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Abstract

Background: Calibrated electromyography (EMG)-driven musculoskeletal models can provide
great insight into internal quantities (e.g., muscle forces) that are difficult or impossible to measure
experimentally. However, the need for EMG data from all involved muscles presents a significant
barrier to the widespread application of EMG-driven modeling methods. Synergy extrapolation
(SynX) is a computational method that can estimate a single missing EMG signal with reasonable
accuracy during the EMG-driven model calibration process, yet its performance in estimating a

larger number of missing EMG signals remains unclear.

Methods: This study assessed the accuracy with which SynX can use eight measured EMG signals
to estimate muscle activations and forces associated with eight missing EMG signals in the same
leg during walking while simultaneously performing EMG-driven model calibration.
Experimental gait data collected from two individuals post-stroke, including 16 channels of EMG
data per leg, were used to calibrate an EMG-driven musculoskeletal model, providing “gold
standard” muscle activations and forces for evaluation purposes. SynX was then used to predict
the muscle activations and forces associated with the eight missing EMG signals while
simultaneously calibrating EMG-driven model parameter values. Due to its widespread use, static
optimization (SO) was also utilized to estimate the same muscle activations and forces. Estimation
accuracy for SynX and SO was evaluated using root mean square errors (RMSE) to quantify
amplitude errors and correlation coefficient r values to quantify shape similarity, each calculated

with respect to “gold standard” muscle activations and forces.
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44  Results: On average, SynX produced significantly more accurate amplitude and shape estimates
45  for unmeasured muscle activations (RMSE 0.08 vs. 0.15, r value 0.55 vs. 0.12) and forces (RMSE
46  101.3 N vs. 174.4 N, r value 0.53 vs. 0.07) compared to SO. SynX vyielded calibrated Hill-type
47  muscle-tendon model parameter values for all muscles and activation dynamics model parameter
48  values for measured muscles that were similar to “gold standard” calibrated model parameter

49  values.

50 Conclusions: These findings suggest that SynX could make it possible to calibrate EMG-driven
51  musculoskeletal models for all important lower-extremity muscles with as few as eight carefully
52  chosen EMG signals and eventually contribute to the design of personalized rehabilitation and

53  surgical interventions for mobility impairments.

54 Key words: EMG-driven model, Synergy extrapolation, Static optimization, Model

55  personalization, Muscle force, Muscle activation, Stroke
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Background

Muscle forces are essential for maintaining body posture and engaging in functional activities.
Knowledge of the forces exerted by individual muscles is crucial for understanding the internal
biomechanical mechanisms and motor control involved in human movement [1-3]. More
importantly, knowledge of muscle forces could be useful for identifying musculoskeletal
pathologies [4,5] and neurological disorders [6,7] as well as for designing effective rehabilitation
or surgical interventions [8-10]. However, unlike joint moments, which can be measured in vivo
directly using dynamometers or indirectly using inverse dynamics, muscle forces cannot currently
be measured easily in vivo, though ongoing research is seeking to develop new experimental
methods that can measure muscle or tendon forces in vivo during human movement [11,12].
Unfortunately, these research efforts have been hindered by technical challenges, high cost, and
ethical considerations[11,12], motivating the search for computational methods that can enhance

our knowledge of muscle forces.

Musculoskeletal modeling enables computational estimation of unmeasurable or difficult to
measure internal biomechanical quantities, such as muscle forces and joint contact forces, that
influence human movement generation. The estimation process uses musculoskeletal computer
models that represent the bones, muscles, joints, neural control, and external forces specific to the
subject and task being modeled [13-15]. These computer models typically employ a geometric
model of the musculoskeletal system actuated by Hill-type muscle-tendon models [16]. The

control inputs to these muscle-tendon models are either muscle excitations, which are equivalent
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86 to processed experimental electromyographic (EMG) data, or muscle activations, which are
87 muscle excitations that have been time delayed and passed through an activation dynamics
88  model[17]. In addition to estimating unmeasurable time-varying internal quantities (e.g., muscle
89 activations and forces), musculoskeletal modeling can be used to estimate unmeasurable time-
90 invariant model parameter values (e.g., optimal muscle fiber length, tendon slack length) that have

91 asignificant influence on muscle force generation [18].

92  The two computational methods most commonly employed for estimating muscle activations and
93 forces using a musculoskeletal model are EMG-driven modeling [6,19-25] and static optimization
94  (SO) [26-32]. Both methods utilize nonlinear optimization to resolve the “muscle redundancy
95  problem” [33] (i.e., many more muscles than degrees of freedom (DOFs) in the skeleton, resulting
96 in control indeterminacy), both require experimental joint kinematics and moments as inputs, and
97 both find muscle activations and forces such that predicted net joint moments from a
98  musculoskeletal model match experimental net joint moments calculated via inverse dynamics as
99 closely as possible. However, the optimization problem formulations for these two methods are
100 quite different (Table 1). For EMG-driven modeling, the design variables are time-invariant model
101  parameter values (i.e., EMG scale factors, electromechanical delays, activation dynamics
102  parameter values, Hill-type muscle-tendon model parameter values), the cost function minimizes
103  the sum of squares of errors between model and experimental joint moments, the constraints bound
104  muscle activations to be less than or equal to one, and the optimization problem is solved over all
105 time frames together. For SO, the design variables are time-varying muscle activations, the cost
106  function typically minimizes the sum of squares of muscle activations [26,34], the constraints
107  enforce no errors between model and experimental joint moments in addition to bounds on muscle

108 activations, and the optimization problem is solved for each time frame separately.
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109  These optimization problem formulation differences, which stem from using experimental muscle
110  excitations as inputs for EMG-driven modeling but not SO, have important implications for the
111  capabilities and limitations of both methods. Since EMG-driven modeling uses experimental
112  muscle excitations to constrain the time-varying shapes (and often amplitudes) of the predicted
113  muscle excitations, model joint moments never match experimental joint moments perfectly.
114  Consequently, minimization of this joint moment mismatch allows for calibration of
115 musculoskeletal model parameter values when the optimization is performed over all time frames
116  together. In contrast, since SO finds muscle activations that make model joint moments match
117  experimental joint moments perfectly, there are no joint moment errors that can be used for
118 calibrating musculoskeletal model parameter values. Furthermore, optimization of each time frame
119  separately can sometimes produce muscle activation discontinuities between time frames [14,15],
120  while minimization of muscle activations with no constraints on the time-varying shapes of the
121  predicted muscle activations produces the smallest possible muscle activations, resulting in
122 minimum co-contraction solutions [27,31] that may not be physiologically realistic for some
123 subjects or movement conditions. Nonetheless, because of its simplicity and the ease with which
124 it can be implemented and performed, SO remains the most commonly used computational method

125  for estimating muscle activations and forces.

Table 1: Comparison of optimization problem formulations and solutions for EMG-driven
modeling and static optimization in their most fundamental forms.

EMG-driven Modeling Static Optimization
Design Variables EMG scale factors Muscle activations

Electromechanical delays
Activation dynamics parameters
Muscle-tendon model parameters

Cost Function Min sum of squares of errors between Min sum of squares of muscle
model and experimental joint moments ~ activations
Constraints Muscle activations <1 Muscle activations < 1

Errors between model and experimental
joint moments = 0

Experimental Inputs Muscle excitations Joint kinematics
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Joint kinematics Joint moments

Joint moments
Solution Process All time frames together Each time frame separately
Solution Quantities Muscle excitations Muscle activations

Muscle activations Muscle forces

Muscle forces
126  Although EMG-driven modeling possesses the advantages noted above and produces

127  physiologically reasonable estimates of muscle activations and forces [24], missing EMG data
128  from muscles that contribute significantly to a measured movement has limited the adoption of
129  EMG-driven modeling for routine clinical gait analysis and biomechanical research. This issue is
130 the result of two practical challenges. First, surface electrodes are incapable of measuring EMG
131  signals from deep muscles. Despite their non-invasive nature and easy application, surface
132  electrodes are unable to measure EMG signals from important deep muscles that contribute
133  significantly to joint moments, such as the iliacus and psoas muscles during walking. While fine
134  wire electrodes can capture EMG signals from deep muscles, their invasive nature, the need for
135  specialized insertion skills, the substantial preparation time required for insertion, and the potential
136  for discomfort and pain to the subject have limited their utilization. Furthermore, in certain
137  scenarios, deep muscles may be inaccessible even with fine wire electrodes. For instance, the use
138  of a fine wire electrode is contraindicated for safety reasons in subjects with a cancerous tumor
139  near the muscle to be measured. Second, EMG systems possess a limited number of channels for
140  collecting EMG data. Many EMG systems available in human movement labs provide support for
141 16 channels of data, which means only eight channels of EMG data can be collected per leg when
142  measuring activities such as walking or running. However, EMG-driven lower extremity models
143  close to 16 channels per leg to inform the model without omitting any important large muscles.
144  These challenges are significant as the absence of EMG data from important muscles can have a
145  negative impact on the reliability of force estimates for other muscles that span the same joints

146  [25,29]. To address the issue of missing EMG signals when performing EMG-driven modeling,
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147  researchers either exclude muscles with missing EMG data from the musculoskeletal model
148  [28,35], include such muscles in the model but assume that they generate only passive force [25],

149  orinclude such muscles and use SO to estimate the associated muscle activations [28,29].

150 To provide a better alternative for addressing missing EMG signals, researchers have recently
151  developed a modified EMG-driven modeling approach called “Synergy Extrapolation” (SynX)
152  that uses muscle synergy concepts to estimate missing muscle excitation data [36-38]. The
153  theoretical basis for SynX is that a large number (e.g., 8 or 16) of experimentally measured muscle
154  excitations can be represented by a smaller number (e.g., 4 or 5) of muscle synergies composed of
155  time-varying synergy excitations and associated time-invariant synergy vectors, where the weights
156 in each synergy vector define how the associated synergy excitation contributes to all muscle
157  excitations. The synergy excitations provide information about the timing of muscle contractions,
158  while the synergy vectors provide information about the coordination of muscle contractions.
159  Given 16 experimental muscle excitations, if a lower dimensional set of 4 or 5 muscle synergies
160 are calculated using either all 16 excitations or a subset of 8 carefully selected excitations, the
161  resulting synergy excitations will be almost the same in both cases [36]. This observation
162  demonstrates that the time-varying synergy excitations extracted from the first 8 muscle

163  excitations can be used as basis functions for constructing the remaining 8 muscle excitations.

164  Based on this observation, the historical development of SynX followed a logical sequence of three
165  studies. First, SynX was shown to work in theory for fitting eight missing muscle excitations using
166  synergy excitations extracted from eight measured muscle excitations [36]. For this study, 16
167  muscle excitations per leg measured experimentally from three subjects during walking were split
168 into two groups of eight “measured” and eight “missing” excitations, and synergy excitations

169 calculated from the eight measured excitations were used to fit the eight missing excitations. This
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170  study only established the theoretical feasibility of SynX, since the fitting process required the use
171  of the missing muscle excitations. Second, SynX was shown to work in practice for predicting a
172  single missing muscle excitation if a musculoskeletal model with pre-calibrated parameter values
173  was used in the process [37]. The same sets of 16 experimental muscle excitations were again split
174  into two groups, where 15 muscle excitations were treated as “measured” and one muscle
175  excitation at a time collected from a fine wire electrode was treated as “missing.” A key limitation
176  of this study was the need for a pre-existing calibrated musculoskeletal model before the missing
177  muscle excitation could be predicted reliably, which necessitates a priori knowledge of the missing
178  muscle excitation for initial model calibration. Third, SynX was shown to work in practice for
179  predicting a single missing muscle excitation while simultaneously calibrating musculoskeletal
180  model parameter values [38]. The same sets of 16 experimental muscle excitations were again split
181 into groups of 15 “measured” muscle excitations and one “missing” fine wire muscle excitation.
182 A multi-objective optimization problem was designed to predict the missing muscle excitation
183  while simultaneously calibrating time-invariant musculoskeletal model parameter values and time-
184  varying residual muscle activations needed to account for small errors in the measured muscle
185  excitations. This study resolved the main limitation of the previous study by allowing EMG-driven
186 model calibration and prediction of a single missing muscle excitation to be performed
187  simultaneously. SynX has been used more recently to predict the activation of a single unmeasured
188  upper-extremity muscle (e.g. biceps long head), achieving a Pearson’s correlation coefficient of
189  up to 0.99 with the same muscle activation calculated from experimental EMG data withheld for
190 evaluation purposes [39]. The next logical study in this progression is to evaluate how well SynX
191  works in practice for predicting multiple missing muscle excitations while simultaneously
192  calibrating musculoskeletal model parameter values. If SynX can predict missing muscle

193  excitations reliably using a low number of EMG signals collected using only surface electrodes,
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194  the applicability of EMG-driven modeling to research and clinical questions will be greatly

195  expanded.

196  This study evaluated how well SynX can estimate muscle activations associated with eight
197  channels of missing EMG data using synergy excitations extracted from muscle excitations
198  associated with eight channels of measured EMG data while simultaneously calibrating
199  musculoskeletal model parameter values. Experimental walking data collected from two subjects
200  post-stroke were used for the evaluation. Time-varying quantities (muscle activations and forces
201  along with net joint moments) and time-invariant model parameter values (activation dynamics
202  and Hill-type muscle-tendon model parameter values) predicted by SynX were compared to “gold
203  standard” results produced by EMG-driven model calibration using a complete set of EMG data
204 where no EMG signals were regarded as missing. Time-varying quantities (muscle activations and
205  forces) predicted by SO were also compared to the “gold standard” results to determine which
206  method provides the most reliable predictions. In addition, the reliability with which SynX and SO
207  can predict muscle activations and forces when using pre-calibrated musculoskeletal models was
208 evaluated to assess how model calibration affects muscle activation and force estimates from both

209  methods.

210 Methods

211  Experimental Data Collection

212  Two previously published experimental walking datasets collected from a high-functioning
213  hemiparetic subject (S1, male, 1.70 m tall, mass 80.5 kg, age 79 years, right side hemiparesis,
214 lower extremity Fugl-Meyer Motor Assessment score of 32 out of 34) and a low-functioning
215  hemiparetic subject post-stroke (S2, male, 1.83 m tall, mass 88.5 kg, age 62 years, right side

216  hemiparesis, lower extremity Fugl-Meyer Motor Assessment score of 25 out of 34) were used for

10
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217  this study [23,40]. After giving written informed consent, both subjects walked on a split-belt

218 instrumented treadmill (Bertec Corp., Columbus, OH, United States) at their self-selected speed
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Figure 1 The assumption about “measured” and “unmeasured” EMG channels when performing
SynX and SO as well as the associated muscles in the OpenSim model for each subject. The EMG
channels assumed “measured” are denoted by blue boxes, while those assumed “unmeasured” are
indicated by orange italic texts. The superscripts 1 and 2 represent the assumption of “unmeasured”
EMG channels for subject S1 and S2, respectively. The muscles were categorized based on their
actuating degrees of freedom (DOFs).

219 (0.5 m/s for S1 and 0.35 m/s for S2) and fastest-comfortable speed (0.8 m/s for S1 and 0.65 m/s
220  for S2). All experimental procedures were approved by the University of Florida Health Science

221  Center Institutional Review Board (IRB-01).

222  Sixteen channels of EMG data were collected from each leg of both subjects using both surface
223  and fine wire electrodes (Motion Lab Systems, Baton Rouge, LA, United States). These extensive
224  EMG data enabled every muscle in each leg of each subject’s musculoskeletal model (see below)

225  to have an associated experimental EMG signal, providing an opportunity to verify the reliability

11
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226  of muscle activations and forces estimated by SynX and SO. Surface EMG data were collected
227  from the following superficial muscle groups (figure 1): 1) GlutMayx, including gluteus maximus
228  superior (glmax1), gluteus maximus middle (gIlmax2) and gluteus maximus inferior (glmax3); 2)
229  GlutMedMin, including gluteus medius anterior (glmedl), gluteus medius middle (glmed2),
230  gluteus medius posterior (glmed3), gluteus minimus anterior (glminl), gluteus minimus middle
231  (glmin2), and gluteus minimus posterior (gImin3); 3) SemiMembTen, including semimembranosus
232 (semimem) and semitendinosus(semiten); 4) RecFem, including rectus femoris (recfem); 5) Bicfem,
233 including biceps femoris long head (bflh) and biceps femoris short head (bfsh); 6) VasMedint,
234 including vastus medialis (vasmed) and vastus intermedius (vasint); 7) VaslLat, including vastus
235 lateralis (vaslat); 8) TibAnt, including tibialis anterior (tibant); 9) Peroneus, including peroneus
236  brevis (perbrev) and peroneus long (perlong); 10) Sol, including soleus (soleus). Additionally, fine-
237  wire EMG data were collected from the following deep muscle groups (Fig.2): 1) iliopsoas,
238 including iliacus (iliacus) and psoas (psoas); 2) Adductors, including adductor brevis (addbrev),
239  adductor longus (addlong), adductor magnus distal (addmagDist), adductor magnus ischial
240  (addmaglsch), adductor magnus middle (addmagMid), and adductor magnus proximal
241  (addmagProx); 3)Tibpost, including tibialis posterior (tibpost). Small differences existed in the
242 EMG data collect from the two subjects. For the high-functioning subject (S1), a surface EMG
243  signal (referred as GasMed) was also collected and expanded to medial gastrocnemius (gasmed)
244 and lateral gastrocnemius (gaslat), and two fine-wire EMG signals (referred as ExtDigLong and
245  FlexDigLong) were recorded from extensor digitorum longus (edl) and flexor digitorum longus
246  (fdl) respectively. For the low-functioning subject (S2), two surface EMG signals (referred as
247 GasMed and GasLat) were recorded from medial gastrocnemius (gasmed) and lateral
248  gastrocnemius (gaslat) respectively, and a fine-wire EMG signal (referred as TensFascLat) was

249  recorded from tensor fasciae latae (tfl). Raw EMG data were high-pass filtered at 40 Hz, demeaned,

12
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250  full-wave rectified, and low-pass filtered at 3.5/tf Hz, where where tf is the period of the gait cycle
251  [23].Processed EMG data were then normalized to the maximum values across all experimental
252  gait cycles. The resulting processed EMG data will henceforth be referred to as “experimental

253  muscle excitations” [23,41].

254 A three-dimensional motion capture system (Vicon Corp., Oxford, United Kingdom) operating at
255 100 Hz was used to measure reflective surface marker trajectories, while two treadmill force plates
256  (Bertec Corp., Columbus, OH, United States) recording at 1000 Hz were used to measure ground
257  reaction forces and moments. Raw motion capture and ground reaction data were low-pass filtered
258  with a variable cut-off frequency of 7/tf Hz [42], where tf is the period of the gait cycle. Data from
259 ten gait cycles (five cycles per speed) per leg were randomly chosen to simultaneously calibrate
260 the EMG-driven models and evaluate the accuracy of estimated muscle activations and forces.
261  Following pre-processing, data from each gait cycle were resampled to 101 time points from heel-
262  strike (0%) to subsequent heel-strike (100%) of the same foot. An extra 20 time frames, accounting
263  for a maximum electromechanical delay of approximately 100 ms, were retained prior to the start

264  of each gait cycle, yielding 121 time points for each of the 10 gait cycles.

265  Musculoskeletal Model Creation

266 A generic full-body OpenSim musculoskeletal model [43] was used as the starting point to create
267  apersonalized model of each subject. This generic model possessed 37 degrees of freedom (DOFs),
268 80 muscle-tendon actuators to control lower limb motion, and 17 ideal torque actuators to control
269  the upper body motion. For each subject, a sequence of four analyses were performed using
270  OpenSim 4.0 [44,45] to prepare the model for EMG-driven modeling with SynX. First, OpenSim
271 model scaling was performed so that the generic model’s anthropometry would more closely match

272  that of each subject. Second, repeated OpenSim inverse kinematics (IK) analyses within a

13
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273  nonlinear optimization were performed to calibrate the locations and orientations of lower body
274  joint centers and axes such that errors between model and experimental surface marker positions
275  were minimized for isolated joint motion and walking trials [46]. The lower body DOFs affected
276 by this calibration process were hip flexion/extension (HipFE), hip adduction/abduction (HipAA),
277 hip internal/external rotation (HipRot), knee flexion/extension (KneeFE), ankle
278  plantarflexion/dorsiflexion (AnklePD), and ankle inversion/eversion (AnklelE). These six low-
279  extremity DOFs were targeted because their associated experimental joint moments were needed
280  for performing SynX and SO. Third, additional OpenSim IK analyses were performed using
281  experimental marker data from the walking trials to obtain joint angle time histories. Fourth,
282  OpenSim inverse dynamic (ID) analyses were performed using the previously calculated joint
283  kinematics and the experimental ground reaction data from the walking trials to calculate

284  experimental joint moments.

285  Muscle Activation and Force Estimation

286  SynX and SO were both utilized to estimate muscle activations and forces, and the resulting
287  estimates from both methods were compared to a “gold standard” for evaluation purposes. As
288 illustrated in figure 2, both approaches take joint kinematics and associated musculoskeletal
289  geometries (i.e., muscle-tendon lengths and moment arms) as inputs to estimate muscle activations,
290  muscle forces, and net joint moments. Subsequently, the estimated predicted net joint moments
291 are iteratively compared to the inverse dynamic joint moments through an optimization process,
292 leading to the estimation of the time-varying muscle activations and forces for SynX and SO, as

293  well as time-invariant musculoskeletal model and SynX-related parameter values for SynX.
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294  Synergy Extrapolation Solution Process

295  The SynX solution process involved four tasks as summarized below.

296 e Muscle activation estimation

297  For the first task of the SynX solution process, muscle activations were found for muscles with
298  and without experimental EMG data. The transformation of excitations from measured muscles

299 into activations of all muscles itself involved four distinct steps [37,38]. First, muscle excitations

15
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Figure 2 The workflow for EMG-driven modeling with SynX (left panel with a green background)
and SO (right panel with an orange background) as performed in this study. Both methods employ
experimental joint kinematics and moments as inputs and aim to determine muscle activations and forces
in such a way that the predicted net joint moments from a musculoskeletal model closely match the
experimental net joint moments calculated via inverse dynamics. However, there are notable differences
in the optimization problem formulations for these two methods. In EMG-driven modeling with SynX,
the design variables consist of time-invariant model parameter values and SynX variables, with the
optimization problem being solved across all time frames together. Conversely, for SO, the design
variables encompass time-varying muscle activations, typically utilizing model parameter values from
scaled generic models or literature references, and the optimization problem is solved for each time frame
separately. Subsequently, both techniques leverage the Hill-type muscle-tendon model to estimate
muscle forces and their respective contributions to the joint moments.

300  e7*(t) for muscles with experimental EMG data were adjusted using a muscle-specific scale

301 factor ranging from 0.05 to 1, acknowledging that actual maximum activation levels tend to
302  surpass those observed experimentally during walking.
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303  Second, muscle synergy analysis (MSA) was conducted on the scaled muscle excitations using
304  principal component analysis (PCA) to extract a small number of muscle synergies, specifically

305  six for the present study:
306 en () =W _(OH, +u, +¢,(t) (1)

307 where W_(t) specifies the time-varying measured synergy excitations, H_ specifies the
308 associated measured synergy vector weights, ¢ stands for the average values of each measured

309 muscle excitation, and ¢, (t) stands for the decomposition residuals that could not be accounted

musc

310  for by W, (t)H,, + 1, . Following MSA, both unmeasured muscle excitations eg; (t) and residual

311  muscle excitations " (t) added to the measured muscle excitations were constructed from the
312  measured synergy excitations:

313 eg/l:]S)((: (t) =Wm (t) H SynX + /uSynX (2)
eres (t) = Wm (t) H res + :ures

314  where HSynx represents the unmeasured synergy vector weights, /4, represents the average

315  values of each unmeasured muscle excitation, H, . represents the residual synergy vector weights,

S

316 and g, represents the average values of each residual muscle excitation. Henceforth, we denote

317  the union of Hg,y, g, » H and g as SynX variables, which were all time-invariant and

318 determined through an optimization process implemented within the EMG-driven model
319 calibration process (Figure 2). Once unmeasured and residual muscle excitations were constructed,
320  two sets of muscle excitations were calculated when residual muscle excitations were and were

321 notincluded:
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" (t) = (™ (1) €5 (O
322 e (1) = {em*(t) +e™ (t), e ()} 3)

res

323  where e™*(t) defines the muscle excitations without residual muscle excitations included, while

324 e (t) defines the muscle excitations with residual muscle excitations included. Both €™ (t) and

res

325 e . (t) were utilized in subsequent steps to compute corresponding muscle activations denoted as

326 a™*(t) and a, " (t), respectively.

musc

327  Third, neural activations u™"(t) were determined from constructed muscle excitations by

328 employing a first-order ordinary differential equation for activation dynamics [47]:

SO e (t-a) e e-0)-um ()

329 C = 1/ Tact -1/ Tdact (4)
CZ = 1/ Tdact
Tdact = 4Tact

330 where 7,, and 7., are activation and deactivation time constants. d specifies the

331  electromechanical time delay.

332  Fourth, a nonlinear one-parameter transformation model was utilized to compute each associated

333  muscle activation a™* (t) [48]:

334 amusc (t) — (1_ C )umusc (t) +c |: — gl +1:| (5)
i Y, (U™ () +9,)* + s

335 where c,is an activation nonlinearity constant that characterizes the curvature of the relationship

336 ofeachmuscle. g, to g. are constant coefficients obtained by fitting published experimental data
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337  from isometric contractions[48]. Our EMG-driven modeling approach solves for muscle

musc
res

musc

338 activations with (i.e., 8, (t)) or without (i.e., a™*(t)) residual excitations included over all time

339  frames simultaneously by adjusting the same set of design variables, encompassing SynX variables,
340 EMG scale factors, electromechanical time delays, activation time constants, and activation

341  nonlinearity constants, where further details are provided in section 2.3.1.4.

342 e Muscle force estimation

343  For the second task of the SynX solution process, muscle forces were estimated using the
344  activations for measured and unmeasured muscles found in the first task. Taking the estimated
345  muscle activations as inputs, our EMG-driven modeling process employed a Hill-type muscle
346  tendon model with rigid tendon [16,23,49] to predict the force generated by a given muscle-tendon

347  actuator, m, which was formulated as (figure 2):

F™(1,0,0) = F"-[a™ (1) (™ (t,0))- {2(™*(t.0,0))+ " ((™*(t,0)) | -cosa

mt qt
348 e, 0) = RO L (t’lf) L (6)
mt )
™ (t, 6, 9') - M
10-1™

349  where f((™(t,0)) and f*(I™(t,0,6)) describe the normalized active muscle force-length
350  and force-velocity relationships, respectively, f,”(I™(t,0)) defines the normalized force-length

351  relationship, | ™ (t,6) and V™*(t,6,6) denote the time-varying normalized muscle fiber length
352 and velocity, respectively, F™*(t,0,0) and a™(t) denote the muscle force and muscle

353  activation generated by the muscle-tendon actuator at time t, F" is the maximum isometric force,

354  « is the pentation angle of the muscle (values of which were taken from literature [50]), I.'
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355  denotes optimal muscle fiber length, and | denotes tendon slack length. These values (apart from

356  pennation angles, which were taken from the literature) were calibrated through an optimization

357  process or taken from the scaled OpenSim models. More details regarding the determination of

358 I and I values for each muscle force estimation method can be found below.

359 e Joint moment calculation
360  For the third task of the SynX solution process, model joint moments were calculated using the

361  forces for measured and unmeasured muscles found in the second task. Once the muscle forces
362  F™%*(t,6) were estimated, their contributions to net joint moment at joint j were calculated using

363  the corresponding muscle moment arms:

364 MM (t,0,0) = F™(t,0,6) r™*(t,0) (7)
™ (t, 0)

365 r™(t,6) = ————~ 8

(t,0) 50 8

366  where M ™(t,4,6) is joint moment at time t, which is defined as the sum of contributions from
367 all spanning muscles r™(t,8) is muscle moment arm for muscle m at time t, which was

368  defined as the negative of the partial derivative of muscle-tendon length 1™ (t,d) with respect to
369  generalized coordinate & [51]. The negative sign in Eg. 8 was implemented for consistency with
370  the OpenSim modeling environment. When utilizing SynX for estimating unmeasured muscle

371  excitations, net joint moments were computed with (M " (t, 9, ) )and without (M "™ (t,8,6) )

372  incorporating residual excitations into the measured muscle excitations, as stipulated by the cost

373  function for EMG-driven model calibration.
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374 e Optimization problem formulation

375  For the fourth task of the SynX solution process, the first three tasks were performed iteratively
376  within a nonlinear optimization that adjusts three categories of design variables (see figure 2): 1)
377  SynX parameter values including synergy vector weights and average values associated with
378 unmeasured muscle excitations as well as synergy vector weights and average values associated
379  with residual muscle excitations; 2) activation dynamics model parameter values consisting of
380 EMG scale factors, electromechanical delays, activation time constants, and activation
381 nonlinearity constants; 3) muscle-tendon model parameter values consisting of optimal muscle
382  fiber lengths and tendon slack lengths. EMG-driven model calibration typically adjusts muscle
383  forces by altering muscle-tendon model parameter values such that the differences between model-
384  predicted and inverse dynamic (ID) joint moments are minimized. However, to estimate
385  unmeasured muscle excitations via SynX during EMG-driven model calibration, the primary cost
386  function was formulated as a trade-off between minimizing joint moment tracking errors and

387  minimizing unmeasured and residual muscle activation magnitudes [38]:

joint

2
A M. (t,0,0)-M™(t,6,0)
man:Z{ A5
1

N doint (t,@,é)— M 'D(t,H, 6’) i
+Z( MAD, j

am (1)
+Z£ MAD, J

8e®) )
3s)

389  where M2™(t,0,0) refersto model-predicted joint moments when residual muscle excitations are

388 9)

390 included in joint moment calculations, M'D(t,H,é) refers to inverse dynamic joint moments
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musc

391  obtained from OpenSim ID analyses, ag (t) represents unmeasured muscle activations estimated

392 by SynX, and a_(t) signifies residual muscle activations added to the measured muscle

res

musc

393  activations, which are equivalentto ag, () — a™*(t). Normalization of all four cost function terms

394  was achieved using a set of maximum allowable deviations (MAD), the values of which were
395 determined by performing a sensitivity analysis as described in [38]. Further details regarding
396 initial guesses, upper/lower bounds for design variables, additional inequality constraints, and
397  penalty terms can be found in previously published studies [23,37,38]. All optimization procedures
398  were performed using MATLAB's "fmincon™ function with its sequential quadratic programming

399  algorithm.

400  Static Optimization Solution Process

401  The static optimization solution process involved determining muscle activations a™*(t) at each

402  timeinstant t by performing an inverse dynamics-based optimization. In the standard SO approach,
403  the muscle redundancy problem is addressed by minimizing the energetic cost represented by the
404  sum of squares of muscle activations while ensuring that inverse dynamic joint moments are

405  matched perfectly at the solution [26]:

for time frame t:
minJ =Y a™*(t)’
406 subject to (10)
M ™ (t,0,60)-M ™ (t,6,0) =0
0<a™*(t)<1

407  The net joint moments for SO were estimated by multiplying the muscle forces obtained through

musc

408  substituting muscle activations a™(t) into the Hill-type muscle-tendon model with the

409  corresponding muscle moment arms, as depicted in Egs. 6 through 8. In contrast to the EMG-
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410  driven modeling method, the muscle activations estimated for SO were used directly as design
411  variables in the optimizations, which were solved individually for each time frame. Furthermore,
412  model parameter values were taken from scaled generic models or literature references rather than

413  being calibrated during the optimization process.

414  Synergy Extrapolation and Static Optimization Evaluation

415  Muscle selection heuristics

416  Given 16 measured muscle excitations for each leg of both subjects, we had to decide which 8
417  muscle excitations would be treated as measured and which 8 would be held back and treated as
418  missing for SynX and SO evaluation purposes. A prior study [36] provided guidance for which
419  eight muscles to select as measured and which eight to select as missing so as to maximize
420  reconstruction accuracy for the eight missing muscle excitations. In that study, an investigation of
421  all possible combinations of eight measured and eight missing EMG signals yielded the following
422  muscle selection heuristic: 1) Choose muscles easily accessible by surface EMG electrodes; 2)
423  Choose most frequently occurring muscle in the top 10% of muscle combinations that yielded the
424 highest SynX accuracy from each primary lower extremity function group; 3) Choose two hip/knee
425  biarticular muscles at minimum; 4) Choose remaining most frequent muscles to fill eight muscle
426  combinations. Following the observation of SynX performance, our muscle selection heuristic,
427  given a limited number of eight EMG channels, indicated that researchers should collect surface
428 EMG data from commonly chosen uniarticular and biarticular flexor and extensor muscles from
429  each major muscle group, as illustrated in figure 1. The selected uniarticular muscles included a
430  hip extensor (GlutMax), a knee extensor (VasLat considered preferable over VasMed), an ankle
431  plantarflexor (Sol), and an ankle dorsiflexor (TibAnt). Uniarticular hip flexor (lliopsoas) was

432  omitted due to the difficulty in measuring these muscles reliably with surface electrodes. The
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433  chosen biarticular muscles included a posterior thigh muscle (SemiMembTen, or Bicfem), and a
434  posterior calf muscle (GasMed or GasLat). Additionally, adding GlutMedMin to the list appeared
435  to be a reasonable choice if one more muscle was needed. Even the collection of EMG data from
436  less commonly chosen muscles spanning all three joints (Adductors, tfl, and Peroneus) may
437  facilitate to improve the estimation accuracy to some extent due to the unique stabilizing roles they
438 play in the frontal plane, they were excluded from the “measured” muscles that was attributed to

439  the difficulty in reliable surface EMG measurement of these muscles.

440  Synergy extrapolation methodological choices

Table 2 Methodological choices for synergy extrapolation

Description Methods (Abbreviations)

Matrix factorization algorithm Principal component analysis (PCA)
EMG normalization method Maximum value over all trial
Number of muscle synergies 5

Category of unmeasured synergy vector weights Trial-specific

Category of residual synergy vector weights Speed-specific

Number of missing EMGs 8

Number of measured EMGs 8

441  Implementation of SynX requires making several methodological choices that can impact the
442  accuracy of estimated muscle activations and forces. Previous studies investigated the influence
443  of various methodological factors on SynX performance [37,38], including EMG normalization
444 methods, matrix decomposition algorithms, the number of muscle synergies, and assumptions
445  regarding the variability of synergy vector weights across trials for the reconstruction of
446  unmeasured and residual muscle excitations. We systematically assessed the results for all possible
447  methodological combinations and found that principal component analysis (PCA) with either five

448  or six synergies consistently predicted unmeasured muscle excitations with reasonable accuracy.
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In contrast, non-negative matrix factorization (NMF) did not achieve acceptable prediction
accuracy. Additionally, for the same number of synergies, employing trial-specific unmeasured
synergy vector weights and speed-specific residual synergy vector weights resulted in optimal
SynX performance for both subjects in terms of estimation accuracy and computational efficiency.
Notably, EMG normalization had no significant impact on SynX performance. Thus, the key
methodological choices for SynX in this study were informed by insights from prior research, as

detailed in Table 1.

Params SynX SO
SynX " Params o Params
it SYNX Unmeasured ¢ SO All SO Unmeasured
3 r »
r Predicted i d 1 =
Measured )—
[ Muscle
| excitations/activations
— Predicted M o - o o
Unmeasured [
(Lemessred
L . Calibrated >
Activation dynamics ‘
model parameters m'\ M He M M
Callibrated >
Muscle-tendon
[ Scaled generic
model parameters

Figure 3 Summary of six optimizations performed in this study, which included two optimizations
using SynX to predict unmeasured muscle excitations (termed SynX measureq +Params — and

synxParams ) three optimizations using static optimization (SO) to predict unmeasured muscle

Unmeasured

activations (termed so¢s"e, sofa™ and sol*a™ ) and one “gold standard” optimization using

All Unmeasured

the complete set of EMG signals with no muscle excitations predicted by SynX or SO (termed
Params ). The calibration cases were hamed based on the prediction method for unmeasured muscle
excitations or activations as well as the categories of design variables included in the optimization
problem formulation. The subscripts indicate which set of muscle excitations or activations were
predicted computationally, while the superscripts indicate which set of model parameters were
employed during model calibration. In each column of the optimizations, the arrows indicate whether
each group of muscle excitations or activations were predicted or obtained experimentally. Moreover,
the arrows indicate which values were used if the model parameters were not calibrated through
optimization. The term “Scaled Generic” denotes the scaled generic model parameter values, while
“From Params” refers to the model parameter values derived from the “gold standard (Params)”
optimization.
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456  Optimization problems

457 In this study, three primary objectives were pursued. Firstly, the study aimed to evaluate the
458  performance of SynX when treating multiple channels of EMGs (i.e., eight) as “unmeasured”.
459  Secondly, it sought to compare the estimates of muscle activations and forces from SynX with
460 those from SO. Thirdly, the study also aimed to analyze the accuracy of estimated unmeasured
461 muscle activations and forces for both SynX and SO when using model parameter values

462  associated with different levels of personalization.

463 To address these primary objectives, we formulated six optimization problems to estimate
464  unmeasured muscle activations and, for SynX, calibrate model parameter values (figure 3). The
465  first optimization problem utilized all 16 channels of EMG data to calibrate each EMG-driven
466  musculoskeletal model, providing “gold standard” muscle activations and forces for evaluation
467  (termed “Params ™). The second optimization problem assessed the performance of SynX when
468  multiple channels of EMG data (i.e., eight) were considered “unmeasured”. This optimization
469  problem calibrated EMG-driven models for each leg of each subject while simultaneously
470  estimating missing muscle excitations using SynX, where activation dynamics model, muscle-
471 tendon model, and SynX parameter values were calibrated concurrently (termed

472 “SynX{mmeasured + Params ). The third optimization problem used SO to estimate muscle activations
473  for all muscles using muscle-tendon model parameter values taken from scaled generic OpenSim

474  models (termed “ Soiﬁneric ), representing the most commonly formulated SO method. The

475  accuracy of estimated muscle activations and forces was further quantitatively compared to those
476  from the optimization *“ SynX,easureq + Params  to assess the estimation performance of both SynX
477 and SO. The fourth optimization problem employed SynX to estimate the unmeasured muscle

478  excitations within a well-calibrated EMG-driven model (termed “Synx">2™ ) ytilizing the

Unmeasured
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479  model parameter values found in the “gold standard (Params)” optimization. The fifth and sixth
480  optimization problems utilized SO to estimate muscle activations for all muscles (termed

481  “soP @) and only unmeasured muscles (termed “ SO72@™ ) using the model parameter values

All Unmeasured

482  from the “gold standard ( Params )” optimization, rather than scaled generic values. when

483  performing the fourth and sixth optimizations of SynxP¥@™ and so"2™ to estimate only

Unmeasured Unmeasured
484  unmeasured muscle excitations/activations, the muscle activations of the measured muscles were

485  determined from the “gold standard ( Params )” optimization.

486  Evaluation Metrics and Statistical Analyses

487  Several common evaluation metrics were utilized to evaluate the ability of SynX and SO to
488  estimate muscle activations and muscle forces for unmeasured muscles and joint moments across
489  all cases. First, root mean square errors (RMSESs) were computed to quantify magnitude errors
490  between experimental (from “Params ™ case) and predicted (from two SynX and three SO cases)
491  muscle activations and forces. Similarly, Pearson correlation coefficients (r) were computed to
492  quantify shape similarity between experimental and predicted unmeasured muscle activations and
493  forces. Correlations were interpreted based on [52], categorized as weak (r < 0.35), moderate

494  (0.35<r =< 0.67), strong (0.67 <r < 0.9), or very strong (r < 0.9). Furthermore, mean absolute

495  errors (MAEs) between model and experimental net joint moments were also calculated for the

496  “Params” case and the two SynX cases “ SynNX jnmeasured + PArams > and  “ synx Pam - > Eyaluation

Unmeasured *

497  metrics, including RMSEs, r values, and MAE values, were calculated by concatenating the data

498  across all calibration trials and legs of both subjects.

499  Multiple statistical analyses were also performed to compare the evaluation metrics resulting from

500 different SynX and SO cases. Paired t-tests were performed on RMSE and r values to identify
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501 significant differences in the accuracy of estimated unmeasured muscle activations between any
502  two of the five SynX or SO cases. Paired t-tests were also used to identify significant differences
503 in the accuracy of estimated muscle forces between any two of the five SynX or SO cases. In
504  addition, paired t-tests were performed to compare joint moment matching errors (MAE values)
505  between the “Params” case and the two SynX cases. All statistical analyses were performed in

506 MATLAB with a significance level of p < 0.05.

507 Results

508 Muscle Activations

509  Muscle activations for unmeasured muscles estimated using SynX and SO were compared with
510 those produced by EMG-driven model calibration using a complete set of EMG data (optimization
511  problem “Params ). This comparison was conducted to assess the accuracy of estimated muscle
512  activations (figure 4 and 5, table 3). Initially, during the simultaneous calibration of EMG-driven
513  model parameters, SynX effectively estimated unmeasured muscle activations, demonstrating low
514  RMSE values (< 0.17, = 0.08 + 0.06) and moderate or strong correlation r values (> 0.38, = 0.55

515 £+ 0.13) across most muscles for optimization * SynX,messures + Params > (figure 3 and table 3).

516  Notably, among these unmeasured muscles, SynX exhibited superior performance for the
517  superficial muscles (e.g. rectus femoris, lateral gastrocnemius and vastus intermedius) compared
518 tothe deep-located muscles (e.g. iliacus, extensor digitorum longus and tibialis posterior) in terms
519  of both shape and magnitude. However, the estimates for adductor muscles (RMSE = 0.01, r >
520 0.43) and flexor digitorum longus (RMSE = 0.05, r = 0.92) that typically rely on fine-wire

521  electrodes for EMG collection remained reasonably accurate.

522
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Figure 4 Average muscle activations for the “unmeasured” muscles (upper) and the “measured”
muscles (lower) across calibration trials, legs and subjects from “Params” optimization (blue solid

curves), SynX-based optimizations ( SynXyeasured +Params :red solid curves and Synx e
yellow solid curves and SO-based optimizations ( SynX iﬁ"e”c: purple dash curves, SynX Zﬁ’ams: green

dash curves and Synx Farams 4 ‘grey dash curves). Data are reported for the complete gait cycle, where

Unmeasure

0% indicates initial heel-strike and 100% indicates subsequent heel-strike. In addition, for the measured

muscles, the curves associated with SynXF"a@™ and SynXPa@™ \were underneath the curves
Unmeasured Unmeasured

associated with “Params” the associated muscle activations were experimental (from “Params”
optimization) rather than calibrated.

29


https://doi.org/10.1101/2024.03.03.583228
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.03.583228; this version posted March 6, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

524  Second, SynX combined with model optimization “ SynX,measureq + Params ” produced significantly

525  more accurate predictions of unmeasured muscle activations compared to the standard SO used

526  within optimization “ Soiﬁ"eric ”. This finding was evident in terms of both magnitude (characterized

527 by RMSE values, p < 0.05) and shape (characterized by correlation r values, p < 0.05) across

528 unmeasured muscles and subjects (figure 4 and 5, table 3). Even for muscles with relatively low
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Figure 5 p-values obtained from paired t-test used to compare the estimation accuracy of muscle
activations, as indicated by RMSE values (left) and r values (right), between different
optimizations. Initially, RMSE and r values were calculated between the experimental (“Params”
optimization) and estimated muscle activations from various optimizations, with the results across all
calibration trials, legs, and subjects being concatenated and displayed in table 3. Subsequently, the
RMSE and r values from each optimization were individually compared to the results from every other
optimization to determine the statistical significance of the differences in estimation accuracy between
each pair of optimizations. All statistical analyses were performed in MATLAB, and the level of
statistical significance was set at p < 0.05. A box with green background indicates that the estimation
performance for the y-axis optimization was significantly better (lower RMSE values or higher r values)
than it for the x-axis optimization, while a box with grey background indicates that the estimation
performance for the y-axis optimization was significantly worse (higher RMSE values or lower r
values) than it for the x-axis optimization.

529  estimation accuracy using both methods, such as iliacus, psoas and extensor digitorum longus,
530 SynXoutperformed SO in reproducing the shape and magnitude of unmeasured muscle activations

531  (table 3). Moreover, SO exhibited weak correlation (r < 0.35) in the muscle activation predictions
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532  for the majority of unmeasured muscles within optimization “ so$™"™ », apart from tibialis

533  posterior (r = 0.53), extensor digitorum longus (r = 0.48) and flexor digitorum longus (r = 0.89).
534  Notably, the SynX-based optimization generated smooth muscle activation profiles, whereas SO
535  exhibited discontinuities and underestimated muscle activations, featuring abrupt changes (see

536  figure 3).

537  Third, both SynX-based and SO-based methods were sensitive to the level of musculoskeletal
538 model personalization (figure 4 and 5, table 3). For SynX, employing a well-calibrated EMG-

539  driven model for optimization “ synxFa@™ > resylted in lower RMSE for the estimation of

Unmeasured

540 unmeasured muscle activations (RMSE 0.05 + 0.05) compared to optimization

541  “ SYNX{nmeasured + Params ”, when SynX variables and EMG-driven model parameter values were

542  calibrated simultaneously. The estimated unmeasured muscle activations from optimization

543  «synx"¥am > exhibited strong or very strong correlations with those generated from optimization

Unmeasured
544 “Params ”, with the exception of the extensor digitorum longus (r = 0.42). For SO, well-calibrated

545  model parameter values in optimization “so’™*™” led to more accurate estimation of unmeasured

546  muscle activations compared to using scaled generic model parameter values in optimization

547 “so%ere”, although the difference was not substantial.

548  Last, with the use of a well-calibrated EMG-driven model to estimate unmeasured muscle

549  activations only, SynX in optimization case “synx"™ > demonstrated more accurate and

Unmeasured

550 reliable estimates compared to SO in optimization « sof¥@™ > This was evidenced by

Unmeasured

551  remarkably lower RMSE values (p < 0.05) and higher correlation r values (p < 0.05) (figure 4 and
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552 5, table 3). Similar to all SO-estimated muscle activations, the estimates obtained from SO in

553  optimization “sof@™ > showed general underestimation and abrupt changes.

Unmeasured

554  Muscle Forces

555  The study quantitatively evaluated the magnitude and shape similarity of muscle forces estimated

556  using various optimization methods and those estimated from EMG-driven modeling calibration

557  using a full set of EMGs (optimization “ Params *’) through RMSE and correlation r measurements.

558  First, SynX provided reasonably accurate and reliable estimation of muscle forces that closely
559  matched those obtained from “ Params > optimization for both subjects, as shown in figure 6 and 7,

560 table 4. In terms of unmeasured muscle forces, the RMSE values using SynX for optimization

561  “SYnX{nmeasured +Params > (= 101.3 + 0.13) were significantly smaller (p = 0.028) than those using

562  standard SO for optimization “so$"” (= 174.4 + 174.4). Furthermore, the correlation r values

563  between the muscle forces estimated by SynX and those provided by the full EMG-driven model

564 calibration was moderate or higher across all unmeasured muscles. Conversely, for SO, the
565  correlation was generally weak for most muscles, except for moderate correlations observed for
566  rectus femoris (r = 0.42), lateral gastrocnemius (r = 0.51), tibialis posterior (r = 0.48), and extensor

567  digitorum longus (r = 0.58) (table 4).

568  Second, model personalization had considerable influence on the accuracy of estimating muscle
569  forces for both SynX and SO, as detailed in figure 6 and 7, and table 4. SynX demonstrated notably
570 improved estimation accuracy in terms of both shape (p < 0.05) and magnitude (p < 0.05) when

571  incorporating a well-calibrated EMG-driven model for optimization “synx "™ > as compared

Unmeasured

572  tosimultaneous calibration of SynX variables and EMG-driven model parameters for optimization
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Figure 6 Average muscle forces for the “unmeasured” muscles (upper) and the “measured”
muscles (lower) across calibration trials, legs and subjects from “Params” optimization (blue solid

curves), SynX-based optimizations ( SynX,measureq +Params :red solid curves and Synx "2rams

Unmeasured

yellow solid curves and SO-based optimizations (SynX 5" purple dash curves, SynX F%™: green

dash curves and Synxgrfr’ni“a‘zure 4 ‘grey dash curves). Data are reported for the complete gait cycle, where

0% indicates initial heel-strike and 100% indicates subsequent heel-strike. In addition, for the measured

muscles, the curves associated with SynX 23" and SynXPa@™ \yere underneath the curves
Unmeasured Unmeasured

associated with “Params” the associated muscle forces were experimental (from “Params”
optimization) rather than calibrated.
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574 “SYnXnmeasured + Params . Similarly, SO benefited from well-calibrated model parameter values in

575  achieving more accurate estimation of unmeasured muscle forces, leading to significantly different
576  correlation r values between optimizations “so$™"” and “sofa™™ ”, while the RMSE values

577  remained statistically comparable between them.
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Figure 7 p-values obtained from paired t-test used to compare the estimation accuracy of muscle
forces, as indicated by RMSE values (left) and r values (right), between different optimizations.
Initially, RMSE and r values were calculated between the experimental (“Params” optimization) and
estimated muscle activations from various optimizations, with the results across all calibration trials,
legs, and subjects being concatenated and displayed in table 4. Subsequently, the RMSE and r values
from each optimization were individually compared to the results from every other optimization to
determine the statistical significance of the differences in estimation accuracy between each pair of
optimizations. All statistical analyses were performed in MATLAB, and the level of statistical
significance was set at p < 0.05. A box with green background indicates that the estimation performance
for the y-axis optimization was significantly better (lower RMSE values or higher r values) than it for
the x-axis optimization, while a box with grey background indicates that the estimation performance
for the y-axis optimization was significantly worse (higher RMSE values or lower r values) than it for
the x-axis optimization.

578  Finally, with model parameter values determined through a full EMG-driven calibration, « Params ”,
579  SynX predicted unmeasured muscle forces more accurately and reliably within optimization

580  “synxPram™ > than SO within optimization “so”@™ > This was evidenced by significantly

Unmeasured Unmeasured

581  lower RMSE values (p < 0.05) and higher correlation r values (p < 0.05).
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Figure 8 Average joint moments across calibration trials from “Params” optimization (blue solid curves)

- - - . - P .
and SynX-based optimizations ( SynXymeasurea +Params : red solid curves and Synx "7 - yellow

solid curves). Data are reported for the complete gait cycle, where 0% indicates initial heel-strike and
100% indicates subsequent heel-strike.

583  Compared with the MAE values between model-predicted and experimental ID joint moments

584  from “Params” optimization, the MAE values for SynX-based optimization, with simultaneous
585 calibration of model parameters for optimization *“ SynXj,measured + Params , were consistently lower

586  across all DoFs. On average, the MAE values were lower by 1.54 Nm for HipFE, 1.74 Nm for
587  HipAA, 0.37 Nm for HipRot, 1.88 Nm for KneeFE, 2.05 Nm for AnklePD and 2.27 Nm AnklelE

588  across the legs of both subjects (see figure 8 and table 5). When the EMG-driven model parameter

589  values were fixed at the values determined from “ Params ”” optimizations, the SynX-estimated joint
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590 moments for optimization “synx "™ > showed significantly lower MAE values only for all

Unmeasured
591 DoFs (p < 0.05), except for HipRot (p = 0.078). It is important to note that inherent to the
592  formulation of optimization, the joint moment matching errors were exceptionally small (MAEs

593  <0.001) for all three SO-based optimizations, “s0%™"”, “s0f™@™ ”, and “sofre™ .

All Unmeasured

594  Model Parameters
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Figure 9 EMG-driven model parameters of two legs of both subjects from “gold standard (Params)”
optimization (in blue) and *“ SYnX,measureq +Params ” optimization (in orange). The upper and lower

bounds for each of the four activation dynamics model parameters during optimization have been
indicated by grey dash-sot lines, where the upper and lower bounds for the scaling factors of optimal fiber
lengths and tendon slack lengths were [0.6, 1.4] for all muscles.

595 In general, the four activation dynamic model parameters and the two Hill-type muscle-tendon
596 model parameters from optimization showed a high degree of similarity between

597  “SynX{nmeasured + Params > optimization and “ Params > optimization for the measured muscles (refer

598 tofigure 9, left panel). Conversely, for the unmeasured muscles, when simultaneously tuning SynX
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599  variables, “ SynXmessured + Params  still maintained the pattern defined by the parameter magnitudes

600 of the optimal fiber length and tendon slack length for each model parameter (refer to figure 9,
601 right panel). However, substantial discrepancies in the four activation dynamic model parameters

602  were observed for the unmeasured muscles between the SynX approach for “ SynX  measures + Params

603 and the full EMG-driven model calibration for “ Params .

604 Discussion

605 This study extended the capability of synergy extrapolation (SynX) to enable the concurrent
606  estimation of a large number of unmeasured muscle excitations and calibration of an EMG-driven
607  model. The approach was developed and evaluated using gait datasets collected from two post-
608  stroke subjects performing treadmill walking at self-selected and fastest-comfortable speeds. EMG
609  signals measured bilaterally from eight muscles were treated as “unmeasured” and estimated using
610 the synergy information extracted from another eight muscles treated as “measured.” The muscle
611 activations, forces, and model parameter values for the unmeasured muscles were quantitatively
612  compared to “gold standard” values obtained when all 16 channels of EMG data were used to
613 calibrate an EMG-driven musculoskeletal model for each leg of each subject. The results revealed
614  that the estimated unmeasured muscle activations and forces were reasonably accurate and reliable
615 in term of both shaped and magnitude (figures 4 and 6, Tables 3 and 4). Moreover, Hill-type
616  muscle-tendon model parameter values for both unmeasured and measured muscles, including
617  optimal fiber length and tendon slack length, exhibited a high level of agreement with the “gold
618 standard” model parameter values (figure 9). When SO estimates of unmeasured muscle
619  activations and forces were compared with SynX estimates, the SynX results were more accurate
620 and realistic than those from SO (figures 4 and 6, tables 3 and 4), which contained abrupt changes

621 and tended to underestimate the unmeasured muscle quantities. When the sensitivity of estimated
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622  unmeasured muscle activations and forces to the level of model personalization was investigated,
623  both SynX and SO generated substantially more accurate estimates when utilizing well-calibrated
624  muscle-tendon parameters. However, SynX demonstrated superior performance to SO in
625  estimating unmeasured muscle activations and forces when employing model parameter values

626  from full EMG-driven model calibration.

627  SynX has demonstrated superior performance over SO for estimating muscle activations and forces
628  for several important reasons. First, by utilizing measured synergy excitations as building blocks,
629 it reduced the problem of finding unknown time-varying muscle excitations to identifying a small
630 number of unmeasured synergy vector weights. This led to a substantial reduction in the search
631  space for the optimization in comparison with SO-based approaches[37]. Second, unlike SO-based
632  approach, which solved a time frame of muscle activation at a time, the inherent constraints of
633  dependence between time frames in weighted synergy excitations resulted in smooth and
634  continuous estimated muscle activations, improving the physiological plausibility of the estimates.
635  Third, the time-invariance of unmeasured and residual synergy vector weights enabled a single-
636 layer optimization process, simultaneously achieving EMG-driven model personalization and
637  muscle activation estimation, which enhanced the accuracy of muscle force estimation. Fourth,
638 calibration of synergy-structured residual muscle excitations was integrated into SynX to enhance
639  the accuracy of predicted unmeasured muscle excitations. Unlike SO, where unmeasured muscle
640 activations, as design variables, inclined to deviate from experimental muscle excitations during
641 iterative adjustments for minimizing joint moment matching errors, SynX introduced residual
642  muscle excitations to account for joint moment matching errors, preventing predicted missing
643  muscle excitations from excessively compensating for joint moment prediction inaccuracy through
644  optimization. The addition of residual muscle excitations in turn prevented inaccuracy as a

645  consequence[38]. Fifth, the SynX-based methods did not require assumptions in the optimization
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646  process, whereas SO approach led to an underestimation of muscle activations by minimizing co-
647  activation between agonist and antagonist muscles concurrently[30,53]. Last, it has been theorized
648  that muscle synergies are generated by the central nervous system to efficiently regulate the control
649  of highly redundant musculoskeletal systems [54,55]. The SynX-based approach leveraged the

650  concept of muscle synergy, making the method more physiological reasonable.

651  SynX offers benefits over other computational methods for the estimating missing EMG signals
652  within [25,56-58] or outside [59-61] the context of musculoskeletal modeling. Below are some
653  representative approaches that offer great insights for us to develop our method. First, one such
654  method utilizes Gaussian process regression models to describe the synergistic relationship
655  between a subset of muscles, which enables the estimation of unmeasured muscle excitations using
656 information provided by a subset of measured muscle excitations [60]. However, the muscle
657  excitations associated with “unmeasured” muscles must be initially known for conducting the

658  required model training process, rendering this method infeasible when the “unmeasured” muscle

659 excitations are truly unmeasurable due to experimental constraints or safety considerations.
660  Second, an alternative approach employs low-dimension sets of impulsive excitation primitives to
661 estimate unmeasured muscle excitations [25,56,57]. Each muscle is assigned to a module by
662 evaluating associated weighting factors for the excitation primitives derived from measured
663  muscle excitations. Muscles without EMG signals are assumed to belong to the same module as
664  measured muscles that share the same innervation and contribute to the same mechanical action.
665 Meanwhile, the primitive-driven excitations for measured muscles are minimally adjusted to
666  improve joint moment estimation in EMG-assisted models. However, these adjustments masked
667  the omission of active force generating properties for unmeasured muscles (i.e., iliacus and psoas),

668  resulting in noticeable hip joint moment prediction errors. Furthermore, none of these studies

39


https://doi.org/10.1101/2024.03.03.583228
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.03.583228; this version posted March 6, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

669 evaluated the accuracy of predicted unmeasured muscle excitations due to the lack of
670  corresponding experimental EMG data. Third, hybrid EMG-informed models that incorporates SO
671 to determine unmeasured muscle activations have been developed [28,29]. Satori et al. also
672 allowed minimal adjustments of measured muscle activations while predicting missing EMG
673  signals (e.g., from iliacus and psoas) using SO[28]. However, none of these methods have provided
674  evidence that estimation of unmeasured muscle activations was reliable and in reasonable
675 agreement with experimental measurements. Furthermore, due to the nature of SO, the resulting
676  muscle activations might exhibit unrealistic discontinuities. Last, as another well-established
677  approach within OpenSim, the computed muscle control (CMC) algorithm solves a static
678  optimization to determine muscle excitations necessary for achieving the desired accelerations for
679  tracking experimental motion, providing more accurate joint moments compared to SO [58,62—
680  64]. However, it has been observed that CMC may be less robust and computationally efficient
681  when estimating muscle function in human locomotion. All in all, EMG-driven modeling method
682  with SynX provides an enhanced approach for estimating unmeasured muscle excitations, forces
683 and joint moments in an efficient manner, without the requirement for prior knowledge of the

684  “unmeasured” muscle excitations during the model training phase.

685  This study quantified the impact of model personalization, specifically focusing on muscle-tendon
686  parameters, on the estimation of muscle activations and forces in both EMG-driven modeling with
687  SynX and SO. In the case of SynX, the tracking errors between the estimated and experimental
688  estimates were remarkably reduced when muscle-tendon parameter values were personalized to a

689  suitable level for optimization “synx "™ > Meanwhile, the mean correlations between the

Unmeasured

690 estimated and experimental values were also substantially increased, moving from moderate to

691  strong. Additionally, the matching errors of joint moments during optimization “synx Pam >

Unmeasured
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692 stayed closer to those obtained from full EMG-driven model optimization “ Params ”, as opposed

693  to calibrating model parameters concurrently within optimization ““ SynX j,measureq + Params . In the

694  case of SO, consistent with previous studies [65], personalization of muscle-tendon parameters
695  showed noticeable improvements in estimating of muscle activations and forces in terms of both

696  shape and amplitude for optimization “ sof™™ », with statistically significant enhancement

697  observed only for the shape of muscle forces. In light of these observations, enhancing the level of
698 model personalization generally improved the accuracy of estimation. However, there were
699 significant variations in the degree of improvement among different approaches. In scenarios
700  where a well-calibrated musculoskeletal model is available, SynX has the ability to predict muscle
701  activations for muscles lacking EMG data with reasonable amplitude and shape, whereas SO can
702  predict unmeasured muscle activations with reasonable amplitude but not accurate shape. When
703  conducting simulations using a scaled generic model, SynX successfully replicated muscle

704  activations with the correct amplitude and shape, which SO did not achieve this.

705  Joint moment matching errors differ among optimizations using different approaches (figure 8 and
706 table 5). First, the inverse dynamics (ID) and estimated joint moments exhibited a much closer

707 agreement in the SO-based optimizations, “s0$"”, “sof™> and “sof>@™ > than in the

All Unmeasured

708  EMG-driven modeling optimizations, ““Params ”, “ SynX jymeasured + P2rams ”, and  Synx Params >,

Unmeasured
709  The optimization formulation used by SO in equation (10) resulted in extremely small joint
710  moment matching errors. However, the additional constraints within EMG-modeling methods,
711  including muscle activation-contraction dynamics and the dependency between time frames of
712 EMG signals, limited the torque-generating capacity of muscles, thereby preventing the
713 reproduction of joint moments. Second, the joint moment matching errors, arranged in descending
714  order, for optimizations associated with the EMG-driven modeling method are * Params ”,
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715 “synxPaam - and “ SynXnmessured + P2rams . This observation was attributed to the increasing

Unmeasured

716  degrees of freedom in the optimization, determined by additional SynX variables for

717 “synxPram > and also additional model parameters for “ SynX j,measured + Params ”, which enabled

Unmeasured
718  the optimizer to reduce the joint moment matching errors. This can also explain why the joint
719  moment matching errors were smaller when estimating 8 channels of unmeasured EMG signals in
720  this study compared to when estimating EMGs for only the iliacus and psoas in [38]. Last,
721  regardless of the level of model personalization and the number of channels of muscle activations
722  toestimate, SO consistently found the solutions of muscle activations at each time frame to almost
723  perfectly match the ID joint moments, although occasionally requiring a small amount of reserve
724 actuator torque due to model inadequacies. Consequently, static optimization does not possess the

725 joint moment matching errors needed to calibrate muscle-tendon model parameters.

726  This study also examined the impact of incorporating the SynX process in the EMG-driven
727  modeling framework on the calibrated model parameter values. It was observed that Hill-type
728  muscle-tendon model parameter values, specifically optimal fiber length and tendon slack length,

729  from optimization “ SynX ,measured + Params ” closely approximated the “true” values obtained from

730  full EMG-driven model optimization “ Params ”, as depicted in figure 9. However, the activation

731 dynamics model parameters, including electromechanical delay, activation time constant, EMG
732  scale factor, and activation nonlinear constant, were only reproduced with reasonable similarity
733 for the measured muscles. When SynX was used to estimate a large number of missing EMGs
734 during EMG-driven model calibration, it introduced additional flexibility through SynX variables
735 into the optimization problem. This, in turn, had a cascading effect on the calibrated model
736  parameter values for all muscles. Thus, beyond the primary cost terms specified in equation (9),

737  penalty terms, functioning as "soft constraints™ were incorporated to restrict deviations of model
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738  parameter values from the initial model or a designated reference value[23,37,38]. The objective
739  was to minimize the impact of SynX on model parameter values. The strategy proved effective for
740  the Hill-type muscle-tendon models, which are inherently highly nonlinear. Nevertheless, it
741  remained challenging to maintain the values of the activation dynamics model parameters through
742  the utilization of penalty terms. Typically, the transformations from muscle excitations to muscle
743  activations were determined by activation dynamics model parameters, such as time shifts
744 typically defined by electromechanical delay and amplitude scaling dictated by EMG scale factors.
745  Within SynX, however, unmeasured muscle excitations were constructed using linear
746  combinations of measured synergy excitations, which could already account for these potential
747  transformations. Consequently, numerous combinations of model parameters values and SynX
748  variables could result in identical muscle activations. Thus, without compromising the accuracy of
749  muscle activations, the activation model parameter values might approach the designated values

750 in the penalty terms, allowing SynX variables to adjust to provide required muscle activations.

751  The inclusion of the SynX in the EMG-driven model calibration process had minimal impact on
752  the estimation of measured muscle activations and forces, as depicted in figures 4 and 6,
753  respectively. The muscle activations and forces estimated by SynX for measured muscles from

754  optimization “ SYnX_nmeasured + Params ” remained closely aligned with those from calibration

755 “Params”, in contrast to the results from the commonly formulated “soS:™” optimization. While

756 the most significant deviations in the SynX-estimated muscle activations occurred for
757  semimembranosus and semitendinosus (figure 4), and the greatest discrepancies in the SynX-
758  estimated muscle forces were observed for the muscles spanning the hip joint, such as biceps
759  femoris long head and gluteus maximus superior (figure 6), they still exhibit a similar shape to the

760  experimental curves. These observations were largely attributed to the optimization formulation
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761  for the SynX-incorporated EMG-driven calibration, resulting in minimal changes in the calibrated

762  activation dynamics model and Hill-type muscle-tendon model parameter values (figure 9).

763  Several methodological choices for SynX were necessary to consider, as they could potentially
764  impact SynX performance, as indicated in table 2. A series of previously published studies from
765  the author have extensively investigated various methodological choices, with the goal of
766 identifying an optimal combination that could yield the most reliable and accurate estimation of
767  unmeasured muscle activations [36-38]. Initially, principal component analysis (PCA) provided
768  more accurate, reliable, and efficient estimates of unmeasured muscle excitations compared to
769  non-negative matrix factorization (NMF), due to the non-negativity constraints for NMF and extra
770  design variables for PCA, both of which could result in a more restricted feasible search space for
771 NMF in comparison to PCA [37,38]. Additionally, PCA was particularly beneficial in our
772  framework because it permitted residual excitations to be both positive and negative, which could
773 Dbe beneficial for achieving lower joint moment errors. Second, by comparing the results of five
774  different EMG normalization methods that were performed either within individual trials or across
775  all trials, we observed that EMG normalization does not have a significant influence on the SynX
776  performance[37]. As a result, the measured muscle excitations were normalized to their maximum
777  values across all trials before MSA to facilitate easy implementation. Furthermore, as the number
778  of synergies increased, the performance of SynX exhibited non-monotonic behavior, with five and
779  six synergies generally providing the best SynX performance and outcomes for EMG-driven
780  model calibration[38]. Hence, when an increasing number of muscles were treated “unmeasured”
781 in this study, five synergies were selected for generating the results in this study, considering the
782  reduction of computational costs. Last, according to the assumptions about the variability of
783  synergy vector weight across walking trials, we categorized them associated with unmeasured and

784  residual muscle excitations as trial-specific, speed-specific, and subject-specific, respectively,
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785  while different concatenation strategies were used to extract corresponding synergy excitations. it
786  was indicated that with an equal number of synergies, the trial-specific unmeasured synergy vector
787  weights and speed-specific residual synergy vector weights produced the best SynX performance
788  for the majority of subjects[38]. This insight shed lights on the categorization strategy of synergy

789  vector weight across walking trials within this study.

790  Areasonable choice of a neural control strategy is essential for producing physiologically realistic
791  predictive simulations of walking [66]. To date, prevailing predictive simulation studies have
792  explored the optimality of neural control principles underlying human gait, and commonly
793  reported that minimizing the sum of squares of muscle activations in the cost function, a typical
794  practice in SO, can result in a human-like walking pattern [26,66,67]. However, the comparative
795  results between the estimated muscle activations and forces from both SynX and SO in this study
796  have raised a pivotal question: If the prevalent neural control strategy of minimizing the sum of
797  squares of muscle activations fails to accurately estimate muscle activations when the joint
798  kinematics and moments are known a priori from experimental walking data, how can it provide
799 reliable estimates in the predictive simulations of walking when the joint kinematics and moments
800 are unknown a priori? These findings may also yield valuable insights into the potential benefits
801  of muscle synergies for predicting walking motion with musculoskeletal models. While the
802 reliability of a synergy-based neural control strategy for generating predictive simulations of
803  walking has been preliminary verified for only one experimental scenario thus far [68], the results
804  of the present study endorse further exploration of a synergy-based neural control strategy for

805  generating predictive simulations of walking.

806  This study exhibited several limitations which may provide insights for future research endeavors.

807  First, this study validated the effectiveness of our EMG-driven modeling framework incorporating
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808 SynX by analyzing gait datasets from two post-stroke subjects, as these experimental datasets
809 provided EMG signals for every muscle in our musculoskeletal model, enabling the evaluation of
810  estimation accuracy. Further investigation is necessary to investigate diverse subject populations
811  with larger sample sizes. Second, we developed the framework using walking data with two
812  representative speeds. It would be valuable to investigate its applicability for various dynamic
813  movement conditions and experimental scenarios, including stair climbing and running. Third, to
814  enhance computational efficiency, we integrated a rigid tendon model into our Hill-type muscle-
815 tendon models. Research studies have indicated that rigid and compliant tendon models produce
816  almost identical muscle force estimates for slow movements like walking at a healthy speed, but
817  different muscle force estimates for faster movements such as running [69,70]. As both of our
818  stroke subjects walked at slow speeds, it suggests that use of a rigid tendon model was appropriate.
819  However, it would be worthwhile to expand our approach to include compliant tendons in our Hill-
820  type muscle-tendon models, enabling the applications to tasks involving fast movements. Last, we
821 analyzed the impact of personalizing muscle-tendon parameter values on SynX performance.
822  However, various other aspects of model personalization, including skeletal geometries, muscle
823  kinematics, and other physiological properties that contribute to muscle force generation, may also
824  impact muscle force estimates. Future work should therefore aim to extend the methods to
825 investigate whether SynX performance was sensitive to these aspects of model personalization.
826  The author has recently developed an EMG-driven modeling method that can personalize muscle
827  wrapping surface parameters [71]. Therefore, one of the forthcoming research directions would
828 focus on examining the influence of personalizing muscle-tendon pathway on SynX-based

829  estimates.

830 Conclusions
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831 In conclusion, this study demonstrated a significant advancement over previous research by
832  highlighting the capability of SynX to reproduce a large number of unmeasured muscle excitations
833  while simultaneously calibrating EMG-driven model parameter values. Notably, the estimation
834  accuracy of muscle activations and forces in terms of shape and amplitude for the unmeasured
835 muscles, was significantly higher than that of the standard SO approach. The incorporation of
836  SynX process had minimal impact on the calibrated Hill-type muscle-tendon model parameter
837  values for all muscles and activation dynamics model parameter values for the measured muscles.
838  Additionally, when integrated with well-calibrated musculoskeletal models, both SynX and SO
839  produced substantially more accurate estimates of unmeasured muscle activations and forces, with
840  SynX demonstrating superior performance over SO in this regard. The findings suggest that SynX
841  could effectively address the practical challenge of collecting a full set of EMG signals for EMG-
842  driven modeling calibration in the lower extremity during walking, with significant implications
843  for personalized treatments for muscle impairments in situations where difficulties arise in

844  collecting EMG signals from all important contributing muscles.
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Larger Tables

Table 3 Pearson correlation coefficient r values and root mean square error (RMSE) values were
calculated between the experimental (“Params” calibration) and estimated muscle activations for
different calibration cases. The RMSE and r values for each muscle were calculated when the data
across all calibration trials, legs and subjects were concatenated.

Calibration cases

Unmeasured Muscles SYNX Unmeasured Synx Params gQGeneric gQParams Params
+Params Unmeasured All All Unmeasured
RMSE r RMSE r RMSE r RMSE r RMSE r
Adductor brevis 0.02 0.54 0.01 0.69 0.04  -0.17 0.02 -0.03 0.02 0.37
Adductor longus 0.02 0.60 0.01 0.83 0.11 -0.13 0.02 0.12 0.04 0.37
Adductor magnus distal 0.02 0.53 0.01 0.84 0.03 0.01 0.03 -0.07 0.03 -0.11
Adductor magnus ischial 0.02 0.55 0.01 0.89 0.04 0.23 0.04 -0.08 0.11 0.32
Adductor magnus middle 0.02 0.43 0.01 0.63 0.02 -0.17 0.02 -0.15 0.02 0.26
Adductor magnus proximal 0.04 0.58 0.01 0.76 0.03 -0.14 0.04 -0.21 0.19 0.47
Iliacus 0.17 0.43 0.17 0.86 0.24 0.05 0.21 0.08 0.33 0.04
Psoas 0.14 0.45 0.17 0.78 0.30 0.02 0.25 0.07 0.16 0.50
Rectus femoris 0.09 0.63 0.06 0.76 0.21 0.35 0.14 0.30 0.21 0.11
Tensor fasciae latae? 0.16 0.66 0.04 0.98 0.29 -0.09 0.24 -0.15 0.15 0.71
Vastus medialis 0.09 0.65 0.02 0.92 0.07 0.13 0.05 0.79 0.10 0.61
Vastus intermedius 0.08 0.67 0.02 0.92 0.08 0.12 0.06 0.81 0.08 0.59
Lateral gastrocnemius? 0.09 0.62 0.04 0.79 0.09 0.18 0.07 0.48 0.08 0.67
Tibialis posterior 0.15 0.53 0.08 0.58 0.11 0.53 0.13 0.54 0.20 0.16
Peroneus brevis 0.08 0.41 0.05 0.74 0.15 -0.31 0.07 0.29 0.11 0.25
Peroneus longus 0.09 0.42 0.05 0.79 0.13 0.13 0.06 0.43 0.14 0.25
Extensor digitorum longus®  0.17 0.38 0.08 0.42 0.62 0.48 0.08 0.09 0.15 0.21
Flexor digitorum longus? 0.05 0.92 0.09 0.82 0.14 0.89 0.11 0.95 0.11 0.38
Mean 0.08 0.55 0.05 0.78 0.15 0.12 0.09 0.24 0.12 0.34
t t + t t t t + t t t
standard deviation 0.06 0.13 0.05 0.14 0.15 0.30 0.07 0.36 0.08 0.22

Lindicates the EMG signals were assumed unmeasured only for S1 and 2 indicates the EMG signals were assumed unmeasured only for S2.
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Table 4 Pearson correlation coefficient r values and root mean square error (RMSE) values were
calculated between the experimental (“Params” calibration) and estimated muscle forces for
different calibration cases. The r and RMSE values were calculated when the data across all

calibration trials and subjects were concatenated.

Calibration cases

Unmeasured Muscles SYNXuynmeasured Sy Params gQeneric gQParams ggParams
+Params Y Unmeasured All All Unmeasured
RMSE r RMSE r RMSE r RMSE r RMSE r
Adductor brevis 14.4 0.35 8.1 0.71 24.1 -0.13 16.3 0.36 15.6 0.29
Adductor longus 23.8 0.47 114 0.87 74.7 -0.01 25.3 0.67 43.3 0.49
Adductor magnus distal 10.9 0.43 7.1 0.76 18.8 -0.11 19.4 -0.14 18.3 -0.19
Adductor magnus ischial 12.8 0.36 7.1 0.82 20.1 -0.05 21.4 -0.17 516 0.16
Adductor magnus middle 17.3 0.46 9.0 0.57 17.2 -0.12 16.8 -0.08 14.2 0.19
Adductor magnus proximal 39.2 0.42 125 0.69 34.4 0.03 42.7 -0.02 186.7 0.32
Iliacus 1589 0.36 1345 0.85 235.5 0.04 197.8 0.31 348.6 0.30
Psoas 273.6 040 2494 0.83 5309 -0.11 4294 -0.05 285.9 0.37
Rectus femoris 136.8 0.68 58.3 0.94 350.8 0.42 181.0 0.70 156.2 0.47
Tensor fasciae latae? 115.1 0.66 20.7 0.99 126.8 0.31 142.9 0.13 83.3 0.82
Vastus medialis 115.4 0.60 315 0.92 290.1  -0.05 68.6 0.81 119.9 0.71
Vastus intermedius 74.4 0.66 23.8 0.91 1544  -0.04 58.7 0.84 65.8 0.69
Lateral gastrocnemius? 1626 086 677 0.94 153.9 0.51 144.9 0.73 958 0.89
Tibialis posterior 3200 044 166.1 0.56 214.2 0.48 293.6 054 424.0 0.14
Peroneus brevis 50.2 0.48 31.9 0.77 82.0 -0.24 47.4 0.35 747 0.31
Peroneus longus 1099 0.49 63.4 0.80 126.5 0.21 81.9 0.50 1709 0.29
Extensor digitorum longus* 156.1  0.48 71.3 0.57 611.8 0.57 64.7 0.38 128.2 0.47
Flexor digitorum longus® 31.2 091 511 0.81 73.1 -0.45 62.3 094 633 0.39
Mean 101.3  0.53 56.9 0.79 174.4 0.07 106.4 0.38 1304 0.39
* + * * * * + * * * +
standard deviation 90.1 0.17 65.4 0.13 174.4 0.28 110.9 0.36 116.8 0.26

Lindicates the EMG signals were assumed unmeasured only for S1 and 2 indicates the EMG signals were assumed unmeasured only for S2.
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888
Table 5 Mean absolute error (MAE) values calculated between joint moments found from
inverse dynamics and either “Params” calibration or SynX-based calibrations including
SYNX measured +Params and Synx Ferem
Subjects
DOFs Calibration Case S1 S2
Left Right Left Right
Params 7.45 6.49 5.81 4.90
HipFE SYNX Unmeasured T+ PATaMs 4.73 3.96 3.97 5.84
Synx jrams 8.25 5.55 6.84 7.53
Params 7.31 7.23 7.17 5.51
HipAA SYNXUnmeasured + Params 4.88 5.65 4.85 4.90
Synx jarems 5.79 5.80 6.42 2.77
Params 5.82 5.64 2.53 2.19
HipRot SYNX Unmeasured + Params 5.61 4.81 2.55 1.75
Synx jrams 5.98 5.22 2.87 1.46
Params 6.33 4.26 4.90 4.70
KneeFE SYNXUnmeasured + Params 3.98 2.68 3.08 2.92
Synx jareme 3.94 2.87 3.88 2.02
Params 6.88 5.68 5.04 4.85
AnklePD SYNX Unmeasured T+ PATAMS 451 411 3.14 2.50
Synx jrams 5.78 4.63 4.14 1.77
Params 4.89 2.82 8.19 1.75
AnklelE SYNXUnmeasured + Params 2.50 1.89 2.73 1.46
Synx jareme 2.90 213 4.22 0.95
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