ) ( ) ( ), ( )

musc musc musc

m SynX

musc musc res musc

res m SynX

e t e t e t

e t e t e t e t

 =


= +
                                         (3) 322 

where ( )musce t  defines the muscle excitations without residual muscle excitations included, while 323 

( )musc

rese t defines the muscle excitations with residual muscle excitations included. Both ( )musce t  and 324 

( )musc

rese t  were utilized in subsequent steps to compute corresponding muscle activations denoted as 325 

( )musca t  and ( )musc

resa t , respectively. 326 

Third, neural activations ( )muscu t  were determined from constructed muscle excitations by 327 

employing a first-order ordinary differential equation for activation dynamics [47]:  328 

1 2

1

2

( )
( ( ) )( ( ) ( ))

1/ 1/

1/

4

musc
musc musc

act dact

dact

dact act

du t
c e t d c e t d u t

dt

c

c

 



 

= − + − −

= −

=

=

                                   (4) 329 

where act  and dact  are activation and deactivation time constants. d  specifies the 330 

electromechanical time delay.  331 

Fourth, a nonlinear one-parameter transformation model was utilized to compute each associated 332 

muscle activation ( )musca t  [48]: 333 

 
4

1
3 3

2 3 5

( ) (1 ) ( ) 1
( ( ) )

musc musc

gmusc

g
a t c u t c

g u t g g

 
= − + + 

+ + 
                                       (5) 334 

where 3c is an activation nonlinearity constant that characterizes the curvature of the relationship 335 

of each muscle. 1g  to 5g   are constant coefficients obtained by fitting published experimental data 336 
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from isometric contractions[48]. Our EMG-driven modeling approach solves for muscle 337 

activations with (i.e., ( )musc

resa t ) or without (i.e., ( )musca t ) residual excitations included over all time 338 

frames simultaneously by adjusting the same set of design variables, encompassing SynX variables, 339 

EMG scale factors, electromechanical time delays, activation time constants, and activation 340 

nonlinearity constants, where further details are provided in section 2.3.1.4. 341 

⚫ Muscle force estimation 342 

For the second task of the SynX solution process, muscle forces were estimated using the 343 

activations for measured and unmeasured muscles found in the first task. Taking the estimated 344 

muscle activations as inputs, our EMG-driven modeling process employed a Hill-type muscle 345 

tendon model with rigid tendon [16,23,49] to predict the force generated by a given muscle-tendon 346 

actuator, m , which was formulated as (figure 2): 347 

( , , ) ( ) ( ( , )) ( ( , , )) ( ( , )) cos

( , )
( , )

( , , )
( , , )

10

musc m musc a musc a musc p musc

o l v l

mt t
musc s

m

o

mt
musc

m

o

F t F a t f l t f v t f l t

l t l
l t

l

v t
v t

l

      




 
 

 =    +  

−
=

=


        (6) 348 

where ( ( , ))a musc

lf l t   and ( ( , , ))a musc

vf v t    describe the normalized active muscle force-length 349 

and force-velocity relationships, respectively, ( ( , ))p musc

lf l t   defines the normalized force-length 350 

relationship, ( , )muscl t   and ( , , )muscv t    denote the time-varying normalized muscle fiber length 351 

and velocity, respectively, ( , , )muscF t    and ( )musca t  denote the muscle force and muscle 352 

activation generated by the muscle-tendon actuator at time t , 
m

oF  is the maximum isometric force, 353 

 is the pentation angle of the muscle (values of which were taken from literature [50]), 
m

ol  354 
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denotes optimal muscle fiber length, and 
t

sl  denotes tendon slack length. These values (apart from 355 

pennation angles, which were taken from the literature) were calibrated through an optimization 356 

process or taken from the scaled OpenSim models. More details regarding the determination of 357 

m

ol  and 
t

sl  values for each muscle force estimation method can be found below. 358 

⚫ Joint moment calculation  359 

For the third task of the SynX solution process, model joint moments were calculated using the 360 

forces for measured and unmeasured muscles found in the second task. Once the muscle forces 361 

( , )muscF t   were estimated, their contributions to net joint moment at joint j  were calculated using 362 

the corresponding muscle moment arms: 363 

( , , ) ( , , ) ( , )joint musc muscM t F t r t    =                                                    (7) 364 

( , )
( , )

mt
musc l t

r t






= −


                                                              (8) 365 

where ( , , )jointM t    is joint moment at time t , which is defined as the sum of contributions from 366 

all spanning muscles ( , )muscr t    is muscle moment arm for muscle m  at time t , which was 367 

defined as the negative of the partial derivative of muscle-tendon length ( , )mtl t    with respect to 368 

generalized coordinate   [51]. The negative sign in Eq. 8 was implemented for consistency with 369 

the OpenSim modeling environment. When utilizing SynX for estimating unmeasured muscle 370 

excitations, net joint moments were computed with ( ( , , )joint

resM t   )and without ( ( , , )jointM t    ) 371 

incorporating residual excitations into the measured muscle excitations, as stipulated by the cost 372 

function for EMG-driven model calibration. 373 
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⚫ Optimization problem formulation 374 

For the fourth task of the SynX solution process, the first three tasks were performed iteratively 375 

within a nonlinear optimization that adjusts three categories of design variables (see figure 2): 1) 376 

SynX parameter values including synergy vector weights and average values associated with 377 

unmeasured muscle excitations as well as synergy vector weights and average values associated 378 

with residual muscle excitations; 2) activation dynamics model parameter values consisting of 379 

EMG scale factors, electromechanical delays, activation time constants, and activation 380 

nonlinearity constants; 3) muscle-tendon model parameter values consisting of optimal muscle 381 

fiber lengths and tendon slack lengths. EMG-driven model calibration typically adjusts muscle 382 

forces by altering muscle-tendon model parameter values such that the differences between model-383 

predicted and inverse dynamic (ID) joint moments are minimized. However, to estimate 384 

unmeasured muscle excitations via SynX during EMG-driven model calibration, the primary cost 385 

function was formulated as a trade-off between minimizing joint moment tracking errors and 386 

minimizing unmeasured and residual muscle activation magnitudes [38]: 387 

2

1

2

2

2

3

2

4

( , , ) ( , , )
min

( , , ) ( , , )

( )

( )

joint
ID

res

joint ID

musc

SynX

res

M t M t
J

MAD

M t M t

MAD

a t

MAD

a t

MAD

   

   

 −
 
 
 

 −
+  

 

 
+   

 

 
+  

 









                                     (9) 388 

where ( , , )joint

resM t    refers to model-predicted joint moments when residual muscle excitations are 389 

included in joint moment calculations, ( , , )IDM t    refers to inverse dynamic joint moments 390 
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obtained from OpenSim ID analyses, ( )musc

SynXa t  represents unmeasured muscle activations estimated 391 

by SynX, and ( )resa t  signifies residual muscle activations added to the measured muscle 392 

activations, which are equivalent to ( ) ( )musc musc

resa t a t− . Normalization of all four cost function terms 393 

was achieved using a set of maximum allowable deviations (MAD), the values of which were 394 

determined by performing a sensitivity analysis as described in [38]. Further details regarding 395 

initial guesses, upper/lower bounds for design variables, additional inequality constraints, and 396 

penalty terms can be found in previously published studies [23,37,38]. All optimization procedures 397 

were performed using MATLAB's "fmincon" function with its sequential quadratic programming 398 

algorithm. 399 

Static Optimization Solution Process  400 

The static optimization solution process involved determining muscle activations ( )musca t  at each 401 

time instant t by performing an inverse dynamics-based optimization. In the standard SO approach, 402 

the muscle redundancy problem is addressed by minimizing the energetic cost represented by the 403 

sum of squares of muscle activations while ensuring that inverse dynamic joint moments are 404 

matched perfectly at the solution [26]: 405 

2

time frame :

min ( )

( , , ) ( , , ) 0

0 ( ) 1

musc

joint ID

musc

for t

J a t

subject to

M t M t

a t

   

=

− =

 


                                        (10) 406 

The net joint moments for SO were estimated by multiplying the muscle forces obtained through 407 

substituting muscle activations ( )musca t  into the Hill-type muscle-tendon model with the 408 

corresponding muscle moment arms, as depicted in Eqs. 6 through 8. In contrast to the EMG-409 
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driven modeling method, the muscle activations estimated for SO were used directly as design 410 

variables in the optimizations, which were solved individually for each time frame. Furthermore, 411 

model parameter values were taken from scaled generic models or literature references rather than 412 

being calibrated during the optimization process. 413 

Synergy Extrapolation and Static Optimization Evaluation 414 

Muscle selection heuristics 415 

Given 16 measured muscle excitations for each leg of both subjects, we had to decide which 8 416 

muscle excitations would be treated as measured and which 8 would be held back and treated as 417 

missing for SynX and SO evaluation purposes. A prior study [36] provided guidance for which 418 

eight muscles to select as measured and which eight to select as missing so as to maximize 419 

reconstruction accuracy for the eight missing muscle excitations. In that study, an investigation of 420 

all possible combinations of eight measured and eight missing EMG signals yielded the following 421 

muscle selection heuristic: 1) Choose muscles easily accessible by surface EMG electrodes; 2) 422 

Choose most frequently occurring muscle in the top 10% of muscle combinations that yielded the 423 

highest SynX accuracy from each primary lower extremity function group; 3) Choose two hip/knee 424 

biarticular muscles at minimum; 4) Choose remaining most frequent muscles to fill eight muscle 425 

combinations. Following the observation of SynX performance, our muscle selection heuristic, 426 

given a limited number of eight EMG channels, indicated that researchers should collect surface 427 

EMG data from commonly chosen uniarticular and biarticular flexor and extensor muscles from 428 

each major muscle group, as illustrated in figure 1. The selected uniarticular muscles included a 429 

hip extensor (GlutMax), a knee extensor (VasLat considered preferable over VasMed), an ankle 430 

plantarflexor (Sol), and an ankle dorsiflexor (TibAnt). Uniarticular hip flexor (Iliopsoas) was 431 

omitted due to the difficulty in measuring these muscles reliably with surface electrodes. The 432 
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chosen biarticular muscles included a posterior thigh muscle (SemiMembTen, or Bicfem), and a 433 

posterior calf muscle (GasMed or GasLat). Additionally, adding GlutMedMin to the list appeared 434 

to be a reasonable choice if one more muscle was needed. Even the collection of EMG data from 435 

less commonly chosen muscles spanning all three joints (Adductors, tfl, and Peroneus) may 436 

facilitate to improve the estimation accuracy to some extent due to the unique stabilizing roles they 437 

play in the frontal plane, they were excluded from the “measured” muscles that was attributed to 438 

the difficulty in reliable surface EMG measurement of these muscles.  439 

Synergy extrapolation methodological choices 440 

Implementation of SynX requires making several methodological choices that can impact the 441 

accuracy of estimated muscle activations and forces. Previous studies investigated the influence 442 

of various methodological factors on SynX performance [37,38], including EMG normalization 443 

methods, matrix decomposition algorithms, the number of muscle synergies, and assumptions 444 

regarding the variability of synergy vector weights across trials for the reconstruction of 445 

unmeasured and residual muscle excitations. We systematically assessed the results for all possible 446 

methodological combinations and found that principal component analysis (PCA) with either five 447 

or six synergies consistently predicted unmeasured muscle excitations with reasonable accuracy.  448 

Table 2 Methodological choices for synergy extrapolation 

Description Methods (Abbreviations) 

Matrix factorization algorithm Principal component analysis (PCA) 

EMG normalization method Maximum value over all trial 

Number of muscle synergies 5 

Category of unmeasured synergy vector weights Trial-specific 

Category of residual synergy vector weights Speed-specific 

Number of missing EMGs 8 

Number of measured EMGs 8 
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In contrast, non-negative matrix factorization (NMF) did not achieve acceptable prediction 449 

accuracy. Additionally, for the same number of synergies, employing trial-specific unmeasured 450 

synergy vector weights and speed-specific residual synergy vector weights resulted in optimal 451 

SynX performance for both subjects in terms of estimation accuracy and computational efficiency. 452 

Notably, EMG normalization had no significant impact on SynX performance. Thus, the key 453 

methodological choices for SynX in this study were informed by insights from prior research, as 454 

detailed in Table 1. 455 

 

Figure 3 Summary of six optimizations performed in this study, which included two optimizations 

using SynX to predict unmeasured muscle excitations (termed yn UnmeasuredS X Params+   and 

yn Params

Unmeasured
S X ), three optimizations using static optimization (SO) to predict unmeasured muscle 

activations (termed Generic

All
SO , Params

All
SO  and Params

Unmeasured
SO ) and one “gold standard” optimization using 

the complete set of EMG signals with no muscle excitations predicted by SynX or SO (termed 

Params ).  The calibration cases were named based on the prediction method for unmeasured muscle 

excitations or activations as well as the categories of design variables included in the optimization 

problem formulation. The subscripts indicate which set of muscle excitations or activations were 

predicted computationally, while the superscripts indicate which set of model parameters were 

employed during model calibration. In each column of the optimizations, the arrows indicate whether 

each group of muscle excitations or activations were predicted or obtained experimentally.  Moreover, 

the arrows indicate which values were used if the model parameters were not calibrated through 

optimization. The term “Scaled Generic” denotes the scaled generic model parameter values, while 

“From Params” refers to the model parameter values derived from the “gold standard (Params)” 

optimization. 
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Optimization problems 456 

In this study, three primary objectives were pursued. Firstly, the study aimed to evaluate the 457 

performance of SynX when treating multiple channels of EMGs (i.e., eight) as “unmeasured”. 458 

Secondly, it sought to compare the estimates of muscle activations and forces from SynX with 459 

those from SO. Thirdly, the study also aimed to analyze the accuracy of estimated unmeasured 460 

muscle activations and forces for both SynX and SO when using model parameter values 461 

associated with different levels of personalization. 462 

To address these primary objectives, we formulated six optimization problems to estimate 463 

unmeasured muscle activations and, for SynX, calibrate model parameter values (figure 3). The 464 

first optimization problem utilized all 16 channels of EMG data to calibrate each EMG-driven 465 

musculoskeletal model, providing “gold standard” muscle activations and forces for evaluation 466 

(termed “ Params ”). The second optimization problem assessed the performance of SynX when 467 

multiple channels of EMG data (i.e., eight) were considered “unmeasured”. This optimization 468 

problem calibrated EMG-driven models for each leg of each subject while simultaneously 469 

estimating missing muscle excitations using SynX, where activation dynamics model, muscle-470 

tendon model, and SynX parameter values were calibrated concurrently (termed 471 

“ yn UnmeasuredS X Params+ ”). The third optimization problem used SO to estimate muscle activations 472 

for all muscles using muscle-tendon model parameter values taken from scaled generic OpenSim 473 

models (termed “ Generic

All
SO ”), representing the most commonly formulated SO method. The 474 

accuracy of estimated muscle activations and forces was further quantitatively compared to those 475 

from the optimization “ yn UnmeasuredS X Params+ ” to assess the estimation performance of both SynX 476 

and SO. The fourth optimization problem employed SynX to estimate the unmeasured muscle 477 

excitations within a well-calibrated EMG-driven model (termed “ yn Params

Unmeasured
S X ”), utilizing the 478 
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model parameter values found in the “gold standard ( Params )” optimization. The fifth and sixth 479 

optimization problems utilized SO to estimate muscle activations for all muscles (termed 480 

“ Params

All
SO ”) and only unmeasured muscles (termed “ Params

Unmeasured
SO ”) using the model parameter values 481 

from the “gold standard ( Params )” optimization, rather than scaled generic values. when 482 

performing the fourth and sixth optimizations of yn Params

Unmeasured
S X  and Params

Unmeasured
SO to estimate only 483 

unmeasured muscle excitations/activations, the muscle activations of the measured muscles were 484 

determined from the “gold standard ( Params )” optimization.  485 

Evaluation Metrics and Statistical Analyses 486 

Several common evaluation metrics were utilized to evaluate the ability of SynX and SO to 487 

estimate muscle activations and muscle forces for unmeasured muscles and joint moments across 488 

all cases. First, root mean square errors (RMSEs) were computed to quantify magnitude errors 489 

between experimental (from “ Params ” case) and predicted (from two SynX and three SO cases) 490 

muscle activations and forces. Similarly, Pearson correlation coefficients (r) were computed to 491 

quantify shape similarity between experimental and predicted unmeasured muscle activations and 492 

forces. Correlations were interpreted based on  [52], categorized as weak (r < 0.35), moderate 493 

(0.35 < r ≤ 0.67), strong (0.67 < r ≤ 0.9), or very strong (r ≤ 0.9). Furthermore, mean absolute 494 

errors (MAEs) between model and experimental net joint moments were also calculated for the 495 

“Params” case and the two SynX cases “ yn UnmeasuredS X Params+ ” and “ yn Params

Unmeasured
S X .” Evaluation 496 

metrics, including RMSEs, r values, and MAE values, were calculated by concatenating the data 497 

across all calibration trials and legs of both subjects.  498 

Multiple statistical analyses were also performed to compare the evaluation metrics resulting from 499 

different SynX and SO cases. Paired t-tests were performed on RMSE and r values to identify 500 
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significant differences in the accuracy of estimated unmeasured muscle activations between any 501 

two of the five SynX or SO cases. Paired t-tests were also used to identify significant differences 502 

in the accuracy of estimated muscle forces between any two of the five SynX or SO cases. In 503 

addition, paired t-tests were performed to compare joint moment matching errors (MAE values) 504 

between the “Params” case and the two SynX cases. All statistical analyses were performed in 505 

MATLAB with a significance level of p < 0.05.  506 

Results 507 

Muscle Activations 508 

Muscle activations for unmeasured muscles estimated using SynX and SO were compared with 509 

those produced by EMG-driven model calibration using a complete set of EMG data (optimization 510 

problem “ Params ”). This comparison was conducted to assess the accuracy of estimated muscle 511 

activations (figure 4 and 5, table 3). Initially, during the simultaneous calibration of EMG-driven 512 

model parameters, SynX effectively estimated unmeasured muscle activations, demonstrating low 513 

RMSE values ( 0.17, = 0.08  0.06) and moderate or strong correlation r values ( 0.38, = 0.55 514 

 0.13) across most muscles for optimization “ yn UnmeasuredS X Params+ ” (figure 3 and table 3). 515 

Notably, among these unmeasured muscles, SynX exhibited superior performance for the 516 

superficial muscles (e.g. rectus femoris, lateral gastrocnemius and vastus intermedius) compared 517 

to the deep-located muscles (e.g. iliacus, extensor digitorum longus and tibialis posterior) in terms 518 

of both shape and magnitude. However, the estimates for adductor muscles (RMSE = 0.01, r  519 

0.43) and flexor digitorum longus (RMSE = 0.05, r = 0.92) that typically rely on fine-wire 520 

electrodes for EMG collection remained reasonably accurate.  521 

 522 
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 523 

 

Figure 4 Average muscle activations for the “unmeasured” muscles (upper) and the “measured” 

muscles (lower) across calibration trials, legs and subjects from “Params” optimization (blue solid 

curves), SynX-based optimizations ( yn UnmeasuredS X Params+ :red solid curves and yn Params

Unmeasured
S X  : 

yellow solid curves and SO-based optimizations ( yn Generic

All
S X : purple dash curves, yn Params

All
S X : green 

dash curves and yn Params

Unmeasured
S X :grey dash curves). Data are reported for the complete gait cycle, where 

0% indicates initial heel-strike and 100% indicates subsequent heel-strike. In addition, for the measured 

muscles, the curves associated with yn Params

Unmeasured
S X and yn Params

Unmeasured
S X were underneath the curves 

associated with “Params” the associated muscle activations were experimental (from “Params” 

optimization) rather than calibrated. 
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Second, SynX combined with model optimization “ yn UnmeasuredS X Params+ ” produced significantly 524 

more accurate predictions of unmeasured muscle activations compared to the standard SO used 525 

within optimization “ Generic

All
SO ”. This finding was evident in terms of both magnitude (characterized 526 

by RMSE values, p  0.05) and shape (characterized by correlation r values, p  0.05) across 527 

unmeasured muscles and subjects (figure 4 and 5, table 3). Even for muscles with relatively low 528 

estimation accuracy using both methods, such as iliacus, psoas and extensor digitorum longus, 529 

SynX outperformed SO in reproducing the shape and magnitude of unmeasured muscle activations 530 

(table 3). Moreover, SO exhibited weak correlation (r  0.35) in the muscle activation predictions 531 

 

Figure 5   p-values obtained from paired t-test used to compare the estimation accuracy of muscle 

activations, as indicated by RMSE values (left) and r values (right), between different 

optimizations. Initially, RMSE and r values were calculated between the experimental (“Params” 

optimization) and estimated muscle activations from various optimizations, with the results across all 

calibration trials, legs, and subjects being concatenated and displayed in table 3. Subsequently, the 

RMSE and r values from each optimization were individually compared to the results from every other 

optimization to determine the statistical significance of the differences in estimation accuracy between 

each pair of optimizations. All statistical analyses were performed in MATLAB, and the level of 

statistical significance was set at p < 0.05. A box with green background indicates that the estimation 

performance for the y-axis optimization was significantly better (lower RMSE values or higher r values) 

than it for the x-axis optimization, while a box with grey background indicates that the estimation 

performance for the y-axis optimization was significantly worse (higher RMSE values or lower r 

values) than it for the x-axis optimization. 
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for the majority of unmeasured muscles within optimization “ Generic

All
SO ”, apart from tibialis 532 

posterior (r = 0.53), extensor digitorum longus (r = 0.48) and flexor digitorum longus (r = 0.89). 533 

Notably, the SynX-based optimization generated smooth muscle activation profiles, whereas SO 534 

exhibited discontinuities and underestimated muscle activations, featuring abrupt changes (see 535 

figure 3).  536 

Third, both SynX-based and SO-based methods were sensitive to the level of musculoskeletal 537 

model personalization (figure 4 and 5, table 3). For SynX, employing a well-calibrated EMG-538 

driven model for optimization “ yn Params

Unmeasured
S X ” resulted in lower RMSE for the estimation of 539 

unmeasured muscle activations (RMSE = 0.05  0.05) compared to optimization 540 

“ yn UnmeasuredS X Params+ ”, when SynX variables and EMG-driven model parameter values were 541 

calibrated simultaneously. The estimated unmeasured muscle activations from optimization 542 

“ yn Params

Unmeasured
S X ” exhibited strong or very strong correlations with those generated from optimization 543 

“ Params ”, with the exception of the extensor digitorum longus (r = 0.42). For SO, well-calibrated 544 

model parameter values in optimization “ Params

All
SO ” led to more accurate estimation of unmeasured 545 

muscle activations compared to using scaled generic model parameter values in optimization 546 

“ Generic

All
SO ”, although the difference was not substantial. 547 

Last, with the use of a well-calibrated EMG-driven model to estimate unmeasured muscle 548 

activations only, SynX in optimization case “ yn Params

Unmeasured
S X ” demonstrated more accurate and 549 

reliable estimates compared to SO in optimization “ Params

Unmeasured
SO ”. This was evidenced by 550 

remarkably lower RMSE values (p  0.05) and higher correlation r values (p  0.05) (figure 4 and 551 
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5, table 3). Similar to all SO-estimated muscle activations, the estimates obtained from SO in 552 

optimization “ Params

Unmeasured
SO ” showed general underestimation and abrupt changes. 553 

Muscle Forces 554 

The study quantitatively evaluated the magnitude and shape similarity of muscle forces estimated 555 

using various optimization methods and those estimated from EMG-driven modeling calibration 556 

using a full set of EMGs (optimization “ Params ”) through RMSE and correlation r measurements.  557 

First, SynX provided reasonably accurate and reliable estimation of muscle forces that closely 558 

matched those obtained from “ Params ” optimization for both subjects, as shown in figure 6 and 7, 559 

table 4. In terms of unmeasured muscle forces, the RMSE values using SynX for optimization 560 

“ yn UnmeasuredS X Params+ ” (= 101.3  0.13) were significantly smaller (p = 0.028) than those using 561 

standard SO for optimization “ Generic

All
SO ” (= 174.4  174.4). Furthermore, the correlation r values 562 

between the muscle forces estimated by SynX and those provided by the full EMG-driven model 563 

calibration was moderate or higher across all unmeasured muscles. Conversely, for SO, the 564 

correlation was generally weak for most muscles, except for moderate correlations observed for 565 

rectus femoris (r = 0.42), lateral gastrocnemius (r = 0.51), tibialis posterior (r = 0.48), and extensor 566 

digitorum longus (r = 0.58) (table 4).  567 

Second, model personalization had considerable influence on the accuracy of estimating muscle 568 

forces for both SynX and SO, as detailed in figure 6 and 7, and table 4. SynX demonstrated notably 569 

improved estimation accuracy in terms of both shape (p  0.05) and magnitude (p  0.05) when 570 

incorporating a well-calibrated EMG-driven model for optimization “ yn Params

Unmeasured
S X ”, as compared 571 

to simultaneous calibration of SynX variables and EMG-driven model parameters for optimization  572 
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 573 

 

Figure 6 Average muscle forces for the “unmeasured” muscles (upper) and the “measured” 

muscles (lower) across calibration trials, legs and subjects from “Params” optimization (blue solid 

curves), SynX-based optimizations ( yn UnmeasuredS X Params+ :red solid curves and yn Params

Unmeasured
S X  : 

yellow solid curves and SO-based optimizations ( yn Generic

All
S X : purple dash curves, yn Params

All
S X : green 

dash curves and yn Params

Unmeasured
S X :grey dash curves). Data are reported for the complete gait cycle, where 

0% indicates initial heel-strike and 100% indicates subsequent heel-strike. In addition, for the measured 

muscles, the curves associated with yn Params

Unmeasured
S X and yn Params

Unmeasured
S X were underneath the curves 

associated with “Params” the associated muscle forces were experimental (from “Params” 

optimization) rather than calibrated. 

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2024. ; https://doi.org/10.1101/2024.03.03.583228doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.03.583228
http://creativecommons.org/licenses/by-nd/4.0/


34 

 

“ yn UnmeasuredS X Params+ ”. Similarly, SO benefited from well-calibrated model parameter values in 574 

achieving more accurate estimation of unmeasured muscle forces, leading to significantly different 575 

correlation r values between optimizations “ Generic

All
SO ” and “ Params

All
SO ”, while the RMSE values 576 

remained statistically comparable between them.  577 

Finally, with model parameter values determined through a full EMG-driven calibration, “ Params ”, 578 

SynX predicted unmeasured muscle forces more accurately and reliably within optimization 579 

“ yn Params

Unmeasured
S X ” than SO within optimization “ Params

Unmeasured
SO ”. This was evidenced by significantly 580 

lower RMSE values (p  0.05) and higher correlation r values (p  0.05).  581 

 

Figure 7   p-values obtained from paired t-test used to compare the estimation accuracy of muscle 

forces, as indicated by RMSE values (left) and r values (right), between different optimizations. 

Initially, RMSE and r values were calculated between the experimental (“Params” optimization) and 

estimated muscle activations from various optimizations, with the results across all calibration trials, 

legs, and subjects being concatenated and displayed in table 4. Subsequently, the RMSE and r values 

from each optimization were individually compared to the results from every other optimization to 

determine the statistical significance of the differences in estimation accuracy between each pair of 

optimizations. All statistical analyses were performed in MATLAB, and the level of statistical 

significance was set at p < 0.05. A box with green background indicates that the estimation performance 

for the y-axis optimization was significantly better (lower RMSE values or higher r values) than it for 

the x-axis optimization, while a box with grey background indicates that the estimation performance 

for the y-axis optimization was significantly worse (higher RMSE values or lower r values) than it for 

the x-axis optimization. 
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Joint Moments 582 

Compared with the MAE values between model-predicted and experimental ID joint moments 583 

from “ Params ” optimization, the MAE values for SynX-based optimization, with simultaneous 584 

calibration of model parameters for optimization “ yn UnmeasuredS X Params+ ”, were consistently lower 585 

across all DoFs. On average, the MAE values were lower by 1.54 Nm for HipFE, 1.74 Nm for 586 

HipAA, 0.37 Nm for HipRot, 1.88 Nm for KneeFE, 2.05 Nm for AnklePD and 2.27 Nm AnkleIE 587 

across the legs of both subjects (see figure 8 and table 5). When the EMG-driven model parameter 588 

values were fixed at the values determined from “ Params ” optimizations, the SynX-estimated joint 589 

 

Figure 8 Average joint moments across calibration trials from “Params” optimization (blue solid curves) 

and SynX-based optimizations ( yn UnmeasuredS X Params+ : red solid curves and yn Params

Unmeasured
S X : yellow 

solid curves). Data are reported for the complete gait cycle, where 0% indicates initial heel-strike and 

100% indicates subsequent heel-strike.  
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moments for optimization “ yn Params

Unmeasured
S X ” showed significantly lower MAE values only for all 590 

DoFs (p  0.05), except for HipRot (p = 0.078). It is important to note that inherent to the 591 

formulation of optimization, the joint moment matching errors were exceptionally small (MAEs  592 

 0.001) for all three SO-based optimizations, “ Generic

All
SO ”, “ Params

All
SO ”, and “ Params

Unmeasured
SO ”. 593 

Model Parameters  594 

In general, the four activation dynamic model parameters and the two Hill-type muscle-tendon 595 

model parameters from optimization showed a high degree of similarity between 596 

“ yn UnmeasuredS X Params+ ” optimization and “ Params ” optimization for the measured muscles (refer 597 

to figure 9, left panel). Conversely, for the unmeasured muscles, when simultaneously tuning SynX 598 

 

Figure 9 EMG-driven model parameters of two legs of both subjects from “gold standard (Params)” 

optimization (in blue) and “ yn UnmeasuredS X Params+ ” optimization (in orange). The upper and lower 

bounds for each of the four activation dynamics model parameters during optimization have been 

indicated by grey dash-sot lines, where the upper and lower bounds for the scaling factors of optimal fiber 

lengths and tendon slack lengths were [0.6, 1.4] for all muscles. 
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variables, “ yn UnmeasuredS X Params+ ” still maintained the pattern defined by the parameter magnitudes 599 

of the optimal fiber length and tendon slack length for each model parameter (refer to figure 9, 600 

right panel). However, substantial discrepancies in the four activation dynamic model parameters  601 

were observed for the unmeasured muscles between the SynX approach for “ yn UnmeasuredS X Params+ ” 602 

and the full EMG-driven model calibration for “ Params ”. 603 

Discussion 604 

This study extended the capability of synergy extrapolation (SynX) to enable the concurrent 605 

estimation of a large number of unmeasured muscle excitations and calibration of an EMG-driven 606 

model. The approach was developed and evaluated using gait datasets collected from two post-607 

stroke subjects performing treadmill walking at self-selected and fastest-comfortable speeds. EMG 608 

signals measured bilaterally from eight muscles were treated as “unmeasured” and estimated using 609 

the synergy information extracted from another eight muscles treated as “measured.” The muscle 610 

activations, forces, and model parameter values for the unmeasured muscles were quantitatively 611 

compared to “gold standard” values obtained when all 16 channels of EMG data were used to 612 

calibrate an EMG-driven musculoskeletal model for each leg of each subject. The results revealed 613 

that the estimated unmeasured muscle activations and forces were reasonably accurate and reliable 614 

in term of both shaped and magnitude (figures 4 and 6, Tables 3 and 4). Moreover, Hill-type 615 

muscle-tendon model parameter values for both unmeasured and measured muscles, including 616 

optimal fiber length and tendon slack length, exhibited a high level of agreement with the “gold 617 

standard” model parameter values (figure 9). When SO estimates of unmeasured muscle 618 

activations and forces were compared with SynX estimates, the SynX results were more accurate 619 

and realistic than those from SO (figures 4 and 6, tables 3 and 4), which contained abrupt changes 620 

and tended to underestimate the unmeasured muscle quantities. When the sensitivity of estimated 621 
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unmeasured muscle activations and forces to the level of model personalization was investigated, 622 

both SynX and SO generated substantially more accurate estimates when utilizing well-calibrated 623 

muscle-tendon parameters. However, SynX demonstrated superior performance to SO in 624 

estimating unmeasured muscle activations and forces when employing model parameter values 625 

from full EMG-driven model calibration. 626 

SynX has demonstrated superior performance over SO for estimating muscle activations and forces 627 

for several important reasons. First, by utilizing measured synergy excitations as building blocks, 628 

it reduced the problem of finding unknown time-varying muscle excitations to identifying a small 629 

number of unmeasured synergy vector weights. This led to a substantial reduction in the search 630 

space for the optimization in comparison with SO-based approaches[37]. Second, unlike SO-based 631 

approach, which solved a time frame of muscle activation at a time, the inherent constraints of 632 

dependence between time frames in weighted synergy excitations resulted in smooth and 633 

continuous estimated muscle activations, improving the physiological plausibility of the estimates. 634 

Third, the time-invariance of unmeasured and residual synergy vector weights enabled a single-635 

layer optimization process, simultaneously achieving EMG-driven model personalization and 636 

muscle activation estimation, which enhanced the accuracy of muscle force estimation. Fourth, 637 

calibration of synergy-structured residual muscle excitations was integrated into SynX to enhance 638 

the accuracy of predicted unmeasured muscle excitations. Unlike SO, where unmeasured muscle 639 

activations, as design variables, inclined to deviate from experimental muscle excitations during 640 

iterative adjustments for minimizing joint moment matching errors, SynX introduced residual 641 

muscle excitations to account for joint moment matching errors, preventing predicted missing 642 

muscle excitations from excessively compensating for joint moment prediction inaccuracy through 643 

optimization. The addition of residual muscle excitations in turn prevented inaccuracy as a 644 

consequence[38]. Fifth, the SynX-based methods did not require assumptions in the optimization 645 
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process, whereas SO approach led to an underestimation of muscle activations by minimizing co-646 

activation between agonist and antagonist muscles concurrently[30,53]. Last, it has been theorized 647 

that muscle synergies are generated by the central nervous system to efficiently regulate the control 648 

of highly redundant musculoskeletal systems [54,55]. The SynX-based approach leveraged the 649 

concept of muscle synergy, making the method more physiological reasonable. 650 

SynX offers benefits over other computational methods for the estimating missing EMG signals 651 

within [25,56–58] or outside [59–61] the context of musculoskeletal modeling. Below are some 652 

representative approaches that offer great insights for us to develop our method. First, one such 653 

method utilizes Gaussian process regression models to describe the synergistic relationship 654 

between a subset of muscles, which enables the estimation of unmeasured muscle excitations using 655 

information provided by a subset of measured muscle excitations [60]. However, the muscle 656 

excitations associated with “unmeasured” muscles must be initially known for conducting the 657 

required model training process, rendering this method infeasible when the “unmeasured” muscle 658 

excitations are truly unmeasurable due to experimental constraints or safety considerations. 659 

Second, an alternative approach employs low-dimension sets of impulsive excitation primitives to 660 

estimate unmeasured muscle excitations [25,56,57]. Each muscle is assigned to a module by 661 

evaluating associated weighting factors for the excitation primitives derived from measured 662 

muscle excitations. Muscles without EMG signals are assumed to belong to the same module as 663 

measured muscles that share the same innervation and contribute to the same mechanical action. 664 

Meanwhile, the primitive-driven excitations for measured muscles are minimally adjusted to 665 

improve joint moment estimation in EMG-assisted models. However, these adjustments masked 666 

the omission of active force generating properties for unmeasured muscles (i.e., iliacus and psoas), 667 

resulting in noticeable hip joint moment prediction errors. Furthermore, none of these studies 668 
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evaluated the accuracy of predicted unmeasured muscle excitations due to the lack of 669 

corresponding experimental EMG data. Third, hybrid EMG-informed models that incorporates SO 670 

to determine unmeasured muscle activations have been developed [28,29]. Satori et al. also 671 

allowed minimal adjustments of measured muscle activations while predicting missing EMG 672 

signals (e.g., from iliacus and psoas) using SO[28]. However, none of these methods have provided 673 

evidence that estimation of unmeasured muscle activations was reliable and in reasonable 674 

agreement with experimental measurements. Furthermore, due to the nature of SO, the resulting 675 

muscle activations might exhibit unrealistic discontinuities. Last, as another well-established 676 

approach within OpenSim, the computed muscle control (CMC) algorithm solves a static 677 

optimization to determine muscle excitations necessary for achieving the desired accelerations for 678 

tracking experimental motion, providing more accurate joint moments compared to SO [58,62–679 

64]. However, it has been observed that CMC may be less robust and computationally efficient 680 

when estimating muscle function in human locomotion. All in all, EMG-driven modeling method 681 

with SynX provides an enhanced approach for estimating unmeasured muscle excitations, forces 682 

and joint moments in an efficient manner, without the requirement for prior knowledge of the 683 

“unmeasured” muscle excitations during the model training phase. 684 

This study quantified the impact of model personalization, specifically focusing on muscle-tendon 685 

parameters, on the estimation of muscle activations and forces in both EMG-driven modeling with 686 

SynX and SO. In the case of SynX, the tracking errors between the estimated and experimental 687 

estimates were remarkably reduced when muscle-tendon parameter values were personalized to a 688 

suitable level for optimization “ yn Params

Unmeasured
S X ”. Meanwhile, the mean correlations between the 689 

estimated and experimental values were also substantially increased, moving from moderate to 690 

strong. Additionally, the matching errors of joint moments during optimization “ yn Params

Unmeasured
S X ” 691 
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stayed closer to those obtained from full EMG-driven model optimization “ Params ”, as opposed 692 

to calibrating model parameters concurrently within optimization “ yn UnmeasuredS X Params+ ”.  In the 693 

case of SO, consistent with previous studies [65], personalization of muscle-tendon parameters 694 

showed noticeable improvements in estimating of muscle activations and forces in terms of both 695 

shape and amplitude for optimization “ Params

All
SO ”, with statistically significant enhancement 696 

observed only for the shape of muscle forces. In light of these observations, enhancing the level of 697 

model personalization generally improved the accuracy of estimation. However, there were 698 

significant variations in the degree of improvement among different approaches. In scenarios 699 

where a well-calibrated musculoskeletal model is available, SynX has the ability to predict muscle 700 

activations for muscles lacking EMG data with reasonable amplitude and shape, whereas SO can 701 

predict unmeasured muscle activations with reasonable amplitude but not accurate shape. When 702 

conducting simulations using a scaled generic model, SynX successfully replicated muscle 703 

activations with the correct amplitude and shape, which SO did not achieve this. 704 

Joint moment matching errors differ among optimizations using different approaches (figure 8 and 705 

table 5). First, the inverse dynamics (ID) and estimated joint moments exhibited a much closer 706 

agreement in the SO-based optimizations, “ Generic

All
SO ”, “ Params

All
SO ”, and “ Params

Unmeasured
SO ”  than in the 707 

EMG-driven modeling optimizations, “ Params ”, “ yn UnmeasuredS X Params+ ”, and  “ yn Params

Unmeasured
S X ”. 708 

The optimization formulation used by SO in equation (10) resulted in extremely small joint 709 

moment matching errors. However, the additional constraints within EMG-modeling methods, 710 

including muscle activation-contraction dynamics and the dependency between time frames of 711 

EMG signals, limited the torque-generating capacity of muscles, thereby preventing the 712 

reproduction of joint moments. Second, the joint moment matching errors, arranged in descending 713 

order, for optimizations associated with the EMG-driven modeling method are “ Params ”, 714 
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“ yn Params

Unmeasured
S X ” and “ yn UnmeasuredS X Params+ ”. This observation was attributed to the increasing 715 

degrees of freedom in the optimization, determined by additional SynX variables for 716 

“ yn Params

Unmeasured
S X ”, and also additional model parameters for “ yn UnmeasuredS X Params+ ”, which enabled 717 

the optimizer to reduce the joint moment matching errors. This can also explain why the joint 718 

moment matching errors were smaller when estimating 8 channels of unmeasured EMG signals in 719 

this study compared to when estimating EMGs for only the iliacus and psoas in [38]. Last, 720 

regardless of the level of model personalization and the number of channels of muscle activations 721 

to estimate, SO consistently found the solutions of muscle activations at each time frame to almost 722 

perfectly match the ID joint moments, although occasionally requiring a small amount of reserve 723 

actuator torque due to model inadequacies. Consequently, static optimization does not possess the 724 

joint moment matching errors needed to calibrate muscle-tendon model parameters. 725 

This study also examined the impact of incorporating the SynX process in the EMG-driven 726 

modeling framework on the calibrated model parameter values. It was observed that Hill-type 727 

muscle-tendon model parameter values, specifically optimal fiber length and tendon slack length, 728 

from optimization “ yn UnmeasuredS X Params+  ” closely approximated the “true” values obtained from 729 

full EMG-driven model optimization “ Params ”, as depicted in figure 9. However, the activation 730 

dynamics model parameters, including electromechanical delay, activation time constant, EMG 731 

scale factor, and activation nonlinear constant, were only reproduced with reasonable similarity 732 

for the measured muscles. When SynX was used to estimate a large number of missing EMGs 733 

during EMG-driven model calibration, it introduced additional flexibility through SynX variables 734 

into the optimization problem. This, in turn, had a cascading effect on the calibrated model 735 

parameter values for all muscles. Thus, beyond the primary cost terms specified in equation (9), 736 

penalty terms, functioning as "soft constraints" were incorporated to restrict deviations of model 737 
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parameter values from the initial model or a designated reference value[23,37,38]. The objective 738 

was to minimize the impact of SynX on model parameter values. The strategy proved effective for 739 

the Hill-type muscle-tendon models, which are inherently highly nonlinear. Nevertheless, it 740 

remained challenging to maintain the values of the activation dynamics model parameters through 741 

the utilization of penalty terms. Typically, the transformations from muscle excitations to muscle 742 

activations were determined by activation dynamics model parameters, such as time shifts 743 

typically defined by electromechanical delay and amplitude scaling dictated by EMG scale factors. 744 

Within SynX, however, unmeasured muscle excitations were constructed using linear 745 

combinations of measured synergy excitations, which could already account for these potential 746 

transformations. Consequently, numerous combinations of model parameters values and SynX 747 

variables could result in identical muscle activations. Thus, without compromising the accuracy of 748 

muscle activations, the activation model parameter values might approach the designated values 749 

in the penalty terms, allowing SynX variables to adjust to provide required muscle activations. 750 

The inclusion of the SynX in the EMG-driven model calibration process had minimal impact on 751 

the estimation of measured muscle activations and forces, as depicted in figures 4 and 6, 752 

respectively.  The muscle activations and forces estimated by SynX for measured muscles from 753 

optimization “ yn UnmeasuredS X Params+ ” remained closely aligned with those from calibration 754 

“ Params ”, in contrast to the results from the commonly formulated “ Generic

All
SO ” optimization. While 755 

the most significant deviations in the SynX-estimated muscle activations occurred for 756 

semimembranosus and semitendinosus (figure 4), and the greatest discrepancies in the SynX-757 

estimated muscle forces were observed for the muscles spanning the hip joint, such as biceps 758 

femoris long head and gluteus maximus superior (figure 6), they still exhibit a similar shape to the 759 

experimental curves. These observations were largely attributed to the optimization formulation 760 
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for the SynX-incorporated EMG-driven calibration, resulting in minimal changes in the calibrated 761 

activation dynamics model and Hill-type muscle-tendon model parameter values (figure 9). 762 

Several methodological choices for SynX were necessary to consider, as they could potentially 763 

impact SynX performance, as indicated in table 2. A series of previously published studies from 764 

the author have extensively investigated various methodological choices, with the goal of 765 

identifying an optimal combination that could yield the most reliable and accurate estimation of 766 

unmeasured muscle activations [36–38]. Initially, principal component analysis (PCA) provided 767 

more accurate, reliable, and efficient estimates of unmeasured muscle excitations compared to 768 

non-negative matrix factorization (NMF), due to the non-negativity constraints for NMF and extra 769 

design variables for PCA, both of which could result in a more restricted feasible search space for 770 

NMF in comparison to PCA [37,38]. Additionally, PCA was particularly beneficial in our 771 

framework because it permitted residual excitations to be both positive and negative, which could 772 

be beneficial for achieving lower joint moment errors. Second, by comparing the results of five 773 

different EMG normalization methods that were performed either within individual trials or across 774 

all trials, we observed that EMG normalization does not have a significant influence on the SynX 775 

performance[37]. As a result, the measured muscle excitations were normalized to their maximum 776 

values across all trials before MSA to facilitate easy implementation. Furthermore, as the number 777 

of synergies increased, the performance of SynX exhibited non-monotonic behavior, with five and 778 

six synergies generally providing the best SynX performance and outcomes for EMG-driven 779 

model calibration[38]. Hence, when an increasing number of muscles were treated “unmeasured” 780 

in this study, five synergies were selected for generating the results in this study, considering the 781 

reduction of computational costs. Last, according to the assumptions about the variability of 782 

synergy vector weight across walking trials, we categorized them associated with unmeasured and 783 

residual muscle excitations as trial-specific, speed-specific, and subject-specific, respectively, 784 
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while different concatenation strategies were used to extract corresponding synergy excitations. it 785 

was indicated that with an equal number of synergies, the trial-specific unmeasured synergy vector 786 

weights and speed-specific residual synergy vector weights produced the best SynX performance 787 

for the majority of subjects[38]. This insight shed lights on the categorization strategy of synergy 788 

vector weight across walking trials within this study. 789 

A reasonable choice of a neural control strategy is essential for producing physiologically realistic 790 

predictive simulations of walking [66]. To date, prevailing predictive simulation studies have 791 

explored the optimality of neural control principles underlying human gait, and commonly 792 

reported that minimizing the sum of squares of muscle activations in the cost function, a typical 793 

practice in SO, can result in a human-like walking pattern [26,66,67]. However, the comparative 794 

results between the estimated muscle activations and forces from both SynX and SO in this study 795 

have raised a pivotal question: If the prevalent neural control strategy of minimizing the sum of 796 

squares of muscle activations fails to accurately estimate muscle activations when the joint 797 

kinematics and moments are known a priori from experimental walking data, how can it provide 798 

reliable estimates in the predictive simulations of walking when the joint kinematics and moments 799 

are unknown a priori? These findings may also yield valuable insights into the potential benefits 800 

of muscle synergies for predicting walking motion with musculoskeletal models.  While the 801 

reliability of a synergy-based neural control strategy for generating predictive simulations of 802 

walking has been preliminary verified for only one experimental scenario thus far [68], the results 803 

of the present study endorse further exploration of a synergy-based neural control strategy for 804 

generating predictive simulations of walking. 805 

This study exhibited several limitations which may provide insights for future research endeavors. 806 

First, this study validated the effectiveness of our EMG-driven modeling framework incorporating 807 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2024. ; https://doi.org/10.1101/2024.03.03.583228doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.03.583228
http://creativecommons.org/licenses/by-nd/4.0/


46 

 

SynX by analyzing gait datasets from two post-stroke subjects, as these experimental datasets 808 

provided EMG signals for every muscle in our musculoskeletal model, enabling the evaluation of 809 

estimation accuracy. Further investigation is necessary to investigate diverse subject populations 810 

with larger sample sizes. Second, we developed the framework using walking data with two 811 

representative speeds. It would be valuable to investigate its applicability for various dynamic 812 

movement conditions and experimental scenarios, including stair climbing and running. Third, to 813 

enhance computational efficiency, we integrated a rigid tendon model into our Hill-type muscle-814 

tendon models. Research studies have indicated that rigid and compliant tendon models produce 815 

almost identical muscle force estimates for slow movements like walking at a healthy speed, but 816 

different muscle force estimates for faster movements such as running [69,70]. As both of our 817 

stroke subjects walked at slow speeds, it suggests that use of a rigid tendon model was appropriate. 818 

However, it would be worthwhile to expand our approach to include compliant tendons in our Hill-819 

type muscle-tendon models, enabling the applications to tasks involving fast movements. Last, we 820 

analyzed the impact of personalizing muscle-tendon parameter values on SynX performance. 821 

However, various other aspects of model personalization, including skeletal geometries, muscle 822 

kinematics, and other physiological properties that contribute to muscle force generation, may also 823 

impact muscle force estimates. Future work should therefore aim to extend the methods to 824 

investigate whether SynX performance was sensitive to these aspects of model personalization. 825 

The author has recently developed an EMG-driven modeling method that can personalize muscle 826 

wrapping surface parameters [71]. Therefore, one of the forthcoming research directions would 827 

focus on examining the influence of personalizing muscle-tendon pathway on SynX-based 828 

estimates. 829 

Conclusions 830 
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In conclusion, this study demonstrated a significant advancement over previous research by 831 

highlighting the capability of SynX to reproduce a large number of unmeasured muscle excitations 832 

while simultaneously calibrating EMG-driven model parameter values. Notably, the estimation 833 

accuracy of muscle activations and forces in terms of shape and amplitude for the unmeasured 834 

muscles, was significantly higher than that of the standard SO approach. The incorporation of 835 

SynX process had minimal impact on the calibrated Hill-type muscle-tendon model parameter 836 

values for all muscles and activation dynamics model parameter values for the measured muscles. 837 

Additionally, when integrated with well-calibrated musculoskeletal models, both SynX and SO 838 

produced substantially more accurate estimates of unmeasured muscle activations and forces, with 839 

SynX demonstrating superior performance over SO in this regard. The findings suggest that SynX 840 

could effectively address the practical challenge of collecting a full set of EMG signals for EMG-841 

driven modeling calibration in the lower extremity during walking, with significant implications 842 

for personalized treatments for muscle impairments in situations where difficulties arise in 843 

collecting EMG signals from all important contributing muscles. 844 
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DOFs degrees of freedom 

IK inverse kinematics 

ID inverse dynamic 

MSA muscle synergy analysis 

PCA principal component analysis 

NMF non-negative matrix factorization 
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Larger Tables  883 

 884 

Table 3 Pearson correlation coefficient r values and root mean square error (RMSE) values were 

calculated between the experimental (“Params” calibration) and estimated muscle activations for 

different calibration cases. The RMSE and r values for each muscle were calculated when the data 

across all calibration trials, legs and subjects were concatenated.  

Unmeasured Muscles 

Calibration cases 

yn UnmeasuredS X

Params+
 yn Params

Unmeasured
S X  

Generic

All
SO  

Params

All
SO  

Params

Unmeasured
SO  

RMSE r RMSE r RMSE r RMSE r RMSE r 

Adductor brevis 0.02 0.54 0.01 0.69 0.04 -0.17 0.02 -0.03 0.02 0.37 

Adductor longus 0.02 0.60 0.01 0.83 0.11 -0.13 0.02 0.12 0.04 0.37 

Adductor magnus distal 0.02 0.53 0.01 0.84 0.03 0.01 0.03 -0.07 0.03 -0.11 

Adductor magnus ischial 0.02 0.55 0.01 0.89 0.04 0.23 0.04 -0.08 0.11 0.32 

Adductor magnus middle 0.02 0.43 0.01 0.63 0.02 -0.17 0.02 -0.15 0.02 0.26 

Adductor magnus proximal 0.04 0.58 0.01 0.76 0.03 -0.14 0.04 -0.21 0.19 0.47 

Iliacus 0.17 0.43 0.17 0.86 0.24 0.05 0.21 0.08 0.33 0.04 

Psoas 0.14 0.45 0.17 0.78 0.30 0.02 0.25 0.07 0.16 0.50 

Rectus femoris 0.09 0.63 0.06 0.76 0.21 0.35 0.14 0.30 0.21 0.11 

Tensor fasciae latae2 0.16 0.66 0.04 0.98 0.29 -0.09 0.24 -0.15 0.15 0.71 

Vastus medialis 0.09 0.65 0.02 0.92 0.07 0.13 0.05 0.79 0.10 0.61 

Vastus intermedius 0.08 0.67 0.02 0.92 0.08 0.12 0.06 0.81 0.08 0.59 

Lateral gastrocnemius2 0.09 0.62 0.04 0.79 0.09 0.18 0.07 0.48 0.08 0.67 

Tibialis posterior 0.15 0.53 0.08 0.58 0.11 0.53 0.13 0.54 0.20 0.16 

Peroneus brevis 0.08 0.41 0.05 0.74 0.15 -0.31 0.07 0.29 0.11 0.25 

Peroneus longus 0.09 0.42 0.05 0.79 0.13 0.13 0.06 0.43 0.14 0.25 

Extensor digitorum longus1 0.17 0.38 0.08 0.42 0.62 0.48 0.08 0.09 0.15 0.21 

Flexor digitorum longus1 0.05 0.92 0.09 0.82 0.14 0.89 0.11 0.95 0.11 0.38 

Mean 

 

standard deviation 

0.08 

 

0.06 

0.55 

  

0.13 

0.05 

 

0.05 

0.78 

 

0.14 

0.15 

 

0.15 

0.12 

 

0.30 

0.09 

 

0.07 

0.24 

 

0.36 

0.12 

 

0.08 

0.34 

 

0.22 

1 indicates the EMG signals were assumed unmeasured only for S1 and 2 indicates the EMG signals were assumed unmeasured only for S2.  
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 885 

 886 

 887 

Table 4 Pearson correlation coefficient r values and root mean square error (RMSE) values were 

calculated between the experimental (“Params” calibration) and estimated muscle forces for 

different calibration cases. The r and RMSE values were calculated when the data across all 

calibration trials and subjects were concatenated.  

Unmeasured Muscles 

Calibration cases 

yn UnmeasuredS X

Params+
 yn Params

Unmeasured
S X  

Generic

All
SO  

Params

All
SO  

Params

Unmeasured
SO  

RMSE r RMSE r RMSE r RMSE r RMSE r 

Adductor brevis 14.4 0.35 8.1 0.71 24.1 -0.13 16.3 0.36 15.6 0.29 

Adductor longus 23.8 0.47 11.4 0.87 74.7 -0.01 25.3 0.67 43.3 0.49 

Adductor magnus distal 10.9 0.43 7.1 0.76 18.8 -0.11 19.4 -0.14 18.3 -0.19 

Adductor magnus ischial 12.8 0.36 7.1 0.82 20.1 -0.05 21.4 -0.17 51.6 0.16 

Adductor magnus middle 17.3 0.46 9.0 0.57 17.2 -0.12 16.8 -0.08 14.2 0.19 

Adductor magnus proximal 39.2 0.42 12.5 0.69 34.4 0.03 42.7 -0.02 186.7 0.32 

Iliacus 158.9 0.36 134.5 0.85 235.5 0.04 197.8 0.31 348.6 0.30 

Psoas 273.6 0.40 249.4 0.83 530.9 -0.11 429.4 -0.05 285.9 0.37 

Rectus femoris 136.8 0.68 58.3 0.94 350.8 0.42 181.0 0.70 156.2 0.47 

Tensor fasciae latae2 115.1 0.66 20.7 0.99 126.8 0.31 142.9 0.13 83.3 0.82 

Vastus medialis 115.4 0.60 31.5 0.92 290.1 -0.05 68.6 0.81 119.9 0.71 

Vastus intermedius 74.4 0.66 23.8 0.91 154.4 -0.04 58.7 0.84 65.8 0.69 

Lateral gastrocnemius2 162.6 0.86 67.7 0.94 153.9 0.51 144.9 0.73 95.8 0.89 

Tibialis posterior 320.0 0.44 166.1 0.56 214.2 0.48 293.6 0.54 424.0 0.14 

Peroneus brevis 50.2 0.48 31.9 0.77 82.0 -0.24 47.4 0.35 74.7 0.31 

Peroneus longus 109.9 0.49 63.4 0.80 126.5 0.21 81.9 0.50 170.9 0.29 

Extensor digitorum longus1 156.1 0.48 71.3 0.57 611.8 0.57 64.7 0.38 128.2 0.47 

Flexor digitorum longus1 31.2 0.91 51.1 0.81 73.1 -0.45 62.3 0.94 63.3 0.39 

Mean 

 

standard deviation 

101.3  

 

90.1 

0.53 

 

0.17 

56.9 

 

65.4 

0.79 

 

0.13 

174.4  

  

174.4 

0.07 

 

0.28 

106.4  

  

110.9 

0.38 

 

0.36 

130.4 

 

116.8 

0.39 

 

0.26 

1 indicates the EMG signals were assumed unmeasured only for S1 and 2 indicates the EMG signals were assumed unmeasured only for S2.  
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 888 

 889 

 890 

Table 5 Mean absolute error (MAE) values calculated between joint moments found from 

inverse dynamics and either “Params” calibration or SynX-based calibrations including

yn UnmeasuredS X Params+  and yn Params

Unmeasured
S X . 

DOFs Calibration Case 

Subjects 

S1 S2 

Left Right Left Right 

HipFE 

Params  7.45 6.49 5.81 4.90 

yn UnmeasuredS X Params+  4.73 3.96 3.97 5.84 

yn Params

Unmeasured
S X  8.25 5.55 6.84 7.53 

HipAA 

Params  7.31 7.23 7.17 5.51 

yn UnmeasuredS X Params+  4.88 5.65 4.85 4.90 

yn Params

Unmeasured
S X  5.79 5.80 6.42 2.77 

HipRot 

Params  5.82 5.64 2.53 2.19 

yn UnmeasuredS X Params+  5.61 4.81 2.55 1.75 

yn Params

Unmeasured
S X  5.98 5.22 2.87 1.46 

KneeFE 

Params  6.33 4.26 4.90 4.70 

yn UnmeasuredS X Params+  3.98 2.68 3.08 2.92 

yn Params

Unmeasured
S X  3.94 2.87 3.88 2.02 

AnklePD 

Params  6.88 5.68 5.04 4.85 

yn UnmeasuredS X Params+  4.51 4.11 3.14 2.50 

yn Params

Unmeasured
S X  5.78 4.63 4.14 1.77 

AnkleIE 

Params  4.89 2.82 8.19 1.75 

yn UnmeasuredS X Params+  2.50 1.89 2.73 1.46 

yn Params

Unmeasured
S X  2.90 2.13 4.22 0.95 
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