

1 **GenoTriplo: A SNP genotype calling method for triploids**

2 **Roche Julien^{a,b}, Besson Mathieu^b, Allal François^c, Haffray Pierrick^b, Patrice**

3 **Pierre^b, Vandeputte Marc^c, Phocas Florence^a**

4 ^a Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France

5 ^b SYSAAF (French Poultry and Aquaculture Breeders Technical Centre), 35042, France

6 ^c MARBEC, University of Montpellier, CNRS, Ifremer, IRD, INRAE, 34250 Palavas-les-Flots, France

7

8 **Keywords**

9 Single nucleotide polymorphism, genotype calling, genotype clustering, triploids, polyploids, R
10 package

11 **Abstract**

12 Triploidy is very useful in both aquaculture and some cultivated plants as the induced sterility helps
13 to enhance growth and product quality, as well as acting as a barrier against the contamination of
14 wild populations by escapees. To use genetic information from triploids for academic or breeding
15 purposes, an efficient and robust method to genotype triploids is needed. We developed such a
16 method for genotype calling from SNP arrays, and we implemented it in the R package named
17 GenoTriplo. Our method requires no prior information on cluster positions and remains unaffected
18 by shifted luminescence signals. The method relies on starting the clustering algorithm with an initial
19 higher number of groups than expected from the ploidy level of the samples, followed by merging
20 groups that are too close to each other to be considered as distinct genotypes. Accurate classification
21 of SNPs is achieved through multiple thresholds of quality controls. We compared the performance
22 of GenoTriplo with that of fitPoly, the only published method for triploid SNP genotyping with a free
23 software access. This was assessed by comparing the genotypes generated by both methods for a
24 dataset of 1232 triploid rainbow trout genotyped for 38,033 SNPs. The two methods were consistent

25 for 89% of the genotypes, but for 26% of the SNPs, they exhibited a discrepancy in the number of
26 different genotypes identified. For these SNPs, GenoTriplo had >95% concordance with fitPoly when
27 fitPoly genotyped better. On the contrary, when GenoTriplo genotyped better, fitPoly had less than
28 50% concordance with GenoTriplo. GenoTriplo was more robust with less genotyping errors. It is also
29 efficient at identifying low-frequency genotypes in the sample set. Finally, we assessed parentage
30 assignment based on GenoTriplo genotyping and observed significant differences in mismatch rates
31 between the best and second-best couples, indicating high confidence in the results. GenoTriplo
32 could also be used to genotype diploids as well as individuals with higher ploidy level by adjusting a
33 few input parameters.

34 **Author Summary**

35 To cultivate plants, fish and shellfish more profitable for both farmers and consumers, one can utilize
36 individuals one can utilize individuals with three chromosome sets instead of the two found in fertile
37 populations that are diploids. These individuals, called triploids, are generally sterile and then often
38 exhibit higher growth and quality of products, such as seedless fruits or better flesh quality for fish
39 and shellfish. To be able to improve performances of the sterile triploids by selective breeding, it is
40 important to know the versions of the genes present in the three chromosome sets of triploids. Until
41 now, few methods existed to identify these three versions, and none have been demonstrated as
42 sufficiently effective. It is the reason why we developed the GenoTriplo software. We demonstrate in
43 this paper the possibility to accurately genotype triploids, as well as how it can be used to
44 reconstruct pedigree information of triploid progeny. Ultimately, we expect that it can help select for
45 reproduction the parents that have the best triploid progeny for the traits of interest such as growth,
46 vigour or product quality.

47

48 **Introduction**

49 Polyploidy, characterized by the presence of three or more sets of chromosomes in the nucleus, is a
50 phenomenon that occurs spontaneously across various taxa in the tree of life, spanning from plants
51 [1–3] to vertebrates [4]. Certain forms of polyploidy, such as triploidy, exhibit noteworthy attributes
52 relevant to agricultural practices. Triploid individuals, possessing three sets of chromosomes, are
53 generally sterile, impeding the production of sexual tissues and yielding favourable outcomes for
54 farmers. In horticulture, the cultivation of seedless fruits is facilitated by the sterility of triploids, a
55 characteristic appreciated by consumers [5]. Triploidy has also been reported to enhance growth rate
56 and vigour in plants [6]. In aquaculture, triploid fish demonstrate an accelerated growth rate due to
57 the energy savings stemming from the lack of sexual maturation [7]. Additionally, the enhanced flesh
58 quality of triploid fish and shellfish is attributed to the prevention of gonadal maturation [8,9]. From
59 an environmental perspective, the sterility of triploids serves as a barrier against the contamination
60 of wild genotypes by selectively bred genotypes in instances of contact between these populations
61 [10]. Triploidy also can act as a safeguard against theft of genetic progress among competing
62 producers.

63 The induction of triploidy has been achieved in various plant species [11], like citrus [5] and mulberry
64 [12], as well as in shellfish such as oysters [13] and in finfish, in particular rainbow trout [14,15].

65 While triploids present advantages over diploids, their widespread production in aquaculture
66 necessitates that selective breeding programs consider their specific performance. Breeding
67 programs obviously require fertile broodstock, and are thus performed with diploid selection
68 candidates. In order to maximize genetic gains on desired traits for triploid production however, it
69 would be necessary to incorporate the performance of triploids sibs in the evaluation of breeding
70 values. Indeed, evaluating only diploid performance may be suboptimal as the genetic correlation for
71 the same trait between diploids and triploids may differ from unity [16–18]. In mixed-family
72 aquaculture breeding programs, families are mixed at hatching and their pedigree is recovered *a*

73 *posteriori* using genomic markers [19]. In such designs, selecting for triploid performance implies to
74 be able to genotype triploids and recover their pedigree, in order to be able to rank diploid selection
75 candidates using breeding values from their triploid sibs.

76 Technically, two platforms, Illumina and Affymetrix, have been used for genotyping SNP arrays in
77 both diploid [20] and polyploid species [21]. As reported by [21], genotype calling is complicated for
78 polyploids because these species have more possible genotypes at a SNP locus than diploid species
79 do (homozygote with reference allele, heterozygote, and homozygote with alternative allele).

80 Theoretically, the number of genotypes can be up to $p+1$ in a species with a ploidy level of p (i.e. 4 in
81 triploids, 5 in tetraploids, ...). So far, genotype calling software accompanying genotyping platforms
82 cannot identify more than 5 clusters for Illumina and 3 clusters for Affymetrix. More specifically, the
83 GenomeStudio software from Illumina is able to provide 5 clusters, but it requires manual
84 adjustment of the cluster boundaries for each marker, which is impractical to use for SNP arrays with
85 several tens of thousands SNP. The Axiom Analysis Suite (AXAS) software, widely used in both plant
86 and fish species, is only designed for genotype calling on diploid luminescence output files from the
87 Thermo Fisher Affymetrix platform, and does not currently support triploids. Up to 2020, there were
88 only two publicly available software, fitTetra and ClusterCall, initially written for tetraploids [22],
89 which could call up over three genotypes using output files with allelic signals from SNP array
90 genotyping platforms. Another software, SuperMASSA, was written for genotype calling from
91 Genotype-By-Sequencing data for all ploidies [22]. Many methods struggle with low-frequency
92 genotypes [23] or lack permissiveness when faced with allelic signal shifts in polyploids [24,25]. For
93 autopolyploids, such as induced triploids in aquaculture, the major complication is distinguishing
94 between different allele dosages (AAA, AAB, ABB, BBB), as in this case only two alleles per locus are
95 normally present in their diploid parents.

96 Therefore, limited options for genotype calling in triploids exist [26] and open source tools are even
97 more rare. As far as we know, only the R package fitTetra, initially developed for tetraploid

98 individuals [27,28], has been implemented in a more advanced version of the package called fitPoly
99 to consider any other level of auto-ploidy. However, our first trial yielded some inconsistent
100 results using fitPoly to genotype triploids in rainbow trout. Therefore, the first objective of this study
101 was to devise a clustering method for a better genotype calling of triploid individuals and to compare
102 our results to those of fitPoly genotype calling on our rainbow trout study case. The second objective
103 was to implement and disseminate this new method through an R package deposited on the CRAN to
104 ensure its free accessibility.

105

106 **Materials & Methods**

107 **Available dataset**

108 To develop this novel genotype calling method for triploids, we used the allelic signals produced by
109 Thermo Fisher Affymetrix platform for a French research project on genomic selection in rainbow
110 trout [29]. The experimental stock was established from 190 dams and 98 sires of a commercial
111 selected all-female line of Aquaculteurs Bretons breeding company (Plouigneau, France) and 1232
112 triploid offspring and the 190 dams and 98 sires were genotyped for 57,501 SNPs using the medium-
113 density Rainbow Trout Axiom® 57K SNP array from Thermo Fisher [30]. We retained the allelic signals
114 for 38,033 high quality markers present in both SNP array [31,32]. Luminescence values of probsets A
115 and B (S_A and S_B) for each marker and individual were obtained through the AXAS software.

116 **Clustering algorithm**

117 The clustering process aimed at grouping individuals that share the same genotype. To enhance the
118 efficiency of the clustering method, variable(s) given to the algorithm must be chosen carefully so the
119 different genotypes are well separated along the axe(s) [25]. In our approach, we decided to use 2
120 variables (and so 2 axes): the contrast (Eq.1) and the signal strength (Eq. 2), commonly used by AXAS
121 for diploids.

$$x = \text{Contrast} = \log_2 \left(\frac{S_A}{S_B} \right) \quad (\text{Eq. 1})$$

$$y = \text{Signal Strength} = \frac{\log_2(S_A) + \log_2(S_B)}{2} \quad (\text{Eq. 2})$$

122 Thus, each individual was represented by a pair of coordinates (x, y) for each marker (Fig 1, Stage 1).

123 For each SNP, the Rmixmod clustering package (version 2.1.8) [33] was then used on R software

124 (version 4.3.1) [34] to find clusters among individuals for a given marker, with no prior information.

125 The clustering function of Rmixmod initiates the process by randomly picking individuals as starting

126 point and uses an expectation-maximization algorithm (EM) to probabilistically update parameters of

127 the clusters (mean, variance, weight). N_{init} initializations were performed and the one that maximized

128 likelihood passed to the next steps.

129 During the initialization phase, the clustering function of Rmixmod was asked to find N_{clus} clusters

130 among individuals with N_{clus} greater or equal to the number of possible genotypes for a given SNP (4

131 in our case) (Fig 1, Stage 2). N_{clus} values of 4, 8 or 12 were tested to find an optimal value.

132 When the algorithm failed to find N_{clus} clusters among individuals (failure of the EM algorithm to

133 converge with N_{clus} clusters), it was restarted with $N_{\text{clus}}=N_{\text{clus}}-1$ clusters and so on, until the algorithm

134 converged and a non-error solution was obtained. For these retries, N_{init} was automatically reduced

135 by 2 (with a minimum value of 1) to limit computing time. Indeed, when the algorithm failed to find

136 the initial number of N_{clus} clusters, it was likely that the marker did not display all possible genotypes.

137 Thus, a high N_{init} was not necessary to find a suitable solution.

138 As the final N_{clus} might be higher than the maximum number of genotypes, a single genotype could

139 be divided into different clusters. If more than 4 clusters remained (the maximum number of

140 genotypes in triploids), or if two clusters were too close to be considered as distinct genotypes, the

141 two clusters with the weakest distance in Contrast value were merged into a single one (Fig 1, Stage

142 3 to Stage 4). Two clusters were declared as too close if:

$$D_{\text{clus1,clus2}} < 0.28 * (1 + \text{abs}(\frac{\text{Contrast}_{\text{clus1}} + \text{Contrast}_{\text{clus2}}}{2})) \quad (\text{Eq. 3})$$

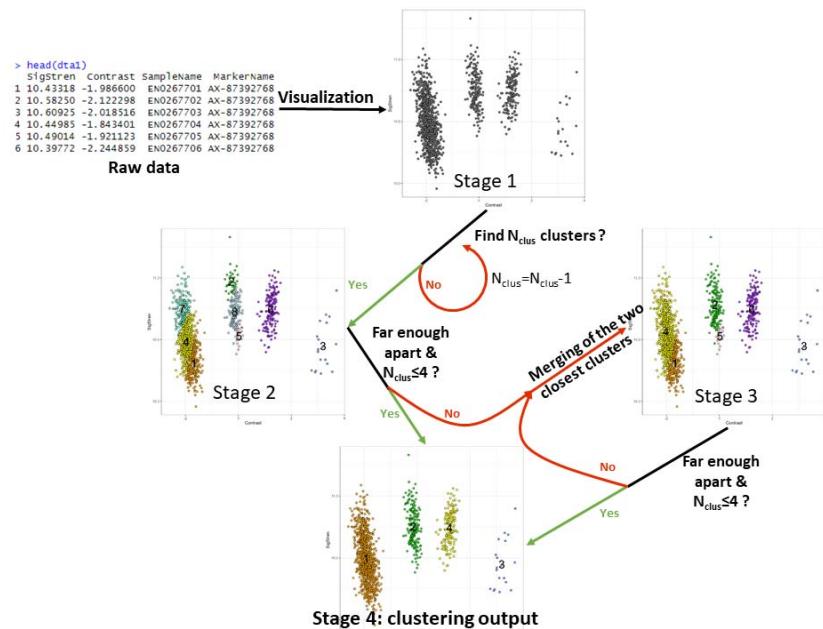
$$\text{Where,} \quad \text{Contrast}_{\text{clusi}} = \text{Mean}(x_{\text{indiv}_{\text{clusi}}}) \quad (\text{Eq. 4})$$

$$\text{And,} \quad D_{\text{clus1,clus2}} = \text{abs}(\text{Contrast}_{\text{clus1}} - \text{Contrast}_{\text{clus2}}) \quad (\text{Eq. 5})$$

143 Where $D_{\text{clus1,clus2}}$ represented the distance between the center of cluster 1 and the center of cluster 2
144 in Contrast value (abscissa), and $\text{Contrast}_{\text{clusi}}$ represented the mean Contrast value of cluster i. As the
145 standard deviation along the Contrast axis of a genotype increased when $\text{Contrast}_{\text{clusi}}$ moved away
146 from 0 (to positive or negative value), the distance criteria to merge clusters had to increase the
147 more $\text{Contrast}_{\text{clus1}}$ and $\text{Contrast}_{\text{clus2}}$ differed from 0. The factor of 0.28 was empirically determined
148 using a trial and error assay.

149 To assess the impact of the number of initializations i.e. random starting points on the final
150 clustering, the algorithm was tested with three modalities for N_{init} : 1, 5 and 10 different
151 initializations.

152 The algorithm was also tested for three other modalities to assess the impact of N_{clus} on the
153 outcome: 4, 8 and 12, i.e. a number greater or equal to the number of possible genotypes for a given
154 SNP (4 in our case). Other existing methods for genotyping usually look for a maximum number of
155 clusters which exactly corresponds to the number of possible genotypes. However, by increasing the
156 initial number of clusters (8 and 12), we aimed to enable the algorithm to identify clusters gathering
157 only a few individuals, which can happen frequently in case of a low frequency genotype.



158

159 Figure 1: Algorithm stages for the clustering phase

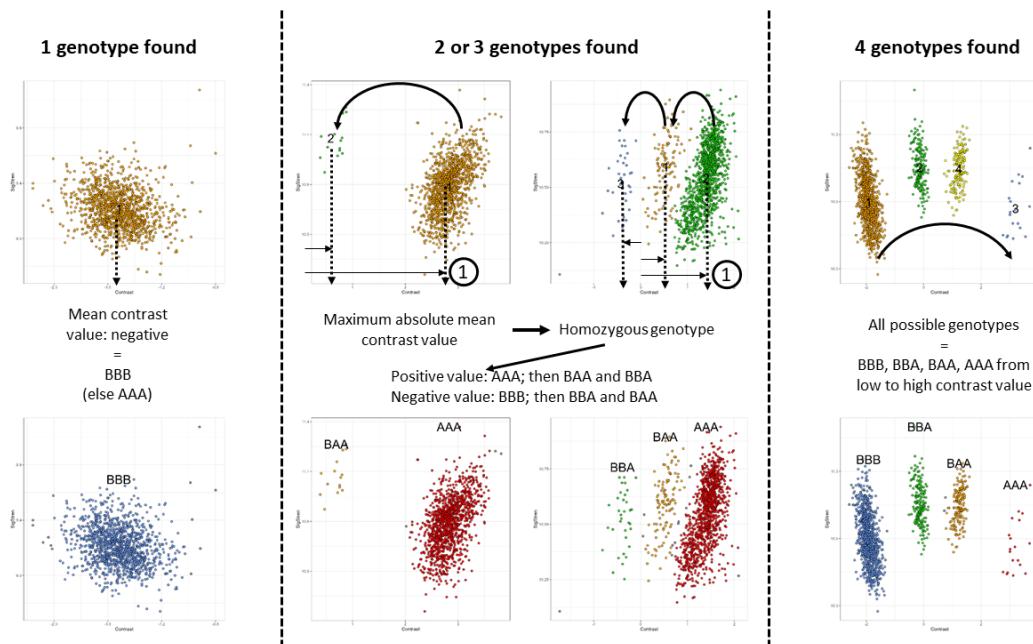
160 **Genotype calling**

161 Two situations must be accounted for to assign genotypes to clusters depending on the origin of the
162 samples: i) either all samples originated from a same population or ii) they come from various
163 populations that can be genetically distant. The right situation must be specified to our algorithm as
164 they involve different hypotheses. In our case, the samples originated from a single population, and
165 we only used the corresponding method for genotype calling.

166 In the situation of a unique population, genotypes were attributed by considering the mean Contrast
167 of each cluster and its position relative to other clusters. The most extreme cluster, identified by the
168 absolute value of its contrast mean (x), was designated as a homozygous genotype (AAA if $\text{mean}(x) > 0$
169 and BBB if $\text{mean}(x) < 0$) (Fig 2). Other clusters were ordered by their mean contrast values, and
170 genotypes were subsequently assigned based on the first cluster that had been assigned (Fig 2). For
171 example, if the mean contrast was positive for the most extreme cluster (i.e. assigned as AAA),
172 genotypes were then assigned depending on their mean contrast values in the order AAB, ABB and
173 BBB, from the closest to the furthest cluster from the AAA homozygous genotype. On the contrary, if

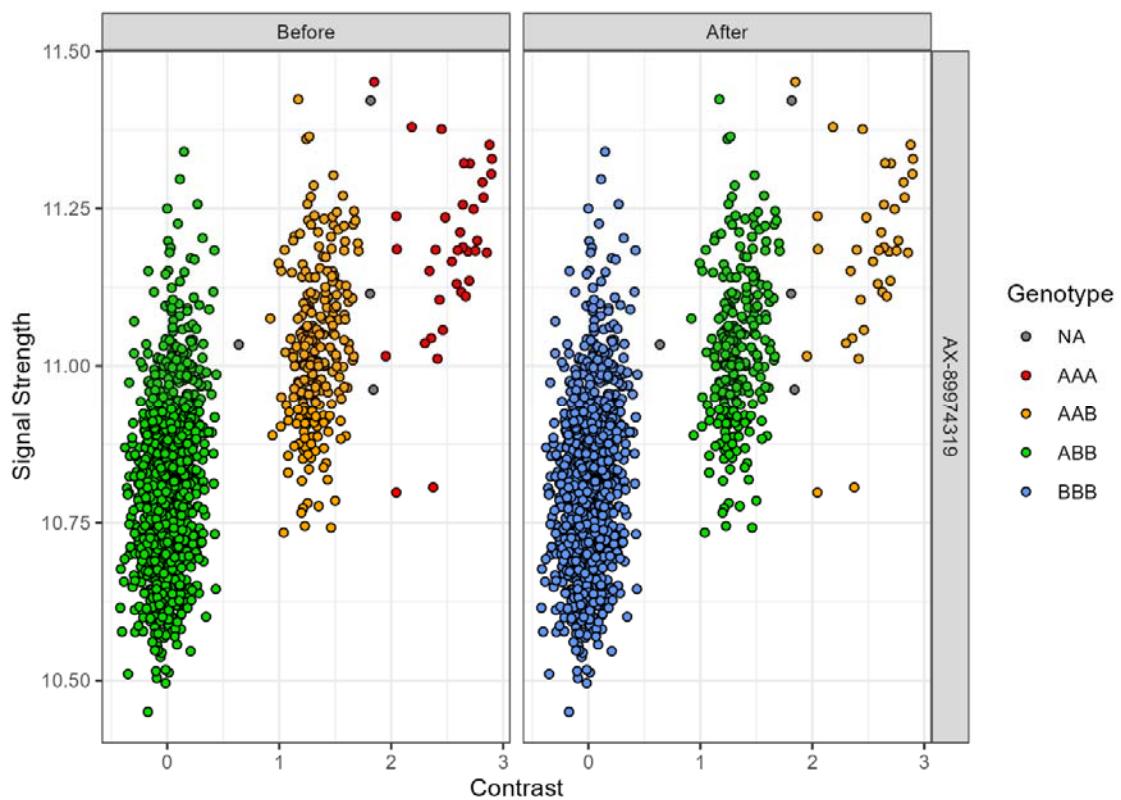
174 the mean contrast was negative for the most extreme cluster (i.e. assigned as BBB), genotypes were
175 then assigned depending on their mean contrast values in the order BBA, BAA and AAA, from the
176 closest to the furthest cluster from the BBB homozygous genotype (Fig 2).

177 We assumed that when the outcome of clustering was a single cluster for a given SNP, it could only
178 correspond to a homozygous genotype; 2 or 3 clusters indicated a homozygous genotype and the
179 closest heterozygous or the two heterozygous genotypes; and 4 clusters represented all 4 possible
180 genotypes for triploids. Note that our algorithm can also be used for genotype calling in diploids as
181 the same reasoning could be applied with a maximum of 3 possible genotypes for diploids as long as
182 it is specified in the input parameters to the algorithm.



184 Figure 2: Illustration of genotype determination for 1; 2 or 3; and 4 clusters identified for a given SNP
185 In case of 3 clusters encountered for a given SNP in triploids, an additional step was added to address
186 the case of a highly shifted signal. This implies markers where genotypes are all shifted toward either
187 positive or negative contrast value making, leading to having a cluster corresponding to a
188 heterozygous genotype in the most extreme position, and thus being wrongly identified as a cluster
189 corresponding to a homozygous genotype. To minimize the error due to that rare behaviour, if the

190 most extreme cluster had less than half the number of individuals as the opposing cluster, it was
191 assigned as a heterozygous genotype, and the opposite cluster was designated as the homozygous
192 genotype (Fig 3, Before to After). In this case however, the next step of the algorithm concerning SNP
193 quality control and decision criterion to retain or remove a SNP would frequently reject the marker.
194 However, we had to first decide the most likely genotypes in this case. In a population in which the
195 number of apparent AAA is less than half the number of apparent ABB (equivalent to freqA < 0.55)
196 (ex. Fig 3), the probability to have no BBB in the population (freqB ≥ 0.46) is extremely low as the
197 expected frequency of BBB is ≥ 0.1, i.e. it is more probable that apparent AAA might be an AAB
198 shifted genotype and apparent ABB might be a BBB shifted genotype. In this corrected situation, the
199 frequency of A was less than 0.2 making the AAA genotype extremely rare (with an expected
200 frequency < 0.01 and even not present here) and B higher than 0.8 (explaining the high number of
201 BBB) (Fig 3).



203 Figure 3: Example of implementation of the additional step to account for highly shifted contrast

204 signal

205 In the situation where samples originate from distinct populations, there is an additional issue to

206 solve for genotype calling when only two clusters are identified for a SNP. In that case, it is likely that

207 the two clusters correspond to the two homozygous genotypes and not to a SNP to be put in the rare

208 category of “No Minor homozygote”. Indeed, the SNP is likely to be monomorphic within a given

209 population, but different populations may have fixed alternative alleles.

210 To solve this case, we used the approach proposed by [26]. We derived reference values for the

211 mean contrasts of all possible genotypes by averaging them across markers with the maximum

212 number of clusters identified (i.e. 4 for triploids). These reference values were used to attribute

213 genotypes for the remaining markers (with a number of clusters below the maximum). For these

214 latter markers, the mean contrast of each cluster was compared to the reference set of values, and

215 the genotype was assigned based on the closest reference value. If two clusters pointed to the same

216 reference value, the genotypes were assigned based on their relative positions. For example, if two

217 clusters pointed toward the negative reference value corresponding to BBB homozygote, the one

218 with the most negative contrast was assigned to the BBB homozygote while the other was assigned

219 to the nearest possible heterozygous genotype BBA.

220 All the steps of our algorithm (from clustering to genotype calling) can also be used for diploids as the

221 approach can be applied with a maximum of 3 possible genotypes for diploids by indicating the

222 ploidy level of the population under study.

223 **Quality control for genotypes and SNP categorization**

224 Following the approach proposed by AXAS, seven criteria were employed to enhance cluster

225 precision and identify low-quality markers in the genotype calling phase. Three criteria were used to

226 decide whether or not individuals or clusters were assigned to a given genotype or not assigned (NA):

227 1) No call for individuals. During clustering, individuals were assigned to a cluster number with a
228 certain probability. Individuals with a probability of belonging to their cluster below 0.85 for a given
229 marker were marked as NA to limit incorrect genotyping.

230 2) Distance between individual and its cluster center. This criterion aimed to avoid wrong genotyping
231 by identifying individuals far from all clusters while still assigned to a cluster. The distance between
232 an individual and the center of its cluster was monitored to not exceed 2.8 times the standard
233 deviation of the cluster along the Contrast axis ($SD_{cluster}$). An individual genotype was set to NA above
234 this threshold. The choice of a 2.8 factor was based on the property that under the assumption of a
235 normal distribution of individuals within a cluster, 99.5% of the observed values should fall within
236 ± 2.8 times the standard deviation. This factor can be modified in the R package to allow for more
237 flexibility.

238 3) Cluster Standard Deviation ($SD_{cluster}$). A cluster was set to NA if its $SD_{cluster}$ exceed
239 $0.28*(1+0.5*abs(Mean_{cluster}))$. This criterion imposed a maximal standard deviation to a cluster to
240 limit the risk of genotype calling for a cluster gathering multiple genotypes (in case the algorithm
241 failed to do the correct clustering). The factor of 0.28 was empirically determined through a trial and
242 error assay. The objective was to establish a minimal $SD_{cluster}$ of 0.28 and to progressively increase
243 this minimum as the cluster moved farther away from 0.

244 The remaining four criteria acted as filters to assess the SNP quality, similar to criteria implemented
245 in the AXAS software, before categorization of the markers:

246 4) Marker Call Rate (CR). The minimum CR was fixed to 0.97.

247 5) Marker Fisher's Linear Discriminant (FLD). The FLD is a measure of the distance between the two
248 nearest genotypes along the x axis (Contrast) and the quality of the clusters. It is defined as:

$$FLD = \frac{abs(Contrast_{Geno1} - Contrast_{Geno2})}{SD_{Geno1,Geno2}} \quad (Eq. 6)$$

249 Where $\text{Contrast}_{\text{Geno}i}$ represented the mean Contrast of genotype i and $\text{SD}_{\text{Geno}1, \text{Geno}2}$ represented the
250 pooled standard deviation of genotype 1 and 2. If the FLD was 3.4 or lower, two genotypes were
251 considered too close to be reliable.

252 6) Marker Heterozygous Strength Offset (HetSO). The HetSO measures the offset between
253 homozygous and heterozygous genotypes along the y axis (Signal Strength). Heterozygous clusters
254 are expected to be positioned higher on the y axis than homozygous clusters (i.e. HetSO value > -0.3).

255 7) Marker Homozygous Ratio Offset (HomRO). The HomRO represented the position of the
256 homozygous cluster along the x axis (Contrast). The threshold value depended on the number of
257 clusters like so: 0.6, 0.3, 0.3, -0.9 for 1, 2, 3 and 4 clusters, respectively (adapted from [35]).

258 Markers failing to pass one of these criteria were labelled according to the filter they failed: “Call rate
259 below threshold” for call rate threshold, “Off target variant” for HetSO threshold, and “Others”
260 otherwise. Those are rejected markers, meaning markers with low genotyping confidence that
261 should not be used for further analyses.

262 Markers passing all four filters were categorized based on their number of genotypes: “Mono high
263 resolution”, “No minor homozygote” and “Poly high resolution” for respectively, 1 genotype, 2 or 3
264 genotypes, and 4 genotypes. Those are accepted markers, meaning markers with high genotyping
265 confidence that could be used for further analyses.

266 **Comparison strategy between GenoTriplo and fitPoly**

267 To evaluate the efficiency of our method in contrast to an existing alternative, we conducted a
268 comparative analysis between GenoTriplo and fitPoly, the sole package available on the CRAN that
269 handles triploid genotyping.

270 First, we assessed the overall concordance between GenoTriplo and fitPoly by comparing the
271 genotypes assigned by both methods per individual and marker. Then, we examined the number of
272 genotypes identified by each method for all markers and categorized markers by a pair of integers

273 representing the respective number of genotypes identified by GenoTriplo and fitPoly (for instance
274 category (2;3) corresponded to 2 genotypes found by GenoTriplo and 3 by fitPoly) separating
275 markers in 16 categories.

276 Categories of equal integer pair (both methods found the same number of genotype) were visually
277 and numerically compared based on the overall genotype concordance rate and the mean contrast
278 value of each genotype for the 4 corresponding categories from (1;1) to (4;4). For the visual
279 comparison, mean cluster position of each genotype for each marker was displayed on a graph to
280 compare genotype global position for each 4 categories.

281 The genotypes given by GenoTriplo and fitPoly were compared marker-by-marker and the best one
282 was noted based on human visual observation. This was done for all markers in categories gathering
283 200 or more markers except when both methods found the same number of genotypes. Among the
284 12 remaining categories, 8 were analysed.

285 For categories exceeding 1,000 markers, a subset of 1,000 random markers was retained for visual
286 inspection.

287 For these 8 tested categories, we compared markers acceptance (when a marker passed all quality
288 threshold) and rejection (when a marker did not reach all quality threshold) by the methods to
289 identify any differences. For each category, markers were split into two groups according to the best
290 method to genotype them (GenoTriplo or fitPoly) and an overall genotype concordance rate between
291 the two methods for all the 16 categories was computed.

292 Both methods had high marker call rate on average (0.98 (\pm 0.044) for GenoTriplo and 0.97 (\pm 0.122)
293 for fitPoly). To ensure fair comparison, all NA were removed and not considered as different between
294 methods, recognizing that some NA may be attributed for quality purpose when samples did not
295 clearly belong to a genotype while others may result from misidentification of clusters by one or the
296 other method. This approach aimed to provide a robust comparison while considering the nuances of
297 missing data especially for those methods that provided few NA.

298 **Parentage assignment assessment**

299 To validate the utility of GenoTriplo, we conducted a parentage assignment of the triploid individuals
300 using the R package APIS with the newly available function that enables parentage assignment on
301 triploids (<https://cran.r-project.org/web/packages/APIS/index.html>). The assignment was done using
302 the 1,000 best markers selected based on their Minor Allele Frequency (MAF) and CR. These markers
303 were chosen from the 32,325 markers that successfully passed through all applied filters, including
304 “Poly high resolution”, “Mono high resolution” and “No minor homozygote”.

305 While the true parents of the offspring were not available to fully validate the parentage assignment,
306 we had access to the mating plan, which is composed of 10 independent factorial matings, each
307 being composed of 8 to 10 sires crossed one-by-one with 17 to 24 dams, producing a theoretical
308 number of 1862 full-sib families (or 1862 valid parent pairs). However, parental assignment by
309 exclusion considers all possible parental pairs from the 98 sires and 190 dams [36], and thus a
310 theoretical number of $98*190=18620$ possible parent pairs, which is 10 times more than the valid
311 ones. In case of inaccurate assignments, we would thus expect that approximately 9 out of 10 would
312 fall out of the declared mating plan.

313 **R package and shiny application**

314 For enhanced accessibility, we developed a R package called ‘GenoTriplo’ available on CRAN. The
315 package incorporates functions for executing both the clustering phase (‘Run_Clustering’) and the
316 genotype calling phase (‘Run_Genotyping’). Additionally, to make the usage easier for beginners and
317 experts, a shiny interface was implemented (‘launch_GenoShiny’), organized into four steps.

318 First, the raw dataset from AXAS requires formatting before progressing through the clustering
319 phase. A list of markers or/and a list of individuals can be provided to select specific markers or/and
320 individuals.

321 The clustering phase starts with the refined dataset obtained at the previous step. Users are
322 prompted to input the ploidy level (default set to 3) of the population and the number of cores for
323 parallelization (default set to $N_{computer_cores}$ -2). An option to fine-tune parameters is available through
324 the 'Add more control' button, allowing adjustments of the number of initializations for the Rmixmod
325 clustering function (default set to 5) and the minimal contrast distance between two clusters (default
326 set to 0.28).

327 The genotype calling process is applied to the output of the clustering phase. Users have the option
328 to provide a CSV file containing the correspondence between A/B signals of AXAS and ATCG bases.
329 Inputs such as the ploidy of individuals (default set to 3), the number of cores for parallelization
330 (default set to $N_{computer_cores}$ -2), and whether or not individuals originate from the same population are
331 requested (default set to same population). The latter is introduced for simplification, assuming that
332 individuals from the same population cannot exhibit both homozygous genotypes without a
333 heterozygote (as described in **Genotype Calling** section). This step provides flexibility with various
334 adjustable parameters, including no-call threshold for individuals, distance between cluster centres,
335 cluster standard deviation threshold, FLD threshold, HetSO threshold, and CR threshold for markers.

336 The final step is optional and enables users to visualize the genotyping results through graphs and
337 statistics.

338 All graphics were made using ggplot2 [37] via R code [34].

339

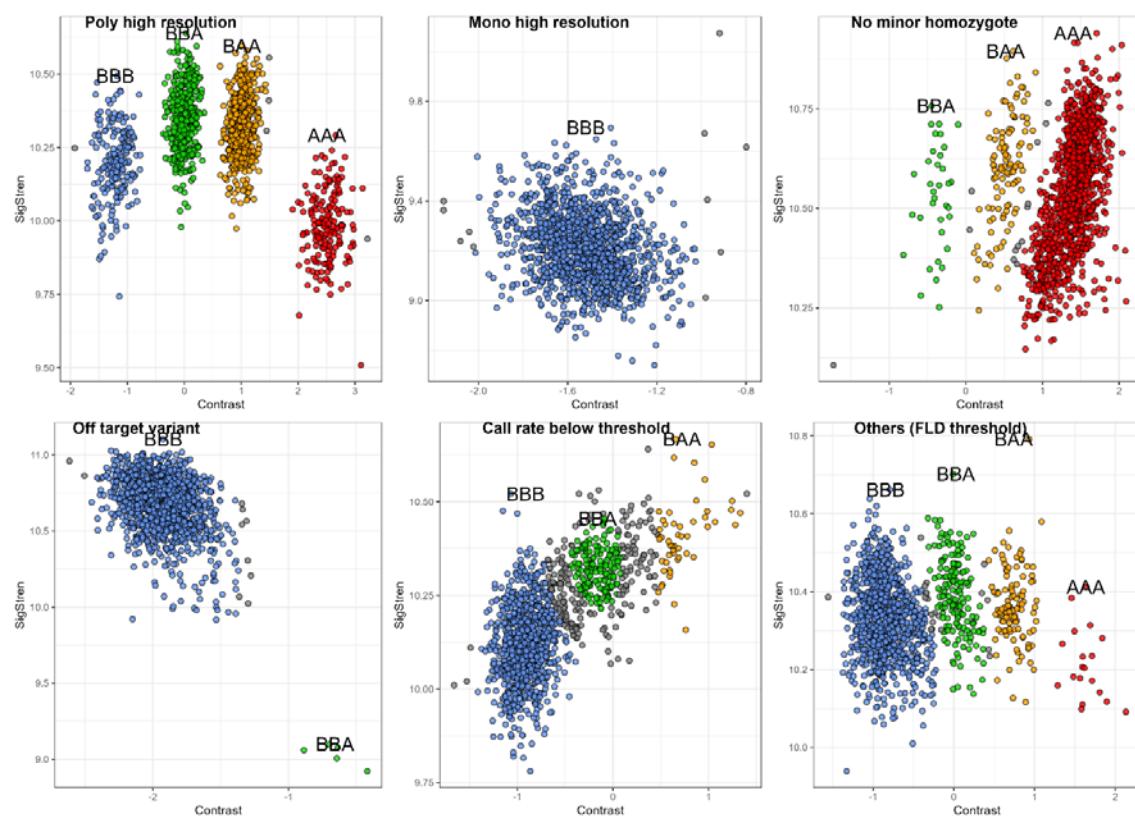
340 **Results**

341 **Clustering and genotype calling phases**

342 A "Poly high resolution" marker was characterized by the maximum number of genotype and well-
343 separated clusters (Fig 4, "Poly high resolution") whereas a "No minor homozygote" marker shared
344 these characteristics but lacked one of the homozygous genotypes (Fig 4, "No minor homozygote").

345 Occasionally, despite apparent separation of clusters, they failed to meet all established thresholds
346 and did not pass filters; for example, in Fig 4, “Others (FLD threshold)” exhibited a FLD of 3.36,
347 slightly below the set threshold of 3.4.

348 The methodology demonstrated robustness in identifying issues related to the position of the
349 heterozygote cluster (Fig 4, “Off target variant”), where the BBA genotype exhibited lower signal
350 strength than the BBB genotype, and in detecting mixed or uncertain clusters by augmenting the
351 number of NA among individuals between clusters (Fig 4, “Call rate below threshold”).



352
353 Figure 4: Examples of distribution on the axes of contrast and signal strength of genotypes identified
354 by GenoTriplo for each category of markers

355

356 **Number of initializations and maximal number of clusters**

357 To assess the impact of the numbers of initializations and of maximum clusters in GenoTriplo, we
358 conducted a quantitative comparison of the marker distribution across various categories following
359 the completion of the clustering and genotyping phases.

360 The number of initializations positively impacted the performance of the algorithm. The number of
361 markers in “Poly high resolution” category increased steadily from 1 to 10 initializations (+18% from
362 1 to 5 and +5% from 5 to 10), while numbers in “No minor homozygote” and “Call rate below
363 threshold” categories decreased. The supplementary “Poly high resolution” markers identified with
364 10 initializations, compared to 5, originated partly from the “Call rate below threshold” category. This
365 subset of markers may have encountered call rate issues due to cluster standard deviation
366 thresholds. If the low-frequency genotype was not found, it might have been erroneously grouped
367 with another genotype, significantly increasing the standard deviation of the cluster and resulting in
368 NA assignments for all individuals in that cluster. Another subset originated from the “No minor
369 homozygote” category, where individuals belonging to a smaller, low-frequency genotype might
370 have been inaccurately grouped with a higher frequency genotype. This led to a lesser increase in
371 standard deviation or NA assignments due to the distance-to-centre threshold. “Others” category
372 showed less sensitivity to changes in the number of initializations (Table 1).

373 Increasing the initial number of clusters defined for Rmixmod clustering function also helped to get
374 more markers included in the “Poly high resolution” category, especially when increasing from 4 to 8
375 clusters and, to a lesser extent, from 8 to 12 clusters (Table 1). Conversely, the number of SNPs in the
376 “No minor homozygote” category decreased, respectively from 8,480 to 4,452 markers with 4 and 12
377 initial clusters, respectively. Notably, the number of markers in the “Mono high resolution” category
378 decreased substantially for 12 clusters (3,132), while it remained stable around 4,300 for 4 and 8
379 initial clusters. The number of markers in the “Call rate below threshold” category strongly decreased
380 from 4 to 8 initial clusters (12,513 to 4,734), but increased from 8 to 12 initial clusters (4,734 to
381 6,516), indicating an optimal number of initial clusters of 8 as compared to 4 and 12 clusters.

382 Although the number of SNPs put in “Others” category increased with the number of clusters, it did
383 not counterbalance the decrease of SNPs in “Call rate below threshold” category, indicating that
384 some markers were pulled out of the low-quality categories towards the high-quality categories
385 (Table 1).

386 In summary, utilizing 5 initializations, 8 clusters, and default parameters and thresholds for quality
387 control of the genotyping resulted in 85% of markers falling into high quality marker categories i.e.
388 “Mono high resolution”, “No minor homozygote” and “Poly high resolution”.

389 Table1: Number of markers by categories for the different parameters used in clustering phase

Runs		Categories					
N_{init}	N_{clus}	Poly high resolution	No minor homozygote	Mono high resolution	Call rate below threshold	Off target variant	Others
1	8	18307	7126	4315	7451	411	423
5	8	21715	6233	4377	4734	421	553
10	8	22501	5838	4299	4344	438	613
5	4	11867	8480	4612	12513	400	161
5	12	22875	4452	3132	6516	403	655

390

391 **Comparison between GenoTriplo and fitPoly genotyping**

392 The overall concordance rate between genotypes derived from GenoTriplo and fitPoly was 85%,
393 reaching 89% after exclusion of all NA. Notably, 26% of the SNPs showed differences in the number
394 of genotypes identified by the two methods. GenoTriplo found less SNPs with four genotypes, while
395 fitPoly found less monomorphic SNPs (Table 2).

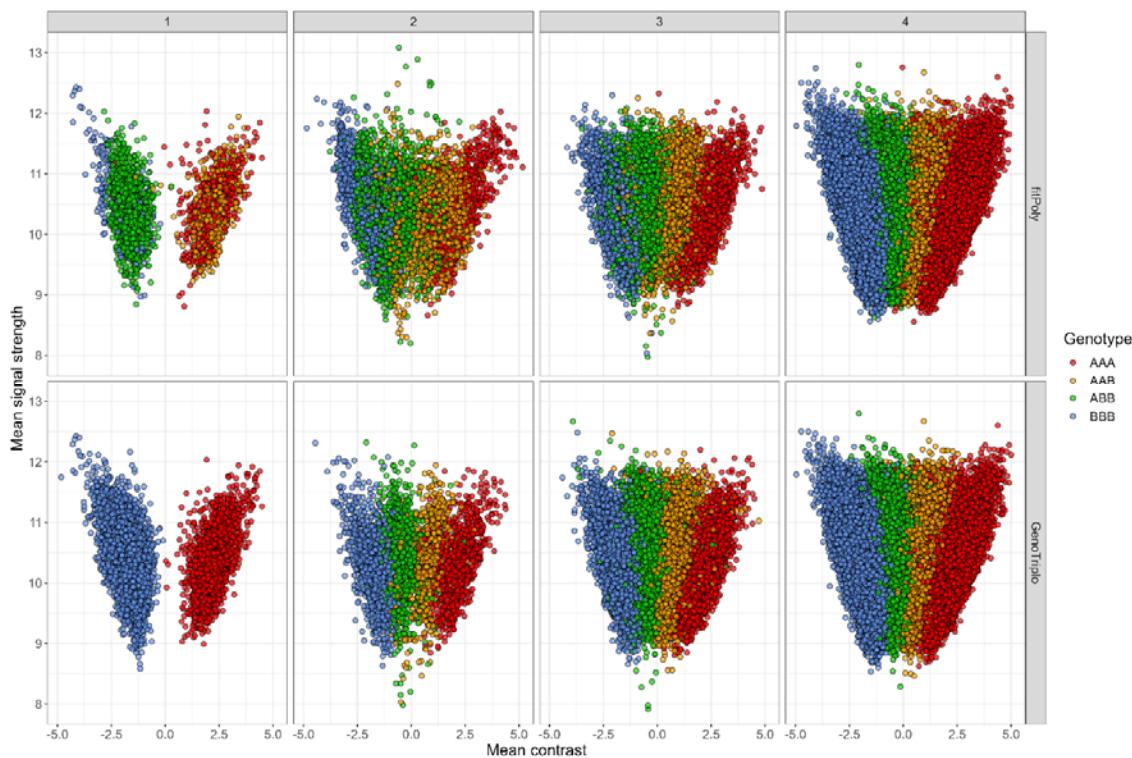
396 Table 2: Table with the respective number of SNPs with 1, 2 3 or 4 genotypes identified with
397 GenoTriplo or fitPoly.

GenoTriplo\fitPoly	1 genotype	2 genotypes	3 genotypes	4 genotypes
1 genotype	2333	1429	644	86
2 genotypes	28	493	542	783
3 genotypes	28	210	2289	4333
4 genotypes	38	640	966	23001

398

399 In categories for which both GenoTriplo and fitPoly identified the same number of genotypes, the
400 genotype concordance was not as high as expected. For a single genotype found, the concordance
401 was 25%, increasing to 81% with two genotypes found, 94% with three genotypes found, and
402 exceeding 99% with four genotypes found. The difference in the case of a unique genotype assigned
403 was due to fitPoly frequently assigning a heterozygous genotype rather than a more likely
404 homozygous genotype. Out of 2428 markers with a single genotype assigned by fitPoly, 1752 were
405 identified as heterozygous (Fig 5).

406 A similar pattern emerged, to a lesser extent, when fitPoly identified two genotypes. In contrast,
407 GenoTriplo exhibited the expected behaviour, with each distinct genotype forming distinct clusters,
408 displaying distinct mean contrast values regardless of the number of genotypes identified (Fig 5).



410 Figure 5: Mean contrast and signal strength values for genotypes of SNP with 1, 2, 3 and 4 different
411 genotypes (from left to right) for fitPoly (above) and GenoTriplo (under) methods

412 When the numbers of possible genotypes were different across the two methods, two discernible
413 patterns emerged from the analysis based on visual observation of the clusters, showcasing scenarios
414 where fitPoly outperformed GenoTriplo and *vice versa* (Table 3). FitPoly showed better results in
415 categories where it identified a greater number of genotypes compared to GenoTriplo, specifically in
416 categories (2;3), (2;4), and (3;4). For these 3 categories however, the genotypes provided by
417 GenoTriplo closely matched those from fitPoly when ignoring NA calls, with concordance rates of
418 99%, 99%, and 97%, respectively. Notably, for 292 markers out of the 1,000 in the (3;4) category,
419 fitPoly identified a lone individual for the minor homozygous genotype, which GenoTriplo
420 categorized as NA.

421 Conversely, in categories where GenoTriplo exhibited superior performance (categories (1;2), (3;2),
422 (4;2), and (4;3)), fitPoly's genotypes deviated significantly from the expected outcomes, resulting in
423 concordance rates of 49%, 49%, 34%, and 40%, respectively.

424 In the (1;3) category, a balanced performance between the two methods was observed. When fitPoly
425 outperformed, GenoTriplo's genotypes closely matched fitPoly's (achieving 100% concordance after
426 removing all instances of "NA"). However, when GenoTriplo was better, only 30% of fitPoly's
427 genotypes aligned with the decisions made by GenoTriplo.

428 Table 3: Number of markers visualized per category, number best genotyped by GenoTriplo, by
429 fitPoly; and corresponding rate of concordant genotypes between methods.

Category (GT;FP)	Number of markers				Rate of concordant genotypes for markers with	
	Total visual observation	Best genotyping: GenoTriplo	Best genotyping: fitPoly	No best method or bad marker	Best genotyping: GenoTriplo	Best genotyping: fitPoly
(1;2)	1000	946	6	48	0.49	1
(1;3)	644	330	282	32	0.30	1
(2;3)	542	61	354	127	0.69	0.99
(2;4)	783	37	657	89	0.60	0.99
(3;2)	210	126	5	79	0.49	0.78
(3;4)	1000	105	784	111	0.89	0.97
(4;2)	640	582	0	58	0.34	-
(4;3)	966	841	50	75	0.40	0.72

430

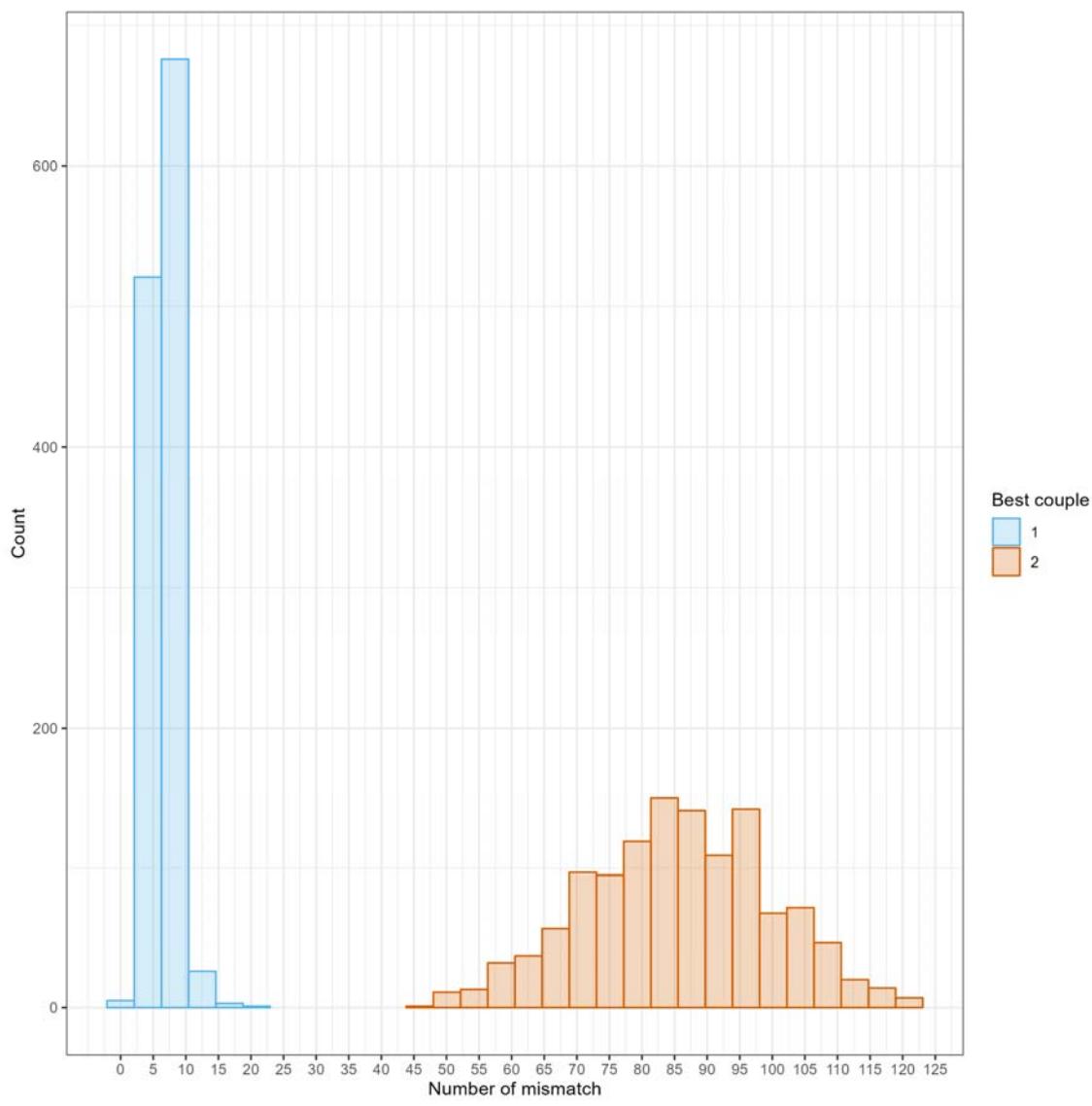
431 When examining the SNP acceptance/rejection categorization, we found that GenoTriplo retained
432 the majority of SNPs where fitPoly performed better, aligning with expectations due to the close
433 similarity between GenoTriplo and fitPoly. However, most SNPs within the (2;4) category were
434 rejected by GenoTriplo and no by fitPoly, particularly for call rate considerations. Notably, most
435 markers rejected by fitPoly in these categories were also rejected by GenoTriplo.

436 In the case of SNPs where GenoTriplo exhibited superior performance, fitPoly retained nearly half of
437 them, despite having low concordance with GenoTriplo. For instance, in the (1;2) category, out of the
438 936 SNPs retained by GenoTriplo, 632 were also retained by fitPoly, even though they were likely
439 incorrect, given the 50% concordance with GenoTriplo. Notably, almost every SNP rejected by
440 GenoTriplo was also rejected by fitPoly.

441 **Parentage assignment assessment by APIS**

442 To evaluate the genotyping performance for pedigree retrieval, we utilized the exclusion method of
443 APIS (<https://cran.r-project.org/web/packages/APIS/index.html>) for parentage assignment of triploid
444 offspring genotyped with the described method, alongside parents genotyped by AXAS software. All
445 offspring were successfully assigned to a couple of parents belonging to the correct factorial mating
446 plan.

447 For the best couples assigned, a maximum of 19 mismatches occurred among the 1000 markers, with
448 a mean mismatch of 6.9, representing less than 1% of mismatches between parents and progeny (Fig
449 6). The second-best couples exhibited a minimum of 47 mismatches, with a mean of 85.6. Therefore,
450 a substantial gap in mismatch numbers existed between the best and second-best couples, with
451 distributions clearly exhibiting no overlap, showing the very high quality of the assignments obtained
452 (Fig 6).



453

454 Figure 6: Number of offspring as a function of the number of mismatches for the best couple (blue)
455 and the second-best couple (red) found by APIS parentage assignment

456

457 **Discussion**

458 Our method for genotype calling of triploids from luminescence datasets demonstrated its quality to
459 genotype triploid fish, leading to its integration into the R package GenoTriplo, freely accessible to
460 the scientific community: <https://cran.r-project.org/web/packages/GenoTriplo/index.html>.

461 Our approach demonstrated a good accuracy for parentage assignment of triploid offspring with
462 diploid parents. This was validated using the top 1000 markers based on MAF and Call Rate. The
463 method performed well even with fewer markers or randomly selected markers (as few as 200).
464 Although the true pedigree was unknown, the very low numbers of mismatches for the best couple
465 suggested highly accurate assignments.

466 The method did not depend on prior information on genotype position relative to their own contrast
467 value when identifying genotypes among SNP. This characteristic enhanced efficiency, particularly
468 when contrast values were shifted from the expected values as a same genotype would manifest at
469 different value of contrast dependant on the marker [24,25]. This also allows to genotype new SNPs
470 with no need of human action to set reference genotypes for each SNP, in this way differentiating it
471 from AXAS that relies on reference genotype.

472 The clustering method underlying the genotyping call was efficient using well-fitted input
473 parameters. Notably, the number of initializations significantly enhanced the clustering algorithm's
474 efficiency by identifying clusters with few individuals, i.e. representing low-frequency genotypes. In
475 our case study, the occurrence of markers with low-frequency genotypes was limited, and most of
476 the different genotypes were thus well-identified with only 5 initialization runs.

477 Increasing the number of initializations will maximize the probability of identifying clusters
478 corresponding to low-frequency genotypes. However, this increase results in longer computation
479 time, forcing a trade-off between computation time and additional identification of very low-
480 frequency genotype for few SNPs. In our case, using 5 initializations was a good compromise, but this
481 parameter should be optimized for other triploid populations and species.

482 In addition, the initial number of clusters also significantly influenced the clustering algorithm
483 outcomes. Requesting only 4 clusters for triploids resulted in miss-detection of low-frequency
484 genotypes, leading to a shortage of "Poly high resolution" SNPs and an excess of "No minor
485 homozygote" markers. Conversely, too high a number of clusters led to inappropriate creation of

486 clusters composed of very few individuals, and resulting in a scarcity of the “Mono high resolution”
487 category. Optimal results were achieved with an intermediate number of clusters, specifically twice
488 the number of possible genotypes (8 for triploids). This configuration allowed for the identification of
489 most of the low-frequency genotypes without generating artefacts. Therefore, our strategy using
490 twice the maximum number of possible genotypes facilitated genotype calling for low-frequency
491 genotypes without the need for of large number of individuals to genotype together as suggested by
492 [23,24].

493 In the genotyping process, the method employed assumed that individuals originated from the same
494 population. Using Hardy-Weinberg hypothesis, our approach did not accept that both homozygous
495 genotypes coexisted without the two heterozygous genotypes for a given SNP, contributing to the
496 efficiency of our genotype attribution. When informed that the samples can come from various
497 populations, our method involved the comparison of mean contrast values of each current cluster to
498 the values of reference clusters. Those reference values are derived on the same dataset from
499 markers with the maximum number of genotypes. Given the common occurrence of contrast value
500 shifts (when all contrast values of a SNP are all shifted toward positive or negative value), the
501 recommended approach, when possible, is to analyse together pools of individuals originated from
502 the same population.

503 The overall concordance of genotypes between GenoTriplo and fitPoly was notably high. However,
504 differences emerged when comparing the number of genotypes identified by each method. When
505 both methods identified the same number of genotypes, differences were the result of the
506 fundamentally different approaches to assigning genotypes to clusters of individuals. GenoTriplo
507 relied on stringent assumptions, like assigning a homozygous genotype when only one cluster was
508 identified. In contrast, fitPoly lacked such guidelines, leading to substantial discordance, especially in
509 cases where only one genotype was expected.

510 GenoTriplo encountered difficulties in identifying all 4 genotypes, often settling for 3 when very few
511 individuals formed the second homozygous genotype. Those few individuals usually were not
512 assigned a genotype, avoiding genotyping errors. Besides, for 292 markers among the 784 markers
513 where fitPoly identified 4 genotypes while GenoTriplo found only 3, a single individual represented
514 the homozygous low frequency genotype in FitPoly. The credibility being low for a single individual to
515 represent a genotype, we consider it preferable to assign the individual to NA, thus avoiding a
516 possible genotyping error.

517 On the contrary, fitPoly faced difficulties in identifying a limited number of genotypes (below the
518 maximum possible) for a given SNP, particularly when the SNP was monomorphic. This challenge
519 could come from the method per se which prioritizes a high number of genotypes, leading to the
520 creation of unwanted clusters. While some of these SNP were rejected by fitPoly for excess of NA,
521 half were retained even for those with low concordance with GenoTriplo, causing substantial
522 genotyping errors.

523 While most of the disagreement were minor when fitPoly performed better, GenoTriplo's accuracy
524 outperformed fitPoly's, especially for low number of genotypes and detection of wrong genotypes.

525 This paper focuses on the genotyping of triploids, but it is essential to note that the method was also
526 successfully tested on diploids, providing similar results to the AXAS software. Furthermore, its
527 application could potentially be extended to higher ploidy levels. The key parameter for the
528 clustering phase would be the minimal distance between two clusters. Notably, the mean contrast
529 value for a homozygous diploid genotype matched that of a triploid homozygous genotype.
530 Consequently, with higher ploidy levels, the insertion of additional heterozygote genotypes is
531 expected between the contrast values of homozygotes, resulting in diminishing distances between
532 clusters as ploidy levels increase, making the discrimination between different allelic dosages more
533 difficult. Currently, the genotyping phase is implemented for diploid and triploid individuals, and
534 further work would be required to extend it to higher ploidy levels.

535 Data availability statement

536 The GenoTriplo package is available on the CRAN at [https://cran.r-](https://cran.r-project.org/web/packages/GenoTriplo/index.html)

537 [project.org/web/packages/GenoTriplo/index.html](https://cran.r-project.org/web/packages/GenoTriplo/index.html)

538 The data supporting the article are available at: <https://doi.org/10.57745/7IMQDS>

539 Acknowledgment

540 The work was partly supported financially by the French Government (FranceAgrimer) and the
541 European Maritime and Fisheries Fund (EMFF) in the R&D project HypoTemp (action n° P
542 FEA470019FA1000016).

543 Authors are indebted to Dominique Charles, Alexandre Desgranges and Jean Ruche from the
544 Aquaculteurs Bretons trout selective breeding company (Plouigneau, France) for the fish production,
545 and to Charles Poncet and his team for the genotyping of all fish for HypoTemp project.

546 Bibliography

- 547 1. Adams KL, Wendel JF. Polyploidy and genome evolution in plants. *Current Opinion in Plant
548 Biology*. 2005 Apr;8(2):135–41.
- 549 2. Nishiwaki A, Mizuguti A, Kuwabara S, Toma Y, Ishigaki G, Miyashita T, et al. Discovery of natural
550 *Miscanthus* (Poaceae) triploid plants in sympatric populations of *Miscanthus sacchariflorus* and
551 *Miscanthus sinensis* in southern Japan. *American Journal of Botany*. 2011 Jan 1;98(1):154–9.
- 552 3. Soltis PS, Merchant DB, Van De Peer Y, Soltis DE. Polyploidy and genome evolution in plants.
553 *Current Opinion in Genetics & Development*. 2015 Dec;35:119–25.
- 554 4. Gregory TR, Mable BK. Polyploidy in Animals. In: *The Evolution of the Genome* [Internet].
555 Elsevier; 2005 [cited 2023 Sep 12]. p. 427–517. Available from:
556 <https://linkinghub.elsevier.com/retrieve/pii/B9780123014634500103>
- 557 5. Gmitter FG, Ling XB, Deng XX. Induction of triploid Citrus plants from endosperm calli in vitro.
558 *Theoret Appl Genetics*. 1990 Dec;80(6):785–90.
- 559 6. Wang X, Cheng ZM, Zhi S, Xu F. Breeding triploid plants: a review. *Czech J Genet Plant Breed*.
560 2016 Jun 30;52(2):41–54.
- 561 7. Sheehan RJ, Shasteen SP, Suresh AV, Kapuscinski AR, Seeb JE. Better Growth in All-Female
562 Diploid and Triploid Rainbow Trout. *Transactions of the American Fisheries Society*. 1999 May
563 1;128(3):491–8.

564 8. Nell JA. Farming triploid oysters. *Aquaculture*. 2002 Jul 31;210(1):69–88.

565 9. Piferrer F, Beaumont A, Falguière JC, Flajšhans M, Haffray P, Colombo L. Polyploid fish and
566 shellfish: Production, biology and applications to aquaculture for performance improvement and
567 genetic containment. *Aquaculture*. 2009 Aug;293(3–4):125–56.

568 10. Benfey TJ. Effectiveness of triploidy as a management tool for reproductive containment of
569 farmed fish: Atlantic salmon (*Salmo salar*) as a case study. *Rev Aquacult*. 2016 Sep;8(3):264–82.

570 11. Thomas TD, Chaturvedi R. Endosperm culture: a novel method for triploid plant production.
571 *Plant Cell Tiss Organ Cult*. 2008 Apr;93(1):1–14.

572 12. Thomas TD, Bhatnagar AK, Bhojwani SS. Production of triploid plants of mulberry (*Morus alba L*)
573 by endosperm culture. *Plant Cell Reports*. 2000 Mar 13;19(4):395–9.

574 13. Stanley JG, Allen SK, Hidu H. Polyploidy induced in the American oyster, *Crassostrea virginica*,
575 with cytochalasin B. *Aquaculture*. 1981 Apr;23(1–4):1–10.

576 14. Chourrout D. Thermal induction of diploid gynogenesis and triploidy in the eggs of the rainbow
577 trout (*Salmo gairdneri* Richardson). *Reprod Nutr Dévelop*. 1980;20(3A):727–33.

578 15. Lincoln RF, Scott AP. Production of all-female triploid rainbow trout. *Aquaculture*. 1983 Jan;30(1–
579 4):375–80.

580 16. Blanc JM, Poisson H, Vallée F. Covariation between diploid and triploid progenies from common
581 breeders in rainbow trout, *Oncorhynchus mykiss* (Walbaum): Familial covariation between di-
582 and triploid trout. *Aquaculture Research*. 2001 Jul;32(7):507–16.

583 17. Friars GW, McMillan I, Quinton VM, O'Flynn FM, McGeachy SA, Benfey TJ. Family differences in
584 relative growth of diploid and triploid Atlantic salmon (*Salmo salar* L.). *Aquaculture*. 2001
585 Jan;192(1):23–9.

586 18. Leeds TD, Vallejo RL, Weber GM, Gonzalez-Pena D, Silverstein JT. Response to five generations of
587 selection for growth performance traits in rainbow trout (*Oncorhynchus mykiss*). *Aquaculture*.
588 2016 Dec;465:341–51.

589 19. Vandepitte M, Haffray P. Parentage assignment with genomic markers: a major advance for
590 understanding and exploiting genetic variation of quantitative traits in farmed aquatic animals.
591 *Front Genet* [Internet]. 2014 Dec 12 [cited 2023 Sep 7];5. Available from:
592 <http://journal.frontiersin.org/article/10.3389/fgene.2014.00432/abstract>

593 20. LaFramboise T. Single nucleotide polymorphism arrays: a decade of biological, computational
594 and technological advances. *Nucleic Acids Research*. 2009 Jul 1;37(13):4181–93.

595 21. You Q, Yang X, Peng Z, Xu L, Wang J. Development and Applications of a High Throughput
596 Genotyping Tool for Polyploid Crops: Single Nucleotide Polymorphism (SNP) Array. *Front Plant*
597 *Sci*. 2018 Feb 6;9:104.

598 22. Pereira GS, Garcia AAF, Margarido GRA. A fully automated pipeline for quantitative genotype
599 calling from next generation sequencing data in autopolyploids. *BMC Bioinformatics*. 2018
600 Dec;19(1):398.

601 23. Rabbee N, Speed TP. A genotype calling algorithm for affymetrix SNP arrays. *Bioinformatics*.
602 2006 Jan 1;22(1):7–12.

603 24. Shah TS, Liu JZ, Floyd JAB, Morris JA, Wirth N, Barrett JC, et al. optiCall: a robust genotype-calling
604 algorithm for rare, low-frequency and common variants. *Bioinformatics*. 2012 Jun
605 15;28(12):1598–603.

606 25. Teo YY, Inouye M, Small KS, Gwilliam R, Deloukas P, Kwiatkowski DP, et al. A genotype calling
607 algorithm for the Illumina BeadArray platform. *Bioinformatics*. 2007 Oct 15;23(20):2741–6.

608 26. Grashei KE, Ødegård J, Meuwissen THE. Genotype calling of triploid offspring from diploid
609 parents. *Genet Sel Evol*. 2020 Dec;52(1):15.

610 27. Voorrips RE, Gort G, Vosman B. Genotype calling in tetraploid species from bi-allelic marker data
611 using mixture models. *BMC Bioinformatics*. 2011 Dec;12(1):172.

612 28. Zych K, Gort G, Maliepaard CA, Jansen RC, Voorrips RE. FitTetra 2.0 – improved genotype calling
613 for tetraploids with multiple population and parental data support. *BMC Bioinformatics*. 2019
614 Dec;20(1):148.

615 29. Prchal M, D'Ambrosio J, Lagarde H, Lallias D, Patrice P, François Y, et al. Genome-wide
616 association study and genomic prediction of tolerance to acute hypoxia in rainbow trout.
617 *Aquaculture*. 2023 Feb;565:739068.

618 30. Palti Y, Gao G, Liu S, Kent MP, Lien S, Miller MR, et al. The development and characterization of a
619 57K single nucleotide polymorphism array for rainbow trout. *Molecular Ecology Resources*.
620 2015;15(3):662–72.

621 31. D'Ambrosio J, Phocas F, Haffray P, Bestin A, Brard-Fudulea S, Poncet C, et al. Genome-wide
622 estimates of genetic diversity, inbreeding and effective size of experimental and commercial
623 rainbow trout lines undergoing selective breeding. *Genetics Selection Evolution*. 2019 Jun
624 6;51(1):26.

625 32. Bernard M, Dehaudon A, Gao G, Paul K, Lagarde H, Charles M, et al. Development of a High-
626 Density 665 K SNP Array for Rainbow Trout Genome-Wide Genotyping. *Front Genet*. 2022 Jul
627 18;13:941340.

628 33. Lebret R. Rmixmod: A MIXture MODelling R package. In: 1ères Rencontres R [Internet].
629 Bordeaux, France; 2012 [cited 2023 Sep 12]. Available from: <https://hal.science/hal-00717551>

630 34. R Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna,
631 Austria: R Foundation for Statistical Computing; 2023. Available from: <https://www.R-project.org/>

633 35. Affymetrix. Axiom® Genotyping Solution.

634 36. Vandepitte M. An accurate formula to calculate exclusion power of marker sets in parentage
635 assignment. *Genet Sel Evol*. 2012 Dec;44(1):36.

636 37. Wickham H. ggplot2: ggplot2. *WIREs Comp Stat*. 2011 Mar;3(2):180–5.