

1 **B cell maturation restored ancestral germlines to control Omicron BA.2.86**

2 Ida Paciello¹, Giulio Pierleoni^{1,2}, Elisa Pantano^{1,2}, Giada Antonelli¹, Piero Pileri¹, Giuseppe Maccari³, Dario
3 Cardamone³, Giulia Realini¹, Federica Perrone^{1,2}, Martin Mayora Neto⁴, Simone Pozzessere⁵, Massimiliano
4 Fabbiani^{6,7}, Francesca Panza⁶, Ilaria Rancan⁶, Mario Tumbarello^{6,7}, Francesca Montagnani^{6,7}, Duccio Medini³,
5 Piet Maes⁸, Nigel Temperton⁴, Etienne Simon-Loriere^{9,10}, Olivier Schwartz^{11,12}, Rino Rappuoli^{2,14}, Emanuele
6 Andreano^{1,*}

7

8 ¹Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy

9 ²Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy

10 ³Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, Siena, Italy

11 ⁴Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham
12 Maritime, Kent, United Kingdom

13 ⁵Department of Cellular Therapies, Hematology and Laboratory Medicine, University Hospital of Siena,
14 Siena, Italy

15 ⁶Department of Medical Sciences, Infectious and Tropical Diseases Unit, Siena University Hospital, Siena,
16 Italy

17 ⁷Department of Medical Biotechnologies, University of Siena, Siena, Italy

18 ⁸KU Leuven, Rega Institute, Department of Microbiology, Immunology and Transplantation, Laboratory of
19 Clinical and Epidemiological Virology, Leuven, Belgium

20 ⁹G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France

21 ¹⁰National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France

22 ¹¹Virus and Immunity Unit, Department of Virology, Institut Pasteur, Paris, France

23 ¹²Vaccine Research Institute, Creteil, France

24 ¹⁴Fondazione Biotecnopolis di Siena, Siena, Italy

25 *Corresponding author: Emanuele Andreano e.andreano@toscanalifesciences.org

26 **ABSTRACT**

27 The unceasing interplay between SARS-CoV-2 and the human immune system has led to a continuous
28 maturation of the virus and B cell response providing an opportunity to track their evolution in real time.
29 We longitudinally analyzed the functional activity of almost 1,000 neutralizing human monoclonal
30 antibodies (nAbs) isolated from vaccinated people, and from individuals with hybrid and super hybrid
31 immunity (SH), developed after three mRNA vaccine doses and two breakthrough infections. The most
32 potent neutralization and Fc functions against highly mutated variants, including BA.2.86, were found in the
33 SH cohort. Despite different priming, epitope mapping revealed a convergent maturation of the functional
34 antibody response. Neutralization was mainly driven by Class 1/2 nAbs while Fc functions were induced by
35 Class 3/4 antibodies. Remarkably, broad neutralization was mediated by restored IGHV3-53/3-66 B cell
36 germlines which, after heterogenous exposure to SARS-CoV-2 S proteins, increased their level of somatic
37 hypermutations. Our study shows the resilience of the human immune system which restored previously
38 expanded germlines and activated naïve B cells to broaden the antibody repertoire of antibodies to control
39 future SARS-CoV-2 variants.

40 **INTRODUCTION**

41 The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shown an incredible ability to
42 evolve and evade the antibody response elicited after infection and vaccination. Since the beginning of the
43 coronavirus disease 2019 (COVID-19) pandemic, over seventy variants under monitoring, of interest and of
44 concern have emerged highlighting the great plasticity of this virus and the ability to adapt to the human
45 immune response over time¹. Indeed, the initial antibody response induced by SARS-CoV-2 infection was
46 dominated by IGHV3-53/3-66 encoded antibodies which were able to potently neutralize the original virus
47 isolated in Wuhan, China, in their germline-like state²⁻⁸. These antibodies are known to target the spike (S)
48 protein receptor binding domain (RBD), which is overall the main target for SARS-CoV-2 neutralizing
49 antibodies (nAbs)⁸⁻¹⁰. Given the high immune pressure generated by these germlines, the first variants that
50 rapidly emerged and spread worldwide, like the B.1.1.7, B.1.351 and B.1.1.248, introduced the E484K and
51 K417N mutations that showed to evade almost 60% of antibodies encoded by IGHV3-53/3-66 germlines in
52 both infection and mRNA vaccination^{2,7}. The subsequent waves of the pandemic were driven by SARS-CoV-
53 2 variants with increased number of mutations in the S protein. Specifically, the appearance of the first
54 Omicron variants (BA.1 and BA.2) at the end of 2021 marked a new chapter in the COVID-19 pandemic^{11,12}.
55 The BA.1 and BA.2 variants harbored 37 and 31 mutations in the S protein showing unprecedented immune
56 evasion levels reducing drastically the neutralizing efficacy of sera from infected and vaccinated people and
57 evading almost 90% of IGHV3-53/3-66 gene derived nAbs¹³⁻¹⁶. From 2022 onward, several Omicron variants
58 appeared worldwide with increased number of mutations and immune evasion levels starting from the
59 BA.5 to BA.2.86, the most mutated variant ever observed carrying almost 60 mutations in the S protein¹⁷⁻²⁴.
60 These variants kept spreading and infecting people worldwide generating a more mature and broadly
61 reactive antibody response to SARS-CoV-2. To understand how the immunological response adapted and
62 matured to SARS-CoV-2 variants over time, we longitudinally analyzed at single-cell level almost 1,000 nAbs
63 isolated from four different cohorts: seronegative donors that received two mRNA vaccine doses (SN2); the
64 same donors in SN2 subsequently re-enrolled when received a third booster dose (SN3); seropositive
65 subjects with hybrid immunity, i.e. one infection and two mRNA vaccine doses (SP2); seropositive donors

66 with super hybrid immunity (SH), i.e. at least three mRNA vaccine doses and two breakthrough infection.

67 Part of donors in this cohort were re-enrolled from the SP2 group. Our study revealed that SH had the

68 strongest antibody response against all tested variants. The cross-protective response was dominated by

69 highly mutated IGHV3-53/3-66 gene-derived nAbs that, after additional infection and vaccination, restored

70 their neutralization and Fc function activities against all variants including the highly mutated BA.2.86.

71 Noteworthy, a strong convergence in the Class of RBD-targeting nAbs and germline expanded in SN3 and

72 SH was observed with nAbs isolated in this latter cohort showing higher levels of cross-protection. Anyway,

73 despite high breadth to SARS-CoV-2 variants, we observed that cross-reactivity was not extended to other

74 alpha or beta human coronaviruses in the SH cohort. In addition, SH activated new germlines to broaden

75 the antibody repertoire with new B cell germlines which could be rapidly deployed with the emergence of

76 future SARS-CoV-2 variants. Taken together, this work dissects the functional antibody response currently

77 developed in most people and identifies the immunological and genetic features behind cross-protection to

78 highly mutated SARS-CoV-2 variants.

79 **RESULTS**

80 **Frequency of B cells and neutralizing antibodies in super hybrid immunity**

81 In this study we evaluated the B cell maturation and neutralizing antibody response of donors with super
82 hybrid immunity (SH), i.e., at least three mRNA vaccine doses and two breakthrough infections. Six donors
83 were analyzed in this work, two of which (VAC-004 and VAC-009) were re-enrolled from our previous study
84 where we evaluated their B cell and antibody response following two mRNA vaccine doses and one
85 breakthrough infection (hybrid immunity)⁷. Blood collection for SH donors occurred at an average of 99
86 days after the last vaccination dose or SARS-CoV-2 breakthrough infection. SH subject details are
87 summarized in **Supplementary Table 1**. To evaluate the breadth of reactivity of CD19⁺CD27⁺IgD⁻IgM⁻ class-
88 switched memory B cell (MBCs) towards different betacoronaviruses, we stained the cells with the Spike (S)
89 protein of both SARS-CoV-1 and SARS-CoV-2 Wuhan and analyzed the frequencies of single and double
90 positive cells (**Supplementary Fig. 1a**). We selected the SARS-CoV-2 Wuhan S protein as staining bait as all
91 donors were exposed to this antigen. As expected, SH donors showed the highest frequency towards the S
92 protein of SARS-CoV-2 with an average of 0.32% of positive cells, followed by B cells reactive to the SARS-
93 CoV-1 S protein (0.13%) (**Supplementary Table 2**). Double positive MBCs showed the lowest frequency
94 averaging 0.03% of reactive cells. To evaluate at single level the neutralizing antibody response of SH
95 donors, SARS-CoV-1 and SARS-CoV-2 Wuhan S protein single and double positive MBCs were single cell
96 sorted and incubated for two weeks to naturally release human monoclonal antibodies (mAbs) into the
97 supernatant. A total of 4,505 S protein⁺ MBCs were sorted and directly tested in neutralization against the
98 live SARS-CoV-2 Wuhan virus and SARS-CoV-1 pseudovirus. Overall, 9.4 to 16.3% of antibodies from the six
99 SH donors showed capacity to neutralize at least one virus, resulting in a panel of 545 (12.1%) neutralizing
100 human monoclonal antibodies (nAbs) (**Supplementary Fig. 1b, bottom panel; Supplementary Table 2**). The
101 fraction of neutralizing antibodies is comparable to what was previously observed for the SN3 (14.4%) and
102 SP2 (14.8%) cohorts^{7,25}. Of these, 507 (93.0%), 27 (5.0%) and 11 (2.0%) were able to neutralize live SARS-
103 CoV-2 Wuhan virus, SARS-CoV-1 pseudovirus or both betacoronaviruses respectively (**Supplementary Fig.**
104 **1b, top panel; Supplementary Table 2**).

105

106 **Antibody neutralization to SARS-CoV-2 Omicron variants**

107 To better characterize identified nAbs, we tried to express all 545 as immunoglobulin G 1 (IgG1) and
108 recovered 419 of them. Of these, 410 (97.8%) neutralized SARS-CoV-2 Wuhan, 7 (1.7%) were cross-
109 neutralizing, and 2 (0.5%) neutralized only SARS-CoV-1. To evaluate their potency and breadth to SARS-
110 CoV-2 and its variants, 417 nAbs (SARS-CoV-2 only and cross-neutralizing) isolated from SH individuals were
111 tested by cytopathic effect-based microneutralization assay (CPE-MN) against SARS-CoV-2 Wuhan and
112 Omicron BA.5, BA.2.75, BF.7, BQ.1.1, XBB.1.5, EG.5.1.1 and BA.2.86 variants. The data obtained from SH
113 donors were compared with donors seronegative to SARS-CoV-2 infection but vaccinated with two (SN2;
114 n=5) or three (SN3; n=4) mRNA vaccine doses, and with seropositive subjects with hybrid immunity (two
115 mRNA vaccine doses and one breakthrough infection; SP2; n=5) (**Fig. 1a-d; Supplementary Fig. 1c-d;**
116 **Supplementary Fig. 2a-d**). From SN2, SN3 and SP2, we previously isolated 52, 206 and 224 nAbs
117 respectively^{7,25}. Neutralization potency was expressed as 100% inhibitory concentration (IC_{100}) and the
118 evaluation of all antibodies in each cohort as geometric mean IC_{100} (GM- IC_{100}). SH donors had an overall
119 higher percentage of nAbs neutralizing all SARS-CoV-2 Omicron variants (**Fig. 1a-d; Supplementary Table**
120 **3**). Only one nAb (1.9%) was able to neutralize BF.7 and BQ.1.1 in the SN2 while none of the antibodies in
121 this cohort showed neutralization activity against the other Omicron variants tested (**Fig. 1a;**
122 **Supplementary Fig. 2a**). In contrast, higher levels of cross-protection were observed in SN3, SP2 and SH.
123 The frequencies of nAbs from SN3 donors neutralizing Omicron BA.5, BA.2.75, BF.7, BQ.1.1, XBB.1.5,
124 EG.5.1.1 and BA.2.86 variants were 12.1 (n=23), 17.0 (n=32), 10.2 (n=21), 5.8 (n=15), 7.3 (n=14), 3.4 (n=7)
125 and 2.9% (n=6), while these variants were neutralized by 13.4 (n=30), 3.6 (n=8), 9.8 (n=22) and 5.8% (n=13)
126 of SP2 antibodies (**Fig. 1b-c; Supplementary Fig. 2b-c**). None of the nAbs in the SP2 cohort were able to
127 neutralize XBB.1.5, EG.5.1.1 and BA.2.86 variants. Finally, the frequencies of nAbs from SH donors
128 neutralizing BA.5, BA.2.75, BF.7, BQ.1.1, XBB.1.5, EG.5.1.1 and BA.2.86 variants were 62.1 (n=259), 22.5
129 (n=94), 42.2 (n=175), 34.3 (n=143), 18.7 (n=76), 6.5 (n=27) and 14.4% (n=60) respectively (**Fig. 1d;**
130 **Supplementary Fig. 2d**). The four cohorts showed similar neutralization potencies against SARS-CoV-2

131 Wuhan, nAbs isolated from SH donors had the highest neutralization potencies against all Omicron variants
132 tested and it was the only cohort with nAbs showing a potency below 10 ng ml⁻¹ (**Fig. 1a-d; Supplementary**
133 **Fig. 1c-d; Supplementary Table 3-4**). To understand the S protein domains targeted by antibodies isolated
134 from SH donors, nAbs were tested for binding against the receptor binding domain (RBD), N-terminal
135 domain (NTD) and the S2 domain of the original Wuhan SARS-CoV-2 S protein. In all SH subjects, nAbs
136 targeted mainly the RBD (n=317; 75.3%) followed by NTD (n=81; 19.2%) and S protein (n=23; 5.5%)
137 (**Supplementary Fig. 2e; Supplementary Table 4**). No S2 domain binding nAbs were identified. This
138 distribution is in line to what was previously observed in donors with three mRNA vaccine doses and with
139 hybrid immunity²⁵.

140

141 **Evaluation of Fc effector functions to XBB.1.5 and BA.2.86**

142 Next, we evaluated the antibody-dependent phagocytic activity (ADCP) and antibody-dependent
143 complement deposition (ADCD), of all identified nAbs in SH against the ancestral Wuhan virus, the XBB.1.5
144 variant that dominated from February to May 2023, and the highly mutated SARS-CoV-2 variant BA.2.86,
145 ancestral germline of the currently predominant JN.1 variant (**Fig. 1e-h**). The Fc functions were evaluated
146 for nAbs that retained the binding to the XBB.1.5 and BA.2.86 S proteins (**Supplementary Fig. 3a**). Binding
147 nAbs were 7.7 (n=4), 43.7 (n=90), 11.6 (n=26) and 39.8% (n=166) for XBB.1.5 and 7.7 (n=4), 18.0 (n=37), 5.8
148 (n=13) and 27.6% (n=115) for BA.2.86 in SN2, SN3, SP2 and SH respectively. While no neutralization was
149 observed against XBB.1.5 and BA.2.86, a low fraction of nAbs retained ADCP and ADCC activities in the SN2
150 (1.9 – 7.8%) and SP2 (2.2 – 6.5%) cohorts (**Fig. 1e, g**). Differently, a bigger fraction of nAbs in SN3 and SH
151 retained both neutralization and Fc functions. Indeed, 15.0 – 35.4% of nAbs in the SN3 cohort were able to
152 induce ADCP and ADCC against XBB.1.5 and BA.2.86, while 17.7 – 30.5% of antibodies retained these
153 activities in the SH cohort (**Fig. 1f, h**). Next, we evaluated the Fc function potencies induced by nAbs in the
154 four different cohorts and the S protein domains mainly involved in these activities (**Supplementary Fig. 3b-**
155 **e**). No major differences were observed in the SN2 cohort for S protein trimer, RBD and NTD binding nAbs
156 (**Supplementary Fig. 3b**). However, the low number of antibodies active against XBB.1.5 and BA.2.86 made

157 this evaluation difficult. Differently, a third booster dose (SN3) or hybrid immunity (SP2) improved nAb Fc
158 activities, despite losing potency against tested variants. In the SN3 cohort, NTD-binding nAbs showed the
159 strongest ADCD activity while similar levels of activity are observed for ADCP (**Supplementary Fig. 3c**). In
160 SP2, RBD- and NTD-binding nAbs showed similar potency which is higher than what observed for S protein
161 trimer-targeting antibodies (**Supplementary Fig. 3d**). As for the SH cohort, nAbs binding the NTD showed
162 the strongest ADCP and ADCD activities (**Supplementary Fig. 3e**).

163

164 **Antibody potency and breadth to alpha and beta human coronaviruses**

165 To assess the breadth of neutralization to other alpha and beta human coronaviruses (h-CoV), in addition
166 to SARS-CoV-1 and 2, we tested all nAbs isolated in the SH cohort against HKU-1, 229E and OC43. Initially,
167 we evaluated the binding activity of all nAbs to the h-CoV S proteins. Our data showed that over 94.0% of
168 nAbs were specific for SARS-CoV-2 only. Only, 3.8 (n=20), 1.0 (n=7), 0.3 (n=2) and 0.1% (n=1) of SARS-CoV-2
169 nAbs showed binding to SARS-CoV-1, OC43, 229E and HKU-1 respectively (**Supplementary Fig. 4a**;
170 **Supplementary Table 4**). We next evaluated the neutralization activity and potency of cross-binding nAbs
171 to SARS-CoV-1, OC43, 229E and HKU-1 pseudoviruses. Our results revealed that 45.0% (n=9) of SARS-CoV-1
172 S protein binding nAbs were neutralizing, with a 50% neutralization dose (ND_{50}) ranging from 54.2 to
173 22,000.4 ng ml⁻¹. Similarly, 57.1% (n=4) of nAbs reacting to OC43 S protein also showed neutralization
174 activity but with an overall low potency with an ND_{50} ranging from 804.0 to 38,490.0 ng ml⁻¹. The single nAb
175 reacting to HKU-1 poorly neutralized the pseudovirus (ND_{50} 29,030.0 ng ml⁻¹) while the two 299E S protein
176 binding nAbs did not show neutralization activity against this alpha coronavirus (**Supplementary Fig. 4b**).
177

178 **Epitope mapping of cross-neutralizing nAbs**

179 To understand the S protein regions mainly involved in cross-protection against the Omicron variants, we
180 investigated the neutralization activity of RBD- and NTD-targeting nAbs (**Fig. 2**). RBD-targeting nAbs were
181 classified based on their ability to compete with the Class 1/2 antibody J08²⁶, the Class 3 antibody S309²⁷,
182 and the Class 4 antibody CR3022²⁸, or for their lack of competition with the three tested antibodies (Not-

183 competing)^{13,25}. The neutralization activity against SARS-CoV-2 Wuhan virus in all cohorts was revealed to
184 be mainly directed to the RBD Class 1/2 epitope region (Fig. 2a-d). In the SN2 group ($n = 46$), we observed a
185 lack of neutralization activity against most Omicron variants tested except for one NTD-targeting nAb which
186 neutralized both BF.7 and BQ.1.1 (Fig. 2a). In the SN3 cohort ($n=197$), after a third booster dose, we
187 observed a more cross-reactive antibody response with 3.0 – 16.8% of nAbs able to neutralize all Omicron
188 variants tested. The majority of these nAbs were directed against the RBD Class 1/2 epitope region (Fig.
189 2b). The SP2 cohort ($n=215$) showed 3.7 – 14.0% of cross-protection against Omicron BA.5, BA.2.75, BF.7
190 and BQ.1.1, while no neutralization was observed to XBB.1.5, EG.5.1.1 and BA.2.86. In this cohort, cross-
191 neutralization was mainly driven by NTD and RBD Class 3 targeting nAbs (Fig. 2c). After a subsequent
192 infection and additional vaccine dose, the antibody response in the SH cohort ($n=413$) showed a different
193 profile. Cross-neutralization was observed against all tested Omicron variants with a frequency ranging
194 from 6.5 to 62.7%. Of note, the majority of cross-neutralizing nAbs in the SH cohort were directed towards
195 the RBD Class 1/2 region, changing the target profile compared to the less mature SP2 immune response
196 (Fig. 2d). When we evaluated the neutralization potency, expressed as IC_{100} , of cross-neutralizing nAbs, we
197 observed in all cohorts that RBD binding antibodies were more potent than the NTD-targeting group
198 (Supplementary Fig. 5a-g; Supplementary Table 5). As for the different RBD classes, our data showed that
199 Class 3 nAbs were overall the most potent against Omicron variants in the SP2 cohort, showing up to 2.6-
200 and 8.7-fold lower GM- IC_{100} compared to Class 1/2 and 4 nAbs respectively. In contrast, the most potent
201 nAbs in the SN3 and SH cohorts were directed against the Class 1/2 epitope region. Overall, Class 1/2 nAbs
202 in SN3 were up to 28.9-fold more potent than Class 3 antibodies, while in SH Class 1/2 nAbs had a GM- IC_{100}
203 4.7- and 13.0-fold lower compared to Class 3 and 4 antibodies respectively (Supplementary Fig. 5a-g;
204 Supplementary Table 5). We also evaluated the ADCP and ADCD of all RBD classes and NTD binding nAbs
205 against XBB.1.5 and BA.2.86. A very small fraction of nAbs in the SN2 cohort, despite not presenting
206 neutralization activity, retained ADCD function (Fig. 2e, left panel). Nevertheless, the low number of nAbs
207 makes it difficult to properly evaluate the Fc response in this cohort. Class 1/2 and NTD-binding nAbs were
208 the most active in the SN3 cohort (Fig. 2e, middle left panel). Differently, Class 4 nAbs were the most active

209 in the SP2 cohort, and Fc functions were further matured in SH individuals, where up to 85.7 and 57.1% of
210 antibodies belonging to this class showed ADCP and ADCC function respectively (**Fig. 2e, middle right and**
211 **right panels**). Further maturation of Class 1/2 and 3 in the SH cohort rescued the antibody Fc functions,
212 expanding the fraction of nAbs able to induce ADCP and ADCC compared to SP2 (**Fig. 2e, middle right and**
213 **right panels**). Our data also highlight the impact of the mutations present on the XBB.1.5 and BA.2.86 S
214 proteins on antibody neutralization and Fc functions. Indeed, the unique set of mutations on the BA.2.86 S
215 protein positioned in the Class 3 epitope region (N450D and K356T) seem to be extremely evasive in the
216 SN3 cohort, leading to higher reduction of neutralization, ADCP and ADCC compared to XBB.1.5. Finally,
217 nAbs in the SH cohort showed similar levels of neutralization and Fc functions against both XBB.1.5 and
218 BA.2.86 (**Fig. 2e-g**).
219

220 **B cell maturation and expansion in super hybrid immunity**

221 In addition to the neutralization, Fc functions and epitope mapping analyses, we investigated the B cell
222 expansion and maturation from hybrid (SP2 n sequences=278⁷) to super hybrid immunity (SH n
223 sequences=441). Sequences were clustered by binning the clones to their inferred germlines (centroids)
224 and according to 80% nucleotide sequence identity in the heavy complementary determining region 3
225 (CDRH3). Clusters were defined as antibody families including at least five or more members as previously
226 described^{25,29}. We found five immunoglobulin heavy variable (IGHV) and joining (IGHJ) rearrangements,
227 IGHV1-24;IGHJ6-1, IGHV1-58;IGHJ3-1, IGHV3-53;IGHJ6-1, IGHV3-66;IGHJ4-1 and IGHV3-66;IGHJ6-1, to be
228 predominantly expanded after an additional infection and vaccination dose. In addition, we observed six
229 germlines, IGHV1-18;IGHJ4-1, IGHV1-69;IGHJ4-1, IGHV1-69;IGHJ5-1, IGHV2-70;IGHJ6-1, IGHV3-48;IGHJ4-1,
230 IGHV5-10-1;IGHJ4-1, that emerged and expanded only in SH individuals broadening the B cell repertoire in
231 this cohort (**Fig. 3a**). The five germlines expanded in SH, showed 1.20- to 2.67-fold higher somatic
232 hypermutation (SHM) levels compared to SP2, with the IGHV1-58;IGHJ3-1 and IGHV3-53;IGHJ6-1 being the
233 most mutated with a median V gene mutation of almost 9.0% (**Fig. 3b**). As for the six germlines found only
234 in SH, we found B cells using the IGHV1-18;IGHJ4-1 rearrangement to be the most mutated with a median V

235 gene mutations of 9.7%, while the IGHV5-10-1;IGHJ4-1 germline was the least mutated with a median
236 mutation frequency of 3.9% (Fig. 3c). Next, we analyzed the binding and neutralization profiles of germlines
237 expanded from SP2 or found only SH. The expanded germlines were found to mainly target the S protein
238 RBD Class 1/2 epitope region with the exception of IGHV1-24;IGHJ6-1 which were found to preferentially
239 bind the NTD (Fig. 3d). The neutralization data revealed that IGHV3-53;IGHJ6-1, IGHV3-66;IGHJ4-1 and
240 IGHV3-66;IGHJ6-1 were the most cross-protective germlines against the SARS-CoV-2 variants tested, with
241 IGHV3-53;IGHJ6-1 showing the highest potency with a GM-IC₁₀₀ of 136.8 ng ml⁻¹ (Fig. 3e, left panel;
242 **Supplementary Table 6**). The germlines expanded only in SH also showed to be mainly directed against the
243 S protein RBD but targeted different regions of the RBD. Indeed, IGHV1-69;IGHJ4-1, IGHV1-69;IGHJ5-1
244 targeted mainly the Class 1/2, while the germlines IGHV1-18;IGHJ4-1, IGHV2-70;IGHJ6-1, and IGHV5-10-
245 1;IGHJ4-1 were directed almost exclusively towards the Class 3 epitope region. Interestingly, the germline
246 IGHV3-48;IGHJ4-1 preferentially recognized the NTD and was shown to be the most cross-protective,
247 covering 7 out 8 (87.5%) SARS-CoV-2 variants tested in this study with a GM-IC₁₀₀ of 167.1 ng ml⁻¹ (Fig. 3d).
248 Conversely, the broadly expanded RBD-targeting germline IGHV1-69;IGHJ4-1 showed the lowest level of
249 cross-protection despite some nAbs in this group being highly mutated and carrying almost 13% of
250 mutations in the V gene (Fig. 3e, right panel; **Supplementary Table 6**).
251

252 **B cell convergence after homologous or heterologous immunization**

253 Next, we compared the evolution of the B cell repertoire after homologous or heterologous immunization
254 in the SN3 (n sequences=289²⁵) and SH cohorts. Interestingly, we observed a strong convergence of the B
255 cell response in these two groups that shared the expansion of five different B cell rearrangements, IGHV1-
256 58;IGHJ3-1, IGHV1-69;IGHJ3-1, IGHV1-69;IGHJ4-1, IGHV3-53;IGHJ6-1 and IGHV3-66;IGHJ6-1 (Fig. 4a). The
257 five germlines, known to encode for potently neutralizing RBD-targeting Class 1 and Class 2 nAbs^{13,28,30,31},
258 constituted 27.0 (n=78) and 22.7% (n=100) of the whole functional B cell repertoire in SN3 and SH
259 respectively (**Supplementary Table 7**). While these germlines were predominantly expanded in both SN3
260 and SH, they showed different neutralization profiles against SARS-CoV-2 Wuhan and Omicron variants.

261 Indeed, in the SN3 cohort, nAbs derived from IGHV1-69;IGHJ4-1 germlines were the most cross-reactive
262 even if they showed a low to medium neutralization potency with a GM-IC₁₀₀ of 2,065.1 ng ml⁻¹ (**Fig. 4b, top**
263 **panel; Supplementary Table 6**). Differently, in the SH cohort, IGHV1-69;IGHJ4-1 derived-nAbs were the
264 least cross-reactive while antibodies encoded by the other four predominant germlines showed improved
265 neutralization potency and breadth. The IGHV3-53;IGHJ6-1 and IGHV3-66;IGHJ6-1 were found to encode
266 for the most cross-neutralizing nAbs with a GM-IC₁₀₀ of 136.8 and 176.4 ng ml⁻¹ respectively, which is 2.99-
267 and 2.84-fold more potent of nAbs encoded by the same germlines in the SN3 cohort (**Fig. 4b, bottom**
268 **panel; Supplementary Table 6**). These germlines showed broad neutralization against all variants including
269 the highly mutated BA.2.86 (14/25; 56.0%), while only 2 out of 25 (8.0%) of these nAbs were able to cover
270 the EG.5.1.1 variant which was predominant in Europe from July 2023 to November 2023, before the surge
271 of JN.1. We then evaluated the Fc-functions induced by the five predominant germlines against the SARS-
272 CoV-2 Wuhan, XBB.1.5 and BA.2.86 viruses and again observed different functional profiles. Indeed, IGHV1-
273 69;IGHJ4-1 gene-derived nAbs in SN3 showed the strongest ADCP and ADCC compared to antibodies
274 encoded by the same germlines in the SH cohort (**Fig. 4c, left panel**). IGHV3-53;IGHJ6-1 and IGHV3-
275 66;IGHJ6-1 nAbs in SH showed the strongest Fc-functions in this cohort (**Fig. 4c, right panel; Supplementary**
276 **Table 8**). When we analyzed the somatic hypermutation (SHM) levels of nAbs encoded by the five
277 predominant germlines, we observed that only IGHV1-69;IGHJ4-1 nAbs had similar levels of V gene
278 mutations between SN3 and SH. The remaining predominant germlines showed 1.24- to 1.57-fold higher
279 levels of V gene mutations in SH with IGHV1-69;IGHJ3-1 and IGHV3-53;IGHJ6-1 being the most mutated
280 (**Supplementary Fig. 6a**). In addition to shared germlines, we observed that SH had unique germlines not
281 expanded in the SN3 cohort. The five most abundant were the IGHV1-18;IGHJ4-1, IGHV1-2;IGHJ4-1, IGHV1-
282 24;IGHJ4-1, IGHV3-21;IGHJ6-1 and IGHV5-10-1;IGHJ4-1 (**Fig. 4a**). Interestingly, IGHV1-18;IGHJ4-1 and
283 IGHV5-10-1;IGHJ4-1 were neither found in the SP2 cohort and were exclusive for the SH group. Antibodies
284 from the IGHV1-24;IGHJ4-1, IGHV3-21;IGHJ6-1 and IGHV5-10-1;IGHJ4-1 germlines showed the highest
285 cross-neutralization activity, covering 75% of tested SARS-CoV-2 variants with a GM-IC₁₀₀ of 289.0, 287.1
286 and 91.3 respectively (**Supplementary Fig. 6b; Supplementary Table 7**). These three germlines were also

287 the least mutated, with an average V gene mutations frequency below 6.0% suggesting space for further
288 maturation of these nAbs (**Supplementary Fig. 6c**).

289 **DISCUSSION**

290 In this work, we characterized in depth the antibody response of individuals with super hybrid immunity to
291 understand how the B cell compartment matured in response to SARS-CoV-2 variants over time. We
292 longitudinally analyzed a unique panel of almost 1,000 nAbs isolated from four different cohorts dissecting
293 both homologous (SN2 and SN3) and heterologous (SP2 and SH) immune responses. Our data revealed that
294 further maturation of the B cell compartment in SH led to the strongest and most cross-reactive antibody
295 response to SARS-CoV-2 variants including the highly mutated BA.2.86. Interestingly, the antibody response
296 in SH remained mainly focused on SARS-CoV-2 as less than 10% of nAbs showed cross-reactivity to other
297 alpha and beta H-CoV. The most abundant class of nAbs after homologous immunization, independently
298 from two or three mRNA vaccine doses, is the Class 1/2. Further maturation of the SP2 antibody response
299 redirects nAbs from Class 3 and NTD to Class 1/2, converging with the antibody response observed after
300 homologous immunization. Surprisingly, the main B cell germlines that stood behind the high levels of
301 cross-protection observed in SH were antibodies encoded by the IGHV3-53/3-66 genes, which were highly
302 evaded by all Omicron variants in less matured immunological responses like SN2, SN3 and SP2^{13,14}. This
303 observation suggests that the B cell compartment, after additional maturation, prefers to resiliently restore
304 and expand germlines induced by the initial SARS-CoV-2 Wuhan S protein (i.e. the antigenic sin) over naïve
305 B cells. Therefore, independently from the priming that individuals received after vaccination or infection,
306 we observed a strong convergence in the antibody response. Of note, up to 56% of IGHV3-53/3-66 encoded
307 nAbs were able to neutralize the highly mutated BA.2.86 variant, while only 8% of these nAbs cross-
308 protected against EG.5.1.1. This observation highlights the importance of the highly conserved residue Y33
309 placed in the heavy chain complementary determining region 1 (H-CDR1) of IGHV3-53/3-66 encoded nAbs
310 as it was previously shown to form extensive hydrophobic interactions with the RBD residue F456 mutated
311 exclusively on the EG.5.1.1 lineage (F456L)^{17,30}. In addition, this observation explains, at single cell level,
312 why the highly mutated BA.2.86 did not become predominant worldwide despite exhibiting substantial
313 antigenic drift, remarkably enhanced receptor binding affinity, fusogenicity and infectivity to lung cells
314 compared to other variants³²⁻³⁴. Anyway, BA.2.86 rapidly evolved and at the end of 2023 the JN.1

315 sublineage emerged becoming the predominant variant worldwide. JN.1 carries only one additional
316 mutation in the RBD, L455S, compared to the ancestral BA.2.86 variant which resulted in decreased ACE2
317 affinity but enhanced immune evasion^{35,36}. Future work will help to understand the classes of antibodies
318 evaded and the germlines that are still able to retain neutralization against JN.1. Indeed, we identified low
319 mutated B cell germlines uniquely expanded in SH (IGHV1-18;IGHJ4-1 and IGHV5-10-1;IGHJ4-1), suggesting
320 a stretch of the antibody repertoire which could be rapidly deployed against future SARS-CoV-2 variants
321 including JN.1. Overall, our work provides unique information on the longitudinal evolution of the B cell
322 compartment in response to SARS-CoV-2 variants highlighting similarities and differences between
323 homologous and heterologous vaccination, and how the imprinting of the antigenic sin restored and drove
324 antibody maturation.

325 REFERENCES

326 1. (ECDC), E.C.f.D.P.a.C. SARS-CoV-2 variants of concern as of 2 February 2024. (2024).

327 2. Andreano, E. & Rappuoli, R. Immunodominant antibody germlines in COVID-19. *Journal of*
328 *Experimental Medicine* **218**, e20210281 (2021).

329 3. Fagiani, F., Catanzaro, M. & Lanni, C. Molecular features of IGHV3-53-encoded antibodies elicited
330 by SARS-CoV-2. *Signal Transduction and Targeted Therapy* **5**, 170 (2020).

331 4. Wang, E.Y., *et al.* Diverse functional autoantibodies in patients with COVID-19. *Nature* **595**, 283-288
332 (2021).

333 5. Robbiani, D.F., *et al.* Convergent antibody responses to SARS-CoV-2 in convalescent individuals.
334 *Nature* **584**, 437-442 (2020).

335 6. Andreano, E., *et al.* Extremely potent human monoclonal antibodies from COVID-19 convalescent
336 patients. *Cell* **184**, 1821-1835.e1816 (2021).

337 7. Andreano, E., *et al.* Hybrid immunity improves B cells and antibodies against SARS-CoV-2 variants.
338 *Nature* **600**, 530-535 (2021).

339 8. Yuan, M., *et al.* Structural basis of a shared antibody response to SARS-CoV-2. *Science (New York,*
340 *N.Y.)* **369**, 1119-1123 (2020).

341 9. Callaway, E. Coronavirus variants get Greek names - but will scientists use them? *Nature* **594**, 162
342 (2021).

343 10. Piccoli, L., *et al.* Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike
344 Receptor-Binding Domain by Structure-Guided High-Resolution Serology. *Cell* **183**, 1024-
345 1042.e1021 (2020).

346 11. Karim, S.S.A. & Karim, Q.A. Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic.
347 *Lancet (London, England)* **398**, 2126-2128 (2021).

348 12. Viana, R., *et al.* Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa.
349 *Nature* **603**, 679-686 (2022).

350 13. Andreano, E., *et al.* Anatomy of Omicron BA.1 and BA.2 neutralizing antibodies in COVID-19 mRNA
351 vaccinees. *Nature Communications* **13**, 3375 (2022).

352 14. Andreano, E., *et al.* B cell analyses after SARS-CoV-2 mRNA third vaccination reveals a hybrid
353 immunity like antibody response. *Nature Communications* **14**, 53 (2023).

354 15. Yu, J., *et al.* Neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2 Variants. *New England
355 Journal of Medicine* **386**, 1579-1580 (2022).

356 16. Ai, J., *et al.* Antibody evasion of SARS-CoV-2 Omicron BA.1, BA.1.1, BA.2, and BA.3 sub-lineages. *Cell
357 Host & Microbe* **30**, 1077-1083.e1074 (2022).

358 17. Khare, S., *et al.* GISAID's Role in Pandemic Response. *China CDC weekly* **3**, 1049-1051 (2021).

359 18. Meo, S.A., Meo, A.S. & Klonoff, D.C. Omicron new variant BA.2.86 (Pirola): Epidemiological,
360 biological, and clinical characteristics - a global data-based analysis. *European review for medical
361 and pharmacological sciences* **27**, 9470-9476 (2023).

362 19. Wang, Q., *et al.* Antigenicity and receptor affinity of SARS-CoV-2 BA.2.86 spike. *Nature* **624**, 639-
363 644 (2023).

364 20. Wang, Q., *et al.* Antibody neutralisation of emerging SARS-CoV-2 subvariants: EG.5.1 and XBC.1.6.
365 *The Lancet Infectious Diseases* **23**, e397-e398 (2023).

366 21. Lassaunière, R., *et al.* Virus isolation and neutralisation of SARS-CoV-2 variants BA.2.86 and EG.5.1.
367 *The Lancet Infectious Diseases* **23**, e509-e510 (2023).

368 22. Sheward, D.J., *et al.* Omicron sublineage BA.2.75.2 exhibits extensive escape from neutralising
369 antibodies. *The Lancet Infectious Diseases* **22**, 1538-1540 (2022).

370 23. Planas, D., *et al.* Resistance of Omicron subvariants BA.2.75.2, BA.4.6, and BQ.1.1 to neutralizing
371 antibodies. *Nature Communications* **14**, 824 (2023).

372 24. Khan, K., *et al.* Evolution and neutralization escape of the SARS-CoV-2 BA.2.86 subvariant. *Nature
373 Communications* **14**, 8078 (2023).

374 25. Andreano, E., *et al.* COVID-19 mRNA third dose induces a unique hybrid immunity-like antibody
375 response. *bioRxiv*, 2022.2005.2009.491201 (2022).

376 26. Torres, J.L., *et al.* Structural insights of a highly potent pan-neutralizing SARS-CoV-2 human
377 monoclonal antibody. *Proceedings of the National Academy of Sciences* **119**, e2120976119 (2022).

378 27. Pinto, D., *et al.* Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody.
379 *Nature* **583**, 290-295 (2020).

380 28. Yuan, M., *et al.* A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2
381 and SARS-CoV. *Science (New York, N.Y.)* **368**, 630-633 (2020).

382 29. Chen, E.C., *et al.* Systematic analysis of human antibody response to ebolavirus glycoprotein shows
383 high prevalence of neutralizing public clonotypes. *Cell Reports* **42**(2023).

384 30. Zhang, Q., *et al.* Potent and protective IGHV3-53/3-66 public antibodies and their shared escape
385 mutant on the spike of SARS-CoV-2. *Nature Communications* **12**, 4210 (2021).

386 31. Hansen, J., *et al.* Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody
387 cocktail. *Science (New York, N.Y.)* **369**, 1010-1014 (2020).

388 32. Qu, P., *et al.* Immune evasion, infectivity, and fusogenicity of SARS-CoV-2 BA.2.86 and FLip variants.
389 *Cell* **187**, 585-595.e586 (2024).

390 33. Zhang, L., *et al.* SARS-CoV-2 BA.2.86 enters lung cells and evades neutralizing antibodies with high
391 efficiency. *Cell* **187**, 596-608.e517 (2024).

392 34. Wang, X., Lu, L. & Jiang, S. SARS-CoV-2 evolution from the BA.2.86 to JN.1 variants: unexpected
393 consequences. *Trends in Immunology* **45**, 81-84 (2024).

394 35. Delphine, P., *et al.* Distinct evolution of SARS-CoV-2 Omicron XBB and BA.2.86/JN.1 lineages
395 combining increased fitness and antibody evasion. *bioRxiv*, 2023.2011.2020.567873 (2024).

396 36. Yang, S., *et al.* Fast evolution of SARS-CoV-2 BA.2.86 to JN.1 under heavy immune pressure. *The
397 Lancet Infectious Diseases* **24**, e70-e72 (2024).

398 37. Huang, J., *et al.* Isolation of human monoclonal antibodies from peripheral blood B cells. *Nature
399 protocols* **8**, 1907-1915 (2013).

400 38. Notarbartolo, S., *et al.* Integrated longitudinal immunophenotypic, transcriptional and repertoire
401 analyses delineate immune responses in COVID-19 patients. *Science immunology* **6**(2021).

402 39. Conforti, A., *et al.* COVID-eVax, an electroporated DNA vaccine candidate encoding the SARS-CoV-2
403 RBD, elicits protective responses in animal models. *Molecular therapy : the journal of the American
404 Society of Gene Therapy* **30**, 311-326 (2022).

405 40. Paciello, I., Maccari, G., Pantano, E., Andreano, E. & Rappuoli, R. High-resolution map of the Fc
406 functions mediated by COVID-19-neutralizing antibodies. *Proceedings of the National Academy of
407 Sciences* **121**, e2314730121 (2024).

408 41. Kepler, T.B. Reconstructing a B-cell clonal lineage. I. Statistical inference of unobserved ancestors.
409 *F1000Research* **2**, 103 (2013).

410 42. Kepler, T.B., *et al.* Reconstructing a B-Cell Clonal Lineage. II. Mutation, Selection, and Affinity
411 Maturation. *5*(2014).

412 **METHODS**

413 **Enrollment of donors with super hybrid immunity and human sample collection**

414 Human samples from individuals with SH, of both sexes, were collected through a collaboration with the
415 Azienda Ospedaliera Universitaria Senese, Siena (IT). All subjects enrolled gave their written consent. The
416 study that allowed the enrollment of subjects in all three cohorts was approved by the Comitato Etico di
417 Area Vasta Sud Est (CEAVSE) ethics committees (Parere 17065 in Siena, amendment 13 December 2021)
418 and conducted according to good clinical practice in accordance with the declaration of Helsinki (European
419 Council 2001, US Code of Federal Regulations, ICH 1997). This study was unblinded and not randomized. Six
420 subjects were enrolled in this cohort. Subjects in the SH cohort were exposed two times to SARS-CoV-2
421 infection and received three or four mRNA vaccine doses. First infections occurred between October 2020
422 and July 2022, while second infections occurred between January and December 2022. Vaccinations
423 occurred between December 2020 and December 2022. Given the exploratory nature of this study, no
424 statistical methods were used to predetermine sample size.

425

426 **Single cell sorting of SARS-CoV-1 and SARS-CoV-2 S-protein⁺ memory B cells from COVID-19 vaccinees.**

427 Peripheral blood mononuclear cells (PBMCs) isolation was performed as previously described^{6,7,25}. Briefly,
428 PBMCs were isolated from heparin-treated whole blood by density gradient centrifugation (Ficoll-Paque
429 PREMIUM, SigmaAldrich). After separation, cells were incubated at room temperature for 20 minutes with
430 the viability dye Live/Dead Fixable Aqua (Invitrogen; Thermo Scientific). Then, cells were washed with PBS
431 and incubated with 50 µL of 20% normal rabbit serum (Life technologies) diluted in PBS to saturate
432 unspecific bindings. After 30 minutes of incubation at 4°C, cells were washed with PBS and stained with
433 SARS-CoV-1 S-protein labeled with Strep-Tactin™XT DY-649 (iba-lifesciences cat# 2-1568-050) and SARS-
434 CoV-2 S-protein labeled with Strep-TactinXT DY-488 (iba-lifesciences cat# 2-1562-050) for 30 min at 4°C.
435 Then, a surface staining was performed using CD19 V421 (BD cat# 562440), IgM PerCP-Cy5.5 (BD cat#
436 561285), CD27 PE (BD cat# 340425), IgD-A700 (BD cat# 561302), CD3 PE-Cy7 (BioLegend cat# 300420),
437 CD14 PE-Cy7 (BioLegend cat# 301814), CD56 PECy7 (BioLegend cat# 318318). After 30 minutes of

438 incubation at 4°C, stained memory B cells were single cell-sorted with a BD FACSaria™ Fusion (BD
439 Biosciences) into 384-well plates and were incubated for 14 days with IL-2, IL-21 and irradiated 3T3-CD40L
440 as previously described³⁷.

441

442 **SARS-CoV-2 authentic viruses neutralization assay**

443 All SARS-CoV-2 authentic virus neutralization assays were performed in the biosafety level 3 (BSL3)
444 laboratories at Toscana Life Sciences in Siena (Italy), which is approved by a Certified Biosafety Professional
445 and inspected annually by local authorities. To assess the neutralization potency and breadth of nAbs
446 against live SARS-CoV-2 and its variants, a cytopathic effect-based microneutralization assay (CPE-MN) was
447 performed as previously described^{6,7,13,25}. Briefly, 100 median Tissue Culture Infectious Dose (100 TCID₅₀) of
448 SARS-CoV-2 virus was co-incubated with nAbs for 1 hour at 37°C, 5% CO₂. The virus-antibody mixtures were
449 then moved into a 96-well plate containing a sub-confluent Vero E6 cell monolayer. Plates were incubated
450 for 3-4 days at 37°C in a humidified environment with 5% CO₂, then examined for CPE by means of an
451 inverted optical microscope by two independent operators. Single cell sorting supernatants were tested at
452 single point dilution to identify positive hits and antibody to be recombinantly expressed through
453 transcriptionally active polymerase chain reaction (TAP-PCR). TAP supernatant, used to evaluate the
454 neutralization potency of identified nAbs, were tested at a starting dilution of 1:4 and diluted step 1:2.
455 Single replicate and technical duplicates were performed to evaluate single cell sorting supernatant and to
456 evaluate the IC₁₀₀ of TAP respectively. In each plate positive and negative control were used as previously
457 described^{6,7,13,25}.

458

459 **SARS-CoV-2 virus variants CPE-MN neutralization assay**

460 The SARS-CoV-2 viruses used to perform the CPE-MN neutralization assay were the Wuhan (SARS-CoV-
461 2/INMI1-Isolate/2020/Italy: MT066156), Omicron BA.5 (GISAID ID: EPI_ISL_13389618), BA.2.75 (GISAID ID:
462 EPI_ISL_14732896), BF.7 (GISAID ID: EPI_ISL_13499917), BQ.1.1 (GISAID ID: EPI_ISL_15455664), XBB.1.5
463 (GISAID ID: EPI_ISL_17272995), EG.5.1.1 (GISAID ID: EPI_ISL_18245523) and BA.2.86 (GISAID ID:

464 EPI_ISL_18221650). The BA.2.86 strain (hCoV-19/France/IDF-IPP17625/2023) was supplied by the National
465 Reference Centre for Respiratory Viruses hosted by Institut Pasteur (Paris, France). The human sample from
466 which strain hCoV-19/France/IDF-IPP17625/2023 was isolated has been provided by Dr Aude LESENNE
467 from Cerballiance Ile De France Sud, Lisses.

468

469 **Single cell RT-PCR and Ig gene amplification and transcriptionally active PCR expression**

470 To express our nAbs as full-length IgG1, 5 µL of cell lysate from the original 384-cell sorting plate were used
471 for reverse transcription polymerase chain reaction (RT-PCR), and two rounds of PCRs (PCRI and PCRII-
472 nested) as previously described^{6,7,25}. Obtained PCRII products were used to recover the antibody heavy and
473 light chain sequences, through Sanger sequencing, and for antibody cloning into expression vectors as
474 previously described^{6,7,25}. TAP-PCR reaction was performed using 5 µL of Q5 polymerase (NEB), 5 µL of GC
475 Enhancer (NEB), 5 µL of 5X buffer, 10 mM dNTPs, 0.125 µL of forward/reverse primers and 3 µL of ligation
476 product, using the following cycles: 98°/2', 35 cycles 98°/10'', 61°/20', 72°/1' and 72°/5'. TAP products
477 were purified under the same PCRII conditions, quantified by Qubit Fluorometric Quantitation assay
478 (Invitrogen) and used for transient transfection in Expi293F cell line following manufacturing instructions.

479

480 **Expression and purification XBB.1.5, BA.2.86 and H-CoV S proteins**

481 The plasmids encoding SARS-CoV-2 6P WT and for the seven S proteins of the season H-CoV was generously
482 provided by Prof. Jason S. McLellan. All proteins were expressed and purified as previously described⁶.
483 Briefly, plasmids encoding for XBB.1.5, BA.2.86 and H-CoV S proteins were transiently transfected in
484 ExpiCHO-S cells (Thermo Fisher) using ExpiFectamine™ CHO Reagent. Cells were grown for six days at 37°C
485 with 8% CO₂ in shaking conditions at 125 rpm according to the manufacturer's protocol (Thermo Fisher).
486 ExpiFectamine™ CHO Enhancer and ExpiCHO™ Feed were added 18 to 22 hours post-transfection to boost
487 transfection, cell viability, and protein expression. Both types of cell cultures (for the spike of SARS-CoV-2
488 and H-CoVs) were harvested five days after transfection and the proteins were purified by immobilized
489 metal affinity chromatography (FF Crude) followed by dialysis into final buffer. Cell culture supernatants

490 were clarified by centrifugation (1,200x g, 30 min, 4°C) followed by filtration through a 0.45 µm filter.
491 Chromatography purification was conducted at room temperature using ÄKTA Go purifier system from GE
492 Healthcare Life Sciences. Specifically, filtered culture supernatant was purified with a 5 mL HisTrap FF Crude
493 column (GE Healthcare Life Sciences) previously equilibrated in Buffer A (20 mM NaH₂PO₄, 500 mM NaCl +
494 30 mM Imidazole pH 7.4). The flow rate for all steps of the HisTrap FF Crude column purification was 5
495 ml/min. The culture supernatant of each spike protein was applied to a single 5 mL HisTrap FF Crude
496 column. The column was washed in Buffer A with 4 column volumes (CV). spike proteins were eluted from
497 the column by applying a first step elution of 5CV of 60% Buffer B (20 mM NaH₂PO₄, 500 mM NaCl + 500
498 mM Imidazole pH 7.4). Elution fractions were collected in 1 ml each and analyzed by SDS-PAGE. Fractions
499 containing the S protein were pooled and dialyzed against PBS buffer pH 7.4 using Slide-A-Lyzer™ Dialysis
500 Cassette 10K MWCO (Thermo Scientific) overnight at 4°C. The dialysis buffer used was at least 200 times
501 the volume of the sample. The final spike protein concentration was determined by measuring absorbance
502 at 562 nm using Pierce™ BCA Protein Assay Kit (Thermo Scientific™). Proteins were dispensed into 0.5 ml
503 aliquots and stored at -80°C.

504

505 **ELISA assay with SARS-CoV-2 NTD, RBD and S2 subunits**

506 To determine the binding specificity of nAbs to the SARS-CoV-2 S protein domains we performed an ELISA
507 to the RBD, NTD and S2 domains. The assay was performed as previously described^{7,25}. Briefly, 3 µg ml⁻¹ of
508 SARS-CoV-2 subunits diluted in carbonate-bicarbonate buffer (E107, Bethyl Laboratories), were coated in
509 384-well plates (microplate clear, Greiner Bio-one), and blocked with 50µl/well of blocking buffer
510 (phosphate-buffered saline, 1% BSA) for 1h at 37 °C. After washing (phosphate-buffered saline and 0.05%
511 Tween-20), plates were incubated with mAbs diluted 1:5 in dilution buffer (phosphate-buffered saline, 1%
512 BSA, 0.05% Tween-20) and step-diluted 1:2 in dilution buffer. Anti-Human IgG-Peroxidase antibody (Fab
513 specific) produced in goat (Sigma) diluted 1:45,000 in dilution buffer for RBD and NTD plates, while
514 1:80,000 in dilution buffer for S2 plates, was added and incubated for 1h at 37 °C. Plates were then washed,
515 incubated with TMB substrate (Sigma) for 15 min before adding 25 µl/well of stopping solution (H₂SO₄

516 0.2M). The OD values were identified using the Varioskan Lux Reader (Thermo Fisher Scientific) at 450 nm.
517 Each condition was tested in duplicate and samples were considered positive if the OD value was two-fold
518 the blank.

519

520 **ELISA assay with H-CoVs S proteins**

521 Antibody binding specificity against the H-CoVs SARS-CoV-1, 229E, OC43 and HKU-1 S proteins was
522 detected by ELISA as previously described¹³. Briefly, 384-well plates (microplate clear, Greiner Bio-one)
523 were coated with 3 μ g ml⁻¹ of streptavidin (Thermo Fisher) diluted in carbonate-bicarbonate buffer (E107,
524 Bethyl Laboratories) and incubated at RT overnight. The next day, plates were incubated for 1h at RT with 3
525 μ g ml⁻¹ of H-CoVs S proteins, and saturated with 50 μ l/well of blocking buffer (phosphate-buffered saline,
526 1% BSA) for 1h at 37 °C. Following, 25 μ l/well of mAbs diluted 1:5 in dilution buffer (phosphate-buffered
527 saline, 1% BSA, 0.05% Tween-20) were added and serially diluted 1:2 and then incubated for 1h at 37 °C.
528 Finally, 25 μ l/well of alkaline phosphatase-conjugated goat Anti-Human IgG diluted 1:2,000 in dilution
529 buffer were added. mAbs binding to the S proteins were detected using 25 μ l/well of PNPP (p-nitrophenyl
530 phosphate; Thermo Fisher) and the reaction was measured at a wavelength of 405nm using the Varioskan
531 Lux Reader (Thermo Fisher Scientific). After each incubation step, plates were washed with washing buffer
532 (phosphate-buffered saline and 0.05% Tween-20). Sample buffer was used as a blank and the threshold for
533 sample positivity was set at two-fold the OD of the blank. Technical duplicates were performed.

534

535 **SARS-CoV-1 pseudotype based microneutralization assay**

536 To screen single cell sorting supernatants and identify mAbs able to neutralize SARS-CoV-1 we performed a
537 microneutralization assay in 384 well-plates. The HEK293TN-hACE2 cell line was generated by lentiviral
538 transduction of HEK293TN (System Bioscience, Cat#LV900A-1) cells as described in Notarbartolo S. et al³⁸.
539 SARS-CoV-1 lentiviral pseudotype particles were generated as described in Conforti et al. using the SARS-
540 CoV1 SPIKE plasmid pcDNA3.3_CoV1_D28 (Addgene plasmid # 170447)³⁹. HEK293TN-hACE2 were plated
541 10,000/well in 384-well flat plates (Corning cat#3765) using DMEM medium complete (10% FBS, 2mM L-

542 glutamine, 1% Pen-strep, 1mM Sodium pyruvate, 1% Non-Essential Amino Acid). After 24h, cells were
543 infected with 0.1 MOI of SARS-CoV-1 pseudotyped viruses that were previously incubated with 7 μ l of each
544 mAb supernatant. Supernatants were diluted 1:5 with a pseudotyped viral solution at 0.1 multiplicity of
545 infection (MOI) and were tested at single point dilution. PBS and the mAb S309 (tested starting from 10 μ g
546 ml^{-1} and serially diluted step 1:3) were used as negative and positive controls respectively. The mix was
547 incubated for 1h at 37°C and then 25 μ l were added into 50 μ l of HEK293TN-hACE2 pre-seeded wells. Plates
548 were incubated at 37°C for 24h after which luciferase activity was measured reading the plate on
549 Varioskan™ LUX (Thermo Scientific) using the Bright-Glo Luciferase Assay System (Promega), according to
550 the manufacturer's recommendations. Percent of inhibition was calculated relative to pseudotype virus-
551 only control. 50% neutralization dose (ND_{50}) values were established by nonlinear regression using Prism
552 v.8.1.0 (GraphPad).

553

554 **H-CoV (229E, HKU-1 and OC43) pseudotype based microneutralization assays**

555 The neutralization assay for 229E, HKU-1 and OC43 H-CoV pseudotyped viruses was performed as
556 described for SARS-CoV-1 pseudotype virus using 96-well plates. In addition, appropriate cell lines
557 expressing H-CoVs receptor were used to allow infection and evaluation of neutralization activity of
558 isolated nAbs. Specifically, HUH7, CHO-K1 and HEKTN/17 cell lines were used for 229E, HKU-1 and OC43
559 respectively. Briefly, 100 μ l containing 1×10^4 cells were plated in each well in white 96-well plates using
560 DMEM medium complete (10% FBS, 2mM L-glutamine, 1% Pen-strep, 1mM Sodium pyruvate, 1% Non-
561 Essential Amino Acid). 24h later, cells were infected with 0.1 MOI of pseudotyped viruses that were
562 previously co-incubated for 1h at 37°C with serial dilution of TAP supernatants in 50 μ l. A 7-point dose
563 response curve was obtained by diluting TAP supernatants step 1:3. After 24h incubation at 37°C for 24h,
564 luciferase activity was measured reading the plate on Varioskan™ LUX (Thermo Scientific™) using the
565 Bright-Glo Luciferase Assay System (Promega), according to the manufacturer's recommendations. Percent
566 inhibition was calculated relative to pseudotype virus-only control. ND_{50} (Neutralization Dose) values were
567 established by nonlinear regression using Prism v.8.1.0 (GraphPad). The average ND_{50} value for each

568 antibody was determined from a minimum of three independent technical replicates and two independent
569 experiments. Technical triplicates were performed.

570

571 **Flow cytometry-based competition assay**

572 To characterize mAb candidates based on their interaction with S protein epitopes, a flow cytometry-based
573 competition assay was performed. As previously described⁷, 1 mg of magnetic beads (Dynabeads His-Tag,
574 Invitrogen) were coupled with 200 µg of histidine-tagged SARS-CoV-2 S protein. Then, S protein-beads (20
575 µg ml⁻¹) were incubated with unlabeled neutralizing antibodies at room temperature for 40 minutes and
576 the sample was subsequently washed in PBS-1% BSA. To evaluate the S protein epitope competition,
577 antibodies RBD Class 1/2 (J08), Class 3 (S309), Class 4 (CR3022) binders or NTD (4A8) binders were labelled
578 with different fluorophores (Alexa Fluor 647, 488, 594) using the Alexa Fluor NHS Ester kit (Thermo
579 Scientific). Next, fluorescent labeled antibodies were incubated with S protein-beads for 40 minutes at RT.
580 After incubation, the S protein-antibodies mix was washed with PBS, resuspended in 150 µL of PBS-BSA 1%,
581 and analyzed using BD FACSymphony™ A3 (BD Biosciences). As positive and negative controls, beads with
582 or without S protein incubated with labeled antibodies were used. FACSDiva Software (version 9) and
583 FlowJo (version 10) were used for data acquisition and analysis, respectively.

584

585 **Measurement of ADCP and ADCC functions triggered by neutralizing antibodies.**

586 Antibody-dependent cellular phagocytosis (ADCP) was performed using a Flow cytometry-based assay. As
587 previously described⁴⁰, stabilized histidine-tagged SARS-CoV-2 S protein (Wuhan, XBB.1.5, BA.2.86) was
588 labelled with Strep-Tactin™XT Conjugate DY- 649 (IBA Lifesciences) and conjugated to magnetic beads
589 according to the manufacturer's instructions. The mix S protein-beads was incubated with nAbs for 1 h at
590 RT and then mixed with monocytic THP- 1 cell line (50.000 per well). After 18h of incubation at 37°C, THP-1
591 cells were washed with PBS and fixed with fixation buffer (BioLegend) following the manufacturer's
592 guidelines. Next, cells resuspended in 100 µL of PBS1X were acquired by BD FACSymphony™ A3 (BD
593 Biosciences). FlowJo software (version 10) was used for data analysis and phagocytosis was evaluated as

594 percentage of fluorescent beads engulfed by THP-1 multiplied by the median fluorescence intensity of the
595 population. To explore the antibody dependent complement deposition (ADCD), Expi293F cells (Thermo
596 Fisher, Cat#A14527) were transiently transfected with SARS-CoV-2 original S protein, XBB.1.5, or BA.2.86
597 expression vectors (pcDNA3.1_ spike_del19) using the ExpiFectamine Enhancer (Thermo Fisher)⁴⁰. After
598 48h, monoclonal antibodies were incubated with S protein-expressing cells at 37 °C, with 5% CO₂ and 120
599 rpm shaker speed for 30 min. Then, 6% of baby rabbit complement (Cedarlane) diluted in Expi medium was
600 added, and cells were incubated at 37 °C, with 5% CO₂ and 120 rpm shaker speed. After 30 minutes of
601 incubation, cells were incubated with goat anti-rabbit polyclonal antibody against C3-FITC conjugated (MP
602 Biomedicals) for 1 h on ice. Then, stained cells were fixed with fixation buffer (BioLegend) for 15 min on ice
603 and resuspended in 100 µL of PBS. BD FACSymphony™ A3 (BD Biosciences) was used for data acquisition
604 and results were reported as median fluorescence intensity of the FITC signal detected.

605

606 **Functional repertoire analyses**

607 nAbs VH and VL sequence reads were manually curated and retrieved using CLC sequence viewer (Qiagen).
608 Aberrant sequences were removed from the data set. Analyzed reads were saved in FASTA format and the
609 repertoire analyses was performed using Cloanalyst
610 (<http://www.bu.edu/computationalimmunology/research/software/>)^{41,42}.

611

612 **Network plot of clonally expanded antibody families**

613 A network map was built by representing each clonal family with a centroid and connecting centroids
614 sharing a similar sequence. The centroid sequence was computed with Cloanalyst to represent the average
615 CDRH3 sequence for each clonal family, and Hamming distance was calculated for each antibody CDRH3
616 sequence to represent the relationship within the clonal family. Levenshtein distance was calculated
617 between each centroid representative of each clonal family to investigate the relationship between clonal
618 families. Levenshtein distance was calculated with the R package stringdistm v0.9.8 (<https://cran.r-project.org/web/packages/stringdist/index.html>) and normalized between 0 and 1. A network graph was

620 generated with the R package ggraph v2.0.5 (<https://ggraph.data-imaginist.com/index.html>) with
621 Fruchterman-Reingold layout algorithm and the figure was assembled with ggplot2 v3.3.5. The size of the
622 centroid is proportional to the number of antibodies belonging to the same clonal family, while the color of
623 each node represents the antibody origin: dark blue for seronegative 3rd dose, and dark red for super-
624 hybrids.

625

626 **Alluvial plot of germline frequency distribution**

627 An alluvial plot was generated to display the frequency distribution of IGHV;IGHJ germlines among the two
628 analyzed cohorts: seronegative 3rd dose (SN3) and superhybrids (SH). The cohorts are represented as two
629 separate categories (strata), and the germline frequency for each single cohort is represented by the flow
630 size. The analysis included all antibodies with fully sequenced VH chains, totaling 289 entries for SN3 and
631 441 entries for SH. The change in IGHV;IGHJ germline frequency among the two cohorts was evaluated,
632 and the five germlines with higher, unaltered frequency were highlighted. Specifically, germline
633 IGHV3-66;IGHJ6, IGHV3-53;IGHJ6, IGHV1-69;IGHJ4, IGHV1-69;IGHJ3, and IGHV1-58;IGHJ3 were selected.
634 Additionally, germlines not observed in the SN3 cohort but comprising more than five entries in the SH
635 cohort (IGHV5-10-1;IGHJ4, IGHV3-21;IGHJ6, IGHV1-2;IGHJ4, IGHV1-24;IGHJ4, IGHV1-18;IGHJ4) were
636 highlighted within the SH stratum using a black rectangle. Spider plots were created for each cohort to
637 depict the functionality of the selected germlines in terms of neutralization, antibody-dependent cellular
638 phagocytosis (ADCP), and antibody-dependent complement deposition (ADCD). The percentage of
639 functional antibodies associated with each germline was determined using predefined thresholds of
640 100,000, 100,000, and 4,000 for neutralization, ADCP, and ADCD, respectively. The figure was assembled
641 with ggplot2 v3.3.5. All the scripts and the data is available via github (https://github.com/dasch-lab/SARS-CoV-2_superhybrid).

643

644 **Statistical analysis**

645 Statistical analysis was assessed with GraphPad Prism Version 8.0.2 (GraphPad Software, Inc., San Diego,
646 CA). Nonparametric Mann-Whitney t test was used to evaluate statistical significance between the two
647 groups analyzed in this study. Statistical significance was shown as * for values ≤ 0.05 , ** for values ≤ 0.01 ,
648 and *** for values ≤ 0.001 .

649 **Acknowledgments**

650 This work received funding by the European Research Council (ERC) advanced grant (agreement number
651 101098201 (PROACTIVE)). P.M. acknowledges support from the Research Foundation Flanders (COVID19
652 research grant G0H4420N) and Internal Funds KU Leuven (grant 3M170314). Work in O.S. laboratory is
653 funded by Institut Pasteur, Urgence COVID-19 Fundraising Campaign of Institut Pasteur, Fondation pour la
654 Recherche Médicale (FRM), ANRS, the Vaccine Research Institute (ANR-10- LABX-77), Labex IBEID (ANR-10-
655 LABX-62-IBEID), ANR / FRM Flash Covid PROTEO-SARS-CoV-2, ANR Coronamito, HERA european funding,
656 Sanofi and IDISCOVR. The E.S.-L. laboratory is funded by Institut Pasteur, the INCEPTION program
657 (Investissements d'Avenir grant ANR-16-CONV-0005), the Labex IBEID (grant no. ANR-10-LABX-62-IBEID),
658 the HERA Project DURABLE (grant no 101102733) and the NIH PICREID (grant no U01AI151758). N.T. and
659 M.M.N. acknowledge support from Wellcome Trust 360G-Wellcome-220981_Z_20_Z.

660

661 **Author contributions**

662 Conceived the study: R.R. and E.A.; Provided PBMCs and enrolled SH donors: S.P., M.F., I.R., M.T. and F.M.;
663 Isolated PBMCs and performed single cell sorting: I.P.; Provided SARS-CoV-2 viruses: P.M. E;S;-L. and O.S.;
664 Expanded and titrated SARS-CoV-2 variants: G.P.; Performed neutralization assays in BSL3 facilities: I.P.,
665 G.P., E.P. and G.A.; SARS-CoV-1 and H-CoV pseudotype production and neutralization assay: E.P., M.M.N.;
666 Expression of recombinant S proteins: E.P. and G.A.; Performed antibody expression: I.P., G.A., G.R. and
667 F.P.; Performed ELISA assay on SARS-CoV-1, SARS-CoV-2 and H-CoV S protein, and SARS-CoV-2 domains:
668 G.P. and G.A.; Performed epitope mapping: I.P.; Performed ADCP and ADCC assays: I.P.; Recovered VH and
669 VL sequences and performed the repertoire analyses: P.P., G.M. D.C. and E.A.; Manuscript writing: R.R. and
670 E.A.; Final revision of the manuscript: I.P., G.P., E.P., G.A., P.P., G.M., D.C., G.R., F.P., M.M.N., S.P., M.F., I.R.,
671 M.T., F.M., D.M., P.M., N.T., O.S., R.R. and E.A.; Coordinated the project: E.A..

672

673 **Competing interests**

674 I.P., G.P., E.P., P.P., R.R. and E.A. are listed as inventors of full-length human monoclonal antibodies
675 described in Italian patent applications n. 102020000015754 filed on June 30th 2020, 102020000018955
676 filed on August 3rd 2020 and 102020000029969 filed on 4th of December 2020, and the international patent
677 system number PCT/IB2021/055755 filed on the 28th of June 2021. I.P., E.P., G.A., P.P., R.R. and E.A. are
678 listed as inventors of full-length human monoclonal antibodies described in the international patent system
679 number PCT/IB2022/061257 filed on the 22nd of November 2022. All patents were submitted by
680 Fondazione Toscana Life Sciences, Siena, Italy. Remaining authors have no competing interests to declare.
681

682 **Additional information**

683 **Correspondence and requests for materials** should be addressed to E.A.

684

685 **Data availability**

686 Source data are provided with this paper. All data supporting the findings in this study are available within
687 the article or can be obtained from the corresponding author upon request.

688 **FIGURES**

689 **Fig. 1. nAbs potency and breadth of neutralization and Fc functions against SARS-CoV-2 Omicron variants.**

690 **a-d**, Scatter dot charts show the neutralization potency, reported as IC_{100} (ng ml^{-1}), of nAbs tested against
691 the original Wuhan SARS-CoV-2 virus, and the Omicron BA.5, BA.2.75, BF.7, BQ.1.1, XBB.1.5, EG.5.1.1 and
692 BA.2.86 lineages for SN2 (a), SN3 (b), SP2 (c) and SH (d). The number, percentage, GM- IC_{100} (black lines and
693 colored bars), fold-change and statistical significance of nAbs are denoted on each graph. Reported fold-
694 change and statistical significance are in comparison with the Wuhan virus. Technical duplicates were
695 performed for each experiment. **e-h**, Doughnut charts show the frequency of nAbs retaining neutralization
696 (Neut.), ADCP and ADCC against the SARS-CoV-2 Wuhan virus and the XBB.1.5 and BA.2.86 variants for SN2
697 (e), SN3 (f), SP2 (g) and SH (h). A nonparametric Mann–Whitney t test was used to evaluate statistical
698 significances between groups. Two-tailed p-value significances are shown as * $p < 0.05$, ** $p < 0.01$, and
699 *** $p < 0.001$.

700

701 **Fig. 2. Distribution of RBD and NTD-targeting nAbs against Omicron variants. a-d**, Pie charts show the
702 distribution of cross-protective nAbs based on their ability to target Class 1/2 (blue), Class 3 (orange) and
703 Class 4 (dark green) regions on the RBD, as well as not-competing nAbs (gray) and NTD-targeting nAbs
704 (cyan). Dot charts show the neutralization potency, reported as IC_{100} (ng ml^{-1}), of nAbs against the Wuhan
705 virus and the Omicron BA.5, BA.2.75, BF.7, BQ.1.1, XBB.1.5, EG.5.1.1 and BA.2.86 variants observed in the
706 SN2 (a), SN3 (b), SP2 (c) and SH (d) cohorts. The number and percentage of nAbs are denoted on each
707 graph. **e**, Radar plots show the frequency of nAbs retaining neutralization, ADCP and ADCC activities
708 against SARS-CoV-2 Wuhan, XBB.1.5 and BA.2.86. **f-g**, Representation of the SARS-CoV-2 RBD of XBB.1.5 (f)
709 and BA.2.86 (g). In dark red are highlighted the mutations present on the RBD for both variants. Boxed
710 mutated residue labels indicate unique mutations for the specific variant. Highlighted in blue, orange and
711 green indicate Class 1/2, 3 and 4 epitope regions.

712

713 **Fig. 3. SH germlines expansion and characterization.** **a**, Network plot shows the clonally-expanded
714 antibody families in SP2 and SH. Centroids and nAbs from SP2 and SH groups are shown in gray, pink and
715 dark red, respectively. Clusters and expanded clones are highlighted in gold and dark red, respectively. **b-c**,
716 The violin plots show the V gene somatic mutation frequency of germlines expanded from SP2 to SH (**b**) or
717 found exclusively in SH (**c**). The number of nAbs for each germline and fold-change are denoted on each
718 graph. Violin plots show the median of V gene mutations. **d**, Bar graphs show the distribution of nAbs
719 binding the S protein trimer (light gray), NTD (cyan) and RBD (dark gray) for expanded germlines. The
720 number of nAbs per each germline is denoted on the graph. **e**, The heatmap shows the IC₁₀₀ of
721 predominant germlines expanded from SP2 to SH (left panel) or found exclusively in SH (right panel).

722

723 **Fig. 4. B cell repertoire and functional characterization of predominant germlines.** **a**, Heatmaps and
724 alluvial plots display the antibody IGHV;IGHJ gene rearrangements frequency for each single donor and for
725 pulled nAbs respectively for SN3 (left panel) and SH (right panel). In the alluvial plots, the top five shared V-
726 J gene rearrangements shared between SN3 and SH were highlighted. Selected germlines were highlighted
727 as light purple, green, dark green, gold and brown for IGHV1-58;IGHJ3-1, IGHV1-69;IGHJ3-1, IGHV1-
728 69;IGHJ4-1, IGHV3-53;IGHJ6-1 and IGHV3-66;IGHJ6-1 respectively. Box with black borders in the stratum
729 identify the top five germlines expanded exclusively in SH. **b**, Heatmaps show the neutralization activity for
730 the five most shared germlines between SN3 and SH against BA.5, BA.2.75, BF.7, BQ.1.1, XBB.1.5, EG.5.1.1
731 and BA.2.86. **c**, Radar plots describe the neutralization, ADCP, and ADCC activities of predominant
732 germlines shared between SN3 and SH against Wuhan, XBB.1.5 and BA.2.86. The percentages of
733 functionality for neutralization, ADCP, and ADCC are reported within each radar plot.

734 **SUPPLEMENTARY FIGURES**

735 **Supplementary Fig. 1. B cell frequencies and identification of SARS-CoV nAbs.** **a**, Gate strategy used to
736 single cell sort antigen specific CD19⁺CD27⁺IgD⁻IgM⁻ class-switched memory B cells for all donors in the SH
737 cohort. **b**, The bar chart at the bottom of the graph shows the percentage of nAbs identified per each
738 donor in the SH cohort. The neutralizing and not-neutralizing antibody fractions are represented in dark red
739 and light gray respectively. The number of antibodies for each donor is denoted on the graph. Pie charts at
740 the top of the graph represent the distribution of SARS-CoV-1 (light blue), SARS-CoV-2 (pink) and cross-
741 neutralizing (violet) antibodies in all SH donors. **c**, Scatter dot charts show the neutralization potency,
742 reported as IC₁₀₀ (ng ml⁻¹), of nAbs tested against the original Wuhan SARS-CoV-2 virus for SN2, SN3, SP2
743 and SH shown in light blue, blue, pink, and dark red respectively. The number, percentage, GM-IC₁₀₀ (black
744 lines and colored bars), fold-change and statistical significance of nAbs are denoted on each graph.
745 Reported fold-change and statistical significance are in comparison with the SH cohort. Technical duplicates
746 were performed for each experiment. A nonparametric Mann–Whitney t test was used to evaluate
747 statistical significances between groups. Two-tailed p-value significances are shown as *p < 0.05, **p <
748 0.01, and ***p < 0.001. **d**, Table summarizing the GM-IC₁₀₀ values against the Wuhan virus for all tested
749 cohorts. Asterisked values were reported in previous publications^{7,25}.

750

751 **Supplementary Fig. 2. nAbs cross-neutralization and binding distribution.** **a-d**, Graphs show the fold
752 change percentage of nAbs in SN2 (**a**), SN3 (**b**), SP2 (**c**) and SH (**d**) against BA.5, BA.2.75, BF.7, BQ.1.1,
753 XBB.1.5, EG.5.1.1 and BA.2.86 Omicron variants compared to the original Wuhan SARS-CoV-2 virus. The
754 heatmaps show the overall percentage of nAbs able to neutralize tested SARS-CoV-2 variants. **e**, The bar
755 graph shows the percentage of S protein trimer (light gray), NTD (cyan) and RBD (dark gray) binding nAbs
756 for each individual in the SH cohort. The number (n) of nAbs tested per each cohort is denoted on the
757 graph.

758

759 **Supplementary Fig. 3. Binding and Fc functions to XBB.1.5 and BA.2.86.** **a**, Scatter dot plots show the
760 binding of nAbs isolated in all cohorts for XBB.1.5 (left panel) and BA.2.86 (right panel) S proteins. **b-e**,
761 Graphs show the ADCP and ADCC potency between RBD, NTD and the S protein in trimeric conformation
762 against SARS-CoV-2 original Wuhan virus, the Omicron XBB.1.5 and BA.2.86 variants in SN2 (**b**), SN3 (**c**), SP2
763 (**d**) and SH (**e**) cohorts. Non-parametric Mann-Whitney t-test was used to evaluate the statistical
764 significance between groups. Two-tailed p value significances are shown as *p<0.05, **p < 0.01, ***p <
765 0.001, and ****p<0.0001.

766

767 **Supplementary Fig. 4. Binding and neutralization activity to alpha and beta H-CoV.** **a**, The bar graph shows
768 the percentage of nAbs binding to SARS-CoV-2 (light gray), SARS-CoV-1 (pink), OC43 (light blue), 229E (light
769 brown) and HKU-1 (orange) for all donors tested in the SH cohort. **b**, Scatter dot charts show the
770 neutralization potency, reported as IC_{100} ($ng\ ml^{-1}$), of nAbs tested against SARS-CoV-1, 229E, HKU-1 and
771 OC43. The number, percentage and GM- IC_{100} (black lines and colored bars) are denoted on each graph.
772 Technical duplicates were performed for each experiment.

773

774 **Supplementary Fig. 5. Neutralization potency of RBD Class 1/2, 3 and 4, and NTD-targeting nAbs.** **a-g**,
775 Scatter dot charts show the neutralization potency, reported as GM- IC_{100} ($ng\ ml^{-1}$), of nAbs tested against
776 SARS-CoV-2 Omicron variants BA.5 (**a**), BA.2.75 (**b**), BF.7 (**c**), BQ.1.1 (**d**), XBB.1.5 (**e**), EG.5.1.1 (**f**) and BA.2.86
777 (**g**). The number, percentage and GM- IC_{100} (black lines and colored bars) are denoted on each graph.
778 Antibodies targeting the RBD Class 1/2, 3 and 4, and NTD are shown in blue, orange, green and cyan
779 respectively.

780

781 **Supplementary Fig. 6. Characterization of SN3-SH shared germlines and SH exclusive germlines.** **a**, The
782 violin plots show the V gene somatic mutation frequency of IGHV1-24;IGHJ6-1, IGHV1-58;IGHJ3-1, IGHV3-
783 53;IGHJ6-1, IGHV3-66;IGHJ4-1 and IGHV3-66;IGHJ6-1 gene derived nAbs. The number of nAbs for each
784 germline and fold-change are denoted on each graph. Violin plots show the median of V gene mutations. **b**,

785 The heatmap shows the IC₁₀₀ of germlines found in SH but not in SN3 against all SARS-CoV-2 variants tested
786 in this study. **c**, The violin plot shows the V gene somatic mutation frequency of selected germlines found
787 exclusively in the SH cohort. The number of nAbs for each germline is denoted on each graph. Violin plots
788 show the mean of V gene mutations.

789 **SUPPLEMENTARY TABLES**

790 **Supplementary Table 1. Clinical details of super hybrid immunity donors.**

Subject ID	Gender	Age	First Dose dd/mm/yy (Vaccine)	Second Dose dd/mm/yy (Vaccine)	Third Dose dd/mm/yy (Vaccine)	Fourth Dose dd/mm/yy (Vaccine)	First Infection (dd/mm/yy)	Second Infection (dd/mm/yy)	Blood collection (dd/mm/yy)	Days from last dose/infection to Blood Collection
SH-VAC-004	F	27	08/02/2021 (BNT162b2)	01/03/2021 (BNT162b2)	17/10/2021 (BNT162b2)	28/10/2022 (BNT162b2 BA.4/5)	23/10/2020	09/04/2022	02/02/2023	97
SH-VAC-009	M	48	20/03/2021 (BNT162b2)	26/10/2021 (BNT162b2)	28/10/2022 (BNT162b2 BA.4/5)	Not-applicable	30/11/2020	19/01/2022	26/01/2023	90
SH-VAC-011	F	39	09/01/2021 (BNT162b2)	30/01/2021 (BNT162b2)	21/10/2021 (BNT162b2)	Not-applicable	07/06/2022	27/10/2022	26/01/2023	96
SH-VAC-012	M	35	31/12/2020 (BNT162b2)	21/01/2021 (BNT162b2)	02/12/2022 (BNT162b2 BA.4/5)	Not-applicable	14/08/2021	20/07/2022	07/02/2023	67
SH-VAC-013	M	54	01/01/2021 (BNT162b2)	22/01/2021 (BNT162b2)	19/10/2021 (BNT162b2)	Not-applicable	10/01/2022	07/07/2022	07/02/2023	193
SH-VAC-014	M	32	27/12/2020 (BNT162b2)	18/01/2021 (BNT162b2)	22/10/2021 (BNT162b2)	Not-applicable	13/03/2022	10/12/2022	02/02/2023	54

791

792 **Supplementary Table 2. Frequencies, numbers and neutralization of antigen specific memory B cells in**
793 **donors with super hybrid immunity.**

Subject ID	Frequency MBCs – SARS-CoV-1 spike (%)	Frequency MBCs – SARS-CoV-2 spike (%)	Frequency MBCs – Double positive (%)	Total Number MBCs Sorted	Total Number Neutralizing mAbs	Neutralizing SARS-CoV-2 (%)	Neutralizing SARS-CoV-1 (%)	Cross-neutralizing (%)
VAC-004	0.097	0.57	0.015	638	87	81 (93.1)	4 (4.6)	2 (2.3)
VAC-009	0.12	0.45	0.056	1,232	148	137 (92.6)	7 (4.7)	4 (2.7)
VAC-011	0.15	0.18	0.039	180	17	17 (100.0)	0 (0.0)	0 (0.0)
VAC-012	0.067	0.76	0.024	1,540	182	169 (92.9)	8 (4.4)	5 (2.7)
VAC-013	0.22	0.13	0.014	374	23	22 (95.7)	1 (4.3)	0 (0.0)
VAC-014	0.13	0.12	0.013	541	88	81 (92.0)	7 (8.0)	0 (0.0)

794

795 **Supplementary Table 3. Neutralization potency (GM-IC₁₀₀) in SN2, SN3, SP2 and SH.**

Cohort	Wuhan virus	Omicron BA.5	Omicron BA.2.75	Omicron BF.7	Omicron BQ.1.1	Omicron XBB.1.5	Omicron EG.5.1.1	Omicron BA.2.86
Seronegative 2 nd dose (SN2) GM-IC ₁₀₀ ng mL ⁻¹ (n=52)	118.2	N/A	N/A	202.1	202.1	N/A	N/A	N/A
Seronegative 3 rd dose (SN3) GM-IC ₁₀₀ ng mL ⁻¹ (n=206)	201.4	525.0	3,712.4	1,046.6	1,664.1	5,474.4	7,994.1	2,427.9
Seropositive 2 nd dose (SP2) GM-IC ₁₀₀ ng mL ⁻¹ (n=224)	153.0	328.1	1,589.1	399.1	599.7	N/A	N/A	N/A
Super Hybrid (SH) GM-IC ₁₀₀ ng mL ⁻¹ (n=417)	133.0	77.0	318.2	222.9	241.0	437.3	625.4	307.0

796

797 **Supplementary Table 4. Binding specificity to SARS-CoV-2 S protein domains and other human**

798 **betacoronaviruses.**

Subject ID	Total Number expressed nAbs	S protein binding nAbs (%)	RBD binding nAbs (%)	NTD binding nAbs (%)	Binding SARS-CoV-1 (%)	Binding OC43 (%)	Binding 229E (%)	Binding HKU-1 (%)
VAC-004	72	7 (9.7)	52 (72.2)	13 (18.1)	4 (5.6)	0 (0.0)	0 (0.0)	0 (0.0)
VAC-009	116	6 (5.2)	81 (69.8)	29 (25.0)	5 (4.3)	7 (6.0)	1 (0.9)	0 (0.0)
VAC-011	13	1 (7.7)	9 (69.2)	3 (23.1)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
VAC-012	148	5 (3.4)	127 (85.8)	16 (10.8)	10 (6.8)	0 (0.0)	1 (0.7)	1 (0.7)
VAC-013	16	0 (0.0)	15 (93.7)	1 (6.2)	1 (6.2)	0 (0.0)	0 (0.0)	0 (0.0)
VAC-014	56	4 (7.1)	33 (58.9)	19 (33.9)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)

799

800 **Supplementary Table 5. Neutralization potency of RBD Class 1/2, 3 and 4, and NTD nAbs.**

Cohort	Class 1/2	Class 3	Class 4	NTD
BA.5				
Seronegative 3rd dose (SN3) GM-IC₁₀₀ ng ml⁻¹	317.7	129.5	N/A	464.2
Seropositive 2nd dose (SP2) GM-IC₁₀₀ ng ml⁻¹	692.4	262.5	N/A	330.3
Super Hybrid (SH) GM-IC₁₀₀ ng ml⁻¹	66.1	42.3	857.4	115.7
BA.2.75				
Seronegative 3rd dose (SN3) GM-IC₁₀₀ ng ml⁻¹	878.1	11,534.8	N/A	51,453.7
Seropositive 2nd dose (SP2) GM-IC₁₀₀ ng ml⁻¹	2,030.8	761.4	N/A	N/A
Super Hybrid (SH) GM-IC₁₀₀ ng ml⁻¹	332.6	276.1	348.9	611.7
BF.7				
Seronegative 3rd dose (SN3) GM-IC₁₀₀ ng ml⁻¹	555.9	367.4	N/A	N/A
Seropositive 2nd dose (SP2) GM-IC₁₀₀ ng ml⁻¹	272.8	291.5	2,537.2	505.0
Super Hybrid (SH) GM-IC₁₀₀ ng ml⁻¹	107.3	347.0	593.2	453.1
BQ.1.1				
Seronegative 3rd dose (SN3) GM-IC₁₀₀ ng ml⁻¹	762.0	N/A	N/A	158.0
Seropositive 2nd dose (SP2) GM-IC₁₀₀ ng ml⁻¹	1,487.5	657.7	2,537.2	469.7
Super Hybrid (SH) GM-IC₁₀₀ ng ml⁻¹	238.6	1,897.6	674.3	185.6
XBB.1.5				
Seronegative 3rd dose (SN3) GM-IC₁₀₀ ng ml⁻¹	774.5	22,412.6	N/A	13,017.0
Seropositive 2nd dose (SP2) GM-IC₁₀₀ ng ml⁻¹	N/A	N/A	N/A	N/A
Super Hybrid (SH) GM-IC₁₀₀ ng ml⁻¹	240.9	642.4	1,015.1	1,122.0
EG.5.1.1				
Seronegative 3rd dose (SN3) GM-IC₁₀₀ ng ml⁻¹	2,954.4	12,542.5	N/A	N/A
Seropositive 2nd dose (SP2) GM-IC₁₀₀ ng ml⁻¹	N/A	N/A	N/A	N/A
Super Hybrid (SH) GM-IC₁₀₀ ng ml⁻¹	268.1	1,262.6	662.3	1,470.6
BA.2.86				
Seronegative 3rd dose (SN3) GM-IC₁₀₀ ng ml⁻¹	2,427.9	N/A	N/A	N/A
Seropositive 2nd dose (SP2) GM-IC₁₀₀ ng ml⁻¹	N/A	N/A	N/A	N/A
Super Hybrid (SH) GM-IC₁₀₀ ng ml⁻¹	238.6	715.3	449.3	200.5

801 **Supplementary Table 6. GM-IC₁₀₀ ng ml⁻¹ of SN3 and SH germlines.**

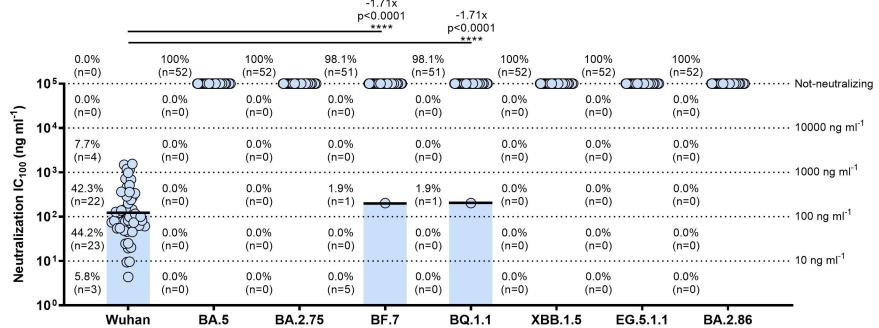
SN3	GM-IC ₁₀₀ ng ml ⁻¹
IGHV1-58;IGHJ3-1	111.6
IGHV1-69;IGHJ3-1	198.0
IGHV1-69;IGHJ4-1	2065.1
IGHV3-53;IGHJ6-1	408.8
IGHV3-66;IGHJ6-1	500.2
SH	GM-IC ₁₀₀ ng ml ⁻¹
IGHV1-18;IGHJ4-1	90.1
IGHV1-2;IGHJ4-1	65.0
IGHV1-24;IGHJ4-1	289.0
IGHV1-58;IGHJ3-1	167.0
IGHV1-69;IGHJ3-1	71.7
IGHV1-69;IGHJ4-1	101.4
IGHV1-69;IGHJ5-1	165.1
IGHV2-70;IGHJ6-1	14.1
IGHV3-21;IGHJ6-1	287.1
IGHV3-48;IGHJ4-1	167.1
IGHV3-53;IGHJ6-1	136.8
IGHV3-66;IGHJ4-1	165.3
IGHV3-66;IGHJ6-1	176.4
IGHV5-10-1;IGHJ4-1	91.3

802

803 **Supplementary Table 7. Abundance expanded germlines in SN3 and SH.**

Cohort	IGHV1-58;IGHJ3-1 n (%)	IGHV1-69;IGHJ3-1 n (%)	IGHV1-69;IGHJ4-1 n (%)	IGHV3-53;IGHJ6-1 n (%)	IGHV3-66;IGHJ6-1 n (%)
SN3 (n=289)	12 (4.2)	14 (4.8)	28 (9.7)	11 (3.8)	13 (4.5)
SH (n=441)	12 (2.7)	21 (4.8)	42 (9.5)	9 (2.0)	16 (3.6)

804


805 **Supplementary Table 8. Neutralization and Fc functions of predominant germlines.**

Cohort	IGHV;IGHJ	nAbs (n)	Neut. WT (%)	Neutr. XBB.1.5 (%)	Neutr. BA.2.86 (%)	ADCP WT (%)	ADCP XBB.1.5 (%)	ADCP BA.2.86 (%)	ADCD WT (%)	ADCD XBB.1.5 (%)	ADCD BA.2.86 (%)
SH	IGHV1-58;IGHJ3	11	100.0	9.1	9.1	100.0	18.2	18.2	36.4	9.1	27.3
SH	IGHV1-69;IGHJ3	20	100.0	15.0	0.0	100.0	20.0	15.0	90.0	30.0	15.0
SH	IGHV1-69;IGHJ4	40	100.0	2.5	0.0	100.0	2.5	2.5	70.0	7.5	2.5
SH	IGHV3-53;IGHJ6	9	100.0	55.6	66.7	100.0	66.7	66.7	33.3	44.4	33.3
SH	IGHV3-66;IGHJ6	16	100.0	43.8	50.0	100.0	50.0	50.0	31.3	37.5	37.5
SN3	IGHV1-58;IGHJ3	12	100.0	0.0	0.0	100.0	0.0	0.0	50.0	8.3	0.0
SN3	IGHV1-69;IGHJ3	10	100.0	0.0	0.0	100.0	0.0	0.0	70.0	10.0	0.0
SN3	IGHV1-69;IGHJ4	19	100.0	36.8	0.0	100.0	57.9	21.1	31.6	10.5	26.3
SN3	IGHV3-53;IGHJ6	9	100.0	0.0	22.2	100.0	0.0	11.1	66.7	77.8	22.2
SN3	IGHV3-66;IGHJ6	10	100.0	10.0	20.0	100.0	10.0	30.0	20.0	50.0	50.0

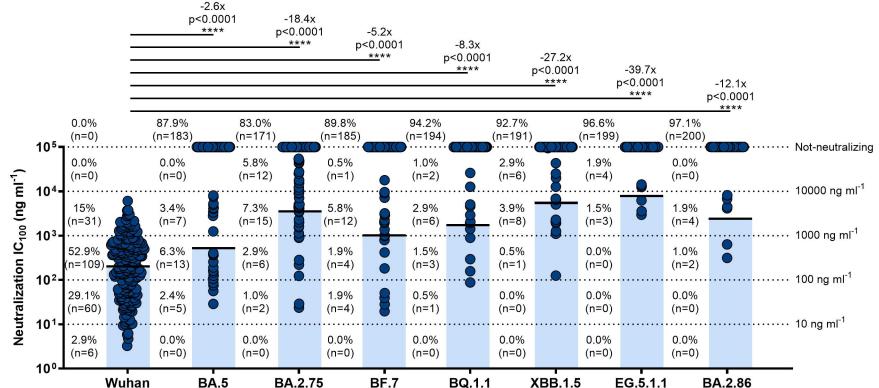
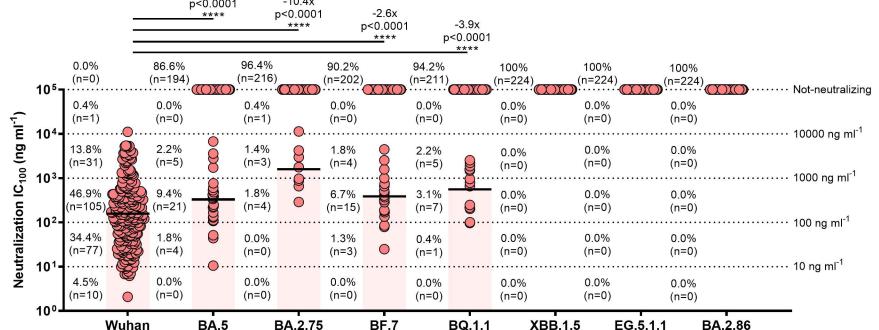
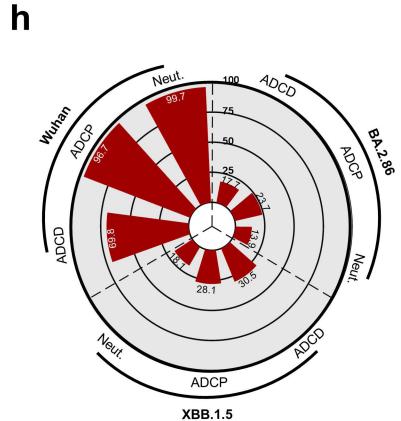
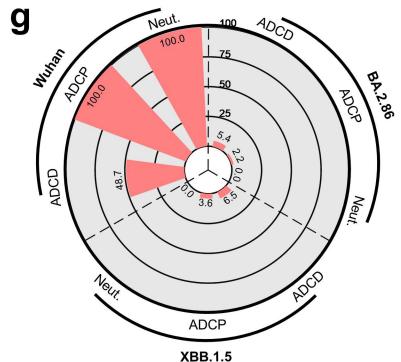
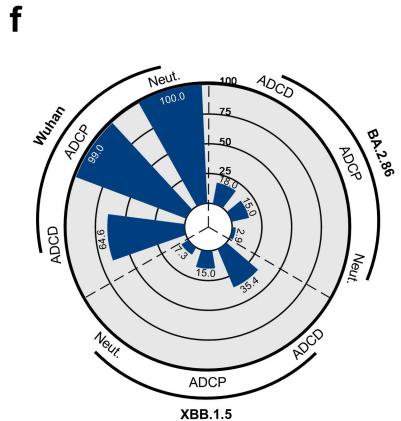
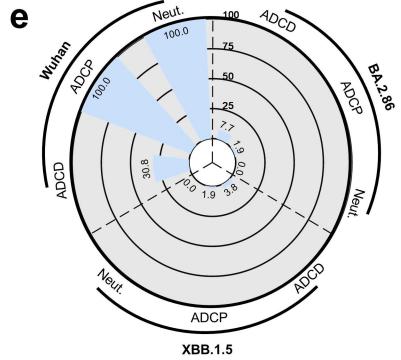
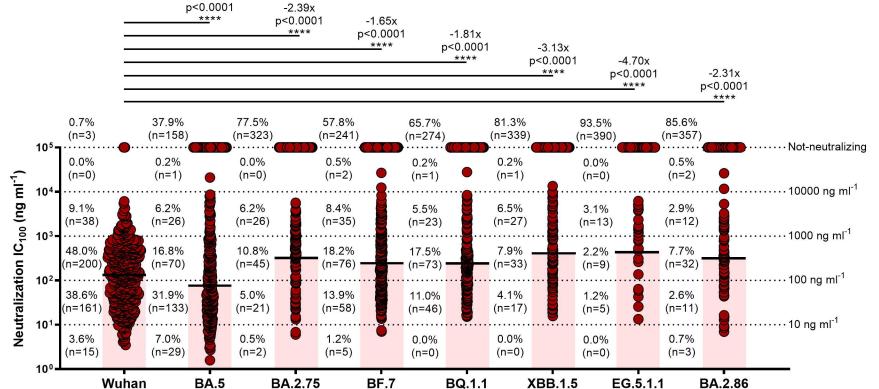
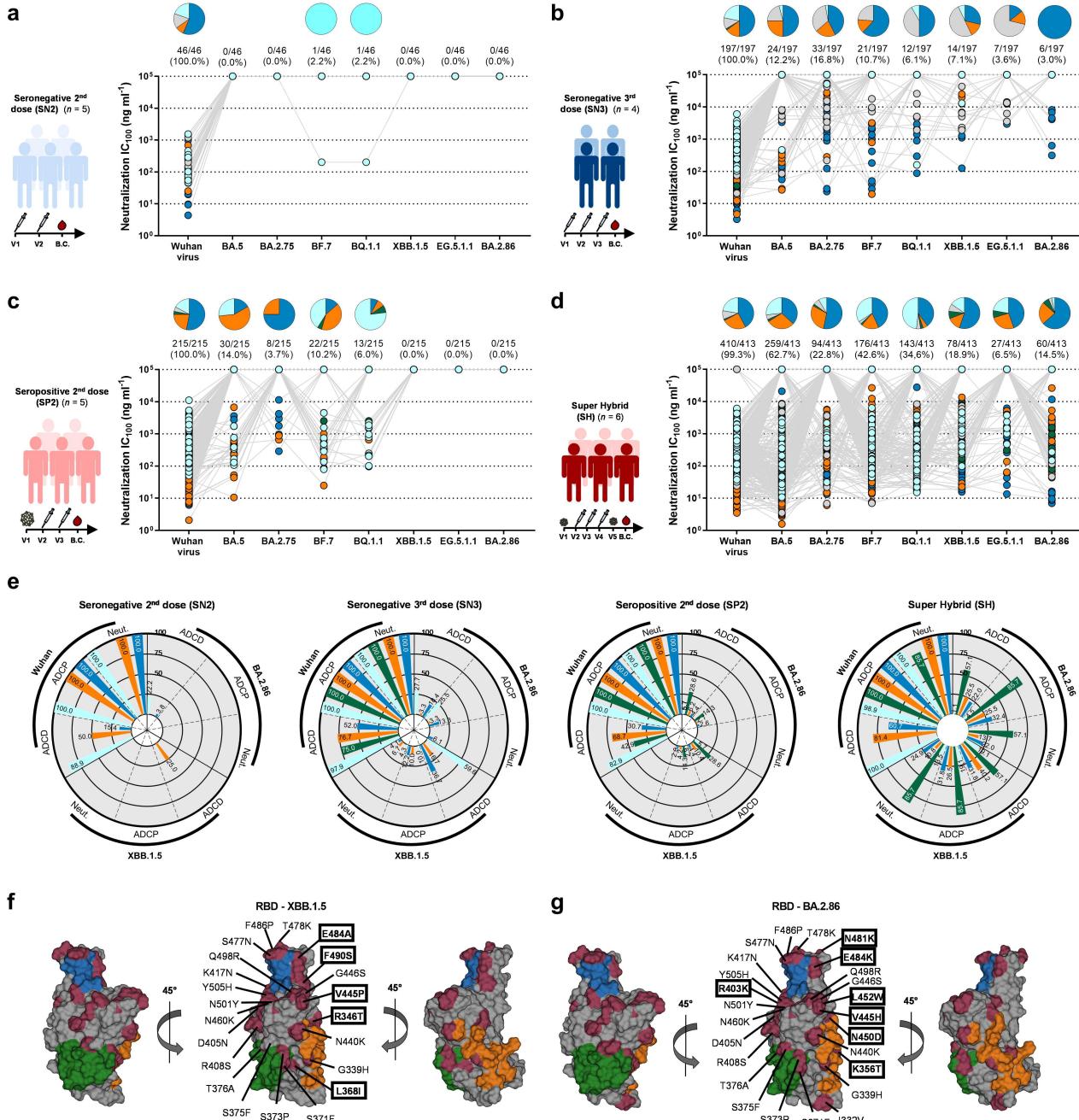

806

FIGURE 1


a






b


c

d

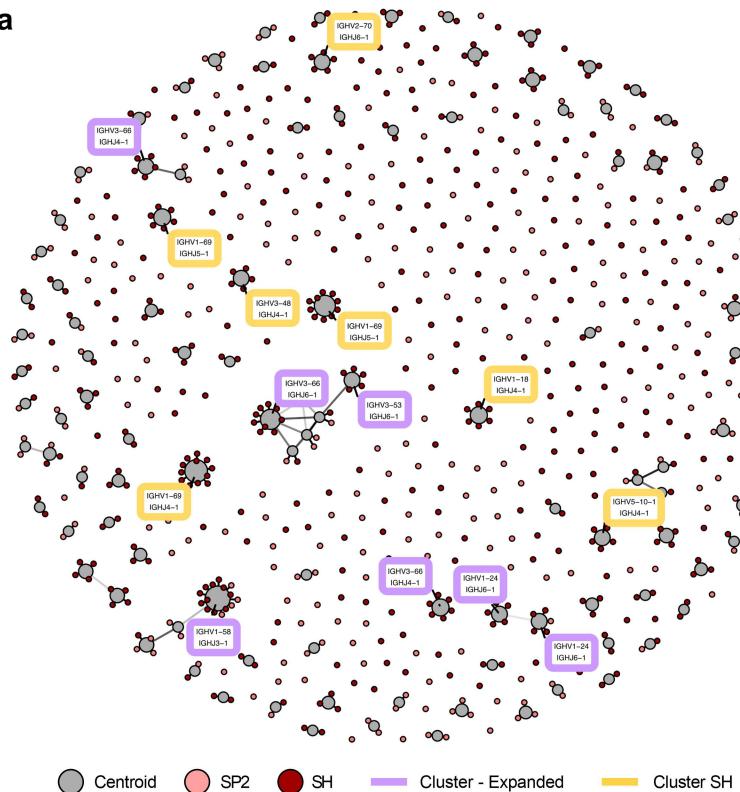
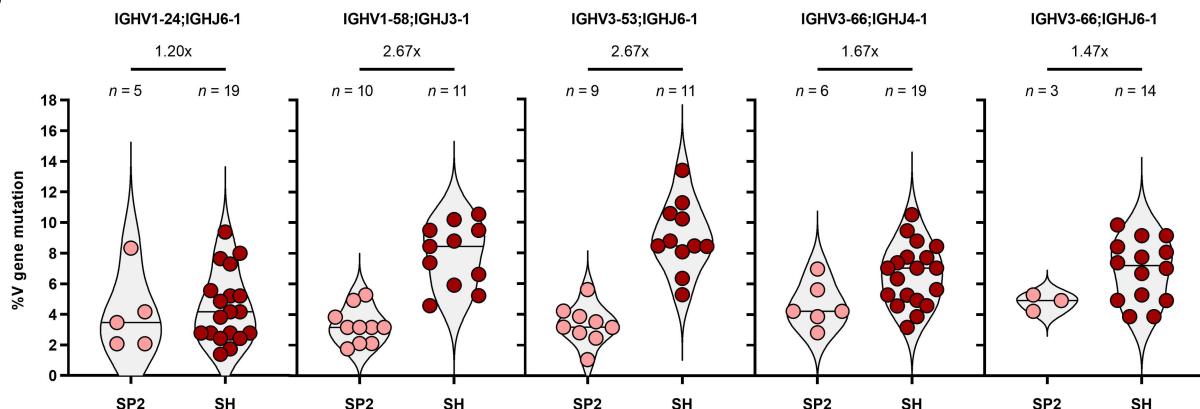
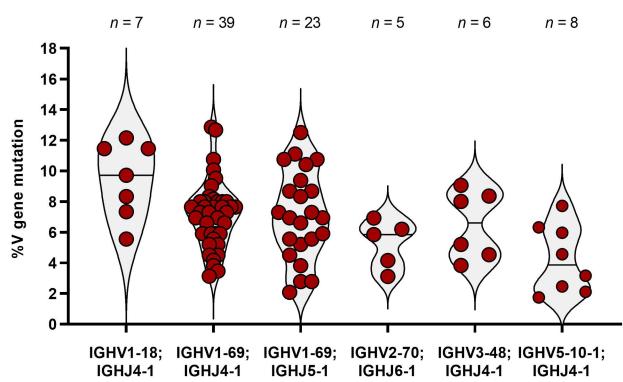


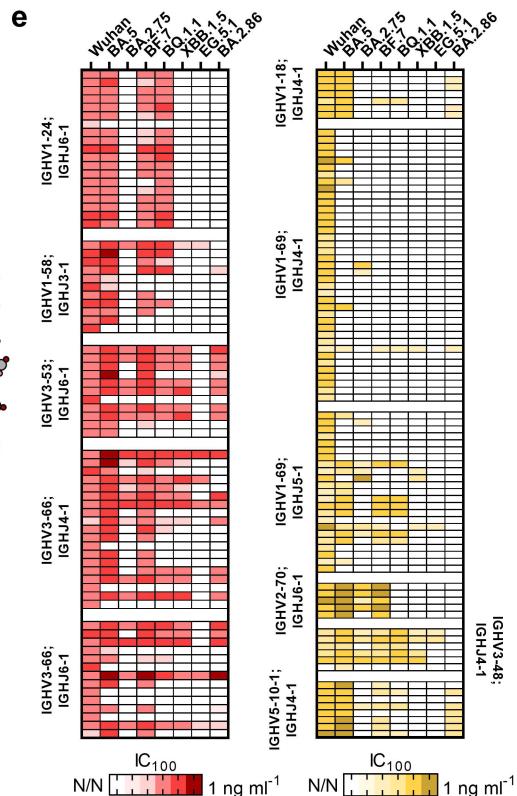
FIGURE 2

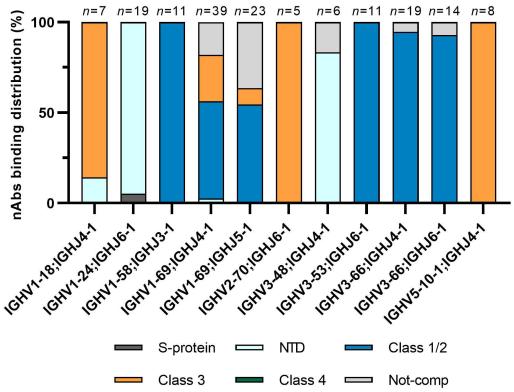

FIGURE 3

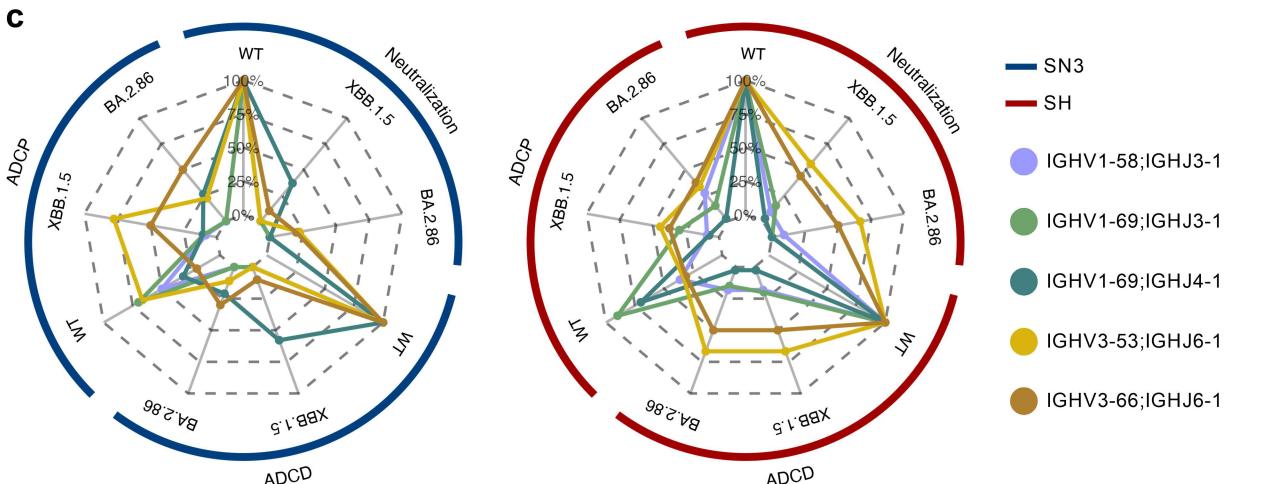
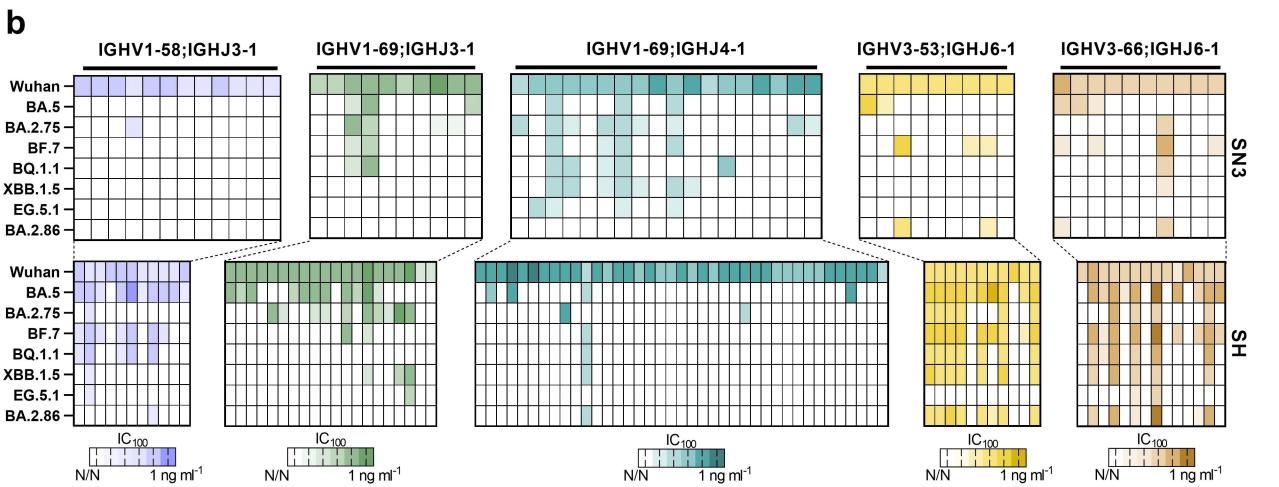
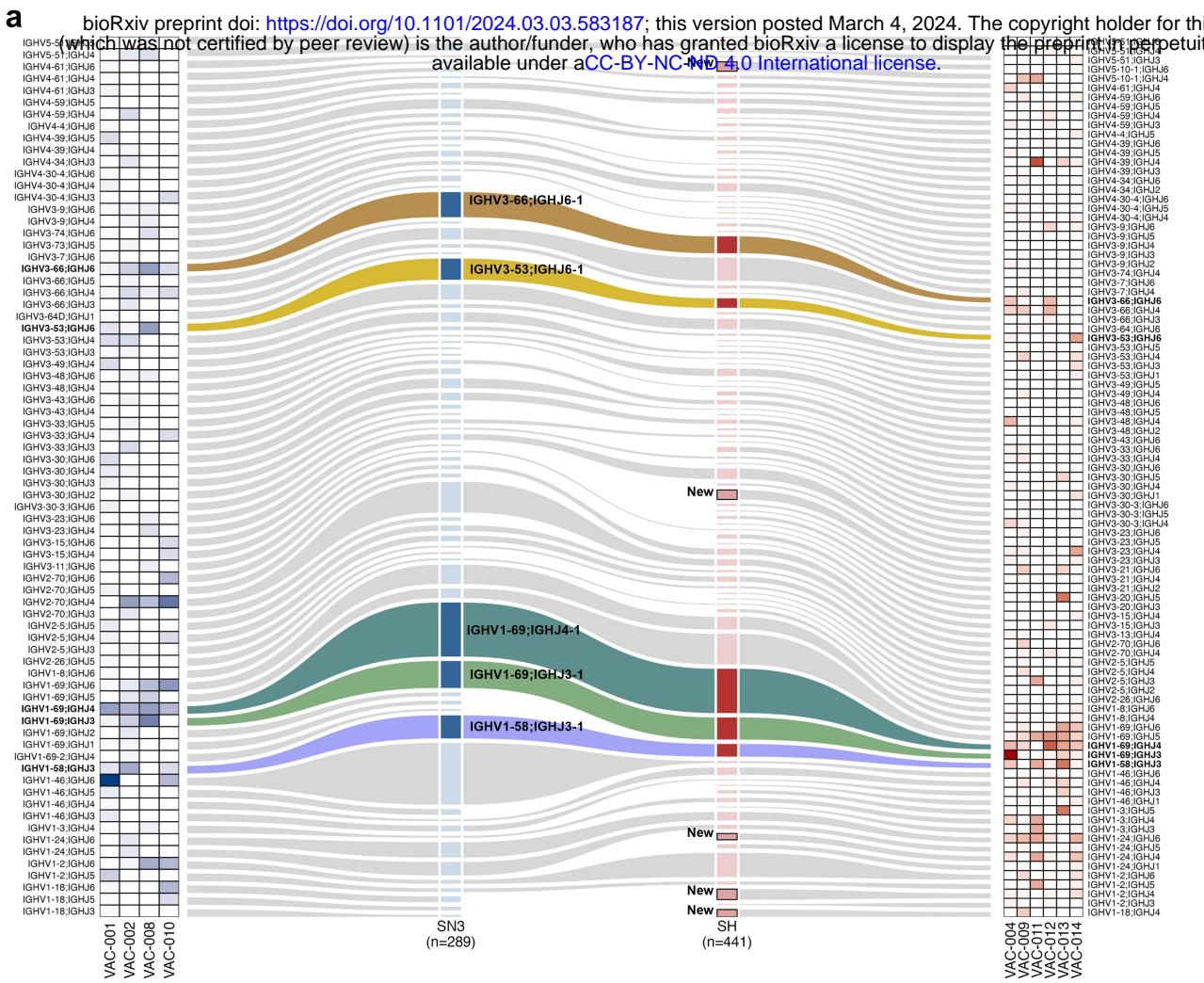
a



● Centroid ● SP2 ● SH ● Cluster - Expanded ● Cluster SH


b


c




e

d

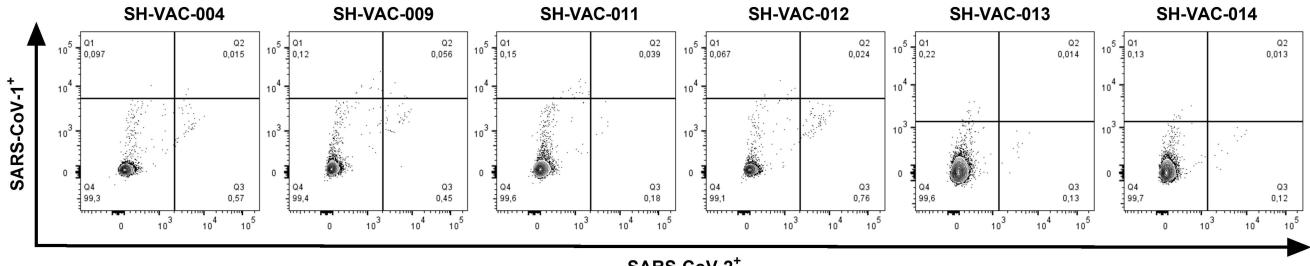
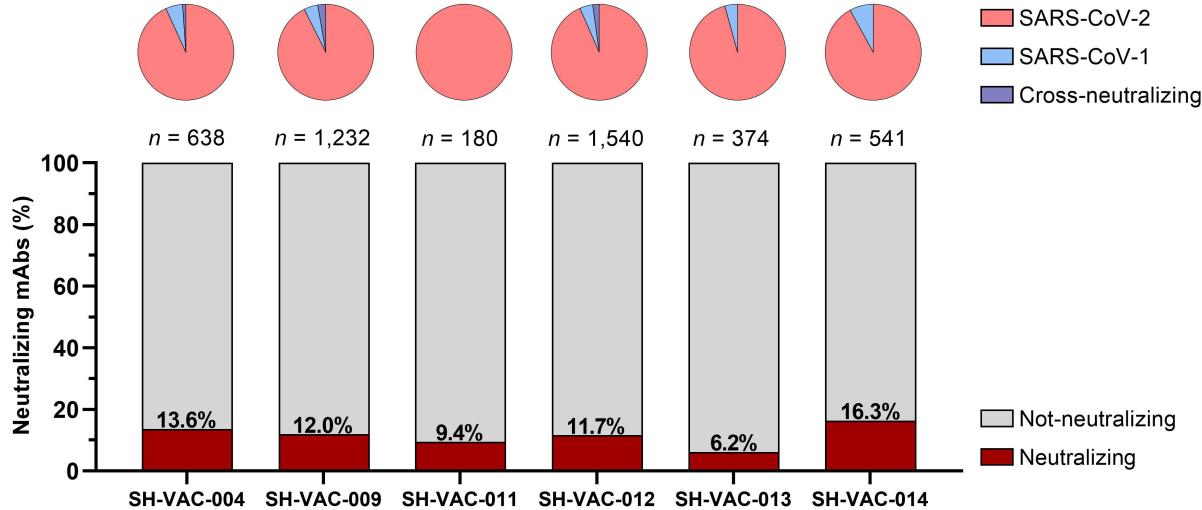
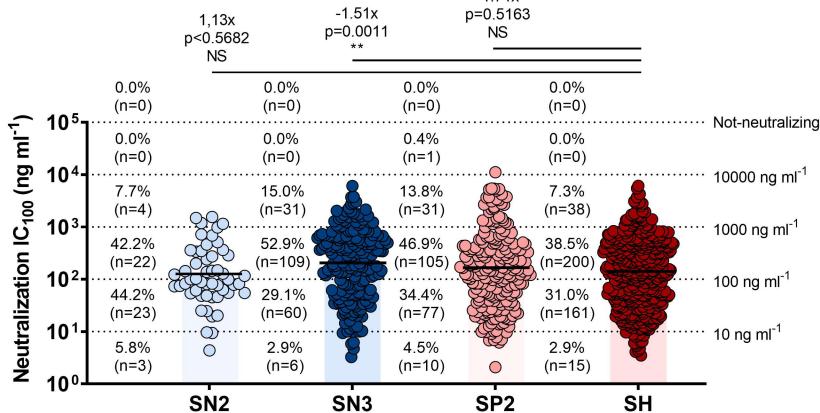


FIGURE 4

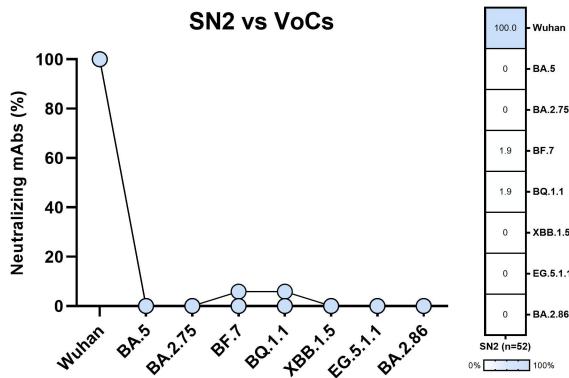


SUPPLEMENTARY FIG. 1


a

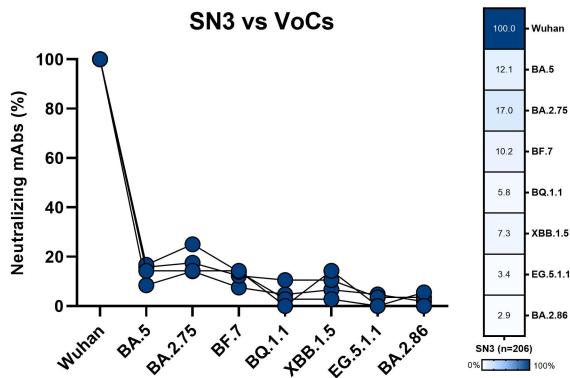
b

c

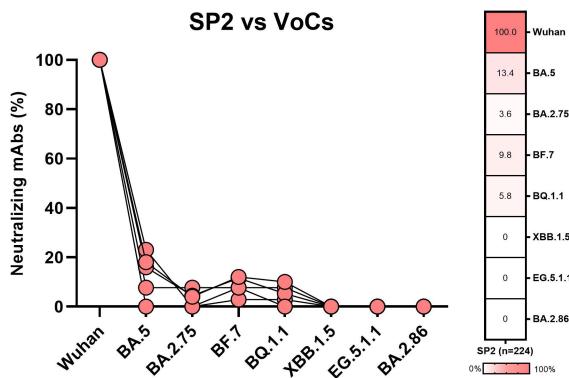

d

Cohort	Wuhan virus
Seronegative 2 nd dose (SN2) GM-IC ₁₀₀ ng ml ⁻¹ (n=52)	118.2*
Seronegative 3 rd dose (SN3) GM-IC ₁₀₀ ng ml ⁻¹ (n=206)	201.4*
Seropositive 2 nd dose (SP2) GM-IC ₁₀₀ ng ml ⁻¹ (n=224)	153.0*
Super Hybrid (SH) GM-IC ₁₀₀ ng ml ⁻¹ (n=414)	133.0

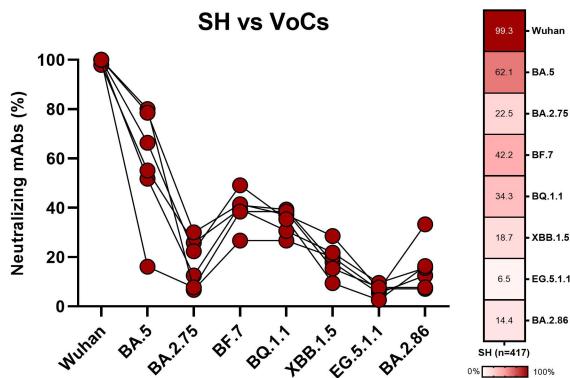
SUPPLEMENTARY FIG. 2


a

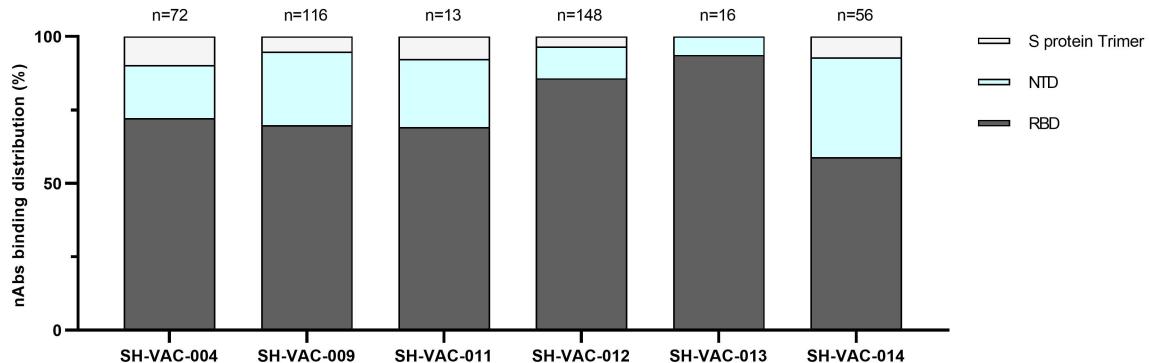
SN2 vs VoCs


b

SN3 vs VoCs

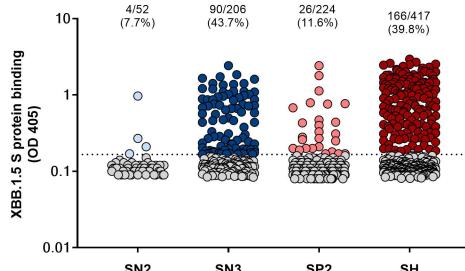

c

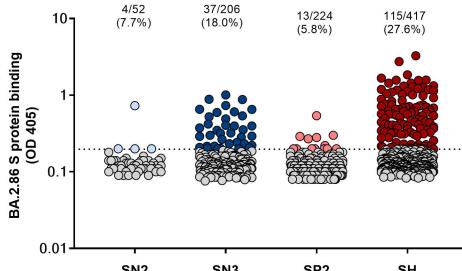
SP2 vs VoCs



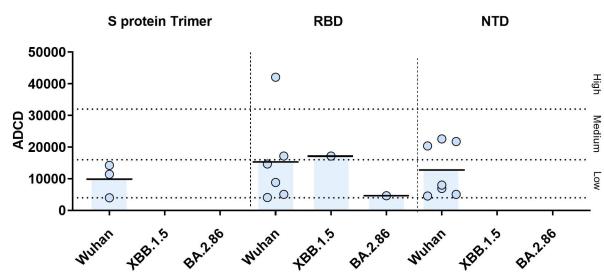
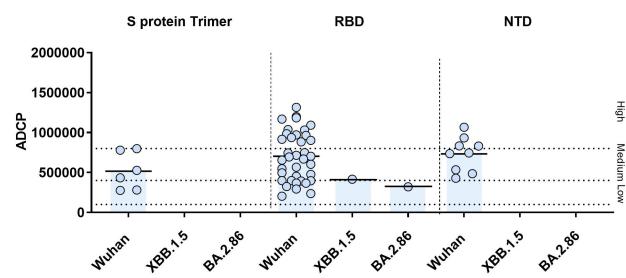
d

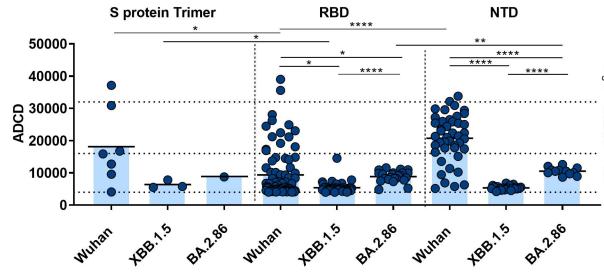
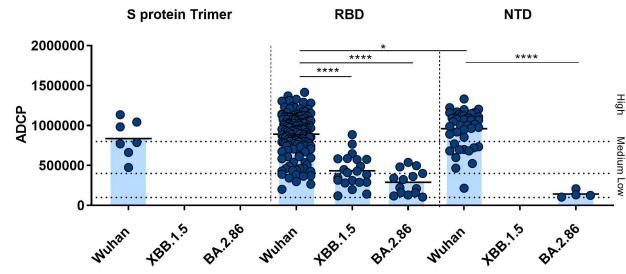
SH vs VoCs

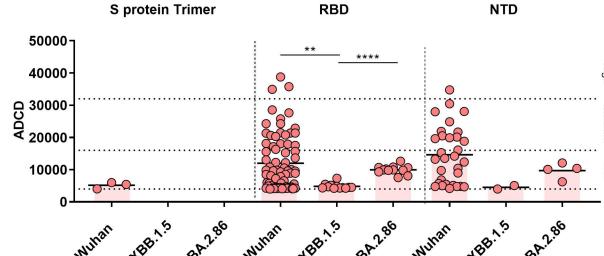
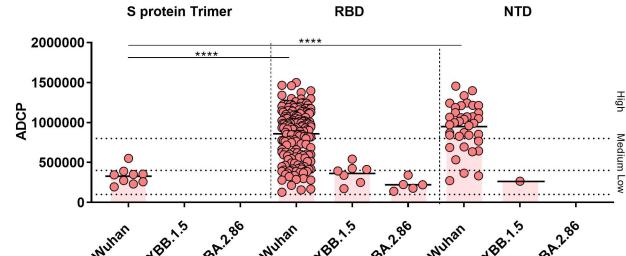

e

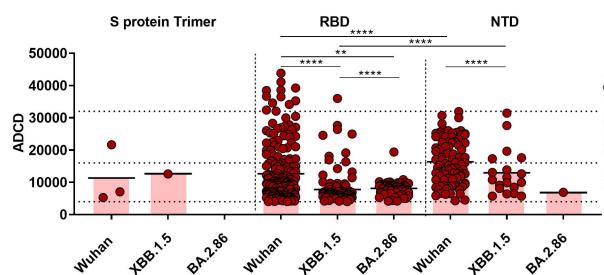
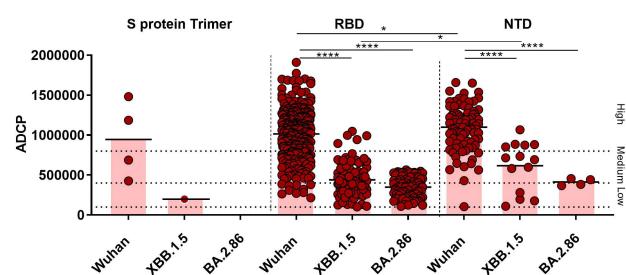

SUPPLEMENTARY FIG. 3

a

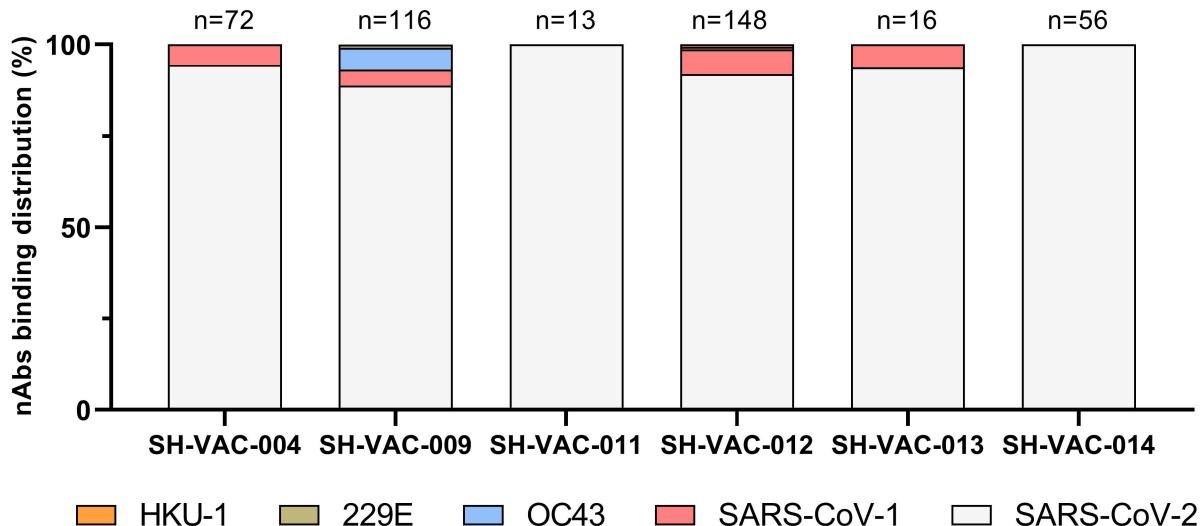


ELISA XBB.1.5



ELISA BA.2.86

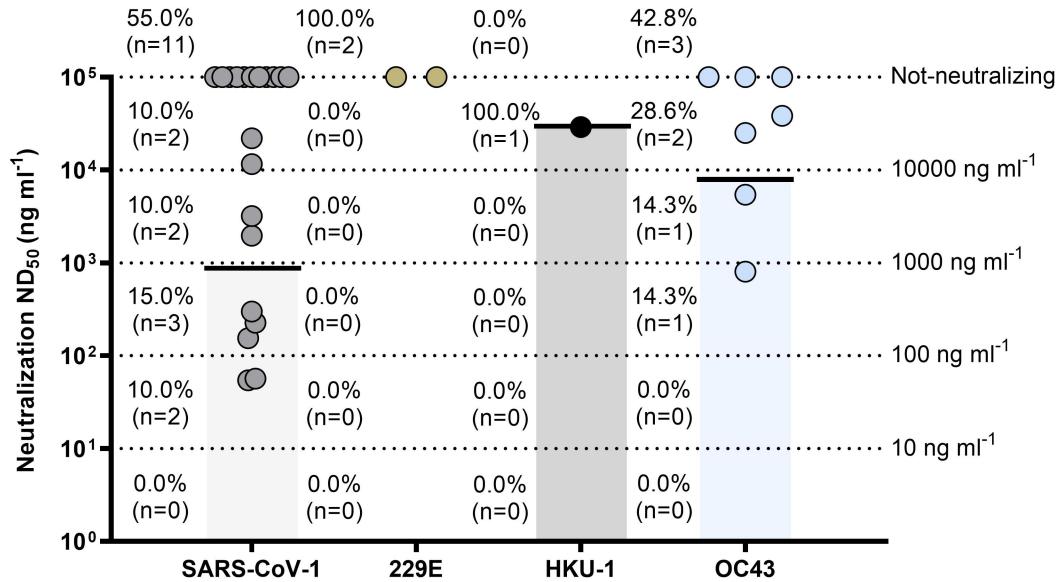


b



c

d

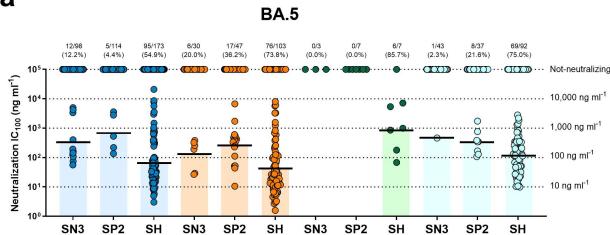


e

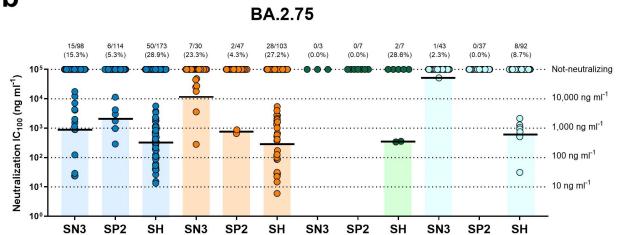


SUPPLEMENTARY FIG. 4

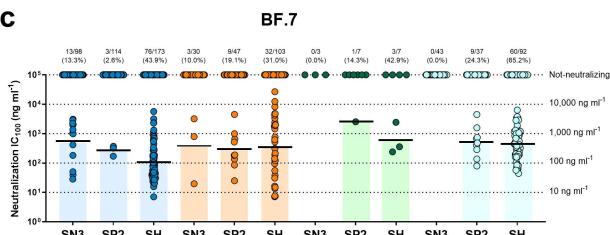
a

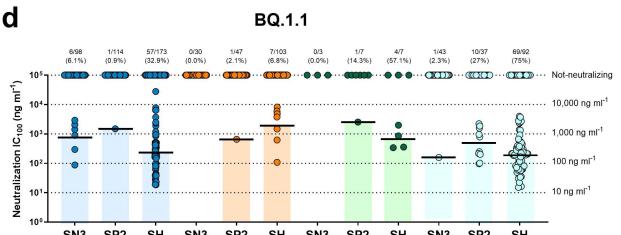


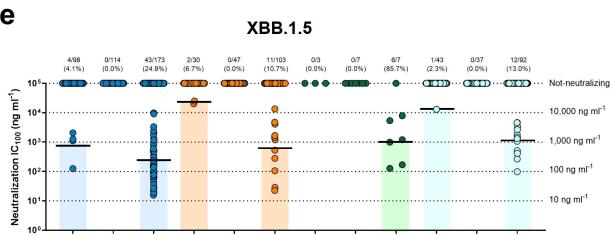
b

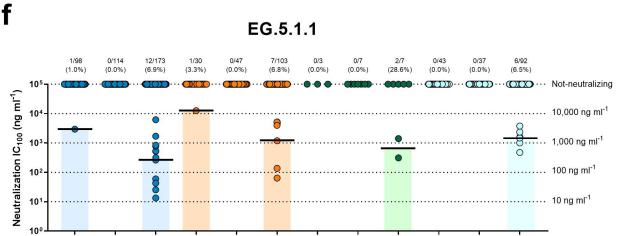


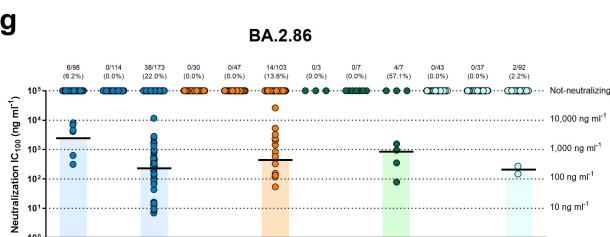
SUPPLEMENTARY FIG. 5


a


b


c

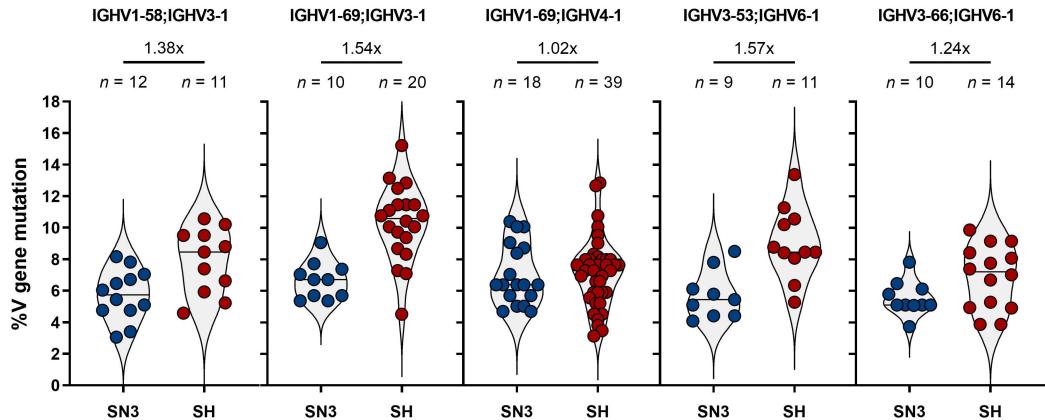

d


e

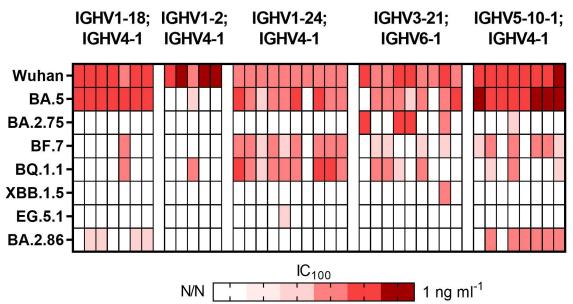
f

g

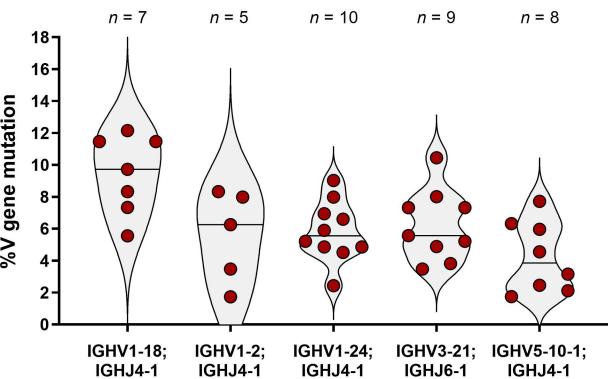
Class 1/2


Class 3

Class 4


NTD

SUPPLEMENTARY FIG. 6


a

b

c

