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Abstract  

Systemic levels of methylmalonic acid (MMA), a byproduct of propionate metabolism, increase 

with age and MMA promotes tumor progression via its direct effects in tumor cells. However, the 

tumorigenic role of MMA in modulating the tumor ecosystem remains to be investigated. The 

proliferation and function of CD8+ T cells, key anti-tumor immune cells, declines with age and in 

conditions of vitamin B12 deficiency, the two most well-established conditions that lead to 

increased systemic levels of MMA. Thus, we hypothesized that increased circulatory levels of 

MMA leads to suppression of CD8+ T cell immunity. Treatment of primary CD8+ T cells with MMA 

induced a dysfunctional phenotype characterized by a robust immunosuppressive transcriptional 

reprogramming and marked increases in the expression of the exhaustion regulator, TOX. 

Accordingly, MMA treatment upregulated exhaustion markers in CD8+ T cells and decreased their 

effector functions, which drove the suppression of anti-tumor immunity in vitro and in vivo. 

Mechanistically, MMA-induced CD8+ T cell exhaustion was associated with a suppression of 

NADH-regenerating reactions in the TCA cycle and concomitant defects in mitochondrial function. 

Thus, MMA has immunomodulatory roles, thereby highlighting MMA as an important link between 

aging, immune dysfunction, and cancer.  
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Introduction  

Methylmalonic acid (MMA) is a metabolite produced as a byproduct of propionate metabolism, a 

mitochondrial pathway that catabolizes branched chain amino acids, odd chain fatty acids, and 

cholesterol to fuel the tricarboxylic acid (TCA) cycle. MMA levels are generally low under normal 

physiological conditions, yet its levels rise in pathological conditions. Chief amongst these are 

conditions of vitamin B12 deficiency [1, 2]. Importantly, multiple studies have shown that increases 

in circulatory MMA levels are a feature of aging [3-6]. Considering that aging is a major risk factor 

for development of cancer [7, 8], the relationship between increased MMA levels and cancer has 

been explored. Increased MMA in circulation has been shown to promote tumor progression into 

metastatic disease through direct induction of aggressive features in the tumor cells [6]. On the 

other hand, MMA production can also be hijacked by non-age-related aggressive tumors to 

enable their cell autonomous acquisition of pro-metastatic properties [9], and influences the 

fibroblast compartment of the tumor microenvironment (TME) by skewing the fibroblasts toward 

a cancer-associated fibroblast phenotype [10]. However, how MMA impacts the other 

components of the TME that affect tumorigenesis has not been investigated. 

CD8+ T cells are adaptive immune cells that are an important component of the TME, 

functioning to curb tumorigenesis and tumor progression through their cytotoxic activity [11, 12]. 

Thus, it comes as no surprise that tumor cells utilize an array of strategies to disable CD8+ T cell-

mediated cytotoxic activity by driving their exhaustion [13], a state that normally occurs due to 

chronic antigen exposure and that functions as an important homeostatic response to prevent 

autoimmunity  [14, 15].  A gradual decline in CD8+ T cell function is a central feature of the aging 

process, with CD8+ T cells exhibiting signs of exhaustion [16, 17]. CD8+ T cells also experience 

age-associated mitochondrial dysfunction, characterized by decreased mitochondrial oxidative 

phosphorylation and increased reactive oxygen species (ROS) [16, 17], features that are known 

to associate with, and in some cases induce, CD8+ T cell exhaustion [18-20]. Understanding the 
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factors that drive CD8+ T cell exhaustion that occur with old age is instrumental for developing 

strategies to impair tumor initiation and progression.  

Given that aging is associated with an increase in circulatory MMA as well as a decline in 

CD8+ T cell function, we investigated whether a cause-and-effect relationship exists between 

these two aging features and their potential consequences for tumorigenesis. Herein we show 

that such relationship exists, whereby MMA promotes CD8+ T cell exhaustion, driven by the 

defects in mitochondrial metabolism and the induction of the exhaustion master regulator TOX, 

which impairs anti-tumor responses and enables immune escape. Thus, MMA is a potent 

regulator of CD8+ T cell fate and function, and is an important biomarker of immune function that 

has the potential to be exploited as a predictor of immunotherapy responses.  

 

Materials and methods 

A summary of all key materials and additional methodology is provided in the Supplementary 

Information.  

 

Mice  

All animal studies were approved by the Institutional Animal Care and Use Committee (IACUC) 

of Moffitt Cancer Center and the University of South Florida. Male and female C57BL/6NJ mice 

or OT-I mice (a gift from Dr. Avram), aged 8 to 16 weeks, were used. Animals were group-housed 

and bred in standard cages in a specific pathogen-free animal facility. Animals were provided with 

unrestricted water and food (Teklad Irradiated Global 18% Protein Rodent Diet 2918; Envigo, 

Indianapolis, IN, USA). Animal husbandry was carried out by the vivarium technical staff. The 

room was maintained at 20-23°C with 30-70% humidity on a 12 hour light-dark cycle. Some 

animals were treated with MMA when indicated and the administration of MMA to mice was based 

on a previous study by Ribeiro, et al. [21]. Briefly, MMA (Sigma-Aldrich, St. Louis, MO, USA) was 
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dissolved in 0.9% normal saline and buffered to pH 7.4 using sodium hydroxide. MMA (or saline) 

was intraperitoneally (i.p.) injected twice daily with an 8 hour interval between injections for 28 

days. MMA doses were escalated every week: 0.76 μmol of MMA per gram of body weight at 

week 1, 1.01 μmol of MMA per gram of body weight at week 2, 1.86 μmol of MMA per gram of 

body weight at week 3, and 2.67 μmol of MMA per gram of body weight at week 4. Mice were 

weighed every other day. All injections were prepared such that the mice received 5 μL of solution 

per gram of body weight.  

 

Syngeneic transplantation of tumor cells 

C57BL/6NJ male mice, aged 9 to 20 weeks, were randomly divided into two groups which 

received twice daily saline or MMA i.p. injections as described above. At day 4, tumor cells derived 

from KPG12D mice (a genetically engineered lung cancer mouse model with LSL-

KrasG12D;Trp53flox/flox) [22], which are tagged with a GFP-luciferase reporter (referred to as KP-

Luciferase cells) were injected at 100,000 cells per 100 μL PBS via tail vein. At day 28, mice were 

euthanized, and spleen and lung tissues were collected for analysis by flow cytometry and 

histology.  

 

Mouse CD8+ T cell isolation and culture conditions  

Single cell suspensions were prepared from the spleens and pooled lymph nodes of C57BL/6NJ 

or OT-I mice by mechanical dissociation through a 70 μm nylon cell strainer in separation buffer 

(SB: PBS + 3% FBS + 2 mM EDTA). Red blood cells were lysed using RBC lysis buffer 

(Biolegend, San Diego, CA, USA) for 5 minutes on ice. Cells were washed twice with SB, filtered 

through a 70 μm nylon cell strainer, and resuspended at concentration of 108 cells/mL in SB. 

Naive CD8+ T cells were isolated by negative selection using the MojoSort Mouse CD8+ Naïve T 

cell Isolation Kit as per manufacturer’s instructions (BioLegend, >90% purity). Live cells were 

counted by trypan blue dye exclusion and resuspended at a concentration of 106 cells/mL in 
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complete T cell media (RPMI-1640 (Cytiva, Marlborough, MA, USA) with 10% FBS (Gibco, 

Billings, MT, USA), 1% penicillin/streptomycin (Cytiva), 50 μM β-mercaptoethanol (Sigma-

Aldrich), 1 mM sodium pyruvate (Gibco), and 1% MEM nonessential amino acids (Gibco). Cells 

were seeded at a concentration of 100,000 cells/well in 96-well round-bottom plates (Sarstedt, 

Newton, NC, USA) that were coated overnight with 10 μg/mL of anti-mouse CD3ε antibody 

(Biolegend) and washed twice with PBS prior to seeding. On the same day of isolation, T cell 

activation was initiated using 0.5 μg/mL anti-mouse CD28 (BioLegend) and 10 ng/mL recombinant 

mouse interleukin-2 (IL-2) (BioLegend); additionally, MMA (Sigma-Aldrich), solubilized in 

molecular grade water, was added at a concentration of 5 mM for up to 72 hours at 37°C and 5% 

CO2.  

 

Cytotoxicity assay  

Mouse CD8+ T cells treated with vehicle or 5 mM MMA for 3 days (as described above) were 

harvested, washed with PBS, and re-seeded with complete T cell media and 10 ng/mL IL-2 for an 

additional 2 days. KP-Luciferase cells were seeded at 3,000 cells/well in 96-well flat bottom plates 

and cultured with the conditioned media from activated CD8+ T cells for 3 days. At endpoint, 

propidium iodide was used to assess tumor cell death using Incucyte S3 Live-Cell Analysis 

System v2021A (Sartorius, Göttingen, Germany). Cell death was measured by calculating 

propidium iodide positive (red) object count normalized to confluency. In other experiments, CD8+ 

T cells were isolated from male OT-I mice (CD8+ OT-I cells) and activated in the presence of anti-

CD3, anti-CD28, IL-2, and concurrently treated with vehicle or 5 mM MMA for 3 days in 96-well 

round bottom plates. These CD8+ OT-I cells were co-cultured with Lewis Lung Carcinoma cells 

that express ZsGreen or OVA-T2A-ZsGreen (LLC-OVA-ZsGreen or LLC-ZsGreen [23]) target 

cells at a 5:1 effector-to-target ratio for 24 hours in complete T cell media. Percent cytotoxicity 

was calculated using the following equation, where ZY+ represents zombie yellow positive (dead) 

cells: (ZY+LLC-OVA minus ZY+LLC without OVA) / (100 minus ZY+LLC without OVA) x 100.  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2024. ; https://doi.org/10.1101/2024.03.03.583124doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.03.583124
http://creativecommons.org/licenses/by-nc/4.0/


7 
 

 

Flow cytometry  

For assessment of cell surface markers, cells were washed at least once with PBS, and stained 

with the indicated antibodies (anti-CD3, anti-CD8, anti-CD25, anti-CD69, anti-PD-1, anti-CD38, 

anti-TIM-3, anti-LAG-3; detailed in Supplementary Information) for 20 to 30 minutes at 4°C in PBS 

prior to washing and analysis. For assessment of transcription factors, cells were first surface 

stained as described above and fixed (eBioscience Transcription Factor Staining Set; Thermo 

Fisher Scientific, Waltham, MA, USA) overnight at 4°C. The next day, cells were stained with 

transcription factor antibody (TOX; Thermo Fisher Scientific) in permeabilization buffer 

(eBioscience Transcription Factor Staining Set; Thermo Fisher Scientific) for 1 hour at 4°C prior 

to washing and analysis. For assessment of intracellular cytokines, cells were treated for 5 hours 

with a protein transport inhibitor containing brefeldin A (BD Biosciences, Franklin Lakes, NJ, 

USA), washed and fixed for 10 minutes at 4°C with fixation/permeabilization solution (BD 

Cytofix/Cytoperm kit) and washed with permeabilization buffer overnight before staining for 30 

minutes with anti-TNF-α, anti-IFN-γ, and anti-granzyme B antibodies (detailed in Supplementary 

Information) prior to washing and analysis. For assessment of T cell proliferation, Cell Trace Violet 

(Thermo Fisher Scientific) dye was used according to manufacturer’s instructions, and the division 

index (the average number of cell divisions that a cell in the original population has undergone, 

including the undivided peak) was calculated. For assessment of reactive oxygen species, CM-

H2DCFDA (Thermo Fisher Scientific) and MitoSOX Red (Thermo Fisher Scientific) were used 

according to manufacturer’s instructions. For assessment of viability, cells were stained with either 

propidium iodide (Sigma-Aldrich) or a fixable viability dye (Thermo Fisher Scientific). Data was 

collected using Attune NxT (Thermo Fisher Scientific) or BD FACSymphony (BD Biosciences) 

flow cytometers and analysis was performed on FlowJo v10.8.1 software (BD Biosciences).  

 

Statistical analysis  
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Statistical analyses were performed with GraphPad Prism v9.1.0 (GraphPad Software, Boston, 

MA, USA). Statistical significance was determined as a p-value ≤ 0.05. Student t-tests (paired or 

unpaired) were used to calculate the differences between groups. Data are represented as the 

mean ± SEM (standard error of the mean) of individual data points of at least three biological 

replicates. 

 

Results 

 

MMA impairs activation and effector functions of primary CD8+ T cells  

A characteristic feature of CD8+ T cell dysfunction is the loss of proliferative ability upon activation 

[24, 25]. We first assessed how a pathologically relevant concentration of MMA (5 mM, a 

treatment concentration that mimics the intracellular concentration of MMA of cells exposed to 

aged serum [6]) affected CD8+ T cell proliferation. Evaluation of primary CD8+ T cells isolated 

from mice revealed that while MMA treatment had no effect on their viability (Supplementary Fig. 

1A), it significantly decreased their proliferation, as determined by cell trace violet staining (Fig. 

1A). To evaluate the relevance of these findings to humans, we used human CD8+ T cells derived 

from healthy peripheral blood mononuclear cells (PBMCs). MMA treatment caused a significant 

decrease in cell proliferation without changes in viability in human CD8+ T cells, similarly to what 

was observed in the murine model (Fig. 1B, Supplementary Fig. 1B).  

Reductions in proliferation provoked by MMA were also associated with mouse CD8+ T cell 

activation status, as judged by significant decreases in expression of CD25 and CD69 (Fig. 1C), 

which are classical CD8+ T cell activation markers [26]. To assess the physiological relevance of 

these observations, we implemented a previously established protocol to raise circulatory levels 

of MMA in mice [21], via intraperitoneal (i.p.) administration of MMA twice daily for four weeks 

(Fig. 1D and Supplementary Fig. 1C). Mouse weights were recorded every other day to monitor 

potential toxicity of this regimen and no changes in body weight were observed between the MMA 
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and control group (Supplementary Fig. 1D). Notably, in accord with our in vitro findings, 

assessment of splenic CD8+ T cells revealed a significant decrease in the expression of CD25 in 

the MMA-treated group (Fig. 1E).   

To better understand how MMA promotes these phenotypic changes, we performed global gene 

expression analysis by RNA-sequencing (RNA-seq) on mouse CD8+ T cells treated with MMA for 

three days. Exposure to MMA led to the differential expression of 859 (397 downregulated and 

462 upregulated) genes (Supplementary Fig. 2A). In line with phenotype analyses (Fig. 1A-1C, 

1E), gene set enrichment analysis (GSEA) of the differentially expressed genes showed that MMA 

significantly downregulated (false discovery rate ≤ 25%) many hallmark programs associated with 

CD8+ T cell proliferation and activation, including cell cycle-related programs (e.g., E2F, MYC, 

p53; Fig. 1F) and metabolism (e.g., glycolysis, mTORC1 signaling; Fig. 1F).  

CD8+ T cell activation initiates a program that drives production of cytokines and cytolytic 

molecules such as granzyme B (GZMB), tumor necrosis factor alpha (TNF-α), and interferon-

gamma (IFN-γ) [12, 27]. GSEA analysis also indicated that exposure to MMA affected CD8+ T 

cell effector function, where there was downregulation of several inflammatory programs (e.g., 

IFN-α and IFN-γ responses, inflammatory processes, TNF-α signaling via NF-kB; Fig. 1F, 1G). In 

line with these results, RNA-seq revealed that mRNA levels of Gzmb, Tnf, and Ifng were 

decreased in CD8+ T cells upon exposure to MMA (Fig. 1H, 1I), which we validated by RT-qPCR 

(Supplementary Fig. 1E). Consistently, treatment with MMA suppressed the intracellular protein 

levels of granzyme B and TNF-α (Fig. 1J). Interestingly, while GSEA indicated a loss in IFN-γ 

response and Ifng mRNA levels were decreased, IFN-γ protein levels were unchanged (Fig. 1K). 

Thus, accumulation of MMA in circulation is sufficient to suppress CD8+ T cell activation and 

effector function, suggesting MMA is a potent immunosuppressor. 

 

MMA-treated CD8+ T cells exhibit TCA cycle abnormalities and defective oxidative 

phosphorylation 
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Metabolic deregulation is closely associated with disruption of CD8+ T cell activation and effector 

function [28, 29]. Considering the deregulation of metabolic programs upon MMA exposure 

observed in the GSEA and the known effects of MMA in metabolism [30], we hypothesized that 

MMA-induced  CD8+ T cell dysfunction is associated with alterations of metabolic pathways that 

empower activation and effector function. Metabolomic analysis showed significant changes in 

metabolites impacted by MMA (Fig. 2A, Supplementary Fig. 2B), including deregulation of major 

metabolic pathways such as the pentose phosphate pathway (PPP) and the TCA cycle (Fig. 2B). 

Amongst these, we focused on the TCA cycle as this was the most enriched metabolic pathway 

and MMA is a byproduct of the propionate pathway that yields succinyl-CoA to fuel the TCA cycle 

(Fig. 2B, 2C). Interestingly, while oxaloacetate, citrate, and α-ketoglutarate levels remained 

unchanged (Supplementary Fig. 2C-2E), MMA exposure increased succinate levels and 

decreased fumarate levels (Fig. 2D, 2E). This is accord with previous studies showing that MMA 

can competitively inhibit the activity of succinate dehydrogenase (SDH), the enzyme that converts 

succinate to fumarate and reduces FAD2+ in the process [31-33], thereby leading to the 

accumulation of succinate and depletion of fumarate. Interestingly, malate and isocitrate, which 

are important metabolites for the regeneration of NADH and the proper electron flow that powers 

oxidative phosphorylation and ATP generation, were also decreased by MMA treatment (Fig. 2F, 

2G).  

Given these findings the effects of MMA on mitochondrial function were assessed. Seahorse flux 

analyses revealed a reduction in oxygen consumption rate (Fig. 2H), including significant 

decreases in basal and maximal respiration, and in mitochondrial ATP production rates (Fig. 2I). 

These data is consistent with impairment of the electron transport chain (ETC) and oxidative 

phosphorylation and is in line with the decrease in reducing equivalents necessary to initiate the 

electron transport chain by both complex I (NADH) and complex II (FADH2) imposed by MMA 

treatment. In accord with these analyses, ATP levels were markedly decreased (Fig. 2J) while 

mitochondrial ROS, as well as total ROS levels, were increased by MMA treatment (Fig. 2K). 
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Thus,  exposure to MMA evokes a remodeling of the TCA cycle in CD8+ T cells that suppresses 

the generation of reducing equivalents necessary to power the oxidative phosphorylation for 

sustained CD8+ T cell activation and effector function.  

 

MMA triggers a state of T cell exhaustion associated with the induction of TOX  

Progressive loss of effector function coupled with a decrease in activation and metabolic 

deregulation are hallmarks of T cell exhaustion, a dysfunctional state that impairs the ability to 

respond to infections and/or cancer [25]. Exhausted T cells are characterized by the expression 

of multiple inhibitory receptors on their cell surface including PD-1, CD38, TIM-3 and LAG-3 [25, 

34]. RNA-seq analyses revealed that while MMA exposure triggered the upregulation of Pdcd1 

(PD-1) and Cd38 (CD38) mRNA levels (Fig. 3A), Havcr2 (TIM-3) and Lag3 (LAG-3) mRNA levels 

were not affected (Fig. 3B). Evaluation of the cell surface levels of these markers was consistent 

with these findings, where there was increased expression of PD-1 and CD38 in MMA treated 

CD8+ T cells (Fig. 3C), while TIM-3 and LAG-3 levels were unchanged (Fig. 3D). 

Thymocyte selection-associated high mobility group box (TOX) is a transcription factor that 

functions as a master regulator of T cell exhaustion that induces the expression of inhibitory 

receptors, including PD-1 and CD38 [35-37] (Fig. 3E). Thus, we assessed the effects of MMA on  

TOX regulation in CD8+ T cells. Notably, Tox was one of the upregulated genes identified in the 

transcriptomic analysis, and this finding was validated by RT-qPCR (Fig. 3F, 3G). Supporting a 

role for TOX as the driver of CD8+ T cell exhaustion upon exposure to MMA, elevated MMA in 

circulation increased both the percentage of TOX+ T cells (Fig. 3H) as well as increased TOX 

mRNA (Fig. 3I).  

CD8+ T cell exhaustion is a dynamic process, from activation to progenitor exhaustion through to 

terminal exhaustion [24, 38, 39]. As our data indicated a differential regulation of the exhaustion 

driven inhibitory markers, markers that distinguish these subsets of exhausted T cells were 

analyzed using the RNA-seq dataset. Interestingly, MMA exposure increased mRNA levels of 
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markers of progenitor exhaustion, including Cxcr5 (CXCR5), Slamf6 (SLAMF6), and Tcf7 (TCF-

1) (Fig. 3J). On the other hand, MMA exposure decreased mRNA levels of the terminal exhaustion 

marker, Entpd1 (CD39; Fig. 3K), in accord with the progenitor exhaustion phenotype [40, 41]. 

Thus, exposure to MMA triggers the induction of TOX, which drives the induction of an early 

exhaustion program in CD8+ T cells.  

 

MMA reduced CD8+ T cell cytotoxicity and increased tumor penetrance 

Given these findings we reasoned that exposure to MMA might impair the cytotoxic activity of 

CD8+ T cells against tumor cells. In support of this notion, treatment of lung tumor cells derived 

from KP mice (genetically engineered LSL-KrasG12D;Trp53flox/flox lung cancer mouse model [22]) 

with conditioned media from CD8+ T cells that were pre-treated with MMA showed reduced 

cytotoxicity compared to KP cells treated with conditioned media from CD8+ T cells from control 

conditions (Supplementary Fig. 3A and 3B). To validate these observations, CD8+ T cells were 

isolated from OT-I mice, whose T cell receptor (TCR) is engineered to specifically respond to the 

class I-restricted ovalbumin antigen (OVA 257-264) [42], and treated them with MMA upon 

activation for three days. Activated CD8+ OT-I cells were then co-cultured with OVA-expressing 

Lewis Lung Carcinoma cells (LLC-OVA; Fig. 4A). As expected, CD8+ OT-I cells induced death of 

LLC-OVA, yet MMA treatment significantly reduced in CD8+ OT-I-induced cell death (Fig. 4B); 

thus, MMA impairs CD8+ T cell anti-tumor cytotoxicity. Finally, to assess how elevated MMA levels 

in circulation affects tumorigenesis in vivo, we challenged control and MMA-treated mice with 

orthotopically transplanted KP tumor cells expressing luciferase, a powerful immunogen in 

C57BL/6 mice [43], (KP-Luciferase cells) (Fig. 4C). Systemic levels of MMA were elevated by the 

administration of MMA even in the presence of tumors (Fig. 4D). Importantly, while the lungs of 

the control group only had 40% tumor penetrance (2/5 mice; Fig. 4E, 4F), mice exposed to 

elevated levels of MMA in circulation displayed 100% tumor penetrance (6/6 mice; Fig. 4E, 4F). 
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Thus, exposure to MMA impairs CD8+ T cell cytotoxic activity towards lung cancer cells, enabling 

tumor progression. 

  

Discussion 

Circulatory MMA levels increase with age [3-6] and recent work has revealed MMA can promote 

cancer progression [6, 9, 44], suggesting MMA as an important link between aging and cancer. 

Here, we add a new dimension to the contribution of MMA to cancer, where we show that that 

exposure to MMA triggers exhaustion of activated CD8+ T cells, thereby halting anti-tumor 

immunity and enabling the manifestation of malignant phenotypes. Mechanistically, we ascribe 

this effect to the metabolic defects imposed by MMA and to the induction of the exhaustion master 

regulator, TOX. While previous work has shown that TCA cycle deregulation and suppression of 

oxidative phosphorylation can provoke T cell exhaustion [45, 46], additional studies are needed 

to confirm whether these metabolic alterations are the root cause of the observed T cell 

exhaustion.  

Our analysis of different exhaustion markers suggest that, at least under the tested exposure 

paradigm, MMA triggers an early state of exhaustion designated as “progenitor exhaustion” [47, 

48], with the absence of markers of terminally exhausted T cells (TIM-3+TCF-1- [38]). Moreover, 

our data show that MMA impairs CD8+ T cell effector function by suppressing the production of 

granzyme B and TNF-α but not IFN-γ. In a model of chronic infection, loss of CD8+ T cell effector 

function has been shown to occur in a hierarchical manner, where loss of IFN-γ production is 

more resistant to exhaustion and occurs later compared to loss of TNF-α production [49]. 

Importantly, while more work is needed to precisely define the dynamics of MMA-induced CD8+ 

T cell exhaustion and its clinical significance, it has been shown that in patients with T 

cell/histiocyte-rich large B-cell lymphoma (THRLBCL), TCF1+ progenitor exhausted T cells 

correlate with good clinical response to anti-PD-1 immunotherapy, while terminally exhausted T 
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cells do not [50]. Thus, circulatory levels of MMA might constitute an important and simple 

predictive biomarker of immunotherapy response. 

Our findings add MMA to the growing body of metabolites with immunomodulatory roles and lays 

the foundation for MMA as a link between whole body physiology (e.g., aging, vitamin B12 

deficiency), immune deregulation, and the development of pathologies like cancer. Additional 

studies aimed at defining the mechanisms by which MMA exerts its immunomodulatory roles in 

CD8+ T cells, as well as its potential effects on other immune cell populations and their concerted 

actions in the TME, will provide new insights into the full spectrum of the effect of MMA on 

tumorigenesis. 
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Figure Legends 

 

Fig. 1: MMA impairs activation and effector functions of primary CD8+ T cells. A, B Division 

index (left) and representative histogram of cell trace violet staining (right) for (A) mouse (n = 3) 

and (B) human CD8+ T cells treated ± 5 mM MMA for 3 days (n = 3). The dashed line distinguishes 

unstimulated vs. stimulated (with anti-CD3/CD28) cells. C Percentage of CD25+ (n = 11; left) and 

CD69+ (n = 6; right) mouse CD8+ T cells treated ± 5 mM MMA for 3 days. D Schematic 

representation of the experimental design for administration of MMA to non-tumor-bearing 

C57BL/6 mice for 28 days (i.p., intraperitoneal). E Percentage of CD25+ splenic CD8+ T cells 

collected from mice administered with MMA as shown in Fig. 1D (n = 8; unpaired t-test). F Gene 

set enrichment analysis (GSEA) of hallmark transcripts statistically downregulated (false 

discovery rate ≤ 25%) in mouse CD8+ T cells treated ± 5 mM MMA for 3 days (n = 3). G Enrichment 

plot for hallmark inflammatory response (from Fig. 1F). H FPKM values evaluated by RNA-

sequencing for Gzmb (granzyme B; left) and Tnf (TNF-α; right) of mouse CD8+ T cells treated ± 

5 mM MMA for 3 days (n = 3). I FPKM values evaluated by RNA-sequencing for Ifng (IFN-γ) in 

mouse CD8+ T cells treated ± 5 mM MMA for 3 days (n = 3). J Percentage of granzyme B (left) 

and TNF-α (right) positive mouse CD8+ T cells treated ± 5 mM MMA for 3 days (n = 3). K 

Percentage of IFN-γ positive mouse CD8+ T cells treated ± 5 mM MMA for 3 days (n = 3). Data 

are represented as the mean ± SEM with statistical significance measured by paired t-tests unless 

otherwise indicated. Each dot represents a biological replicate. 

 

Fig. 2: MMA-treated CD8+ T cells exhibit TCA cycle abnormalities and defective oxidative 

phosphorylation. A Principal component analysis (PCA) plot evaluated by metabolomic analysis 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2024. ; https://doi.org/10.1101/2024.03.03.583124doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.03.583124
http://creativecommons.org/licenses/by-nc/4.0/


22 
 

of mouse CD8+ T cells treated ± 5 mM MMA for 3 days. B Pathway enrichment results for 

metabolic pathways statistically altered (p-value < 0.1) in mouse CD8+ T cells treated ± 5 mM 

MMA for 3 days. C Schematic representation of propionate pathway with connection to 

tricarboxylic acid (TCA) cycle. D-G Normalized peak intensity, as measured by metabolomic 

analysis of mouse CD8+ T cells treated ± 5 mM MMA for 3 days for the indicated metabolites: 

succinate, fumarate, malate, isocitrate (n = 4). H Oxygen consumption rate (OCR) of mouse CD8+ 

T cells treated ± 5 mM MMA for 3 days (n = 7). Dotted lines indicate addition of oligomycin (Oligo) 

to inhibit Complex V, carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP) to uncouple 

the electron transport chain, and rotenone/antimycin A (Rot/AA) to inhibit Complex I and II, 

respectively. I Basal respiration, maximal respiration, and ATP production rate of mouse CD8+ T 

cells treated ± 5 mM MMA for 3 days (n = 7; multiple paired t-tests). J ATP levels of mouse CD8+ 

T cells treated ± 5 mM MMA for 3 days (n = 4). K MFI of mitochondrial ROS (n = 3; left) and 

oxidative stress (n = 4; right) of mouse CD8+ T cells treated ± 5 mM MMA for 3 days. Data are 

represented as the mean ± SEM with statistical significance measured by paired t-tests unless 

otherwise indicated. Each dot represents a biological replicate. Abbreviations for Fig. 2C: PCC, 

propionyl-CoA carboxylase; MCEE, methylmalonyl-CoA epimerase; MUT, methylmalonyl-CoA 

mutase; GDP, guanosine diphosphate; GTP, guanosine triphosphate; NAD, nicotinamide adenine 

dinucleotide; NADH, nicotinamide adenine dinucleotide hydrogen; FAD, flavin adenine 

dinucleotide; FADH, flavin adenine dinucleotide hydride; CoA, coenzyme A; TCA cycle, 

tricarboxylic acid cycle. 

 

Fig. 3: MMA induces a state of T cell exhaustion and the induction of TOX. A FPKM values 

evaluated by RNA-sequencing for Pdcd1 (PD-1; left) and Cd38 (CD38; right) of mouse CD8+ T 

cells treated ± 5 mM MMA for 3 days (n = 3). B FPKM values evaluated by RNA-sequencing for 

Havcr2 (TIM-3; left) and Lag3 (LAG-3; right) of mouse CD8+ T cells treated ± 5 mM MMA for 3 

days (n = 3). C MFI of PD-1 (n = 11; left) and CD38 (n = 3; right) in mouse CD8+ T cells treated ± 
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5 mM MMA for 3 days. D MFI of TIM-3 (left) and LAG-3 (right) in mouse CD8+ T cells treated ± 5 

mM MMA for 3 days (n = 3). E Schematic representation of the proposed model in which MMA 

induces TOX upregulation to promote exhaustion gene expression in CD8+ T cells. F FPKM 

values evaluated by RNA-sequencing for Tox of mouse CD8+ T cells treated ± 5 mM MMA for 3 

days (n = 3). G Tox mRNA levels evaluated by RT-qPCR analysis of mouse CD8+ T cells treated 

± 5 mM MMA for 3 days (n = 3). H Percentage of TOX+ splenic CD8+ T cells collected from mice 

administered MMA as shown in Fig. 1D (n = 8; unpaired t-test). I MFI of TOX in splenic CD8+ T 

cells collected from mice administered MMA as shown in Fig. 1D (n = 8; unpaired t-test). J FPKM 

values evaluated by RNA-sequencing for Cxcr5 (CXCR5; left), Slamf6 (SLAMF6; middle), and 

Tcf7 (TCF-1) of mouse CD8+ T cells treated ± 5 mM MMA for 3 days (n = 3). K FPKM values 

evaluated by RNA-sequencing for Entpd1 (CD39) of mouse CD8+ T cells treated ± 5 mM MMA 

for 3 days (n = 3). Data are represented as the mean ± SEM with statistical significance measured 

by paired t-tests unless otherwise indicated. Each dot represents a biological replicate.  

 

Fig. 4: MMA impairs CD8+ T cell cytotoxicity and augments tumor penetrance. A Schematic 

representation of the experimental design to assess cytotoxicity of CD8+ OT-I cells treated ± 5 

mM MMA against OVA-expressing LLC cells (LLC-OVA). B Cytotoxicity, as measured by 

percentage of LLC-OVA cell death after 24 hour co-culture with CD8+ OT-I cells treated ± 5 mM 

MMA for 3 days (n = 3). C Schematic representation of the experimental design for administration 

of MMA to KP-Luciferase (KP-Luc) tumor-bearing C57BL/6 mice for 28 days (i.p., intraperitoneal). 

D MMA concentration in serum at indicated time points collected from mice administered MMA 

as shown in Fig. 4C (n = 5 or 6 per group; multiple unpaired t-tests). E Representation of tumor 

penetrance, as measured by the presence of at least one tumor in H&E lung slides. F 

Representative H&E slides at 500 μm (left) and 100 μm (right) of lungs collected from tumor-

bearing mice administered MMA as shown in Fig. 4C. Data are represented as the mean ± SEM 
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with statistical significance measured by paired t-tests unless otherwise indicated. Each dot 

represents a biological replicate. 

 

Supplementary Information  

Are provided in a separate Word document titled “Supplementary Information”. 

 

Subject Ontology 

Tumor immunology; Cancer metabolism 
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