

1 **Title**

2 **Immunogenicity and safety of a live-attenuated SARS-CoV-2 vaccine candidate based on multiple
3 attenuation mechanisms**

4 Mie Suzuki-Okutani,^{1,2,8} Shinya Okamura,^{1,2,8} Tanggis,¹ Hitomi Sasaki,¹ Suni Lee,¹ Akiho Yoshida,^{1,2} Simon Goto,¹
5 Mai Matsumoto,¹ Mayuko Yamawaki,¹ Toshiaki Miyazaki,¹ Tatsuya Nakagawa,³ Masahito Ikawa,^{3,4,7} Wataru
6 Kamitani,⁵ Shiro Takekawa,¹ Koichi Yamanishi,¹ Hirotaka Ebina^{1,2,4,6,7}

7

8 ¹ The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan

9 ² Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and
10 Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan.

11 ³ Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University,
12 Suita, Osaka, Japan

13 ⁴ Center for Advanced Modalities and DDS (CAMA^D), Osaka University, Suita, Osaka, Japan.

14 ⁵ Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi,
15 Gunma, Japan

16 ⁶ Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research institute for
17 Microbial Diseases, Osaka University, Suita, Osaka, Japan.

18 ⁷ Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan.

19 ⁸These authors contributed equally.

20 *Correspondence to: hebina@biken.osaka-u.ac.jp

21

22 **Abstract**

23 mRNA vaccines against SARS-CoV-2 were rapidly developed and effective during the pandemic. However, some
24 limitations remain to be resolved, such as the short-lived induced immune response and certain adverse effects.
25 Therefore, there is an urgent need to develop new vaccines that address these issues. While live-attenuated vaccines
26 are a highly effective modality, they pose a risk of adverse effects, including virulence reversion. In the current
27 study, we constructed a live-attenuated vaccine candidate, BK2102, combining naturally occurring
28 virulence-attenuating mutations in the *NSP14*, *NSP1*, spike and *ORF7-8* coding regions. Intranasal inoculation with
29 BK2102 induced humoral and cellular immune responses in Syrian hamsters without apparent tissue damage in the

30 lungs, leading to protection against a SARS-CoV-2 D614G and an Omicron BA.5 strains. The neutralizing
31 antibodies induced by BK2102 persisted for up to 364 days, which indicated that they confer long-term protection
32 against infection. Furthermore, we confirmed the safety of BK2102 using transgenic (Tg) mice expressing human
33 ACE2 (hACE2), that are highly susceptible to SARS-CoV-2. BK2102 did not kill the Tg mice, even when virus
34 was administered at a dose of 10^6 plaque-forming units (PFU), while 10^2 PFU of the D614G strain or an attenuated
35 strain lacking the furin cleavage site (FCS) of the spike was sufficient to kill mice. These results suggest that
36 BK2102 is a promising live-vaccine candidate strain that confers long-term protection without significant virulence.
37

38 **Introduction**

39 mRNA- and adenovirus vector-based vaccines have been successfully developed and used in clinical practice
40 against SARS-CoV-2, the pathogen that caused the COVID-19 pandemic. These vaccines were highly effective,
41 inducing robust humoral and cellular immunity (Baden et al., 2021; Polack et al., 2020). Nevertheless, certain
42 drawbacks of SARS-CoV-2 vaccines remain to be addressed, including adverse effects, such as thrombosis, fever,
43 and fatigue (Yasmin et al., 2023). Further, several boosters of the mRNA vaccines have been required to reactivate
44 the immune response and increase efficacy against variants. New and improved vaccine modalities are therefore
45 required for SARS-CoV-2 infection.

46 In general, live-attenuated vaccines are among the most effective vaccine modalities, as they induce humoral and
47 cellular immunity, both systemically and locally (e.g., within mucosal surfaces), conferring protection against
48 various infectious diseases (Hoft et al., 2017). For example, the live-attenuated poliovirus vaccine developed in
49 1962 was highly effective in reducing the spread of the disease (Sabin, 1985). Nevertheless, this modality has
50 certain disadvantages, the most concerning being the risk of reversion to a virulent state as a result of mutations
51 generated during viral replication *in vivo*. In fact, vaccine-derived paralytic polio was reported 38 years after the
52 vaccine had been introduced, representing a threat to uninfected populations (Macklin et al., 2020). Advances in our
53 basic knowledge of viruses have enabled the design of attenuated strains, such as that in the new type 2 oral polio
54 vaccine (nOPV2), which is associated with a reduced risk of reversion due to genome modification (Yeh et al.,
55 2020; Yeh et al., 2023). nOPV2 was recently approved by the World Health Organization, indicating that
56 live-attenuated vaccines that overcome the risk of reversion are still in demand.

57 Various mechanisms leading to reduced pathogenicity of SARS-CoV-2 have been reported. A cold-adapted
58 SARS-CoV-2 strain was isolated through passaging at low temperatures, eventually showing an attenuated

59 phenotype (Seo and Jang, 2020). We also reported a temperature sensitive (TS) strain with low pathogenicity and
60 sufficient immunogenicity *in vivo*, achieved through the introduction of multiple TS-related mutations (Yoshida et
61 al., 2022). In addition to temperature sensitivity, several naturally occurring mutants exhibit attenuated phenotypes.
62 Passaging SARS-CoV-2 in Vero cells facilitates isolation of strains with deletions in the furin cleavage site (FCS)
63 (PRRAR) at the S1/S2 junction within the spike protein, resulting in low proliferation *in vivo* (Davidson et al.,
64 2020; Peacock et al., 2021). Furthermore, a mutant that lacks four amino acids (PRRA) within the FCS did not
65 induce weight loss in hamsters during challenge experiments (Hoffmann et al., 2020a; Hoffmann et al., 2020b;
66 Johnson et al., 2021; Lau et al., 2020). Reportedly, S1/S2 cleavage is essential for TMPRSS2-mediated entry into
67 host cells, and the deletion in the FCS is thought to reduce viral growth in lung cells, which express more
68 TMPRSS2 than cells of the upper respiratory tract (Hoffmann et al., 2020a; Hoffmann et al., 2020b; Johnson et al.,
69 2021; Lau et al., 2020). Furthermore, partial loss of *NSP1*, which correlates with a lower viral load and less severe
70 symptoms of infection in SARS-CoV-2-infected patients, or of *ORF8*, which has been reported as associated with
71 milder infection in humans, were also associated with attenuated phenotypes (Lin et al., 2021; Ueno et al., 2024;
72 Young et al., 2020). Recovery of lost segments of viral genomes carrying deletions is more difficult than the
73 reversion of amino acid substitutions (Bull, 2015). In this study, we designed and constructed live-attenuated
74 vaccine candidates through a combination of substitutions and deletions involved in attenuation and reduced risk of
75 virulent reversion. We then evaluated the candidate's immunogenicity and safety in animal models, providing
76 evidence that BK2102 is a promising vaccine candidate that confers prolonged protection.

77

78 **Results**

79 **Construction of the live-attenuated vaccine candidate strains**

80 Several genomic alterations are involved in the attenuation of SARS-CoV-2. In this study, we focused on deletions
81 at three different sites within the viral genome: FCS within the spike protein, NSP1, and ORF7-8 (Supplementary
82 Fig. 1A). While loss of the FCS inhibits virus-cell fusion mediated by TMPRSS2 in lung cells, partial deletion of
83 NSP1 has been shown to impair viral proliferation *in vitro*, and the lack of ORF8 has been associated with milder
84 symptoms and disease outcomes (Johnson et al., 2021; Lin et al., 2021; Ueno et al., 2024; Young et al., 2020;
85 Zinzula, 2021). We previously obtained SARS-CoV-2 TS strains showing diverse attenuated phenotypes, and
86 revealed that NSP3 L445F, NSP14 G248V, G416S, and A504V as well as NSP16 V67I were substitutions
87 responsible for such phenotypes (Yoshida et al., 2022). Each substitution conferred some advantage for the

88 development of an attenuated vaccine candidate with restricted proliferative capacity in deep regions of the body,
89 such as lungs and brain. In addition, the presence of deletions is generally considered to confer a lower risk of
90 reversion to a wild-type genotype when compared to amino acid substitutions. To this end, we constructed three
91 candidates by combining several of the above-described mutations to design a safe live-attenuated vaccine strain
92 (Supplementary Fig. 1A). The three candidates were inoculated locally into hamsters via the nasal route to mimic a
93 natural infection. The immunogenicity of candidates 1 and 3 was much greater than that of candidate 2
94 (Supplementary Fig. 1B). Candidate 1, which has three deletions in the viral genome and contains three
95 TS-responsible substitutions in NSP14, induced neutralizing antibodies when inoculated at a dose of 10^3 PFU.
96 Candidate 2, which has TS-related substitutions in both NSP3 and NSP14 and three deletions and, Candidate 3
97 which has only two deletions, were speculated to be excessively attenuated or to have a higher risk of virulent
98 reversion. Taking these observations into consideration, we selected Candidate 1 for the vaccine, hereafter referred
99 to as BK2102. The growth dynamics of BK2102 was evaluated at 32 °C and 37 °C (Fig. 1). It proliferated similarly
100 to the wild-type B-1 strain at 32 °C (Fig. 1A), but the infectious virus titer was significantly lower compared to that
101 of the wild type B-1 strain one day post-infection at 37 °C (Fig. 1B). Therefore, BK2102 showed a severe TS
102 phenotype but could be amplified by incubating infected cells at 32 °C, which would also facilitate the
103 manufacturing process.

104

105 **BK2102 induced humoral and cellular immune responses**

106 To evaluate immunogenicity, BK2102 was intranasally inoculated into Syrian hamsters (10^3 and 10^4 PFU/dose).
107 Four weeks post-inoculation, spike-specific IgG was measured in the sera by ELISA (Fig. 2A), and the endpoint
108 titers of the 10^3 PFU- and the 10^4 PFU-dose groups was $10^{6.2}$ and $10^{6.1}$, respectively. Neutralizing antibodies (Fig.
109 2B) against the D614G strain were detected in 9 of the 10 hamsters in each dose group, with titers ranging between
110 2^5 and 2^9 (Fig. 2B, left). Cross-reactivity of the neutralizing antibodies against the delta variant was also detected in
111 9 of 10 hamsters (titer range: 2^5 – 2^8) (Fig. 2B, middle) and 8 of 9 hamsters against gamma strain (Supplementary
112 Fig. 5A), but that against the BA.5 variant was below the limit of detection in all hamsters (Fig. 2B, right).
113 Furthermore, we performed BK2102 immunization of cynomolgus monkeys at a dose of 10^7 PFU, and the serum
114 neutralizing titer against the D614G strain was detected in two of the four monkeys (titer range: 2^4 – 2^8)
115 (Supplementary Fig. 3A). Although a single dose did not raise neutralizing antibody titers in two of the four
116 monkeys, three doses given at a two-week interval, induced neutralizing antibodies in all six monkeys

117 (Supplementary Fig. 3B). The safety of BK2102 was also evaluated in these six monkeys, and no toxic effects were
118 observed in any of the parameters assessed, including tissue damage, respiratory rate, functional observational
119 battery (FOB), hematology, or fever (data not shown).

120 A short-lived immune response has been reported for current mRNA vaccines against SARS-CoV-2. For example, a
121 reduction in neutralizing antibodies was observed in humans after six months (Zhang et al., 2022). In hamsters,
122 these were undetectable after 250 days (Machado et al., 2023). Therefore, we evaluated the persistence of the
123 immune response induced by BK2102 using a hamster model. We measured neutralizing antibody titers for up to
124 364 days after inoculation with BK2102. The titer peaks were observed 28 days after the first inoculation and
125 slightly decreased, but were maintained until 364 days post-inoculation with a dose of 10^3 or 10^4 PFU. For example,
126 the neutralizing antibody titer in the sera of hamsters inoculated with 10^3 PFU was 2^8 at 28 days and 2^5 at 364 days
127 post-inoculation. Two of the ten hamsters inoculated at a dose of 10^3 PFU showed neutralizing antibody titers
128 below the detection limit from the beginning, and those of another hamster in the same dose group began to
129 decrease gradually from day 224 and fell below the detection limit on day 364 (Supplementary Fig. 4). However,
130 the neutralizing antibody titers in hamsters inoculated with 10^4 PFU did not exhibit such a decrease during the
131 evaluation period. Remarkably, a single dose of BK2102 was sufficient to induce long-lasting immunity, and there
132 was no need for booster immunization 28 days after the first inoculation (Fig. 2C).

133 Furthermore, we evaluated cellular immune responses following inoculation with BK2102. Antigen-specific IFN- γ
134 and IL-4 production in spleen cells from inoculated hamsters was measured via ELISA after *in vitro* re-stimulation
135 with spike or nucleocapsid peptides. As shown in Figure 2D, spike peptide-specific IFN- γ production significantly
136 increased in the splenocytes of BK2102-inoculated hamsters, as did the nucleocapsid peptide-specific IFN- γ
137 production, although in this case it did not reach statistical significance. IL-4 production was significantly increased
138 by spike-peptide stimulation (Fig. 2E). IFN- γ producing cells were also detected by enzyme-linked immunosorbent
139 spot (ELISPOT) assays (Fig. 2F). In correlation with the ELISA results, significant induction of spike
140 peptide-specific IFN- γ producing cells were detected in the splenocytes of BK2102-inoculated hamsters and the
141 nucleocapsid peptide-specific IFN- γ -producing cells were also increased.

142 Moreover, a 10 μ g-dose of a conventional mRNA vaccine prepared in-house, expressing spike protein of D614G
143 strain of SARS-CoV-2, was intramuscularly injected into hamsters and compared to BK2102. Neutralizing antibody
144 titers against the D614G strain showed no significant difference between the BK2102-inoculated group and the
145 mRNA vaccine group (Supplementary Fig. 2A). Notably, under conditions that induced equal serum neutralizing

146 antibody titers in hamsters, higher levels of spike-specific IgA in nasal wash samples were induced by BK2102 than
147 by the conventional mRNA (Supplementary Fig. 2B). In addition, we qualitatively analyzed the spike-specific IgG
148 subclasses (IgG1 and IgG2/3) in hamsters to evaluate the nature of the immune response induced by BK2102
149 (Supplementary Fig. 2C and D). When we inoculated BK2102 and our mRNA vaccine, total IgG antibodies were
150 detected in both groups. IgG2/3 antibodies were detected in the sera of BK2102-inoculated hamsters, but we could
151 not detect IgG1. On the other hand, mRNA-vaccinated hamsters showed both IgG subclasses (Supplementary Fig.
152 2C). As other studies have demonstrated that aluminum adjuvant preferentially induces a Th2 response (Marrack et
153 al., 2009), we also administered recombinant spike protein with alum adjuvant as a control. The result was the same,
154 since BK2102-inoculated hamsters showed only production of IgG2/3 (Supplementary Fig. 2D). IL-4 production
155 and the presence of IgG1 reflects a Th2 response, while IFN- γ production and IgG2/3 are indicative of a Th1
156 response in hamsters (Kushawaha et al., 2011; Ploquin et al., 2013). Our results therefore suggest that BK2102
157 mainly induced a Th1 immune response in hamsters.

158

159 **BK2102 induced protective immunity against SARS-CoV-2 infection**

160 Next, we performed challenge experiments with the SARS-CoV-2 D614G strain, BA.5 or gamma variants in order
161 to evaluate whether the immune responses induced by BK2102 would protect against infection. All hamsters
162 inoculated with BK2102 did not lose weight, whereas the naïve hamsters lost approximately 10% of their total body
163 weight on day four or six post-challenge with the D614G or gamma strains (Fig. 3A and Supplementary Fig. 5B,
164 respectively). When challenged with the BA.5 variant, all hamsters pre-inoculated with a dose of 10^4 PFU of
165 BK2102 and three of five hamsters pre-inoculated with a dose of 10^3 PFU did not lose weight. However, the rest of
166 the animals in the 10^3 PFU dose group lost 5% of their total body weight, similarly to the naïve group (Fig. 3B).
167 In addition to body weight change, we determined infectious virus titers in lung homogenates and nasal wash
168 specimens four days-post infection with the D614G strain or the BA.5 variant. The number of infectious viruses
169 was significantly lower in hamsters inoculated with BK2102 than in naïve hamsters after challenge with the D614G
170 strain (Fig. 3C and D). One hamster in the 10^3 PFU dose group showed detectable levels of infectious virus
171 following D614G challenge (Fig. 3C). This result was consistent with the undetectable levels of neutralizing
172 antibodies in this animal (Fig. 2B). The virus titer in the lung and nasal wash of one animal in the 10^3 PFU dose
173 group was $6.4 \log_{10}$ PFU/g and $3.8 \log_{10}$ PFU/mL, respectively, and the mean virus titers in the naïve group was 6.1
174 \log_{10} PFU/g and $3.7 \log_{10}$ PFU/mL, respectively. Although the cross-reactivity of neutralizing antibodies against the

175 BA.5 variant was below the limit of detection in all hamsters (Fig. 2B, right), no infectious virus was detected
176 following challenge with the BA.5 variant in most of the vaccinated animals (Fig. 3F and G). The virus titer in the
177 lung and nasal wash of one animal in 10^4 PFU dose group was $4.2 \log_{10}$ PFU/g and $2.5 \log_{10}$ PFU/mL, respectively,
178 and the mean virus titers in the naïve group which virus detected was $4.6 \log_{10}$ PFU/g and $2.8 \log_{10}$ PFU/mL,
179 respectively. Lung tissue damage after the viral challenge was also evaluated in the hamsters. The inflammation
180 score of hamsters inoculated with BK2102 was lower than that of naïve hamsters, regardless of the strain/variant
181 used for the challenge (Fig. 3E and H, respectively). These results suggest that the immune response induced by
182 BK2102 confers protection against infection that is not limited to the SARS-CoV-2 D614G strain, but also includes
183 the BA.5 variant.

184 Furthermore, to evaluate whether the protection conferred after a full vaccination protocol would persist over time,
185 hamsters with confirmed persistent immunity at day 364 post-inoculation (Fig. 2C) were challenged at day 420. In
186 elderly naïve hamsters, a body weight loss of approximately 15% was observed seven days after infection with the
187 D614G strain, whereas the BK2102-inoculated hamsters showed a lower weight decrease, with significant
188 differences noted at this time point (Fig. 3I). Therefore, BK2102 induced a prolonged humoral immune response,
189 which contributed to the protection against viral infection in hamsters.

190 We then evaluated whether BK2102 could inhibit onward transmission, as a previous report of a live-attenuated
191 vaccine generated through codon-pair deoptimization (sCPD9) had suggested that an effective immune response
192 within the nasal cavity would likely prevent it (Nouailles *et al.*, 2023). The naïve group, the spike
193 protein-inoculated (intra-muscularly) group, and the BK2102 intranasal inoculation groups were challenged with
194 the SARS-CoV-2 D614G strain and co-housed with another group of naïve hamsters one day later (Supplementary
195 Fig. 6A). Naïve animals co-housed with hamsters in the naïve or intramuscularly spike-alum vaccinated groups
196 showed slight weight loss. However, no weight loss was observed in hamsters co-housed with the hamsters that had
197 been intranasally inoculated with BK2102 (Supplementary Fig. 6B). Therefore, intranasal inoculation of the
198 BK2102 live-attenuated vaccine effectively prevented onward transmission, in line with a previous report
199 (Nouailles *et al.*, 2023).

200

201 **BK2102 caused localized tissue damage and conferred a low risk of transmission**

202 Next, we evaluated the safety of BK2102 by assessing the tissue damage during acute infection. The lungs and
203 whole heads of hamsters at day three post-infection were extracted and fixed with formalin (Fig. 4A). We evaluated

204 inflammation and detected viral antigens in the lungs and multiple-depth sections of the nasal cavity (Fig. 4B, 4C
205 and Supplementary Fig. 7). The D614G strain caused broad inflammation within the nasal cavity (from level 1 to 3)
206 and lungs. Viral antigens were detected in the same areas, consistent with our previous report (Yoshida *et al.*, 2022).
207 However, in the BK2102-infected hamsters, viral antigens and weak-to-mild tissue damage were observed only in
208 the anterior area of the nasal cavity, whereas no tissue damage or viral antigens were detected in the posterior area
209 or lungs.

210 The replication of BK2102 at the tip of the nasal cavity may facilitate transmission because infectious viruses are
211 shed into the nasal fluid. In addition, virulent reversion may occur during replication *in vivo*. Therefore, we
212 evaluated the risk of transmission and reversion to virulence by passaging *in vivo* using hamsters (Fig. 4D).
213 SARS-CoV-2 A50-18 is a previously isolated TS strain, in which substitutions within the NSP14 protein alone
214 account for the TS phenotype, without the need for deletions, such as those in NSP1, spike, or other accessory
215 proteins (Yoshida *et al.*, 2022). The viral genome was detected in all nasal wash specimens from A50-18
216 strain-infected hamsters during primary infection, and an increase in this amount was observed in subsequently
217 passaged samples (Fig. 4E), which correlated with progressive weight loss (Supplementary Fig. 8). When we
218 confirmed the sequence of the viruses detected in samples, we observed that the TS-responsible substitutions in
219 NSP14 had reverted to the wild-type sequence (Table 3). The viral genome was detected in the nasal wash
220 specimens from BK2102 infected hamsters during primary infection, but we could not detect it in the samples from
221 subsequent hamsters, except for in one case in p-1 (Fig. 4E). In this individual animal, the viral genome was not
222 detected in the samples from later passages. No weight loss was observed in any of the primary or subsequently
223 infected hamsters, and we did not detect changes to the wild-type sequence (Table 3, Supplementary Fig. 8).
224 Overall, our results suggest that BK2102 is a safe live-attenuated vaccine candidate with a low risk of virulent
225 reversion.

226

227 **BK2102 showed a favorable safety profile in Tg mice**

228 hACE2 Tg mice are also used as animal models of SARS-CoV-2 infection (Asaka *et al.*, 2021; Bao *et al.*, 2020).
229 We established a mouse line expressing hACE2 driven by the CAG promoter, and these mice were used to evaluate
230 the safety of BK2102 live-attenuated vaccine candidate. hACE2 expression was detected not only in the respiratory
231 tract, but also in various tissues such as the central nervous system, heart, skeletal muscle, digestive system (except
232 the small intestine), spleen, and testis (Supplementary Fig. 9A). We evaluated the survival rates and body weight of

233 Tg mice infected with various SARS-CoV-2 strains. All of the mice died after weight loss by infection with the
234 D614G strain and even with the FCS deleted B-1 (B-1 Δ FCS) strain, previously established attenuated phenotype,
235 within six days after receiving a dose of 10^2 PFU (Fig. 5A and Supplementary Fig. 9B). Meanwhile, a higher
236 survival rate was observed in mice infected with the L50-33 and A50-18 strains, which were previously isolated TS
237 and live-attenuated strains (Yoshida *et al.*, 2022), even at a dose of 10^5 PFU. However, one mouse in each group
238 infected with 10^4 and 10^5 PFU of the L50-33 strain died 10 days post-infection that is four days later than those in
239 the D614G strain-infected group. This time lag before death was expected as the virus could have reverted during
240 replication *in vivo*, being able to grow in deeper regions of the body. Thus, we evaluated the presence of infectious
241 virus in the lungs and brains of mice that died following infection with the D614G, B-1 Δ FCS, and L50-33 strains.
242 Infectious virus titers in the lungs were approximately 2.40 to 5.64 \log_{10} PFU/g, while those in the brains were
243 higher, at approximately 5.75 to 8.69 \log_{10} PFU/g (Table 4). We noticed that mice exhibiting head nodding, intense
244 running, jumping and repeated falling, died despite a generally mild inflammation in the lungs at necropsy (data not
245 shown). These results suggest that Tg mice were killed due to replication of SARS-CoV-2 in the brain rather than in
246 the lungs. Sanger sequencing analysis of viruses in the lungs and brains of mice that died following infection with
247 the L50-33 strain revealed that the 445F substitution in NSP3, responsible for the TS phenotype of this strain, had
248 reverted to the wild-type amino acid leucine (TTT \rightarrow TTG), which is the same in the D614G and B-1 Δ FCS strains
249 (CTT, Table 4). These results suggest that the mice died due to viral proliferation in the brain, where a small virus
250 population lost its temperature sensitivity, becoming virulent. This mouse is a highly susceptible model of
251 SARS-CoV-2 virus infection able to detect a few temperature-sensitive revertant viruses. In contrast to L50-33 with
252 the NSP3-based TS phenotype, A50-18, harboring three TS-responsible substitutions in NSP14, did not kill any
253 mice. Moreover, in the case of BK2102, no mice died or lost weight following infection, even at a dose of 10^6 PFU
254 (Fig. 5B and Supplementary Fig. 9C, respectively). Therefore, BK2102 is considered to have a low risk of virulent
255 reversion, thus representing a suitable candidate for a safe live-attenuated vaccine.

256

257 **Discussion**

258 In this study, we evaluated candidates for a new live-attenuated SARS-CoV-2 vaccine. The candidate harboring
259 more mutations exhibited lower immunogenicity than those with fewer mutations (Supplementary Fig. 1A),
260 presumably, because excessive mutations hinder viral replication in the body, resulting in weaker immune
261 responses. Deletions within viral genes are less prone to reversion to the wild-type genotype, and TS-associated

262 substitutions restrict viral dissemination to deep or warmer regions of the body, including the brain, which makes
263 them an attractive backbone for developing safe live-attenuated vaccines. Our BK2102 vaccine candidate was
264 designed with three deletions in addition to TS-associated substitutions.

265 We previously reported that TS strains replicate only in the anterior regions of the nasal cavity and do not
266 proliferate in the posterior areas or lungs of hamsters. However, these isolated TS strains posed a risk of reversion
267 to virulence (Yoshida et al., 2022). K18-hACE2 Tg mice have been shown to die after infection with several
268 SARS-CoV-2 strains due to viral proliferation in the brain (Natekar et al., 2022). To better assess the safety of
269 BK2102, we generated and used CAG-hACE2 Tg mice in addition to hamsters. The TS strains (L50-33 and
270 A50-18) showed an attenuated phenotype in this mouse model, emphasizing the ability of TS to limit viral
271 replication and restrict replication-permissive regions by temperature. The TS-responsible substitutions in NSP14
272 were more stable than those in NSP3, as L50-33 caused the death of one mouse in each of the dose groups tested,
273 whereas A50-18 did not. Additionally, infectious viruses lacking TS mutations were detected in the central nervous
274 system and respiratory tracts of mice that died following L50-33 infection (Table 4). These findings suggest that
275 our mouse model is particularly suitable for assessing safety and evaluating TS strains' entry into the nervous
276 system, as it enables the detection of even a small population of revertant viruses. This animal model also addresses
277 regarding SARS-CoV-2 infection via the intranasal route causing central nervous system damage (Jha et al., 2021;
278 Kumar et al., 2020).

279 BK2102, did not proliferate in the brains of Tg mice even at a dose of 10^6 PFU, which was 10,000 times higher
280 than the dose that killed mice infected with the D614G or B-1 Δ FCS strains (Fig. 5A and 5B). Importantly, BK2102
281 was not detected during passaging *in vivo* using naïve hamsters, probably due to the multiple defective mutations
282 that controlled replication in the host animal, preventing sufficient proliferation for transmission. In contrast, the
283 A50-18 strain, with a genetic background similar to BK2102 but lacking the three deletion mutations, showed an
284 attenuated phenotype during primary infection, but reverted to virulence during replication in hamsters, leading to
285 transmission of the virulent strain to naive animals (Fig. 4E). We hypothesized that even if TS-related substitutions
286 are lost during primary infection, the remaining deletion mutations in BK2102 ensure low replication efficiency,
287 preventing transmission. Indeed, mutations in the FCS coding region has been reported to reduce proliferation (Lau
288 et al., 2020; Sasaki et al., 2021; Wang et al., 2021a) and to prevent transmission *in vivo* (Peacock et al., 2021).
289 Our vaccine candidate BK2102 induced humoral and cellular immune responses in hamsters, and animals were
290 protected against challenge with the heterologous BA.5 variant, even though the neutralizing titer in serum was

291 below the limit of detection (Fig. 2B, right). The nucleocapsid proteins of many coronaviruses are highly
292 immunogenic and are abundantly expressed in infected cells, making them effective targets for antigen-specific T
293 cells (Cong et al., 2020; Dutta et al., 2020; Hasanpourghadi et al., 2023). Studies have also reported the benefit of
294 vaccination with the nucleocapsid protein of SARS-CoV-2, showing protective immunity in animal models
295 vaccinated with the nucleocapsid protein alone (Primard et al., 2023) or in combination with the spike protein
296 (Chiuppesi et al., 2022; Hasanpourghadi et al., 2023). In our hamster study, we observed cellular immune responses
297 against both the nucleocapsid and spike protein. BK2102 may induce a cellular immune response against various
298 structural proteins of SARS-CoV-2, providing protection against multiple variants. We also considered the potential
299 induction of mucosal immunity. In this study, BK2102 induced spike-specific IgA in nasal wash (Supplementary
300 Fig. 2B). Live-attenuated influenza vaccines have been reported to be effective against a broad range of variants
301 due to the robust humoral and cellular immune responses they elicit, even in mucosal tissues (Thwaites et al., 2023).
302 BK2102 was administered intranasally, and inhibition of onward transmission was observed (Supplementary Fig. 6),
303 similar to what was reported for the SARS-CoV-2 live-attenuated vaccine candidate sCPD9 (Nouailles et al., 2023).
304 Thus, we assumed that BK2102 also induced a mucosal immune response in addition to systemic humoral and
305 cellular immunity, contributing to protection against mutant strains and prevention of onward transmission to other
306 animals.

307 The findings of this study should be interpreted in light of certain limitations. First, the limited availability of
308 analytical reagents for hamster models restricted the detailed immunological characterization of the response.
309 Additionally, it took time to gather preclinical data due to the space-related restrictions of BSL3 facilities, which
310 delayed the clinical trials for BK2102 until many individuals had already acquired immunity against SARS-CoV-2.
311 It remains to be seen whether our candidate will be optimal for human use, as the immunogenicity of
312 live-attenuated vaccines is generally influenced by pre-existing immunity. Finally, species-related differences in
313 susceptibility must also be considered. The minimum infectious titer of SARS-CoV-2 has been reported as $10^{3.84} \times 10^4$ PFU in
314 hamsters and humans (Lindeboom et al., 2024; Rosenke et al., 2020), but 3.84×10^4 PFU in
315 monkeys (Johnston et al., 2021). When we inoculated this candidate into monkeys, they were less susceptible than
316 hamsters, requiring a very high titer and multiple doses to induce immunity. Therefore, the dosage for
317 first-in-human trials should be carefully optimized. It is also important to note that live-attenuated vaccines are
318 contraindicated in immunosuppressed individuals or those with chronic diseases, and BK2102 is not intended for
319 these populations.

320 The key to developing live-attenuated vaccines lies in balancing immunogenicity and safety. Most live-attenuated
321 vaccine candidates, such as sCPD9 and CoviLivTM (which is in phase III clinical trial), have been evaluated with a
322 primary focus on immunogenicity in animal models (Wang et al., 2021b). In this study, we rigorously assessed not
323 only the immunogenicity, but also the safety of BK2102, demonstrating its superior safety profile. For example,
324 sCPD9 and CoviLivTM are attenuated by codon deoptimization or a combination of codon deoptimization and FCS
325 deletion (Trimpert et al., 2021; Wang et al., 2021b). These strategies affect viral proliferation but not necessarily
326 virulence. The TS-responsible substitutions in NSP14 included in BK2102 selectively restrict the infection site,
327 reducing the likelihood of lung and brain infection and enhancing safety.
328 Our findings also indicated that the TS substitutions in BK2102 made it difficult to passage the virus *in vivo*,
329 limiting its spread to the central nervous system. Although attenuated strains with amino acid substitutions pose a
330 risk of reversion to virulence, combining multiple modifications related to diverse attenuated phenotypes may allow
331 for the construction of safer live-attenuated vaccine candidates. Among these modifications, deletions are
332 particularly useful in reducing the risk of reversion to virulence, and TS-responsible substitutions significantly limit
333 viral replication in deep regions of the body. This strategy of combining multiple modifications could be effective
334 for the development of live-attenuated vaccines against other viruses, such as the Japanese encephalitis and
335 influenza viruses, which have been reported to replicate in the brain and lung (Desai et al., 1995; Weinheimer et al.,
336 2012).

337

338 **Material and methods**

339 **Cells and viruses**

340 Vero cells were purchased from ATCC and maintained in D-MEM supplemented with 10% FBS, penicillin (100
341 U/mL), and streptomycin (0.1 mg/mL). VeroE6/TMPRSS2 cells were obtained from the Japanese Collection of
342 Research Bioresources (JCRB) cell bank and cultured in D-MEM supplemented with 10% FBS, penicillin (100
343 U/mL), streptomycin (0.1 mg/mL), and G-418 (1 mg/mL). We previously constructed baby hamster kidney (BHK)
344 cells constitutively expressing the human angiotensin-converting enzyme 2 (hACE2) (BHK/hACE2 cells)
345 (Okamura et al., 2023), and these cells were maintained in MEM, supplemented with 10% FBS,
346 penicillin-streptomycin, and puromycin (3 µg/mL). The SARS-CoV-2 strains used in this study are listed in Table 1.
347 The SARS-CoV-2 B-1 (D614G) strain was isolated from a clinical specimen, and TS derivative strains were
348 obtained through random mutagenesis of this clinical isolate, as previously reported (Yoshida et al., 2022).

349 SARS-CoV-2 delta and omicron variant were obtained from the Research Foundation for Microbial Diseases of
350 Osaka University and the National Institute of Infectious Disease of Japan, respectively.

351

352 **Construction of viruses through circular polymerase extension reaction (CPER)**

353 SARS-CoV-2 live-attenuated vaccine candidate strains and B-1 Δ FCS strain has genetic backgrounds similar to that
354 of B-1 strain, in combination with following naturally occurring virulence-attenuating mutations. The mutations in
355 the ORF7a-8, *NSP3*, *NSP14*, and *NSP16* coding regions are the same as those in the genomes of
356 temperature-sensitive virus strains (L50-33, A50-18 and H50-11), described in Yoshida et al., 2022. The mutations
357 in the spike FCS ($_{679}$ NSPRRARSV $_{687}$ → I) and the NSP1 ($_{32}$ GDSVEEV $_{39}$) are the same as those in the genomes
358 of a laboratory strain described in Davidson *et al.*, 2020 and of a clinical isolate (accession: LC521925),
359 respectively.

360 For construction of the strains we used the CPER method, in which 11 PCR-generated cDNA fragments covering
361 the viral full genome plus another DNA fragment with controlling sequences are stitched into a circular DNA that
362 can produce viral genomic RNA upon introduction to cells (Okamura et al., 2023; Torii et al., 2021). Primers used
363 to prepare PCR fragments are listed in Table 2. The PCR and CPER reaction were performed using PrimeSTAR
364 GXL DNA polymerase (Takara Bio, Cat# R050A). The CPER product was transfected into BHK/hACE2 cells
365 using Lipofectamine LTX (Thermo Fisher Scientific). The cells were incubated at 32 °C in a CO₂ incubator for one
366 week. At this point, the supernatants were collected and transferred to 6-well plates which had been pre-seeded with
367 VeroE6/TMPRSS2 cells. The viruses contained in the supernatants of these cells were collected when cytopathic
368 effects (CPEs) were clearly observed.

369

370 **Virus titration**

371 The infectious titer of SARS-CoV-2 was determined based on the median tissue culture infectious dose (TCID₅₀) or
372 plaque formation assay (PFA). In order to obtain the TCID₅₀, virus-containing samples were serially diluted with
373 D-MEM supplemented with 2% FBS. Fifty μ L of each diluted sample were used to infect Vero cells in 96-well
374 plates. The cells were fixed with 10% formalin after incubating at 32 °C for four days and stained with crystal
375 violet solution. The TCID₅₀ was calculated using the Behrens-Karber method. For the calculation of PFU, 500 μ L
376 of the diluted samples were added to confluent Vero cells in 6-well plates and incubated at 32 °C for 3 h to allow
377 virus adsorption. The supernatant was removed, and the cells were washed with D-PBS. Subsequently, 2 mL of 1%

378 SeaPlaque agarose dissolved in D-MEM and supplemented with 2% FBS were layered on the cells. The plates were
379 incubated at 32 °C in a CO₂ incubator for three days, fixed with 10% formalin, and stained with crystal violet
380 solution. Visible plaques were counted to calculate PFU.

381

382 **Viral proliferation assay at various temperatures**

383 The SARS-CoV-2 B-1 (D614G) strain or vaccine candidate strain was used to infect Vero cells at a multiplicity of
384 infection (MOI) of 0.01. Infected cells were cultured at 32 °C or 37 °C, and a part of the supernatant was collected
385 daily and stored at -80 °C. The viral titers of these samples were determined using the TCID₅₀ assay described
386 above. Each experiment was performed in triplicates.

387

388 **Quantitative RT-PCR**

389 Viral RNA was extracted from various samples using the IndiSpin Pathogen Kit (INDICAL BIOSCIENCE)
390 following the manufacturer's instructions. RNA was quantified using a DetectAmp SARS-CoV-2 RT-PCR kit
391 (Sysmex). Five μL of a 100-fold dilution of the extracted RNA were used to perform the reverse transcription and
392 subsequent qPCR reactions in a 7500 Fast Real-time PCR System (Applied Biosystems). The reactions were
393 performed in triplicate.

394

395 **Neutralization assay**

396 The neutralizing activity of sera was evaluated using authentic SARS-CoV-2. One hundred PFU of authentic virus
397 were mixed with serially diluted serum samples and incubated at 37 °C for 1 h. The mixtures were then transferred
398 to confluent Vero cells in 96-well plates. The infected cells were fixed with 10% formalin and stained with crystal
399 violet solution after an incubation period of three days at 32 °C. Neutralization titers were calculated as the inverse
400 of the maximum dilution that prevented CPE formation. Additionally, neutralizing antibody titers against
401 SARS-CoV-2 in the serum of monkeys that received three doses of BK2102 were quantified at day 42 with
402 luciferase-expressing pseudovirus carrying the SARS-CoV-2 Wuhan strain spike (Abnova Corporation). Serum
403 samples were 4-fold serially diluted and incubated at room temperature for 30 minutes with Spike-pseudovirus.
404 Subsequently, the mixtures were added into wells containing 293-ACE2 cells. The luciferase expression of the
405 infected cells was detected with Luciferase Assay System (Promega) after an incubation of 46 hours at 37 °C. NT50
406 neutralization titers were determined by a calibration curve with GraphPad prism.

407

408 **Enzyme-linked immune-sorbent assay (ELISA)**

409 Half-well protein high-binding 96-well plates (Greiner) were coated with recombinant SARS-CoV-2 (D614G)
410 spike or nucleocapsid proteins (SinoBiologicals) dissolved in PBS (50 ng/100 µL/well) and incubated at 4 °C
411 overnight. 1% BSA PBS was used as blocking solution, and 1% BSA PBS-T was used to dilute the sera, antibodies,
412 and streptavidin. Antigen-specific IgG antibodies in hamster sera were detected using horseradish peroxidase
413 (HRP)-labeled goat anti-Syrian hamster IgG H+L Ab (Abcam, 1/30000 dilution). Biotinylated anti-Syrian hamster
414 IgG1, IgG2/3 subclass Abs (Southern Biotech, 1/100 and 1/200000 dilutions, respectively) and IgA Ab (Brookwood
415 Biomedical, 1/100 dilution) were used and detected with HRP-labeled streptavidin (Abcam, 1/1000 dilution).
416 Mouse IgG was detected using HRP-labeled goat anti-mouse IgG H&L (Abcam, 1/100000 dilution). TMB
417 one-component substrate and stopping solutions (Thermodynamics) were used for the chromogenic reaction, and the
418 optical density (OD) was measured at 450-650 nm with a microplate reader. Endpoint titers of IgG were calculated
419 based on a calibration curve using a five-parameter, non-linear curve fitting. Samples for which the endpoint titers
420 could be calculated were defined as ‘Positive’, and the mean was calculated using only the titer of positive samples.
421

422 **Enzyme-linked immunosorbent spot (ELISPOT) assay**

423 Hamster IFN- γ ELISPOT was performed using the ELISpot Flex: Hamster IFN- γ (ALP) (MABTECH) kit
424 according to the manufacturer’s instructions. MSIP plates (Millipore) were washed 5 times with sterile water,
425 coated with Capture mAb (MTH21) and incubated overnight at 4°C. Coated plates were washed 5 times with
426 PBS, blocked for 30 minutes (at room temperature) with RPMI medium supplemented with 10% FBS and
427 antibiotics. Two-hundred and fifty thousand splenocytes were seeded in each well and stimulated with
428 SARS-CoV-2 spike or nucleocapsid peptide pools, consisting mainly of 15-mer sequences with 11-amino-acid (aa)
429 overlaps (Miltenyi Biotec). Negative controls for non-stimulated cells were included in the test. After stimulation
430 for a day at 37°C, the spots were detected with the detection mAb (MTH29-biotin) and Streptavidin-ALP. After
431 drying the plate, spots were counted using the ImmunoSpot® S5 (Cellular Technology Limited). The average
432 number of spots in the two negative control wells was subtracted from each well stimulated with peptide pools. The
433 result was shown as the difference in spot-forming cells (SFC)/10⁶ splenocytes between the negative control and
434 the peptide pool stimulated wells.

435

436 **mRNA and LNP production process**

437 A codon-optimized mRNA encoding the SARS-CoV-2 S protein was *in vitro* synthesized and purified following the
438 procedure of Moderna Therapeutics' mRNA-1273 as reference (Hassett et al., 2019). The mRNA was encapsulated
439 using a NanoAssemblr™ Ignite™ nanoparticle formulation system. The sample was subsequently concentrated to
440 1 μ g/100 μ L/dose using Amicon Ultra® 4-100K, and filtered through a 0.45 μ m membrane for *in vivo* use.

441

442 **Evaluation of immunogenicity in hamsters**

443 Four-week-old male Syrian hamsters were purchased from Japan SLC Inc. After a one-week housing period, they
444 were first anesthetized via inhalation with 3% isoflurane, followed by intraperitoneal anesthesia with a combination
445 of medetomidine, midazolam, and butorphanol (0.3, 4, and 5 mg/kg, respectively). One thousand or 1 \times 10⁴ PFU of
446 BK2102 were administered intra-nasally in a volume of 20 μ L to confine administration to the upper respiratory
447 tract. To evaluate the humoral immune response, blood samples were collected from the facial vein using a lancet
448 (MEDIPoint), and neutralizing antibody titers in the sera were measured as described above. In addition, to evaluate
449 mucosal immunity, nasal wash samples were collected through a plastic catheter using two separate washes of 1 mL
450 of PBS. Only one animal inoculated BK2102 once was not used for IgA measurement because the nasal wash was
451 contaminated with blood. To evaluate the cellular immune response, 1 \times 10⁴ PFU of BK2102-inoculated hamsters
452 were euthanized one week post-inoculation, and spleens were collected. The spleens were mechanically crushed
453 with the piston of a syringe and passed through a cell strainer (100 μ m). Cell suspensions were treated with RBC
454 lysis buffer (Biolegend) to remove red blood cells, as per manufacturer instructions. The spleen cells were then
455 suspended in RPMI medium supplemented with 10% FBS and antibiotics at a concentration of 1 \times 10⁶ cells/mL and
456 stimulated by SARS-CoV-2 spike or nucleocapsid peptide pools, consisting mainly of 15-mer sequences with 11-
457 aa overlaps (Miltenyi Biotec). Negative controls for non-stimulated cells were included in the test. Stimulated cells
458 were incubated at 37 °C for one day, and supernatants were collected and stored at -80 °C until use.
459 Interferon-gamma (IFN- γ) and interleukin-4 (IL-4) were quantified with commercially-available ELISA kits
460 (MABTECH AB and FineTest, respectively) following the manufacturer's protocol. Furthermore, IFN- γ -producing
461 cells were identified after a 22-hour stimulation culture with spike or nucleocapsid peptide pools, and analyzed by
462 ELISpot Flex (MABTECH AB). We also performed a challenge assay to investigate whether these immune
463 responses were effective in protecting against other variants. Four weeks post-inoculation with 1 \times 10³ PFU or 1 \times 10⁴
464 PFU of BK2102, 3 \times 10⁵ PFU of SARS-CoV-2 D614G strain, TY41-702 strain (Omicron variant BA.5) or gamma

465 strain were used to challenge the hamsters through the intra-nasal route to target the lower respiratory tract. The
466 weights of the hamsters were monitored daily, and they were euthanized four days after the challenge. Lungs were
467 divided, cut into small pieces, and homogenized with a biomasher II device in 500 μ L of D-MEM. Supernatants
468 were collected as lung homogenates after centrifugation at 300 $\times g$ for 5 min at 4 °C. Nasal wash specimens were
469 obtained by flushing one mL of D-PBS into the nasal cavity from the trachea in the direction of the nose where it
470 was collected. Infectious virus titers in these samples were evaluated using a plaque formation assay, as described
471 above. To evaluate immune response persistence, hamsters inoculated with 1×10^3 PFU or 1×10^4 PFU of BK2102
472 were maintained for 364 days post-infection. Blood samples were collected from the facial vein using a lancet
473 (MEDIpoint), and neutralizing antibody titers were measured. At 420 days after inoculation, a viral challenge assay
474 was performed to evaluate whether the immunity contributing to infection protection was maintained. Hamsters
475 were infected with 3×10^5 PFU of the SARS-CoV-2 D614G strain, and weight changes were monitored daily for 10
476 days post-infection.

477

478 **Evaluation of immunogenicity in monkeys**

479 Sixteen male and female cynomolgus monkeys, two-to three years old, were purchased from Hamri Inc. After a
480 one-week acclimatization housing period, they were sedated with a mixture of ketamine (5 mg/kg) and xylazine (2
481 mg/kg) administered intramuscularly. Ten million PFU of BK2102 were inoculated intranasally in a volume of 1.6
482 mL. Four monkeys were inoculated with a single-dose of BK2102, and blood samples were collected at 0, 28, 35
483 and 42 days after inoculation from the radial vein, femoral vein, or abdominal vena cava using a syringe.
484 Neutralizing antibody titers in the sera were measured as described above to evaluate the humoral immune response.
485 Another twelve monkeys were inoculated with 1×10^7 PFU of BK2102 or the solvent, receiving three doses given at
486 two-week intervals. Blood samples were collected 42 days after the last inoculation, and neutralizing antibody titers
487 in the sera were measured.

488

489 **Evaluation of BK2102 pathogenicity in hamsters**

490 Four-week-old male Syrian hamsters were obtained from Japan SLC Co. Ltd. After acclimatization, 1×10^4 PFU of
491 BK2102 or 1×10^4 PFU of the SARS-CoV-2 D614G strain were used for infection, as described above. These and
492 naïve hamsters were euthanized three days post-infection. The heads and lungs were collected and fixed in 10%
493 formalin. Sections of the head were prepared to expose different regions of the nasal cavity and were stained with

494 hematoxylin-eosin or an immunohistochemistry (IHC) staining kit using a SARS-CoV-2 spike RBD-specific
495 antibody (Sino Biological). The damage score of each section was defined as 0: not remarkable (< 10%); 1:
496 minimal (10-50%); and 2: mild (50-70%).

497

498 ***In vivo* passage of BK2102 in hamsters**

499 Four-week-old male Syrian hamsters were obtained from Japan SLC Co. Ltd. After a one-week acclimatization
500 period, 1×10^5 PFU of BK2102 or A50-18 strain (a TS mutant isolated in a previous report) in a volume of 20 μ L
501 were used to infect the hamsters intranasally. The hamsters were observed daily, and their body weights were
502 measured at 0 and 3 days post-infection. At this point, hamsters were euthanized, and nasal wash specimens were
503 collected with 500 μ L D-PBS. After filtration through 0.45- μ m and 0.22- μ m filters, 100 μ L were used to infect a
504 new group of naive hamsters. The passage of inoculum was repeated three times, and nasal wash samples were
505 collected at every passage. The viral genome in these nasal wash samples was quantified via qPCR, as described
506 above. Sanger sequencing was performed to analyze the mutations introduced to generate an attenuated phenotype.

507

508 **Generation of human ACE2-transgenic mice**

509 The transgene was prepared as described previously (Ikawa et al., 1995; Okabe et al., 1997). Briefly, the
510 hACE2-coding sequence was amplified via PCR with the following primers:
511 5'-aatctagagccgcgcgcgcatgtcaagcttccctggccttc-3' and 5'-aaactcgagctaaaaggaggctgaacatcatca-3', using human
512 testis cDNA as the template. The *Xba*I and *Xho*I sites included in the PCR primers were used to introduce the
513 amplified hACE2 cDNA into a pCAG1.1 expression vector (<https://www.addgene.org/173685/>) containing the
514 chicken *beta-actin* promoter and cytomegalovirus enhancer, the *beta-actin* intron, and the rabbit *globin*
515 poly-adenylation signal. The transgene fragment was excised using *Sac*I and *Pac*I and gel-purified. Transgenic
516 mouse lines were generated by injecting purified transgene fragments into C57BL/6N \times C57BL/6N fertilized eggs. A
517 total of 350 DNA-injected eggs were transplanted into pseudopregnant mice, resulting in 32 newborn pups. Three
518 of these were transgenic, and the first line was established as Tg (CAG-hACE2)01Osb. The Tg mice were kept of a
519 B6D2F1 background. Expression of hACE2 in each organ was confirmed via western blotting. Briefly, organ
520 homogenates were prepared in radioimmunoprecipitation assay buffer containing a proteinase inhibitor cocktail
521 (Thermo Scientific) using a bead mill homogenizer (Fischer Scientific). Protein concentrations were measured via
522 BCA assay (Pierce), and 10 μ g of protein were subjected to SDS-PAGE and subsequent western blotting. hACE2

523 and beta-actin were detected using a rabbit polyclonal antibody against hACE2 (Abcam: ab15348) and a mouse
524 monoclonal antibody to beta-actin (Abcam: ab8226) with Can Get Signal solutions (TOYOB0).

525

526

527 **Evaluation of safety in transgenic mice**

528 Seven- to nine-week-old Tg mice were anesthetized via inhalation of 3% isoflurane, then receiving a combination
529 of medetomidine, midazolam, and butorphanol (0.3, 4, and 5 mg/kg, respectively) intraperitoneally. Mice were
530 infected with SARS-CoV-2 in a volume of 20 μ L, and their weights were measured daily. Mice that reached
531 humane endpoints, such as difficulty walking or rapid weight loss, were euthanized by bleeding under isoflurane
532 anesthesia. The brain, olfactory bulbs, nasal turbines, and lungs were collected. Mice infected with live-attenuated
533 strains that did not reach the humane endpoint were also euthanized 14 days post-infection.

534

535 **Statistical analysis**

536 Two-way analysis of variance (ANOVA), one-way ANOVA or Mann–Whitney *U* test was used to calculate
537 statistical significance. These data were analyzed using GraphPad Prism 9.4.1 software. Statistical significance was
538 set at a *p*-value < 0.05.

539

540 **ACKNOWLEDGMENTS**

541 We appreciate the assistance of Paola Miyazato, Manae Morishima, and Kaori Yamamoto from The Research
542 Foundation for Microbial Diseases of Osaka University (BIKEN). The authors thank Shihō Torii, Chikako Ono,
543 and Yoshiharu Matsuura for their CPER technical support. We would like to thank Mitsuko Mori for generation of
544 human ACE2-transgenic mice. The authors also acknowledge the NGS Core facility of the Genome Information
545 Research Center at the Research Institute for Microbial Diseases of Osaka University for their support with
546 next-generation sequencing analyses. This work was conducted as part of “The Research Foundation for Microbial
547 Diseases of Osaka University Project for Infectious Disease Prevention”.

548

549 **FUNDING**

550 This work was supported by BIKEN, Japan Agency for Medical Research and Development (AMED) grants
551 (JP20pc0101047, JP23fa627002) and Central institute for experimental animals grant (JP23fa627006).

552

553 **AUTHOR CONTRIBUTIONS**

554 M.S. and S.O. conducted and controlled most of the experiments and prepared the manuscript. W.K. performed the
555 *in vivo* passage assays. T.N. and M.I. established Tg-mice. A.Y., and S.G. constructed various recombinant viruses.
556 T.G., and H.S. supported the experiments related to prolonged protection and *in vivo* passage assays. L.S.
557 conducted the cellular immunity assays. M.M. and T.M. measured spike-specific IgA titer by ELISA. M.Y.
558 performed neutralizing antibody assay of monkeys using luciferase-expressing pseudovirus carrying the
559 SARS-CoV-2 Wuhan strain's spike protein. S.T., K.Y., and H.E. designed and managed the study.

560

561 **DECLARATION OF INTERESTS**

562 M.S., S.O., T.G., H.S., S.L., A.Y., S.G., M.M., M.Y., T.M., S.T., K.Y., and H.E. are employed by BIKEN. We report
563 that S.O., A.Y., and H.E. are named as the inventors on a patent application that describes the use of the TS mutants
564 and S.T., H.E., S.O., and A.Y. in another patent application relating to the attenuated strain. S.T. and H.E. are
565 managers of BIKEN. K.Y. is the director-general of BIKEN.

566

567 **Figure legends**

568 **Fig. 1 Growth dynamics of the vaccine candidate strain at different temperatures**

569 Vero cells were infected with the wild-type parent B-1 (D614G) or the BK2102 vaccine candidate strains at a
570 multiplicity of infection (MOI) = 0.01, and virus titers in the supernatants were determined for samples harvested
571 every day, after incubating at 32 °C (A) or 37 °C (B). Infectious virus titers were determined using the TCID₅₀
572 method. Symbols indicate the average of three independent experiments, and error bars represent the SD. The limit
573 of detection (LOD) was 2.05 log₁₀ TCID₅₀/mL, and for samples below the LOD, the mean value was calculated as
574 1 log₁₀ TCID₅₀/mL. The dotted line represents the assay's LOD. Days post-infection are indicated on the x-axis.
575 For statistical analysis, two-way ANOVA with Sidak's multiple comparison test was performed (ns, not significant;
576 ****, $p < 0.0001$).

577

578 **Fig. 2 Immunogenicity of the vaccine candidate in hamsters**

579 (A) Hamsters were inoculated with 1×10^3 or 1×10^4 PFU of BK2102 intranasally, and the serum was collected four
580 weeks after inoculation. Spike-specific IgG in the sera of BK2102-inoculated hamsters and mock-treated hamsters

581 was detected by ELISA. Symbols depict data of individual hamsters, and bars correspond to the median value. The
582 limit of dilution is indicated in the x- axis.

583 (B) Neutralizing antibodies in the sera were induced in BK2102-inoculated hamsters. Neutralizing antibodies in the
584 sera were measured at day 28 post-inoculation using the following authentic SARS-CoV-2 strains: wild-type
585 D614G (left), Delta (middle), and BA.5 (right). Symbols represent titers of individual animals, and the bars indicate
586 the median. The LOD was 2^5 , and for samples below the LOD, the mean value was set to 2^4 . The dotted line
587 represents the assay's LOD. For statistical analysis, one-way ANOVA with Tukey's multiple comparison test was
588 performed (ns, not significant; ***, $p < 0.001$; ****, $p < 0.0001$).

589 (C) Neutralizing antibodies persist in hamsters for at least 364 days. The neutralizing antibody titer against the
590 authentic D614G wild-type strain was measured periodically in the sera of hamsters inoculated with BK2102 (once
591 or twice at four-week intervals with 1×10^3 or 1×10^4 PFU) for about a year. Symbols represent the mean of 9 to 10
592 animals, and error bars represent the SD. The LOD was 2^4 , and for samples below the LOD, the mean value was set
593 to 2^3 . The dotted line represents the assay's LOD. For statistical analysis, two-way ANOVA with Tukey's multiple
594 comparison test was performed (ns, not significant).

595 (D and E) Evaluation of the cellular immune response in BK2102-inoculated hamsters. Splenocytes were collected
596 one week post-inoculation with 1×10^4 PFU of BK2102 and were stimulated *in vitro* with spike or nucleocapsid
597 peptide pools. IFN- γ (D) and IL-4 (E) in the supernatants were measured with commercially available ELISA kits
598 (MABTECH AB and FineTest, respectively). Symbols depict data of individual hamsters, and bars indicate the
599 median. For statistical analysis, one-way ANOVA with Tukey's multiple comparison test was performed (ns, not
600 significant; *, $p < 0.05$; ***, $p < 0.001$).

601 (F) Evaluation of IFN- γ -secreting cells. Four hamsters were inoculated with 1×10^4 PFU of BK2102 once and the
602 splenocytes were collected a week later. Splenocytes were stimulated *in vitro* with spike or nucleocapsid peptide
603 pools for 24 h. IFN- γ -secreting splenocytes were quantified by ELISPOT. Symbols depict data of individual
604 hamsters, and bars indicate the median. For statistical analysis, two-way ANOVA with Sidak's multiple comparison
605 test was performed (ns, not significant; *, $p < 0.05$).

606

607 **Fig. 3 BK2102 induces protective immunity.**

608 (A and B) BK2102 protects hamsters against homologous and heterologous virus challenges. Hamsters that
609 received a full vaccination protocol with the indicated doses of BK2102 were challenged with 3×10^5 PFU of

610 wild-type D614G (A) or BA.5 (B) strains, and their body weight was monitored for four days. Body weight is
611 expressed as a percentage of the initial weight. Two-way ANOVA with Tukey's multiple comparison test was
612 performed for statistical analysis (**, $p < 0.01$; ****, $p < 0.0001$).
613 (C, D, F and G) The infectious virus titer in the lungs and nasal wash specimens taken on day four post-challenge
614 was measured via a plaque assay for the wild-type D614G strain (C and D) and for the BA.5 strain (F and G). The
615 LOD was $1.3 \log_{10}$ PFU/g or PFU/mL, and for samples below the LOD, the mean value was calculated as $1.0 \log_{10}$
616 PFU/g or PFU/mL. The dotted line represents the assay's LOD. One-way ANOVA with Dunnett's multiple
617 comparison test was performed for statistical analysis (ns, not significant; *, $p < 0.05$; **, $p < 0.01$; ***, $p < 0.001$).
618 (E and H) Lung inflammation scores were determined via H&E staining of D614G- (E) and BA.5-challenged (H)
619 hamsters. The percentage of the disrupted area in the entire visual field was classified as 0: not remarkable (< 10%);
620 1: minimal (10–50%); and 2: mild (50–70%). One-way ANOVA with Tukey's multiple comparison test was
621 performed for statistical analysis (ns, not significant; *, $p < 0.05$).
622 (I) Weight changes after the challenge assay one year post-inoculation with BK2102. Hamsters inoculated with
623 BK2102 were challenged with the wild-type D614G strain at 3×10^5 PFU on 420 days. Nine-month-old elder
624 hamsters were used as the naïve group. The symbols represent the average weight of the hamsters, and error bars
625 indicate the mean SD. Two-way ANOVA with Tukey's multiple comparison test was performed for statistical
626 analysis (****, $p < 0.0001$).
627

628 **Fig. 4 BK2102 caused localized tissue damage and posed as low risk of transmission.**

629 (A) Scheme for the evaluation of tissue damage in acute infection with BK2102 in a hamster model. The wild-type
630 D614G strain was used as a positive control.
631 (B) Inflammation score of nasal cavity sections and lungs determined via H&E. The percentage of the disrupted
632 area in the entire visual field was classified as 0: not remarkable (< 10%); 1: minimal (10–50%); 2: mild (50–70%),
633 respectively. One-way ANOVA with Tukey's multiple comparison test was performed for statistical analysis (ns,
634 not significant; ***, $p < 0.001$).
635 (C) SARS-CoV-2 spike protein staining in the nasal cavity sections and lungs determined via
636 immunohistochemistry using a SARS-CoV-2 spike RBD-specific antibody. The proportion of positive cells in the
637 entire visual field was classified as 0: not remarkable (< 10%); 1: minimal (10–50%); and 2: mild (50–70%),
638 respectively. One-way ANOVA with Tukey's multiple comparison test was performed for statistical analysis (ns,

639 not significant; ***, $p < 0.001$; ****, $p < 0.0001$).

640 (D) Scheme for the evaluation of BK2102 transmission via *in vivo* passage in hamsters. The TS-strain A50-18 was
641 used as a positive control.

642 (E) Ct values obtained for the RT-PCR performed using RNA extracted from the nasal wash specimens.

643

644 **Fig. 5 BK2102 showed a highly safe phenotype in Tg mice**

645 (A and B) Survival rate of Tg mice infected with the wild-type D614G, B-1 ΔFCS, L50-33, and A50-18 TS strains

646 (A) and BK2102 (B).

647

648 **Supplementary figure legends**

649 **Supplementary fig. 1 Characteristics of the vaccine candidates.**

650 (A) Candidate vaccine constructs. The abbreviations shown in the figure are respectively, ORF: Open Reading
651 Frame, NSP: Non-Structural Protein, FCS: Furin Cleavage Site.

652 (B) Immunogenicity of vaccine candidates in hamsters. Neutralizing antibody titers in the sera were measured 21
653 days post-inoculation.

654

655 **Supplementary fig. 2 Comparison of immunogenicity of BK2102 with other vaccine modalities**

656 (A) An mRNA vaccine was administered to hamsters intramuscularly twice at 2-week intervals, and BK2102 was
657 inoculated to another group of hamsters intranasally once or twice at 2-week intervals. Neutralizing antibodies in
658 the sera were measured at day 28 post-first inoculation using authentic SARS-CoV-2 wild-type D614G strain. The
659 LOD was 2^3 , and for samples below the LOD, the mean value was set to 2^2 . The dotted line represents the assay's
660 LOD. For statistical analysis, one-way ANOVA with Tukey's multiple comparison test was performed (ns, not
661 significant; *, $p < 0.05$; **, $p < 0.01$; ***, $p < 0.001$).

662 (B) SARS-CoV-2 spike-specific IgA measured via ELISA of nasal wash from inoculated hamsters, 28 days
663 post-first inoculation. To calculate the IgA titer, the dilution factor at an OD value of 0.1 was considered and
664 corrected with the value of the standard serum included in each plate. For statistical analysis, one-way ANOVA
665 with Tukey's multiple comparison test was performed (ns, not significant; *, $p < 0.05$; **, $p < 0.01$; ***, $p < 0.001$).

666 (C) SARS-CoV-2 spike-specific total IgG and IgG subclasses (IgG1 and IgG2/3) were measured in the serum of
667 inoculated hamsters, 28 days post-first inoculation via ELISA.

668 (D) Recombinant SARS-CoV-2 Spike-protein mixed with an alum adjuvant was administered to hamsters
669 intramuscularly twice at 2-week intervals, and BK2102 inoculated once to another group of hamsters intranasally.
670 SARS-CoV-2 spike-specific total IgG and IgG subclasses (IgG1 and IgG2/3) were measured via ELISA of serum
671 from inoculated hamsters, 28 days post-inoculation.

672

673 **Supplementary fig. 3 Immunogenicity of BK2102 in monkeys**

674 (A) Immune response in monkeys. Neutralizing antibodies in the sera of monkeys inoculated with 10^7 PFU of
675 BK2102 was measured at the indicated time points post-inoculation. The data for individual monkeys are shown.
676 The LOD was 2^3 , and for samples below the LOD, the mean value was set to 2^2 . The dotted line represents the
677 assay's LOD.

678 (B) Neutralizing antibodies in the sera were induced in BK2102-inoculated monkeys. Monkeys were inoculated
679 with 10^7 PFU of BK2102 or the solvent, receiving three doses given at two-week intervals. Neutralizing antibodies
680 in the sera were measured at day 42 post-inoculation using luciferase-expressing pseudovirus carrying the
681 SARS-CoV-2 Wuhan strain's spike protein. Symbols represent titers of individual animals, and the bars indicate the
682 median. The LOD was $2^{3.8}$, and for samples below the LOD, the mean value was set to 2^2 . The dotted line
683 represents the assay's LOD. For statistical analysis, Mann-Whitney *U* test was performed (**, $p < 0.01$).

684

685 **Supplementary fig. 4 Persistence of the neutralizing antibodies induced by BK2102 in each group.**

686 Results for individual mice in the group used in the experiment of Figure 2D are shown. Light-blue circles
687 correspond to mice inoculated with 10^3 PFU, while dark-blue circles correspond to mice inoculated with 10^4 PFU.
688 Dotted lines depict one dose, and solid lines to two doses. ¶ Hamsters died due to aging, fighting, or mishandling.

689

690 **Supplementary fig. 5 BK2102 induces protective immunity against SARS-CoV-2 gamma strain**

691 (A) Neutralizing antibodies in the sera were induced by BK2102-inoculated hamsters. Neutralizing antibodies in
692 the sera were measured at day 28 post-inoculation using the following authentic SARS-CoV-2 strains: wild-type
693 D614G (left) and gamma (right). Symbols represent titers of individual animals, and the bars indicate the median.
694 The dotted line represents the assay's LOD. For statistical analysis, one-way ANOVA with Tukey's multiple
695 comparison test was performed (ns, not significant; ****, $p < 0.0001$).

696 (B) Weight changes in vaccinated mice after the challenge with the gamma strain. Hamsters inoculated with

697 BK2102 were challenged with 3×10^5 PFU of the gamma strain on day 28 post-inoculation. The symbols represent
698 the average weight of the hamsters, and error bars indicate the mean SD. Two-way ANOVA with Tukey's multiple
699 comparison test was performed for statistical analysis (****, $p < 0.0001$).

700

701 **Supplementary fig. 6 Evaluation of BK2102 onward transmission in hamsters**

702 (A) Scheme of the onward transmission experiment. Hamsters that received the full vaccination protocol with the
703 indicated doses of BK2102 and recombinant SARS-CoV-2 spike protein mixed with an alum adjuvant were
704 challenged with the wild-type D614G strain. Vaccinated and infected animals were co-housed with naïve hamsters
705 at one day post-infection.

706 (B) Body weight was monitored for six days.

707

708 **Supplementary fig. 7 Evaluation of the tissue damage induced by BK2102**

709 H&E staining of nasal cavity sections and lungs is shown for hamsters infected with the wild-type D614G strain or
710 the BK2102 vaccine candidate. IHC results using a SARS-CoV-2 spike RBD-specific antibody are shown in for the
711 same sections. Scale bar: 200 μ m.

712

713 **Supplementary fig. 8 BK2102 showed a low risk of transmission**

714 The body weights of hamsters inoculated with the A50-18 TS and BK2102 strains obtained in the *in vivo* passage
715 experiment detailed in Figure 4D are shown. For statistical analysis, two-way ANOVA with Holm-Sidak's multiple
716 comparison test was performed (ns, not significant; **, $p < 0.01$; ***, $p < 0.001$; ****, $p < 0.0001$).

717

718 **Supplementary fig. 9 Expression of hACE2 and body weight of Tg mice after infection**

719 (A) The expression of hACE2 in various tissues of Tg mice was detected via western blotting using an anti-human
720 ACE2 antibody (ab15348).

721 (B) The body weight of Tg mice infected with the wild-type D614G, B-1 Δ FCS, L50-33, and A50-18 TS strains.
722 The symbols represent the average weight of each group, and error bars indicate the mean SD. Two-way ANOVA
723 with Tukey's multiple comparison test was performed for statistical analysis (ns, not significant; ****, $p < 0.0001$).

724 (C) The body weight of Tg mice inoculated with the BK2102. The symbols represent the average weight of each
725 group, and error bars indicate the mean SD. Two-way ANOVA with Tukey's multiple comparison test was

726 performed for statistical analysis (ns, not significant).

727

728 Asaka, M.N., Utsumi, D., Kamada, H., Nagata, S., Nakachi, Y., Yamaguchi, T., Kawaoka, Y., Kuba, K.,
729 and Yasutomi, Y. (2021). Highly susceptible SARS-CoV-2 model in CAG promoter-driven hACE2-transgenic
730 mice. *JCI Insight* *6*. 10.1172/jci.insight.152529.

731 Baden, L.R., El Sahly, H.M., Essink, B., Kotloff, K., Frey, S., Novak, R., Diemert, D., Spector, S.A.,
732 Roush, N., Creech, C.B., et al. (2021). Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine.
733 *N Engl J Med* *384*, 403–416. 10.1056/NEJMoa2035389.

734 Bao, L., Deng, W., Huang, B., Gao, H., Liu, J., Ren, L., Wei, Q., Yu, P., Xu, Y., Qi, F., et al. (2020).
735 The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. *Nature* *583*, 830–833.
736 10.1038/s41586-020-2312-y.

737 Bull, J.J. (2015). Evolutionary reversion of live viral vaccines: Can genetic engineering subdue it?
738 *Virus Evol* *1*. 10.1093/ve/vev005.

739 Chiuppesi, F., Nguyen, V.H., Park, Y., Contreras, H., Karpinski, V., Faircloth, K., Nguyen, J., Kha,
740 M., Johnson, D., Martinez, J., et al. (2022). Synthetic multiantigen MVA vaccine COH04S1 protects
741 against SARS-CoV-2 in Syrian hamsters and non-human primates. *NPJ Vaccines* *7*, 7.
742 10.1038/s41541-022-00436-6.

743 Cong, Y., Ulasli, M., Schepers, H., Mauthe, M., V'Kovski, P., Kriegenburg, F., Thiel, V., de Haan,
744 C.A.M., and Reggiori, F. (2020). Nucleocapsid Protein Recruitment to Replication-Transcription
745 Complexes Plays a Crucial Role in Coronaviral Life Cycle. *J Virol* *94*. 10.1128/JVI.01925-19.

746 Davidson, A.D., Williamson, M.K., Lewis, S., Shoemark, D., Carroll, M.W., Heesom, K.J., Zambon, M.,
747 Ellis, J., Lewis, P.A., Hiscox, J.A., and Matthews, D.A. (2020). Characterisation of the transcriptome
748 and proteome of SARS-CoV-2 reveals a cell passage induced in-frame deletion of the furin-like cleavage
749 site from the spike glycoprotein. *Genome Med* *12*, 68. 10.1186/s13073-020-00763-0.

750 Desai, A., Shankar, S.K., Ravi, V., Chandramuki, A., and Gourie-Devi, M. (1995). Japanese encephalitis
751 virus antigen in the human brain and its topographic distribution. *Acta Neuropathol* *89*, 368–373.
752 10.1007/BF00309631.

753 Dutta, N.K., Mazumdar, K., and Gordy, J.T. (2020). The Nucleocapsid Protein of SARS-CoV-2: a Target
754 for Vaccine Development. *J Virol* *94*. 10.1128/JVI.00647-20.

755 Hasanzadeh, M., Novikov, M., Ambrose, R., Chekaoui, A., Newman, D., Ding, J., Giles-Davis, W.,
756 Xiang, Z., Zhou, X.Y., Liu, Q., et al. (2023). Heterologous chimpanzee adenovirus vector immunizations
757 for SARS-CoV-2 spike and nucleocapsid protect hamsters against COVID-19. *Microbes Infect* *25*, 105082.
758 10.1016/j.micinf.2022.105082.

759 Hassett, K.J., Benenato, K.E., Jacquinot, E., Lee, A., Woods, A., Yuzhakov, O., Himansu, S., Deterling,
760 J., Geilich, B.M., Ketova, T., et al. (2019). Optimization of Lipid Nanoparticles for Intramuscular
761 Administration of mRNA Vaccines. *Mol Ther Nucleic Acids* *15*, 1–11. 10.1016/j.omtn.2019.01.013.

762 Hoffmann, M., Kleine-Weber, H., and Pohlmann, S. (2020a). A Multibasic Cleavage Site in the Spike Protein
763 of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. *Mol Cell* *78*, 779–784 e775.
764 10.1016/j.molcel.2020.04.022.

765 Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., Schiengens, T.S.,
766 Herrler, G., Wu, N.H., Nitsche, A., et al. (2020b). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2
767 and Is Blocked by a Clinically Proven Protease Inhibitor. *Cell* *181*, 271–280 e278.
768 10.1016/j.cell.2020.02.052.

769 Hoft, D.F., Lottenbach, K.R., Blazevic, A., Turan, A., Blevins, T.P., Pacatte, T.P., Yu, Y., Mitchell, M.C.,
770 Hoft, S.G., and Belshe, R.B. (2017). Comparisons of the Humoral and Cellular Immune Responses
771 Induced by Live Attenuated Influenza Vaccine and Inactivated Influenza Vaccine in Adults. *Clin Vaccine
772 Immunol* *24*. 10.1128/CVI.00414-16.

773 Ikawa, M., Kominami, K., Yoshimura, Y., Tanaka, K., Nishimune, Y., and Okabe, M. (1995). A rapid and
774 non-invasive selection of transgenic embryos before implantation using green fluorescent protein (GFP).
775 *FEBS Lett* *375*, 125–128. 10.1016/0014-5793(95)01162-8.

776 Jha, N.K., Ojha, S., Jha, S.K., Dureja, H., Singh, S.K., Shukla, S.D., Chellappan, D.K., Gupta, G.,

777 Bhardwaj, S., Kumar, N., et al. (2021). Evidence of Coronavirus (CoV) Pathogenesis and Emerging Pathogen
778 SARS-CoV-2 in the Nervous System: A Review on Neurological Impairments and Manifestations. *J Mol
779 Neurosci* *71*, 2192–2209. 10.1007/s12031-020-01767-6.

780 Johnson, B.A., Xie, X., Bailey, A.L., Kalveram, B., Lokugamage, K.G., Muruato, A., Zou, J., Zhang,
781 Juelich, T., Smith, J.K., et al. (2021). Loss of furin cleavage site attenuates SARS-CoV-2
782 pathogenesis. *Nature* *591*, 293–299. 10.1038/s41586-021-03237-4.

783 Johnston, S.C., Ricks, K.M., Jay, A., Raymond, J.L., Rossi, F., Zeng, X., Scruggs, J., Dyer, D., Frick,
784 O., Koehler, J.W., et al. (2021). Development of a coronavirus disease 2019 nonhuman primate model
785 using airborne exposure. *PLoS One* *16*, e0246366. 10.1371/journal.pone.0246366.

786 Kumar, A., Pareek, V., Prasoon, P., Faiq, M.A., Kumar, P., Kumari, C., and Narayan, R.K. (2020). Possible
787 routes of SARS-CoV-2 invasion in brain: In context of neurological symptoms in COVID-19 patients. *J
788 Neurosci Res* *98*, 2376–2383. 10.1002/jnr.24717.

789 Kushawaha, P.K., Gupta, R., Sundar, S., Sahasrabuddhe, A.A., and Dube, A. (2011). Elongation factor-2,
790 a Th1 stimulatory protein of *Leishmania donovani*, generates strong IFN- γ and IL-12 response in
791 cured *Leishmania*-infected patients/hamsters and protects hamsters against *Leishmania* challenge. *J
792 Immunol* *187*, 6417–6427. 10.4049/jimmunol.1102081.

793 Lau, S.Y., Wang, P., Mok, B.W., Zhang, A.J., Chu, H., Lee, A.C., Deng, S., Chen, P., Chan, K.H., Song,
794 W., et al. (2020). Attenuated SARS-CoV-2 variants with deletions at the S1/S2 junction. *Emerg Microbes
795 Infect* *9*, 837–842. 10.1080/22221751.2020.1756700.

796 Lin, J.W., Tang, C., Wei, H.C., Du, B., Chen, C., Wang, M., Zhou, Y., Yu, M.X., Cheng, L., Kuivanen,
797 S., et al. (2021). Genomic monitoring of SARS-CoV-2 uncovers an Nsp1 deletion variant that modulates
798 type I interferon response. *Cell Host Microbe* *29*, 489–502 e488. 10.1016/j.chom.2021.01.015.

799 Lindeboom, R.G.H., Worlock, K.B., Dratva, L.M., Yoshida, M., Scobie, D., Wagstaffe, H.R., Richardson,
800 L., Wilbrey-Clark, A., Barnes, J.L., Kretschmer, L., et al. (2024). Human SARS-CoV-2 challenge uncovers
801 local and systemic response dynamics. *Nature* *631*, 189–198. 10.1038/s41586-024-07575-x.

802 Machado, R.R.G., Walker, J.L., Scharton, D., Rafael, G.H., Mitchell, B.M., Reyna, R.A., de Souza, W.M.,
803 Liu, J., Walker, D.H., Plante, J.A., et al. (2023). Immunogenicity and efficacy of vaccine boosters
804 against SARS-CoV-2 Omicron subvariant BA.5 in male Syrian hamsters. *Nat Commun* *14*, 4260.
805 10.1038/s41467-023-40033-2.

806 Macklin, G.R., O'Reilly, K.M., Grassly, N.C., Edmunds, W.J., Mach, O., Santhana Gopala Krishnan, R.,
807 Voorman, A., Vertefeuille, J.F., Abdelwahab, J., Gumede, N., et al. (2020). Evolving epidemiology of
808 poliovirus serotype 2 following withdrawal of the serotype 2 oral poliovirus vaccine. *Science* *368*,
809 401–405. 10.1126/science.aba1238.

810 Marrack, P., McKee, A.S., and Munk, M.W. (2009). Towards an understanding of the adjuvant action of
811 aluminium. *Nat Rev Immunol* *9*, 287–293. 10.1038/nri2510.

812 Natekar, J.P., Pathak, H., Stone, S., Kumari, P., Sharma, S., Auroni, T.T., Arora, K., Rothan, H.A.,
813 and Kumar, M. (2022). Differential Pathogenesis of SARS-CoV-2 Variants of Concern in Human
814 ACE2-Expressing Mice. *Viruses* *14*. 10.3390/v14061139.

815 Nouailles, G., Adler, J.M., Pennitz, P., Peidli, S., Teixeira Alves, L.G., Baumgardt, M., Bushe, J.,
816 Voss, A., Langenhagen, A., Langner, C., et al. (2023). Live-attenuated vaccine sCPD9 elicits superior
817 mucosal and systemic immunity to SARS-CoV-2 variants in hamsters. *Nat Microbiol* *8*, 860–874.
818 10.1038/s41564-023-01352-8.

819 Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T., and Nishimune, Y. (1997). 'Green mice' as a source
820 of ubiquitous green cells. *FEBS Lett* *407*, 313–319. 10.1016/s0014-5793(97)00313-x.

821 Okamura, S., Yoshida, A., Miyazato, P., Matsumoto, M., and Ebina, H. (2023). Protocol to isolate
822 temperature-sensitive SARS-CoV-2 mutants and identify associated mutations. *STAR Protoc* *4*, 102352.
823 10.1016/j.xpro.2023.102352.

824 Peacock, T.P., Goldhill, D.H., Zhou, J., Baillon, L., Frise, R., Swann, O.C., Kugathasan, R., Penn,
825 R., Brown, J.C., Sanchez-David, R.Y., et al. (2021). The furin cleavage site in the SARS-CoV-2 spike
826 protein is required for transmission in ferrets. *Nat Microbiol* *6*, 899–909. 10.1038/s41564-021-00908-w.

827 Ploquin, A., Szecsi, J., Mathieu, C., Guillaume, V., Barateau, V., Ong, K.C., Wong, K.T., Cosset, F.L.,
828 Horvat, B., and Salvetti, A. (2013). Protection against henipavirus infection by use of recombinant
829 adeno-associated virus-vector vaccines. *J Infect Dis* *207*, 469–478. 10.1093/infdis/jis699.

830 Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J. L., Perez
831 Marc, G., Moreira, E.D., Zerbini, C., et al. (2020). Safety and Efficacy of the BNT162b2 mRNA Covid-19
832 Vaccine. *N Engl J Med* *383*, 2603–2615. 10.1056/NEJMoa2034577.

833 Primard, C., Monchatre-Leroy, E., Del Campo, J., Valsesia, S., Nikly, E., Chevandier, M., Boue, F.,
834 Servat, A., Wasniewski, M., Picard-Meyer, E., et al. (2023). OVX033, a nucleocapsid-based vaccine
835 candidate, provides broad-spectrum protection against SARS-CoV-2 variants in a hamster challenge model.
836 *Front Immunol* *14*, 1188605. 10.3389/fimmu.2023.1188605.

837 Rosenke, K., Meade-White, K., Letko, M., Clancy, C., Hansen, F., Liu, Y., Okumura, A., Tang-Huau, T. L.,
838 Li, R., Saturday, G., et al. (2020). Defining the Syrian hamster as a highly susceptible preclinical
839 model for SARS-CoV-2 infection. *Emerg Microbes Infect* *9*, 2673–2684. 10.1089/22221751.2020.1858177.

840 Sabin, A.B. (1985). Oral poliovirus vaccine: history of its development and use and current challenge
841 to eliminate poliomyelitis from the world. *J Infect Dis* *151*, 420–436. 10.1093/infdis/151.3.420.

842 Sasaki, M., Toba, S., Itakura, Y., Chambaro, H. M., Kishimoto, M., Tabata, K., Intaruck, K., Uemura,
843 K., Sanaki, T., Sato, A., et al. (2021). SARS-CoV-2 Bearing a Mutation at the S1/S2 Cleavage Site Exhibits
844 Attenuated Virulence and Confers Protective Immunity. *mBio* *12*, e0141521. 10.1128/mBio.01415-21.

845 Seo, S.H., and Jang, Y. (2020). Cold-Adapted Live Attenuated SARS-CoV-2 Vaccine Completely Protects
846 Human ACE2 Transgenic Mice from SARS-CoV-2 Infection. *Vaccines (Basel)* *8*. 10.3390/vaccines8040584.

847 Thwaites, R.S., Uruchurtu, A.S.S., Negri, V.A., Cole, M.E., Singh, N., Poshai, N., Jackson, D., Hoschler,
848 K., Baker, T., Scott, I.C., et al. (2023). Early mucosal events promote distinct mucosal and systemic
849 antibody responses to live attenuated influenza vaccine. *Nat Commun* *14*, 8053.
850 10.1038/s41467-023-43842-7.

851 Torii, S., Ono, C., Suzuki, R., Morioka, Y., Anzai, I., Fauzyah, Y., Maeda, Y., Kamitani, W., Fukuwara,
852 T., and Matsuura, Y. (2021). Establishment of a reverse genetics system for SARS-CoV-2 using circular
853 polymerase extension reaction. *Cell Rep* *35*, 109014. 10.1016/j.celrep.2021.109014.

854 Trimpert, J., Dietert, K., Firsching, T.C., Ebert, N., Thi Nhu Thao, T., Vladimirova, D., Kaufer, S.,
855 Labroussaa, F., Abdalgawad, A., Conradie, A., et al. (2021). Development of safe and highly protective
856 live-attenuated SARS-CoV-2 vaccine candidates by genome recoding. *Cell Rep* *36*, 109493.
857 10.1016/j.celrep.2021.109493.

858 Ueno, S., Amarbayasgalan, S., Sugiura, Y., Takahashi, T., Shimizu, K., Nakagawa, K., Kawabata-Iwakawa,
859 R., and Kamitani, W. (2024). Eight-amino-acid sequence at the N-terminus of SARS-CoV-2 nspl is involved
860 in stabilizing viral genome replication. *Virology* *595*. ARTN 110068
861 10.1016/j.virol.2024.110068.

862 Wang, P., Lau, S.Y., Deng, S., Chen, P., Mok, B.W., Zhang, A.J., Lee, A.C., Chan, K.H., Tam, R.C.,
863 Xu, H., et al. (2021a). Characterization of an attenuated SARS-CoV-2 variant with a deletion at the
864 S1/S2 junction of the spike protein. *Nat Commun* *12*, 2790. 10.1038/s41467-021-23166-0.

865 Wang, Y., Yang, C., Song, Y., Coleman, J. R., Stawowczyk, M., Tafrova, J., Tasker, S., Boltz, D., Baker,
866 R., Garcia, L., et al. (2021b). Scalable live-attenuated SARS-CoV-2 vaccine candidate demonstrates
867 preclinical safety and efficacy. *Proc Natl Acad Sci U S A* *118*. 10.1073/pnas.2102775118.

868 Weinheimer, V.K., Becher, A., Tonnies, M., Holland, G., Knepper, J., Bauer, T.T., Schneider, P.,
869 Neudecker, J., Ruckert, J.C., Szymanski, K., et al. (2012). Influenza A viruses target type II
870 pneumocytes in the human lung. *J Infect Dis* *206*, 1685–1694. 10.1093/infdis/jis455.

871 Yasmin, F., Najeeb, H., Naeem, U., Moeed, A., Atif, A.R., Asghar, M.S., Nimri, N., Saleem, M.,
872 Bandyopadhyay, D., Krittawong, C., et al. (2023). Adverse events following COVID-19 mRNA vaccines:
873 A systematic review of cardiovascular complication, thrombosis, and thrombocytopenia. *Immun Inflamm
874 Dis* *11*, e807. 10.1002/iid3.807.

875 Yeh, M.T., Bujaki, E., Dolan, P.T., Smith, M., Wahid, R., Konz, J., Weiner, A.J., Bandyopadhyay, A.S.,
876 Van Damme, P., De Coster, I., et al. (2020). Engineering the Live-Attenuated Polio Vaccine to Prevent
877 Reversion to Virulence. *Cell Host Microbe* *27*, 736–751 e738. 10.1016/j.chom.2020.04.003.

878 Yeh, M.T., Smith, M., Carlyle, S., Konopka-Anstadt, J.L., Burns, C.C., Konz, J., Andino, R., and Macadam,
879 A. (2023). Genetic stabilization of attenuated oral vaccines against poliovirus types 1 and 3. *Nature*
880 *619*, 135–142. 10.1038/s41586-023-06212-3.

881 Yoshida, A., Okamura, S., Torii, S., Komatsu, S., Miyazato, P., Sasaki, H., Ueno, S., Suzuki, H.,
882 Kamitani, W., Ono, C., et al. (2022). Versatile live-attenuated SARS-CoV-2 vaccine platform applicable

883 to variants induces protective immunity. *iScience* *25*, 105412. 10.1016/j.isci.2022.105412.

884 Young, B.E., Fong, S.W., Chan, Y.H., Mak, T.M., Ang, L.W., Anderson, D.E., Lee, C.Y., Amrun, S.N.,

885 Lee, B., Goh, Y.S., et al. (2020). Effects of a major deletion in the SARS-CoV-2 genome on the severity

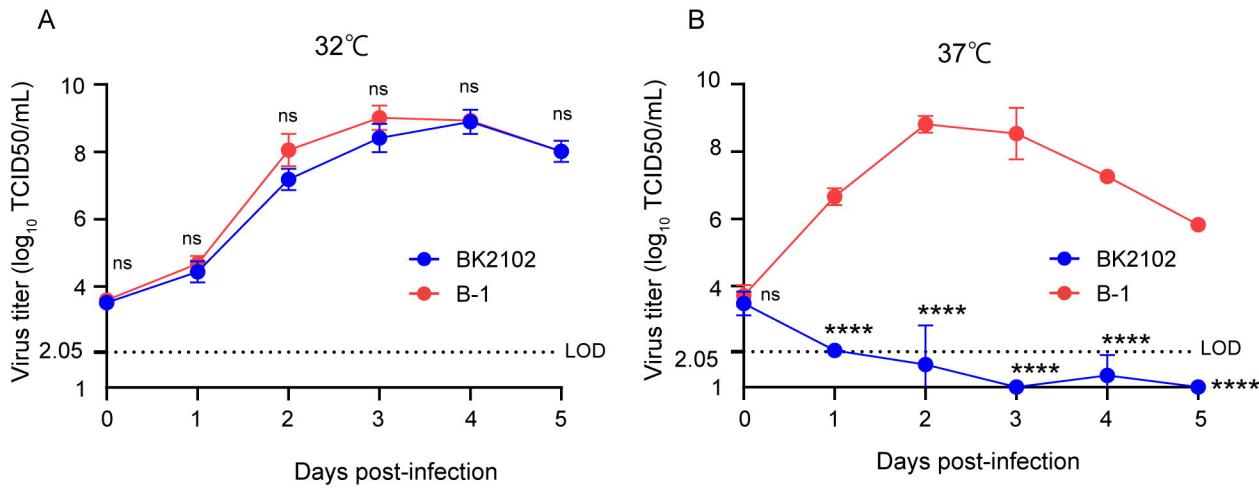
886 of infection and the inflammatory response: an observational cohort study. *Lancet* *396*, 603–611.

887 10.1016/S0140-6736(20)31757-8.

888 Zhang, G.F., Meng, W., Chen, L., Ding, L., Feng, J., Perez, J., Ali, A., Sun, S., Liu, Z., Huang, Y.,

889 et al. (2022). Neutralizing antibodies to SARS-CoV-2 variants of concern including Delta and Omicron

890 in subjects receiving mRNA-1273, BNT162b2, and Ad26.COV2.S vaccines. *J Med Virol* *94*, 5678–5690.


891 10.1002/jmv.28032.

892 Zinzula, L. (2021). Lost in deletion: The enigmatic ORF8 protein of SARS-CoV-2. *Biochem Biophys Res*

893 *Commun* *538*, 116–124. 10.1016/j.bbrc.2020.10.045.

894

Figure 1

bioRxiv preprint doi: <https://doi.org/10.1101/2024.03.03.582873>; this version posted October 28, 2024. The copyright holder

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

available under aCC-BY-NC-ND 4.0 International license.

Figure 2

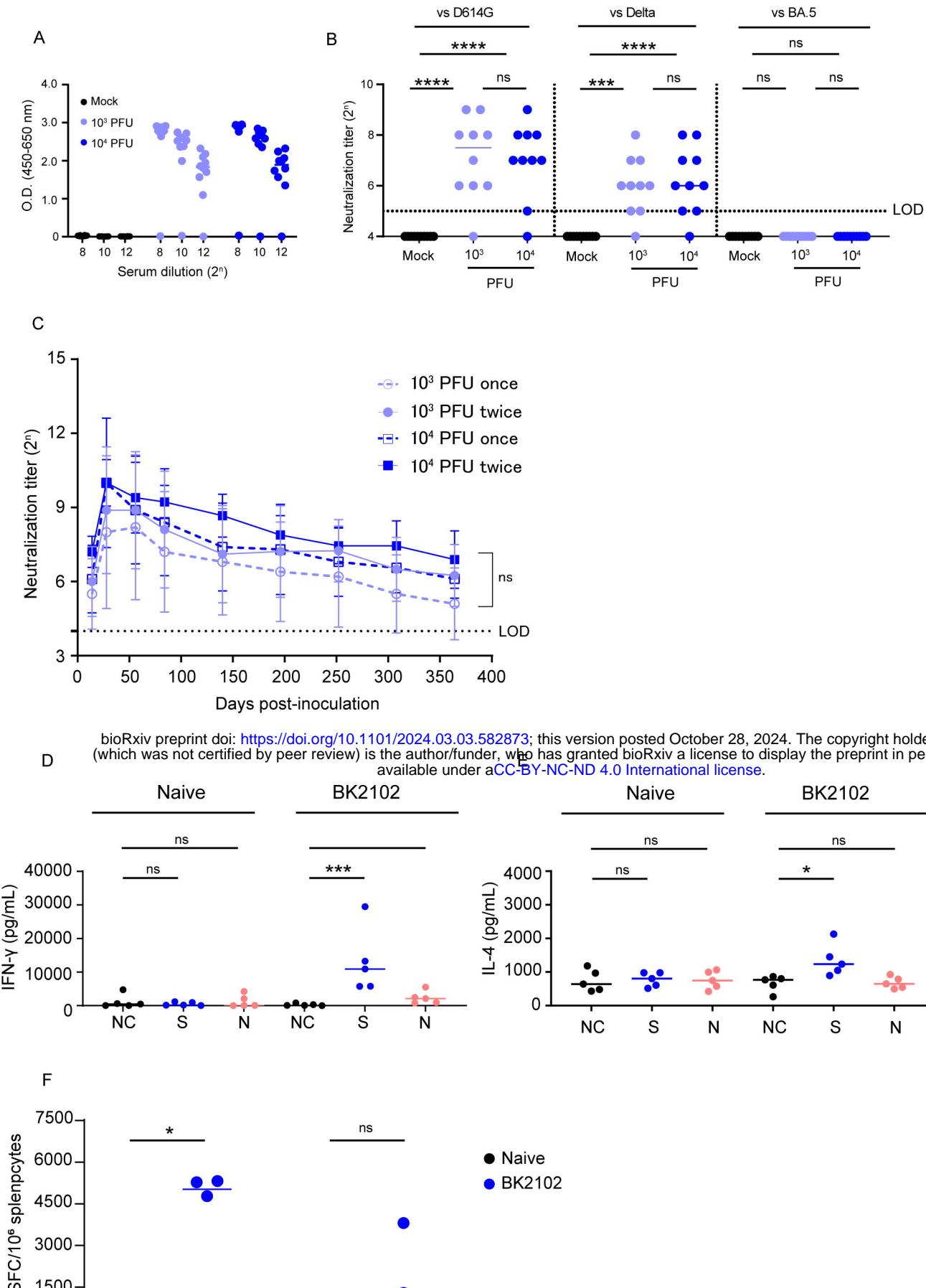
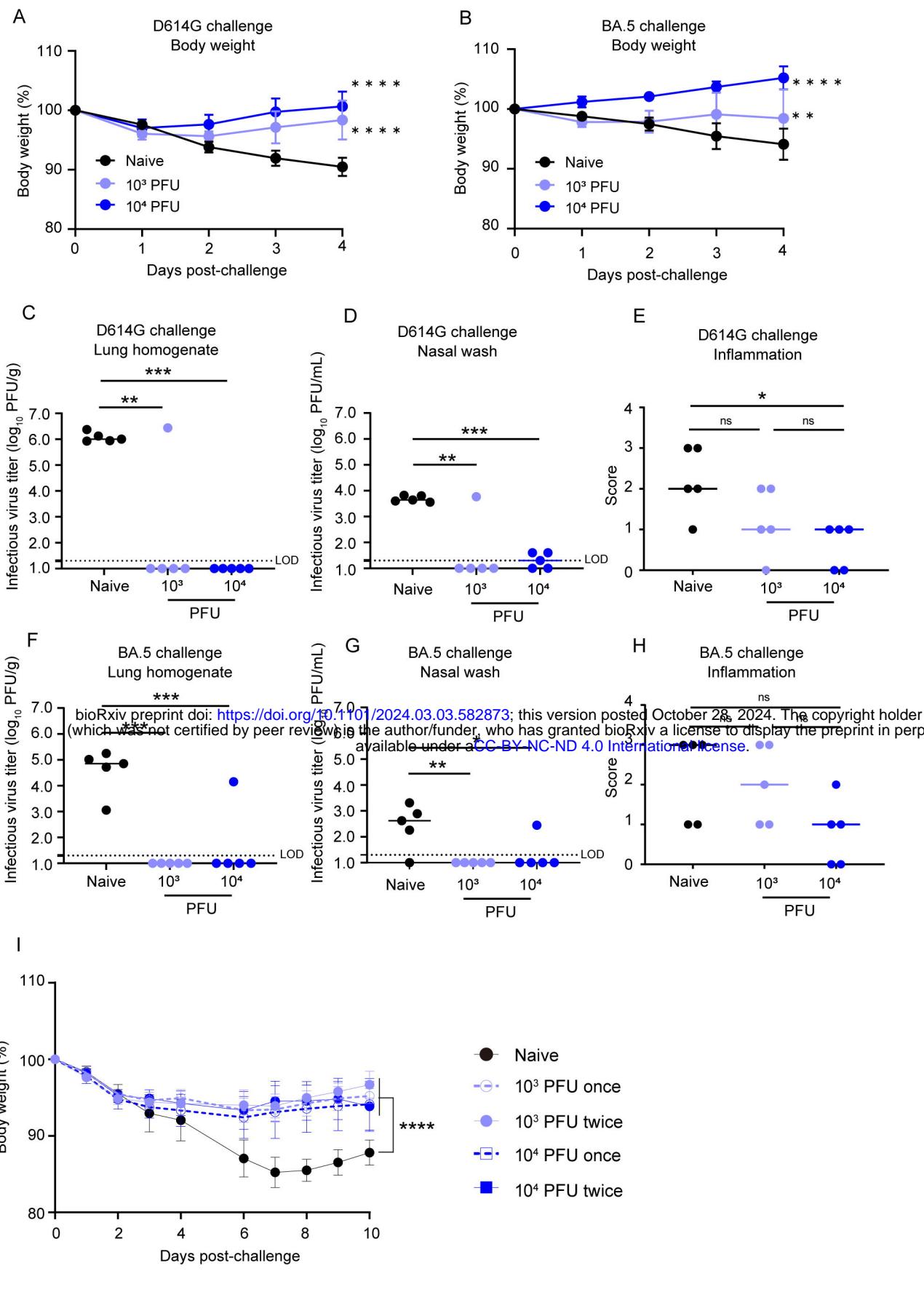
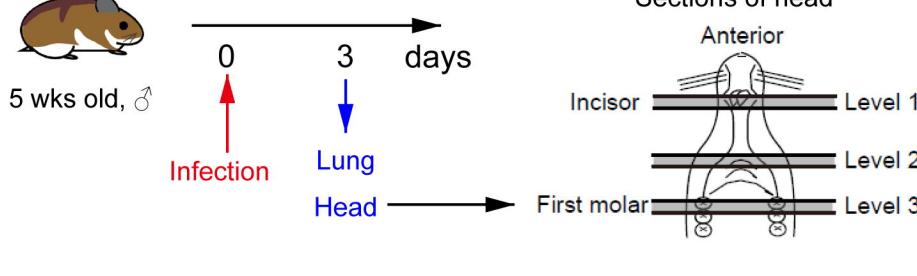
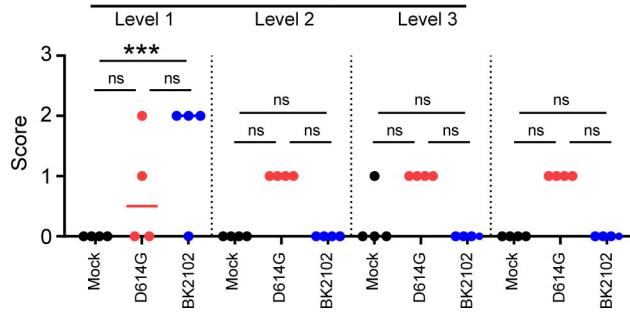
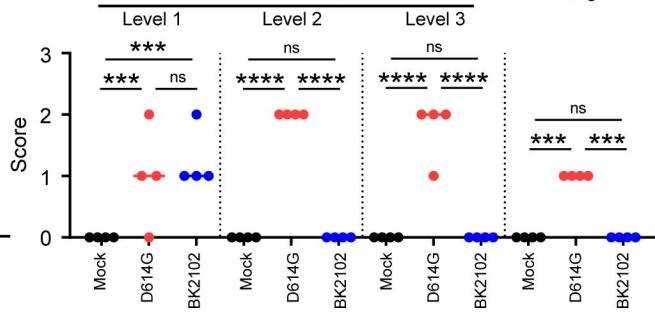


Figure 3


Figure 4

A


B

Inflammation

C

IHC

D

E

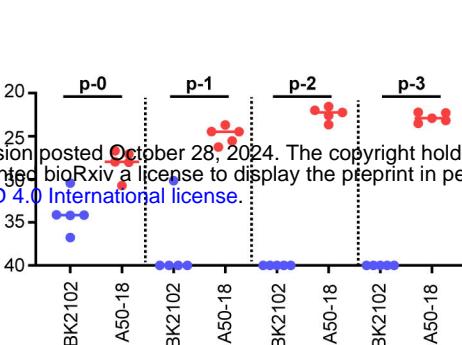
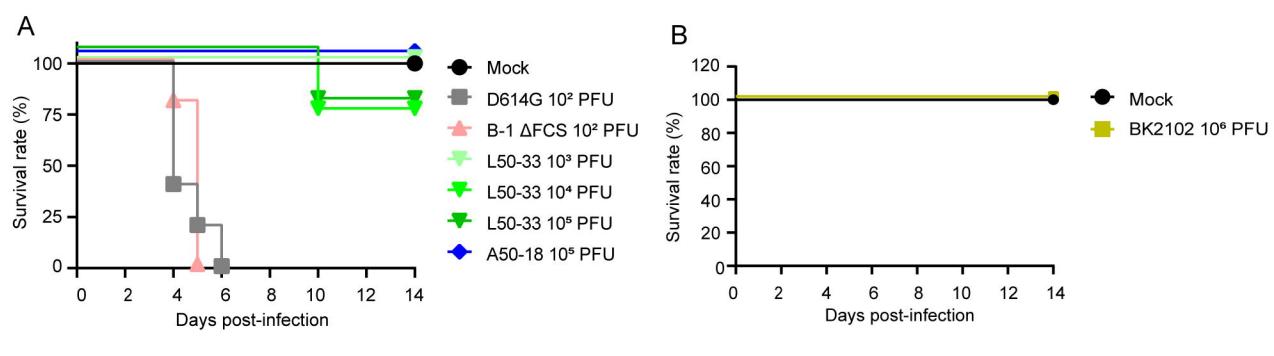



Figure 5

bioRxiv preprint doi: <https://doi.org/10.1101/2024.03.03.582873>; this version posted October 28, 2024. The copyright holder (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Table 1. SARS-CoV-2 strains

<u>REAGENT or RESOURCE</u>	<u>SOURCE</u>	<u>IDENTIFIER</u>
SARS-CoV-2: pre-alpha type, D614G, B-1 strain	Yoshida. et al.,2022	NCBI: LC603286
A50-18 strain	Yoshida. et al.,2022	NCBI: LC603287
L50-33 strain	Yoshida. et al.,2022	NCBI: LC603289
B-1 ΔFCS strain	Current study	N/A ^a
Candidate 1 (BK2102)	Current study	N/A ^a
Candidate 2	Current study	N/A ^a
Candidate 3	Current study	N/A ^a
SARS-CoV-2: delta variant, BK325 strain	Research Foundation for Microbial Diseases of Osaka University	N/A ^a
SARS-CoV-2: gamma variant, TY7-501 strain	National Institute of Infectious Diseases	GISAID ID: EPI_ISL_833366
SARS-CoV-2: omicron variant, TY41-702 strain	National Institute of Infectious Diseases	GISAID ID: EPI_ISL_13241867

^a Not applicable

Table 2. Primer list

Primer ID	Oligonucleotides	SOURCE
F1_F	CTATATAAGCAGAGCTCGTTAGTGAACCGTattaaaggttatacccccaggtaac	Torii, et al. (2021)
F1_R	cagattcaactgcatggcatgttagtagccattttaaaggctcctgc	Torii, et al. (2021)
F2_F	gcaggaggccctaaataaggctactaacaatggccatgcagttgaatctg	Torii, et al. (2021)
F2_R	ggtaggattttccactacttccagagactggtttagatctcgccaggc	Torii, et al. (2021)
F3_F	gcctgcgaagatctaaaccaggctctgaagaagttagtgaaaaatccacc	Torii, et al. (2021)
F3_R	ggtagcacagcgcagctctctaaaaggactaaagg	Torii, et al. (2021)
F4_F	caccactaattcaacactatgggtgttggacatcatgcacatctatagtagctgg	Torii, et al. (2021)
F4_R	gtttaaaaacgatttgcatcagctgactg	Torii, et al. (2021)
F5_F	cacagtctaccgtctgcggatgtggaaagggtatggctgtatgtgtatgc	Torii, et al. (2021)
F5_R	gcgggtgtacatagccctataaaactcagggtccaaatccctgaaatgt	Torii, et al. (2021)
F6_F	cacttcaaggatgtggaaacctgatgtttatgaggctatgtacacaccgc	Torii, et al. (2021)
F6_R	catacaaactgcaccatcacaccaggcaagttaaaggtagatagcactctag	Torii, et al. (2021)
F7_F	ctagagtgtatctaacccttaacttgccctgtgtatggggcaggatgtatgc	Torii, et al. (2021)
F7_R	ctagagactgtggcaataaaacaagaaaaaacaaacattgtcgttagtgttaac	Torii, et al. (2021)
F8_F	gttaacaactaaacgaacaatgttgtttctgtttattgccactagtctctag	Torii, et al. (2021)
F8_R	gcagcaggatccacaagaacaacacggcccttgagacaactacagcaactgg	Torii, et al. (2021)
F9_F	ccagttgtctgttgtctcaagggtgtgttgtggatccctgtgc	Torii, et al. (2021)
F9_R	caatctccatgggtgtcttcatc	Torii, et al. (2021)
F10_F	gtatgaagagcaaccaatggagatgt	Torii, et al. (2021)
F10_R	GGAGATGCCATGCCGACCCttttttttttttttttttttgtcatttcctaag	Torii, et al. (2021)
Linker_F	cttaggagaatgacaaaaaaaaaaaaaaaaaaaaaaaaaaaaGGGTGGCATGGCATCTCC	Torii, et al. (2021)
Linker_R	gttacctggaaaggatataaccttaatACGGTTCACTAACGAGCTCTGCTTATATAG	Torii, et al. (2021)
TS_F6_R	catacaaactgcccacTatcacaaccaggcaagttaaaggtagatagcactctag	Yoshida, et al. (2022)
TS_F7_F	ctagagtgtatctaacccttaacttgccctgtgtatggcaggatgtatgc	Yoshida, et al. (2022)

Table 3. Genetic variations of viruses passaged *in vivo*

Mutations						
	ΔG359 - A382 (<i>NSP1</i>)	G18782T (<i>NSP14</i>)	G19285A (<i>NSP14</i>)	C19550T (<i>NSP14</i>)	ΔA23598-G23624 (<i>Spike FCS</i>)	ΔC27549-T28251 (<i>ORF7a-8</i>)
A50-18	N/A ^a	G	G/A	T	N/A ^a	N/A ^a
	N/A ^a	G/T	G/A	T	N/A ^a	N/A ^a
	N/A ^a	G/T	G/A	T	N/A ^a	N/A ^a
	N/A ^a	G/T	G	T	N/A ^a	N/A ^a
	N/A ^a	G/T	G/A	T	N/A ^a	N/A ^a
BK2102	O ^b	T	A	T	O ^b	O ^b
	O ^b	T	A	T	O ^b	O ^b
	O ^b	T	A	T	O ^b	O ^b
	O ^b	T	A	T	O ^b	O ^b
	O ^b	T	A	T	O ^b	O ^b

^a Not applicable

^b Same sequence as the inoculated virus

Table 4. NSP3 genetic variations in viruses recovered from infected Tg mice

	n	Virus titer (Log10 PFU/g)		TS substitution NSP3
		Brain	Lung	
D614G (10² PFU infected)	5	6.94 ± 0.44 ^a	3.67 ± 0.26 ^a	N/A ^b
B-1 Δ FCS (10² PFU infected)	5	8.69 ± 0.33 ^a	5.64 ± 0.62 ^a	N/A ^b
L50-33 (10⁴ PFU infected)	1	5.75	< 2.40	F445L (TTT → TTG)
L50-33 (10⁵ PFU infected)	1	7.24	2.40	F445L (TTT → TTG)

^a Average ± SD

^b Not applicable